Parametric crystal optics of nonmagnetic ferroics

合集下载

电磁场中英文词汇

电磁场中英文词汇

有源网络active network导纳率admittivity安培电流定律Ampere's circuital law解析函数analytic function孔(缝)隙天线aperture antennas渐进表示式asymptotic expression第一类贝塞耳函数Bessel function of the first kind 边值问题boundary value problem击穿功率breakdown power布魯斯特角Brewster angle特征值characteristic value电路尺寸circuit dimension圆柱腔circular cavity圆波导circular waveguide圆极化circularly polarized环行器circulator复磁导率complex permeability复功率密度complex power density复矢量波动方程complex vector wave equation共轭问题conjugate problem共面波导coplanar waveguide (CPW)串扰cross-talk直流偏置DC biasδ函数delta function功率流(通量)密度density of power flux介质波导dielectric guide介质损耗dielectric loss耗散电流dissipative current失真distortions散度方程divergence equation主模dominant mode二重傅立叶级数double Fourier series动态场dynamic field本征函数eigen function本征值eigen value电荷密度electric charge density电磁兼容electromagnetic compatibility椭圆极化elliptically polarized能量储存energy storage等幅面equi-amplitude surface雕落场evanescent field雕落模式evanescent mode法拉第感应定律Faraday's law of induction远场far-field铁氧体陶瓷ferrite ceramics场方程field equation场量field quantity场源field source有限区域finite region四端口网络four terminal network傅立叶级数Fourier series傅立叶变换Fourier transformation增益gain几何绕射理论GTD (Geometrical Theory of Diffraction)波导相速度guide phase velocity波导波长guide wave length霍尔效应Hall effect第二类汉克尔函数Hankel function of the second kind高阶模high order mode喇叭天线horn antennas混合模hybrid mode虚部imaginary part红外频谱infra-red frequency spectrum非均匀媒质inhomogeneous media积分方程integral equation内阻抗internal impedance固有(本征)阻抗intrinsic impedance隔离器isolator各向同性物质isotropic matter克希荷夫电流定律Kirchhoff's current law电荷守恒定律law of conservation of charge漏电电流leakage current勒让德多项式Legendre polynomial线积分line integral线性极化linearly polarized洛伦兹互易定理Lorentz reciprocity theorem有耗介质lossy dielectric集中参数元件lumped-element磁滞损耗magnetic hysteresis磁损耗角magnetic loss angle磁矢量位magnetic vector potential匹配负载matched load最速下降法method of steepest descent 微带microstrip微波单片集成电路microwave monolithic 模式mode模式展开mode expansion模式图mode pattern单极天线monopole antenna互耦合mutual coupling各向异性nonisotropy非可逆器件nonreciprocal devices光纤optic fiber平行板波导parallel plate waveguide寄生效应parasite effect部分填充波导partially filled waveguide特解particular solution贴片patch天线方向性图pattern of antenna理想导体perfect conductor理想介质perfect dielectric相位常数phase constant相移器phase shifter相速度phase velocity坡印亭矢量Poynting vector品质因子quality factor准静态quasi-static雷达反射截面radar cross section (RCS)径向模radial mode径向波radial wave径向波导radial waveguide辐射电导radiation conductance辐射方向性图radiation pattern辐射功率radiation power辐射电阻radiation resistance射频radio frequency直角坐标rectangular coordinate递推公式recurrence formula相对磁导率relative permeability鞍点saddle标量格林定理scalar Green's theorem标量位scalar potential散射矩阵scattering matrix分离变量法separation of variables短路板shorting plate旁路电流shunt current信号完整性signal integrity单模single mode正弦的sinusoidal趋肤深度skin depth趋肤效应skin effect终端电压terminal voltage终端termination时谐time harmonic全透射total transmission超越方程transcendental equation传输线模式transmission line mode横电场transverse electric field横电磁波transverse electromagnetic wave二端口网络two port network无限(界)区域unbound region均匀平面波uniform plane wave均匀传输线uniform transmission line唯一性uniqueness单位法线unit normal单位切线unit tangent一致性几何绕射理论UTD (Uniform Geometrical Theory of Diffraction)矢量位vector potential电压源voltage source小波wavelet。

非线性光学(NonlinearOptics)非线性极化率张量(Nonlinear

非线性光学(NonlinearOptics)非线性极化率张量(Nonlinear
•由 ,令 ,有 。 • 即在 不为零时,频率为ω的入射光场在介质中产生了频率为2ω的出射光场。 的关系,需要考虑在频率
• 为了找出 中C3和 为ω的AC电场驱动下电子运动方程的近似解。
acceleration 驱动电场:
电子位移: 且满足:
damping
restoring force
尝试解
二、光学非线性的物理起源
• 此时单位时间内减少的光子数目为
,即净吸收速率。
• 随着光束在介质中的传播,其强度逐渐减小:定义z处的光强为I(z),dz内光强的变化 为dI ,此时有 。 • 由于光束强度定义为单位时间在单位面积上通过的能量(W m-2),有 ,即 。
• 进一步得到

二、光学非线性的物理起源
Resonant nonlinearities 共振非线性
Non-resonant nonlinearities 非共振非线性
• 进一步得到
。 • 此时在频率2ω处的偏振为 • 另外在频率2ω处的偏振由频率为ω的驱动电场转换而来,可得到 。

• 由上面三式,最终得到
的非简谐项C3成正比。 Miller’s Rule
,即二阶非线性极化率与运动方程中
•当ω趋近于ω0时,
三、二阶非线性
晶体对称性效应 • 比如,中心对称晶体 (centrosymmetric)具有反转对称性,在施加单一电场 时,非线 性偏振 况不变。 的分量可表示为 ,即电场方向反转时情
• 另外,由晶体的反转对称性,在场方向不变而反转晶体时,所有的物理过程相同。
在晶体的坐标轴变化下,所有的 和 的分量变化符号,从而得到
• 在光波的AC电场驱动下,电子在正周期的位移要小于负周期的位移。

非厄米谐振 薄膜

非厄米谐振 薄膜

非厄米谐振薄膜【中英文版】Title: Non-Hermitian Resonance in Thin Films中文标题:非厄米谐振薄膜---In the realm of optics, non-Hermitian resonance in thin films has garnered significant attention due to its unique properties and potential applications.在光学领域,非厄米谐振薄膜因其独特的性质和潜在的应用而受到了广泛关注。

---When light interacts with a thin film, the propagation constant can become complex, leading to a resonance that is not purely real.This non-Hermitian resonance is characterized by a complex frequency and a corresponding complex propagation constant.当光与薄膜相互作用时,传播常数可能变得复杂,导致谐振不是纯实数的。

这种非厄米谐振由复频率和相应的复传播常数特征。

---The emergence of this resonance phenomenon can lead to interesting optical phenomena such as enhanced absorption, modified refractive index, and unique dispersion characteristics.These properties make thin films with non-Hermitian resonance promising candidates forvarious optical devices, including sensors, filters, and optical modulators.这种谐振现象的出现可以导致诸如增强吸收、改变折射率和独特的色散特性等有趣的光学现象。

物理学专业英语

物理学专业英语

华中师范大学物理学院物理学专业英语仅供内部学习参考!2014一、课程的任务和教学目的通过学习《物理学专业英语》,学生将掌握物理学领域使用频率较高的专业词汇和表达方法,进而具备基本的阅读理解物理学专业文献的能力。

通过分析《物理学专业英语》课程教材中的范文,学生还将从英语角度理解物理学中个学科的研究内容和主要思想,提高学生的专业英语能力和了解物理学研究前沿的能力。

培养专业英语阅读能力,了解科技英语的特点,提高专业外语的阅读质量和阅读速度;掌握一定量的本专业英文词汇,基本达到能够独立完成一般性本专业外文资料的阅读;达到一定的笔译水平。

要求译文通顺、准确和专业化。

要求译文通顺、准确和专业化。

二、课程内容课程内容包括以下章节:物理学、经典力学、热力学、电磁学、光学、原子物理、统计力学、量子力学和狭义相对论三、基本要求1.充分利用课内时间保证充足的阅读量(约1200~1500词/学时),要求正确理解原文。

2.泛读适量课外相关英文读物,要求基本理解原文主要内容。

3.掌握基本专业词汇(不少于200词)。

4.应具有流利阅读、翻译及赏析专业英语文献,并能简单地进行写作的能力。

四、参考书目录1 Physics 物理学 (1)Introduction to physics (1)Classical and modern physics (2)Research fields (4)V ocabulary (7)2 Classical mechanics 经典力学 (10)Introduction (10)Description of classical mechanics (10)Momentum and collisions (14)Angular momentum (15)V ocabulary (16)3 Thermodynamics 热力学 (18)Introduction (18)Laws of thermodynamics (21)System models (22)Thermodynamic processes (27)Scope of thermodynamics (29)V ocabulary (30)4 Electromagnetism 电磁学 (33)Introduction (33)Electrostatics (33)Magnetostatics (35)Electromagnetic induction (40)V ocabulary (43)5 Optics 光学 (45)Introduction (45)Geometrical optics (45)Physical optics (47)Polarization (50)V ocabulary (51)6 Atomic physics 原子物理 (52)Introduction (52)Electronic configuration (52)Excitation and ionization (56)V ocabulary (59)7 Statistical mechanics 统计力学 (60)Overview (60)Fundamentals (60)Statistical ensembles (63)V ocabulary (65)8 Quantum mechanics 量子力学 (67)Introduction (67)Mathematical formulations (68)Quantization (71)Wave-particle duality (72)Quantum entanglement (75)V ocabulary (77)9 Special relativity 狭义相对论 (79)Introduction (79)Relativity of simultaneity (80)Lorentz transformations (80)Time dilation and length contraction (81)Mass-energy equivalence (82)Relativistic energy-momentum relation (86)V ocabulary (89)正文标记说明:蓝色Arial字体(例如energy):已知的专业词汇蓝色Arial字体加下划线(例如electromagnetism):新学的专业词汇黑色Times New Roman字体加下划线(例如postulate):新学的普通词汇1 Physics 物理学1 Physics 物理学Introduction to physicsPhysics is a part of natural philosophy and a natural science that involves the study of matter and its motion through space and time, along with related concepts such as energy and force. More broadly, it is the general analysis of nature, conducted in order to understand how the universe behaves.Physics is one of the oldest academic disciplines, perhaps the oldest through its inclusion of astronomy. Over the last two millennia, physics was a part of natural philosophy along with chemistry, certain branches of mathematics, and biology, but during the Scientific Revolution in the 17th century, the natural sciences emerged as unique research programs in their own right. Physics intersects with many interdisciplinary areas of research, such as biophysics and quantum chemistry,and the boundaries of physics are not rigidly defined. New ideas in physics often explain the fundamental mechanisms of other sciences, while opening new avenues of research in areas such as mathematics and philosophy.Physics also makes significant contributions through advances in new technologies that arise from theoretical breakthroughs. For example, advances in the understanding of electromagnetism or nuclear physics led directly to the development of new products which have dramatically transformed modern-day society, such as television, computers, domestic appliances, and nuclear weapons; advances in thermodynamics led to the development of industrialization; and advances in mechanics inspired the development of calculus.Core theoriesThough physics deals with a wide variety of systems, certain theories are used by all physicists. Each of these theories were experimentally tested numerous times and found correct as an approximation of nature (within a certain domain of validity).For instance, the theory of classical mechanics accurately describes the motion of objects, provided they are much larger than atoms and moving at much less than the speed of light. These theories continue to be areas of active research, and a remarkable aspect of classical mechanics known as chaos was discovered in the 20th century, three centuries after the original formulation of classical mechanics by Isaac Newton (1642–1727) 【艾萨克·牛顿】.University PhysicsThese central theories are important tools for research into more specialized topics, and any physicist, regardless of his or her specialization, is expected to be literate in them. These include classical mechanics, quantum mechanics, thermodynamics and statistical mechanics, electromagnetism, and special relativity.Classical and modern physicsClassical mechanicsClassical physics includes the traditional branches and topics that were recognized and well-developed before the beginning of the 20th century—classical mechanics, acoustics, optics, thermodynamics, and electromagnetism.Classical mechanics is concerned with bodies acted on by forces and bodies in motion and may be divided into statics (study of the forces on a body or bodies at rest), kinematics (study of motion without regard to its causes), and dynamics (study of motion and the forces that affect it); mechanics may also be divided into solid mechanics and fluid mechanics (known together as continuum mechanics), the latter including such branches as hydrostatics, hydrodynamics, aerodynamics, and pneumatics.Acoustics is the study of how sound is produced, controlled, transmitted and received. Important modern branches of acoustics include ultrasonics, the study of sound waves of very high frequency beyond the range of human hearing; bioacoustics the physics of animal calls and hearing, and electroacoustics, the manipulation of audible sound waves using electronics.Optics, the study of light, is concerned not only with visible light but also with infrared and ultraviolet radiation, which exhibit all of the phenomena of visible light except visibility, e.g., reflection, refraction, interference, diffraction, dispersion, and polarization of light.Heat is a form of energy, the internal energy possessed by the particles of which a substance is composed; thermodynamics deals with the relationships between heat and other forms of energy.Electricity and magnetism have been studied as a single branch of physics since the intimate connection between them was discovered in the early 19th century; an electric current gives rise to a magnetic field and a changing magnetic field induces an electric current. Electrostatics deals with electric charges at rest, electrodynamics with moving charges, and magnetostatics with magnetic poles at rest.Modern PhysicsClassical physics is generally concerned with matter and energy on the normal scale of1 Physics 物理学observation, while much of modern physics is concerned with the behavior of matter and energy under extreme conditions or on the very large or very small scale.For example, atomic and nuclear physics studies matter on the smallest scale at which chemical elements can be identified.The physics of elementary particles is on an even smaller scale, as it is concerned with the most basic units of matter; this branch of physics is also known as high-energy physics because of the extremely high energies necessary to produce many types of particles in large particle accelerators. On this scale, ordinary, commonsense notions of space, time, matter, and energy are no longer valid.The two chief theories of modern physics present a different picture of the concepts of space, time, and matter from that presented by classical physics.Quantum theory is concerned with the discrete, rather than continuous, nature of many phenomena at the atomic and subatomic level, and with the complementary aspects of particles and waves in the description of such phenomena.The theory of relativity is concerned with the description of phenomena that take place in a frame of reference that is in motion with respect to an observer; the special theory of relativity is concerned with relative uniform motion in a straight line and the general theory of relativity with accelerated motion and its connection with gravitation.Both quantum theory and the theory of relativity find applications in all areas of modern physics.Difference between classical and modern physicsWhile physics aims to discover universal laws, its theories lie in explicit domains of applicability. Loosely speaking, the laws of classical physics accurately describe systems whose important length scales are greater than the atomic scale and whose motions are much slower than the speed of light. Outside of this domain, observations do not match their predictions.Albert Einstein【阿尔伯特·爱因斯坦】contributed the framework of special relativity, which replaced notions of absolute time and space with space-time and allowed an accurate description of systems whose components have speeds approaching the speed of light.Max Planck【普朗克】, Erwin Schrödinger【薛定谔】, and others introduced quantum mechanics, a probabilistic notion of particles and interactions that allowed an accurate description of atomic and subatomic scales.Later, quantum field theory unified quantum mechanics and special relativity.General relativity allowed for a dynamical, curved space-time, with which highly massiveUniversity Physicssystems and the large-scale structure of the universe can be well-described. General relativity has not yet been unified with the other fundamental descriptions; several candidate theories of quantum gravity are being developed.Research fieldsContemporary research in physics can be broadly divided into condensed matter physics; atomic, molecular, and optical physics; particle physics; astrophysics; geophysics and biophysics. Some physics departments also support research in Physics education.Since the 20th century, the individual fields of physics have become increasingly specialized, and today most physicists work in a single field for their entire careers. "Universalists" such as Albert Einstein (1879–1955) and Lev Landau (1908–1968)【列夫·朗道】, who worked in multiple fields of physics, are now very rare.Condensed matter physicsCondensed matter physics is the field of physics that deals with the macroscopic physical properties of matter. In particular, it is concerned with the "condensed" phases that appear whenever the number of particles in a system is extremely large and the interactions between them are strong.The most familiar examples of condensed phases are solids and liquids, which arise from the bonding by way of the electromagnetic force between atoms. More exotic condensed phases include the super-fluid and the Bose–Einstein condensate found in certain atomic systems at very low temperature, the superconducting phase exhibited by conduction electrons in certain materials,and the ferromagnetic and antiferromagnetic phases of spins on atomic lattices.Condensed matter physics is by far the largest field of contemporary physics.Historically, condensed matter physics grew out of solid-state physics, which is now considered one of its main subfields. The term condensed matter physics was apparently coined by Philip Anderson when he renamed his research group—previously solid-state theory—in 1967. In 1978, the Division of Solid State Physics of the American Physical Society was renamed as the Division of Condensed Matter Physics.Condensed matter physics has a large overlap with chemistry, materials science, nanotechnology and engineering.Atomic, molecular and optical physicsAtomic, molecular, and optical physics (AMO) is the study of matter–matter and light–matter interactions on the scale of single atoms and molecules.1 Physics 物理学The three areas are grouped together because of their interrelationships, the similarity of methods used, and the commonality of the energy scales that are relevant. All three areas include both classical, semi-classical and quantum treatments; they can treat their subject from a microscopic view (in contrast to a macroscopic view).Atomic physics studies the electron shells of atoms. Current research focuses on activities in quantum control, cooling and trapping of atoms and ions, low-temperature collision dynamics and the effects of electron correlation on structure and dynamics. Atomic physics is influenced by the nucleus (see, e.g., hyperfine splitting), but intra-nuclear phenomena such as fission and fusion are considered part of high-energy physics.Molecular physics focuses on multi-atomic structures and their internal and external interactions with matter and light.Optical physics is distinct from optics in that it tends to focus not on the control of classical light fields by macroscopic objects, but on the fundamental properties of optical fields and their interactions with matter in the microscopic realm.High-energy physics (particle physics) and nuclear physicsParticle physics is the study of the elementary constituents of matter and energy, and the interactions between them.In addition, particle physicists design and develop the high energy accelerators,detectors, and computer programs necessary for this research. The field is also called "high-energy physics" because many elementary particles do not occur naturally, but are created only during high-energy collisions of other particles.Currently, the interactions of elementary particles and fields are described by the Standard Model.●The model accounts for the 12 known particles of matter (quarks and leptons) thatinteract via the strong, weak, and electromagnetic fundamental forces.●Dynamics are described in terms of matter particles exchanging gauge bosons (gluons,W and Z bosons, and photons, respectively).●The Standard Model also predicts a particle known as the Higgs boson. In July 2012CERN, the European laboratory for particle physics, announced the detection of a particle consistent with the Higgs boson.Nuclear Physics is the field of physics that studies the constituents and interactions of atomic nuclei. The most commonly known applications of nuclear physics are nuclear power generation and nuclear weapons technology, but the research has provided application in many fields, including those in nuclear medicine and magnetic resonance imaging, ion implantation in materials engineering, and radiocarbon dating in geology and archaeology.University PhysicsAstrophysics and Physical CosmologyAstrophysics and astronomy are the application of the theories and methods of physics to the study of stellar structure, stellar evolution, the origin of the solar system, and related problems of cosmology. Because astrophysics is a broad subject, astrophysicists typically apply many disciplines of physics, including mechanics, electromagnetism, statistical mechanics, thermodynamics, quantum mechanics, relativity, nuclear and particle physics, and atomic and molecular physics.The discovery by Karl Jansky in 1931 that radio signals were emitted by celestial bodies initiated the science of radio astronomy. Most recently, the frontiers of astronomy have been expanded by space exploration. Perturbations and interference from the earth's atmosphere make space-based observations necessary for infrared, ultraviolet, gamma-ray, and X-ray astronomy.Physical cosmology is the study of the formation and evolution of the universe on its largest scales. Albert Einstein's theory of relativity plays a central role in all modern cosmological theories. In the early 20th century, Hubble's discovery that the universe was expanding, as shown by the Hubble diagram, prompted rival explanations known as the steady state universe and the Big Bang.The Big Bang was confirmed by the success of Big Bang nucleo-synthesis and the discovery of the cosmic microwave background in 1964. The Big Bang model rests on two theoretical pillars: Albert Einstein's general relativity and the cosmological principle (On a sufficiently large scale, the properties of the Universe are the same for all observers). Cosmologists have recently established the ΛCDM model (the standard model of Big Bang cosmology) of the evolution of the universe, which includes cosmic inflation, dark energy and dark matter.Current research frontiersIn condensed matter physics, an important unsolved theoretical problem is that of high-temperature superconductivity. Many condensed matter experiments are aiming to fabricate workable spintronics and quantum computers.In particle physics, the first pieces of experimental evidence for physics beyond the Standard Model have begun to appear. Foremost among these are indications that neutrinos have non-zero mass. These experimental results appear to have solved the long-standing solar neutrino problem, and the physics of massive neutrinos remains an area of active theoretical and experimental research. Particle accelerators have begun probing energy scales in the TeV range, in which experimentalists are hoping to find evidence for the super-symmetric particles, after discovery of the Higgs boson.Theoretical attempts to unify quantum mechanics and general relativity into a single theory1 Physics 物理学of quantum gravity, a program ongoing for over half a century, have not yet been decisively resolved. The current leading candidates are M-theory, superstring theory and loop quantum gravity.Many astronomical and cosmological phenomena have yet to be satisfactorily explained, including the existence of ultra-high energy cosmic rays, the baryon asymmetry, the acceleration of the universe and the anomalous rotation rates of galaxies.Although much progress has been made in high-energy, quantum, and astronomical physics, many everyday phenomena involving complexity, chaos, or turbulence are still poorly understood. Complex problems that seem like they could be solved by a clever application of dynamics and mechanics remain unsolved; examples include the formation of sand-piles, nodes in trickling water, the shape of water droplets, mechanisms of surface tension catastrophes, and self-sorting in shaken heterogeneous collections.These complex phenomena have received growing attention since the 1970s for several reasons, including the availability of modern mathematical methods and computers, which enabled complex systems to be modeled in new ways. Complex physics has become part of increasingly interdisciplinary research, as exemplified by the study of turbulence in aerodynamics and the observation of pattern formation in biological systems.Vocabulary★natural science 自然科学academic disciplines 学科astronomy 天文学in their own right 凭他们本身的实力intersects相交,交叉interdisciplinary交叉学科的,跨学科的★quantum 量子的theoretical breakthroughs 理论突破★electromagnetism 电磁学dramatically显著地★thermodynamics热力学★calculus微积分validity★classical mechanics 经典力学chaos 混沌literate 学者★quantum mechanics量子力学★thermodynamics and statistical mechanics热力学与统计物理★special relativity狭义相对论is concerned with 关注,讨论,考虑acoustics 声学★optics 光学statics静力学at rest 静息kinematics运动学★dynamics动力学ultrasonics超声学manipulation 操作,处理,使用University Physicsinfrared红外ultraviolet紫外radiation辐射reflection 反射refraction 折射★interference 干涉★diffraction 衍射dispersion散射★polarization 极化,偏振internal energy 内能Electricity电性Magnetism 磁性intimate 亲密的induces 诱导,感应scale尺度★elementary particles基本粒子★high-energy physics 高能物理particle accelerators 粒子加速器valid 有效的,正当的★discrete离散的continuous 连续的complementary 互补的★frame of reference 参照系★the special theory of relativity 狭义相对论★general theory of relativity 广义相对论gravitation 重力,万有引力explicit 详细的,清楚的★quantum field theory 量子场论★condensed matter physics凝聚态物理astrophysics天体物理geophysics地球物理Universalist博学多才者★Macroscopic宏观Exotic奇异的★Superconducting 超导Ferromagnetic铁磁质Antiferromagnetic 反铁磁质★Spin自旋Lattice 晶格,点阵,网格★Society社会,学会★microscopic微观的hyperfine splitting超精细分裂fission分裂,裂变fusion熔合,聚变constituents成分,组分accelerators加速器detectors 检测器★quarks夸克lepton 轻子gauge bosons规范玻色子gluons胶子★Higgs boson希格斯玻色子CERN欧洲核子研究中心★Magnetic Resonance Imaging磁共振成像,核磁共振ion implantation 离子注入radiocarbon dating放射性碳年代测定法geology地质学archaeology考古学stellar 恒星cosmology宇宙论celestial bodies 天体Hubble diagram 哈勃图Rival竞争的★Big Bang大爆炸nucleo-synthesis核聚合,核合成pillar支柱cosmological principle宇宙学原理ΛCDM modelΛ-冷暗物质模型cosmic inflation宇宙膨胀1 Physics 物理学fabricate制造,建造spintronics自旋电子元件,自旋电子学★neutrinos 中微子superstring 超弦baryon重子turbulence湍流,扰动,骚动catastrophes突变,灾变,灾难heterogeneous collections异质性集合pattern formation模式形成University Physics2 Classical mechanics 经典力学IntroductionIn physics, classical mechanics is one of the two major sub-fields of mechanics, which is concerned with the set of physical laws describing the motion of bodies under the action of a system of forces. The study of the motion of bodies is an ancient one, making classical mechanics one of the oldest and largest subjects in science, engineering and technology.Classical mechanics describes the motion of macroscopic objects, from projectiles to parts of machinery, as well as astronomical objects, such as spacecraft, planets, stars, and galaxies. Besides this, many specializations within the subject deal with gases, liquids, solids, and other specific sub-topics.Classical mechanics provides extremely accurate results as long as the domain of study is restricted to large objects and the speeds involved do not approach the speed of light. When the objects being dealt with become sufficiently small, it becomes necessary to introduce the other major sub-field of mechanics, quantum mechanics, which reconciles the macroscopic laws of physics with the atomic nature of matter and handles the wave–particle duality of atoms and molecules. In the case of high velocity objects approaching the speed of light, classical mechanics is enhanced by special relativity. General relativity unifies special relativity with Newton's law of universal gravitation, allowing physicists to handle gravitation at a deeper level.The initial stage in the development of classical mechanics is often referred to as Newtonian mechanics, and is associated with the physical concepts employed by and the mathematical methods invented by Newton himself, in parallel with Leibniz【莱布尼兹】, and others.Later, more abstract and general methods were developed, leading to reformulations of classical mechanics known as Lagrangian mechanics and Hamiltonian mechanics. These advances were largely made in the 18th and 19th centuries, and they extend substantially beyond Newton's work, particularly through their use of analytical mechanics. Ultimately, the mathematics developed for these were central to the creation of quantum mechanics.Description of classical mechanicsThe following introduces the basic concepts of classical mechanics. For simplicity, it often2 Classical mechanics 经典力学models real-world objects as point particles, objects with negligible size. The motion of a point particle is characterized by a small number of parameters: its position, mass, and the forces applied to it.In reality, the kind of objects that classical mechanics can describe always have a non-zero size. (The physics of very small particles, such as the electron, is more accurately described by quantum mechanics). Objects with non-zero size have more complicated behavior than hypothetical point particles, because of the additional degrees of freedom—for example, a baseball can spin while it is moving. However, the results for point particles can be used to study such objects by treating them as composite objects, made up of a large number of interacting point particles. The center of mass of a composite object behaves like a point particle.Classical mechanics uses common-sense notions of how matter and forces exist and interact. It assumes that matter and energy have definite, knowable attributes such as where an object is in space and its speed. It also assumes that objects may be directly influenced only by their immediate surroundings, known as the principle of locality.In quantum mechanics objects may have unknowable position or velocity, or instantaneously interact with other objects at a distance.Position and its derivativesThe position of a point particle is defined with respect to an arbitrary fixed reference point, O, in space, usually accompanied by a coordinate system, with the reference point located at the origin of the coordinate system. It is defined as the vector r from O to the particle.In general, the point particle need not be stationary relative to O, so r is a function of t, the time elapsed since an arbitrary initial time.In pre-Einstein relativity (known as Galilean relativity), time is considered an absolute, i.e., the time interval between any given pair of events is the same for all observers. In addition to relying on absolute time, classical mechanics assumes Euclidean geometry for the structure of space.Velocity and speedThe velocity, or the rate of change of position with time, is defined as the derivative of the position with respect to time. In classical mechanics, velocities are directly additive and subtractive as vector quantities; they must be dealt with using vector analysis.When both objects are moving in the same direction, the difference can be given in terms of speed only by ignoring direction.University PhysicsAccelerationThe acceleration , or rate of change of velocity, is the derivative of the velocity with respect to time (the second derivative of the position with respect to time).Acceleration can arise from a change with time of the magnitude of the velocity or of the direction of the velocity or both . If only the magnitude v of the velocity decreases, this is sometimes referred to as deceleration , but generally any change in the velocity with time, including deceleration, is simply referred to as acceleration.Inertial frames of referenceWhile the position and velocity and acceleration of a particle can be referred to any observer in any state of motion, classical mechanics assumes the existence of a special family of reference frames in terms of which the mechanical laws of nature take a comparatively simple form. These special reference frames are called inertial frames .An inertial frame is such that when an object without any force interactions (an idealized situation) is viewed from it, it appears either to be at rest or in a state of uniform motion in a straight line. This is the fundamental definition of an inertial frame. They are characterized by the requirement that all forces entering the observer's physical laws originate in identifiable sources (charges, gravitational bodies, and so forth).A non-inertial reference frame is one accelerating with respect to an inertial one, and in such a non-inertial frame a particle is subject to acceleration by fictitious forces that enter the equations of motion solely as a result of its accelerated motion, and do not originate in identifiable sources. These fictitious forces are in addition to the real forces recognized in an inertial frame.A key concept of inertial frames is the method for identifying them. For practical purposes, reference frames that are un-accelerated with respect to the distant stars are regarded as good approximations to inertial frames.Forces; Newton's second lawNewton was the first to mathematically express the relationship between force and momentum . Some physicists interpret Newton's second law of motion as a definition of force and mass, while others consider it a fundamental postulate, a law of nature. Either interpretation has the same mathematical consequences, historically known as "Newton's Second Law":a m t v m t p F ===d )(d d dThe quantity m v is called the (canonical ) momentum . The net force on a particle is thus equal to rate of change of momentum of the particle with time.So long as the force acting on a particle is known, Newton's second law is sufficient to。

新型无机闪烁体的能量分辨率(中英文对照)

新型无机闪烁体的能量分辨率(中英文对照)

成都理工大学学生毕业设计(论文)外文译文极,(b)光电子是后来ηNph,(c)这些∝ηNph电子在第一倍增极和到达(d)倍增极的k(k = 1,2…)放大后为δk 并且我们假设δ1=δ2=δ3=δk=δ的,并且δ/δ1≈1的。

我们可以得出:R2=Rlid2=5.56δ/[∝ηNph(δ-1)] ≈5.56/Nel (3)Nel表示第一次到达光电倍增管的数目。

在试验中,δ1≈10>δ2=δ3=δk,因此,在实际情况下,我们可以通过(3)看出R2的值比实际测得大。

请注意,对于一个半导体二极管(不倍增极结构)(3)也适用。

那么Nel就是是在二极管产生电子空穴对的数目。

在物质不均匀,光收集不完整,不相称和偏差的影响从光电子生产过程中的二项式分布及电子收集在第一倍增极不理想的情况下,例如由于阴极不均匀性和不完善的重点,我们有:R2=Rsci2+Rlid2≈5.56[(νN-1/Nel)+1/Nel] (4)νN光子的产生包括所有非理想情况下的收集和1/Nel的理想情况。

为了说明,我们在图上显示,如图1所示。

ΔE/E的作为伽玛射线能量E的函数,为碘化钠:铊闪烁耦合到光电倍增管图。

1。

对ΔE/E的示意图(全曲线)作为伽玛射线能量E功能的碘化钠:铊晶体耦合到光电倍增管。

虚线/虚线代表了主要贡献。

例如见[9,10]。

对于Rsci除了1/(Nel)1/2的组成部分,我们看到有两个组成部分,代表在0-4%的不均匀性,不完整的光收集水平线,等等,并与在0-400代表非相称keV的最大曲线。

表1给出了E=662Kev时的数值(137Cs)在传统的闪烁体资料可见。

从图一我们可以清楚的看到在低能量E<100Kev,如果Nel,也就是Nph增大的话,是可以提高能量分辨率的。

这是很难达到的,因为光额产量已经很高了(见表1)在能量E>300Kev时,Rsci主要由能量支配其能量分辨率,这是没办法减小Rsci 的。

然而,在下一节我们将会讲到,可以用闪烁体在高能量一样有高的分辨率。

AE-特效中英翻译

AE-特效中英翻译

AE-特效中英翻译--3d chanel extract 提取三维通道--depth matte深度蒙版--depth of field场深度--fog 3D雾化--ID Matte ID蒙版Audio音频特效--backwards倒播--bass & treble低音和高音--delay延迟--flange & chorus变调和合声--high-low pass高低音过滤--modulator调节器--parametric EQ EQ参数--reverb回声--stero mixer 立体声混合--tone音质Blur & Sharpen模糊与锐化特效--box blur方块模糊--channel blur通道模糊--compound blur混合模糊--directional blur方向模糊--fast blur快速模糊--gaussuan blur高斯模糊--lens blur镜头虚化模糊--radial blur径向模糊--reduce interlace flicker降低交错闪烁--sharpen锐化--smart blur智能模糊--unshart mask反遮罩锐化Channel通道特效--alpha levels Alpha色阶--arithmetic通道运算--blend混合--calculations融合计算--channel combiner复合计算--invert反相--minimax扩亮扩暗--remove color matting删除蒙版颜色--set channels设置通道--set matte设置蒙版--shift channels转换通道--levels (individual controls)色阶(个体控制)--photo filter照片过滤--PS arbitrary Map映像遮罩--shadow/highlight阴影/高光--tint色度--tritone三阶色调整Distort扭曲特效--bezier warp贝赛尔曲线弯曲--bulge凹凸镜--corner pin边角定位--displacement map置换这招--liquify像素溶解变换--magnify像素无损放大--mesh warp液态变形--mirror镜像--offset位移--optics compensation镜头变形--polar coordinates极坐标转换--puppet木偶工具--reshape形容--ripple波纹--smear涂抹--spherize球面化--transform变换--turbulent displace变形置换--twirl扭转--warp歪曲边框--wave warp波浪变形Expression Controls表达式控制特效--angel control角度控制--checkbox control检验盒控制--color control色彩控制--layer control层控制--point control点控制--slider control游标控制Generate 渲染--4-ccolor gradient四角渐变--advanced lightning高级闪电--audio spectrum音频频谱--audio waveform音频波形--beam音频电波--beam光束--cell pattern单元图案--checkerboard棋盘格式--circle圆形--ellipse椭圆--eyedropper fill滴管填充--fill填充--fractal万花筒--grid网格--lens flare镜头光晕--lightning闪电--paint bucker颜料桶--radio waves电波--ramp渐变--scribble涂抹--stroke描边--vegas勾画--write-on手写效果Keying 抠像特效--color difference key色彩差抠像--color key色彩抠像--color range色彩范围--difference matte差异蒙版--extract提取--inner/outer key轮廓抠像--linear color key线性色彩抠像--luma key亮度抠像--spill suppressor溢色抑制Matte 蒙版特效--matte choker蒙版清除--simple choker简单清除 Noise & Grain 噪波和杂点特效--add grain添加杂点--dust & scratches杂点和划痕--fractal noise不规则噪波--match grain杂点匹配--median中性--noise杂点--noise alpha alpha通道杂点--noise HLS HLS通道杂点--noise HLS auto自动生成HLS通道杂点--remove grain减弱杂点Paint 绘画--paint绘画工具--vector paint矢量绘画perspective 透视特效--3D glasses立体眼镜--basic 3D基础三维--bevel Alpha Alpha导角--vevel edges边缘导角--drop shadow投影--radial shadow放射状的投影simulation 仿真特效--card dance碎片飘移--caustics焦散--foam泡沫--particle playground粒子--shatter爆碎--wave world波纹抖动stylize 风格化特效--brush storkes画笔描边--color emboss彩色浮雕--emboss浮雕--find edges查找边缘--glow自发光--mosaic马赛克--motion tile运动拼贴--posterize多色调分离--roughen edges粗糙边缘--scatter扩散--strobe light闪光灯--texturize纹理化--threshold对比度极限text 文字特效--basic text基本文字--numbers数字--path text路径文字--timecode时间码time 时间特效--echo重影--psterize time招贴画--time difference时间差异--time displacement时间置换--timewarp时间收缩transition 转换特效--block dissolve快面溶解--card wipe卡片擦除--gradient wipe渐变擦拭--iris wipe星形擦拭--linear wipe线性擦拭--radial wipe径向擦拭--venetian blinds百叶窗utlity 实用特效--cineon converter Cineon转换--color profile converter色彩特性描述转换--grow bounds范围增长--HDR compander HDR压缩扩展--HDR Highlight compression HDR高光压缩AE菜单英文翻译Color Grad(颜色渐变)Defocus (散焦)Faux Flim(模仿胶片效果)Fluorescent (荧光)Fog(雾)Infra-red (在红色下面)Mist(薄雾)ND Grad(渐变)Night Vision(夜视)Selective Soft Focus(选择性的软焦点)Skin Smoother(外表面平整)Tint(偏色)Warm/Cool(暖色/冷色)Blur(模糊)DirBlur(方向模糊)Diffuse(扩散)外部插件翻译<P>TinderBox 11.4 T_Etch(蚀刻)1.6 T_Qube(方格状)1.7 T_Rays(体积光)1.8 T_Starburst(星放射状)1.9 T_Stutter(扫描残迹)1.10 T_Beam(光柱)1.11 T_Caustic(腐蚀性)1.12 T_Grad(渐变)1.13 T_Sky(天空)1.14 T_Deflicker(降低闪烁)1.15 T_Degrain(去除颗粒)1.16 T_Dilate(扩大)1.17 T_Pattern(图案)1.18 T_Tile(重复)1.19 T_Distorto(定位镜像)1.20 T_Droplet(波纹)1.21 T_Lens(鱼眼)<P>TinderBox 22.1 T_BlurMasked(模糊遮罩)2.2 T_LensBlur(镜头模糊)2.3 T_RadialBlur(放射状模糊)2.4 T_Bandlimit(镶边)2.5 T_Chromatic(彩色的)2.6 T_Contour(轮廓线)2.7 T_Glass(玻璃)2.8 T_Glow(辉光)2.9 T_Kaleid(幻觉)2.10 T_Newsprint(新闻纸)2.11 T_Paint(油画)2.12 T_PseudoColour(变色)2.13 T_Trail(轨迹)2.14 T_Bars(彩条)2.16 T_LensFlare(镜头光斑)2.17 T_NightSky(夜空)2.18 T_Grain(颗粒)2.19 T_Wobble(摇晃)2.20 T_Ripple(波纹)2.21 T_Swirl(旋涡)<P>TinderBox 33.1 T_CircularBlur(圆形模糊)3.2 T_GradientBlur(梯度模糊)3.3 T_Silk(去除皱纹)3.4 T_BadTV(不良的电视信号)3.5 T_BumpShade(变阴暗)3.6 T_Condensation(蒸气凝结成为水)3.7 T_DiffusionFilter(漫射过滤器)3.8 T_EdgeDetect(边探测器)3.9 T_MeltTime(融化时间)3.10 T_MotionDetect(运动探测器)3.11 T_OldFilm(老电影)3.12 T_RomanMosaic(马赛克)3.13 T_Turner(车工)3.14 T_Lightning(闪电)3.15 T_Plasma(血浆)3.16 T_Sparks(焰火发射器)3.17 T_Starfield(星空)3.18 T_Deband(带状模糊)3.19 T_Defield(转制工具)3.20 T_MatteTool(剪影工具)<P>Trapcode1 Shine(体积光)2 3D Stroke (三维描边)3 Sound Key (声音基调)<P>Digital Film Tools1 CS Color Correct(颜色修正)2 CS Composite(合成)3 CS Defocus(散焦)4 CS Fast Blur(快速模糊)5 CS Frame Averager(画面中和器)6 CS Grain(增加颗粒)7 CS Holdout Composite(持续合成)8 CS Light Composite(灯光合成)9 CS Math Composite(数学合成)10 CS Matte Generator(无光发生器)11 CS Matte Repair(剪影修理)12 CS Non-Additive Mix(非附加混合)13 CS Paste Color(粘贴颜色)14 CS Selective Color Correct(选择颜色修正)15 CS Selective Soft Focus(选择软焦点)<P>Final Effects Complete Complete Final Effects(简称Fe)1.1 FE Ball Action(球状运动)1.2 FE Bubbles(泡沫)1.3 FE Color Offset(颜色位移)1.4 FE Composite(合成)1.5 FE Flo Motion(失真运动)1.6 FE Griddler(矿筛)1.7 FE Image Wipe(图像擦除)1.8 FE Kaleida(发音体)1.9 FE Lens(透镜)1.10 FE Light Burst2.5(灯光爆裂)1.11 FE Light Sweep(扫光)1.12 FE Page Turn(翻页)1.13 FE Particle Systems(粒子系统)1.14 FE Particle Systems II(粒子系统2)1.15 FE Particle Systems LE(粒子系统LE)1.16 FE Pixel Polly(像素剥离)1.17 FE Radial ScaleWipe(反射状的缩放擦拭)1.18 FE Rain(下雨)1.19 FE Scale Wipe(缩放擦除)1.20 FE Scatterize(分散)1.21 FE Slant(倾斜)1.22 FE Slant Matte(倾斜剪影)1.23 FE Snow(下雪)1.24 FE Sphere(球体)1.25 FE Star Burst(星爆式)1.26 FE Threshold(阀值)1.27 FE Threshold RGB(RGB阀值)1.28 FE Tiler(瓦盖)1.29 FE Twister(缠绕)<P> Next Effect(简称Ne)2.1 FE Advanced 3D(高级三维)2.2 FE Bend It(弯曲)2.3 FE Cylinder(圆柱体)2.4 FE Drizzle(毛毛雨)2.5 FE Force Motion Blur(强大的运动模糊)2.6 FE Hair(毛发)2.7 FE Light Rays(体积光)2.8 FE Mr. Smoothie(圆滑)2.9 FE Power Pin(透视点)2.10 FE RepeTile(放射状模糊)2.11 FE Simple Wire Removal(擦除金属丝)2.12 FE Wide Time(放慢)<P>3 Studio Effects(简称Se)3.1 FE Alpha Map(Alpha贴图)3.2 FE Bender(弯曲)3.3 FE Blobbylize(滴状斑点)3.4 FE Burn Film(燃烧的胶片)3.5 FE Glass(玻璃)3.6 FE Glass Wipe(擦拭玻璃)3.7 FE Glue Gun(喷胶枪)3.8 FE Grid Wipe(删格擦拭)3.9 FE Jaws(狭口)3.10 FE Light Wipe(扫光)3.11 FE Mr. Mercury(水银先生)3.12 FE Particle World(粒子世界)3.13 FE Ripple Pulse(涟漪发生器)3.14 FE Smear(涂污)3.15 FE Split(切开)3.16 FE Spotlight(聚光灯)3.17 FE Time Blend(时间混合)3.18 FE Time Blend FX(时间混合FX)3.19 FE Toner(调色剂)<P>Boris1 Boris Fire(火焰效果)2 Boris FX 32.1 Boris Artist's Poster(艺术海报)2.2 Boris Blur (模糊)2.3 Boris Directional Blur (方向模糊)2.4 Boris Gaussian Blur (高斯模糊)2.5 Boris Unsharp Mask (锐利的遮罩)2.6 Boris Brightness-Contrast (亮度-对比度)2.7 Boris Color Balance (颜色平衡)2.8 Boris Color Correction (颜色修正)2.9 Boris Composite (合成)2.10 Boris Correct Selected Color (修改选择的颜色)2.11 Boris Hue-Sat-Lightness (色调-饱和度-亮度)2.12 Boris Invert Solarize (反转曝光)2.13 Boris Levels Gamma (标准的伽马值)2.14 Boris MultiTone Mix (多通道混合)2.15 Boris Posterize (多色调分色)2.16 Boris RGB Blend (RGB混和)2.17 Boris Tint-Tritone (以三种颜色替换)2.18 Boris Bulge (凸出)2.19 Boris Displacement Map (置换贴图)2.20 Boris Fast Flipper (自动翻转),2.21 Boris Polar Displacement (两极置换)2.22 Boris Ripple (波纹)2.23 Boris Vector Displacement (矢量置换)2.24 Boris Wave (波浪)2.25 Boris Alpha Process (Alpha通道处理)2.26 Boris Chroma Key (色度抠像)2.27 Boris Composite Choker (令人窒息的合成)2.28 Boris Linear Color Key (线性颜色抠像)2.29 Boris Linear Luma Key (线性亮度抠像)2.30 Boris Make Alpha Key (制作新的Alpha 通道)2.31 Boris Matte Choker (令人窒息的剪影)2.32 Boris Matte Cleanup(清除剪影)2.33 Boris Two Way Key(两种路线的抠像)2.34 Boris Alpha Spotlight(以Apha通道的方式设定聚光灯)2.35 Boris Edge Lighting(边缘亮光)2.36 Boris Light Sweep(扫光)2.37 Boris Reverse Spotlight(相反的聚光灯)2.38 Boris Spotlight(聚光灯)2.39 Boris 2D Particles(二维粒子)2.40 Boris 3D Image Shatter(模拟三维图像破碎效果)2.41 Boris Cube(模拟三维立方体)2.42 Boris Cylinder(模拟三维圆柱体)2.43 Boris DVE(模拟三维效果)2.44 Boris Page Turn(翻页)2.45 Boris Sphere(模拟三维球形)2.46 Boris Clouds(流动的云)2.47 Boris Noise Map(噪点地图)2.48 Boris Alpha Pixel Noise(通道像素噪点)2.49 Boris RGB Edges(RGB边缘)2.50 Boris RGB Pixel Noise(RGB像素噪声)2.51 Boris Scatterize(模拟毛玻璃的效果)2.52 Boris Spray Paint Noise(喷漆噪点)2.53 Boris Flat 3D Text(扁平的三维字体[不支持中文])2.54 Boris 3D Text(三维字体[不支持中文])<P>3 Boris Continuum3.1 BC 3D Text(三维文字)3.2 BC Boost Blend(推进混合)3.3 BC Burnt Film(燃烧的电影)3.4 BC Clouds(流动的云)3.5 BC Comet(彗星)3.6 BC Composite(合成)3.7 BC DVE(模拟三维效果)3.8 BC Fire(火)3.9 BC Jitter(频谱曲线抖动)3.10 BC Looper(循环)3.11 BC Particle System(粒子系统)3.12 BC Posterize Time(相片时间)3.13 BC Rain(下雨)3.14 BC Sequencer(音序器)3.15 BC Snow(下雪)3.16 BC Sparks(火花)3.17 BC Stars(星星)3.18 BC Super Blend(超级混合)3.19 BC Temporal Blur(时间模糊)3.20 BC Trails(轨迹)3.21 BC Velocity Remap(速度测试图)3.22 BC Z Space I(Z空间1),3.23 BC Z Space I I(Z空间2)project 窗,comp 窗,time layout 窗,lay窗,file 菜单新建← NewNew Project →新建项目New Folder →新建文件夹打开项目← Open Project打开最近项目← Open Recent Projects在Bridge内浏览← Browse in Bridge浏览模板← Browse Template Projects关闭← Close关闭项目← Close Project保存← Save另存为← Save As...保存副本← Save a Copy...另存为XML格式← Save a Copy As XML增量保存← Increment and Save恢复← Revert导入← ImportFile... →文件Multiple Files... →多个文件Capture in Adobe Premiere Pro →Premiere Pro采集Adobe Clip Notes Comments.. →Adobe 剪辑注释评论Adobe Premiere Pro Project…→Premiere Pro 项目…Vanishing Point (vpe)…→PS消失点(.vpe)…Placeholder... →输入占位符Solid... →实色导入最近素材← Import Recent Footage Adobe Dynamic Link Adobe ←动态链接输出← Export查找← Find...再次查找← Find Next添加素材到合成← Add Footage to Comp选定脚本建立合成←New Comp From Selection...整理素材← Consolidate All Footage删除未用素材← Remove Unused Footage。

应用NURBS实现飞机叶片的三维重构

应用NURBS实现飞机叶片的三维重构
收稿日期 : 2001 02 12; 修订日期 : 2001 03 27
[ 2] [ 3 6] + +
2 非均匀有理 B 样条( NURBS) 定义 和基本性质
NURBS 是 Non- Uniform Rat ional B - Splines 的缩写 , 称为非均匀有理 B 样条。它是建立于有 理 Bezier 曲线基础上对非有理 B 样条的归一化。 而有理 Bezier 曲线又是对 Bezier 曲线的归一化。 p 阶的 NURBS 是用一个矢量值的分段有理 多项式函数表达的[ 3] 。表达式如下 :
( 中国科学院长春光学精密机械与物理研究所 CAD 应用技术室, 吉林 长春 130022)
摘要 : 针对光学叶片表面测量系统的三维重构问题 , 提出 采用 NURBS( 非均匀有理 B 样条 ) 重构叶片断层 曲线以及叶片曲面 , 并介绍了 NURBS 的基本理论。同时应用三维图形标 准以及图 形函数库在 VC6 0 平 台上完成该软件的编制。 关 键 词 : 三维重构 ; B 样条 ; 曲线 ; 曲面 ; OpenGL 文献标识码 : A 中图分类号 : TB237
p+ 1 p+ 1
224
光学
精密工程
3期
区间内的 p 阶非周期 B 样条。其中 , m = n + p + 1, 假设权值 w i 为非负, 可保证用 NURBS 拟 合的曲线都含在控制多项式的包络线内。 在本文中, 已知 NURBS 曲线通过的型值点, 只需反算出控制点矢量就可知道叶片的 NURBS 表达式, 并进行下一步的计算。在这里采用的算 法为全局逼近算法 , 在全局插值算法中, 插值函 数决定于全部数据点的函数值 , 当增加、 删除或改 变一个点的位置或函数值时, 插值函数必须重新 计算, 但是全局插值方法得到的插值曲面往往比 局部插值算法的结果更加美观。具体过程是先根 据型值点求出节点矢量 U, 然后从一阶 NURBS 曲 线算起 , 判断型值点与曲线之间的误差是否在给 定误差阈限内, 如果大于误差阈限 , 则升一阶再进 行计算, 直到在给定误差阈限内, 退出程序。 在得出 NURBS 曲线的表达式后, 就可以根据 该表达式求出对应于某一个 u 值所对应的点 , 并 可以得出此点的一阶导数, 二阶偏导数 标准叶片的具体重构过程如下 :

绿光泵浦的黄光波段可调谐窄线宽光学参量振荡器

绿光泵浦的黄光波段可调谐窄线宽光学参量振荡器

第49卷第11期V ol.49N o.ll红外与激光工程Infrared and Laser Engineering2020年11月Nov. 2020绿光泵浦的黄光波段可调谐窄线宽光学参量振荡器张鹏泉\项铁铭”,史屹君2(1.杭州电子科技大学电子信息学院,浙江杭州310018;2.天津可宏振星科技有限公司,天津300192)摘要:为实现波长可调谐的窄线宽黄光波段激光输出,设计搭建了以倍频声光调QNd:YAG激光器 的532 nm脉冲绿光输出为泵浦源、以II类相位匹配磷酸钛氧钾(KTP)晶体为非线性介质的折叠腔光 学参量振荡器(OPO)。

首先产生腔内振荡的近红外可调谐闲频光,在此基础上基于LBO晶体I类非 临界相位匹配方式对OPO的闲频光进行内腔倍频,得到波长调谐范围587.2〜595.2 nm的黄光波段输 出。

为改善OPO光谱特性,在OPO闲频光谐振腔内插入熔融石英标准具,有效压缩了 OPO输出黄光 的光谱线宽。

绿光泵浦源脉冲重复频率10 kHz、平均功率24.0 W下在波长591.2 nm处获得了最高黄 光输出功率2.89 W,光束质量因子A/2=3.4,从532 nm泵浦光到黄光输出的转换效率为12.0%,脉冲宽 度37 ns,对应峰值功率7.8 kW。

此时黄光光谱半高全宽为0.15 nm,相比未在OPO腔内插入标准具自 由运转状态下的光谱得到明显改善。

关键词:光学参量振荡器;可调谐激光;窄线宽激光中图分类号:TN248.1 文献标志码:A DOI:10.3788/IRLA20200275Green pumped yellow wavelength tunable narrow linewidthoptical parametric oscillatorZhang Pengquan1,Xiang Tieming1*,Shi Yijun2(1. School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China;2. Tianjin Bright Star Technology Co., LTD, Tianjin 300192, China)Abstract:A pulsed optical parametric oscillator(OPO)was demonstrated for the purpose of wavelength-tunable yellow output with narrow spectral line width.The OPO pumped by the green output of an acousto-optic Q-switched Nd:YAG used a type II phase-matched KTi0P04(KTP)crystal as the nonlinear gain medium and a folded cavity arrangement.The OPO was designed to have the idler wave tunable in near infrared oscillated in the cavity,which was further frequency doubled to generate the wavelength-tunable yellow output by using a LiB305(LBO)crystal with type I non-critical phase matching scheme.A fused silica etalon was inserted in the idler wave cavity to narrow the idler wave and the resultant yellow spectral line width.The wavelength of the yellow output obtained could be tuned over587.2-595.2 nm,within which the maximum average output power of 2.89 W was obtained at 591.2 nm,under an incident average green pump power of24.0 W.The beam quality factor M2was 3.4.The conversion efficiency from the green pump to the yellow output was 12.0%. The pulse width at the maximum output power was37 ns,and the peak power was 7.8 kW.The spectral line width of the yellow output was0.15 nm,which was narrowed effectively compared with that without etalon in the OPO cavity. Key words:optical parametric oscillator;tunable laser;narrow linewidth laser收稿日期:2020-06-15;修订日期:2020-07-11作者简介:张鹏泉(1976-),男,正高级工程师,硕士,主要从事光电信号探测和对抗方向的研究工作。

磁共振常用词汇中英文对照

磁共振常用词汇中英文对照

磁共振常用词汇中英文对照磁场:magnetic field自旋磁矩: spin precessing旋转坐标系:rotating frame of reference射场RF field射频脉冲RF pulse磁化强度矢量magnetic field vector横向衰减transverse decay静态场static field static magnetic field分立角flip angle信号signal系统参数system parameter自由感应衰减free indaction decay自旋回波spin echo反转恢复inversion recovery波谱spectrum化学位移chemical shift自旋密度spin density频率编码frequency encoding梯度回波gradient echoK空间K space梯度方向性gradient directivity非线性non-linearuty多维成像multi-dimensional imaging 二维成像2D imaging三维成像3D imaging化学位移成像chemical shift imaging Fourier成像傅利叶imaging离散diffusion图像重建image reconstruction射频线圈RF coil噪音noise滤波filter分辨率resolution空间分辨率spatial resolution填零内插zero padding interpolation 投影projection信噪比signal to noise ratio对比度constrast模值magnitude相位phase选片slice selection校对射频场RF calibration磁体外壳magnet covers匀场电源shim power supply被动匀场passive shim矩阵array梯度功放gradient amplifier矩阵线圈coil array梯度线圈gradient coil射频梯度功放RF (power) amplifier射频滤波器RF filter谱分析spectroscopy病床patient trolley对讲机intercom病理信号采集physiological signal acquisition 脑部线圈head coil颈椎线圈neck coil乳房线圈breast coil体线圈body coil膝盖线圈knee coil脚腕线圈ankle coil肩线圈shoulder coil腕部线圈wrist coil通用线圈genral purpose coil 谱仪spectrometer 工作站console射频屏蔽房RF shield room 射频线RF cable梯度线gradient cable空调A/C (air conditional) 脉冲序列pulse sequence影片机film printer。

周期性极化铌酸锂晶体中半非共线型宽带光学参变放大理论研究_图解读

周期性极化铌酸锂晶体中半非共线型宽带光学参变放大理论研究_图解读

第28卷第1期光学学报Vol. 28, No. 12008年1月J anuary , 2008文章编号:025322239(2008 0120146205周期性极化铌酸锂晶体中半非共线型宽带光学参变放大理论研究胡B 远梁晓燕赵宝真李儒新徐至展(中国科学院上海光机所强场光学激光国家重点实验室, 上海201800摘要基于周期性极化铌酸锂晶体(PPL N 的准相位匹配光参变放大过程, 通过倾斜周期极化铌酸锂晶体中极化域(极化光栅一定角度, , 并以该匹配方式下的各光矢量几何关系得出相位匹配曲线, 的周期极化长度。

并研究其极化倾斜角度与温度特性, , 532nm 抽运光抽运的信号光在800nm 和1064nm 关键词非线性光学; 准相位匹配; 光学参变放大中图分类号O436. 3收稿日期:2007204204; 收到修改稿日期:2007207215作者简介:胡B 远(1980- , 男, 博士研究生, 主要从事超强超短激光技术方面的研究。

E 2mail :humingyuan @mail.siom. ac. cn导师简介:梁晓燕(1967- , 女, 研究员, 主要从事超强超短激光技术方面的研究。

E 2mail :liangxy @mail.siom. ac. cnTheo I ga t n o n B r oa d B a n d S e mi 2N o ncolli nea r Op t ical P a r a A lif ica t i o n i n Pe ri odicall y P oled L i t hi u m Ni oba t eHu Minyuan Liang Xiaoyan Zhao Baozhen Li Ruxin Xu Zhizhan(S t ate K ey L abor a tor y of High Fiel d L aser Physics , S ha nghai I nstit ute of Op tics a n d Fi ne Mecha nics ,Chi nese Aca dem y of Scie nces , S ha nghai 201800, Chi n aAbs t r act Based on noncollinear optical paramet ric amplification in periodically poled lithium niobate (PPLN which is realized by quasi 2p hase matching (QPM technology , we consider the possibility of semi 2noncollinear p hase matching method between collinear and noncollinear geomet ry. With t his configuration and geomet ry of all vectors in periodically poled lithium niobate , p hase matching curves can be obtained.A sure grating period can always be found to satisf y the broad bandwidth optical paramet ric amplification (OPA at fixed wavelengt hs of pump and signal f rom the phase matching curves. By tilting periodically poled lithium niobate 2crystal ’s parallel grating a sure angle and keeping a sure temperature , numerical simulation with p roper parameter shows broad bandwidth OPA at signal wavelengths of 800nm and 1064nm can be achieved.Key wor ds nonlinear optics ; optical paramet ric amplification ; quasi 2p hase matching1引言超短脉冲的频率转换可以应用到很多重要的实际应用中去, 比如通信、信号处理和光谱学等。

光频梳效率-概述说明以及解释

光频梳效率-概述说明以及解释

光频梳效率-概述说明以及解释1.引言1.1 概述光频梳是一种新型的频率精密测量工具,它以其高效且高准确度的特点在科学研究和应用领域备受关注。

光频梳通过将宽频带的光分解为一系列精确的频率组成,类似于音乐中的音阶,从而能够实现非常高精度的频率计量。

相比传统的频率测量方法,光频梳具备更高的测量速度和更广的频率范围,成为了实验室和工程领域中不可或缺的工具。

本篇文章将主要讨论光频梳效率及其影响因素。

首先,我们将简要介绍光频梳的原理和应用领域。

然后,我们将深入探讨影响光频梳效率的各种因素,如腔长、激光功率、脉冲宽度等等。

通过研究这些影响因素,我们可以更好地理解光频梳的性能和优化方法,从而提高测量效率。

本文的目的是为读者提供一种全面了解光频梳效率的途径,并探讨其在科学研究和技术开发中的重要性。

我们将总结已有的研究成果,并展望未来光频梳技术在各个领域的应用前景。

相信本文内容将对读者深入了解和应用光频梳具有指导意义,为相关研究提供实用的参考。

1.2 文章结构文章结构部分的内容可以包括以下内容:文章结构部分的目的是介绍本篇长文的整体结构和各个章节的内容概要,以帮助读者更好地理解文章的组织结构和主要内容。

本文分为三个主要部分:引言、正文和结论。

首先,引言部分主要包括对光频梳效率的引入和背景介绍。

在引言部分,我们将对光频梳的概念进行简要概述,并介绍光频梳在科学研究和工程应用中的重要性和广泛应用。

其次,正文部分将详细介绍光频梳的原理、应用和效率的影响因素。

在2.1节中,我们将深入探讨光频梳的工作原理,包括其基本原理、构成和工作原理的数学模型等。

2.2节将详细介绍光频梳在不同领域的应用,包括频率计量、光谱学和频率合成等。

2.3节将重点讨论光频梳效率的影响因素,包括激光功率、模式锁定、光学腔和非线性效应等。

最后,结论部分将总结本文的主要内容,并对光频梳效率的意义进行阐述。

在3.1节中,我们将对全文进行总结,简要回顾光频梳的原理、应用和效率的影响因素。

光纤通信英文版常见中英对照单词表

光纤通信英文版常见中英对照单词表

AAbsorption coefficient 吸收系数ac alternating current 交变电流交流Acoustic phonon 声学声子Active component 有源器件AM amplitude modulation 幅度调制AM,FM,PM:幅度/频率/相位调制AON all-optical network 全光网络AOTF acoustic optic tunable filter 声光调制器APD avalanche photodiode 雪崩二极管AR coatings antireflection coatings 抗反膜ASE amplified spontaneous emission 放大自发辐射ASK amplitude shift keying 幅移键控ASK/FSK/PSK 幅/频/相移键控ATM asynchronous transfer mode 异步转移模式Attenuation coefficient 衰减系数Attenuator 衰减器Auger recombination:俄歇复合AWG arrayed-waveguide grating 阵列波导光栅BBand gap:带隙Band pass filter 带通滤波器Beam divergence 光束发散BER bit error rate 误码率BER:误码率BH buried heterojunction 掩埋异质结Binary representation 二进制表示方法Binary 二进制Birefringence 双折射Birefringence双折射Bitrate-distance product 比特距离的乘积Block diagram 原理图Boltzman statistics:玻尔兹曼统计分布BPF band pass filter 带通滤波器Bragg condition 布拉格条件Bragg diffraction 布拉格衍射Brillouin scattering 布里渊散射Brillouin shift 布里渊频移Broad area 宽面Buried heterostructure 掩埋异质结CC3 cleaved-coupled cavity 解理耦合腔Carrier lifetime:载流子寿命CATV common antenna cable television 有线电视CDM code division multiplexing 码分复用Characteristics temperature 特征温度Chirp 啁啾Chirped Gaussian pulse 啁啾高斯脉冲Chromatic dispersion 色度色散Chromatic dispersion 色度色散Cladding layer:包层Cladding 包层CNR carrier to noise ratio 载噪比Conduction band:导带Confinement factor 限制因子Connector 连接头Core cladding interface 纤芯包层界面Core-cladding interface 芯层和包层界面Coupled cavity 耦合腔CPFSK continuous-phase frequency-shift keying 连续相位频移键控Cross-phase modulation 交叉相位调制Cross-talk 串音CSO Composite second order 复合二阶CSRZ:载波抑制归零码Cutoff condition 截止条件CVD chemical vapour deposition 化学汽相沉积CW continuous wave 连续波Cylindrical preform:预制棒DDBR distributed Bragg reflector 分布布拉格反射DBR: distributed Bragg reflector 分布式布拉格反射器dc direct current 直流DCF dispersion compensating fiber 色散补偿光纤Depressed-cladding fiber: 凹陷包层光纤DFB distributed feedback 分布反馈DFB: Distributed Feedback 分布式反馈Differential gain 微分增益Differential quantum efficiency 微分量子效率Differential-dispersion parameter:微分色散参数Diffusion 扩散Digital hierarchy 数字体系DIP dual in line package 双列直插Direct bandgap:直接带隙Directional coupler 定向耦合器Dispersion compensation fiber:色散补偿光纤Dispersion decreasing fiber:色散渐减光纤Dispersion parameter:色散参数Dispersion shifted fiber 色散位移光纤Dispersion slope 色散斜率Dispersion slope:色散斜率Dispersion-flatten fiber:色散平坦光纤Dispersion-shifted fiber:色散位移光纤Double heterojunction 双异质结Double heterostructure:双异质结Doubly clad:双包层DPSK differential phase-shift keying 差分相移键控Driving circuit 驱动电路Dry fiber 无水光纤DSF dispersion shift fiber 色散位移光纤DWDM dense wavelength divisionmultiplexing/multiplexer密集波分复用/器DWDM: dense wavelength division multiplexing密集波分复用E~GEDFA erbium doped fiber amplifier 掺铒光纤激光器Edge emitting LED 边发射LEDEdge-emitting 边发射Effective index 有效折射率Eigenvalue equation 本征值方程Elastic scattering 弹性散射Electron-hole pairs 电子空穴对Electron-hole recombination 电子空穴复合Electron-hole recombination:电子空穴复合Electrostriction 电致伸缩效应Ethernet 以太网External cavity 外腔External quantum efficiency 外量子效率Extinction ratio 消光比Eye diagram 眼图FBG fiber-bragg grating 光纤布拉格光栅FDDI fiber distributed data interface 光纤数据分配接口FDM frequency division multiplexing频分复用FDM:频分复用Fermi level 费米能级Fermi level:费米能级Fermi-Dirac distribution:费米狄拉克分布FET field effect transistor 场效应管Fiber Manufacturing:光纤制作Field radius 模场半径Filter 滤波器Flame hydrolysis 火焰裂解FM frequency modulation 频率调制Forward-biased :正向偏置FP Fabry Perot 法布里-珀落Free spectral range 自由光谱范围Free-space communication 自由空间光通信系统Fresnel transmissivity 菲涅耳透射率Front end 前端Furnace 熔炉FWHM full width at half maximum 半高全宽FWHM: 半高全宽FWM four-wave mixing 四波混频Gain coefficient 增益系数Gain coupled 增益耦合Gain-guided semiconductor laser 增益波导半导体激光器Germania 锗GIOF graded index optical fiber 渐变折射率分布Graded-index fiber 渐变折射率光纤Group index 群折射率GVD group-velocity dispersion 群速度色散GVD: 群速度色散H~LHBT heterojunction-bipolar transistor异质结双极晶体管HDTV high definition television 高清晰度电视Heavy doping:重掺杂Heavy-duty cable 重型光缆Heterodyne 外差Heterojunction:异质结HFC hybrid fiber-coaxial 混合光纤/电缆Higher-order dispersion 高阶色散Highpass filter 高通滤波器Homodyne 零差Homojunction:同质结IC integrated circuit 集成电路IM/DD intensity modulation with direct detection 强度调制直接探测IM/DD: 强度调制/直接探测IMD intermodulation distortion 交互调制失真Impulse 冲激Impurity 杂质Index-guided 折射率导引Indirect bandgap:非直接带隙Inelastic scattering 非弹性散射Inhomogeneous非均匀的Inline amplifier 在线放大器Intensity noise 强度噪声Intermodal dispersion:模间色散Intermode dispersion 模间色散Internal quantum efficiency:内量子效率Intramodal dispersion: 模内色散Intramode dispersion 模内色散Intrinsic absorption 本征吸收ISDN integrated services digital network 综合业务数字网ISI intersymbol interference 码间干扰Isotropic 各向同性Jacket 涂层Jitter 抖动Junction:结Kinetic energy:动能Lambertian source 朗伯光源LAN local-area network 局域网Large effective-area fiber 大有效面积发光Laser threshold 激光阈值Laser 激光器Lateral mode 侧模Lateral 侧向Lattice constant:晶格常数Launched power 发射功率LD laser diode 激光二极管LD:激光二极管LED light emitting diode 发光二极管LED: 发光二极管L-I light current 光电关系Light-duty cable 轻型光缆Linewidth enhancement factor 线宽加强因子Linewidth enhancement factor 线宽增强因子Linewidth 线宽Longitudinal mode 纵模Longitudinal model 纵模Lowpass filter 低通滤波器LPE liquid phase epitaxy 液相外延LPE:液相外延M~NMacrobending 宏弯MAN metropolitan-area network 城域网Material dispersion 材料色散Material dispersion:材料色散Maxwell’s equations 麦克斯韦方程组MBE molecular beam epitaxy 分子束外延MBE:分子束外延MCVD Modified chemical vapor deposition改进的化学汽相沉积MCVD:改进的化学汽相沉积Meridional rays 子午光线Microbending 微弯Mie scattering 米氏散射MOCVD metal-organic chemical vapor deposition金属有机物化学汽相沉积MOCVD:改进的化学汽相沉积Modal dispersion 模式色散Mode index 模式折射率Modulation format 调制格式Modulator 调制器MONET Multiwavelength optical network 多波长光网络MPEG motion-picture entertainment group视频动画专家小组MPN mode-partition noise 模式分配噪声MQW multiquantum well 多量子阱MQW: 多量子阱MSK minimum-shift keying 最小频偏键控MSR mode-suppression ratio 模式分配噪声MSR: Mode suppression ratio 模式抑制比Multimode fiber 多模光纤MZ mach-Zehnder 马赫泽德NA numerical aperture 数值孔径Near infrared 近红外NEP noise-equivalent power 等效噪声功率NF noise figure 噪声指数Nonradiative recombination 非辐射复合Nonradiative recombination:非辐射复合Normalized frequency 归一化频率NRZ non-return to zero 非归零NRZ:非归零码NSE nonlinear Schrodinger equation 非线性薛定额方程Numerical aperture 数值孔径Nyquist criterion 奈奎斯特准则O P QOC optical carrier 光载波OEIC opto-electronic integrated circuit 光电集成电路OOK on-off keying 开关键控OOK:通断键控OPC optical phase conjugation 光相位共轭Optical mode 光模式Optical phase conjugation 光相位共轭Optical soliton 光孤子Optical switch 光开关Optical transmitter 光发射机Optical transmitter:光发射机OTDM optical time-division multiplexing 光时分复用OVD outside-vapor deposition 轴外汽相沉积OVD:轴外汽相沉积OXC optical cross-connect 光交叉连接Packaging 封装Packet switch 分组交换Parabolic-index fiber 抛物线折射率分布光纤Passive component 无源器件PCM pulse-code modulation 脉冲编码调制PCM:脉冲编码调制PCVD:等离子体化学汽相沉积PDF probability density function 概率密度函数PDM polarization-division multiplexing 偏振复用PDM:脉冲宽度调制Phase-matching condition 相位匹配条件Phase-shifted DFB laser 相移DFB激光器Photon lifetime 光子寿命PMD 偏振模色散Polarization controller 偏振控制器Polarization mode dispersion:偏振模色散Polarization 偏振PON passive optical network 无源接入网Population inversion:粒子数反转Power amplifier 功率放大器Power-conversion efficiency 功率转换效率PPM:脉冲位置调制Preamplifer 前置放大器PSK phase-shift keying 相移键控Pulse broadening 脉冲展宽Quantization noise 量化噪声Quantum efficiency 量子效率Quantum limit 量子极限Quantum limited 量子极限Quantum noise 量子噪声RRA raman amplifier 喇曼放大器Raman scattering 喇曼散射Rate equation 速率方程Rayleigh scattering 瑞丽散射Rayleigh scattering 瑞利散射Receiver sensitivity 接收机灵敏度Receiver 接收机Refractive index 折射率Regenerator 再生器Repeater spacing 中继距离Resonant cavity 谐振腔Responsibility 响应度Responsivity 响应度Ridge waveguide laser 脊波导激光器Ridge waveguide 脊波导RIN relative intensity noise 相对强度噪声RMS root-mean-square 均方根RZ return-to-zero 归零RZ: 归零码SSAGCM separate absorption, grading, charge, and multiplication吸收渐变电荷倍增区分离APD的一种SAGM separate absorption and multiplication吸收渐变倍增区分离APD的一种SAM separate absorption and multiplication吸收倍增区分离APD的一种Sampling theorem 抽样定理SBS 受激布里渊散射SBS stimulated Brillouin scattering 受激布里渊散射SCM subcarrier multiplexing 副载波复用SDH synchronous digital hierarchy 同步数字体系SDH:同步数字体系Self-phase modulation 自相位调制Sellmeier equation:塞米尔方程Sensitivity degradation 灵敏度劣化Sensitivity 灵敏度Shot noise 散粒噪声Shot noise 散粒噪声Single-mode condition 单模条件Sintering :烧结SIOF step index optical fiber 阶跃折射率分布SLA/SOA semiconductor laser/optical amplifier 半导体光放大器SLM single longitudinal mode 单纵模SLM: Single Longitudinal mode单纵模Slope efficiency 斜率效率SNR signal-to-noise ratio 信噪比Soliton 孤子SONET synchronized optical network 同步光网络SONET:同步光网络Spectral density:光谱密度Spontaneous emission:自发辐射Spontaneous-emission factor 自发辐射因子SRS 受激喇曼散射SRS stimulated Raman scattering 受激喇曼散射Step-index fiber 阶跃折射率光纤Stimulated absorption:受激吸收Stimulated emission:受激发射STM synchronous transport module 同步转移模块STM:同步转移模块Stripe geometry semiconductor laser 条形激光器Stripe geometry 条形STS synchronous transport signal 同步转移信号Submarine transmission system 海底传输系统Substrate:衬底Superstructure grating 超结构光栅Surface emitting LED 表面发射LEDSurface recombination:表面复合Surface-emitting 表面发射TTCP/IP transmission control protocol/internet protocol传输控制协议/互联网协议TDM time-division multiplexing 时分复用TDM:时分复用TE transverse electric 横电模Ternary and quaternary compound:三元系和四元系化合物Thermal equilibrium:热平衡Thermal noise 热噪声Thermal noise 热噪声Threshold current 阈值电流Timing jitter 时间抖动TM transverse magnetic 横磁Total internal reflection 全内反射Transceiver module 收发模块Transmitter 发射机Transverse 横向Transverse mode 横模TW traveling wave 行波U ~ ZVAD vapor-axial epitaxy 轴向汽相沉积VAD:轴向沉积Valence band:价带VCSEL vertical-cavity surface-emitting laser垂直腔表面发射激光器VCSEL: vertical cavity surface-emitting lasers 垂直腔表面发射激光器VPE vapor-phase epitaxy 汽相沉积VPE:汽相外延VSB vestigial sideband 残留边带Wall-plug efficiency 电光转换效率WAN wide-area network 广域网Waveguide dispersion 波导色散Waveguide dispersion:波导色散Waveguide imperfection 波导不完善WDMA wavelength-division multiple access 波分复用接入系统WGA waveguide-grating router 波导光栅路由器White noise 白噪声XPM cross-phase modulation 交叉相位调制YIG yttrium iron garnet 钇铁石榴石晶体Zero-dispersion wavelength 零色散波长Zero-dispersion wavelength:零色散波长。

非线性光学 (Nonlinear Optics)

非线性光学 (Nonlinear Optics)

Robert W. Boyd
• Yujie Ding: B.S., Electronic Sciences, Jilin University; M.S., Electrical Engineering, Purdue Univ.; Ph.D.,Electrical Engineering, Johns Hopkins Univ.; now professor at Lehigh Univ..
• 其中虚线代表的是偏振
和电场 之间的线性关系,而实线代表非线性关系。
(a)在小电场情况下,偏振与电场的时间变化接近。 (b)电场强度加大后,偏振响应产生了非对称性,在负电场情况下具有较大的偏离。 • 以上这种失真的输出在电路理论中可以解释为高阶简谐成份的出现。
二、光学非线性的物理起源
Non-resonant nonlinearities 非共振非线性 •由 ,令 ,有 。 • 即在 不为零时,频率为ω的入射光场在介质中产生了频率为2ω的出射光场。
• 将一个电子束缚到一个原子中的电场幅度在1010-1011 V m-1左右,在光电场幅 度与该数值接近时非线性效应开始凸显。
•由
,此时光强需要达到1019 W m-2,可以由高功率激光来实现。
• 实际上并不需要上述的高光强,因为大量原子的微弱非线性效应可以叠加在 一起产生可观的宏观非线性效应 – 需要相位同步即“phase matching”条件。
原子跃迁的光谱线型函数
二、光学非线性的物理起源
Resonant nonlinearities 共振非线性 • 同样可以得到介质的单位时间内添加到光束中的受激发射光子数目:
• 此时单位时间内减少的光子数目为
,即净吸收速率。
• 随着光束在介质中的传播,其强度逐渐减小:定义z处的光强为I(z),dz内光强的变化 为dI ,此时有 。 • 由于光束强度定义为单位时间在单位面积上通过的能量(W m-2),有 ,即 。

鬼成像原理与进展研究

鬼成像原理与进展研究

第41卷第1期2021年2月㊀南京邮电大学学报(自然科学版)JournalofNanjingUniversityofPostsandTelecommunications(NaturalScienceEdition)㊀Vol.41No.1Feb 2021doi:10.14132/j.cnki.1673⁃5439.2021.01.009鬼成像原理与进展研究赵生妹1,2,赵㊀亮1,郭㊀辉1,王㊀乐1,郑宝玉1,21.南京邮电大学信号处理与传输研究院,江苏南京㊀2100032.南京邮电大学宽带无线通信与传感网技术教育部重点实验室,江苏南京㊀210003()摘要:鬼成像,即关联成像,是近年来量子光学研究的前沿和热点之一,是基于量子纠缠或者经典光场涨落的关联特性,通过参考光场与目标探测光场之间的强度关联,非定域地获取目标物体信息的一种新型成像技术㊂鬼成像提供了一种运用常规手段难以获得清晰图像的方法,能够解决一些常规成像不易解决的问题㊂经过二十几年的发展,已被应用于军事㊁雷达探测和光学加密,未来还可进一步应用于病理分析㊁材料研究㊁生命科学和物质科学等领域㊂文中从鬼成像的历史起源开始,回顾其发展历程,介绍鬼成像的原理,分析影响鬼成像质量的因素,并对鬼成像系统中散斑结构与产生㊁重构方法和系统优化等方面进行阐述,同时简述了鬼成像技术在光学加密和边缘检测中的应用研究㊂关键词:成像系统;鬼成像;关联成像;计算成像中图分类号:TP751;O431㊀㊀文献标志码:A㊀㊀文章编号:1673⁃5439(2021)01⁃0065⁃13ResearchprogressonghostimagingtechniqueZHAOShengmei1,2,ZHAOLiang1,GUOHui1,WANGLe1,ZHENGBaoyu1,21.InstituteofSignalProcessing&Transmission,NanjingUniversityofPostsandTelecommunications,Nanjing210003,China2.KeyLabofBroadbandWirelessCommunicationandSensorNetworkTechnology,MinistryofEducation,㊀NanjingUniversityofPostsandTelecommunications,Nanjing210003,Chinaæèççöø÷÷Abstract:Theghostimaging(GI),whichisalsonamedcorrelatedimaging,iscurrentlyahottopicinquantumoptics.Basedonthecorrelationofentanglementorfieldfluctuations,aclearimageofanon⁃lo⁃calizedobjectisobtained,attheidlerpath,byharnessingtheintensitycorrelationbetweenthesignalbeamandtheidlebeam.GIhashugevaluesandextensiveusagesinopticallyharsh(difficulttobereached)ornoisyenvironments.Aftermorethantwodecadesofdevelopment,GIhasfounditsapplicationinmilitary,LIDAR,opticalencryption,soon,andtheirfutureresearchonpathologicalanalysis,materialresearchandlifesciences.ByreviewingthedevelopmenthistoryofGI,thepricipleofghostimagingisin⁃troduced,thefactorsaffectingthequalityofghostimagingareanalyzed,andtheprogressofspecklegener⁃ation,reconstructionandoptimizationofGIsystemaredescribed.Finally,theapplicationsofGIintheopticalencryptionandtheedgedetectionaredemonstrated.Keywords:imagingsystem;ghostimaging(GI);correlatedimaging;computationalimaging收稿日期:2020⁃09⁃02㊀㊀本刊网址:http:ʊnyzr.njupt.edu.cn基金项目:国家自然科学基金(61871234,11847062)和江苏省研究生创新计划(KYCX18_0900)资助项目作者简介:赵生妹,女,博士,教授,博士生导师,zhaosm@njupt.edu.cn引用本文:赵生妹,赵亮,郭辉,等.鬼成像原理与进展研究[J].南京邮电大学学报(自然科学版),2021,41(1):65-77.㊀㊀鬼成像(GhostImaging,GI)又被称为关联成像(CorrelatedImaging),是量子光学领域的前沿和热点之一[1-5]㊂与传统成像不同,该成像系统包括两支光路,其中一支光路经过待测物体,由桶探测器收集信息(称为信号支路),另一支光路由具有空间分辨率的点探测器收集信息(称为参考支路),通过两支光路的复合测量,能够在没有物体的参考支路中获得物体清晰的像,因而被称为 鬼 成像㊂由于鬼成像本身的非定域特性,使得它能够解决一些常规成像不易解决的问题,成为分布式图像处理㊁分布式感知及通信方案等最有力的候选㊂鬼成像的思想起源于自发参量下转换(Sponta⁃neousParametricDownConversion,SPDC)光子对的纠缠行为[6]㊂1995年,Pittman等[7]首次根据Klyshko的理论完成了在不包含物体的光路上获得待测物体像的实验,证实了量子鬼成像的非定域性,此时鬼成像技术被认为是一种量子关联特性㊂然而,Bennink等[8]于2002年成功地完成了基于经典光源随机散斑光场的鬼成像实验,该实验说明了鬼成像的实现过程并不一定需要纠缠光源,即经典光场的随机涨落同样也可以实现鬼成像㊂于是,鬼成像的机理和实现方案引起了人们极大的兴趣[9-17]㊂特别是Shapiro[18]提出了计算鬼成像理论(Computa⁃tionalGhostImaging,CGI),参考支路的光场可通过计算方式,而不是实验探测获取,极大简化了鬼成像实现方案配置㊂于是,Bromberg等[19]给出了基于单探测器的鬼成像实验方案㊂作者用一个受电脑控制的空间光调制器(SpatialLightModulator,SLM)代替旋转的毛玻璃以产生随机散斑光场,利用桶探测器的测量㊁计算得到待测物体上的散斑值间的关联性,恢复出待测物体的像,因而也称为计算鬼成像㊂至此,鬼成像实验实现的要求被极大地降低,相关的应用也得到进一步拓展[20]㊂同时,为提升鬼成像质量和减少鬼成像时间,差分鬼成像[21]㊁归一鬼成像[22]㊁正(负)鬼成像[23]和对应鬼成像[24]等方案被提出㊂此外,信号处理中的压缩感知(CompressedSensing,CS)技术[25]也被应用于鬼成像,出现了成像质量高㊁采样时间短的压缩鬼成像[26-28]㊂不久,计算鬼成像被认识到与单像素成像理论相一致[29],又出现了多种基于正交变换(如傅里叶变换㊁正弦变换㊁哈达码变换等)的高质量单像素成像方法[30-32]㊂与此同时,国内研究人员为鬼成像的理论㊁技术及实用化进程作出了巨大贡献㊂例如,中国科学院上海光机所韩申生研究小组[33-35]实现了三维关联雷达成像㊁X射线鬼成像等,极大地拓展了鬼成像研究范畴和应用领域㊂北京师范大学汪凯戈研究小组对热光一阶干涉和成像进行了系统研究[36],提出了多波长复用鬼成像等多种方案[37],拓展了对热光相干性的认识㊂中国科学院物理所吴令安研究小组首次利用太阳光的二阶相干性提出了日光鬼成像方案[38],揭示了鬼成像技术从实验室走向实用化的可行性,同时提出了对应鬼成像方案[39]㊂上海交通大学曾贵华研究小组[40]提出了偏振鬼成像和极限环境下的鬼成像方法㊂国防科技大学陈平形研究小组[41]提出了基于非负指数散斑调制的快速鬼成像方法㊂西安交通大学李福利研究小组[42]利用压缩热光实现鬼成像,有效地提高了成像对比度㊂南京理工大学陈钱研究小组[43]给出了基于计算鬼成像的边缘检测方法等㊂鬼成像具有广阔的应用前景和实际应用价值㊂相对于量子纠缠光源,经典热光源(包括赝热光源或热光源)更容易获取,具有巨大应用前景㊂因此,本文将以经典赝热光源为例,阐述鬼成像的基本原理,分析影响鬼成像成像质量的基本因素,简述鬼成像技术的最新进展㊂1 鬼成像基本原理图1是鬼成像系统原理示意图㊂激光器所发出的光经光源调制器后获得可用于鬼成像的散斑光场(常称为赝热光源),其中,散斑记作Ri(x,y),i=1,2, ,N,光源调制器可以是旋转的毛玻璃,也可以是SLM㊁数字微镜设备(DigitalMicro⁃mirrorDevice,DMD)或投影仪等,经过分束器分成A和B两支路,A支路(信号支路)在距光源z1处有一待测物体,其投射率函数为T(x,y)(也可以是反射型待测物体),光束透过待测物体(或从物体上反射)后被桶探测器接收,记为探测值Bi,i=1,2, ,N㊂B支路(参考支路)在距离光源z2=z1处有一个电荷藕合器件(ChargeCoupledDevice,CCD)采集光场信号,记作Ii(x,y),i=1,2, ,N㊂一方面,信号支路包含待测物体信息,但是由于不对信号支路作任何具有空间分辨的测量,因而不能获取物体的像㊂另一方面,参考支路的CCD可进行具有空间分辨的测量,但由于参考支路中没有待测物体,因而也不能获取待测物体的像(信息)㊂但是,通过信号支路和参考支路的关联测量,可以在参考支路上得到待测物体的像,因此,该技术被称为 鬼 成像㊂66南京邮电大学学报(自然科学版)㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2021年z 1=z 2赝热光源光源调制器R i (x,y )z 2I i (x ,y )T G I (x,y )B i物体T (x ,y )关联处理ABC C D图1㊀鬼成像系统原理示意图通过N个不同散斑对待测物体的一系列照射得到对应桶探测值Bi,i=1,2, ,N,可以表示为Bi=ðxðyIi(x,y)T(x,y)(1)其中,Ii(x,y)可通过CCD测量得到,或者通过对Ri(x,y)解光场衍射方程计算获得,Ii(x,y)=|Ri(x,y)∗hz(x,y)|2,其中,∗表示卷积,hz(x,y)表示距离为z处的菲涅尔衍射冲击响应㊂假设散斑大小为pˑq像素,则N次散斑光场可以改写成矩阵形式,即A=I1(1,1)I1(1,2) I1(p,q)I2(1,1)I2(1,2) I2(p,q)︙︙⋱︙IN(1,1)IN(1,2)IN(p,q)éëêêêêêùûúúúúú(2)其中,每行为一散斑光场,大小为pˑq㊂若同时将待测物体透射系数T(x,y)也写成矩阵形式,且假设待测物体大小也为pˑq,即T=[T(1,1)㊀ ㊀T(p,q)]T(3)则N次散斑照射获得桶探测器值可表示为B=AT(4)其中,B=[B1㊀ ㊀BN]T为N次桶探测器值㊂利用两支路光场间关联,通过重构方法,在参考支路可以获得待测物体清楚的像㊂2㊀影响鬼成像质量的关键因素分析影响鬼成像质量的因素,可以归纳为散斑结构与产生㊁重构方法和系统优化等几个方面㊂下面,将分别从这几个方面综述鬼成像技术在相关领域的研究进展㊂2.1㊀散斑结构与产生鬼成像系统实现中,需要通过一系列散斑对待测物体进行一定次数的照射,从而获得对应桶探测器值㊂因此,散斑结构和散斑的产生影响着鬼成像系统实现和鬼成像质量㊂㊀㊀(1)散斑结构从目前已提出的鬼成像方案看,其散斑结构基本上可以归纳为两大类,即随机散斑和结构化散斑㊂随机散斑是指散斑光场的空间强度分布服从高斯分布或者伯努利分布,其中伯努利分布是二值的随机分布㊂基于热光光源的鬼成像是利用随机散斑的涨落实现的㊂但是由于实际中热光光源相关时间很短,普通的光电探测器的响应不够快,不能测出热光瞬时强度的变化;同时普通的热光源强度很低,其光场强度的涨落就很容易被光子的散粒噪声所掩盖㊂因此,实际上常使用赝热光源替代热光光源进行鬼成像㊂赝热光源是由一束激光(相干光)被一块旋转的毛玻璃散射而获得[8-9]㊂毛玻璃的旋转保证了散射光场在时间和空间上都发生涨落,并且其涨落服从高斯分布,很好地模拟出热光光场的统计性质,其中光场的相干面积取决于照射在毛玻璃上光斑的大小,光场的相干时间则由毛玻璃的转速决定㊂此外,也可在计算鬼成像中,考虑使用SLM等设备产生涨落关系预知的随机散斑㊂这时,由于光场的分布关系已知,因而不再需要使用CCD探测光场强度的分布情况,而是依据已设计的散斑结构产生不同特性的随机散斑光场,如空间强度分布服从指数分布㊁瑞利分布㊁Beta分布㊁对数正态分布和泊松分布等随机散斑光场[4]㊂但是,由于SLM和DMD等设备无法承受大功率的光强,远距离鬼成像场景还是需要通过旋转的毛玻璃实现㊂结构化散斑是指散斑的空间强度分布满足特定的结构,常见的如傅里叶散斑和哈达玛散斑㊂2015年,钟金钢研究小组[30]通过正弦结构的傅里叶散斑照射待测物体,从而直接获得待测物体的傅里叶频谱,再应用傅里叶逆变换便可获得待测物体的图像的单像素成像㊂该方法的特点在于利用鬼成像建立起待测物体的空域和傅里叶频域的关系,其中,傅里叶散斑的形式可设计为I(x,y,fx,fy,ϕ)=a+bcos(2πfxx+2πfyy+ϕ)(5)其中,a为直流偏置量,代表散斑的平均能量;b为常数,反映了散斑的能量方差;(x,y)和(fx,fy)分别表示空间坐标和空间频率坐标;ϕ为初始相位㊂此时,桶探测器测量结果应与初始相位有关,表示为B(fx,fy,ϕ)=ʏI(x,y,fx,fy,ϕ)T(x,y)dxdy(6)另外,笔者研究小组[32]于2016年提出基于快速沃尔什⁃哈达玛(Walsh⁃Hadamard)变换的鬼成像76第1期赵生妹,等:鬼成像原理与进展研究方案,使用哈达玛散斑照射待测物体,直接获得物体的沃尔什⁃哈达玛变换频谱,建立起基于鬼成像的物体空域和沃尔什⁃哈达玛变换频域间的关系㊂利用快速沃尔什⁃哈达玛变换的蝶形递归结构,仅需要Nlog2N次加法运算即可获得成像,极大地减少了重构所需时间㊂此外,由于哈达玛散斑具有二值特性,因此更易于DMD设备的实现㊂通常构造哈达玛散斑的方法是先构造沃尔什⁃哈达玛矩阵Hk,然后将矩阵的每一个行向量重排得到哈达玛散斑㊂维数为2的沃尔什⁃哈达玛矩阵H1为H1=1㊀㊀11㊀-1éëêêùûúú(7)维数为2k的自然顺序的沃尔什⁃哈达玛矩阵Hk为Hk=Hk-1㊀Hk-1Hk-1-Hk-1éëêêùûúú(8)通过式(8)可以预先构造出沃尔什⁃哈达玛矩阵Hk㊂但是这种方法需要消耗较大的内存,且需要等待整个沃尔什⁃哈达玛矩阵构造完成后生成散斑㊂为此,笔者研究小组[32]给出了一种基于迭代构造哈达玛散斑的方法,以避免消耗过大的内存㊂其思路是将每个哈达玛散斑都拉伸为一个行向量,则第i个哈达玛散斑的第j个元素h(i,j)可以由迭代公式计算得到,表示如下h(i,j)=1㊀㊀㊀㊀㊀i=0,0ɤjɤN-1(-1)ji=1,0ɤjɤN-1h(⌊i2」,⌊j2」)h(i-2⌊i2」,j)2ɤiɤN-1,0ɤjɤN-1ìîíïïïïïï(9)其中,⌊」表示向下取整㊂针对同一待测物体,不同散斑下鬼成像结果并不相同,如图2所示㊂同等条件下哈达玛散斑获得的重新图像质量最好,且基于迭代构造哈达玛散斑的重构时间也是最短的㊂在此基础上,学者们提出了大量基于Hadamard散斑的构造方法㊂2017年,孙鸣捷研究小组[44]提出了一种基于 俄罗斯套娃 的Hadamard散光斑构造方法㊂2019年,李明飞等[45]给出了Hadamard矩阵的优化排序方法㊂(2)散斑产生当完成散斑结构设计后,下一步工作是如何获取这样的散斑,即散斑的产生问题㊂在早期鬼成像系统中,特别是赝热光源鬼成像实验中,可通过在赝热光源前放置一旋转的毛玻璃获取高斯分布的随机散斑[8]利用DMD㊁SLM及投影仪等设备获得随机或结构化散斑的方法[19]㊂为了进一步提升散斑制备速度,Song等[46]于2016年设计了利用液晶显示屏(LiquidCrystalDisplay,LCD)产生结构化散斑的方法㊂随后,孙鸣捷研究小组[47]于2018年利用FPGA(FieldProgrammableGateArray)控制LED阵列实现了1000帧/s速率的散斑,进一步加快了鬼成像的成像速度㊂同年,Liu等[48]提出了一种基于光纤相控阵(OFPA)的方案,通过高速电光调制器,调制OFPA实现更快的产生散斑方法㊂与此同时,徐卓研究小组[49]于2019年利用红绿蓝三彩色LED阵列实现了100MHz低光照下的三彩色散斑㊂原图仿真实验M S E =0.0953t =0.831979s M S E =0.0296t =0.126291s M S E =0.1842t =0.814628sM S E =0.0352t =0.122257sM S E =0.1582t =0.979441sM S E =0.0239t =0.122922sM S E =0.0624t =0.991725s M S E =0.0233t =0.121204s 使用随机散斑的关联成像使用傅里叶散斑的关联成像M S E =0.0243t =0.020113sM S E =0.0262t =0.019703sM S E =0.00013869t =0.020539sM S E =0.00005337t =0.020476s使用哈达玛散斑的关联成像M S E =0.1073t =0.836177s M S E =0.0396t =0.124291s M S E =0.0809t =0.988196s M S E =0.0047t =0.122785s M S E =0.0358t =0.019962sM S E =0.00005247t =0.020420s图2㊀不同散斑下鬼成像结构对比[32]2.2㊀重构方法在鬼成像系统中获得桶探测器值及照射待测物体的光场散斑后,后期任务就是在参考支路上重构待测物体㊂根据不同的散斑,重构方法可以归纳为基于二阶关联的重构㊁基于压缩感知算法的重构㊁基于傅里叶逆变换的重构㊁基于矩阵运算的重构和基于机器学习的重构等几种,现分别描述如下㊂86南京邮电大学学报(自然科学版)㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2021年2.2.1㊀基于二阶关联的重构方法光场的二阶相干性可以由二阶关联函数表示,即G(2)(x1,x2,x3,x4)= E(x1)E(x2)E∗(x3)E∗(x4)⓪(10)其中,E(∗)为在∗点位置的光场㊂如果光场是满足高斯统计分布的热光场,根据高斯矩定理,任意高阶关联函数都可用一阶关联函数表示㊂对于二阶关联函数,可推导出G(2)(x1,x2,x3,x4)=G(1)(x1,x3)G(1)(x2,x4)+G(1)(x1,x4)G(1)(x2,x3)(11)其中,G(1)(xi,xj)= E(xi)E(xj)⓪㊂考虑x1=x4,x2=x3,式(11)即表示两个空间点的光强间关联,记为G(2)(x1,x2)= I(x1)I(x2)⓪=G(1)(x1,x1)G(1)(x2,x2)+G(1)(x1,x2)G(1)(x2,x1)= I(x1)⓪ I(x2)⓪+|G(1)(x1,x2)|2(12)针对图1所示的鬼成像系统,若T(x1)为待测物体,并假设x0,x1,xt,xr分别为光源㊁待测物体㊁桶探测器和CCD上的一点,z1,z2,z分别为光源到物体㊁物体到桶探测器以及光源到CCD的距离,则由光源到达CCD的光场E(xr)为E(xr)=ʏE(x0)h2(x0,xr)dx0(13)由光源到达桶探测器的光场E(xt)为E(xt)=ʏE(x0)h1(x0,xt)dx0(14)其中,E(x0)为光源处光场,h1(x0,xt)㊁h2(x0,xr)分别表示信号支路和参考支路的脉冲响应函数㊂h1(x0,xt)=ʏdx1exp[jkz1]jλz1expjπ(x1-x0)2λz1éëêêùûúúˑT(x1)exp[jkz2]jλz2expjπ(xt-x1)2λz2éëêêùûúú(15)h2(x0,xr)=exp[jkz]jλzexpjπ(xr-x0)2λzéëêêùûúú(16)将式(13)和式(14)代入一阶关联函数公式,可得桶探测器与CCD光场间一阶关联函数为G(1)(xr,xt)= E(xt)E∗(xr)⓪=ʏE(xt)h1(x0,xt)dx0ʏE∗(xᶄ0)h∗2(xᶄ0,xr)dxᶄ0⓪=ʏʏ E(x0)E∗(xᶄ0)⓪ h1(x0,xt)⓪h∗2(xᶄ0,xr)dx0dxᶄ0=G(1)(x0,xᶄ0) h1(x0,xt)⓪h∗2(xᶄ0,xr)dx0dxᶄ0=I0ʏh1(x0,xt)⓪h∗2(x0,xr)dx0=I0ʏʏexp[jkz1]jλz1expjπ(x1-x0)2λz1éëêêùûúú T(x1)⓪ˑexp[jkz2]jλz2expjπ(xt-x1)2λz2éëêêùûúúˑexp[-jkz]-jλzexp-jπ(xr-x0)2λzéëêêùûúúdx1dx0=I0exp[jkz1+jkz2-jkz]jλ3zz1z2ʏʏ T(x1)⓪ˑexpjπ(x1-x0)2λz1+jπ(xt-x1)2λz2-jπ(xr-x0)2λzéëêêùûúúdx1dx0设光源到物体的距离等于光源到CCD的距离,即z1=z,且待测物体表面满足随机反射条件[50],即 T(x1)T∗(xᶄ1)⓪=O(x1)δ(x1-xᶄ1),于是,桶探测器与CCD上光场的一阶关联函数可改写为G(1)(xr,xt)2=I0exp[jkz1+jkz2-jkz]jλ3zz1z2ʏʏ T(x1)⓪ˑexp[jπ(x1-x0)2λz1+jπ(xt-x1)2λz2-jπ(xr-x0)2λz]dx1dx02=I20λ6z4z22ʏO(x1)sinc2S(xr-x1)λzéëêêùûúúdx1其中,S为光源的横向尺度㊂随着光源的横向尺度的增大,sinc(x)函数将趋近于δ(x),上式可改写为|G(1)(xr,xt)|2=I20λ6z4z22O(xr)(17)同理,可以推导出I(xt)⓪ I(xr)⓪=I20S2Oλ6z4z22(18)其中,O=ʏO(x1)dx1表示物体的透过面积㊂于是,得到式(12)的结果为G(2)(xt,xr)=I20S2Oλ6z4z22+I20λ6z4z22O(xr)(19)即二阶关联的结果与待测物体成比例㊂因此,通过二阶关联计算可以在参考支路上获得物体的像㊂重写公式,基于二阶关联重构物体的像可表示为T^(x,y)ɖ I(xr)I(xt)⓪- I(xr)⓪ I(xt)⓪=1NðNi=1(Bi- Bi⓪)(Ii(x,y)- IN(x,y)⓪)(20)96第1期赵生妹,等:鬼成像原理与进展研究其中, IN(x,y)⓪=1NðNn=1Ii(x,y), Bi⓪=1NðNn=1Bi,分别代表随机光斑Ii(x,y)和桶探测器Bi的均值㊂2.2.2㊀基于压缩感知算法的重构方法2006年以来,压缩感知逐渐兴起并成为一种极具吸引力的信息采集理论,这种新的信号压缩传感理论,能够突破传统Nyquist采样定理极限,获得较高信号恢复质量的同时,极大地减少了采样次数[25]㊂2009年,Katz等[26]首次将压缩感知方法应用于鬼成像待测物体的重构,在获得高质量成像的条件下,极大地减少了鬼成像系统中所需的测量次数㊂2010年,Liu等[51]基于压缩感知框架,提出了高质量的量子成像优化算法㊂中国科学院上海光机所韩申生研究小组分析了不同稀疏方法对鬼成像质量的影响,并提出稀疏约束下的关联成像雷达方案[52-53]㊂笔者研究小组也结合压缩感知重构方法,提出一些鬼成像改进方案[27-28,54]㊂由压缩感知理论可知,它的基本过程表现为信号的稀疏表示㊁观测和重构3个方面,其具体步骤如下:(1)设x是一个N维K稀疏的(K≪N)或是可压缩(即通过某种变换可成为K稀疏)的信号,可以得到信号x的稀疏表示x=Ψs或s=ΨTx(21)其中,Ψ是大小为NˑN的正交的稀疏变换矩阵,s为Nˑ1维K稀疏变换系数㊂(2)为了保证稀疏向量s从N维降到M维的过程中重要信息不遭破坏,设计一个平稳的㊁与稀疏变换基Ψ不相关的MˑN(M<N)维的观测矩阵Φ,对信号x进行测量,得到向量yy=Φx=ΦΨs=Θs(22)其中,Θ=ΦΨ,y为Mˑ1维向量,该过程可看作原始信号x在观测矩阵Φ下的线性投影㊂(3)设计一种快速重构算法,从线性观测y=Φx中恢复信号,其实就是0⁃范数意义下的优化问题的精确求解或近似逼近值s^,表示为s^=min ΨTx 0㊀s.t.㊀y=Φx=Θs(23)(4)将s^再作稀疏逆变换,得到原信号x的近似解x^㊂若待测物体是可稀疏化的,将鬼成像中桶探测器值构成的向量看作是观测向量,N次散斑构成矩阵看作是观测矩阵,在散斑矩阵与待测物体不相关条件下,可以基于压缩感知算法重构出待测物体㊂因为基于压缩感知的重构方法,要求散斑矩阵与待测物体不相关,因此,此时散斑常采用随机散斑,如高斯随机散斑或伯努利分布散斑,且在相同稀疏基和测量矩阵条件下,不同的压缩感知重构算法获取的恢复图像质量并不相同[54]㊂图3是高斯随机散斑下基于增广拉格朗日法和交替方向法的全变分最小化算法(TVAL3)㊁正交匹配追踪算法(OMP)㊁压缩采样匹配追踪算法(CoSaMP)和梯度投影算法(GPSR_Basic)对鬼成像质量的影响㊂以均方误差(MSE)㊁峰值信噪比(PSNR)㊁匹配度(MR)和结构相似性指标(SSIM)等作为成像质量客观评价标准㊂研究结果表明,在压缩比为0.5时,TVAL3算法还原度最高,CoSaMP算法重建图像失真最为严重,且GPSR_Basic算法获得的重建性能要优于OMP算法㊂O M PC o S a M PT V A L3G P S R_B a s i c0.10.20.30.40.5压缩比匹配度1.00.90.80.70.60.50.40.30.20.10.10.20.30.40.5压缩比结构相似性指标O M PC o S a M PT V A L3G P S R_B a s i c1.000.950.900.850.800.75O M PC o S a M PT V A L3G P S R_B a s i c2.52.01.51.00.50.10.20.30.40.5压缩比均方误差/14302520151050.10.20.30.40.5压缩比峰值信噪比O M PC o S a M PT V A L3G P S R_B a s i c图3㊀不同压缩比下4种压缩感知重建算法对鬼成像重构的影响[52]基于压缩感知算法的重构方法存在一些缺点:(1)重构算法较复杂,特别是在实现大像素的待测物体成像时,时间太长,甚至有时无法计算出结果;07南京邮电大学学报(自然科学版)㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2021年(2)无法克服背景光的干扰,这意味着当背景光也同时被探测器接收时,噪声信号的增加会导致信噪比降低,甚至淹没信号,极大地限制了鬼成像技术的应用㊂2.2.3㊀基于傅里叶逆变换的重构方法针对正弦或余弦散斑,暨南大学钟金钢研究小组于2015年提出了一种基于傅里叶逆变换的重构方法[30],其中,鬼成像中桶探测器值获取过程被看作是获取待测物体的频谱过程,则可通过傅里叶逆变换重构待测物体㊂若鬼成像中使用了正弦散斑,其数学形式为式(5),若为桶探测器则值是式(6),与待测物体信息的频谱有关㊂若考虑桶探测器在实验中将受到背景光的干扰,此时桶探测器的测量值可改为Dϕ(fx,fy)=Dn+kEϕ(fx,fy)(24)其中,k为比例因子,其值由探测器的探测面尺寸和位置决定,Dn表示探测器对背景光的响应㊂若对待测物体在相同空间坐标(x,y)和空间频率坐标(fx,fy)下,在不同初始相位(例如,ϕ=0,π/2,π,3π/2)上连续测量4次,通过对桶探测器值处理,可以获得该空间频率坐标的待测物体频谱信息,表现为C(fx,fy)=12bk[D0(fx,fy)-Dπ(fx,fy)]+j2bk[Dπ/2(fx,fy)-D3π/2(fx,fy)]=ʏʏΩT(x,y)cos[2π(fxx+fyy)]dxdy-jʏʏΩT(x,y)sin[2π(fxx+fyy)]dxdy=ʏʏΩT(x,y)exp[-j2π(fxx+fyy)]dxdy(25)其中,j为虚部单位㊂于是,通过傅里叶逆变换,可以获得正弦散斑下待测物体的信息为T^(x,y)=ʏʏC(fx,fy)exp[j2π(fxx+fyy)]dfxdfy(26)由于在该过程中采用了4个不同初始相位,因此该方法被称为四步相移㊂另外,在上述获取空间频谱时,可根据图像物体在傅里叶基下的稀疏性,即图像物体频谱的能量集中在中间的低频部分,可以仅设计部分的傅里叶变换矩阵,这样就会极大减少测量次数和照射待测物体的数量㊂同样,若假设初始相位取值ϕ=0,2π/3,4π/3,则可推导出C(fx,fy)=13b(2D0(fx,fy)-D2π3(fx,fy)-D4π3(fx,fy)+㊀㊀3j3b(D2π3(fx,fy)-D4π3(fx,fy))(27)通过傅里叶逆变换可以获得正弦散斑下待测物体的信息㊂由于在过程中采用了3个不同初始相位,因此此种方法被称为三步相移㊂在以上重构中,由于在计算中直流分量a和背景噪声Dn已通过差分测量方法去除,因此基于傅里叶逆变换的重构方法具有较好的抗环境噪声能力㊂图4是基于傅里叶逆变换四步相移和三步相移下的鬼成像结果㊂从图4中可知,四步相移与三步相移下鬼成像质量基本相同㊂O r i g i n a l i m a g e E x p e r i m e n t sr e s u l t sS i m u l a t i o nr e s u l t sfour-stepphaseshiftmethodthree-stepphaseshiftmethod图4㊀基于傅里叶逆变换四步相移和三步相移重构[55]2.2.4㊀基于矩阵运算的重构方法2014年,郭树旭研究小组将伪逆概念引入鬼成像,提出基于矩阵伪逆的鬼成像重构方法,称为伪逆鬼成像(Pseudo⁃inverseGhostImaging,PGI)[56]㊂由式(20)可知,待测物体重构信息可以进一步表示为T^(x,y)=1NI1(1,1) IN(1,1)I1(1,2) IN(1,2)︙⋱︙I1(p,q) IN(p,q)éëêêêêêùûúúúúúB1B2︙BNéëêêêêêùûúúúúú-Bi⓪Bi⓪︙Bi⓪éëêêêêêùûúúúúúæèççççöø÷÷÷÷(28)17第1期赵生妹,等:鬼成像原理与进展研究结合式(1)和式(2),得到T^(x,y)=1NATAT(1,1)T(1,2)︙T(p,q)éëêêêêêùûúúúúú- Bi⓪In(1,1)⓪In(1,2)⓪︙In(p,q)⓪éëêêêêêùûúúúúú(29)其中, In(x,y)⓪=1NðNn=1In(x,y)表示N次光斑照射下在坐标(x,y)位置的平均光强,第二项是背景项㊂随着测量次数的增大,该背景项将趋于一个常数㊂由式(29)可知,ATA对角线元素值相对于非对角线元素值越大,目标重构质量将越高㊂因此引入散斑场矩阵A的摩尔彭若斯广义逆A†代替AT,即用A†A代替ATA,得伪逆鬼成像重构公式为T^(x,y)=1NA†[B1,B2, ,BN]=1NA†A[T(1,1),T(1,2), ,T(p,q)]T(30)在此基础上,龚文林研究小组提出了一种高分辨率伪逆鬼成像[57]㊂Yang等[58]于2016年提出了基于标量矩阵的重构算法(Scalar⁃Matrix⁃StructuredGhostImaging,SMGI)㊂2018年,基于奇异值分解的关联成像算法(SingularValueDecompositionGhostImaging,SVDGI)[59]和基于施密特正交化的关联成像算法(SchmidtGhostImaging,SGI)[60]也被提出㊂2018年郭树旭研究小组结合迭代去噪和伪逆鬼成像,提出了鬼成像的伪逆迭代方法,并通过实验验证了方法的有效性[61]㊂2.2.5㊀基于机器学习的重构方法深度学习是一种用于数据建模㊁数据分类和决策的机器学习方法,现已成为人工智能领域的研究热点,在图像识别㊁语音识别㊁自然语言处理㊁搜索推荐等领域展现出巨大的优势[62-63]㊂与此同时,深度学习技术也引起了国内外光学成像研究者的广泛关注㊂鉴于深度学习可以极大地提高散射成像㊁相位成像的成像质量,2017年,中国科学院上海光机所司徒国海研究小组将深度学习引入计算鬼成像,用深度神经网络学习模糊图像清晰化过程,并将低测量次数下的鬼成像实验结果输入到训练好的网络中,获得了实验采集时间少㊁成像质量高的鬼成像[64]㊂2018年,Shimobaba等[65]也将深度学习应用到计算鬼成像,用深度学习网络训练鬼成像实验噪声,从而有效地改善鬼成像的成像质量㊂2018年,Higham等[66]使用深度学习模型实现实时视频鬼成像㊂2019年,司徒国海研究小组实现端到端神经网络的桶探测器值直接对目标物体的重构方法[67]㊂2.3 系统优化通过散斑照射获得一系列桶探测器值和光强分布,再通过重构方法就可以在参考支路上获得待测物体的像㊂然而,由于热光鬼成像在理论上存在噪声项,其成像质量不可避免地受到限制,再加上实验环境中还存在其他照射源或噪声,因此,很多新的系统优化方法被开发,例如差分鬼成像(DifferentialGhostImaging,DGI)㊁归一鬼成像(NormalizedGhostImaging,NGI)和对应鬼成像(CorrespondanceGhostImaging,CGI)等,以期望凭借较少的测量次数和降噪手段,获得成像时间少㊁质量高的系统优化方法㊂2.3.1㊀差分鬼成像差分鬼成像是由Ferri等[21]于2010年提出的系统优化方法,通过对信号光路的信号与参考光路的信号做差分处理,使得鬼成像的成像信噪比得到了明显的提高㊂差分鬼成像的强度关联公式为T^DGI(x,y)=1NðNi=1(δBi- δBi⓪)(Ii(x,y)-Ii(x,y)⓪)(31)其中,δBi=Bi-Bi⓪Ri⓪Si,而Si=ðx,yIi(x,y)表示散斑的能量㊂对比式(31)与式(20)可以看出,差分鬼成像与传统鬼成像的差别就在于用差分的桶探测器信号δBi代替了传统鬼成像的桶探测器信号Bi㊂差分鬼成像与传统鬼成像的成像信噪比(Signal⁃to⁃NoiseRatio,SNR)之比为SNRDGISNRGI=1+(T)2δT2(32)其中,T为待测物体平均透射率,δT2=T2-(T)2为其方差㊂由于差分运算能够有效抑制背景噪声,提取物体信息相对波动值,因此对于强透射型物体(透射函数满足δT2≪(T)2)的成像,差分鬼成像的成像SNR比传统鬼成像有较大程度的提高SNRDGISNRGI≫1æèçöø÷;而对强吸收型物体(透射函数满足(T)2≪δT2≪1)的成像,成像SNR虽仍有所提高,但提高程度很不明显㊂笔者研究小组在差分鬼成像的基础上结合压缩感知技术,提出了基于压缩感知的差分关联成像方案[27]㊁参考臂差分压缩关联成像[68]以及多散斑图27南京邮电大学学报(自然科学版)㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2021年。

物理专业英语词汇

物理专业英语词汇

物理专业英语词汇Oo branch o 分支object 对象object distance 物距object point 物点object space 物空间objective 物镜objective glass 物镜objective lens 物镜objective prism 物端棱镜oblateness 扁率oblateness of the earth 地球偏率obliquity of the ecliptic 黄赤交角observable 可观测量observation 观测observer 观测员occupied level 满带能级ocean 海洋octahedron 八面体octal notation 八迸制表示octans 南极座octave 八度音octet 八重态octode 八极管octopole 八极octupole 八极octupole deformation 八极形变octupole magnet 八极磁铁octupole radiation 八极辐射ocular 接目透镜odd even mass effect 奇偶质量效应odd even nucleus 奇偶核odd odd nucleus 奇奇核odd parity 负宇称odd term 奇数项odometer 路程表oersted 奥斯特ohm 欧ohm's law 欧姆定律ohmic contact 欧姆接触ohmic heating 电阻加热ohmic resistance 欧姆电阻ohmmeter 欧姆计oil diffusion pump 油扩散泵oil drop experiment of millikan 密立根油滴实验oil immersion 浸油oil impregnated capacitor 油电容器oil sealed rotary vacuum pump 油密封式旋转真空泵okorokov effect 沃克罗柯夫效应olbers paradox 奥伯斯佯谬old style 旧历olive oil 橄榄油ombrometer 雨量器omega expansion 展开omega meson 介子omegatron 高频质谱仪omnitron 全能加速器on line 在线的on line control 在线控制on line isotope separator 在线同位素分离器on line measurement 在线测量on off action 开关酌one body approximation 单粒子近似one boson exchange force 单玻色子交换力one dimensional crystal 一维晶体one dimensional system 一维系one electron approximation 单电子近似one particle irreducible 单粒子不可约的one pion exchange force 单介子交换力onsager reciprocity theorem 昂萨格的互反定理oort constants 奥尔特常数opacity 不透迷opal glass 乳色玻璃opalescence 乳光open circuit 断路open cluster 疏散星团open cycle 开口循环open ended system 开端系open system 开放系open universe 开宇宙opera glass 观剧镜operating system 运算系统operation 运算operations research 运筹学operator 算子ophiuchus 蛇夫座optic axis 光轴optic mode 光学模optic nerve 视神经optical acoustic diffraction 光声衍射optical activity 旋光性optical analyser 光学检偏镜optical anisotropy 光学蛤异性optical anomaly 光学反常optical axis 光轴optical bench 光具座optical bistability 光双稳定性optical bistable device 光双稳定装置optical branching 光学分支optical breakdown 光哗optical calculation 光学计算optical center 光心optical character reader 光学文字读出机optical chirp 光学档脉冲optical communication 光学通信optical comparator 光学比较仪optical constant 光学常数optical density 光密度optical depth 光深optical disc 光盘optical disk 光盘optical distance 光程optical fiber 光学纤维optical filter 滤光片optical glass 光学玻璃optical harmonic generation 光谐波发生optical hologram 光学全息图optical homodyne spectroscopy 光零差光谱学optical illusion 光幻觉optical image 光学图象optical indicatrix 光学指标optical information processing 光学信息处理optical instrument 光学仪器optical integrated circuit 光学集成电路optical interference 光的干涉optical inversion system 光学转象系统optical isomer 旋光异构体optical isomerism 旋光异构optical libration 几何平动optical matched filter 光匹配滤光器optical memory 光存储器optical microscope 光学显微镜optical mixing 光混频optical model of nucleus 核的光学模型optical modulator 光灯器optical parametric amplification 光参量放大optical parametric effect 光参量效应optical parametric oscillation 光参量振荡optical parametric scattering 光参量散射optical path length 光程长度optical phase conjugation 光相位共轭optical phenomenon 光学现象optical pulse compression 光脉冲压缩optical pumping 光抽运optical pyrometer 光学高温计optical range finder 光学测距仪optical recording 光记录optical rectification 光学校正optical resonator 光谐振器optical rotatory dispersion 旋光色散optical rotatory power 旋光本领optical second harmonic generation 第二光谐波发生optical sensor 光学传感器optical shutter 光学快门optical spectrometer 光谱仪optical spectrum 光谱optical switch 光学开关optical system 光学系统optical theorem 光学定理optical thickness 光学厚度optical transistor 光敏晶体管optical waveguide 光波导optical wedge 光楔optically pumped laser 光泵激光器optically thick plasma 光学厚等离子体optically thin plasma 光学薄等离子体optics 光学optimal control 最佳控制optimization of energy usage 能源使用的最佳化optimum lattice 最佳晶格optoacoustic effect 光声效应optoelectronic technique 光电子技术optoelectronics 光电子学optogalvanic effect 光电偶效应optron 光导发光元件opw method 正交平面波法or circuit 或电路orbach process 奥巴克过程orbit 轨道orbit analysis 轨道分析orbit model 轨道模型orbit plane 轨道面orbit radius 轨道半径orbital 轨道函数orbital angular momentum 轨道角动量orbital diamagnetism 轨道抗磁性orbital electron 轨道电子orbital electron capture 轨道电子俘获orbital elements 轨道要素orbital frequency 轨道频率orbital magnetic moment 轨道磁矩orbital moment 轨道矩orbital motion 轨道运动orbital paramagnetism 轨道顺磁性orbital period 公转周期orbital plane 轨道面orbital precession 轨道旋进orbital quantum number 轨道量子数orbital velocity 轨道速度orbiting 轨道运动orbiting solar observatory 轨道太阳观测台orbitron gage 弹道规order 次order disorder ferroelectrics 有序无序铁电体order disorder transformation 有序无序转变order disorder transition 有序无序转变order of diffraction 衍射级order of interference 干涉级order of reflection 反射级order of symmetry 对称级order parameter 秩序参量ordered alloy 有序合金ordered and disordered structure 有序无序结构ordered lattice 有序晶格ordered structure 有序结构ordering energy 有序能ordinary rays 寻常射线ordinary wave 寻常波organic conductor 有机导体organic crystal 有机晶体organic metal 有机金属organic molecular beam epitaxy 有机分子束外延organic non linear optical material 有机非线性光学材料organic scintillator 有机闪烁体organic semiconductor 有机半导体organic superconductor 有机超导体organometal compound 有机金属化合物orientation 定位orientational polarization 定向极化oriented nuclei 定向核orifice 小孔origin of cosmic rays 宇宙线起源origin of elements 元素的起源origin of the earth 地球起源orion 猎户座orion nebula 猎户星云ornstein and zernike theory 奥豆坦泽尔尼克理论ornstein uhlenbeck's brownian motion 奥尔豆坦乌伦贝克布朗运动orr sommerfeld equation 奥尔拴菲方程orthicon 正析象管ortho ferrite 正铁氧体ortho para conversion 正态仲态转换ortho state 正态orthogonal functions 正交函数orthogonal group 正交群orthogonal matrix 正交矩阵orthogonal transformation 正交变换orthogonality 正交性orthogonalized plane wave method 正交平面波法orthohelium 正氦orthohydrogen 正氢orthonormal system 正交归一系orthonormality 正交归一性orthorhombic lattice 斜方晶格orthorhombic system 斜方晶系orthoscopic eyepiece 消畸变目镜oscillating circuit 振荡电路oscillating crystal method 回摆晶体法oscillating process 振荡过程oscillating universe 振动宇宙oscillation 振动oscillation energy 振荡能oscillation method 振荡方法oscillation mode 振荡模oscillation parameter 振荡参量oscillation photograph 振动晶体照相oscillation spectrum 振动谱oscillator 振子oscillator strength 振子强度oscillatory circuit 振荡电路oscillatory motion 振荡运动oscillistor 振荡晶体管oscillogram 波形图oscillograph 示波器oscilloscope 示波器osculating elements 密切要素osculating orbit 密切轨道osculating plane 密切平面osculating sphere 密切球面oseen approximation 奥森近似osmium 锇osmometer 渗压计osmose 渗透osmosis 渗透osmotic pressure 渗透压outgassing 除气output 输出output capacitance 输出电容output impedance 输出阻抗output transformer 输出变压器输出变换器overall efficiency 总效率overcharge 过充电overcooling 过冷overdamping 过阻尼overexposure 曝光过度overhauser effect 奥佛豪塞效应overheat 过热overheater 过热器overheating 过热overlap integral 重叠积分overload 过载overstability 过稳定性overtone 泛音overvoltage 过电压oxidation 氧化oxide cathode 氧化物阴极oxide coated cathode 氧化物阴极oxide superconductor 氧化物超导体oxygen 氧ozone layer 臭氧层Pp i n diode p i n 极管p i n junction p i n 结p n i p transistor p n i p 晶体管p n junction p n 结p n p junction p n p 结p n p n junction p n p n 结p n p n transistor p n p n 晶体管p p junction p p 结p type semiconductor p 型半导体p wave p 波pachymeter 测厚计packing 填塞packing effect 聚集效应packing fraction 聚集率packing loss 聚集效应padua model of the nucleon 核子的帕多瓦模型pair 偶pair annihilation 偶湮没pair correlation function 对相关函数pair creation 偶产生pair interaction 偶相互酌pair potential 对势pair production 偶产生pairing energy 对能pairing interaction 偶相互酌pairing rotation 对转动pairing vibration 对振动palaeo astrobiology 古天体生物学palaeomagnetism 古地磁学palaeovolcanology 古火山学paleobiogeochemistry 古生物地球化学palladium 钯panalyzor 多能分析仪panofsky ratio 帕诺夫斯基比panoramic lens 全景镜头panoramic telescope 全景望远镜paper capacitor 纸电容器paper chromatography 纸色谱法para state 仲态para statistics 仲统计法parabola 抛物线parabolic antenna 抛物面天线parabolic curve 抛物曲线parabolic orbit 抛物线轨道parabolic potential 抛物线势parabolic reflector 抛物面反射器parabolic type 抛物型paraboloid 抛物面paraboloid of revolution 回转抛物面paracrystal 仲晶paradox 佯谬parahelium 仲氦parahydrogen 仲氢parallactic angle 视差角parallactic ellipse 视差椭圆parallactic motion 视差动parallax 视差parallel circuit 并联电路parallel connection 并联parallel cut y 切割parallel displacement 平行位移parallel plate capacitor 平行板形电容器parallel plate condenser 平行板形电容器parallelogram of forces 力平行四边形paramagnet 顺磁体paramagnetic absorption 顺磁性吸收paramagnetic element 顺磁性元素paramagnetic material 顺磁物质paramagnetic relaxation 顺磁弛豫paramagnetic resonance 顺磁共振paramagnetic resonance absorption 顺磁共振吸收paramagnetic substance 顺磁物质paramagnetic susceptibility 顺磁磁化率paramagnetism 顺磁性paramagnon 顺磁振子parameter 参量parameter of state 态变数parametric amplifier 参量放大器parametric excitation 参量激发parametron 参数器parasitic ferromagnetism 寄生铁磁性parasitic oscillation 寄生振荡parasitic resonance 寄生共振paraterm 仲项paraxial rays 近轴光线parent element 母元素parent mass peak 原始峰parent peak 原始峰parhelium 仲氦parity 宇称parity conservation law 宇称守恒律parity violation 宇称不守恒parsec 秒差距partial dislocation 分位错partial equilibrium 部分平衡partial polarization 部分偏振partial pressure 分压partial wave 分波partial wave analysis 分波分析partial wave expansion 分波展开partially conserved axial vector current 轴矢量分守恒partially polarized light 部分偏振光particle 粒子particle acceleration 粒子加速particle accelerator 粒子加速器particle antiparticle conjugation 正反粒子共轭particle aspect of matter 物质的粒子观点particle beam 粒子束particle booster 注入加速器particle collisions 粒子碰撞particle concentration 粒子浓度particle counter 粒子计数器particle hole interaction 粒子空穴相互酌particle hole theory 粒子空穴理论particle hole transformation 粒子空穴变换particle particle correlation 粒子粒子相关particle separation 粒子分离particle separator 粒子分离器particle track detector 粒子径迹探测器particle transfer reaction 粒子转移反应partition function 统计和parton model 部分子模型pascal 帕pascal's principle 帕斯卡原理paschen back effect 帕邢巴克效应paschen runge mounting 帕邢朗格装置paschen series 帕邢系passive electric circuit 无源电路passive network 无源网络passive state 被动状态passivity 被动状态path 路径path difference 程差path integral 路径积分path of vision 视线path tracking 跟踪飞行轨道pattern 图形pattern recognition 图样识别patterson function 帕特森函数patterson method 帕特森方法pauli approximation 泡利近似pauli exclusion principle 泡利不相容原理pauli matrix 泡利矩阵pauli paramagnetism 泡利顺磁性pauli principle 泡利不相容原理pauli spinor 泡利旋量pauli villars regularization 泡利维拉斯正规化pavo 孔雀座peak 峰peak energy 峰值能量峰peak power 峰值功率peak voltage 峰压pearl necklace model 珍珠颈挂式模型peculiar galaxy 特殊星系peculiar minor planet 特殊小行星pegasus 飞马座peierls potential 佩尔斯势peierls transition 佩尔斯跃迁pellet compression 靶丸压缩pellet implosion 靶丸爆聚pellets 靶丸peltier effect 珀耳帖效应pencil 束pencil beam survey 深巡天pencil of light 光束pendular oscillation 摆振动pendulum 摆pendulum clock 摆钟penetrability 贯穿性penetrating power 贯穿本领penetrating shower 贯穿簇射penetration depth 穿透深度penetration depth of london 伦敦穿透深度penetrometer 透度计penning discharge 彭宁放电penning effect 彭宁效应penning gage 彭宁真空计penning ion source 彭宁离子源penning ionization 彭宁电离penrose diagramm 彭罗斯图形penrose lattice 彭罗斯点阵penrose tile 彭罗斯点阵pentagonal prism 五角棱镜pentane lamp 戊烷灯pentode 五极管pentration 贵穿penumbra 半影percent 百分率percolating network 渗透网络percolation 渗滤percussion 冲击perfect conductivity 理想导电性perfect conductor 理想导体perfect cosmological principle 完全宇宙原理perfect crystal 理想晶体perfect diamagnetism 理想抗磁性perfect elasto plastic body 完全弹塑性体perfect fluid 完全铃perfect gas 理想气体perfect liquid 理想液体perfect polarization 全极化perfect solution 理想溶液perfectly black body 绝对黑体perfectly elastic body 完全弹性体perfectly elastic collision 完全弹性碰撞perfectly inelastic collision 完全非弹性碰撞period 周期period luminosity relation 周期光度关系period of oscillation 振荡周期period of revolution 公转周期periodic comet 周期彗星periodic error 周期误差periodic law 周期律periodic motion 周期运动periodic orbit 周期轨道periodic potential 周期势periodic system 周期系periodic table 周期表periodic zone 周期带peripheral collision 边缘碰撞peripheral reaction 圆周反应peripheral vision 周边视觉periscope 潜望镜permalloy 坡莫合金permanent magnet 永磁铁permeability 磁导率permeameter 磁导计permeance 磁导permissible dose 容许剂量permissible error 容许误差permissible stress 容许应力permissible tolerance 容许剂量permitted line 容许谱线permittivity 介电常数permutation 排列permutation group 置换群permutation operator 置换算符perovskite structure 钙钛矿型结构perpendicular band 正交带perpendicular susceptibility 垂直磁化率perpetual mobile 永恒机关perpetual motion 永恒运动perpetuum mobile 永动机perpetuum mobile of the first kind 第一类永动机perpetuum mobile of the second kind 第二类永动机perseus 英仙座persistence of vision 视觉暂留persistent current 持久电流persistent line 暂留谱线personal computer 个人计算机personal error 人为误差personal monitor 个人剂量计personal monitoring 个人监测perturbation 微扰perturbation energy 微扰能perturbation method 摄动法perturbation theory 微扰理论perturbed motion 受摄运动perveance 电子管导电系数peta 拍它petra 正负电子串列存储环型加速器petra pfund series 芬德系phantom 人体模型phase 相位phase advance capacitor 相位超前电容器phase angle 相位角phase average 相平均phase boundary 相界phase coherent state 相位相干态phase conjugate interferometry 相位共轭干涉法phase contrast 相衬phase contrast method 相衬法phase contrast microscope 相衬显微镜phase diagram 平衡图phase difference 相位差phase discriminator 相位鉴别器鉴相器phase displacement 相移phase distortion 相位畸变phase equilibrium 相平衡phase grating 相位衍射光栅phase hologram 相位全息图phase locked loop 锁相环路phase locking 锁相phase locking technique 锁相法phase margin 相位容限phase matching 相位平衡phase meter 功率因数计phase mode 相位模phase modulation 掂phase orbit 相轨道phase oscillation 相位振动phase retrieval 相位复原phase rule 相律phase sensitive detection 相敏检波phase separation 相分离phase shift 相移phase shift oscillator 相移振荡器phase shifter 移相器phase space 相宇phase space average 相平均phase stability 相位稳定性phase transformation 相变phase transition 相变phase transition of the first kind 第一类相变phase transition of the second kind 第二类相变phase transition of vacuum 真空相变phase velocity 相速度phase voltage 相电压phase volume 相体积phason 起伏量子phasotron 稳相加速器phenomenon 现象phoenix 凤凰座phon 方phonometer 声响度计phonon 声子phonon drag 声子曳引phonon echo 声子回波phonon excitation 声子激发phosphor 磷光体phosphorescence 磷光phot 辐透photo acoustic spectroscopy 光声光谱学photo magnetoelectric effect 光磁电效应photoacoustics 光声学photoactivation 光激活photobiology 光生物学photocathode 光电阴极photocell 光电池photoceram 光敏玻璃陶瓷photochemical reaction 光化反应photochemical system 光化学系统photochemistry 光化学photochromic glass 光变色玻璃photocolorimeter 光电比色计photoconduction 光电导photoconductive cell 光电导管photoconductive effect 内光电效应photoconductivity 光电导性photocurrent 光电流photodensitometer 光密度计photodensitometry 光密度分析法photodetachment 光致脱离photodetector 光探测器photodiode 光电二极管photoeffect 光电效应photoelastic effect 光弹性效应photoelastic holography 光弹性全息照相photoelasticimeter 光致弹性测量计photoelasticity 光弹性photoelectret 光永电体photoelectric absorption 光电吸收photoelectric cell 光电池photoelectric current 光电流photoelectric effect 光电效应photoelectric emission 光电发射photoelectric microphotometer 光电测微光度计photoelectric photometer 光电光度计photoelectric photometry 光电测光photoelectric pyrometer 光电高温计photoelectric threshold 光电阈photoelectric tube 光电管photoelectricity 光电photoelectromagnetic effect 光电磁效应photoelectron 光电子photoelectron spectroscopy 光电子谱学photoemission 光电发射photoexcitation 光激发photofission 光核裂变photogalvanic effect 光生伏打效应photographic apparatus 照相机photographic camera 照相机photographic density 照相密度photographic emulsion 照相乳胶photographic film 软片photographic lens 照相物镜photographic magnitude 照相星等photographic material 照相材料photographic photometry 照相测光学photographic plate 照相底板photographic telescope 天体照相机photography 照相术photogun 光电子枪photoionization 光致电离photoirradiation 光致辐照photoluminescence 光致发光photolysis 光解酌photomagnetic effect 光磁效应photometer 光度计photometric cube 光度计立方体photometric distance 测光距离photometric elements 测光要素photometric quantity 光度量photometric standard 光度学标准photometric unit 光度单位photometric wedge 测光楔photometrical paradox 奥伯斯佯谬photometry 光度学photomicrograph 显微镜照片photomicroscopic 显微照相机photomultiplier 光电倍增管photomultiplier tube 光电倍增管photon 光子photon counting method 光子计数法photon coupled pair 光导发光元件photon echo 光子回波photon gas 光子气体photon packet 光子束photonegative effect 负光电效应photoneutron 光中子photonuclear fission 光核裂变photonuclear reaction 光核反应photophoresis 光致迁动photopic vision 亮视觉photoplate 照相底板photoradiometer 光辐射计photorecorder 自动记录照相机photoresist 光致抗蚀剂photosemiconductor 光半导体photosensitive resin 光敏尸photosensitivity 光灵敏度photosensitization 光敏化photosphere 光球photostatistics 光子统计学photosynthesis 光合酌phototelegraphy 传真photothermal displacement 光照位移phototransistor 光电晶体管photovisual magnitude 仿视星等photovoltaic effect 光生伏打效应physical chaos 物理混沌physical chemistry 物理化学physical constant 物理常数physical double star 物理双星physical libration 物理天平动physical mathematics 物理数学physical oceanography 海洋物理学physical optics 物理光学physical pendulum 复摆physical photometer 物理光度计physical photometry 物理光度学physical property 物理性质physical quantity 物理量physical roentgen equivalent 物理伦琴当量physical variable 物理变星physicist 物理学家physico chemical 物理化学的physics 物理学physics of heat 热物理学physics of metals 金属物理学physiological acoustics 生理声学pi bond 键pi electron 电子pi electron approximation 电子近似pi meson 介子pi orbital 轨道pick up reaction 拾取反应pico 微微picofarad 微微法picosecond 微微秒picosecond laser 微微秒激光器picosecond light pulse 微微秒光脉冲picosecond spectroscopy 微微秒光谱学pictor 绘架座pid action 比例积分微分酌pierce type crystal oscillator 皮尔斯石英振荡器pierce type electron gun 皮尔斯电子枪piezo ceramic element 压电陶瓷元件piezo semiconductor transducer 压电半导体换能器piezoceramics 压电陶瓷piezochromism 受压变色piezoelectric 压电piezoelectric actuator 压电传动装置piezoelectric axis 压电轴piezoelectric constant 压电常数piezoelectric crystal 压电晶体piezoelectric effect 压电效应piezoelectric element 压电元件piezoelectric loudspeaker 压电扬声器piezoelectric modulus 压电模量piezoelectric oscillator 压电振荡器piezoelectric polaron 压电极化子piezoelectric transducer 压电转换器piezoelectric vibration 压电振动piezoelectricity 压电piezometer 液体压力计piezoresistor 压电电阻器piezotropy 压性pile 反应堆pile oscillator 反应堆振荡器pile up effect 脉冲堆积效应pilot lamp 指示灯pinch effect 箍缩效应pinching 自压缩pinhole camera 针孔照相机pinning 锁住pinning center 锁住中心pinning force 锁住力pinning potential 锁住势pion 介子pion beam 介子束pion condensation 介子凝聚pionic atom 介原子pionization 介子化过程pipe 导管pipe line 导管pippard equation 皮帕德方程pirani gage 皮拉尼压力计pisces 双鱼座piscis austrinus 南鱼座pitot tube 皮托管planar transistor 平面晶体管planck mass 普朗克质量planck time 普朗克时间planck's constant 普朗克常数planck's function 普朗克函数planck's fundamental length 普朗克基本长度planck's law of radiation 普朗克辐射定律plane concave lens 平凹透镜plane convex lens 平凸透镜plane fault 面缺陷plane grating 平面光栅plane mirror 平面镜plane of incidence 入射面plane of polarization 偏光面plane of projection 射影平面plane of symmetry 对称面plane polarization 平面偏振plane polarized light 平面偏振光plane polarized wave 平面偏振波plane wave 平面波planet 行星planetarium 天象仪planetary aberration 行星光行差planetary cosmogony 行星演化学planetary geology 行星地质学planetary nebula 行星状星云planetary system 行星系planetesimal theory 星子论planetesimals 星子planetoid 小行星planimeter 测面仪plano concave lens 平凹透镜plano convex lens 平凸透镜plano cylindrical lens 平圆柱透镜plano spherical lens 平面球面透镜plasma 等离子体plasma accelerator 等离子体加速器plasma balance 等离子体平衡plasma cluster 等离子粒团plasma confinement 等离子体禁闭plasma containment 等离子体禁闭plasma diagnostics 等离子体诊断学plasma dispersion function 等离子体弥散函数plasma echo 等离子体回波plasma engine 等离子体发动机plasma focus 等离子体聚焦点plasma frequency 等离子体频率plasma gun 等离子体枪plasma heating 等离子体加热plasma instability 等离子体不稳定性plasma membrane 原生质膜plasma oscillation 等离子体振荡plasma physics 等离子体物理学plasma potential 等离子体势plasma source 等离子体源plasma wave 等离子体波plasmapause 等离子体层顶plasmasphere 等离子层plasmoid 等离子粒团plasmon 等离振子plasmon excitation 等离振子激发plastic anisotropy 塑性蛤异性plastic deformation 塑性变形plastic flow 塑性怜plastic material 塑胶plastic potential 塑性势plastic wave 塑性波plastic yield 塑性屈服plasticity 塑性plastics 塑胶plate 正极plate battery 阳极电池组plate circuit 板极电路plate current 板极电流plate detection 板极检波plate resistance 板极电阻plate tectonics 板块构造plate voltage 板极电压plateau 坪platinum 铂platinum group elements 铂族元素platinum resistance thermometer 铂电阻温度计pleochroic halo 多向色晕pleochroism 多色性pleochromatism 多色性plk method plk 法plot 标绘plotter 标绘器plug 插头plural scattering 多重散射plus 加plus sign 加号pluto 冥王星plutonium 钚plutonium reactor 钚堆plutonium regeneration 钚再生pluviometer 雨量器pneumatic laser 气动激光器pockels cell 波克尔斯盒pocket dosimeter 袖珍剂量计pocket of air 气囊point at infinity 无穷远点point charge 点电荷point contact rectifier 点接触整流point contact transistor 点接触晶体管point defect 点缺陷point discharge 尖端放电point group 点群point lattice 点晶格point of action 酌点point of application 酌点point of contact 接触点point source of light 点光源poise 泊poiseuille flow 泊萧叶怜poiseuille's law 泊萧叶定律poisson bracket 泊松括号poisson equation 泊松方程poisson process 泊松过程poisson's ratio 泊松比polar aurora 极光polar binding 极性键polar bond 极性键polar cap 极冠polar cap absorption 极冠吸收polar crystal 极性晶体polar gas 极性气体polar light 极光polar liquid 极性液体polar molecule 极性分子polar motion 极运动polar sequence 北极星序polar telescope 天极仪polar triangle 极三角形polar vector 极矢量polar wandering 极运动polar year 极年polarimeter 偏振计polarimetry 测偏振术polaris 北极星polarisation angle 布儒斯特偏振角polariscope 偏振光镜polariton 电磁耦合振子polarity 极性polarizability 极化率polarizability ellipsoid 极化率椭球polarization 极化polarization charge 极化电荷polarization current 极化电流polarization curve 极化曲线polarization factor 极化因数polarization filter 偏振滤光镜polarization force 极化力polarization interferometer 偏振干涉仪polarization microscope 偏光显微镜polarization of neutron 中子的极化polarization orbital 极化轨道polarization potential 极化势polarization spectroscopy 偏振光光谱学polarized beam 极化束polarized ion source 极化离子源polarized light 偏振光polarized neutron diffraction technique 极化中子衍射法polarized nucleus 极化核polarized raman scattering 偏振喇曼散射polarized relay 极化继电器polarized target 极化靶polarizer 起偏器偏振器polarizing filter 偏振滤光镜polarizing microscope 偏光显微镜polarizing prism 偏振棱镜polarograph 极谱仪polarography 极谱学polaroid 偏光片polaron 极化子pole 极pole of ecliptic 黄极pole piece 极片pole shoe 极片pole strength 磁极强度polestar 北极星polhode 心迹线polishing 抛光poloidal magnetic field 极向磁场polonium 钋polyatomic molecule 多原子分子polycondensation 缩聚酌polycrystal 多晶polycrystalline material 多晶物质polydisperse system 多色散系polygon of forces 力多边形polygonization 多边形化polymer 聚合物polymer complex 聚合络合物polymer crystal 聚合晶体polymer effect 聚合效应polymerization 聚合polymerization of protein 蛋白质聚合polymolecularity 多分子性polymorphism 多形性polyphase 多相polyphase current 多相电流polytrope 多变性polytropic change 多方状态变化polytropic index 多方指标polytropic process 多变过程pomeranchuk effect 坡密朗丘克效应pomeranchuk theorem 坡密兰丘克定理pomeron 坡密子pool type reactor 池式堆population 全域population inversion 粒子数反转pore 小黑子porosity 多孔性porous flow 多孔流position 位置position resolution 位置分辨率position sensitive detector 对位置灵敏的探测器position vector 位置矢量positive 正片positive charge 正电菏positive column 阳极区positive crystal 正晶体positive electricity 正电positive electrode 阳极positive electron 正电子positive element 正元素positive eyepiece 正目镜positive feedback 正反馈positive hole 空子positive ion 阳离子positive lens 正透镜positive magnetostriction 正磁致伸缩positive meniscus 凹凸透镜positive meson 正介子positive rays 阳射线positon 正电子positron 正电子positron annihilation 正电子湮没positron beam 正电子束positron channeling 正电子沟道positron electron annihilation 偶湮没positron electron tandem ring accelerator 正负电子串列存储环型加速器petra positron emission 正电子发射positron factory 正电子工厂positron spectroscopy 正电子谱学positronium 电子偶素post newtonian approximation 后牛顿近似post nova 燃后新星post post newtonian approximation 后后牛顿近似potassium 钾potassium dihydrogenphosphate 磷酸二氢钾potential 势potential barrier 势垒potential difference 势差potential divider 分压器potential energy 势能potential energy curve 势能曲线potential field 势场potential flow 势流potential function 势函数potential instability 对粱稳定性potential motion 势运动potential scattering 势散射potential well 势阱potentiometer 电位计potts model 波特模型pound 磅powder camera 粉末照相机powder diffraction method 粉末法powder pattern 粉末干涉象powder photography 粉末照相术power 功率power amplification 功率放大power demonstration reactor 动力示范堆power density 功率密度power dissipation 耗散功率power factor 功率因数power factor meter 功率因数计power gain 功率增益power of a lens 透镜的焦强power reactor 动力堆power tube 功率管poynting robertson effect 坡印廷罗伯逊效应poynting's vector 坡印廷矢量practical system of units 实用单位制prandtl number 普朗特数praseodymium 镨pre vacuum 初真空pre vacuum pump 预备真空泵preacceleration 预加速preaccelerator 前加速器preamplifier 前置放大器precession 旋进precession camera 旋进照相机precession of orbit 轨道旋进precessional constant 岁差常数precious metal 贵金属precipitation 沉淀precision 精密度precision measurement 精密测量predict earthquake with catfish 用鲶鱼预报地震prediction 预报prediction of solar activity 太阳活动预告predissociation 预离解preferential recombination 优选复合preionization 预电离preliminary vacuum 初真空pressure 压力pressure broadening 压力增宽pressure coefficient 压力系数pressure dispersion 压力弥散pressure drag 压力阻pressure drop 压降pressure gage 压力表pressure head 压头pressure height equation 气压测高公式pressure of light 光压pressure of water vapor 水汽压pressure sensitive diode 压力敏感二极管pressure sensitive transistor 压力敏感晶体管pressure tensor 压强张量pressurized air 压缩空气pressurized water reactor 压水堆primakoff effect 普里马科夫效应primary battery 原电池primary beam 初级束流原射线束primary cell 原电池primary circuit 原电路primary colors 原色primary cosmic radiation 原宇宙辐射primary cosmic rays 原宇宙射线primary electron 原电子primary energy 一次能量primary ionization 一次电离primary rainbow 昼primary recrystallization 一次再结晶primary standard 原标准primary star 智primary target 初始靶primary thermometer 初始温度计primary voltage 初级电压prime meridian 零子午线prime vertical 卯酉圈primeval galaxy 原始星系primitive black hole 原始黑洞primitive lattice 初基点阵primordial solar nebula 太阳系星云principal axes of stress 应力轴principal axis 轴principal axis of inertia 惯性轴principal index for extraordinary ray 非常光线舟射率principal moment of inertia 知动惯量principal plane 纸面principal point 帚principal quantum number 挚子数principal ray 肘线principal refractive indices 舟射率principal series 诌系principal stress 枝力principle 原理principle of constancy of light velocity 光速不变原理principle of corresponding states 对应态原理principle of detailed balancing 细致平衡原理principle of entropy compensation 熵补偿原理。

AnIntroductiontoNonlinearOptics教程学习教程

AnIntroductiontoNonlinearOptics教程学习教程

Nonlinear Optics
For the input field with very high intensity that are comparable with the intensity of average Coulomb field of the light atom, the polarization of the medium must be written as:
• (1961) Ali Javan The first He-Ne Laser
Properties of Laser Beam
A laser beam • is intense • is coherent • has a very low divergence • can be compressed in time up to few femto seconds
P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, Generation of Optical Harmonics, Phys. Rev. Lett. 7, 118, 1961
1961 Kaiser and Garrett: Two-photon absorption (TPA)
Applications of Laser
Medicine, Research, Industry, Military, Communication, Art, Information technology, Entertainment, …
*Strong coherent light source for nonlinear optical effects
(only linear interaction before the laser was invented)

光学中非球面的英文

光学中非球面的英文

光学中非球面的英文English:Non-spherical optics, or aspherical optics, refers to optical elements that do not have a perfectly spherical surface. Unlike traditional spherical lenses, which have a uniformly curved surface, non-spherical optics have a surface that varies in curvature, allowing them to correct for optical aberrations more effectively. This variation in curvature can be designed to reduce spherical aberration, coma, astigmatism, and other aberrations that can occur in spherical optics. Non-spherical optics are used in a wide range of applications, including cameras, telescopes, microscopes, and laser systems, where high precision and image quality are critical. By using non-spherical optics, optical designers can achieve better control over the shape of the wavefront, resulting in improved image resolution and higher optical performance. These elements can be more complex to manufacture and typically require advanced manufacturing techniques such as diamond turning or precision molding.Translated content:非球面光学,或非球面光学,指的是光学元件,其表面不是完全球面的。

中长波Cr2_+_

中长波Cr2_+_

第53卷第4期2024年4月人㊀工㊀晶㊀体㊀学㊀报JOURNAL OF SYNTHETIC CRYSTALS Vol.53㊀No.4April,2024研究快报中长波Cr 2+/Fe 2+ʒCdSe 激光晶体生长及元件制备黄昌保1,胡倩倩1,2,朱志成1,2,李㊀亚1,2,毛长宇1,徐俊杰1,吴海信1,倪友保1(1.中国科学院合肥物质科学研究院安徽光学精密机械研究所,安徽省光子器件与材料重点实验室,合肥㊀230031;2.中国科学技术大学,合肥㊀230026)摘要:本文采用自主研发的双温区真空石墨加热单晶炉,通过钼坩埚密封布里奇曼法成功生长出了Cr 2+ʒCdSe 晶体和Fe 2+ʒCdSe 晶体,晶体尺寸达ϕ51mm ˑ110mm㊂Cr 2+ʒCdSe 晶体和Fe 2+ʒCdSe 晶体分别在1400~2400nm 和2500~5200nm 波段存在明显的吸收,同时,Cr 2+ʒCdSe 晶体和Fe 2+ʒCdSe 晶体在7~15μm 波段透过率均接近CdSe 晶体透过极限(~70%),换算吸收系数约为0.005cm -1㊂采用钼坩埚密封布里奇曼法制备的Cr 2+/Fe 2+ʒCdSe 晶体具有过渡金属离子掺杂浓度可控㊁掺杂均匀㊁晶体品质高等优点,可同时作为中波红外激光晶体和长波红外非线性光学晶体材料㊂关键词:中远红外激光;非线性光学晶体;激光晶体;过渡金属掺杂;CdSe 晶体;晶体生长;布里奇曼法中图分类号:O782㊀㊀文献标志码:A ㊀㊀文章编号:1000-985X (2024)04-0551-03Growth and Device Fabrication of Mid to Far-Infrared Cr 2+/Fe 2+ʒCdSe Crystals HUANG Changbao 1,HU Qianqian 1,2,ZHU Zhicheng 1,2,LI Ya 1,2,MAO Changyu 1,XU Junjie 1,WU Haixin 1,NI Youbao 1(1.Anhui Provincial Key Laboratory of Photonic Devices and Material,Anhui Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,Hefei 230031,China;2.University of Science and Technology of China,Hefei 230026,China)Abstract :In this study,the Cr 2+ʒCdSe and Fe 2+ʒCdSe crystals were successfully grown by the Mo-crucible sealed Bridgman method using a vacuum single-crystal furnace with two zones developed by ourselves,and the crystal size reaches ϕ51mm ˑ110mm.Cr 2+ʒCdSe and Fe 2+ʒCdSe crystals demonstrate obvious absorption in the bands of 1400~2400nm and 2500~5200nm,respectively.The transmittances of Cr 2+/Fe 2+doped CdSe crystals are close to the transmittance limit of CdSe crystal (~70%)in the 7~15μm band,and the converted absorption coefficient is about 0.005cm -1.The Cr 2+/Fe 2+ʒCdSe crystals grown by the Mo-crucible sealed Bridgman method have the advantages of the controllable doping concentration of transition metal ions,uniform doping and high crystal quality.The Cr 2+/Fe 2+ʒCdSe crystals could be used as both mid-infrared laser crystal and far-infrared nonlinear optical crystal material.Key words :mid-far infrared laser;nonlinear optic crystal;laser crystal;transition metal doping;CdSe crystal;crystal growth;Bridgman method ㊀㊀收稿日期:2023-12-25㊀㊀基金项目:国家重点研发计划(2021YFB3601503)㊀㊀作者简介:黄昌保(1985 ),男,安徽省人,博士,副研究员㊂E-mail:cbhuang@ ㊀㊀通信作者:吴海信,博士,研究员㊂E-mail:hxwu@ 硒化镉(CdSe)晶体是一种Ⅱ-Ⅵ半导体材料,其在高能射线探测㊁中红外激光㊁非线性光学等领域有着重要的应用价值㊂CdSe 晶体由于具有宽的透光范围(0.75~22.5μm)和优异的非线性光学性能,是一种不可或缺的8~12μm 激光频率下转换材料[1];同时,CdSe 晶体具有过渡金属离子(Cr 2+㊁Fe 2+)可掺杂性,Cr 2+ʒCdSe 晶体和Fe 2+ʒCdSe 晶体也常被用作中红外激光和可饱和吸收体材料[2]㊂早在20世纪90年代,美国空军实验室已经验证了CdSe 晶体的长波激光输出能力[3];2015年前后,国552㊀研究快报人工晶体学报㊀㊀㊀㊀㊀㊀第53卷内哈尔滨工业大学采用2.09μm@HoʒYAG 激光泵浦的CdSe-OPO,实现了百毫瓦级10~12μm 长波红外激光输出[4-6];随着CdSe 晶体品质的提高和尺寸的增加,2020年前后,哈尔滨工业大学实现了CdSe-OPO 瓦级长波红外激光输出[7-9]㊂近年来,俄罗斯研究者采用热扩散法和物理气相输运(physical vapor transport,PVT)法制备出了Cr 2+ʒCdSe 晶体和Fe 2+ʒCdSe 晶体,并应用于中红外激光实验[10-12]㊂Cr 2+/Fe 2+ʒCdSe 晶体是一种兼具中红外激光和长波红外非线性频率转换性能的晶体,其在中长波激光输出㊁新的非线性光学现象研究等领域有着巨大的应用潜力㊂然而,现有的热扩散法和PVT 法制备的过渡金属掺杂Ⅱ-Ⅵ中红外激光晶体存在掺杂均匀性差㊁掺杂浓度不可控㊁元件尺寸小等问题㊂图1㊀本实验室自主研发的双温区真空石墨加热单晶炉Fig.1㊀Vacuum single-crystal furnace with two zones developed by ourselves本实验室在制备出CdSe 晶体基础上[9],采用自主研发的双温区真空石墨加热单晶炉(见图1),通过钼坩埚密封布里奇曼法成功生长出了Cr 2+ʒCdSe 晶体和Fe 2+ʒCdSe 晶体㊂首先,称取纯度为7N 的CdSe 高纯原料约1.6kg (生长Cr 2+ʒCdSe 晶体和Fe 2+ʒCdSe 晶体对应的Cr 粉和Fe 粉分别为0.12和0.13g),混合均匀后,将其装入外径为53mm 的PBN 坩埚内;再将装料的PBN 坩埚装入钼坩埚内,采用真空电子束焊密封,并装入双温区真空石墨加热单晶炉内合适的位置;然后,将炉腔抽真空至5ˑ10-4Pa 后,充入高纯(5N)氩气,压强恒定在1.1ˑ105Pa;在14h 内,将上温区和下温区温度分别升温至1350和1210ħ,恒温60h;上㊁下炉以0.3ħ/h 的速率同时降温至CdSe 晶体熔点以下,再以20ħ/h 的速率同时降温至室温;最后打开炉膛,取出晶体㊂参照本实验室成熟的CdSe 晶体生长工艺,生长出了尺寸为ϕ51mm ˑ110mm 的Cr 2+ʒCdSe 晶体和Fe 2+ʒCdSe 晶体(见图2),晶体完整性良好㊁方向一致㊂并加工出了尺寸为10mm ˑ10mm ˑ(50~70mm)㊁不同方向的Cr 2+/Fe 2+ʒCdSe 晶体元件,如图3所示㊂采用傅里叶红外光谱仪对10mm ˑ10mm ˑ30mm 的晶体元件进行表征,透过光谱如图4所示,并依据相关理论公式对其吸收系数进行计算㊂Cr 2+ʒCdSe 晶体在1400~2400nm 波段存在明显的Cr 2+吸收峰,吸收中心位于1930nm 附近,吸收系数约为1.34cm -1;Fe 2+ʒCdSe 晶体在2500~5200nm 波段存在明显的Fe 2+吸收峰,吸收中心位于3400nm 附近,吸收系数约为3.2cm -1㊂但是,Cr 2+/Fe 2+掺杂未改变CdSe 晶体的整体透光范围(0.75~22.5μm),在7~15μm 透过率接近CdSe 晶体透过率极限㊂图2㊀生长出的Cr 2+/Fe 2+ʒCdSe 晶体Fig.2㊀As-grown Cr 2+/Fe 2+ʒCdSecrystals 图3㊀Cr 2+/Fe 2+ʒCdSe 晶体元件Fig.3㊀Cr 2+/Fe 2+ʒCdSe crystal devices㊀第4期黄昌保等:中长波Cr2+/Fe2+ʒCdSe激光晶体生长及元件制备553㊀图4㊀Cr2+ʒCdSe和Fe2+ʒCdSe晶体红外透过和吸收图谱㊂(a)Cr2+ʒCdSe和Fe2+ʒCdSe晶体1~25μm红外透过谱,嵌入图为Cr2+ʒCdSe晶体1~2.5μm红外透过谱;(b)Cr2+ʒCdSe和Fe2+ʒCdSe晶体1~25μm红外吸收谱,嵌入图为Cr2+ʒCdSe晶体1~2.5μm红外吸收谱Fig.4㊀IR transmission and absorption spectra for Cr2+ʒCdSe and Fe2+ʒCdSe crystals.(a)IR transmission spectra in the range of1~25μm for Cr2+ʒCdSe and Fe2+ʒCdSe crystals,embedded image shows IR transmission spectrum in the range of 1~2.5μm for Cr2+ʒCdSe crystal;(b)IR absorption spectra in the range of1~25μm for Cr2+ʒCdSe and Fe2+ʒCdSe crystals, embedded image shows IR absorption spectrum in the range of1~2.5μm for Cr2+ʒCdSe crystal 采用钼坩埚密封法生长掺杂CdSe晶体,可更好地控制熔体的化学计量比,有利于掺杂离子浓度的定量控制和晶体光学品质的提升;生长出的Cr2+ʒCdSe和Fe2+ʒCdSe晶体能够同时满足中红外激光和非线性频率下转换的性能需求,下一步计划开展相关激光实验研究㊂此外,由于不需要高压长晶环境,研究人员很容易控制坩埚升降㊁旋转及实现温场实时监测,后期更有利于进一步提高掺杂均匀性和晶体的成品率㊂参考文献[1]㊀DMITRIEV V G,GURZADYAN G G,NIKOGOSYAN D N.Handbook of nonlinear optical crystals[M].3rd ed.Berlin:Springer-Verlag Berlinand Heidelberg GmbH&Co.K,1999.[2]㊀MIROV S B,MOSKALEV I S,VASILYEV S,et al.Frontiers of mid-IR lasers based on transition metal doped chalcogenides[J].IEEE Journalof Selected Topics in Quantum Electronics,2018,24(5):1601829.[3]㊀MANI A A,SCHULTZ Z D,GEWIRTH A A,et al.Picosecond laser for performance of efficient nonlinear spectroscopy from10to21μm[J].Optics Letters,2004,29(3):274-276.[4]㊀WANG J,YUAN L G,ZHANG Y W,et al.Generation of320mW at10.20μm based on CdSe long-wave infrared crystal[J].Journal of CrystalGrowth,2018,491:16-19.[5]㊀YUAN J H,CHEN Y,DUAN X M,et al.CdSe optical parametric oscillator operating at12.07μm with170mW output[J].Optics&LaserTechnology,2017,92:1-4.[6]㊀YUAN J H,DUAN X M,YAO B Q,et al.Tunable10-to11-μm CdSe optical parametric oscillator pumped by a2.1-μm HoʒYAG laser[J].Applied Physics B,2016,122(7):202.[7]㊀CHEN Y,YANG C,LIU G Y,et al.11μm,high beam quality idler-resonant CdSe optical parametric oscillator with continuous-wave injection-seeded at2.58μm[J].Optics Express,2020,28(11):17056.[8]㊀YANG K,LI J H,GAO Y Z,et al.Watt-level long-wave infrared CdSe pulsed-nanosecond optical parametric oscillator[J].Optics&LaserTechnology,2022,145:107491.[9]㊀HU Q Q,HUANG C B,WEI L,et rge-size high-quality CdSe-OPO component for far IR laser output prepared by directional crystal growthtechnique[J].CrystEngComm,2023,25(26):3741-3745.[10]㊀PUSHKIN A,POTEMKIN F.High-gain broadband laser amplification of mid-IR pulses in FeʒCdSe crystal at5μm with millijoule output energyand multigigawatt peak power[J].Optics Letters,2022,47(22):5762-5765.[11]㊀FJODOROW P,FROLOV M P,KOROSTELIN Y V,et al.Passively Q-switched5-μm Ce3+-doped selenide glass laser using FeʒCdTe andFeʒCdSe as saturable absorbers[J].Optics Letters,2022,47(2):309-312.[12]㊀GAVRISHCHUK E M,RODIN S A,KURASHKIN S V,et al.Diffusion-doped CrʒCdSe single crystals for mid-IR lasers[J].Optical Materials,2022,128:112372.。

自倍频晶体的研究和激光应用进展

自倍频晶体的研究和激光应用进展

Advances in the Research and Laser Applications of Self-Frequency Doubling Crystals
CHENG Yanling, YU Haohai, ZHANG Huaijin, WANG Jiyang (State Key Laboratory of Crystal Materials,Shandong University,Jinan 250100,China)
本文综述了不同稀土离子掺杂非线性基质的发 展历程,重点总结了近年来激光自倍频晶体的突出研 究成果以及应用方面的进展。
1 非线性光学的理论基础
当光在晶体中传播时,介质会产生极化现象,当 入射光电场 E 较小时,所产生的偏振强度为
P = χE
式中,χ = n2 − 1,称为线性光学极化率。上式可以用 来描述一系列线性光学现象,如光的反射、光的折射 和光的吸收等。
收 稿 日 期 :2021-03-25 基 金 项 目 :国家自然科学基金重点项目(51632004);国家自然科学基金面上项目(51772172)资助 作 者 简 介 :程艳玲(1997-),女,硕士研究生。E-mail:yanlingcheng@ 通 信 作 者 :王继扬(1946-),男,教授。主要研究方向为功能晶体材料生长技术与特性。E-mail:jywang@ 引 文 格 式 :程艳玲,于浩海,张怀金,等. 自倍频晶体的研究和激光应用进展 [J]. 应用技术学报,2021,21(2):95-108. Citation:CHENG Yanling,YU Haohai,ZHANG Huaijin,et al. Advances in the Research and Laser Applications of Self-Frequency
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a0ij = FijklHkith
2
P ! ! = ! !E!E! corresponds to the linear electrooptic e ect.
1
1.2. Some tensor relations, symmetric aspects
It is known 3, 4] that optical properties of crystals are described by the material equations taking into account a spatial dispersion 2]: Ei = a0ij Dj = (aij + i ijlkl )Dj ; where ijl = eijk gkl is an antisymmetric polar tensor, gkl is an axial gyration tensor dual to the above one, eijk is a Levi-Civita tensor, kl is a wave vector, aij is a tensor of the optical polarization constants without consideration of spatial dispersion (aij is a reciprocal tensor with respect to "ij tensor). The parametric optical e ects are determined by expanding aij or "ij tensors and ijl or gkl tensors into power series with respect to di erent elds, namely: 1. aij = aij + rijk Ek + Rijkl Ek El +... - electrooptics 5, 6]; (1) 2. gij = gij + ijkEk + ijklEk El +... - electrogyration 2, 7-10]; (2) 3. aij = aij + ijkl kl +... - elastooptics 11]; (3) 4. gij = gij + ijkl kl +... - elastogyration 2]; (4) 5. aij = aij + qijklp kl Ep - elasto-electrooptics; 6. gij = gij + Qijklp kl Ep - elasto-electrogyration. In inhomogeneous elds, gradient parametric optical e ects are possible 12], for example, a torsional-gyration e ect 13]: @ gij = ijklm @xkl : m The restrictions as to the form of polar (aij , rijk , Rijkl, ijkl, qijklp) and axial (gij , ijk, ijkl, ijkl, Qijklp) tensors are due to the point symmetry of crystals: rijk = gij = ijkl = ijkl = qijklp = 0 - in the crystals having inversion symmetry; aij , Rijkl, ijk, ijkl, Qijklp 6= 0 - in acentrically and centrally symmetric crystals. The possibility for appearing the mentioned parametric optical e ects agrees with the following principles of the point symmetry: 1. The Curie principle { a superposition of the elements of the symmetry of crystals and suitable elds.
Received May 6, 1998
Proceeding from the symmetry principles of crystal physics and thermodynamics we analyze parametrical optical phenomena induced by external fields of different kind and structural phase transitions in ferroelectrics and ferroelastics. Special attention is paid to the phenomena of spatial dispersion (electro- and piezogyration). A phenomenological approach to the description of these phenomena is illustrated by the most expressive experimental results obtained for the following crystals: KH 2(1?x) D 2x PO 4 (KDP, DKDP), K 2 H 2 AsO 4 (CDA), RbH 2 PO 4 (RDP), Pb 5 (Ge (1?x) Si x ) 3 O 11, Pb 3 (PO 4 ) 2 , K 2 Cd 2 (SO 4 ) 3 , (NH 3 CH 2 COOH) 3 H 2 SO 4 (TGS), and NaKC 4 H 4 O 6 4H 2 O (RS). Apart from new effects in the crystals of the A 2 BX 4 group with incommensurately modulated structure, in particular, crystals [N(CH 3 ) 4 ] 2 ZnCl 4 , [N(CH 3 ) 4 ] 2 FeCl 4 , K 2 ZnCl 4 , K 2 ZnCl 4 , Co 2+ are considered. Key words: crystal optics, ferroelectrics, optical activity, ferroics, phase transitions PACS: 42.30.Lr, 42.70.a
F = k EE + k E E k Aaf Aaf + : : : + EEE + EE E + EH E + : : :
1 2 0 0 3 1 2 0 3 0
c O.G.Vlokh
339
O.G.Vlokh
+ EEEE + EE E E + : : :
1 2 0 0
The formulas determining polarization P, magnetization M and mechanical stress X can be deduced di erentiating the above expression with respect to corresponding variables (E , H , A ). The terms with the third and the forth rank tensors correspond to nonlinear optics. For example, the expression with describes the phenomena of wave generation with di erential (subtractive) and summable frequencies. In particular, the phenomena of optical detection and second harmonic generation are described by the formula:
0 0 0 0 0 0 0 0
340
Parametric crystal optics of nonmagnetic ferroics
2. The Neumann principle { obedience of the symmetry of the crystal to the symmetry of the property. The e ects taking place in the magnetic eld are additionally restricted not only by the symmetry of the crystal but also by that of the kinetic coe cients in non-dissipative media 14]: 1. The Onsager principle: aij (H ) = aji(?H ). 2. The principle of Hermitian tensor: a0ij (H ) = a0ji(H ) - for the real part of the tensor, a00ij (H ) = ?a00ji (H ) - for the imaginary part of the tensor. Because of these features the following magneto-optic e ects are possible in the non-dissipative nonmagnetic crystals: 1. Magneto-optic change of optical birefringence (Kotton-Moutton):
相关文档
最新文档