概率论与数理统计几种重要的分布
概率论中几种具有可加性的分布及其关系
目录摘要 (1)关键词 (1)Abstract (1)Key words (1)引言 (1)1 几种常见的具有可加性的分布 (1)1.1 二项分布 (2)1.2 泊松分布(Possion分布) (3)1.3 正态分布 (4)1.4 伽玛分布 (6)1.5 柯西分布 (7)1.6 卡方分布 (7)2 具有可加性的概率分布间的关系 (8)2.1 二项分布的泊松近似 (8)2.2 二项分布的正态近似 (9)2.3 正态分布与泊松分布间的关系 (10)2.4 正态分布与柯西分布、卡方分布及卡方分布与伽玛分布的关系 (11)3 小结 (12)参考文献 (12)致谢 (13)概率论中几种具有可加性的分布及其关系概率论中几种具有可加性的分布及其关系摘要 概率论与数理统计中概率分布的可加性是一个十分重要的内容.所谓分布的可加性指的是同一类分布的独立随机变量和的分布仍属于此类分布.结合其特点,这里给出了概率论中几种具有可加性的分布:二项分布,泊松分布,正态分布,柯西分布,卡方分布以及伽玛分布.文章讨论了各类分布的性质及其可加性的证明,这里给出了证明分布可加性的两种方法,即利用卷积公式和随机变量的特征函数.除此之外,文章就可加性分布之间的各种关系,如二项分布的泊松近似,棣莫佛-拉普拉斯中心极限定理等,进行了不同层次的讨论. 关键词 概率分布 可加性 相互独立 特征函数Several Kinds of Probability Dstribution and its Relationshipwith AdditiveAbstract Probability and mathematical statistics in the probability distribution of additivity is a very important content.The distribution of the so-called additivity refers to the distribution of the same kind of independent random variables and distribution are still belong to this kind of bined with its characteristics, here given several has additivity distribution in probability theory: the binomial distribution, poisson distribution and normal distribution and cauchy distribution, chi-square distribution and gamma distribution.Article discusses the nature of all kinds of distribution and its proof of additivity, additive of proof distribution are also given two methods, namely using convolution formula and characteristic function of a random variable. In addition, this paper the relationships between the additive property distribution, such as the binomial distribution of poisson approximation, Di mo - Laplace's central limit theorem, and so on,has carried on the different levels of discussion. Key Words probability distribution additivity property mutual independence characteristic function引言 概率论与数理统计是研究大量随机现象的统计规律性的学科,在概率论与数理统计中,有时候我们需要求一些随机变量的和的分布,在这些情形中,有一种求和类型比较特殊,即有限个相互独立且同分布的随机变量的和的分布类型不变,这一求和过程称为概率分布的“可加性”.概率分布中随机变量的可加性是一个相当重要的概念,本文给出了概率论中常见的六种具有可加性的分布,包括二项分布,泊松分布,正态分布,伽玛分布,柯西分布和卡方分布.文章最后讨论了几项分布之间的关系,如二项分布的泊松近似,正态近似等等.1 几种常见的具有可加性的分布在讨论概率分布的可加性之前,我们先来看一下卷积公式和随机变量的特征函数,首先来看卷积公式[1]:①离散场合的卷积公式 设离散型随机变量ξζ,彼此独立,且它们的分布列分别是n k a k P k ,1,0,)(⋅⋅⋅===ζ和.,,1,0,)(n k b k P k ⋅⋅⋅===ξ则ξζϑ+=的概率分布列可表示为.2,1,0,)()()(0⋅⋅⋅==-====-==∑∑k b a i k P i P k P i k ki i ki ξζϑ②连续场合的卷积公式 设连续型随机变量ξζ,彼此独立,且它们的密度函数分别是)(),(y f x f ξζ,则它们的和ξζϑ+=的密度函数如下.)()()(dx x z f x f f f z f -⋅=⋅=⎰+∞∞-ξζξζϑ )2(其证明如下:ξζϑ+=的分布函数是dxdy y f x f z f z F zy x )()()()(ξζϑξζ⎰⎰≤+=≤+={}dx x f dy y f xz )()(ζξ⎰⎰+∞∞--∞-=.)()(dx x f x z F ζξ-=⎰+∞∞-其中)(x F ζ为ζ的分布函数,对上式两端进行求导,则可得到ξζϑ+=的密度函数: .)()()(dx x z f x f f f z f -⋅=⋅=⎰+∞∞-ξζξζϑ 即证.在概率分布可加性的证明中,除了卷积公式,我们常用的证明方法还有利用随机变量的特征函数.下面我们来讨论一下这几种具有可加性的分布及其可加性证明的过程中卷积公式和特征函数的应用. 1.1 二项分布1.1.1 二项分布),(p n B 的概念如果记ζ为n 次伯努利试验中成功(记为事件A )的次数,则ζ的可能取值为0,1,2,……,n.记p 为事件A 发生的概率,则,)(p A p =(p A ),1p -=记为.q 即.1p q -=因n 次伯努利试验的基本结果可以记作 ѡ=(w 1,w 2,…ѡn ),w i 或为A 或为A ,这样的w 共有2n 个,这2n 个样本点w 组成了样本空间Ω.下求ζ的分布列,即求事件{ζk =}的概率.若某个样本点 ѡ=(w 1,w 2,…ѡn )∈{k =ζ},意味着w 1,w 2,…ѡn 中有k 个A ,k n -个A ,由独立性即可得:P (ζ).)1(k n k p p --=而事件{ζ=k }中这样的w 共有⎪⎭⎫⎝⎛n k 个,所以ζ的分布列为)(k P =ζ=⎪⎭⎫ ⎝⎛n k p k (1-p )kn -,.,1,0n k ⋅⋅⋅⋅⋅⋅=此分布即称为二项分布,记作),(~p n B ζ.且我们易验证其和恒为.1.也就是概率论中几种具有可加性的分布及其关系kn k nk n k p p -=-⎪⎭⎫ ⎝⎛∑)1(0=[]n p p )1(-+1=. n=1时,二项分布),(p n B 称为两点分布,有时也称之为10-分布. 二项分布的图像具有以下特点:①二项分布的图像形状取决于n 和p 的大小,随着p 的增加,分布图高峰逐渐右移. ②当5.0=p 时,图像是对称的. 1.1.2 二项分布的可加性定理 1.1.1设),,(~),,(~p m B p n B ξζ而且ξζ,相互独立,记,ξζϑ+=则有).,(~p m n B +ϑ证明 因,ξζϑ+=所以易知ϑ可以取m n +⋅⋅⋅2,1,0等1++m n 个值.根据卷积公式)1(,事件{}k =ϑ的概率可以表示为 )()()(0i k P i P k P ki -====∑=ξζϑi k m i k mi k i n i ki n i p p p p +----=-⎪⎭⎫ ⎝⎛⋅-⎪⎭⎫ ⎝⎛=∑)1()1(0.)1(0⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=-=-+∑m i k ki n i km n k p p 又因.0⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-=∑m n k m i k ki n i 所以.,1,0,)1()(m n k p p k P k m n km n k +⋅⋅⋅=-⎪⎭⎫ ⎝⎛==-++ϑ也就是说,).,(~p m n B +ϑ即证! 1.2 泊松分布(Possion 分布)与二项分布一样,泊松分布也是一种离散分布,许多随机现象,特别是社会现象与物理学中的一些随机现象都服从于泊松分布.泊松分布可作为描述大量试验中稀有事件出现次数的概率分布的数学模型. 1.2.1 泊松分布的概率分布列泊松分布的概率分布如下所示: 2,1,0,!)(===-k e k k P kλλζ…,其中λ大于0,记作)(~λζP .对于泊松分布而言,它的参数λ即是期望又是它的方差:λλλλλλλλλλ==-==-+∞=---+∞=∑∑e e k eek kE k k k k11)!1(!)(.又因, λλλλλ-+∞=-+∞=∑∑-==e k kek kE k kkk 1022)!1(!)( =[]λλ-+∞=-+-∑e k k kk )!1(1)1(1=∑∑+∞=--+∞=---+-11222)!1()!2(k k k k k e k eλλλλλλ=λλ+2故ζ的方差为22))(()()(ζζζE E Var -==λλλλ=-+22 1.2.2泊松分布的可加性定理 1.2.1 设随机变量)(~),(~2211λζλζP P ,且21,ζζ相互独立,则).(~2121λλζζ++P 证明 此处⋅⋅⋅=====--,2,1,0,!)(,!)(212211k e k k P ek k P k k λλλζλζ根据卷积公式)1(,有 21)!(!)(2121λλλλζζ---=-⋅==+∑e i k ei k P i k ki iik i ki i k i k k e -=+-∑-=210)()!(!!!21λλλλ .,1,0,!)()(2121⋅⋅⋅=+=+-k e k k λλλλ 所以).(~)(2121λλζζ++P 即证!同样我们可以利用特征函数对其进行证明,此处不再赘述. 1.3 正态分布1.3.1 正态分布的定义[6]定义1.3 对于已经给定的两个常数μ和σ>0,定义函数222/)(,21)(σμσμπσ--=x e x p ),(+∞-∞∈x )1( 它含有两个参数μ和σ.显然的,)(,x p σμ取正值.我们称密度函数为)(,x p σμ的分布为正态分布,记作),(2σμN ,它的分布函数记为dt ex F xt ⎰∞---=222)(,21)(σμσμπσ ),(+∞-∞∈x正态分布的密度函数的图像是一条钟形曲线,中间高两边低,而且关于μ=x 对称,在此处)(,x p σμ取最大值.21πσ我们称μ为该正态分布的中心,在μ=x 附近取值的可能性比较大,在σμ±=x 处有拐点.若将μ固定,改变σ的取值,则σ越大,曲线峰顶越低,图像较为平坦;σ越小,曲线封顶越高,图像较为陡峭.因此正态密度函数的尺度由σ确定,故称σ为尺度参数.同样的,将σ固定,而去改变μ的值,会发现图像沿x 轴平移而并不改变形状,也就说明该函数的位置由μ决定,故称其为位置参数.当1,0==σμ时的正态分布称为标准正态分布,记作)1,0(N .它的密度函数记为)(u ϕ,分布函数记为)(u Φ.则有),(,21)(2/2+∞-∞∈=-u e u u πϕ概率论中几种具有可加性的分布及其关系),(,21)(2/2+∞-∞∈=Φ⎰∞--u dt e u ut π1.3.2 一般正态分布的标准化对于正态分布族{},0),,(;),(2>+∞-∞∈=℘σμσμN标准正态分布)1,0(N 只是其中一个成员.其实在应用中很少有随机变量恰好服从标准正态分布,可是一般正态分布均可以利用线性变换转变成标准正态分布.所以一切与正态变量有关的事件的概率均可通过标准正态分布分布求取.定理1.3.1 如果随机变量),(~σμN Y ,则)1,0(~/)(N Y X σμ-=,其中X 为标准正态变量.证明 记Y 与X 的分布函数分别为)(y F Y 和)(x F X ,易知).()()()(x F x Y P x Y P x X P x F Y X σμσμσμ+=+≤=⎩⎨⎧⎭⎬⎫≤-=≤=因为正态分布函数严格递增而且处处可导,所以如果记Y 和X 的密度函数分别是)(y p Y 和)(x p X ,会有,21)()()(2/2μπσσμσμ-=⋅+=+=e x p x F dx d x p Y Y X 由此即得,).1,0(~N Y X σμ-= 即证.对于标准正态随机变量),1,0(~N X X 的数学期望为,21)(2/2dx xe X E x ⎰+∞∞--=π因被积函数2/2)(x xe x h -=为奇函数,故上述积分值为0,也就是说.0)(=X E而对于一般正态变量),(~2σμN Y ,如果满足X Y σμ+=,由数学期望的线性性质则可得到.0)(μσμ=⨯+=Y E所以我们可以知道正态分布),(2σμN 的数学期望即为其参数μ. 因为dx e x X E X E X Var x ⎰+∞∞--=-=2/222221))(()()(π⎰+∞∞---=)(212/2x e xd π}{⎰+∞∞--∞+∞--+-=dx e xe x x 2/2/22|21π.1221212/2===⎰+∞∞--πππdx e x 且X Y σμ+=,由方差的性质.)()(2σσμ=+=x Var Y Var也就是说,正态分布的方差即是其另一个参数.2σ 1.3.3 正态分布的可加性定理1.3.2 设随机变量而且X 和Y 彼此独立,且),,(~),,(~222211σμσμN Y N X 则有).,(~222121σσμμ+++N Y X证明 知Y X ,服从于正态分布,且它们的密度函数分别是).2exp(),2exp(22222211tt i t t i Y X σμϕσμϕ-=-=又因Y X ,彼此独立,所以)()()(t t t Y X Y X ϕϕϕ=+.)()(exp 2222121⎥⎦⎤⎢⎣⎡+-+=t t i σσμμ这正是数学期望为,21μμ+方差为2221σσ+的正态分布的特征函数,即证!我们同样可以使用连续场合的卷积公式进行证明,详见文献[5],此处不再赘述. 1.4 伽玛分布在讨论伽玛分布之前,我们先来看一下伽玛函数:我们称dx e x x -+∞-⎰=Γ01)(αα )0(>α为伽玛函数,α为其参数.它的性质如下:①;)21(,1)1(π=Γ=Γ②).()1(αααΓ=+Γα取自然数n 的时候,有 !.)()1(n n n n =Γ=+Γ 1.4.1 伽玛分布的定义定义1.4 如果随机变量X 的密度函数为⎪⎩⎪⎨⎧<≥Γ=--,0,0;0,)()(1x x e x x p xλαααλ 就称作X 服从伽玛分布,记为),,(~λαGa X 且λα,的值均大于0.α为伽玛分布的形状参数,λ为其尺度参数.当10<<α时,)(x p 为严格单调递减的函数,在0=x 处取得奇异点;当1=α时,)(x p 亦严格单调减,且0=x 时有;)0(λ=p 当21≤<α时,)(x p 为单峰函数,先上凸然后下凸;当2>α时,先下凸再上凸,最后下凸.而且随着α的增大,)(x p 逐渐接近于正态分布的密度函数.1.4.2 伽玛分布的可加性定理 1.4.1 设随机变量),,(~),,(~21λαλαGa Y Ga X 且X 和Y 彼此独立,则).,(~21λαα++Ga Y X证明 知 ,)1()(,)1()(21ααλϕλϕ---=-=itt it t Y X且X 与Y 彼此独立,所以,)1()()()()(21ααλϕϕϕ+-+-==itt t t Y X Y X此即为)(21αα+Ga 的特征函数,根据惟一性定理则可知).,(~21λαα++Ga Y X 结论得证!概率论中几种具有可加性的分布及其关系如正态分布,对于伽玛分布,我们同样可以利用连续场合的卷积公式对其可加性进行证明,详见文献[5]; 1.5 柯西分布[4]1.5.1 柯西分布的密度函数柯西分布是几个常见的连续分布之一.它的密度函数为).,(,)(1),,(22+∞-∞∈-+=x x x p μλλπμλ0,1==μλ时的柯西分布密度函数称为标准柯西分布密度函数,即).,(,111)(2+∞-∞∈+=x xx p π 为方便起见,往后我们分别记这两类密度函数为),(μλp 和).1,0(p 对于柯西分布的数学期望和方差,因.)(1),,(22+∞=-+⋅=⎰⎰+∞∞-+∞∞-dx x x dx x p x μλλπμλ 所以dx x p x ),,(μλ⎰+∞∞-不收敛,故柯西分布的数学期望与方差均不存在.1.5.2 柯西分布的可加性定理 1.5.1 设随机变量),,(~),,(~2211μλμλp Y p X 且Y X ,彼此独立,则有).,(~2121μμλλ+++p Y X证明 因Y X ,均服从于柯西分布,且Y X ,的特征函数分别是 ,)(11tt i X e t λμϕ-=.)(22tt i Y et λμϕ-=又因Y X ,彼此独立,所以)()()(t t t Y X Y X ϕϕϕ⋅=+.)()(2121tt i e λλμμ+-+=这恰好就是参数为2121,μμλλ++的柯西分布的特征函数,所以).,(~2121μμλλ+++p Y X 即证! 1.6 卡方分布(2χ分布)1.6.1卡方分布(2χ分布)的定义及密度函数定义 1.6[7] 设n X X X ⋅⋅⋅,,21独立同分布与标准正态分布分布),1,0(N 则称222212nX X X +⋅⋅⋅++=χ所服从的分布为自由度为n 的卡方分布,记为).(~22n χχ 卡方分布的密度函数为⎪⎪⎩⎪⎪⎨⎧≤>Γ=--.0,0;0,)2(21)(1222x x x e nx p n x n1.6.2 卡方分布可加性卡方分布密度函数的图像是一个只取非负值的偏态图像.它的图像随着自由度的增加而逐渐趋于对称,当自由度∞→n 时,其图像趋于正态分布的图像.这也从另一个侧面告诉我们,卡方分布是由其自由度决定的,不同的自由度对应了不同的卡方分布.由1.6.1,我们可以知道卡方分布即伽玛分布的一个特例,所以由伽玛分布的可加性我们易知卡方分布亦满足可加性定理,即定理1.6.1[5]设),(~),(~22221n m χχχχ且2221,χχ彼此独立,则有).(~22221n m ++χχχ 证明 由卡方分布的定义,设,,22221222222121n m m m m X X X X X X ++++⋅⋅⋅++=+⋅⋅⋅++=χχ 且,,,2,1),1,0(~n m i N X i +⋅⋅⋅=j i X X ,彼此独立.则有,,22221222212221n m m m m X X X X X X ++++⋅⋅⋅++++⋅⋅⋅++=+χχ从从卡方分布的定义,因此).(~22221n m ++χχχ即证!2 具有可加性的概率分布间的关系2.1 二项分布的泊松近似[4]当n 的取值很大时,二项分布),(p n B 的计算是令人头疼的.这里介绍了泊松分布的一个十分有用的特性,我们可利用泊松分布作为二项分布的一种特殊近似,即二项分布的泊松近似.下面我们来看泊松定理,当n 取值较大,而p 取值偏小的情况下使用泊松定理,可大大减小二项分布的计算量.定理 2.1[8](Possion 定理) 在n 重伯努利试验中,记事件A 在每次试验中发生的概率为,n p 它与试验发生的次数n 有关,若当0>n 时,有,λ→n np 即,lim λ=+∞→n n np 则对任意给定的k (k 为非负整数),有.!)1(lim λλ--+∞→=-⎪⎭⎫ ⎝⎛e k p p kk n n kn n k n证明 设,n n np =λ则有,np nn λ=所以k n n k n k n kn n k n n k k n n n n p p ---+-⋅⋅⋅--=-⎪⎭⎫ ⎝⎛)1()(!)1()2)(1()1(λλ.)1(!)11()21)(11(k n n kn nk n k n n --⋅⋅--⋅⋅⋅--=λλ .)1()1(!)11()21)(11(k n n n kn nn k n k n n ---⋅⋅--⋅⋅⋅--=λλλ 由已知有,,lim λλ=+∞→n n 则对于给定的k 值,有;lim k kn n λλ=+∞→且+∞→n lim 1)11()21)(11(=--⋅⋅⋅--nk n n ; ;)1(lim )1(lim )(λλλλλ--⋅-+∞→+∞→=-=-e nnn nnnn nnn.1)1(lim =--+∞→k nn nλ所以有.!)1(lim λλ--+∞→=-⎪⎭⎫ ⎝⎛e k p p kk n n kn n k n 即证!因Possion 定理的条件之一为,lim λ=+∞→n n np 所以在二项分布的计算中,若n 值很大,p的值却很小,且λ=np 的大小适中时(一般认为当,1.0,100≤≥p n 且10≤=np λ时),二概率论中几种具有可加性的分布及其关系项分布),(p n B 可以使用参数为λ的泊松分布来做近似,即有,2,1,0,!)1(⋅⋅⋅=≈-⎪⎭⎫ ⎝⎛--k e k p p np kk n n kn n k λ此即为二项分布),(p n B 的泊松近似,而且n 的值应尽可能的大,这样计算结果才能更精确.二项分布),(p n B 的泊松近似经常被用于稀有事件(即每次试验中事件发生的概率很小)的研究中,大量实例表明,一般情况下概率1.0<p 时,泊松近似非常好用,甚至n 的取值不必很大. 2.2 二项分布的正态近似定理 2.2[7](棣莫佛-拉普拉斯(De Laplace Moivre -)极限定理) 设随机变量),(~p n B X (⋅⋅⋅=<<,2,1,0,10n p ),则对任意的实数x ,有()).(211lim 2/2x dt e x p np np X P x t n Φ==⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--⎰∞--+∞→π 证明 因随机变量X 服从二项分布),(p n B ,所以X 可看做是n 个相互独立的且服从于同一参数p 的两点分布的随机变量n X X X ,,,21⋅⋅⋅的和,即,1∑==ni i X X 而且⋅⋅⋅⋅⋅⋅=-==,2,1),1()(,)(i p p X Var p X E i i 根据Levy Lindeberg -中心极限定理,有).(21)1(lim 2/12x dt e x p np np X P x t n i i n Φ==⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤--⎰∑∞--=+∞→π 定理得证! De Laplace Moivre -中心极限定理说明,n 相当大时,服从二项分布),(p n B 的随机变量X 的概率的计算服从正态分布))1(,(p np np N -的随机变量的计算.也就是说,二项分布可以用正态分布来近似计算.比如k n kn k p p k X P --⎪⎭⎫ ⎝⎛==)1()(,在n 比较大的时候的计算量时十分大的.根据De Laplace Moivre -中心极限定理,因 )1(np np npX --近似服从于标准正态分布,或者说是X 近似服从于))1(,(p np np N -分布,也就是说k n k nk p p k X P --⎪⎭⎫⎝⎛==)1()(≈.)1()1(1)1(21)1(2)(2⎪⎪⎭⎫ ⎝⎛---=----p np np k p np ep np p np np x ϕπ 对于,)1()(k n kb k a n k p p b X a P -≤≤-⎪⎭⎫ ⎝⎛=≤≤∑有))1()1()1(()(2121p np npa p np np X p np np a P a X a P --≤--≤--=≤≤ ))1(())1((12p np npa p np np a --Φ---Φ≈ )(* 我们只需查一下标准正态分布表,就可以求出我们需要的相当精确的值.但是,当p 较大或者较小时近似效果可能差一些,利用公式时p 的值最好满足9.01.0≤≤p .另外,因二项分布是离散分布,正态分布是连续分布,所以在我们实际的应用中,为减小误差, 常常使用≈≤≤)(21a X a P ))1(5.0())1(5.0(12p np npa p np np a --+Φ---+Φ来替换)(*式.2.3 正态分布与泊松分布之间的关系[9]由上面的定理2.1和定理2.2我们可以知道,二项分布),(p n B 可以用泊松分布来做近似,同样也可以用正态分布来近似.所以,从某个方面来说,泊松分布与正态分布也具有某种近似的关系,首先我们来看特征函数的连续性定理.定理 2.3.1[11] 分布函数列{})(x F n 弱收敛于分布函数)(x F 的充分必要条件是它的相应的特征函数列{})(t n ϕ收敛于)(x F 的特征函数).(t ϕ定理2.3.2[11] 设随机变量),(~λλP X 则有.21lim 22dt ex X P xt ⎰∞--∞→=⎪⎭⎫⎝⎛<-πλλλλ证明 知λX 服从泊松分布,则λX 的特征函数为.)()1(-=it e e t λλϕ所以λλμλλ-=X 的特征函数是.)(1t i e ti et λλλλψ-⎪⎪⎪⎭⎫ ⎝⎛-=对于任何一个,t 我们有.,1!212∞→⎪⎭⎫⎝⎛+-+=λλολλλt ite ti所以有.,212122∞→-→⎪⎭⎫⎝⎛⋅+-=-⎪⎪⎭⎫ ⎝⎛-λλολλλλt t t i eti因此对于任意的点列,∞→n λ有.)(lim 22t et n n -∞→=λλψ又知22t e-是标准正态分布)1,0(N 的特征函数,因此由连续性定理可以得到,.21lim 22dt ex X P xt n n nn ⎰∞--∞→=⎪⎪⎭⎫ ⎝⎛<-πλλλλ由n λ的任意性,所以有dt ex X P xt ⎰∞--∞→=⎪⎭⎫⎝⎛<-2221lim πλλλλ成立.我们来看泊松分布的正态逼近. 定理2.3.3[8] 对于任意的,21a a <有,21!lim2122/⎰∑-<<-+∞→=a a x k k dx ek e βαλλπλ其中.,21λλβλλα-=-=a a 其证明见文献[8].由前可知,),(p n B 的正态近似与泊松近似的条件是不同的,当p 的取值特别小时,哪怕n 的值不是太大,用泊松分布来近似二项分布也是可以的.但在这种情况下,用正态近似却是不合理的.我们可以想象,若p 值很小,但n 的值也不是太大,则np =λ的值概率论中几种具有可加性的分布及其关系肯定不会很大,而由定理2.3.1,我们可知,此时正态分布就不可能很好的进行泊松近似.2.4 正态分布与柯西分布、卡方分布及卡方分布与伽玛分布之间的关系 首先来看正态分布与柯西分布的关系.定理 2.4.1 设).1,0(~),1,0(~N Y N X 且X 与Y 独立同分布,记Y X Z /=,则)1,0(~N Z .证明 易知Z 的取值范围是),(+∞-∞,所以对于),(+∞-∞∈z ,我们利用商的公式,可以得到⎰⎰∞+∞+∞-⎭⎬⎫⎩⎨⎧+-==0222)1(exp 1)()()(dt z t t dt t t p zt p z p Y X Z π .)1(12z +=π 这正是1,0==μλ时的柯西分布的密度函数,所以结论得证!正态分布与卡方分布的关系如下:定理2.4.2 若随机变量),1,0(~N X 则).1(~22χX定理证明见文献[10].这说明了标准正态分布与自由度为1的卡方分布之间的关系.若().,2,1,1,0~n i N X i ⋅⋅⋅=且i X 彼此独立,记222212nX X X +⋅⋅⋅++=χ,根据卡方分布的定义,我们知2χ服从自由度为n 的卡方分布.对于伽玛分布,当其参数21,2==λαn 时即为自由度为n 的卡方分布,记为).()21,2(2n n Ga χ=3 小结文章第一部分我们讨论了六种具有可加性的分布以及它们的简单性质,上述分布的可加性均可利用卷积公式或者特征函数进行证明.正态分布是概率论中最重要的分布,一般地,如果某个数量指标受到大量随机因素影响,而每一因素起的作用很小,则这个数量指标就近似服从正态分布.在第二部分里研究了二项分布、正态分布与泊松分布的关系,从此处我们可以知道二项分布不仅可以用泊松分布近似,同样也可由正态分布来近似. 参考文献[1] 罗建华.卷积公式的应用注记[J].中南林业科技大学学报,2007年,第27卷,第1期:152页. [2] 李贤平,沈崇生,陈子毅.概率论与数理统计[M].上海:复旦大学出版社,2003.5:221-231. [3]唐玲,徐怀.复合泊松分布和泊松过程的可加性[J].安徽建筑工业学院学报,2007.05:83页. [4] 郭彦.对柯西分布性质的进一步讨论[J].淮阴工学院学报,2005.05:12页.[5] 茆诗松,程依明,濮晓龙.概率论与数理统计教程[M].北京:高等教育出版社,2004.7:155-160; [6] 王梓坤.概率论基础及应用[M].北京:北京师范大学出版社,1996.3:61-64. [7] 宋立新.概率论与数理统计[M].北京:人民大学出版社,2003.9:176-177.[8]于洋.浅析二项分布、泊松分布和正态分布之间的关系[J].《企业科技与发展》,2008 年第20期:120页.[9]魏宗舒等.概率论与数理统计教程[M].北京:高等教育出版社,1983.10:208-211.[10]孟凡华.浅谈几种概率分布之间的相互关系[J].信阳农专学报,1992年第3卷第2期:63-65.[11]王淑云.特征函数及其应用[J].邯郸学院学报,2008年第18卷第3期:52-56.。
三大抽样分布(1)概率论与数理统计习题 概率论与数理统计)
x2 x2
~ F (1,1)
4. 正态总体的样本均值与样本方差的分布
正态总体 N ( , 2 ) 的样本均值和样本方差
有以下两个重要定理.
定理一
设 X1, X 2, , X n 是来自正态总体N (, 2 )
的样本, X 是样本均值, 则有
(1) X ~ N (, 2 / n).即 X ~ N (0,1)
样本, X , S 2 分别是样本均值和样本方差, 则有
X ~ t(n 1).
S/ n
证明
因为 X ~ N (0,1), / n
(n 1)S 2
2
~ 2(n 1),
且两者独立, 由 t 分布的定义知
X (n 1)S 2 ~ t(n 1). / n 2(n 1)
n
2
πn
1
n 2
1
t2 n
n1 2
,
t
t 分布的概率密度曲线如图
显然图形是关于
t 0对称的.
当 n 充分大时, 其
图形类似于标准正
态变量概率密度的
图形. 因为lim h(t)
1
t2
e 2,
n
2π
所以当 n 足够大时 t 分布近似于 N (0,1) 分布,
1,
因为 1 F
~ F (n2 , n1 ),
所以
P
1 F
F1
(n2
,
n1
)
1
,
比较后得
F1
(n2 ,
概率论与数理统计知识点总结(详细)[整理]
概率论与数理统计知识点总结(详细)[整理]概率论与数理统计(Probability and Mathematics Statistics)是一门基础性学科,广泛应用于统计学、管理科学、数学、计算机科学、社会学、地理学等领域。
它建立在概率论、数理逻辑、微积分以及线性代数的基础上,把统计与数学有机地结合起来,以高效的数学建模对不确定的实际事件分析、推断、做出预测,从而达到指导管理决策的目的。
概率论是概率论与数理统计的重要组成部分,研究概率事件的拓扑结构,以及随机变量的分布规律和抽样特征,用于表示评价系统不确定性及极端情况的几率分析,并且发展出概率密度函数、累积分布函数等数学工具来描述不确定性的变化趋势。
数理统计包括描述性统计和推断性统计两个主要部分。
其中,描述性统计是利用统计指标来描述从待研究对象获取的样本实际数据;推断性统计是利用概率推断理论对样本数据进行分析,以此来得出可推断出总体相应参数和特性的结论。
它所依据的基本概念有抽样统计和统计推断,数理统计关键技术有抽样调查方案的设计、统计量的估计、差异和相关分析等。
数理统计的重要技术有抽样调查方案的设计,它将抽样技术结合统计思想,以达到把握系统性质的目的;统计量的估计,它是用以衡量总体特征的参数估计,它不仅仅只是给出数据量,而且可以推断出总体特征;差异分析,通过它可以看出变量之间的差异情况,从而得出不同水平所代表的总体特征;相关分析,它是一种估计变量之间的相关系数,主要的指标有多元线性回归分析、卡方分析等。
概率论与数理统计在社会中已经得到广泛的应用,主要表现在以下几个方面:在财务分析中,可以根据现实数学模型和概率论分析技术,构建合适的经济风险模型,实现优化的资源配置;在互联网流量分析中,可以根据用户行为分析来挖掘用户特征,指导电子商务推广;在决策分析中,可以利用决策树和数据挖掘技术,建立逻辑模型,形成系统性决策,从而指导业务发展;在信息系统测试中,可以根据质量参数估计系统各项技术指标,为用户提供高质量的信息服务。
概率论与数理统计 第5章
n
n
性质2.(分布可加性):若X~2(n1),Y~2(n2),X与 Y独立,则
X + Y~2(n1+n2 )
3、2分布表及有关计算
(1)构成 P{2(n)>λ}=α,已知n, α可查表求得λ; (2)有关计算P 2 (n) 2 (n) 称为上侧α分位数
例5.1 设 X ~ N ( , 2 ) (X1,X2,…,Xn)为X的一个样本,
求(X1,X2,…,Xn)的密度。 解 (X1,X2,…,Xn)为X的一个样本,故
X i ~ N ( , 2 )
n
i 1,2,, n
f ( x1 , x2 ,, xn ) f ( xi )
16 2
解
i 1,2,,16
2 1 16 2 2 P ( X i ) P 8 2 (16) 16 2 16 i 1
2—分布的密度函数f(y)曲线
n/2 1 f ( y) 2 ( n / 2) y 0,
n y 1 2 2
e , y0 y0
2 例5.4 X ~ N ( , ) (X1,X2,X3)为X的一个样本
X 1 X 2 X 3 的分布。 求
(n)为整体记号
2
2 (n) 2 2 查表得 0 ( 25 ) 34 . 382 10) 18.307 .1 0.05 (
1 当n充分大时,近似有 (n ) (u 2n - 1) 2 2
2
练习1. P(2(n)<s)=1-p ∵P(2(n) < s)=1- P(2(n) s )=1-p ∴ P(2(n) s )=p 2 s p (n) 练习2. P(2(11)>s)=0.05,求s
概率论与数理统计各种分布总结
概率论与数理统计各种分布总结概率论与数理统计中有许多不同的概率分布,每个分布都具有不同的特征和应用。
下面是一些常见的概率分布的总结:1. 均匀分布(Uniform Distribution):在一个区间内的所有取值都具有相等的概率。
它可以是离散的(离散均匀分布)或连续的(连续均匀分布)。
2. 二项分布(Binomial Distribution):描述了在一系列独立的伯努利试验中成功次数的概率分布。
每个试验只有两个可能结果(成功和失败),并且成功的概率保持不变。
3. 泊松分布(Poisson Distribution):用于描述在给定时间或空间单位内发生某事件的次数的概率分布。
它通常用于模拟稀有事件的发生情况。
4. 正态分布(Normal Distribution):也称为高斯分布,是最常见的连续概率分布之一。
它具有钟形曲线的形状,对称且具有明确的均值和标准差。
许多自然现象和测量数据都可以近似地用正态分布来描述。
5. 指数分布(Exponential Distribution):描述了连续随机事件之间的时间间隔的概率分布。
它通常用于模拟无记忆性事件的发生情况,如设备故障、到达时间等。
6. 卡方分布(Chi-Square Distribution):由正态分布的平方和构成的概率分布。
它在统计推断中广泛应用,特别是在假设检验和信赖区间的计算中。
7. t分布(Student's t-Distribution):用于小样本量情况下参数估计和假设检验。
与正态分布相比,t分布具有更宽的尾部,因此更适用于小样本数据。
8. F分布(F-Distribution):用于比较两个或多个样本方差是否显著不同的概率分布。
它经常用于方差分析和回归分析中。
这只是一些常见的概率分布的总结,还有其他许多分布,每个都在不同的领域和应用中起着重要的作用。
概率论与数理统计 7.2 数理统计中的三大分布
7.2 数理统计中的三大抽样分布
在数理统计中,以标准正态变量为基石而构 造的三个著名统计量有着广泛的应用,这是因为 这三个统计量不仅有明确背景,而且其抽样分布 的密度函数有明显的数学表达式,它们被称为统 计中的“ 三大抽样分布 ” 。
1. 2 分布
数理统计
2分布是由正态分布派生出来的一种分布.
t1 (n) t (n)
o t (n)
x
t分布的上分位点t (n)可查表
求得,例t0.025(15) 2.1315.
当n 45时,对于常用的的值,可用正态近似 t (n) z
例3:X ~ t(15)
(1)求 0.01的上侧分位数; (2) P( X ) 0.05,求 ; (3)P( X ) 0.95 ,求 .
记为 t ~ t(n). t分布概率密度函数为:
f (t)
[(n 1)
2]
(1
t
2
)
n1 2
,
t
(n 2) n n
t 分布的图像
y N (0,1) 数理统计
t(n)
t分布的性质: 1. 设t ~ t(n),则E(t) 0, D(t) n (n 2) (n 2)
2. t分布的密度函数关于t 0对称.当n充分大时, 其图形近似于标准正态分布概率密度的图形,
F分布的上分位点的性质:
F1 (n1, n2 )
1 F (n2 , n1 )
F分布的上分位点可查表求得.例,
F0.95 (12,9)
1 F0.05 (9,12)
1 2.80
0.357
例4. F ~ F (24,15),求 1,2 使 P(F 2 ) 0.025 P(F 1) 0.025
概率论与数理统计中的三种重要分布
概率论与数理统计中的三种重要分布摘要:在概率论与数理统计课程中,我们研究了随机变量的分布,具体地研究了离散型随机变量的分布和连续型随机变量的分布,并简单的介绍了常见的离散型分布和连续型分布,其中二项分布、Poisson 分布、正态分布是概率论中三大重要的分布。
因此,在这篇文章中重点介绍二项分布、Poisson 分布和正态分布以及它们的性质、数学期望与方差,以此来进行一次比较完整的概率论分布的学习。
关键词:二项分布;Poisson 分布;正态分布;定义;性质一、二项分布二项分布是重要的离散型分布之一,它在理论上和应用上都占有很重要的地位,产生这种分布的重要现实源泉是所谓的伯努利试验。
(一)泊努利分布[Bernoulli distribution ] (两点分布、0-1分布)1.泊努利试验在许多实际问题中,我们感兴趣的是某事件A 是否发生。
例如在产品抽样检验中,关心的是抽到正品还是废品;掷硬币时,关心的是出现正面还是反面,等。
在这一类随机试验中,只有两个基本事件A 与A ,这种只有两种可能结果的随机试验称为伯努利试验。
为方便起见,在一次试验中,把出现A 称为“成功”,出现A 称为“失败” 通常记(),p A P = ()q p A P =-=1。
2.泊努利分布定义:在一次试验中,设p A P =)(,p q A P -==1)(,若以ξ记事件A 发生的次数,则⎪⎪⎭⎫⎝⎛ξp q 10~,称ξ服从参数为)10(<<p p 的Bernoulli 分布或两点分布,记为:),1(~p B ξ。
(二)二项分布[Binomial distribution]把一重Bernoulli 试验E 独立地重复地进行n 次得到n 重Bernoulli 试验。
定义:在n 重Bernoulli 试验中,设(),()1P A p P A q p ===-若以ξ记事件A 发生的次数,则ξ为一随机变量,且其可能取值为n ,,2,1,0 ,其对应的概率由二项分布给出:{}k n kk n p p C k P --==)1(ξ,n k ,,3,2,1,0 =,则称ξ服从参数为)10(,<<p p n 的二项分布,记为),(~p n B ξ。
概率论与数理统计常用的统计分布
n(
)2
X
)2
概率论与数理统计i 1
抽样分布定理 最重要的总体: X ~ N (, 2 )
如何由样本 X1, X2,...X n 推断 , 2 ?
分析:
对 , 2 的推断是通过构造统计量实现的
(1)如何构造“好”的统计量 (X1, X2,...Xn ) (2) g(X1, X2,...Xn ) 服从什么分布?
概率论与数理统计
定理 1 设总体 X ~ N (, 2 ) , X1, X2,...Xn 是取自 X 的一个样本, X 为该样本的样本均值,则有 (1) X ~ N(, 2 / n) (2)U X ~ N (0,1)
/ n
概率论与数理统计
本,则
设 X1, X2 ,, Xn 是来自总体 X ~ N(, 2 ) 的样
❖要求由样本构造一个以较大的概率包含真 实参数的一个范围或区间,这种带有概率 的区间称为置信区间,通过构造一个置信 区间对未知参数进行估计的方法
称为区间估计。
概率论与数理统计
设总体X的分布函数形式已知, 但它的一 个或多个参数为未知, 借助于总体X的一个样 本来估计总体未知参数的问题称为点估计问 题.
Review
F
设 U ~ 2 (n1), V ~ 2 (n2 ) ,且 U ,V 相互独立,令
F
U /n1 V /n2
称 F 服从自由度为 (n1, n2) 的 F 分布,记为 F ~ F (n1, n2).
F(n1, n2 )的上侧分位点记为F (n1, n2 )
O
F (n1 , n2)
抽样分布的途径: (1) 精确地求出抽样分布,并称相应的统
在参数估计问题中,假定总体分布 形式已知,未知的仅仅是一个或几个 参数.
概率论与数理统计期末复习重要知识点
概率论与数理统计期末复习重要知识点第二章知识点:1.离散型随机变量:设X 是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X 为一个离散随机变量。
2.常用离散型分布:(1)两点分布(0-1分布):若一个随机变量X 只有两个可能取值,且其分布为12{},{}1(01)P X x p P X x pp ====-<<,则称X 服从12,x x 处参数为p 的两点分布。
两点分布的概率分布:12{},{}1(01)P X x p P X x pp ====-<<两点分布的期望:()E X p =;两点分布的方差:()(1)D X p p =-(2)二项分布:若一个随机变量X 的概率分布由式{}(1),0,1,...,.k kn k n P x k C p p k n -==-=给出,则称X 服从参数为n,p 的二项分布。
记为X~b(n,p)(或B(n,p)). 两点分布的概率分布:{}(1),0,1,...,.k kn k n P x k C p p k n -==-=二项分布的期望:()E X np =;二项分布的方差:()(1)D X np p =-(3)泊松分布:若一个随机变量X 的概率分布为{},0,0,1,2,...!kP X k ek k λλλ-==>=,则称X 服从参数为λ的泊松分布,记为X~P (λ)泊松分布的概率分布:{},0,0,1,2,...!kP X k ek k λλλ-==>=泊松分布的期望:()E X λ=;泊松分布的方差:()D X λ=4.连续型随机变量:如果对随机变量X 的分布函数F(x),存在非负可积函数()f x ,使得对于任意实数x ,有(){}()xF x P X x f t dt-∞=≤=⎰,则称X 为连续型随机变量,称()f x 为X 的概率密度函数,简称为概率密度函数。
5.常用的连续型分布:(1)均匀分布:若连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧<<-=其它,0,1)(bx a a b x f ,则称X 在区间(a,b )上服从均匀分布,记为X~U(a,b)均匀分布的概率密度:⎪⎩⎪⎨⎧<<-=其它,0,1)(b x a a b x f 均匀分布的期望:()2a bE X +=;均匀分布的方差:2()()12b a D X -= (2)指数分布:若连续型随机变量X 的概率密度为00()0xe xf x λλλ-⎧>>=⎨⎩,则称X 服从参数为λ的指数分布,记为X~e (λ)指数分布的概率密度:00()0xe xf x λλλ-⎧>>=⎨⎩指数分布的期望:1()E X λ=;指数分布的方差:21()D X λ=(3)正态分布:若连续型随机变量X的概率密度为22()2()x f x x μσ--=-∞<<+∞则称X 服从参数为μ和2σ的正态分布,记为X~N(μ,2σ)正态分布的概率密度:22()2()x f x x μσ--=-∞<<+∞正态分布的期望:()E X μ=;正态分布的方差:2()D X σ=(4)标准正态分布:20,1μσ==,2222()()x t xx x e dtϕφ---∞=⎰标准正态分布表的使用: (1)()1()x x x φφ<=--(2)~(0,1){}{}{}{}()()X N P a x b P a x b P a x b P a x b b a φφ<≤=≤≤=≤<=<<=-(3)2~(,),~(0,1),X X N Y N μμσσ-=故(){}{}()X x x F x P X x P μμμφσσσ---=≤=≤={}{}()()a b b a P a X b P Y μμμμφφσσσσ----<≤=≤≤=-定理1: 设X~N(μ,2σ),则~(0,1)X Y N μσ-=6.随机变量的分布函数: 设X 是一个随机变量,称(){}F x P X x =≤为X 的分布函数。
概率论与数理统计第四章_几种重要的分布
ξ
0
1
2
3
4
p 0.0016 0.0256 0.1536 0.4096 0.4096
4.2超几何分布(了解)
主要内容: (一)了解超几何分布的概念 (二)了解超几何分布的期望和方差
4.2超几何分布
例1 某班有学生20名,其中有5名女同学,今从 班上任选4名学生去参观展览,被选到的女同学数ξ
k1 (k 1)!(n k)!
n
(k 11)n! pk (1 p)nk
k1 (k 1)!(n k)!
n
(k 1)n!
n
pk (1 p)nk
n!
pk (1 p)nk
k1 (k 1)!(n k)!
k1 (k 1)!(n k)!
n
n!
n
pk (1 p)nk
n!
pk (1 p)nk
k2 (k 2)!(n k)!
解 可以取0,1,2,3这4个值。
P(
=k)=
C3k
C4k 17
C420
(k=0,1,2,3,)
列成概率分布如下
ξ
0
1
2
3
p 0.4912 0.4211 0.0842 0.0035
定义42 设N个元素分为两类,有N1个属于第一类, N2个属于第二类(N1+N2=N)。从中按不重复抽 样取n个,令ξ表示这n个中第一(或二)类元素的个数,
k1 (k 1)!(n k)!
n2
n1
n(n 1)Cnl 2 pl2 (1 p)n2l nCnj1 p j1(1 p)n1 j
l0
j0
n2
n(n 1)Cnl 2 pl2 (1 p)n2l l0
《概率论与数理统计》笔记
《概率论和数理统计》笔记一、课程导读“概率论和数理统计”是研究随机现象的规律性的一门学科在自然界,在人们的实践活动中,所遇到的现象一般可以分为两类:确定性现象随机现象确定性现象在一定的条件下,必然会出现某种确定的结果.例如,向上抛一枚硬币,由于受到地心引力的作用,硬币上升到某一高度后必定会下落.我们把这类现象称为确定性现象(或必然现象).同样,任何物体没有受到外力作用时,必定保持其原有的静止或等速运动状态;导线通电后,必定会发热;等等也都是确定性现象.随机现象在一定的条件下,可能会出现各种不同的结果,也就是说,在完全相同的条件下,进行一系列观测或实验,却未必出现相同的结果.例如,抛掷一枚硬币,当硬币落在地面上时,可能是正面(有国徽的一面)朝上,也可能是反面朝上,在硬币落地前我们不能预知究竟哪一面朝上.我们把这类现象称为随机现象(或偶然现象).同样,自动机床加工制造一个零件,可能是合格品,也可能是不合格品;射击运动员一次射击,可能击中10环,也可能击中9环8环……甚至脱靶;等等也都是随机现象.统计规律性对随机现象,从表面上看,由于人们事先不能知道会出现哪一种结果,似乎是不可捉摸的;其实不然.人们通过实践观察到并且证明了,在相同的条件下,对随机现象进行大量的重复试验(观测),其结果总能呈现出某种规律性.例如,多次重复抛一枚硬币,正面朝上和反面朝上的次数几乎相等;对某个靶进行多次射击,虽然各次弹着点不完全相同,但这些点却按一定的规律分布;等等.我们把随机现象的这种规律性称为统计规律性.●使用例子摸球游戏中谁是真正的赢家在街头巷尾常见一类“摸球游戏”.游戏是这样的:一袋中装有16个大小、形状相同,光滑程度一致的玻璃球.其中8个红色、8个白色.游戏者从中一次摸出8个,8个球中.当红白两种颜色出现以下比数时.摸球者可得到相应的“奖励”或“处罚”:结果(比数) A(8:0)B(7:1)C(6:2)D(5:3)E(4:4)奖金(元)10 1 0.5 0.2 -2 注:表中“-2”表示受罚2元解: 此游戏(实为赌博),从表面上看非常有吸引力,5种可能出现的结果.有4种可得奖.且最高奖达10元.而只有一种情况受罚.罚金只是2元.因此就吸引了许多人特别是好奇的青少年参加.结果却是受罚的多,何以如此呢?其实.这就是概率知识的具体使用:现在是从16个球中任取8个.所有可能的取法为816C 种.即基本事件总数有限.又因为是任意抽取.保证了等可能性.是典型的古典概型问题.由古典概率计算公式.很容易得到上述5种结果.其对应的概率分别是:3807048730121800099460000155404848385828681878.C C C P(E);.C C 2C P(D);.C C 2C P(C);.C C 2C P(B);.C 2P(A)816816816816816==========假设进行了1000次摸球试验, 5种情况平均出现的次数分别为:0、10、122、487、381次,经营游戏者预期可得2×381-(10×0+1×10+0.5×122+0.2×487) =593.6(元). 这个例子的结论可能会使我们大吃一惊,然而正是在这一惊之中.获得了对古典概率更具体、更生动的知识.戏院设座问题乙两戏院在竞争500名观众,假设每个观众完全随意地选择一个戏院,且观众之间选择戏院是彼此独立的,问每个戏院至少应该设多少个座位才能保证观众因缺少座位而离开的概率小于5%?解 由于两个戏院的情况相同,故只需考虑甲戏院即可。
概率论与数理统计常见问题解答
概率论与数理统计常见问题解答1.概率论研究的对象是什么?现实生活中有两类现象。
必然现象:一定条件下,结果是肯定的。
如:一定大气压下,水加温到100℃:沸腾随机现象:一定条件下,结果不肯定的。
如:实弹射击,打一发子弹:可能中或不中概率论是研究随机现象规律性的一门学科。
2.随机现象有规律性吗?有。
例如:两人打枪。
甲是神枪手,乙是普通射手。
如果打一发子弹,甲可能打中也可能打不中,乙也可能打中也可能打不中,看不出什么规律。
如果两人比赛,各打10组,每组100发子弹,结果是:我们可以看出规律性:甲可说几乎每发必中,乙只有大约一半的可能性打中。
这种规律性称为统计规律性。
在大量试验中才显示出来,不是个别试验显示的特性。
3.随机现象的规律性如何指导实践?例如:农业生产上选择品种,如果当地发生旱灾的可能性大,水灾的可能性小,就应选择耐旱的品种,反之则应选择耐涝的品种。
在统计学中,以“小概率事件”判断原理来进行假设检验,例如:厂方声称,产品的废品率为5%,随机检查,发现“5个产品有2个次品”。
这时,应当拒绝“废品率为5%” 。
为什么?因为“5个产品有2个次品”是小概率事件(用概率的方法可计算),在一次试验中一般不可能发生,现在居然发生了,应怀疑原假设。
可能性小的事并不等于不发生例如:地震。
某地某日发生大地震的可能性是非常小的,但就整个地球来说,一年总要发生几次大地震。
例1:甲、乙两位棋手棋艺相当。
他们在一项奖金为1000元的比赛相遇。
比赛为五局三胜制。
已经进行了三局的比赛,结果为甲二胜一负。
现因故要停止比赛,问应该如何分配这1000元比赛奖金才算公平?奖金分配方法:平均分,对甲欠公平,按一定的比例分配,甲拿大头,乙拿小头,甲拿2/3,乙拿1/3,合理吗?例2:在第43届世界乒乓球锦标赛中,中国队与瑞典队争夺冠亚军,当时瑞典队上场队员只有瓦尔德内尔、佩尔松和卡尔松,其中卡尔松怕削球手,于是中国队排出了以下阵容:王涛马文革丁松马文革王涛决策时已经估计到瑞典队有两种可能的选择:或以卡尔松打第三单打去碰削球手丁松或以佩尔森打第三单打,以便卡尔松避开丁松最后,中国队战胜瑞典队(3:2),夺回了阔别六年之久的斯韦思林杯。
概率论与数理统计A第6章
3.若 2 ~ 2(n),则当n充分大时,
2 2 (n) 近似正态分布 N ( 2n 1,1)
4. 若2 ~ 2(n),2分布的数学期望与方差,
E( 2 ) =n, D( 2 ) =2n.
事实上,由Xi ~ N (0,1), 故E( Xi2 ) D( Xi ) 1
n
2
2
当总体为正态分布时,给出几个重要的抽样分布 定理.
定理 4 (样本均值的分布)
设 X1, X2, …, Xn 是来自正态总体 N (, 2 )
的样本, X是样本均值,则有
X ~ N (, 2 ) n
即 X ~ N(0,1) n
X ~ N (, 2 ) X ~ N (0,1) n n
再由函数的性质有
lim h(t)
n
1 et2 2. 2
近似
即当n足够大时,t ~ N (0,1).
3. t分布的分位点
对于给定的,0 1, 称满足条件
pt t (n)
的点t (n)为t(n)分布的上分位数。如图所示.
t (n)
t分布的上分位点的性质: t1 (n) t (n)
0, 若x 1
F3
(
x)
132,,
若1 x 若x
2 2
一般,设x1, x2 ,, xn是总体的一个容量为n的样本
值.将它们按大小次序排列如下:x(1) x(2) x(n)
则经验分布函数Fn( x)的观察值为
0, Fn( x) 1kn,,
2分布是由正态分布派生出来的一种分布.
定义: 设 X1, X2,, Xn 相互独立, 都服从正态分布
概率分布及概率分布图
概率密度函数图
总结词
概率密度函数图是一种展示连续概率分布的图形,通过曲线的高低表示概率密度的大小。
详细描述
概率密度函数图是连续概率分布的图形表示,它通过曲线的高低表示概率密度的大小。在概率密度函数图中,曲 线下方的面积表示事件发生的概率。这种图形可以帮助我们了解连续随机变量的分布情况,并用于估计和预测未 来的事件。
02 离散概率分布
二项分布
01
02
03
定义
二项分布是描述在n次独 立重复的伯努利试验中成 功的次数的概率分布。
公式
$B(n, p) = C(n, k) p^k (1-p)^{n-k}$,其中C(n, k)是组合数,表示从n个 不同项中选取k个的方法 数。
应用场景
例如,抛硬币的结果(正 面或反面),或者给定数 量的独立事件中成功事件 的次数。
泊松分布
定义
泊松分布是描述在单位时间内(或单 位面积内)随机事件的次数,当这些 事件以小概率发生,并且这些事件之 间是独立的。
公式
应用场景
例如,放射性衰变或者网络中同时发 生的请求数。
$P(X=k) = frac{e^{lambda}lambda^k}{k!}$,其中 $lambda$是事件的平均发生率。
05 概率分布及概率分布图的 应用实例
在统计学中的应用
1 2 3
描述性统计
概率分布图可以用来描述数据的分布情况,如频 数分布图、直方图等,帮助我们了解数据的集中 趋势、离散程度等。
假设检验
在假设检验中,概率分布图可以用来表示样本数 据和理论分布之间的比较,帮助我们判断样本数 据是否符合预期的分布。
概率分布的种类
离散概率分布
描述离散随机变量的取值概率,如二项分布、泊 松分布等。
概率论与数理统计 --- 第六章{样本及抽样分布} 第四节:抽样分布
P T 1.059
0.15.
例2:
从正态总体N ( , 0.5 )中抽取样本X 1 , , X 10 .
2
数理统计
10 2 (1)已知 0,求概率P X i 4 ; i 1 10 2 (2)未知,求概率P ( X i X ) 2.85 . i 1
S1 和S2 分别是这两个样本的样本方差, 则有:
2 2
(1)
S1
2 2
S2
~ F ( n1 1, n2 1);
2 2
若两方差 1 2,则
S1 1
2 2
2 2
S2 2
~ F ( n1 1, n2 1);
(2)
X Y ( 1 2 ) ( n1 1) S1 ( n2 1) S2
n取不同值时
( n 1) S
2
2
的分布
定理3 (样本均值的分布) 数理统计 设X1, X2, …, Xn是取自正态总体 N(μ, σ2)的样本, 2 X和S 分别为样本均值和样本方差, 则有:
X S n ~ t ( n 1)
证:由定理1、和t分布的定义可得: 2
X ~ N (0,1), ( n 1) S
2) F分布的分位点:
对于给定的, 1, 称满足条件: 0
P F F ( n1 , n2 )
( y )dy
F ( n1 , n2 )
的点F ( n1 , n2 )为F ( n1 , n2 )分布的上 分位点.
F分布的上分位点的性质:
F1 ( n1 , n2 ) 1 F ( n2 , n1 )
概率论与数理统计2.2.4 泊松分布
0.2642411
二、二项分布的泊松近似 (泊松定理)
当试验次数n很大时,计算二项分布很麻烦,必须寻求近似方法
离散型随机变量X b(n, p). 又设np ( 0), 则有
lim
n
Cnk
pk (1
p )nk
k e
k!
即当n 很大且p 很小时,可用泊松分布近似计算二项分布.
解 : 记 X表示200人中患此病的人数.
显然, X b(200, 0.01)
np 200 0.01 2
P ( X 4 ) 1 P( X 3)
3
1
C
k 200
(0.01)k
(0.99)2004
k
k0
1 3 2k e2 k0 k !
=1-0.8571=0.1429 (查泊松分布表: P247)
e4
4 1!
e4
42 2!
e4
43 e4 0.5665. 3!
例2 计算机硬件公司制造某种特殊型号的微型芯片,次品率 次品率达0.1%, 各芯片成为次品相互独立. 求在1000只产品中 至少有2只次品的概率. 以X记产品中的次品数,
X~b(1000,0.001) ,X=0,1,2,...1000.
例:a.某天医院看急诊的人数; b. 某路口一天的交通事故数 c.某本书中的印刷错误数; d. 放射性物质放射的粒子数
例1 一电话总机每分钟收到呼唤的次数服从参数为4
的泊松分布,求
(1) 某一分钟恰有8次呼唤的概率;
(2) 某一分钟的呼唤次数大于3的概率.
解 由X ~ (),P{X k} k e , k 0,1,2, ,
概率论与数理统计知识点总结(免费超详细版)
概率论与数理统计知识点总结(免费超详细版) 题目:概率论与数理统计知识点总结摘要本文总结了概率论和数理统计方面的基础知识,涉及概率分布、参数估计、假设检验、卡方检验、多元分析等。
对这些知识点的理解和了解可以帮助人们更好地分析和利用数据,促进数据分析的发展。
关键词:概率论,数理统计,概率分布,参数估计,假设检验,卡方检验,多元分析正文1.概率论概率论是数理统计中一门重要科学,它是一门数学研究现实世界事件发生的规律性、可预测性及不确定性的学科。
在概率论中,我们引入了诸如概率、期望和方差等概念,用来描述和推断某种随机现象的发生。
2.概率分布概率分布是在给定的实际情况下随机变量取值的概率分布。
典型的概率分布包括正态分布、泊松分布和二项分布。
此外,也有一些联合分布,例如协方差、共轭先验、贝叶斯估计等。
3.参数估计参数估计是根据样本数据估计总体参数的统计方法。
它涉及到将总体参数估计为样本参数的过程,通常使用最大似然估计、贝叶斯估计和假定测试等方法。
4.假设检验假设检验是基于统计学原理,用来评估某一假设是否真实存在的方法。
其中包括t检验、F检验、Z检验等,它们之间的区别在于所使用的抽样分布不同。
5.卡方检验卡方检验是一种统计检验,用于直接检验某个抽样值是否遵循某种理论分布。
卡方检验可以根据观察到的抽样数据和理论分布之间的差异来衡量分布概率值的有效性。
6.多元分析多元分析是一种分析不同变量之间交互影响的统计方法。
它包括多元回归分析、多元判别分析、因子分析等,能够帮助我们了解多个变量之间的关系。
结论本文总结了概率论和数理统计方面的基础知识,包括概率分布、参数估计、假设检验、卡方检验和多元分析等。
了解这些知识点可以帮助人们更好地分析和利用数据,促进数据分析的发展。
概率论和数理统计方面的知识点在实际应用中有着重要作用。
概率论可以帮助研究人员对随机现象进行建模、分析和推断,其中包括使用概率分布建立统计模型和估计参数,并使用假设检验和卡方检验来检验假设,以及用多元分析来推断不同变量之间的关系。
概率论与数理统计几种重要的分布
二、二项分布
例1、一批产品的合格率为0.9,重复抽取三次, 每次一件, 连续3次,求3次中取到的合格品件数 X的分布.
如果在一次试验中,事件A成功的概率为 p(0 p 1), 则在n重贝努里试验中事件 A成功的次数 X的分布为 :
P(X
k)
C
k n
pkqnk .
1、定义 X ~ B(n, p)
P(X
k)
C
k 3
C 4 17
k
C
4 20
(k 0,1,2,3)
1、定义 X ~ H (n, M , N )
设N个元素分为两类,
其中N
1个属于第一类,
N
个属于
2
第二类, 从中不放回抽取n个, 令X表示这n个中第一类
元素的个数,则称X的分布为超几何分布 :
P(X
m)
C C m nm N1 N N1
若X的分布为P( X
k)
C
k n
pkqnk , k
0,1,, n
其中0 p 1, q 1 p,则称X ~ B(n, p)。
2、数字特征
EX
n
kC
k n
k 0
pkqnk
n
k
k0
n! k!(n k)!
pk q nk
n
n (n 1)!
p p q k 1 (n1)(k 1)
k1 (k 1)! (n 1) (k 1) !
kkekxpk01只有两个互逆结果的n次独立重复试验n1pmin10nmllkccckxpnnknnmkm10211kppkxpk无穷次伯努利试验中a首次发生的试验次数对含有两类元素的有限总体进行不放回抽样时某类元素个数的概率分布在一定时间内出现在给定区域的随机质点的个数一均匀分布1定义
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例2、某工厂每天用水量保持正常的概率为3/4,求最近6天 内用水量正常的天数的分布。
解:设最近六天内用水量保持正常的天数为X。它服从二 项分布,n=6, p=0.75。利用二项分布公式计算
X
0
1
2
3
4
5
6
P 0.0002 0.0044 0.0330 0.1318 0.2966 0.3560 0.1780
0
因此Y ~ B(n,0.01)
例9、计算机在进行加法运算时,每个加数按四舍五入取 整数,假定每个加数的取整误差服从[-0.5,0.5]上的均匀分 布,今有五个加数相加,计算它们中至少有三个加数的 取整误差绝对值概率不超过0.3的概率。
§4.2 超几何分布
例1:某班有学生20名,其中5名女同学,今从班上任选4名学 生去参观展览,被选到的女学生数X是一个随机变量,求X的 分布。
P X 0.6 P( X 18) P(Y 12) P(Y 12) P(Y 11) 30
0.9969 0.9905 0.0064
例7、已知X ~ B(n, p), EX 6, DX 42, 计算P( X 5).
解 : 首先计算n, p.
EX np 6 n 20 则X ~ B(20,0.3).查表得 :
P(X
k)
C
k 5
C 4 15
k
C
4 20
设k k0时, P( X k0 )最大,则有下面不等式 :
P(X P(X
P(X
k0 ) k0 1) k0 )Fra bibliotek1 1
P( X k0 1)
k0 np p k0 np p 1
即k 0
np p或np [np p] ,
p 1,
当np p为整数 当np p不是整数
np
p1
k0
np
p
p
p n
1 n
k0 n
p
p n
n , k0 p n
n很大时,频率为概率的可能最大
例5、某批产品有80%的一等品,对它们进行重复抽样检验, 共取出4个样品,求其中一等品数X的最可能值k,并用贝努 利公式验证。
解:一等品数X服从二项分布,np+p=3.2+0.8=4,
所以k=3,4时P{X=k}最大。
n!
pk q nk
k0
k!(n k)!
n
n (n 1) (n 2)!
p2 p q k 2 (n2)(k 2) EX
k2 (k 2)! (n 2) (k 2) !
n
n(n 1) p2
C p q k 2 k 2 nk n2
np
k2
n(n 1) p2 np
DX EX 2 (EX )2 npq.
DX
npq
42
p
, 0.3
P( X 5) 1 P( X 4) 0.7625.
例8、设X
~
f
(
x)
2x,0 x 0, 其它
1 ,
现对X进行n次独立观测, 用Y表示
观测值不大于 0.1的次数 , 求Y的分布.
解:p P( X 0.1)
0.1
0.1
f ( x)dx 2 xdx 0.01
k1 (k 1)! (n 1) (k 1) !
np
n
C p q k 1 k 1 nk n1
mk 1
np
n1
Cm n1
pmq
n1m
k 1
m0
np( p q)n1 np;
EX
2
n
k
2C
k n
k 1
pk q nk
n k0
k2
n! k!(n
k )!
pk q nk
n
k(k 1) k
例4、 一批产品的废品率为0.03,进行20次重复抽样(有放 回)。求出现废品的频率为0.1的概率。
解:X表示20次中抽到废品的次数,服从二项分布,n=20, p=0.03。利用二项分布公式计算
P X 0.1 P( X 2) 0.0988. 20
3、二项分布的最可能值
定义 : 使概率P( X k)取最大值的k, 记作k0 , 称k0为二项分布 的最可能值.
第四章 几种重要的分布
§4.1 二项分布 §4.2 超几何分布 §4.3 泊松分布 §4.4 指数分布 §4.6
§4.1 二项分布
一、两点分布
1、定义
只取两个可能值的随机 变量所服从的分布。
X
x1
x2
Pp
q
其中p q 1.
若x1 1, x2 0, 称r.v. X服从参数为p的0 1分布。
例3、10部机器各自独立工作,因修理调整等原因,每部机 器停车的概率为0.2。求同时停车数目X的分布。
解:X服从二项分布,n=10, p=0.2。利用二项分布公式计算
X 0 1 2 3 4 5 6 7 8 9 10 P 0.11 0.27 0.30 0.20 0.09 0.03 0.01 0.00 0.00 0.00 0.00
X
0
1
2
3
4
P 0.0016 0.0256 0.1536 0.4096 0.4096
定理 : 若X ~ B(n, p)且Y n X ,则Y ~ B(n, q),其中q 1 p.
证明:对于m 0,1,, n, 有
P(Y m) P(n X m) P( X n m)
C
n n
m
pnmqm
2、数字特征 EX p, DX pq.
二、二项分布
例1、一批产品的合格率为0.9,重复抽取三次, 每次一件, 连续3次,求3次中取到的合格品件数 X的分布.
如果在一次试验中,事件A成功的概率为 p(0 p 1), 则在n重贝努里试验中事件 A成功的次数 X的分布为 :
P(X
k)
C
k n
pkqnk .
则Y ~ B(n, q).
推论 : 若X ~ B(n, p),Y ~ B(n, q),则有 (1) P( X m) P(Y n m); (2) P( X m) P(Y n m).
例6、某人射击的命中率为0.8,今连续射击30次,计算命中率为 60%的概率。
解 : 设X表示30次命中目标的次数 , 且X ~ B(30,0.8), 令Y 30 X , 则Y ~ B(30,0.2).
1、定义 X ~ B(n, p)
若X的分布为P( X
k)
C
k n
pkqnk , k
0,1,, n
其中0 p 1, q 1 p,则称X ~ B(n, p)。
2、数字特征
EX
n
kC
k n
k 0
pkqnk
n
k
k0
n! k!(n k)!
pk q nk
n
n (n 1)!
p p q k 1 (n1)(k 1)