不等式在综合题中的应用

合集下载

初中数学不等式在解决实际问题中的应用案例

 初中数学不等式在解决实际问题中的应用案例

初中数学不等式在解决实际问题中的应用案例初中数学不等式在解决实际问题中的应用案例数学不等式作为初中数学中的一个重要内容,不仅有理论的意义,还有实际的应用。

本文将从实际问题的角度出发,给出一些初中数学不等式在解决实际问题中的应用案例,以展示不等式在实际生活中的重要性。

一、物品购买问题假设小明去商店买口红,他现在有300元的预算,一支口红的价格是x元。

根据经验,我们知道在购买同款口红时,价格越高,质量越好。

但是小明想要在预算范围内选择质量尽可能好的口红。

这个问题可以用不等式进行求解。

首先,我们可以列出不等式:x ≤ 300,其中x为口红的价格。

由于小明希望选择质量尽可能好的口红,根据经验可以假设价格与质量成正比。

因此,价格越高,质量越好。

所以,通过解不等式,我们可以得到小明预算范围内,价格越高的口红质量越好。

通过这个案例,我们可以看到不等式在物品购买问题中的应用。

二、年龄差问题在生活中,经常会遇到解决年龄差不等式的问题。

例如,小明比小红大5岁,小红比小白大3岁,请问小明和小白的年龄差是多少?假设小明的年龄为x岁,则小红的年龄为x-5岁,小白的年龄为x-5-3岁,即x-8岁。

根据题目的条件,我们可以列出不等式:(x-5) - (x-8) ≥ 0简化该不等式,我们可以得到:x - 5 - x + 8 ≥ 0化简后得到:3 ≥ 0这个不等式恒成立,说明小明和小白的年龄差是大于等于0的。

通过这个简单的案例,我们可以看到不等式在解决年龄差问题中的应用。

三、角度问题在几何学中,不等式可以用来描述角度之间的关系。

例如,给定一个三角形ABC,角A的度数是x,角B的度数是2x,角C的度数是3x。

我们需要找出x的取值范围,使得三角形ABC为锐角三角形。

根据角度的性质,我们知道锐角的度数是小于90度的。

因此,我们可以列出不等式:x < 90由于角A、角B、角C是三角形的三个内角,所以它们的和应该等于180度。

根据题目的条件,我们可以列出等式:x + 2x + 3x = 180简化该等式,我们得到:6x = 180解方程得到x = 30。

关于lnx的两个不等式在解高考压轴题中的应用

关于lnx的两个不等式在解高考压轴题中的应用

关于lnx的两个不等式在解高考压轴题中的应用关于lnx的两个不等式,也称“Laguerre不等式”,多年来都是高考压轴题中的常用题型之一。

这两个不等式在数学领域中的重要性不言而喻,在这里我们主要来讨论它们在解高考压轴题中的应用。

lnx的两个不等式,是由法国数学家拉古尔提出的,他曾说过:“数学中最重要的不等式,就是lnx的两个不等式。

”当今,这两个不等式被世界上的数学家们所普遍领会和接受,并被纳入了数学教科书中。

lnx的两个不等式在包括高考在内的各种数学考试中也有着举足轻重的地位。

然而,lnx的两个不等式大多只有一个正确解,因此在考试中一定要牢记这两个不等式的解法,才能正确解答。

一般而言,lnx的两个不等式的解法是利用牛顿迭代法、泰勒展开式和极限定理,结合函数的性质进行研究。

此外,还可以使用“偏导数”等理论来解决更复杂的lnx不等式问题。

在解答lnx的两个不等式时,需要根据不等式中给定的变量和函数的性质,结合极限定理及其推导出的结果,对不等式进行解答,推导出满足不等式的解。

此外,要正确解答lnx的两个不等式,还需要考虑到函数的定义域和值域,这样才能有效的解决问题。

因此,在解答lnx的两个不等式,要充分考虑它们的函数定义域和值域,进而确定满足不等式的解。

在高考压轴题中,lnx的两个不等式是常用也是难点之一,它们在高考中经常出现,考生需要特别掌握其相关知识。

当考生遇到lnx的两个不等式时,可以根据以上的解决步骤,正确的解答。

综上所述,lnx的两个不等式在解高考压轴题中的应用是极为重要的,高考中出现的lnx不等式问题,考生应该根据相关的函数性质,正确的用法,对其进行逐步的求解,以达到正确的解答。

一元二次不等式的解法的综合应用题

一元二次不等式的解法的综合应用题

一元二次不等式的解法的综合应用题一元二次不等式是指一个包含未知数的二次函数不等式,它的解可以通过图像、因式分解、配方法等不同的方法进行求解。

本文将通过综合应用题的方式,探讨一元二次不等式的解法及其应用。

1.电影票问题某电影院的电影票售价为x元,根据市场需求和收益最大化的原则,电影院决定制定不等式来限制票价。

已知场内座位数为500个,观众的平均消费能力为500元,为了提高入场率和营业额,电影院制定了如下不等式:x^2 - 500x < 0解法:首先,将不等式转化为二次函数的形式,即x^2 - 500x < 0,然后求解二次函数的零点:x(x - 500) < 0根据零点法则,我们可以得到两个重要的点:x = 0和x = 500。

接下来,通过判定区间法则,我们可以得到三个区间:(-∞, 0), (0, 500)和(500, +∞)。

然后,选择这些区间中的任意一个点,代入原不等式进行判断。

例如,选择x = 100,代入原不等式得到:100(100 - 500) < 0-40000 < 0由于不等式成立,我们可以得出结论,电影票的价格在(0, 500)的区间内满足需求。

2.优惠活动问题某百货公司决定举办促销活动,现假设购物金额为x元,百货公司依据不同购物金额设置不等式:x^2 - 3000x + 200000 < 0解法:将不等式转化为二次函数的形式,即x^2 - 3000x + 200000 < 0。

然后通过因式分解的方法来解决:(x - 200)(x - 1000) < 0由此可得两个关键点:x = 200和x = 1000。

利用判定区间法则,我们可以得到三个区间:(-∞, 200), (200, 1000)和(1000, +∞)。

选择其中一个区间的点,例如x = 300,代入原不等式进行判断:(300 - 200)(300 - 1000) < 0-200000 < 0结合不等式的前提条件,我们可以得出结论,在(200, 1000)的范围内购物金额可以享受促销优惠。

不等式组应用题类型及解答包含各种题型

不等式组应用题类型及解答包含各种题型

一元一次不等式组应用题类型及解答1.分配问题1、一堆玩具分给若干个小朋友,若每人分3件,则剩余4件,若前面每人分4件,则最后一人得到的玩具最多3件,问小朋友的人数至少有多少人;3、把若干颗花生分给若干只猴子;如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗;问猴子有多少只,有多少颗4、把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本;问这些书有多少本学生有多少人5、某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数;6、将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只;问有笼多少个有鸡多少只7、用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空;请问:有多少辆汽车8、一群女生住若干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满;1如果有x间宿舍,那么可以列出关于x的不等式组:2可能有多少间宿舍、多少名学生你得到几个解它符合题意吗二、比较问题1、某校王校长暑假将带领该校市级三好学生去北京旅游;甲旅行社说如果校长买全票一张,则其余学生可享受半价优惠,乙旅行社说包括校长在内全部按全票价的6折优惠按全票价的60%收费,且全票价为1200元①学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费写出表达式②当学生数是多少时,两家旅行社的收费一样③就学生数x讨论哪家旅行社更优惠;③就学生数x讨论哪家旅行社更优惠;2、李明有存款600元,王刚有存款2000元,从本月开始李明每月存款500元,王刚每月存款200元,试问到第几个月,李明的存款能超过王刚的存款;3、暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价为每人500元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折;乙旅行社的优惠条件是:家长,学生都按八折收费;假设这两位家长至带领多少名学生去旅游,他们应该选择甲旅行社三、行程问题1、抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时已经走了50公里后,后半小时速度多大才能保证及时送到2、爆破施工时,导火索燃烧的速度是s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的安全地区,导火索至少需要多长3、王凯家到学校千米,现在需要在18分钟内走完这段路;已知王凯步行速度为90米/分,跑步速度为210米/分,问王凯至少需要跑几分钟四、车费问题1、出租汽车起价是10元即行驶路程在5km以内需付10元车费,达到或超过5km后,每增加1km加价元不足1km部分按1km计,现在某人乘这种出租,汽车从甲地到乙地支付车费元,从甲地到乙地的路程超过多少km2、某种出租车的收费标准是:起步价7元即行驶距离不超过3km都需要7元车费,超过3km,每增加1km,加收元不足1km按1km计;某人乘这种出租车从A地到B地共支付车费19元;设此人从A地到B地经过的路程最多是多少km五、积分问题1、某次数学测验共20道题满分100分;评分办法是:答对1道给5分,答错1道扣2分,不答不给分;某学生有1道未答;那么他至少答对几道题才能及格2、在一次竞赛中有25道题,每道题目答对得4分,不答或答错倒扣2分,如果要求在本次竞赛中的得分不底于60分,至少要答对多少道题目3、一次知识竞赛共有15道题;竞赛规则是:答对1题记8分,答错1题扣4分,不答记0分;结果神箭队有2道题没答,飞艇队答了所有的题,两队的成绩都超过了90分,两队分别至少答对了几道题4、在比赛中,每名射手打10枪,每命中一次得5分,每脱靶一次扣1分,得到的分数不少于35分的射手为优胜者,要成为优胜者,至少要中靶多少次5.有红、白颜色的球若干个,已知白球的个数比红球少,但白球的两倍比红球多,若把每一个白球都记作数2,每一个红球都记作数3,则总数为60,求白球和红球各几个六、销售问题1、商场购进某种商品m件,每件按进价加价30元售出全部商品的65%,然后再降价10%,这样每件仍可获利18元,又售出全部商品的25%;1试求该商品的进价和第一次的售价;2为了确保这批商品总的利润率不低于25%,剩余商品的售价应不低于多少元2.水果店进了某中水果1t,进价是7元/kg;售价定为10元/kg,销售一半以后,为了尽快售完,准备打折出售;如果要使总利润不低于2000元,那么余下的水果可以按原定价的几折出售3.“中秋节”期间苹果很热销,一商家进了一批苹果,进价为每千克元,销售中有6%的苹果损耗,商家把售价至少定为每kg多少元,才能避免亏本4、某电影院暑假向学生优惠开放,每张票2元;另外,每场次还可以售出每张5元的普通票300张,如果要保持每场次票房收入不低于2000元,那么平均每场次至少应出售学生优惠票多少张5、某中学需要刻录一批电脑光盘,若到电脑公司刻录,每张需8元包括空白光盘费;若学校自刻,出租用刻录机需120元外,每张光盘还需成本4元包括空白光盘费;问刻录这批电脑光盘,该校如何选择,才能使费用较少6.某工程队要招聘甲、乙两种工种的工人150人,甲、乙两种工种的工人月工资分别为600元和1000元.现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时,可使得每月所付的工资最少7.学校图书馆准备购买定价分别为8元和14元的杂志和小说共80本,计划用钱在750元到850元之间包括750元和850元,那么14元一本的小说最少可以买多少本七、数学问题1.有一个两位数,其十位上的数比个位上的数小2,已知这个两位数大于10且小于30,求这个两位数;八、方案设计题1.某厂有甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C含量及购买这两种原料的价格如下表:现配制这种饮料10千克,要求至少含有4200单位的维生素C,并要求购买甲、乙两种原料的费用不超过72元,1设需用x千克甲种原料,写出x应满足的不等式组;2按上述的条件购买甲种原料应在什么范围之内2、红星公司要招聘A、B两个工种的工人150人,A、B工种的工人的月工资分别为600和1000元,现要求B工种的人数不少于A工种人数的2倍,那么招聘A工种工人多少时,可使每月所付的工资最少此时每月工资为多少元3、某工厂接受一项生产任务,需要用10米长的铁条作原料;现在需要截取3米长的铁条81根,4米长的铁条32根,请你帮助设计一下怎样安排截料方案,才能使用掉的10米长的铁条最少最少需几根4.某校办厂生产了一批新产品,现有两种销售方案,方案一:在这学期开学时售出该批产品,可获利30000元,然后将该批产品的投入资金和已获利30000元进行再投资,到这学期结束时再投资又可获利%;方案二:在这学期结结束时售出该批产品,可获利35940元,但要付投入资金的%作保管费,问:1当该批产品投入资金是多少元时,方案一和方案二的获利是一样的2按所需投入资金的多少讨论方案一和方案二哪个获利多;5.某园林的门票每张10元,一次使用,考虑到人们的不同需要,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种“购买年票”的方法;年票分为A、B、C三种:A年票每张120元,持票进入不用再买门票;B类每张60元,持票进入园林需要再买门票,每张2元,C类年票每张40元,持票进入园林时,购买每张3元的门票;1如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出可使进入该园林的次数最多的购票方式;2求一年中进入该园林至少多少时,购买A类年票才比较合算;6.某城市平均每天处理垃圾700吨,有甲和乙两个处理厂处理,已知甲每小时可处理垃圾55吨,需要费用550元,乙厂每小时可处理垃圾45吨,需要费用495员;如果规定该城市每天用于处理垃圾的费用不得超过7370元,甲厂每天处理垃圾至少要多少吨九、浓度问题1、在1千克含有40克食盐的海水中,再加入食盐,使他成为浓度不底于20%的食盐水,问:至少加入多少食盐十、增减问题1、某人点燃一根长度为25㎝的蜡烛,已知蜡烛每小时缩短5㎝,几个小时以后,蜡烛的长度不足10㎝部分答案一、分配问题1、解:小朋友的人数至少有x人,依题意可得1≤3x+4-4x-1≤3解得:5≤x≤7∵X取最小整数;∴x=5答:小朋友的人数至少有5人3、解:设猴子有X只,则花生有3x+8人,依题意可得1≤3x+8-5x-1<5解得:4<X≤6∵X取整数;∴x=5或6答:当x=5,猴子有5只;花生有3x+8=23颗当x=6,猴子有6只;花生有3x+8=26颗, 4、设学生有x人,这些书本有3x+8本,依题意可得1≤3x+8-5x-1<3解得:5≤x<6 ∵X取整数;∴x=6答“学生有6人,这些书本有3x+8=26本5、方法一:解:设有x间宿舍,则住宿男生有4x+20人依题意,得8x>4x+208x-1<4x+20解这个不等式组得解集为:5<x<7因为宿舍间数为整数,所以x=6,4x+20=44答:宿舍间数有6间,住宿男生有44人.方法二:设宿舍有x间,则人数为4x+20人1≤4x+20-8﹙x-1﹚<8解得:5<x≤∵X取整数;∴x=66、方法一解:设笼有x个.4x+1>5x-24x+1<5x-2+3解得:8<x<11x=9时,4×9+1=37x=10时,4×10+1=41舍去.故笼有9个,鸡有37只.方法二:6、设有笼x个,则有鸡﹙4x+1﹚只4x+1<40……①1≤4x+1-5﹙x-2﹚<3……②解①②得:8<x<∵X取整数;∴x=9故笼有9个,鸡有37只7、解:设有x辆车,则有4x+20吨货物.由题意,得0<4x+20-8x-1<8,解得5<x<7.∵x为正整数,∴x=6.∴4x+20=44.答:有6辆车,44吨货物8、解:设有x间宿舍.0<4x+19-6x-1<6,<x<∴x可取10、11或12,∴学生数为59或63或67人.答:有10间宿舍59名学生或11间宿舍,63名学生或12间宿舍,67名学生.二、比较问题优惠问题1、解:1学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费写出表达式y甲=1200+1200×50%×x=1200+600xy乙=x+1×1200×60%=720x+1=720x+72021200+600x=720x+720120x=480x=4答:当学生数为4人时,两家旅行社的收费一样3当学生人数少于4人时,乙旅行社更优惠;当学生人数等于4人时,两个旅行社一样优惠;当学生人数多于4人时,甲旅行社更优惠2、解:设x个月李明的存款超过王刚的存款600+500x>2000+200x300x>1400x>14/3因为x为整数,所以x=53、解:甲旅行社收费y=5002+50070%x=1000+350x乙旅行社收费y'=50080%2+x=800+400xy=y'1000+350x=800+400x解得x=4所以x<4时,乙旅行社便宜;x=4,甲乙旅行社一样便宜;x>4,甲旅行社便宜三、行程问题1、解:设后半小时的速度至少为x千米/小时50+1-1/2x≥12050+1/2x≥1201/2x≥70解得x≥140答:后半小时的速度至少是140千米/小时2、解:设至少XcmX/>100/5 X>16所以至少16CM3、解:设王凯至少要跑X分;可列不等式:9018-X+210X≥21001620-90X+210X≥2100120X≥2100-1620 120X≥480解得X≥4所以王凯至少要跑4分如果改为等号就是求那个时间点,也就是跑4分钟剩下用走,正好用18分钟;如果跑的大于四分钟,也就可以不用18分钟,更快的到达学校;所以等号表示正好到达的时间点,大于等于表达了题意至少的意思四、车费问题1、解:设甲地到乙地的路程大约是xkm,据题意,得解之,得10<x≤11即从甲地到乙地路程大于10km,小于或等于11km因为不足1km部分按1km计,元对应的最大路程是11千米,那么最小路程就要大于10千米,实质是减去了一个1千米的价钱2、解:方法一、3km后收费:19-7=12超过3km后的行驶距离:12/=5km从甲地到乙地所经过的路程最多是3+5=8km方法二、设从甲地到乙地所经过的路程最多是x,由题意,得x-3+7=19解得x=8五、积分问题1、解:设答对x题,则答错20-1-x=19-x题;5x-19-x1>=80解得x>=因为题数是整数,所以x=17答:至少要答对17题;2、解:设至少需要做对x道题x为自然数;4x-2×25-x≥604x-50+2x≥606x≥110解得X≥19答:至少需要做对19道题3、解:设神箭队答对x题;则答错15-2-x,即13-x题8x-413-x>90解得x>71/6所以至少答对12道题设飞艇队答对x题;则答错15-x题8x-415-x>90解得x>25/2所以至少答对13道题4、解:设命中X次,脱靶10-X次5x-10-x>=356x>=45因为X为整数,所以X=85、设红球x个,白球y个,由题意,得y<x<2y 2y+3x=60 x=60-2y/3则y<60-2y/3<2y解得<y<12又因为x为整数,则y应为3的倍数;y=9x=14所以,白球9个,红球14个;六、销售问题1、解:1设进价是x元一件商品1-10%×x+30=x+18解得:x=90第一次的售价x+30=90+30=120答:该商品的进价和第一次的售价分别是90元和120元2设剩余商品售价应不低于y元,90+30×m×65%+90+18×m×25%+y×m×1-65%-25%≥90×1+25%×m解得:y≥75答:剩余商品的售价应不低于75元2、解:方法一:设按原价的x折出售,所以:1000×1/2×10+1000×1/2×10×x/10>=7×1000+20005000+500x>=9000解得:5x>=40即x>=8所以至多打8折方法二:货款:1000=元已销售产生的利润:500-500=元剩余商品需要产生的利润:=元产生利润需要的单价:+500/500=8元需要在10元基础上打折:8/10=,也就是八折3、解:设这批苹果有a千克,商家把售价至少定为每千克x元则a1-6%×x≥a×解得:x≥4、解:设这批电脑光盘有x张,根据题意:到电脑公司刻录的费用为8x,学校自刻的费用为:120+4x1若8x=4x+120,解这个方程得x=30,当您刻录的光盘数等于30张光盘时花钱是一样的;2若8x>4x+120解得x>30;当您刻录的光盘数多于30张时,学校自刻合算38x<4x+120解得x<30;当您刻录的光盘数少于30张,到电脑公司刻录合算4、解:设平均每场次至少要出售学生优惠票x张列出不等式2x+5×300≥2000解得x≥250答:平均每场次至少应出售学生优惠票250张;6、解,根据题意,设甲种工人有x人,则乙种工种的人数为:150-x,由乙种工种的人数不少于甲种工种人数的2倍,可得关系式150-x≥2x,即x≤50x的取值范围是:0≤x≤50设每月所付的工资最少为y元y=600x+150-x1000=150000-400x因为此函数是随着x的增大而减小,所以当x=50时,y取最小值,最小值为y=150000-40050=130000元7、解:设14元一本的小说可以买x本,则8元一本的小说可以买80-x本;根据题意,有:750≤14x+880-x≤850解得:≤x≤21,取整数x=19、20、21则可得知:14元一本的小说最少可以买19本,最多可以买21本;七、数学问题解:设个位数为x,则十位数字为x-2,由题意,得这个两位数为10x-2+x10<10x-2+x<30解得:30/11<x<60/11因为x取整数,所以x=3或x=4当x=3时10x3-2+3=13当x=4时10x4-2+3=23答:这个两位数为13或23。

高考数学综合题解答 数列与不等式

高考数学综合题解答 数列与不等式

高考数学综合题解答数列与不等式高考数学综合题解答-数列与不等式序列与不等式1.把正奇数数列{2n?1}中的数按上小下大、左小右大的原则排成如下三角形数表:1357911……………………………………………………设amn?m,n?n*?是位于这个三角形数表中从上往下数第m行、从左往右数第n个数.(1)如果是amn?2022,找出M和N的取值;(2)已知函数f(x)的反函数是f?1(x)?8x(x?0)。

如果三角形数字表中从上到下的第nn3行中的数字之和为BN,则找到数字序列{f(BN)}的前n项和Sn。

解决方案:(1)?三角形数表的前m行中有1?2.3?…? M第m行的最后一个数字应该是给定奇数列中的第二个数字,所以第m行的最后一个数字是2?m(m?1)2?1.M22m(m×1)2个数字,m(m?1)2项.………………………2分M1.因此,使得amn?2021的m是不等式m?m?1?2021的最小正整数解.由m?m?1?2021得m?m?2021?01.1.80482 1.2222 M7921 1.892 44, M45于是,第45行第一个数是44?44?1?2?1981?n?2021?19812?1?1?16.……………………………………………………………4分n3(2)?f(x)?8xxn?y(x?0)3故f(x)?2(x?0).…………………………………………………………………6分第n行的最后一个数字是n?N1,有n个数字,如果n?N1被视为第n行中的第一个数字,则第n行各数成公差为?2的等差数列,故bn?n(n?n?1)??f(bn)?n2n222n(n?1)2(?2)?n.3.8分1那么Sn呢?因为1212?2222??3223?…??324n?12n?1?n22nn.n2n?1sn?1223?…? N1.两式相减得:12sn?12? 122? 123?…? 12n?n2n?1.10分1?1??1?n?n1n22n?1?1?n?n?1.12221? 2.sn?2.n?22n.………………………………………………………………………14分2.在单调递增序列{an}中,A1变成等比序列,n?1,2,3,?? 1,a2?2和A2N?1,a2n,a2n?1变成等差序列,A2N,A2N?1,a2n?2.(1)分别计算a3,a5和a4,a6的值;(2)求数列{an}的通项公式(将an用n表示);(3)设数列{1an}4nn?2的前n项和为sn,证明:sn?,n?n*.解决方案:解决方案:(1)从已知开始,A3?3,a5?6,a4?(2)(证据1)A1?2292,a6?8.2分,A5?122? 3.4222? 1.22,a3?262? 2.32,……;a2?2,a4?322,a6?42,…….(n?1)22‰猜想A2N?1.n(n?1)2,a2nNN*,。

一元一次不等式的应用题

一元一次不等式的应用题

一元一次不等式的应用题一元一次不等式是数学中的重要概念之一,其在实际问题中的应用十分广泛。

本文将通过具体的应用例题来介绍一元一次不等式的应用。

请参考以下内容:案例一:商品打折小明在某商场看中了一双原价为200元的鞋子,商店正好在进行优惠活动,打折力度为n折。

小明想知道如果商品可以享受到2折优惠,他需要支付多少钱?解析:根据题意,我们可以建立如下一元一次不等式:n * 200 ≤ 200,其中n表示折扣数。

通过对不等式进行运算,得到n ≤ 1/10。

由于n是折扣数,因此n必须为正数。

因此,小明实际上需要支付的金额不能低于0,所以他最多享受到1折的优惠。

案例二:车辆超速违章某城市的高速公路对车辆速度进行限制,标识要求车辆速度不得超过v km/h。

小红驾驶汽车行驶在某路段上,她想知道自己的车速是否超过了限制。

解析:根据题意,我们可以建立如下一元一次不等式:v - x ≥ 0,其中v表示限速值,x表示小红的车速。

如果不等式成立,说明小红未超速;如果不等式不成立,则说明小红超速了。

案例三:裁剪布料小张在裁剪布料时,从一块长方形的布料中切割出一块长为x米、宽为y米的布料。

他想要知道是否有足够的布料满足要求。

解析:根据题意,我们可以建立如下一元一次不等式:x ≤ 长度,y ≤ 宽度,其中x表示所需的布料长度,y表示所需的布料宽度。

如果不等式成立,说明有足够的布料满足要求;如果不等式不成立,则说明没有足够的布料满足要求。

通过上述案例,我们可以看到一元一次不等式在实际问题中的应用。

无论是商品打折、车辆超速还是裁剪布料,一元一次不等式都能帮助我们解决具体问题,找到满足条件的解答。

总结:一元一次不等式的应用包括但不限于商品打折、车辆超速违章、布料裁剪等。

通过建立一元一次不等式,并利用不等式的性质进行数学运算,我们可以得出所需的答案。

在实际问题中,我们需要根据题意确定不等式的形式以及解的意义,从而找到正确的解法。

不等式的应用不仅能够帮助我们解决实际生活中的问题,还可以提升我们的逻辑思维能力和数学运算能力。

数学-基本不等式在实际问题中的应用

数学-基本不等式在实际问题中的应用

基本不等式在实际问题中的应用高中数学 1.熟练掌握基本不等式及变形的应用.2.会用基本不等式解决生活中简单的最大(小)值问题.3.能够运用基本不等式解决几何中的应用问题.导语同学们,我们说数学是和生活联系非常紧密的学科,我们学习数学,也是为了解决生活中的问题,比如:“水立方”是2008年北京奥运会标志性建筑之一,如图为水立方平面设计图,已知水立方地下部分为钢筋混凝土结构,该结构是大小相同的左右两个矩形框架,两框架面积之和为18 000 m 2,现地上部分要建在矩形ABCD 上,已知两框架与矩形ABCD 空白的宽度为10 m ,两框架之间的中缝空白宽度为5 m ,请问作为设计师的你,应怎样设计矩形ABCD ,才能使水立方占地面积最小?要解决这个问题,还得需要我们刚学习过的基本不等式哦,让我们开始今天的探究之旅吧!一、基本不等式在生活中的应用问题 利用基本不等式求最大(小)值时,应注意哪些问题?提示 一正:x ,y 都得是正数;二定:积定和最小,和定积最大;三相等:检验等号成立的条件是否满足实际需要.例1 (教材46页例3改编)小明的爸爸要在家用围栏做一个面积为16m 2的矩形游乐园,当这个矩形的边长为多少时,所用围栏最省,并求所需围栏的长度.解 设矩形围栏相邻两条边长分别为x m ,y m ,围栏的长度为2(x +y )m.方法一 由已知xy =16,由≥,可知x +y ≥2=8,x +y2xy xy 所以2(x +y )≥16,当且仅当x =y =4时,等号成立,因此,当这个矩形游乐园是边长为4 m 的正方形时,所用围栏最省,所需围栏的长度为16 m.方法二 由已知xy =16,可知y =,16x所以2(x +y )=2≥2×2=16.(x +16x )x ·16x 当且仅当x =y =4时,等号成立,因此,当这个矩形游乐园是边长为4 m 的正方形时,所用围栏最省,所需围栏的长度为16 m.延伸探究 如果小明的爸爸只有12 m 长的围栏,如何设计,才能使游乐园的面积最大?解 由已知得2(x +y )=12,故x +y =6,面积为xy ,由≤==3,或=≤=3,xy x +y262xy x (6-x )x +6-x 2可得xy ≤9,当且仅当x =y =3时,等号成立.因此,当游乐园为边长为3的正方形时,面积最大,最大面积为9 m 2.反思感悟 利用基本不等式解决实际问题的步骤(1)理解题意,设变量,并理解变量的实际意义;(2)构造定值,利用基本不等式求最值;(3)检验,检验等号成立的条件是否满足题意;(4)结论.跟踪训练1 要制作一个容积为4 m 3,高为1 m 的无盖长方体容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,求该容器的最低总造价.解 设该长方体容器底面的长和宽分别为a m ,b m ,成本为y 元,由于长方体容器的容积为4 m 3,高为1 m ,所以底面面积S =ab =4,y =20S +10[2(a +b )]=20(a +b )+80,由基本不等式可得y =20(a +b )+80≥20×2+80=160(元),ab 当且仅当a =b =2时,等号成立,因此,该容器的最低总造价为160元.二、基本不等式在几何中的应用例2 如图所示,设矩形ABCD (AB >BC )的周长为24,把它沿AC 翻折,翻折后AB ′交DC 于点P ,设AB =x .(1)用x 表示DP ,并求出x 的取值范围;(2)求△ADP 面积的最大值及此时x 的值.解 (1)矩形ABCD (AB >BC )的周长为24,∵AB =x ,∴AD =-x =12-x ,242在△APC 中,∠PAC =∠PCA ,所以AP =PC ,从而得DP =PB ′,∴AP =AB ′-PB ′=AB -DP =x -DP ,在Rt △ADP 中,由勾股定理得(12-x )2+DP 2=(x -DP )2,∵AB >BC =AD ,得x >12-x ,∴6<x <12,∴DP =12-(6<x <12).72x (2)在Rt △ADP 中,S △ADP =AD ·DP =(12-x )=108-(6<x <12).1212(12-72x )(6x +432x )∵6<x <12,∴6x +≥2·=72,当且仅当6x =,即x =6时取等号.432x 6x ·432x 2432x 2∴S △ADP =108-≤108-72,∴当x =6时,△ADP 的面积取最大值108-72.(6x +432x )222反思感悟 在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.跟踪训练2 如图所示,将一矩形花坛ABCD 扩建为一个更大的矩形花坛AMPN ,要求点B 在AM 上,点D 在AN 上,且对角线MN 过点C ,已知AB =4米,AD =3米,当BM =________时,矩形花坛AMPN 的面积最小.答案 4解析 设BM =x (x >0),则由DC ∥AM 得=,解得ND =,NDND +344+x 12x ∴矩形AMPN 的面积为S =(4+x )=24+3x +≥24+2=48,当且仅当(3+12x )48x 3x ×48x 3x =,即x =4时等号成立.48x1.知识清单:(1)基本不等式在生活中的应用.(2)基本不等式在几何中的应用.2.方法归纳:配凑法.3.常见误区:生活中的变量有它自身的意义,容易忽略变量的取值范围.1.用一段长为8 cm 的铁丝围成一个矩形模型,则这个模型的最大面积为( )A .9 cm 2 B .16 cm 2C .4 cm 2 D .5 cm 2答案 C解析 设矩形模型的长和宽分别为x ,y ,则x >0,y >0,由题意可得2(x +y )=8,所以x +y =4,所以矩形菜园的面积S =xy ≤==4,当且仅当x =y =2时取等号,(x +y )24424所以当矩形菜园的长和宽都为2 cm 时,面积最大,为4 cm 2.2.港珠澳大桥通车后,经常往来于珠港澳三地的刘先生采用自驾出行.由于燃油的价格有升也有降,现刘先生有两种加油方案,第一种方案:每次均加30升的燃油;第二种方案:每次加200元的燃油,则下列说法正确的是( )A .采用第一种方案划算 B .采用第二种方案划算C .两种方案一样 D .无法确定答案 B解析 任取其中两次加油,假设第一次的油价为m 元/升,第二次的油价为n 元/升.第一种方案的均价为=≥;30m +30n60m +n 2mn 第二种方案的均价为=≤.400200m+200n 2mn m +n mn 所以无论油价如何变化,第二种都更划算.3.某工厂生产某种产品,第一年产量为A ,第二年的增长率为a ,第三年的增长率为b ,这两年的平均增长率为x (a ,b ,x 均大于零),则( )A .x =B .x ≤C .x >D .x ≥a +b2a +b2a +b2a +b2答案 B解析 由题意得,A (1+a )(1+b )=A (1+x )2,则(1+a )(1+b )=(1+x )2,因为(1+a )(1+b )≤2,(1+a +1+b2)所以1+x ≤=1+,2+a +b2a +b2所以x ≤,当且仅当a =b 时取等号.a +b24.在如图所示的锐角三角形空地中,欲建一个内接矩形花园(阴影部分),矩形花园面积的最大值为________.答案 400解析 由题意设矩形花园的长为x >0,宽为y >0,矩形花园的面积为xy ,根据题意作图如下,因为花园是矩形,则△ADE 与△ABC 相似,所以=,又因为AG =BC =40,AFAG DEBC所以AF =DE =x ,FG =y ,所以x +y =40,由基本不等式x +y ≥2,得xy ≤400,xy 当且仅当x =y =20时,矩形花园面积最大,最大值为400.课时对点练1.三国时期赵爽在《勾股方圆图注》中对勾股定理的证明可用现代数学表述为如图所示,我们教材中利用该图作为“( )”的几何解释( )A .如果a >b >0,那么>a bB .如果a >b >0,那么a 2>b 2C .对任意正实数a 和b ,有a 2+b 2≥2ab ,当且仅当a =b 时等号成立D .对任意正实数a 和b ,有a +b ≥2,当且仅当a =b 时等号成立ab 答案 C解析 可将直角三角形的两直角边长度取作a ,b ,斜边为c (c 2=a 2+b 2),则外围的正方形的面积为c 2,也就是a 2+b 2,四个阴影面积之和刚好为2ab ,对任意正实数a 和b ,有a 2+b 2≥2ab ,当且仅当a =b 时等号成立,故选C.2.汽车上坡时的速度为a ,原路返回时的速度为b ,且0<a <b ,则汽车全程的平均速度比a ,b 的平均值( )A .大 B .小C .相等 D .不能确定答案 B解析 令单程为s ,则上坡时间为t 1=,下坡时间为t 2=,sa sb 平均速度为==<<.2st 1+t 22ssa+s b 21a+1b ab a +b23.将一根铁丝切割成三段做一个面积为2 m 2,形状为直角三角形的框架,在下列四种长度的铁丝中,选用最合理(够用且浪费最少)的是( )A .6.5 m B .6.8 m C .7 m D .7.2 m答案 C解析 设两直角边分别为a ,b ,直角三角形的框架的周长为l ,则ab =2,∴ab =4,l =a +b +≥2+=4+2≈6.828(m).故C 既够用,浪12a 2+b 2ab 2ab 2费也最少.4.如图所示,矩形ABCD 的边AB 靠在墙PQ 上,另外三边是由篱笆围成的.若该矩形的面积为4,则围成矩形ABCD 所需要篱笆的( )A .最小长度为8B .最小长度为42C .最大长度为8D .最大长度为42答案 B解析 设BC =a ,CD =b ,因为矩形的面积为4,所以ab =4,所以围成矩形ABCD 所需要的篱笆长度为2a +b =2a +≥2=4,4a 2a ·4a 2当且仅当2a =,即a =时,等号成立.4a 25.气象学院用32万元买了一台天文观测仪,已知这台观测仪从启动的第一天连续使用,第n 天的维修保养费为(4n +46)(n ∈N *)元,使用它直至“报废最合算”(所谓“报废最合算”是指使用的这台仪器的平均每天耗资最少)为止,一共使用了( )A .300天 B .400天 C .600天 D .800天答案 B解析 设一共使用了n 天,则使用n 天的平均耗资为=+2n +48,当且仅当=2n 时,取得最小值,此时320 000+(50+4n +46)n2n320 000n320 000nn =400.6.(多选)已知某出租车司机为升级服务水平,购入了一辆豪华轿车投入运营,据之前的市场分析得出每辆车的营运总利润y (万元)与运营年数x 的关系为y =-x 2+12x -25,则下列判断正确的是( )A .车辆运营年数越多,收入越高B .车辆在第6年时,总收入最高C .车辆在前5年的平均收入最高D .车辆每年都能盈利答案 BC解析 由题意,y =-x 2+12x -25,是开口向下的二次函数,故A 错误;对称轴x =6,故B 正确;=-x +12-=-+12≤-2+12=2,当且仅当x =5时,等号成立,yx 25x (x +25x )25故C 正确;当x =1时,y =-14,故D 错误.7.矩形的长为a ,宽为b ,且面积为64,则矩形周长的最小值为________.答案 32解析 由题意,矩形中长为a ,宽为b ,且面积为64,即ab =64,所以矩形的周长为2a +2b =2a +≥2=32,128a 2×128当且仅当a =8时,等号成立,即矩形周长的最小值为32.8.某工厂建造一个无盖的长方体贮水池,其容积为4 800 m 3,深度为3 m .如果池底每1 m 2的造价为150元,池壁每1 m 2的造价为120元,要使水池总造价最低,那么水池底部的周长为________m.答案 160解析 设水池底面一边的长度为x m ,则另一边的长度为m ,4 8003x 由题意可得水池总造价y =150×+120×=240 000+7204 8003(2×3x +2×3×4 8003x )(x >0),(x +1 600x)则y =720+240000≥720×2+240 000=720×2×40+240 000=297(x +1 600x)x ·1 600x 600,当且仅当x =,即x =40时,y 有最小值297 600,1 600x 此时另一边的长度为=40(m),4 8003x 因此,要使水池总造价最低,则水池的底面周长为160 m.9.经观测,某公路段在某时段内的车流量y (千辆/小时)与汽车的平均速度v (千米/小时)之间有函数关系:y =(v >0).在该时段内,当汽车的平均速度v 为多少时车流量y 900vv 2+5v +1 000最大?解 y ==,900vv 2+5v +1 000900v +1 000v +5∵v +≥2=20,1 000v v ·1 000v 10∴y =≤=,900v +1 000v +59002010+5180410+1当且仅当v =,即v =10时等号成立.1 000v 10∴当汽车的平均速度v =10千米/小时时车流量y 最大.1010.根据交通法规,某路段限制车辆最高时速不得超过100千米/小时,现有一辆运货卡车在该路段上以每小时x 千米的速度匀速行驶130千米.假设汽油的价格是每升2元,而汽车每小时耗油升,司机的工资是每小时14元.(2+x 2360)(1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值.解 (1)由题意,y =2·+14·=+(0<x ≤100).(2+x 2360)130x 130x 2 340x 13x18(2)因为y =+≥2=26,当且仅当x =18时,等号成立,2 340x 13x18 2 340x ·13x181010又0<18<100,10所以当x =18千米/小时时,这次行车的总费用最低,为26元.101011.无字证明是指只用图象而无需文字解释就能不证自明的数学命题,由于其不证自明的特性,这种证明方式被认为比严格的数学证明更为优雅与条理,请写出该图验证的不等式( )A .a 2+b 2≥a +bB .4ab ≥a 2+b 2C .a +b ≥2D .a 2+b 2≥2abab 答案 D解析 从图形可以看出正方形的面积比8个直角三角形的面积和要大,当中心小正方形缩为一个点时,两个面积相等;因此(a +b )2≥8×ab =4ab ,所以a 2+b 2≥2ab .1212.中国南宋大数学家秦九韶提出了“三斜求积术”,即已知三角形三边长求三角形面积的公式:设三角形的三条边长分别为a ,b ,c ,则三角形的面积S 可由公式S =求得,其中p 为三角形周长的一半,这个公式也被称为海伦一秦九韶公p (p -a )(p -b )(p -c )式.现有一个三角形的边长满足a =6,b +c =8,则此三角形面积的最大值为( )A .3 B .8 C .4 D .9773答案 A解析 由题意p =7,S ==≤·=3,7(7-a )(7-b )(7-c )7(7-b )(7-c )77-b +7-c27当且仅当7-b =7-c ,即b =c =4时,等号成立,此三角形面积的最大值为3.713.某商场对商品进行两次提价,现提出四种提价方案,提价幅度较大的一种是( )A .先提价p %,后提价q %B .先提价q %,后提价p %C .分两次提价%p +q2D .分两次提价%(以上p ≠q )p 2+q 22答案 D解析 由题意可知,A ,B 选项的两次提价均为(1+p %)(1+q %);C 选项的提价为2,D 选项的提价为(1+p +q 2%)2,(1+p 2+q 22%)又∵<,∴(1+p %)(1+q %)<2<2,p +q2p 2+q 22(1+p +q 2%)(1+p 2+q 22%)∴提价最多的为D 选项.14.某公司租地建仓库,每月土地费用与仓库到车站距离成反比,而每月货物的运输费用与仓库到车站距离成正比.如果在距离车站10 km 处建仓库,则土地费用和运输费用分别为2万元和8万元,那么要使两项费用之和最小,仓库应建在离车站________ km 处.答案 5解析 设仓库到车站距离为x ,每月土地费用为y 1,每月货物的运输费用为y 2,由题意可设y 1=,y 2=k 2x ,k 1x 把x =10,y 1=2与x =10,y 2=8分别代入上式得k 1=20,k 2=0.8,∴y 1=,y 2=0.8x ,20x 费用之和y =y 1+y 2=0.8x +≥2×4=8,20x 当且仅当0.8x =,即x =5时等号成立.20x 当仓库建在离车站5 km 处两项费用之和最小.15.一家商店使用一架两臂不等长的天平秤黄金,一位顾客到店里购买10 g 黄金,售货员先将5 g 的砝码放在天平的左盘中,取出一些黄金放在天平右盘中使天平平衡;再将5 g 的砝码放在天平右盘中,再取出一些黄金放在天平左盘中使天平平衡;最后将两次秤得的黄金交给顾客,你认为顾客购得的黄金是( )A .大于10 gB .大于等于10 gC .小于10 gD .小于等于10 g 答案 A解析 由于天平两臂不等长,可设天平左臂长为a (a >0),右臂长为b (b >0),则a ≠b ,再设先称得黄金为x g ,后称得黄金为y g ,则bx =5a ,ay =5b ,∴x =,y =,5a b 5b a ∴x +y =+=5≥5×2=10,5ab 5b a (a b +b a )a b ·b a 当且仅当=,即a =b 时等号成立,但a ≠b ,等号不成立,即x +y >10,a b ba 因此,顾客购得的黄金大于10 g.16.某书商为提高某套丛书的销售量,准备举办一场展销会,据市场调查,当每套丛书售价定为x 元时,销售量可达到(10-0.1x )万套.现出版社为配合该书商的活动,决定进行价格改革,每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为20元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价-供货价格.(1)求每套丛书利润y 与售价x 的函数关系,并求出每套丛书售价定为80元时,书商能获得的总利润是多少万元?(2)每套丛书售价定为多少元时,每套丛书的利润最大?并求出最大利润.解 (1)∵Error!∴0<x <100,y =x -=x --20(0<x <100),(20+1010-0.1x )100100-x 当x =80时,y =80--20=55(元),100100-80此时销量为10-0.1×80=2(万套),总利润为2×55=110(万元).(2)y =x --20,100100-x ∵0<x <100,∴100-x >0,∴y =-+80[100100-x +(100-x )]≤-2+80=60,100100-x ·(100-x )当且仅当=100-x ,即x =90元时,每套利润最大为60元.100100-x。

不等式应用题的三种常见类型

不等式应用题的三种常见类型

不等式应用题的三种常见类型
1. 生活中的应用题:
例题:小明的月收入为4000元,他每月的房租花费不得超过他的月收入的三分之一。

假设小明每月还要花费1000元用于生活开销,他每月至少要赚多少钱才能够维持生活?
解题思路:设小明每月的房租花费为x元,则x ≤ 4000 / 3。

因此,小明每月的生活开销就是1000元,其余的收入全部用于支付房租,即 x + 1000 = 4000 - x。

解得 x = 1500,即小明每月至少要赚1500元才能够维持生活。

2. 比例中的应用题:
例题:某车间一天生产甲零件500个,乙零件600个,工人们生产的甲零件比例与乙零件比例相同。

已知当天工人们共生产了2160个零件,其中甲零件占比例的三分之一。

问甲零件与乙零件各生产了多少个?
解题思路:设甲零件生产的数量为x,则乙零件生产的数量为y,由题意可得:
x/y = 500/600 (1)
x + y = 2160 * 1/3 (2)
将(1)式改写为x = 5/6y,代入(2)式中,得到:
5/6y + y = 720
解得 y = 360,代入(1)式中,得到 x = 300。

因此,甲零件
生产了300个,乙零件生产了360个。

3. 几何中的应用题:
例题:一个圆的面积是一个正方形面积的三倍,这个圆的半径是正方形的边长的多少倍?
解题思路:设圆的半径为r,正方形的边长为x,则圆的面积
为πr²,正方形的面积为x²。

根据题意,得到:
πr² = 3x²
解得r = x√(3/π)。

因此,圆的半径是正方形的边长的√(3/π)倍。

不等式中的应用题

不等式中的应用题

不等式中的应用题
1、某公司一年购买某种货物400吨,每次都购买x吨,运费为4万元/次,
一年的总存储费用为4x万元。

(1)要使一年的总运费与总存储费用之和最小,则每次购买多少吨?
(2)要使一年的总运费与总存储费用之和不超过200万元,则每次购买量在什么范围?
2、某物流公司计划在其停车库附近租地建仓库,已知每月土地占用费p(万元)与仓库到停车库的距离x(公里)成反比,而每月库存货物的运费k(万元)与仓库到停车库的距离x(公里)成正比.如果在距离停车库18公里处建仓库,这两项费用p和k分别为
4万元和144万元,那么要使这两项费用之和最小,仓库到停车库的距离x _______公里.
2,画面上下边要3、如图设计一幅矩形宣传画,要求画面
......面积为4840 cm
..(阴影部分)
留8cm空白,左右要留5cm空白,怎样确定画面的高与宽的尺寸,才能使宣传画
所用纸张
..面积最小?
4、两位旅客从同一地点出发,他们沿同一方向走到同一目的地,旅客甲先用一半时间以速度a行走,另一半时间以速度b(a,b不相等)行走;旅客乙有一半路程以a速度行走,
另一半路程以速度b(a,b不相等)行走,问哪一个旅客先到达目的地?。

不等式在实际问题中的应用

不等式在实际问题中的应用

不等式在实际问题中的应用不等式是数学中的重要概念,它在解决实际问题中起着重要的作用。

不等式的应用范围广泛,涉及到经济、生活、科学等各个领域。

本文将从几个实际问题出发,探讨不等式在解决这些问题中的应用。

一、经济领域中的不等式应用在经济领域中,不等式常常被用来描述资源的分配情况和经济收入的差距。

以收入分配为例,我们可以通过不等式来描述不同社会群体之间的收入差距。

假设有两个家庭A和B,家庭A的年收入为X元,家庭B的年收入为Y元,且X<Y。

我们可以用不等式X<Y来表示家庭B的收入高于家庭A。

这样的不等式可以帮助我们分析收入差距的大小,为政府制定相关政策提供参考。

二、生活中的不等式应用在日常生活中,不等式也有着广泛的应用。

以购物打折为例,商场经常会推出各种促销活动,如打折、满减等。

假设某商场推出了一种打折活动,商品原价为P 元,现在打折后的价格为Q元,且Q<P。

我们可以用不等式Q<P来表示商品打折后的价格低于原价。

通过不等式,我们可以判断打折力度的大小,从而决定是否购买。

三、科学领域中的不等式应用在科学研究中,不等式也有着重要的应用。

以生态学为例,生态系统中的物种数量和资源之间存在着一定的关系。

假设某个生态系统中的物种数量为N,资源的供给量为R,且N<R。

我们可以用不等式N<R来表示资源供给量不足以支撑物种的数量。

通过不等式,我们可以分析生态系统的平衡状态,为保护生物多样性提供科学依据。

四、教育领域中的不等式应用在教育领域中,不等式也被广泛应用于学生的成绩评价和升学选拔。

以高考为例,学生的分数通常通过不等式来进行排名和选拔。

假设某个学校有N个学生,他们的总分从高到低依次为S1、S2、...、SN,且S1>S2>...>SN。

我们可以用不等式S1>S2>...>SN来表示学生之间的成绩差距。

通过不等式,学校可以根据学生的成绩进行排名,为升学选拔提供依据。

函数与不等式综合题

函数与不等式综合题

函数与不等式综合题摘要:1.函数与不等式的概念和基本知识2.函数与不等式的综合应用3.函数与不等式综合题的解题技巧和方法4.函数与不等式综合题的实例分析正文:一、函数与不等式的概念和基本知识函数是一种将输入值(自变量)映射到输出值(因变量)的数学关系。

在数学中,函数通常表示为一个数的集合(函数的定义域)到另一个数的集合(函数的值域)的映射。

不等式是数学中表示不等关系的一种表达方式,它由不等号(如“>”、“<”、“≤”、“≥”等)连接两个数或表达式。

二、函数与不等式的综合应用在实际问题中,函数与不等式常常综合在一起,形成一种综合性的数学问题。

这类问题不仅需要对函数的性质和不等式的解法有深入的了解,还需要运用逻辑思维和数学分析能力,找出问题的关键所在,进行有效的求解。

三、函数与不等式综合题的解题技巧和方法1.确定问题的主要矛盾:在解决函数与不等式综合题时,首先要明确题目所求,找出问题的主要矛盾,是求函数的极值、最值,还是解不等式。

2.分析函数的性质:根据函数的性质,如单调性、凸性、周期性等,可以快速排除一些不可能的情况,缩小问题的求解范围。

3.运用不等式的解法:不等式的解法有很多种,如解不等式的基本步骤、符号法、数轴法、韦达定理等,可以根据题目的特点,灵活运用合适的解法。

4.代换和化归:在解决函数与不等式综合题时,可以尝试将问题进行代换,将复杂问题化归为简单问题,或将未知量表示为已知量的函数,从而简化问题。

5.数形结合:函数与不等式综合题的解题过程中,可以尝试将函数的图形和不等式的解集进行结合,通过直观的图形,更好地理解问题的性质和解的情况。

四、函数与不等式综合题的实例分析例:已知函数f(x)=x^3-3x^2+2x-1,求解不等式|f(x)|>1 的解集。

解:首先,求出函数f(x) 的导数f"(x)=3x^2-6x+2,并令其等于0,解得x=1 或x=2/3。

然后,根据函数的单调性和极值,可以得出f(x) 在(-∞,1) 和(2/3,+∞) 上单调递增,在(1,2/3) 上单调递减。

例谈对数平均不等式在高考中的应用

例谈对数平均不等式在高考中的应用

例谈对数平均不等式在高考中的应用数平均不等式在高考中的应用:
1. 三角函数的考题:在高考三角函数考题中,运
用到数平均不等式时并不多见,但是其中仍有一
些细节上的应用,如果考生掌握了数平均不等式,可以简化不少三角函数的解答步骤,有助于整体
的解答,提高考试的得分。

2. 方程的求解:数平均不等式在解方程的过程中
有重要的作用,考生可以在对函数变换时使用数
平均不等式,求解方程最终结果,可以得到解析
解,比较直接有利于及时正确求解题目,节省算法步骤,保证题目正确率高。

3. 网络题:在高考考网络题时,考生可以利用数平均不等式,对一些网络变量进行最优排列,保证网络的节点变换的有效性,同时可以精确计算网络的最短路径,及时准确地完成题目。

4. 统计题:统计学中数平均不等式的应用也是重要的,当考生在分析统计数据时,可以用数平均不等式公式迅速给出结论,更直接精确地推出假设概率,充分发挥数学的优势,更能反映考试中统计数据的实际含义,提高题目的得分。

总结来看,数平均不等式不仅广泛应用于高考数
学考题,而且在高考中有着巨大的作用,考生要
熟练掌握数平均不等式的应用,深入理解数理科
学的思想,在高考中发挥特长,取得更高的成绩。

使用不等式解决综合算式题

使用不等式解决综合算式题

使用不等式解决综合算式题在数学中,不等式是一种数学表达式,表示两个数或者两个表达式之间的大小关系。

在解决综合算式题时,我们可以利用不等式来推导和求解方程,从而得到正确的答案。

本文将通过几个具体的例子来介绍如何使用不等式解决综合算式题。

例子一:商场打折某个商场进行了一次打折活动,所有商品都打7折。

现在小明买了一双鞋,原价是120元,他只用了72元就买到了这双鞋。

请问小明享受了多大的折扣?解题思路:我们可以设x为小明享受的折扣,根据题目中的条件,得到不等式:0.7 × 120 ≤ 72 ≤ 1 × 120。

化简不等式得到:84 ≤ 72 ≤ 120,而72同时满足84 ≤ 72,因此小明享受的折扣在14%到30%之间。

例子二:分数比较小明参加了一场数学测验,他得了90分,在班级中排名第二。

设班级共有n个学生参加测验,请问小明所在班级的学生人数至少是多少?解题思路:我们可以设x为小明班级的学生人数,根据题目中的条件,得到不等式:2 / n ≤ 90 / x ≤ 1。

化简不等式得到:2x ≤ 90n ≤ x。

根据题意,90n等于x,因此小明班级的学生人数至少是90人。

例子三:购买水果小明去超市买水果,他买了苹果和橘子。

已知苹果的价格为3元/斤,橘子的价格为4元/斤。

小明一共花了20元,买了不少于5斤水果。

请问苹果和橘子各买了多少斤?解题思路:设x为小明买的苹果的重量,y为小明买的橘子的重量。

根据题目中的条件,得到不等式:3x + 4y ≤ 20,并且x + y ≥ 5。

我们可以通过图像法或者代入法求解不等式组,得到x的解集为[1.67, 5],y的解集为[0, 3.33]。

因此,小明买的苹果的重量在1.67至5斤之间,橘子的重量在0至3.33斤之间。

结论:通过上述三个例子,可以看出使用不等式解决综合算式题是一种有效的数学方法。

在解题时,我们可以通过设定合适的变量和构建相应的不等式来描述问题,然后通过数学推导求解得到结果。

高等数学应试技巧不等式在解题中的应用技巧

高等数学应试技巧不等式在解题中的应用技巧

高等数学应试技巧不等式在解题中的应用技巧高等数学里,不等式可是个相当重要的家伙!它在解题的时候,那用处可大了去啦。

咱们先来说说不等式的基本概念哈。

不等式这玩意儿,简单来说就是表示两个数或者表达式大小关系的式子。

比如说,x > 5 ,这就是一个不等式,意思是 x 比 5 大。

在解题的时候,不等式的应用技巧那可真是五花八门。

我记得我上大学那会,有一次考试碰到一道题,题目是这样的:已知函数 f(x) =x^2 2x + 3 ,求当 x 在区间 1, 3 上时,f(x) 的取值范围。

这道题乍一看好像有点懵,但是仔细一琢磨,咱们可以利用不等式来解决。

因为 f(x) = x^2 2x + 3 可以写成 f(x) =(x 1)^2 + 2 。

因为(x 1)^2 总是大于等于 0 的,所以 f(x) 就大于等于 2 。

再看区间 1, 3 ,当 x = 1 时,f(x) 取最小值 2 ;当 x = 3 时,f(x) = 6 ,所以 f(x)的取值范围就是 2, 6 。

还有一种常见的情况,就是利用均值不等式。

比如说,对于正实数a 和b ,有 a + b >=2√(ab) 。

这个不等式在求最值的时候特别好用。

我给您举个例子哈。

有一道题是这样的:要建造一个面积为 500 平方米的矩形花园,花园一面靠墙,另外三面用篱笆围起来,篱笆的总长为 100 米,问矩形的长和宽分别为多少时,所用篱笆最短?这时候咱们就可以设矩形的长为 x 米,宽为 y 米。

根据题目条件,可以得到 xy = 500 ,篱笆的长度 L = x + 2y 。

这时候咱们就可以利用均值不等式啦,L = x + 2y >=2√(2xy) ,把 xy = 500 代进去,就能求出 L 的最小值,然后再根据条件求出 x 和 y 的值。

再比如说,在证明不等式的时候,有时候可以采用作差法或者作商法。

作差法就是把两个式子相减,判断差的正负来确定大小关系;作商法呢,就是两个式子相除,判断商和 1 的大小关系。

如何用不等式解决数学问题

如何用不等式解决数学问题

如何用不等式解决数学问题不等式是数学中常用的一种表示方法,它可以帮助我们解决各种与大小关系相关的问题。

在解决数学问题中,灵活运用不等式可以帮助我们简化问题、加强分析和推理能力,从而更高效地解决问题。

本文将介绍如何用不等式解决数学问题,并以几个实际问题为例,展示不等式在数学问题中的应用。

一、基本概念及性质在使用不等式解决数学问题之前,我们首先需要了解不等式的基本概念和性质。

不等式是用不等号表示的数学关系,包括大于(>)、小于(<)、大于或等于(≥)和小于或等于(≤)四种形式。

对于不等式而言,可以采用加、减、乘、除等运算进行推导和求解。

同时,不等式还满足传递性、对称性和加减性等性质,这些性质是我们求解问题时的有力工具。

二、用不等式简化数学问题有时,我们遇到的数学问题可能比较繁琐,运算过程冗长。

而不等式的运用可以帮助我们简化问题,提高求解效率。

在这种情况下,我们可以通过构造合适的不等式,来对问题进行简化。

以一个实际问题为例:某家电商平台举办促销活动,购买商品满100元减20元。

现有甲、乙两位顾客,要购买一件价格为x元的商品,并利用此次活动来尽可能地节省开销。

求解当x为多少时,甲、乙两位顾客分别所付的金额相等。

解决这个问题可以通过构造不等式来实现。

首先,甲顾客所付的金额不小于100元,即x≥100。

其次,乙顾客所付的金额不大于100元减去20元,即x≤80。

通过组合两个不等式,我们可以得到100≥x≥80。

由于甲、乙两位顾客所付的金额相等,因此x取80、100之间的任意值都是满足条件的。

通过这个不等式,我们可以简化问题,直接得到结果。

三、用不等式加强分析和推理能力除了简化问题之外,不等式还可以帮助我们加强对问题的分析和推理能力。

通过构造和运用不等式,我们可以深入思考问题的本质,寻找更加合理的解决方案。

以一个实际问题为例:某数列的前n项和为S,且该数列满足每一项都大于0。

现在我们需要证明,当且仅当S>0时,该数列至少存在一个正项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《不等式在综合题中的应用》教学设计
学习内容分析:
不等式是高中数学课程中很重要的一个部分,不等式在综合题中的应用更是要求学生熟练运用不等式的性质解决不等式与其他知识点的综合问题,例如函数、数列、导数等,而这些题目往往是压轴题,难度比较大。

学情分析:
高二学生经过高一一年的学习已经形成了一定的学习方法,进入了学习状态。

经过前一段时间对不等式的性质、证明还有解不等式的学习基本上具备了解决中等难度的不等式问题的能力,但综合题因为融入了其他章节的知识点,而这些知识是以前学的,有一段时间没有复习,在这种情况下学生可能会比较吃力。

教学目标:
通过对例题的讲解培养学生解决不等式的综合题的能力,训练学生的逻辑思维,是他们能解决基本的综合题。

教具:投影仪 黑板 粉笔
教学过程:
1、回顾旧知识
(1)不等式的性质(略)
(2)证明不等式的常用方法:比较法、综合法、分析法、放缩法、换元法(和数学归纳法)
(3)函数与数列(略)
2、例题讲解
例:已知数列{n a }满足21=a ,)(,1*1N n a a a n n n ∈+
=+ (1)求证:n 43a n >
; (2)若n
n a 1b =,{n b }前n 项的和为n S ,求证n a 89S n <; 证明:(1)由,11n n n a a a +=+两边平方得,22122221+>++=+n n
n n a a a a 故 ,2221>-+n n a a 同理,
2212>--n n a a 22221>---n n a a ,22122>-a a 迭加得,22212->-n a a n 即,2242->-n a n 故,916222n n a n >+>从而有n 4
3a n >; (2)依题意,11n n n a a a +=+所以n n n
n a a a -==+11b , n S =+1b ++ 2b n b =12a a -+n n a a a a -++-+123 =11a a n -+=21-+
n n a a 故04
324382189S n <--<--=-n n a a a n n n ,故n a 89S n < .。

相关文档
最新文档