随机过程8

合集下载

随机过程在金融中的应用8随机积分—Ito积分共65页文档

随机过程在金融中的应用8随机积分—Ito积分共65页文档

45、法律的制定是为了保证每一个人 自由发 挥自己 的才能 ,而不 是为了 束缚他 的才能 。—— 罗伯斯 庇尔
ቤተ መጻሕፍቲ ባይዱ
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
随机过程在金融中的应用8随 机积分—Ito积分
41、实际上,我们想要的不是针对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚 43、法律和制度必须跟上人类思想进 步。— —杰弗 逊 44、人类受制于法律,法律受制于情 理。— —托·富 勒

第二章 随机过程总结

第二章   随机过程总结

图2-2-3 随机过程的均方值、方差
方差、均方值和均值有数学关系式:
(2.2.18) • 方差描述在该时刻对其数学期望的偏离程度。
• 数学期望、均方值和均方差只能描述随机过程孤 立的时间点上的统计特性。
• 随机过程孤立的时间点上的统计特性不能反映随 机过程的起伏程度。
图2-2-4 随机过程的起伏程度
注:一维概率分布描述了随机过程在各个孤 立时刻的统计特性。 3、二维分布函数
与 , , 和 都有直接的关系, 是 ,, 和 的四元函数,记为: (2.2.4) 被称为随机过程的二维分布函数。
4、二维概率密度函数
如果存在四元函数
ቤተ መጻሕፍቲ ባይዱ
,使
(2.2.5)
成立,则称 为随机过程的二维概率密 度函数,是 ,,和 的四元函数,且满足 (2.2.6)
§2.3
平稳随机过程
• 平稳随机过程的定义
• 严平稳随机过程及其性质 • 宽平稳随机过程及其性质
图2-3-1 初相角随机的正弦信号
图2-3-2 幅度随机的正弦信号
图2-3-3 频率随机的正弦信号
图2-3-4 频率、相位和幅度随机的正弦信号
图2-3-5 云层背景下的飞机
2.3.1 随机信号 的统计特性(如概率密度函 数、相关函数),部分或全部在观察点或观察 点组的位置变化时,保持不变或变化。在随机 信号理论中就称该随机信号的相应统计特性具 有平稳或非平稳性。 2.3.2 随机信号统计平稳性有多种情况: (1)对整个观察点位置 变化的平稳性; (2)对观察点中时间位置 变化的时间平稳性; (3)对观察点空间位置 变化的平稳性; (4)对观察点中空间位置的部分坐标变化的平 稳性。
例2.8 设有随机过程 ,式中A是高斯 随机变量, 为确定的时间函数。试判断 是否为严平稳过程。 解:已知A的概率密度函数

随机过程知识点汇总

随机过程知识点汇总

随机过程知识点汇总随机过程是指一组随机变量{X(t)},其中t属于某个集合T,每个随机变量X(t)都与一个时刻t相关联。

2.随机过程的分类随机过程可以分为离散时间随机过程和连续时间随机过程。

离散时间随机过程是指在离散的时间点上取值的随机过程,例如随机游走。

连续时间随机过程是指在连续的时间区间上取值的随机过程,例如XXX运动。

3.随机过程的数字特征随机过程的数字特征包括均值函数和自相关函数。

均值函数E[X(t)]描述了随机过程在不同时刻的平均取值。

自相关函数R(t1,t2)描述了随机过程在不同时刻的相关程度。

4.平稳随机过程平稳随机过程是指其均值函数和自相关函数都不随时间变化而变化的随机过程。

弱平稳随机过程的自相关函数只与时间差有关,而不依赖于具体的时间点。

强平稳随机过程的概率分布在时间上是不变的。

5.高斯随机过程高斯随机过程是指其任意有限个随机变量的线性组合都服从正态分布的随机过程。

高斯随机过程的均值函数和自相关函数可以唯一确定该过程。

6.马尔可夫随机过程马尔可夫随机过程是指其在给定当前状态下,未来状态的条件概率分布只依赖于当前状态,而与过去状态无关的随机过程。

马尔可夫性质可以用转移概率矩阵描述,并且可以用马尔可夫链来建模。

7.泊松过程泊松过程是指在一个时间段内随机事件发生的次数服从泊松分布的随机过程。

泊松过程的重要性质是独立增量和平稳增量。

8.随机过程的应用随机过程在金融学、信号处理、通信工程、控制理论等领域有广泛的应用。

例如,布朗运动被广泛应用于金融学中的期权定价,马尔可夫链被应用于自然语言处理中的语言模型。

t)|^2]协方差函数BZs,t)E[(ZsmZs))(ZtmZt))],其中Zs和Zt是Z在时刻s和t的取值。

复随机过程是由实部和虚部构成的随机过程,其均值和方差函数分别由实部和虚部的均值和方差函数计算得到。

协方差函数和相关函数也可以类似地计算得到。

复随机过程在通信系统中有广泛的应用,例如调制解调、信道编解码等。

随机过程教学大纲

随机过程教学大纲

《随机过程》教学大纲一、课程信息课程代码:060148课程名称:随机过程英文名称:Stochastic Processes课程类别:专业核心课适用专业: 应用统计学总学时:48 学时理论学时:40 学时实践学时:8学时学分:3 学分(理论2.5学分,实践0.5学分)开设学期:第4学期考核方式:考试先修课程:概率论、高等数学二、课程简介《随机过程》是统计学专业的专业必修课程。

随机过程通常被视为概率论的动态部分,即研究的是随机现象的动态特征。

着重对随时间和空间变化的随机现象提出各种不同的模型并研究其内在的性质与相互联系,具有较强的理论性。

该学科在社会科学、自然科学、经济和管理等各个领域中都有广泛的应用。

课程性质为选修课,主要讲述随机过程的基本知识,课程的主要教学教学目的是培养学生运用随机过程分析和解决问题的能力,使学生掌握主要几种随机过程的基本概念与处理随机现象的方法。

课程内容包括:随机过程基本概念、Poisson过程、更新过程、Markov链、鞅、布朗运动。

三、教学内容及要求第一章预备知识教学重点和难点:重点和难点是概率空间,矩母函数和特征函数的定义及性质、条件期望、收敛性、极限定理等。

实践环节:无建议使用的教学方法与手段:多媒体与板书结合教学学时:(理论学时3学时)(实践学时0学时)教学目标和要求:通过本章的学习,复习并扩展概率论课程的内容,为学习随机过程打下良好的基础,提供必备的数学工具。

第一节概率空间1. 概率空间定义2. 概率的性质第二节随机变量与分布函数1. 随机变量2. 常见概率分布第三节数字特征、矩母函数与特征函数1. Riemann-Stieltjes积分2. 数字特征3. 关于概率测度的积分4. 矩母函数5. 特征函数第四节收敛性1. 收敛性2. 积分号下取极限的定理第五节独立性与条件期望1. 独立性2. 独立随机变量和的分布3. 条件期望第二章随机过程的基本概念和基本类型教学重点和难点:重点和难点是随机过程的概念,有限维分布族,柯尔莫哥洛夫存在定理。

第3章 随机过程及答案

第3章 随机过程及答案
若a(t1) = 0或a(t2)=0,则B(t1, t2) = R(t1, t2)

互相关函数 R (t1 , t 2 ) E[ (t1 )(t 2 )]
式中 (t) 和 (t) 分别表示两个随机过程。 R(t1, t2)又称为自相关函数。
10
3.2 平稳随机过程 3.2.1 平稳随机过程的定义
12

数字特征:
E (t ) x1 f1 ( x1 )dx1 a

R( t1 , t 2 ) E[ ( t1 ) ( t1 )]



x1 x2 f 2 ( x1 , x2 ; )dx1dx2 R( )
可见,(1)其均值与t 无关,为常数a ; (2)自相关函数只与时间间隔 有关。
P ( f ) 0
P ( f ) P ( f )

这与R()的实偶性相对应。
23
例题

[例3-2] 求随机相位余弦波(t) = Acos(ct + )的功率谱密度。 [解] 在[例3-1]中,我们已经考察随机相位余弦波是一个平稳 过程,并且求出其相关函数为
1 (t ) 2 (t )

n (t )
0
t
3
角度2:随机过程是随机变量概念的延伸。

在一个固定时刻t1上,不同样本的取值{i (t1), i = 1, 2, …, n} 是一个随机变量,记为 (t1)。

样本空间
随机过程是在时间进程中处于不同时刻的随机变量的集合。
S1 x1(t)
t

T /2
T / 2
x( t ) x( t )dt
aa R( ) R( )

第十二章随机过程及其统计描述概率论与数理统计

第十二章随机过程及其统计描述概率论与数理统计

20
当n充分大时, n维分布函数族能够近似地描 述随机过程的统计特性. 显然, n取得越大, 则 n维分布函数族描述随机过程的特性也越趋 完善. 一般, 可以指出(科尔莫戈罗夫定律):有 限维分布函数族, 即{FX(x1,x2,...,xn, n=1,2,...,t1, t2, ...,tn), tiT}完全地确定了随机过程的统计 特性.
4
随机过程可看作多维随机变量的延伸. 随机过 程与其样本函数的关系就象数理统计中总体 与样本的关系一样. 因此, 热噪声电压的变化过程{V(t), t0}是一 随机过程, 它的状态空间是(-, +), 一次观 测到的电压-时间函数就是这个随机过程的一 个样本函数. 在以后的叙述中, 为简便起见, 常以X(t), tT 表示随机过程. 在上下文不致混淆的情况下, 一般略去记号中的参数集T.
13
随机过程的不同描述方式在本质上是一致的. 在理论分析时往往以随机变量族的描述方式 作为出发点, 而在实际测量和数据处理中往往 采用样本函数族的描述方式. 这两种描述方式 在理论和实际两方面是互为补充的. 随机过程可依其在任一时刻的状态是连续型 或离散型随机变量而分成连续型随机过程和 离散型随机过程. 热噪声电压, 例2和例3是连 续型随机过程, 例1, 例4和例5是离散型随机过 程.
12
工程技术中有很多随机现象, 例如, 地震波幅, 结构物承受的风荷载, 时间间隔(0, t]内船舶甲 板"上浪"的次数, 通讯系统和自控系统中的 各种噪声和干扰, 以及生物群体的生长等等变 化过程都可用随机过程这一数学模型来描绘. 不过, 这些随机过程都不能象随机相位正弦波 那样, 很方便, 很具体地用时间和随机变量(一 个或几个)的关系式表示出来, 其主要原因是 自然界和社会产生随机因素的机理极为复杂, 甚至不可能观察到, 因此只有通过分析样本函 数才能掌握它们的规律性.

随机过程例题和知识点总结

随机过程例题和知识点总结

随机过程例题和知识点总结随机过程是研究随机现象随时间演变的数学学科,在通信、金融、物理等众多领域都有广泛应用。

下面我们通过一些例题来深入理解随机过程的相关知识点。

一、随机过程的基本概念随机过程可以看作是一族随机变量的集合,其中每个随机变量都对应着某个特定的时刻。

例如,考虑一个在时间段0, T内的股票价格变化过程,对于每个时刻 t∈0, T,都有一个对应的随机变量 X(t)表示股票的价格。

二、常见的随机过程类型1、泊松过程泊松过程常用于描述在一定时间内随机事件发生的次数。

例如,某电话交换台在单位时间内接到的呼叫次数就可以用泊松过程来建模。

例题:假设某电话交换台在上午 9 点到 10 点之间接到的呼叫次数是一个泊松过程,平均每分钟接到 2 次呼叫。

求在 9 点 10 分到 9 点 20 分这 10 分钟内接到至少 5 次呼叫的概率。

解:设 X(t) 表示在时间段 0, t 内接到的呼叫次数,且 X(t) 是一个强度为λ = 2 的泊松过程。

10 分钟内接到的呼叫次数 X(10) 服从参数为λt = 2×10 = 20 的泊松分布。

P(X(10) ≥ 5) = 1 P(X(10) < 5) = 1 P(X(10) = 0) + P(X(10) = 1) + P(X(10) = 2) + P(X(10) = 3) + P(X(10) = 4)通过泊松分布的概率质量函数可以计算出每个概率值,进而求得最终结果。

2、马尔可夫过程马尔可夫过程具有“无记忆性”,即未来的状态只与当前状态有关,而与过去的状态无关。

例题:一个状态空间为{0, 1, 2} 的马尔可夫链,其一步转移概率矩阵为 P = 05 03 02; 02 06 02; 01 03 06 ,初始状态为 0,求经过 3 步转移后处于状态 2 的概率。

解:通过计算 P³得到 3 步转移概率矩阵,然后取出第 0 行第 2 列的元素即为所求概率。

随机过程第三版课后答案

随机过程第三版课后答案

随机过程第三版课后答案【篇一:随机过程习题答案】们的均值分别为mx和my,它们的自相关函数分别为rx(?)和ry(?)。

(1)求z(t)=x(t)y(t)的自相关函数;(2)求z(t)=x(t)+y(t)的自相关函数。

答案:(1)rz(?)?e?z(t??)z(t)??e?x(t??)y(t??)x(t)y(t)?利用x(t)和y(t)独立的性质:rz(?)?e?x(t??)x(t)?e?y(t??)y(t)???rx(?)ry(?)(2)rz(?)?e?z(t??)z(t)??e??x(t??)?y(t??)???x(t)?y(t)?? ?e?x(t??)x (t)?x(t??)y(t)?y(t??)x(t)?y(t??)y(t)?仍然利用x(t)和y(t)互相独立的性质:rz(?)?rx(?)?2mxmy?ry(?)2、一个rc低通滤波电路如下图所示。

假定输入是均值为0、双边功率谱密度函数为n0/2的高斯白噪声。

(1)求输出信号的自相关函数和功率谱密度函数;(2)求输出信号的一维概率密度函数。

电流:i(t)电压:y(t)答案:(1)该系统的系统函数为h(s)?y(s)1? x(s)1?rcs则频率响应为h(j?)?11?jrc?n02而输入信号x(t)的功率谱密度函数为px(j?)?该系统是一个线性移不变系统,所以输出y(t)的功率谱密度函数为:py(j?)?px(j?)h(j?)?2n0/21?rc?2对py(j?)求傅里叶反变换,就得到输出的自相关函数:1ry(?)?2?????py(j?)ej??1d??2?n0/2j?????1?rc?2ed??(2)线性系统输入为高斯随机过程,则输出也一定是高斯的。

因此,为了求输出的一维概率密度函数,仅需知道输出随机过程的均值和方差即可。

均值:已知输入均值mx=0,则输出均值my=mxh(0)=02方差:ry(0)?var(y)?my因为均值为0,所以方差var(y)?ry(0)?一维pdf:略12?n0/2???1?rc2?2d??3、理想带通滤波器的中心频率为fc、带宽为b,其在通带的频率增益为1。

《随机过程》课后习题解答

《随机过程》课后习题解答
6、证函数 f (t ) 解 (1)
( k 0, 2, n )
1 为一特征函数,并求它所对应的随机变量的分布。 1 t2
n n i
f (t
i 1 k 1
tk )i k
5
=
i 1 k 1
n
n
i k
1 (ti tk )
2

i 1 k 1
n
n
e jti e jti e jti {1 ( jtk )(1 jtk )} n n e jtk e e i k jti = i 1 k 1 e n(1 jtk ) e
1 n n n j ( ti tk ) l ] i k = [e n i 1 k 1 l 1
(2) (3)
其期望和方差; 证明对具有相同的参数的 b 的 分布,关于参数 p 具有可加性。
解 (1)设 X 服从 ( p , b ) 分布,则
f X (t ) e jtx
0
b p p 1 bx x e dx ( p )
bp ( p)

x
0
p 1 ( jt b ) x
i k
1 M 2
0
ti t k } ) ( M 1max{ i , j n
且 f (t ) 连续 f (0) 1 (2) f (t )

f (t ) 为特征函数
1 1 1 1 1 [ ] 2 2 1 t 1 ( jt ) 2 1 jt 1 jt

3
fZ(k)() t (1 )kk! jk (1 jt)(k1)
E (Z k ) 1 (k ) f Z (0) ( 1) k k ! k j
n

概率论与数理统计经典课件随机过程

概率论与数理统计经典课件随机过程
3
一维、二维或一般的多维随机变量的研究是概率论的研究内容,而 随机序列、随机过程则是随机过程学科的研究内容。从前面的描述中看 到,它的每一样本点所对应的,是一个数列或是一个关于t的函数。
定义:设T是一无限实数集,X (e,t), e S,t T是对应于e和t的实数,
即为定义在S 和T 上的二元函数。
DX
(t)
E
[ X (t) X (t)]2
---方差函数
X (t)
2 X
(t
)
---标准差函数
又设任意t1,t2 T RXX (t1,t2 ) E[ X (t1) X (t2 )] (自)相关函数
CXX (t1,t2 ) Cov[ X (t1), X (t2 )]
E [ X (t1) X (t1)][ X (t2 ) X (t2 )] (自)协方差函数
定义: X (t),t T是一随机过程,若它的每一个有限维分布
都是正态分布,即对任意整数n 1及任意t1,t2,
X (t1), X (t2 ), X (tn )服从n维正态分布, 则称X (t),t T是正态过程
tn T ,
正态过程的全部统计特性完全由它的均值函数和自协方差函数所确定。
16
例3:设A, B是两个随机变量,试求随机过程:
当A
N 1,4, B
U 0, 2时,E(A) 1, E( A2 ) 5, E(B) 1, E(B2)
4 3
又因为A, B独立, 故E(AB) E(A)E(B) 1
X (t) t 3, RX (t1, t2 ) 5t1t2 3(t1 t2 ) 12 t1, t2 T
17
例4:求随机相位正弦波X (t) acos(t ) t ,

数学中的随机过程

数学中的随机过程

数学中的随机过程一、引言在数学领域中,随机过程是研究随机事件随时间的演变规律的数学模型。

它既具有随机性,又具有确定性,广泛应用于概率论、统计学和其他相关领域。

本文将介绍随机过程的基本概念、分类及其在现实生活中的应用。

二、随机过程的定义随机过程是一类随机变量的集合,表示随机事件随时间变化的模型。

随机过程通常用X(t)表示,其中t是时间参数,X(t)是在某一时刻t的取值。

随机过程可以分为离散和连续两种类型。

三、离散时间随机过程离散时间随机过程是指在一系列离散时间点上定义的随机变量序列。

常见的离散时间随机过程有伯努利过程、泊松过程等。

1. 伯努利过程伯努利过程是最简单的离散时间随机过程,它是一种只有两个取值的随机过程。

以掷硬币为例,假设正面出现的概率为p,反面出现的概率为1-p,掷硬币的结果序列就是伯努利过程。

2. 泊松过程泊松过程描述了随机事件在时间上的独立出现,并且满足平稳性和无记忆性。

在实际应用中,泊松过程可以用来模拟各种随机事件的发生,如电话呼叫到达、交通事故发生等。

四、连续时间随机过程连续时间随机过程是指在连续时间区间上定义的随机变量。

其中最常见的连续时间随机过程是布朗运动和随机行走。

1. 布朗运动布朗运动是一种连续的、无界变差的随机过程,其特点是随机变量在任意时间间隔上的累积值符合正态分布。

布朗运动经常用来模拟金融市场的波动、温度变化等。

2. 随机行走随机行走是一种描述随机变量在空间上随机移动的随机过程。

它的最简单形式是一维随机行走,即随机变量只能在一维空间上左右移动。

随机行走在金融市场中的应用较广,可以用来模拟股票价格的变化。

五、随机过程的应用随机过程在现实生活中有着广泛的应用,以下两个领域是典型的例子。

1. 通信网络随机过程在通信网络中扮演着重要的角色。

例如,通过对网络中的数据流量建模,可以使用随机过程来优化网络的传输效率和资源分配。

2. 金融领域在金融领域中,随机过程被广泛应用于期权定价、风险管理和投资组合优化等方面。

随机过程课件

随机过程课件

随机过程课件随机过程课件随机过程是概率论与数理统计中的重要概念,它描述了随机变量随时间的演化规律。

在现代科学和工程领域,随机过程被广泛应用于信号处理、通信系统、金融市场等众多领域。

本文将介绍随机过程的基本概念、分类以及一些常见的应用。

一、随机过程的基本概念随机过程是一族随机变量的集合,它描述了随机变量随时间的变化。

在数学上,随机过程可以用函数的形式表示,即X(t),其中t表示时间,X(t)表示在时间t时刻的随机变量。

随机过程可以分为离散时间和连续时间两种类型。

离散时间随机过程是指随机变量在离散时间点上的演化,例如抛硬币的结果、骰子的点数等。

连续时间随机过程是指随机变量在连续时间上的演化,例如股票价格的变动、电信号的传输等。

二、随机过程的分类根据随机过程的性质和演化规律,可以将其分为多种类型。

常见的分类包括马尔可夫过程、泊松过程、布朗运动等。

1. 马尔可夫过程马尔可夫过程是指在给定当前状态下,未来的演化只与当前状态有关,与过去的状态无关。

马尔可夫过程具有“无记忆”的特性,常用于描述具有时序性质的问题,如排队系统、信道传输等。

2. 泊松过程泊松过程是一种用于描述随机事件的发生次数的随机过程。

它具有独立增量和无记忆性的特点,常用于描述到达率恒定的随机事件,如电话呼叫、交通流量等。

3. 布朗运动布朗运动是一种连续时间的随机过程,其演化规律由随机变量驱动。

布朗运动具有连续性、无界性和马尔可夫性等特点,广泛应用于金融市场、物理学等领域。

三、随机过程的应用随机过程在现代科学和工程领域有着广泛的应用。

以下列举几个常见的应用领域。

1. 信号处理随机过程在信号处理中起到了重要的作用。

通过对信号进行建模,可以利用随机过程的理论和方法对信号进行分析和处理,如图像压缩、语音识别等。

2. 通信系统随机过程在通信系统中也有着重要的应用。

通过对信道的建模,可以利用随机过程的理论来分析和优化通信系统的性能,如误码率分析、信道编码等。

随机过程习题解答,

随机过程习题解答,

习题11. 令X(t)为二阶矩存在的随机过程,试证它是宽平稳的当且仅当EX(s)与E[X(s)X(s+t)]都不依赖s.证明:充分性:若X(t)为宽平稳的,则由定义知EX(t)=μ, EX(s)X(s+t)=r(t) 均与s 无关必要性:若EX(s)与EX(s)X(s+t)都与s 无关,说明EX(t)=常数, EX(s)X(s+t)为t 的函数2. 记1U ,...,n U 为在(0,1)中均匀分布的独立随机变量,对0 < t , x < 1定义I( t , x)=⎩⎨⎧>≤,,,,t x t x 01并记X(t)=),(11∑=nk k U t I n ,10≤≤t ,这是1U ,...,n U 的经验分布函数。

试求过程X (t )的均值和协方差函数。

解: EI ()k U t ,= P ()t U k ≤= t , D()),(k U t I = EI ()kU t ,-()2),(kU t EI= t -2t = t(1-t)j k ≠, cov ()),(),(j k U s I U t I ,=EI(t,k U )I(s,j U )-EI(t, k U )EI(s, j U ) = st -st=0k = j , cov ()),(),(j k U s I U t I ,= EI(t,k U )I(s,j U )-st = min(t,s)-stEX(t)=),(11∑=n k k U t EI n =∑=nk tn 11= tcov ())(),(s X t X =()()),(),,(cov 1),(),,(cov 1212j kjk nk k k U s I Ut I n U s I U t I n∑∑≠=+=[]∑=nk st t s n12),min(1-=()st t s n-),min(13.令1Z ,2Z 为独立的正态分布随机变量,均值为0,方差为2σ,λ为实数,定义过程()t Sin Z t Cos Z t X λλ21+=.试求()t X 的均值函数和协方差函数,它是宽平稳的吗?Solution: ()221,0~,σN Z Z . 02221==EZ EZ . ()()221σ==Z D Z D ,()0,21=Z Z Cov ,()0=t EX ,()()()()()[]s Sin Z s Cos Z t Sin Z t Cos Z E s X t X Cov λλλλ2121,+⋅+=[]s tCos Sin Z Z s tSin Cos Z Z s tSin Sin Z s tCos Cos Z E λλλλλλλλ12212221+++= ()02++=s tSin Sin s tCos Cos λλλλσ =()[]λσs t Cos -2(){}t X 为宽平稳过程.4.Poisson 过程()0,≥t t X 满足(i )()00=X ;(ii)对s t >,()()s X t X -服从均值为()s t -λ的Poisson 分布;(iii )过程是有独立增量的.试求其均值函数和协方差函数.它是宽平稳的吗?Solution ()()()()t X t X E t EX λ=-=0,()()t t X D λ= ()()()()()s t s X t EX s X t X Cov λλ⋅-=,()()()()()ts s EX s X s X t X E 22λ-+-= ()()()()ts s EX s X D 220λ-++=()ts s s 22λλλ-+=()t s s λλλ-+=1 显然()t X 不是宽平稳的.5. ()t X 为第4题中的Poisson 过程,记()()()t X t X t y -+=1,试求过程()t y 的均值函数和协方差函数,并研究其平稳性. Solution ()λλ=⋅=1t Ey , ()()λ=t y DCov(y(t),y(s))=Ey(t)y(s)-Ey(t)y(s)=E(x(t+1)-x(t))(x(s+1)-x(s))-λ2(1)若s+1<t, 即s≤t-1,则Cov(y(t),y(s))=0-λ2=-λ2(2)若t<s+1≤t+1, 即t>s>t-1, 则Cov(y(t),y(s))=E[x(t+1)-x(s+1)+x(s+1)-x(t)][x(s+1)-x(t)+x(t)-x(s)] -λ2=E(x(t+1)-x(s+1))(x(s+1)-x(t))+E(x(t+1)-x(s+1))(x(t)-x(s))+E(x(s+1)-x(t))+E(x(s+1)-x(t))(x(t)-x(s))- λ2=λ(s+1-t)= λ-λ(t-s)- λ2(3) 若t<s<t+1Cov(y(t),y(s))= E [x(t+1)-x(s)+x(s)-x(t)] [x(s+1)-x(t+1)+x(t+1)-x(s)]- λ2 =(x(t+1)-x(s))(x(s+1)-x(t+1))+E(x(t+1)-x(s))(x(t+1)-x(s))+E(x(s)-x(t))(x(s+1)-x(t+1))+E(x(s)-x(t))(x(t+1)-x(s))- λ2=0+λ(t+1-s)+0-λ2=λ+λ(t-s)- λ2(4) 若s>t+1 Cov(y(t),y(s))=0-λ2=-λ2由此知,故方差只与t-s有关,与t,s无关故此过程为宽平稳的。

《随机过程及其在金融领域中的应用》习题八答案

《随机过程及其在金融领域中的应用》习题八答案

则 Xn Xn1 Xn
要使Yn cXn Xn1 n 1,Y0 X0 是关于 Fn Xk , 0 k n, n 0 的鞅,

EYn

E cXn

Xn1 , c

1

8、设 Xt ,Yt 是鞅,证明 Xt Yt 是鞅, minXt ,Yt 是下鞅。
得Yn cXn Xn1 n 1,Y0 X0 是关于 Fn Xk , 0 k n, n 0 的鞅。
答: 鞅为满足如下条件的随机过程:在已知过程在时刻 S 之前的变化规律的条件 下,过程在将来某一时刻 t 的期望值等于过程在时刻 x 的值。
E Xn1 X0, X1, , Xn Xn Xn1 ,
Zn Xn E Xn 2 , n 0 是下鞅,
Zn, n 0 是上鞅。
6、设Xt ,t 0 是独立增量过程,且对每一个 t 0, E Xt 0, X0 0 ,又设
E Xt Xs 2 F t F s0 s t , F t 是 t 的非减函数。证明:
E
X2 n1
E
X2 n2
E
X2 n1

X2 n2
E
X n1 X n2
2

2 X n1 X n2

2
X
2 n2
E
X n1

X n2
2
2 X n1 X n2

2
X
2 n2
E
2
X n1 X n2
2E
X X n1 n2

2
X
2 n2

第7-8讲随机过程 孙应飞

第7-8讲随机过程 孙应飞

第二章 Markov 过程7.参数连续状态离散的马氏过程(一)参数连续状态离散的马氏过程的转移概率定义:设}0,)({≥t t X 是取值于状态空间S 的随机过程,S 是有限或无限可列的,如果对于任意的正整数n ,任意的1210+<<<<≤n n t t t t ,及任意的状态S i i i i n n ∈+121,,,, ,均有:})()({})(,,)(,)()({11221111n n n n n n n n i t X i t X P i t X i t X i t X i t X P =======++++则称此随机过程为参数连续状态离散的马氏过程(纯不连续马氏过程)。

对于纯不连续马氏过程,有:S j i t t i t X j t X P t t t X j t X P ∈≤===≤'≤'=,,})()({}0,)()({211212记:})()({ˆ),(1221i t X j t X P t t p j i ===称此条件概率为纯不连续马氏过程的转移概率。

显然有:⎪⎩⎪⎨⎧∈=≥∑∈S i t t p t t p S j j i j i 1),(0),(2121如果),(21t t p j i 仅为时间差12t t t -=的函数,而与1t 和2t 的值无关,则称此纯不连续马氏过程为齐次的。

此时121221})()({ˆ),()(t t t i t X j t X P t t p t p j i j i -=====⎪⎩⎪⎨⎧≥∈=≥∈≥∑∈0,1)(0,,0)(t S i t p t S j i t p S j ji j i以下我们主要讨论齐次纯不连续马氏过程。

纯不连续马氏过程的C -K 方程: 一般情形:),,(})()({})()({})()({321122313S j i t t t i t X k t X P k t X j t X P i t X j t X P Sk ∈<<========∑∈齐次情形:)0,0,,(,)()()(>>∈=+∑∈τττt S j i p t p t p Sk j k k i j i连续性条件:⎩⎨⎧≠===→ji ji t p j i j i t ,0,1)(lim 0δ 满足连续性条件的马氏过程称为随机连续的马氏过程。

(整理)随机过程课后习题

(整理)随机过程课后习题

习题一1.设随机变量X 服从几何分布,即:(),0,1,2,...k P X k pq k ===。

求X 的特征函数、EX 及DX 。

其中01,1p q p <<=-是已知参数。

2.(1)求参数为(p,b )的Γ分布的特征函数,其概率密度函数为(2)求其期望和方差;(3)证明对具有相同的参数b 的Γ分布,关于参数p 具有可加性。

3.设X 是一随机变量,F (x )是其分布函数,且是严格单调的,求以下随机变量的特征函数。

(1)(),(0,)Y aF X b a b =+≠是常数; (2)Z=ln F()X ,并求()k E Z (k 为自然数)。

4.设12,,...,n X X X 相互独立,具有相同的几何分布,试求 的分布。

5.试证函数 为一特征函数,并求它所对应的随机变量的分布。

6.试证函数 为一特征函数,并求它所对应的随机变量的分布。

7.设12,,...,n X X X 相互独立同服从正态分布2(,)N a σ,试求n 维随机向量12,,...,n X X X 的分布,并求出其均值向量和协方差矩阵,再求 的概率密度函数。

8.设X 、Y 相互独立,且(1)分别具有参数为(m, p)及(n, p)的二项分布;(2)分别服从参数为12(,),(,)p b p b 的Γ分布。

求X+Y 的分布。

9.已知随机向量(X, Y )的概率密度函数为试求其特征函数。

10.已知四维随机向量X ,X ,X ,X 1234()服从正态分布,均值向量为0,协方差矩阵为B σ⨯kl 44=(),求(X ,X ,X ,X E 1234)。

11.设X 1,X 2 和X 3相互独立,且都服从(0,1)N ,试求随机变量112Y X X =+和213Y X X =+组成的随机向量(Y 1, Y 2)的特征函数。

12.设X 1,X 2 和X 3相互独立,且都服从2(0,)N σ,试求:(1)随机向量(X 1, X 2, X 3)的特征函数;1,0()0,0()p p bxb x e x p x p x --⎧>⎪Γ⎨⎪≤⎩=0,0b p >>1nkk X =∑(1)()(1)jt jnt jt e e f t n e -=-21()1f t t=+11ni i X X n ==∑221[1()],1,1(,)40,xy x y x y p x y ⎧+--<<⎪=⎨⎪⎩其他(2)设112123123,,S X S X X S X X X ==+=++,求随机向量(S 1, S 2, S 3)的特征函数;(3)121Y X X =-和232Y X X =-组成的随机向量(Y 1, Y 2)的特征函数。

随机过程课后习题答案

随机过程课后习题答案

标准教材:随机过程基础及其应用/赵希人,彭秀艳编著索书号:O211.6/Z35-2备用教材:(这个非常多,内容一样一样的)工程随机过程/彭秀艳编著索书号:TB114/P50历年试题(页码对应备用教材)2007一、习题0.7(1)二、习题1.4三、例2.5.1—P80四、例2.1.2—P47五、习题2.2六、例3.2.2—P992008一、习题0.5二、习题1.4三、定理2.5.1—P76四、定理2.5.6—P80五、1、例2.5.1—P802、例2.2.2—P53六、例3.2.3—P992009(回忆版)一、习题1.12二、例2.2.3—P53三、例1.4.2与例1.5.5的融合四、定理2.5.3—P76五、习题0.8六、例3.2.22010一、习题0.4(附加条件给出两个新随机变量表达二、例1.2.1三、例2.1.4四、例2.2.2五、习题2.6六、习题3.3引理1.3.1 解法纠正 许瓦兹不等式()222E XY E X E Y ⎡⎤⎡⎤≤⎡⎤⎣⎦⎣⎦⎣⎦证明:()()()()222222222220440E X Y E X E XY E Y E XY E X E Y E XY E X E Y λλλ +⎡⎤⎡⎤=++≥⎣⎦⎣⎦∴∆≤⎡⎤⎡⎤∴-≤⎡⎤⎣⎦⎣⎦⎣⎦⎡⎤⎡⎤∴≤⎡⎤⎣⎦⎣⎦⎣⎦例1.4.2 解法详解已知随机过程(){},X t t T ∈的均值为零,相关函数为()121212,,,,0a t t t t et t T a --Γ=∈>为常数。

求其积分过程()(){},t Y t X d t T ττ=∈⎰的均值函数()Y m t 和相关函数()12,Y t t Γ。

解:()0Y m t =不妨设12t t >()()()()()()1212222112121122122100,,Y t t t t t t t t t EY t Y t E X d X d d d τττττττττΓ===Γ⎰⎰⎰⎰()()()()()222121122221222112222212221212121212000220022002200222211||111111||211ττττττττττττττττττττττττ--------------=+-=+=---=+-+⎡=++--⎣⎰⎰⎰⎰⎰⎰⎰⎰t t t a a t t a a a a t t t a a at a t a at t a t t at at ed d ed de d e d a ae d e d a a t t e e a a a a t e e e a a⎤⎦同理当21t t >时()()2112112221,1a t t at at Y t t t e e e a a----⎡⎤Γ=++--⎣⎦ (此处书上印刷有误)例1.5.5解法同上例1.5.6 解法详解 普松过程公式推导:(){}()()()()()()()()()()()1lim !lim 1!!!1lim 1!!lim 1lim !lim lim !第一项可看做幂级数展开:第二项将分子的阶乘进行变换:→∞-→∞-→∞---∆-→∞→∞-→∞→∞===-∆∆-⎡⎤⎡⎤⎡⎤=-∆∆⎢⎥⎢⎥⎣⎦-⎣⎦⎣⎦⎡⎤⎡⎤-∆==⎢⎥⎣⎦⎣⎦⎡⎤⋅∆=∆⎢⎥--⎣⎦N k N N kkN N k kN N kN kq t qtN N k N kk k N N P X t k C P N q t q t k N k N q t q t N k k q t e e N N N q t q t N k N ()()()()()!lim 1!-→∞⎡⎤⎢⎥⎣⎦⎡⎤⎡⎤=∆⋅=⋅=⎢⎥⎣⎦-⎣⎦N k k k k kN k N q t N qt qt N k (){}()()()()!1lim 1!!!N kkN kqt P X t k N q t q t N k k qt ek -→∞-∴=⎡⎤⎡⎤⎡⎤=-∆∆⎢⎥⎢⎥⎣⎦-⎣⎦⎣⎦=例2.1.2 解法详解设(){},X t t -∞<<+∞为零均值正交增量过程且()()2212121,E X t X t t t t t -=->⎡⎤⎣⎦,令()()()1Y t X t X t =--,试证明(){},Y t t -∞<<+∞为平稳过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
RX ( s, t ) E ( X (t ) X (t )) t
s t
RX (t s) t
s t
ห้องสมุดไป่ตู้
RX (0)
RX ( ) RX ( ) RX ( ) RX ( ) RX (0) RX (0)
目标
( X (t ), X (t )) 是二维正态分布.
证明: RX ( ) RX ( ) RX ( )
2 2 CX (0) RX (0) mX , 而DX (t ) EX (t )2 E 2 X (t ) RX (0) mX
CX ( ) E ( X (t ) mX )( X (t ) mX ) E ( X (t ) mX )( X (t ) mX ) E X (t ) mX E X (t ) mX CX (0)
则称X={X(t),t∈T}为宽平稳过程,简称平稳过程. 注意 一般情况下 1. 严平稳过程不一定是宽平稳过程.对二阶矩过程 严平稳过程一定是宽平稳过程. 2. 宽平稳过程也不一定是严平稳过程.
定理 若{X(t),t∈T}是正态过程,则{X(t),t∈T}是严平稳 过程的充要条件是{X(t),t∈T}是宽平稳过程.
定理 设{X(t),t∈R}是均方连续的平稳过程,f(t)为分段连续 函数,则在任何有限区间[a,b]上, 积分

b b a a
b
a
f (t ) X (t )dt
b
在均方意义下存在,且对任一分段连续函数g(t),有
E[ g ( s) X ( s)ds f (t ) X (t )dt ]
例 设{X(t),t≥0}是只取±1两个值的随机过程,其符号 的改变次数是一参数为λ 的Poisson过程{N(t),t≥0},且 对任意的t≥0,P(X(t)=-1)=P(X(t)=1)=1/2. 试讨论{X(t),t≥0}的平稳性.
例 设{Y(t),t≥0}是正态过程.且
mY (t ) t, CY (t, t ) e
第四章 平稳过程 本章内容 严平稳过程与宽平稳过程的定义。 平稳过程相关函数的性质。 平稳过程的各态历经性。 平稳过程的谱分析。 线性系统中的平稳过程。 平稳过程在实际中有广泛的应用
§1 平稳过程的定义
定义 (严平稳过程) 设X={X(t),t∈T}是随机过程,如果对任意的
n 1, t1 , t2 , , tn T 和实数,当t1 , t2 , , tn T时,n维随变量( X (t1 ), X (t2 ), ( X (t1 ), X (t2 ), 布函数, 即 , X (tn ))和
定理
设{X(t),t∈T}, {Y(t),t∈T} 为联合平稳的平稳过程.则 其互相关函数RXY(s,t)具有如下性质 (1) RXY ( ) RYX ( ) (2) RXY ( ) RX (0) RY (0), RYX ( ) RX (0) RY (0) (3) 对复常数 , ,{X (t ) Y (t ), t T }也是平稳过程,
mX (t ) 0, RX ( ) R X ( )
推论 设{X(t),t∈T}是均方可导的实平稳过程. 则对任意的t∈T, X(t)与X′(t)不相关.
特别
若{X(t),t∈T}还是正态过程, 则X(t)与X′(t)独立. 证明:目标 E ( X (t ) X (t )) 0
说明 由以上定义知道 1.严平稳过程的有限维分布不随时间的推移而改变
表现在 其一维分布函数与时间t无关. 其二维分布函数与仅与时间间隔有关.
2.若二阶矩过程是严平稳过程,则其均值函数 是常数,相关函数是时间间隔的函数.
mX (t ) xdF(t; x) xdF( x)与t无关,为常数
n n k 1 l 1 k
2
2
, tn T 及复数1 , 2 ,
l X
, n有
R
(tl t k ) 0
推论
实平稳过程{X(t),t∈T}的相关函数具有以下性质
(1) 相关函数为偶函数 RX ( ) RX ( ) (2) 协方差函数C X (t )具有 C X (0) DX (t ) 0; C X ( ) C X (0)
RX (s, t )






x1 x2 dF(s, t; x1 , x2 )
x1 x2 dF(0, t s; x1 , x2 )

仅与时间间隔有关系
定义 (宽平稳过程)
设X={X(t),t∈T}是二阶矩过程,如果
(1)t T , mX (t ) m(为常数) X (2)s, t T , RX ( s, t ) RX (t s). 或 R,t , t T , RX (t , t ) RX ( )
0
2
定理
设{X(t),t∈T}是平稳过程,则
(1){X(t),t∈T}均方可导的充分条件是RX(τ)在τ=0处 一阶导数存在,二阶导数存在且连续. (2){X(t),t∈T}均方可导的必要条件是RX(τ)在τ=0处 一阶导数,二阶导数都存在.
(3)若{X(t),t∈T}均方可导,则其导数过程{X′(t),t∈T} 仍然是平稳过程.且
2 2
且其相关函数为
RX Y ( ) RX ( ) RXY ( ) RYX ( ) RY ( )
2 2
a

b
a
RX (t s) f (t ) g ( s)dsdt
证明:{X(t),t∈R}均方连续 RX (s, t ) 连续,又 f(t)分段连续,故 f (s) f (t )RX (t s) 在任何有限区间
[a, b] [a, b] 上分段连续,从而

a
b
b
a
f (s) f (t ) RX (t s)dsdt存在,故 f (t ) X (t )dt存在.
, X (tn ))有相同的联合分
F (t1 , t2 ,, tn ; x1 , x2 ,, xn ) F (t1 , t2 ,, tn ; x1 , x2 ,, xn )
tn T,xn , R, i 1,2,, n 则称X={X(t),t∈T}是严平稳过程.
{ X (t ), t 0}是一严平稳过程 .
a
, 其中,,a 0,
令 X (t ) Y (t b) Y (t ), t 0, 其中b 0, 试证明
§2 平稳过程相关函数的性质
1.相关函数的性质 定理 设{X(t),t∈T}是平稳过程,则其相关函数有性质
(1) RX (0) E[ X (t ) ] mX 0 (2) RX ( ) RX ( ) (3) RX ( ) RX (0) (4) RX ( ) RX ( s)具有非负定性,即 对n 1, t1 , t2 ,
1 2
2
1 2
2
定理
设{X(t),t∈T}是平稳过程,则{X(t),t∈T}均方 连续的充要条件是RX(τ)在τ=0处连续,此时 RX(τ)是连续函数. 证明目标:
X (t )均方连续 在 0处RX( )连续,即 lim RX ( ) RX (0)
0 0
在 0处RX( )连续 X (t )均方连续,即 lim E X (t0 ) X (t0 ) 0 在 0处RX( )连续 lim RX ( ) RX ( 0 )
a
b
2.联合平稳过程及其相关函数的性质
定义 设{X(t),t∈T}, {Y(t),t∈T} 是两个平稳过程. 若对任意的s,t∈T,有
RXY (s, t ) RXY (t s), 或对t T , R, 有RXY (t , t ) RXY ( )
则称{X(t),t∈T}, {Y(t),t∈T} 为联合平稳的平稳过程.
相关文档
最新文档