2017年最新人教版高中数学必修一第一章测试(含详细答案)
高中数学必修一第一章《集合与函数概念》单元测试题(含答案)
⾼中数学必修⼀第⼀章《集合与函数概念》单元测试题(含答案)《集合与函数概念》单元测试题(第⼀章)(120分钟150分)⼀、选择题(本⼤题共12⼩题,每⼩题5分,共60分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的)1.集合A={0,1,2},B={x|-1A.{0}B.{1}C.{0,1}D.{0,1,2}2.设集合M={2,0,x},集合N={0,1},若N?M,则x的值为( )A.2B.0C.1D.不确定3.在下列由M到N的对应中构成映射的是( )4.已知函数f(x)=ax3+bx(a≠0),满⾜f(-3)=3,则f(3)= ( )A.2B.-2C.-3D.3【补偿训练】已知y=f(x)是偶函数,且f(4)=5,那么f(4)+f(-4)的值为( ) A.5 B.10C.8D.不确定5.已知⼀次函数y=kx+b为减函数,且kb<0,则在直⾓坐标系内它的⼤致图象是( )6.若f(x)=则f的值为( )A.-B.C.D.7.若f(g(x))=6x+3,且g(x)=2x+1,则f(x)= ( )A.3B.3xC.6x+3D.6x+18.下列四个图形中,不是以x为⾃变量的函数的图象是( )9.已知集合A={x|x2+x+1=0},若A∩R=?,则实数m的取值范围是( )A.m<4B.m>4C.0D.0≤m<410.函数f(x)=|x|和g(x)=x(2-x)的单调递增区间分别是( )A.(-∞,0]和(-∞,1]B.(-∞,0]和[1,+∞)C.[0,+∞)和(-∞,1]D.[0,+∞)和[1,+∞)11.对于任意两个正整数m,n,定义某种运算“※”如下:当m,n都为正偶数或正奇数时,m※n=m+n;当m,n中⼀个为正偶数,另⼀个为正奇数时,m※n=mn.则在此定义下,集合M={(a,b)|a※b=12,a∈N*,b∈N*}中的元素个数是( )A.10个B.15个C.16个D.18个12.设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则使<0的x的取值范围为( )A.(-1,0)∪(1,+∞)B.(-∞,-1)∪(0,1)C.(-∞,-1)∪(1,+∞)D.(-1,0)∪(0,1)⼆、填空题(本⼤题共4⼩题,每⼩题5分,共20分.请把正确答案填在题中横线上)13.已知集合A={x|1≤x<2},B={x|x14.已知a是实数,若集合{x|ax=1}是任何集合的⼦集,则a的值是.15.已知f(x)为偶函数,则f(x)=x1,1x0, ______,0x 1.+-≤≤≤≤16.定义在R上的奇函数f(x)为减函数,若a+b≤0,给出下列不等式:①f(a)f(b)≤0;②f(a)+f(b)≤f(-a)+f(-b);③f(b)f(-b)≤0;④f(a)+f(b)≥f(-a)+f(-b).其中正确的是.(把你认为正确的不等式的序号全写上).三、解答题(本⼤题共6⼩题,共70分.解答时应写出必要的⽂字说明、证明过程或演算步骤)17.(10分)设全集为R,集合A={x|3≤x<6},B={x|2(1)分别求A∩B,(eB)∪A.R(2)已知C={x|a18.(12分)已知函数f(x)=.(1)判断点(3,14)是否在f(x)的图象上.(2)当x=4时,求f(x)的值.(3)当f(x)=2时,求x的值.19.(12分)若函数f(x)=x2+4x+a的定义域和值域均为[-2,b](b>-2),求实数a,b的值.20.(12分)(2015·烟台⾼⼀检测)已知函数f(x)=ax+b,且f(1)=2,f(2)=-1.(1)求f(m+1)的值.(2)判断函数f(x)的单调性,并⽤定义证明..【拓展延伸】定义法证明函数单调性时常⽤变形技巧(1)因式分解:当原函数是多项式函数时,作差后的变形通常进⾏因式分解.(2)通分:当原函数是分式函数时,作差后往往进⾏通分,然后对分⼦进⾏因式分解.(3)配⽅:当原函数是⼆次函数时,作差后可考虑配⽅,便于判断符号.21.(12分)已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,⼜f(1)=-2.(1)判断f(x)的奇偶性.(2)求证:f(x)为R上的减函数.(3)求f(x)在区间[-3,3]上的值域.22.(12分)定义在(-1,1)上的函数f(x)满⾜:①对任意x,y∈(-1,1),都有f(x)+f(y)=f;②f(x)在(-1,1)上是单调递减函数,f=-1.(1)求f(0)的值.(2)求证:f(x)为奇函数.(3)解不等式f(2x-1)<1.《集合与函数概念》单元测试题参考答案(第⼀章)(120分钟150分)。
2017年最新人教版高中数学必修一第一章测试(含详细答案)
第3题图高中数学《必修一》第一章教学质量检测卷时间:120分钟。
总分:150分。
一、选择题(将选择题的答案填入下面的表格。
本大题共10小题,每小题5分,共50分。
)1、下列各组对象中不能构成集合的是( )A 、佛冈中学高一(20)班的全体男生B 、佛冈中学全校学生家长的全体C 、李明的所有家人D 、王明的所有好朋友 2、已知集合{}{}5,1,A x R x B x R x =∈≤=∈>那么AB 等于( )A.{1,2,3,4,5} B.{2,3,4,5} C.{2,3,4} D.{}15x R x ∈<≤ 3、设全集{}1,2,3,4,5,6,7,8U =,集合{1,2,3,5}A =,{2,4,6}B =,则图中的阴影部分表示的集合为( )A .{}2B .{}4,6C .{}1,3,5D .{}4,6,7,8 4、下列四组函数中表示同一函数的是( )A.x x f =)(,2()g x = B.()221)(,)(+==x x g x x fC.()f x =()g x x = D.()0f x =,()g x =5、函数2()21f x x =-,(0,3)x Î。
()7,f a =若则a 的值是 ( ) A 、1 B 、1- C 、2 D 、2±6、2,0()[(1)]1 0x x f x f f x ()设,则 ,()+≥⎧=-=⎨<⎩( ) A 、3 B 、1 C. 0 D.-17、()3f x =函数的值域为( )A 、[3,)+?B 、(,3]-?C 、[0)+?,D 、R8、下列四个图像中,不可能是函数图像的是 ( )9、设f(x)是R 上的偶函数,且在[0,+∞)上单调递增,则f(-2),f(3),f(-π)的大小顺序是:( ) A 、 f(-π)>f(3)>f(-2) B 、f(-π) >f(-2)>f(3) C 、 f(-2)>f(3)> f(-π) D 、 f(3)>f(-2)> f(-π) 10、在集合{a ,b ,c ,d}上定义两种运算⊕和⊗如下:那么b ⊗ ()a c ⊕=( )A .aB .bC .cD .d 二、填空题(本大题共4小题,每小题5分,共20分) 11、函数0(3)y x =+-的定义域为12、函数2()610f x x x =-+-在区间[0,4]的最大值是13、若}4,3,2,2{-=A ,},|{2A t t x xB ∈==,用列举法表示B 是 . 14、下列命题:①集合{},,,a b c d 的子集个数有16个;②定义在R 上的奇函数()f x 必满足(0)0f =;③()()2()21221f x x x =+--既不是奇函数又不是偶函数;④偶函数的图像一定与y 轴相交;⑤1()f x x=在()(),00,-∞+∞上是减函数。
(人教版B版2017课标)高中数学必修第一册:第一章综合测试(附答案)
第一章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集{|13}U x x =∈-Z ≤≤,集合{|03}A x x =∈Z ≤,则UA =( )A .{1}-B .{1,0}-C .{1,0,1}--D .{|10}x x -≤<2.已知集合{}|32A x x =-<<,{|4 1}B x x x =-<或>,则A B =( )A .{|43}x x --<<B .{}|31x x -<<C .{|12}x x <<D .{|31}x x x -<或>3.已知全集{1,2,3,4,5}U =,集合{1,5}A =,集合{2,3,5}B =,则()UB A =( )A .{2}B .{2,3}C .{1}D .{1,4}4.若a ,b 是实数,则“2a >”是“24a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.命题“0x ∀>,2230x x +->”的否定是( ) A .0x ∃>,2230x x +-≤ B .0x ∀>,2230x x +-≤ C .0x ∃<,2230x x +-≤ D .0x ∀<,2230x x +-≤6.设p :实数x ,y 满足1x >且1y >;q :实数x ,y 满足3x y +>,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件7.设A ,B 是两个非空集合,定义集合{|}A B x x A x B -=∈∉且,若{|05}A x N x =∈,{|(2)(5)0}B x x x =--<,则A B -=( )A .{0,1}B .{1,2}C .{0,1,2}D .{0,1,2,5}8.“(1)(3)0x x -->”是“1x <”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件9.若命题“x ∀∈R ,220x mx ++”为真命题,则m 的取值范围是( )A .m >B .m -<C .222m -D .22 22m m -或10.“1a =”是“关于x 的方程22x a x +=有实数根”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件11.已知命题0:0p x ∃>,010x a +-=,若p 为假命题,则a 的取值范围是( ) A .1a <B .1a ≤C .1a >D .1a ≥12.已知非空集合A ,B 满足以下两个条件: (1){1,2,3,4,5,6}AB =,A B =∅;(2)若x A ∈,则1x B +∈.则有序集合对(,)A B 的个数为( ) A .12B .13C .14D .15二、填空题(本大题共4小题,每小题5分,共20分,把答案写在题中的横线上) 13.已知命题0:p x ∃∈R ,00sin x x >,则p 的否定为__________. 14.已知集合{|21,}A x x k k ==-∈Z ,{}|2B x x k k ==∈Z ,,则A B =__________.15.若集合{}24,21,A a a =--,{5,1,9}B a a =--且{9}AB =,则a 的值是__________.16.已知集合{|02}A x x =<<,集合{|11}B x x =-<<,集合{|10}C x mx =+>,若A B C ⊆,则实数m的取值范围是__________.三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.[10分]判断下列命题是全称量词命题还是存在量词命题,并判断其真假. (1)至少有一个整数,它既能被11整除,又能被9整除. (2)末位是0的实数能被2整除. (3)1x ∃>,220x ->.18.[12分]已知集合{}2|30,A x x ax a =-+=∈R . (1)若1A ∈,求实数a 的值;(2若集合{}2|20,B x x bx b b =-+=∈R ,且{3}A B =,求A B .19.[12分]已知集合{|32}A x x =-<<,{|05}B x x =<,{|}C x x m =<,全集为R (1)求()RA B ;(2)若()A C B ⊆,求实数m 的取值范围.20.[12分]已知命题p :“2[1,2],0x x a ∀∈-≥”,命题q :“0x ∃∈R ,200220x ax a ++-=”.若命题p ,q都是真命题,求实数a 的取值范围.21.[12分已知集合{|35}A x x =-≤≤,{|121}B x m x m =+-<<,{|}C x x A x B =∈∈∈Z 或. (1)当3m =时,用列举法表示出集合C ; (2)若A B B =,求实数m 的取值范围.22.[12分]已知:20p x ->,:40q ax ->,其中a ∈R 且0a ≠. (1)若p 是q 的充分不必要条件,求实数a 的取值范围; (2)若p 是q 的必要不充分条件,求实数a 的取值范围.第一章综合测试答案解析一、 1.【答案】A 2.【答案】C 3.【答案】C 4.【答案】A 5.【答案】A 6.【答案】D【解析】 1.11x =>且 1.11y =>, 2.23x y +=<,充分性不成立;4x =,0y =,3x y +>,不满足1x >且1y >,故选D .7.【答案】D【解析】{0,1,2,3,4,5}A =,{|25}B x x =<<,∴{0,1,2,5}A B -=.8.【答案】B【解析】由“(1)(3)0x x -->”得3x >或1x <,即“(1)(3)0x x -->”是“1x <”的必要不充分条件. 9.【答案】C【解析】由题意得280m ∆=-,222m -∴,故选C . 10.【答案】A【解析】关于x 的方程22x a x +=有实数根,则440a ∆=-≥,解得1a .∴“1a =”是“关于x 的方程22x a x +=有实数根”的充分不必要条件.故选A .11.【答案】D【解析】∵p 为假命题,∴p 的否定为真命题,即0,10x x a ∀+-≠>,即1x a ≠-,10a -∴≤,则1a ≥.故选D .12.【答案】A【解析】由题意分类讨论可得若{1}A =,则{2,3,4,5,6}B =;若{2}A =,则{1,3,4,5,6}B =;若{3}A =,则{1,2,4,5,6}B =;若{4}A =,则{1,2,3,5,6}B =;若{5}A =,则{1,2,3,4,6}B =;若{1,3}A =,则{2,4,5,6}B =;若{1,4}A =,则{2,3,5,6}B =;若{1,5}A =,则{2,3,4,6}B =;若{2,4}A =,则{1,3,5,6}B =;若{2,5}A =,则{1,3,4,6}B =;若{3,5}A =,则{1,2,4,6)B =;若{1,3,5}A =,则{2,4,6}B =.综上可得有序集合对(,)A B 的个数为12.故选A. 二、13.【答案】x ∀∈R ,sin x x14.【答案】∅【解析】∵集合{}{|21,}A x x k k ==-∈=Z 奇数,{}{|2,}B x x k k ==∈=Z 偶数,∴A B ⋂=∅. 15.【答案】3- 16.【答案】112m -【解析】由题意,{|12}A B x x =-<<,∵集合{|10}C x mx =+>,A B C ⊆12m-∴ 12m -∴102m -∴<②0m =时,成立; ③0m >,1x m->, 11m --∴, 1m ∴01m ∴<≤.综上所述,112m -. 三、17.【答案】解:(1)命题中含有存在量词“至少有一个”,因此是存在量词命题,真命题. (2)命题中省略了全称量词“所有”,是全称量词命题,真命题. (3)命题中含有存在量词“∃”,是存在量词命题,真命题. 18【答案】解:(1)1A ∈∵,∴130a -+=, ∴4a =(2)∵{3}AB =,3,3A B ∈∈∴, 93301830a b b -+=⎧⎨-+=⎩∴ 解得4a =,9b =.∴{}2|430{1,3}A x x x =-+==,{}23|29903,2B x x x ⎧⎫=-+==⎨⎬⎩⎭∴31,,32A B ⎧⎫=⎨⎬⎩⎭20.【答案】解:若p 为真命题,则[1,2]x ∀∈,2a x 恒成立,∵[1,2]x ∈,2[1,4]x ∈∴1a ∴.若q 为真命题,即2220x ax a ++-=有实根,则244(2)0A a a =--, 即1a 或2a -≤综上,所求实数a 的取值范围为2a -≤或1a =.21.【答案】解:(1)当3m =时,{|45}B x x =<<,所以{3,2,1,0,1,2,3,4,5}C =---. (2)若AB B =,则B A ⊂.①当B =∅时,121m m +-,解得2m ≤;②当B ≠∅时,由121,13,215,m m m m +-⎧⎪+-⎨⎪-⎩<≥≤,解得23m <≤综上所述,实数m 的取值范围是3m ≤.22.【答案】解:(1)设:{|20}p A x x =->,即:{|2}p A x x =>.:{|40}q B x ax =->,因为p 是q 的充分不必要条件,则A B ≠⊂,则有0,42,a a⎧⎪⎨⎪⎩><解得2a >.所以实数a 的取值范围为2a >.(2)由(1)及题意得B A ,①当0a >时,由BA 得42a>.即02a <<;②当0a <时,显然不满足题意. 综上可得,实数a 的范围为02a <<.。
必修一数学第一章测试题及答案
必修一数学第一章测试题及答案一、选择题(每题4分,共40分)1. 下列哪个选项是方程x^2 - 4x + 4 = 0的解?A. x = 2B. x = -2C. x = 1D. x = -1答案:A2. 函数y = 3x + 2的斜率是多少?A. 3B. 2C. -3D. -2答案:A3. 集合{1, 2, 3}和{3, 4, 5}的交集是什么?A. {1, 2, 3}B. {3, 4, 5}C. {3}D. {1, 2, 4, 5}答案:C4. 以下哪个是奇函数?A. f(x) = x^2B. f(x) = |x|C. f(x) = x^3D. f(x) = sin(x)答案:C5. 圆的标准方程是什么?A. (x - h)^2 + (y - k)^2 = r^2B. x^2 + y^2 = r^2C. x^2 + y^2 = 2rD. (x - h)^2 + (y - k)^2 = 2r答案:A6. 函数y = 2x - 1的图像经过哪一条直线?A. y = xB. y = -xC. y = 2xD. y = -2x答案:C7. 已知等差数列的首项a1 = 3,公差d = 2,那么第5项a5的值是多少?A. 13B. 11C. 9D. 7答案:A8. 函数y = x^2 - 6x + 8的顶点坐标是多少?A. (3, -1)B. (-3, 1)C. (3, 1)D. (-3, -1)答案:A9. 抛物线y = x^2 + 2x - 3的对称轴方程是什么?A. x = -1B. x = 1C. x = 2D. x = -2答案:B10. 函数y = sin(x)在区间[0, π]上是增函数还是减函数?A. 增函数B. 减函数C. 非单调函数D. 常数函数答案:B二、填空题(每题5分,共30分)11. 已知函数f(x) = 2x^2 + 3x - 5,求f(-1)的值。
答案:-912. 已知等比数列的首项a1 = 2,公比q = 3,求第4项a4的值。
必修一数学第一章测试题及答案
必修一数学第一章测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是实数集的符号表示?A. NB. ZC. QD. R答案:D2. 函数y=f(x)的值域是指:A. 定义域B. 函数的表达式C. 函数的自变量D. 函数的取值范围答案:D3. 以下哪个命题是假命题?A. 存在x∈R,使得x²+1=0B. 对于任意x∈R,x²+1>0C. 对于任意x∈R,x²+1≥0D. 存在x∈R,使得x²+1>1答案:A4. 集合{1,2,3}的子集个数是:A. 2B. 4C. 6D. 8答案:D5. 函数y=2x+1的图象是:A. 一条直线B. 一个圆C. 一个椭圆D. 一个抛物线答案:A6. 以下哪个选项是函数y=x³-3x的导数?A. 3x²-3B. 3x²+3C. x²-3D. x³-3x答案:A7. 函数y=x²+2x+1的最小值是:A. 0B. 1C. -1D. 2答案:B8. 以下哪个选项是函数y=x²-4x+4的对称轴?A. x=2B. x=-2C. x=4D. x=-4答案:A9. 函数y=x³-3x+1的单调递增区间是:A. (-∞, 1)B. (1, +∞)C. (-∞, -1)D. (-1, +∞)答案:B10. 函数y=x²-6x+8的顶点坐标是:A. (3, -1)B. (3, 1)C. (-3, 1)D. (-3, -1)答案:B二、填空题(每题4分,共20分)1. 函数y=x²-4x+c的顶点坐标为(2, c-4),则c的值为______。
答案:42. 函数y=x³-6x的导数为______。
答案:3x²-63. 函数y=x²+2x+1的对称轴方程为______。
答案:x=-14. 函数y=x³-3x的单调递减区间为______。
(人教版A版2017课标)高中数学必修第一册第一章综合测试试卷(含答案)01
第一章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}=|23M x x -<<,则下列结论正确的是( ) A .2.5M ∈ B .0M ⊆C .M ∅∈D .集合M 是有限集2.已知集合{}=023A ,,,{}=|=B x x ab a b A ∈,,,则集合B 的子集的个数是( ) A .4B .8C .15D .163.下列存在量词命题中,真命题的个数是( )①存在一个实数a 为正整数;②存在一个实数x ,使为正整数;③存在一个实数y 为正整数. A .0B .1C .2D .34.已知1231p x --:<<,30q x x -:()<,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.设集合{}2=|=+M x y y x x (,),{}N=|=+16x y y x (,),则M N 等于( ) A .416(,)或412-(,)B .{420,,}412-, C .{412(,),}420-(,)D .{420(,),}412-(,)6.若集合{}=|1A x x ≥,{}=012B ,,,则下列结论正确的是( ) A .{}=|0A B x x ≥B .{}=12A B ,C .{}R =01A B (),D .{}R =|1A B x x()≥7.甲:“1a >”是乙:“a ”的( ) A .既不充分也不必要条件 B .充要条件 C .充分不必要条件D .必要不充分条件8.已知全集*=U N ,集合{}*=|=2M x x n n ∈N ,,{}*=|=4N x x n n ∈N ,,则( )A .=U M NB .=U U M N ()C .=U U M N ()D .=U U M N ()9.已知0a >,函数2=++y ax bx c .若0x 满足关于x 的方程2+b=0ax ,则下列选项中的命题为假命题的是( )A .存在x ∈R ,y y 0≤B .存在x ∈R ,0y y ≥C .对任意x ∈R ,y y 0≤D .对任意x ∈R ,0y y ≥10.已知=U R ,{}=|0A x x >,{}=|1B x x -≤,则U U A B B A ()() 等于( )A .∅B .{}|0x x ≤C .{}|1x x ->D .{|0x x >或}1x -≤11.“14m <”是“一元二次方程2++=0x x m 有实数解”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件12.已知U 为全集,A ,B ,C 是U 的子集,A C A B ⊆ ()(),A C A B ⊇ ()(),则下列命题中,正确的个数是( )①U U A C A B ⊆ ()() ; ②U U U U A C A B ⊇ ()() ;③C B ⊆. A .0B .1C .2D .3二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.命题:“0x ∃∈R ,2+10x <”的否定是________.14.设集合{}2=33A m ,,{}=33B m ,,且=A B ,则实数m 的值是________. 15.若a ∈R ,则“=2a ”是“(1)(2)=0a a --”的________条件.16.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)写出下列命题的否定并判断其真假. (1)所有正方形都是矩形;(2)至少有一个实数0x 使3+1=0x ;(3)0x ∃∈R ,2+2+20x x ≤;(4)任意x ,y ∈R ,+1+10x y -≥.18.(本小题满分12分)设全集=U R ,集合{}=|11A x x -≤<,{}=|02B x x <≤.(1)求U A B () ;(2)求U A B() .19.(本小题满分12分)已知{}2=|+2++1=0A x x p x x ∈Z (),,若{}|0=A x x ∅ >,求p 的取值范围.20.(本小题满分12分)已知2=0y ax bx c a b c a ++∈R (,,,且≠).证明:“方程=0y 有两个不相等的实数根”的充要条件是“存在0x ∈R ,使00ay <”.21.(本小题满分12分)已知集合{}=|12+3A x a x a -≤≤,{}=|24B x x -≤≤,全集=.U R(1)当=2a 时,求A B 和R A B () ;(2)若=A B A ,求实数a 的取值范围.22.(本小题满分12分)某班有学生50人,学校开设了甲、乙、丙三门选修课,选修甲的有38人,选修乙的有35人,选修丙的有31人,兼选甲、乙两门的有29人,兼选甲、丙两门的有28人,兼选乙、丙两门的有26人,甲、乙、丙三门均选的有24人,那么这三门均未选的有多少人?第一章综合测试答案解析一、 1.【答案】A【解析】A 显然正确;0不是集合,不能用符号“⊆”,B 错误;∅不是M 中的元素,C 错误;M 为无限集,D 错误. 2.【答案】D【解析】{}=0469B ,,,,B ∴的子集的个数为42=16. 3.【答案】D【解析】对于①,当=4a 为正整数;对于②,当=1x 时,为正整数;对于③,当=1y 时,为正整数,故选D .4.【答案】A【解析】由1231x --<<,得12x <<,即{}|12x x x ∈<<,由30x x -()<,得03x <<,即{}|03x x x ∈<<,{}|12x x <<是{}|03x x <<的真子集,{}|03x x <<不是{}|12x x <<的子集,故选A .5.【答案】D【解析】两个集合的交集其实就是曲线和直线的交点,注意结果是两对有序实数对. 6.【答案】B【解析】{=|=0A B x x 或}1x ≥,A 错误;{}=12A B ,,B 正确;{}{}R =|1=0A B x x B ()< ,C 错误;{}R =|0A B x x ()≠ ,D 错误.7.【答案】B【解析】方法一:11a a ⇒⇒>,1011a a ⇒-⇒)>>,∴甲是乙的充要条件,故选B .方法二:20a a a a ⎧⇔⎨⎩>,>,,1a ∴>,故选B .8.【答案】C【解析】由题意得N M ⊆,由Venn 图(图略)可知选C . 9.【答案】C【解析】由题意知,0=2bx a-为函数2=y ax bx c ++图象的对称轴方程,所以0y 为函数y 的最小值,即对所有的实数x ,都有0y y ≥,因此对任意x ∈R ,0y y ≤是错误的,故选C .10.【答案】D【解析】{}=|1U B x x - > ,{}=|0U A B x x ∴ > .{}=|0U A x x ≤ ,{}=|1U B A x x ∴- ≤ .{=|0U U A B B A x x ∴ ()()> 或}1x -≤.11.【答案】A【解析】一元二次方程2=0x x m ++有实数解1=1404m m ⇔∆-⇔≥≤.当14m <时,14m ≤成立,但14m ≤时,14m <不一定成立.故“14m <”是“一元二次方程2=0x x m ++有实数解”的充分不必要条件.12.【答案】C【解析】A C A B ⊇ ()(),U U A C A B∴⊆ ()() ,∴①为真命题.A C A B ⊆ ()(),U U A C A B∴⊇ ()() ,即U U U U A C A B ⊇ ()() ,∴②为真命题.由Venn 图(图略)可知,③为假命题.故选C . 二、13.【答案】x ∀∈R ,210x +≥【解析】存在量词命题的否定是全称量词命题. 14.【答案】0【解析】依题意得,23=3m m ,所以=0m 或=1m .当=1m 时,违反集合中元素的互异性(舍去). 15.【答案】充分不必要【解析】由=2a 能得到1)(2)0(=a a --,但由1)(2)0(=a a --得到=1a 或=2a ,而不是=2a ,所以=2a 是1)(2)0(=a a --的充分不必要条件. 16.【答案】12【解析】设全集U 为某班30人,集合A 为喜爱篮球运动的15人,集合B 为喜爱乒乓球运动的10人,如图.设所求人数为x ,则108=30x ++,解得=12x . 三、17.【答案】(1)命题的否定:有的正方形不是矩形,假命题(2.5分) (2)命题的否定:不存在实数x ,使31=0x +,假命题.(5分) (3)命题的否定:x ∀∈R ,2220x x ++>,真命题.(7.5分)(4)命题的否定:存在0x ,0y ∈R ,00110x y ++-<,假命题.(10分)答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
(人教版B版2017课标)高中数学必修第一册 全册综合测试卷一(附答案)
(人教版B 版2017课标)高中数学必修第一册 全册综合测试卷一(附答案)第一章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集{0,1,2,3,4,5}U =,集合{1,2,3,5}A =,{2,4}B =,则()uA B =U ð( ) A .{0,2,4}B .{4}C .{1,2,4}D .{0,2,3,4}2.已知集合{0,2,3}A =,{|,,}B x x a b a b A ==⋅∈,则集合B 的子集的个数是( ) A .4B .8C .15D .163.如果甲是乙的必要不充分条件,乙是丙的充要条件,丙是丁的必要不充分条件,则丁是甲的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件4.设a ,b ∈R ,集合{1,,}0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,则b a -=( )A .1B .1-C .2D .2-5.若集合{0,1,2}M =,{(,)|210210,,}N x y x y x y x y M =-+--∈且厔,则N 中元素的个数为( ) A .9B .6C .4D .26.命题:q x ∀∈R ,3210x x -+„的否定是( ) A .32,10x x x ∃∈-+R „B .32,10x x x ∃∈-+R …C .32,10x x x ∃∈-+R >D .32,10x x x ∀∈-+R >7.已知p 是r 的充分条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件.现有下列命题:①s 是q 的充要条件;②p 是q 的充分条件;③r 是q 的必要条件;④p ⌝是s ⌝的必要条件;⑤r 是s 的充分条件.则正确命题的序号是( ) A .①④⑤B .①②④C .②③⑤D .②④⑤8.已知集合{}2|0M x x x =->,{|1}N x x =…,则M N =I ( ) A .[1,)+∞B .(1,)+∞C .∅D .(,0)(1,)-∞+∞U9.设集合{|0}M x x m =-„,{}2|(1)1,N y y x x ==--∈R .若M N =∅I ,则实数m 的取值范围是( ) A .[1,)-+∞B .(1,)-+∞C .(,1]-∞-D .(,1)-∞-10.已知全集U R =,集合{|(2)0}A x x x =+<,{|||1}B x x =≤,则如图所示的阴影部分表示的集合是( )A .(2,1)-B .[1,0)[1,2)-UC .(2,1)[0,1]--UD .[0,1]11.设条件p :关于x 的方程()221210m x mx -+-=的两根一个小于0,一个大于1,若p 是q 的必要不充分条件,则条件q 可设为( )A .(1,1)m ∈-B .(0,1)m ∈C .(1,0)m ∈-D .(2,1)m ∈-12.关于x 的方程2210ax x ++=至少有一个负根的充要条件是( ) A .01a 剟B .1a <C .1a „D .01a <„或0a <二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上) 13.已知非空集合M 满足:{1,2,3,4,5}M ⊆,且若x M ∈,则6x M -∈.则满足条件的集合M 有__________个.14.设全集S 有两个子集A ,B ,若sA x x B ∈⇒∈ð,则x A ∈是x sB ∈ð的条件是__________. 15.关于x 的不等式2043x ax x +++>的解集为(3,1)(2,)--+∞U 的充要条件是__________. 16.已知集合{|||1}A x x a =-„,{}2|540B x x x =-+…,若A B =∅I ,则实数a 的取值范围是__________.三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合{|(2)[(31)]0}A x x x a =--+<,()22|01x a B x x a ⎧⎫-⎪⎪=⎨⎬-+⎪⎪⎩⎭<. (1)当2a =时,求A B ⋂; (2)求使B A ⊆的实数a 的取值范围.18.(本小题满分12分)若{|68,,}A x x a b a b ==+∈Z ,{|2,}B x x m m ==∈Z ,求证:A B =.19.(本小题满分12分)已知命题p :方程2220a x ax +-=在区间[1,1]-上有解;命题q :只有一个实数x 满足不等式2220x ax a ++≤.若命题“p 或q ”是假命题,求实数a 的取值范围.20.(本小题满分12分)已知{}2|320A x x x =++≥,{}2|410,B x mx x m m =-+-∈R >,若 0A B =I ,且A B A =U ,求实数m 的取值范围.21.(本小题满分12分)已知{}2:|10p A x x ax =++≤,{}2:|320q B x x x =-+≤,若p 是q 的充分不必要条件,求实数a 的取值范围.22.(本小题满分12分)已知集合{}2|8200P x x x =--≤,{||1|}S x x m =-„. (1)若()P S P ⊆U ,求实数m 的取值范围.(2)是否存在实数m ,使“x P ∈”是“x S ∈”的充要条件?若存在,求出m 的取值范围;若不存在,请说明理由.第一单元测试答案解析一、 1.【答案】A【解析】由题意得uA {0,4}=ð,又{2,4}B =,所以(){0,2,4}uA B =U ð,故选A . 2.【答案】D【解析】∵{0,4,6,9}B =,∴B 的子集的个数为4216=. 3.【答案】A【解析】因为丁⇒丙⇔乙⇒甲,故丁⇒甲(传递性). 4.【答案】C【解析】∵集合{1,,}0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,又0a ≠∵,0a b +=∴,即a b =-,1ba=-∴,1b =. 2b a -=∴,故选C .5.【答案】C【解析】N ∵为点集,x M ∈,y M ∈,∴由x ,y 组成的点有(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2).其中满足210x y -+≥且210x y --≤的仅有(0,0),(0,1),(1,1),(2,1)四个元素.6.【答案】C【解析】原命题的否定是“32,10x x x ∃∈-+R >”. 7.【答案】B【解析】由已知有p r ⇒,q r ⇒,r s ⇒,s q ⇒,由此得g s ⇒且s q ⇒,r q ⇒且q r ⇒,所以①正确,③不正确. 又p q ⇒,所以②正确.④等价于p s ⇒,正确.r s ⇒且s r ⇒,⑤不正确.故选B .8.【答案】B【解析】由20x x ->得0x <或1x >,∵(1,)M N =+∞I .故选B . 9.【答案】D【解析】由已知得(,]M m =-∞,[1,)N =-+∞,∵M N =∅I ,1m ∴-<,故选D . 10.【答案】C【解析】由已知得{|20}A x x =-<<,{|11}B x x =-≤≤,所以(2,1]A B =-U ,[1,0)A B =-I ,所以阴影部分表示的集合为()(2,1)[0,1]A B A B =--⋃U I ð,故选C .11.【答案】C【解析】构造函数()22121y m x mx =-+-,则0x =时,1y =-,函数的图像开口向上,由1x =时21210m m -+-<得2m >或0m <,又p 是q 的必要不充分条件,所以p ⇒q ,q p ⇒,故选C .12.【答案】C【解析】若0∆=,则440a -=,1a =,满足条件,当0∆>时,4401a a -⇒><.所以1a ≤. 二、 13.【答案】7【解析】列举如下:{1,5}M =,{2,4}M =,{3}M =,{1,3,5)M =,{2,3,4}M =,{1,2,4,5}M =,{1,2,3,4,5}M =,共7个.14.【答案】必要 不充分【解析】由已知得S A B ⊆ð,两边取补集,有()S S S A B ⊇痧?,即S A B ⊇ð,所以S x B x A ∈⇒∈ð,反之,不一定成立,故x ∈A 是S x B ∈ð的必要不充分条件.15.【答案】2a =-【解析】令2430x x ++=,得3x =-或1x =-,∴可猜想20a +=,即2a =-.代入原不等式得22043x x x -++>,解得(3,1)(2,)x ∈--+∞U .故2a =-.16.【答案】(2,3)【解析】由题意得{|11}A x a x a =-+≤≤,{|14}B x x x 或剠,A B =∅Q I ,1114a a ->⎧⎨+<⎩∴,23a ∴<<.三、17.【答案】(1)∵当2a =时,{|27}A x x =<<,{|45}B x x =<<,{|45}A B x x =I ∴<<(2)由已知得{}2|21B x a x a =+<<,当13a <时,{|312}A x a x =+<<,要使B A ⊆,必须满足2231,12,a a a +⎧⎨+⎩…„此时1a =-;当13a =时,A =∅,使B A ⊆的a 不存在; 当13a >时,(2,31)A a =+,要使B A ⊆,必须满足2222,131,12,a a a a a ⎧⎪++⎨⎪+≠⎩…„此时13a <„.综上可知,使B A ⊆的实数a 的取值范围为(1,3]{1}-U .18.【答案】证明:①设t A ∈,则存在,a b ∈Ζ,使得682(34)t a b a b =+=+.34a b +∈Z ∵t B ∈∴,t B ∴∈即A B ⊆.②设t B ∈,则存在m ∈Z ,使得26(5)84t m m m ==⨯-+⨯.0a =∴t A ∈∴ 5m -∈Z ∵,4m ∈Z ,,即B A ⊆. 由①②知A B =.19.【答案】由2220a x ax +-=,得(2)(1)0ax ax +-=, 显然0a ≠,2x a =-∴或1x a=. [1,1]x ∈-∵,故21a ≤或11a„,||1a ∴…. “只有一个实数x 满足2220x ax a ++≤”即抛物线222y x ax a =++与x 轴只有一个交点,2480a a ∆=-=∴,或2a =,∴命题“p 或q ”为真命题时“||1a ≥或0a =”.∵命题“p 或q ”为假命题,∴实数a 的取值范围为{|10 01}a a a -<<或<<. 20.【答案】A B A =U ∵,B A ⊆∴, 又A B =∅I ,B =∅∴{}2|410,B x mx x m m =-+-∈R ∵>,∴对一切x ∈R ,使得2410mx x m -+-≤恒成立,于是有0,164(1)0,m m m ⎧⎨--⎩<≤解得m „∴实数m的取值范围是|m m ⎧⎪⎨⎪⎪⎩⎭„21.【答案】{}2|320{|12}B x x x x x =∈-+=R 剟?,p ∵是q 的充分不必要条件,p q ⇒∴,q ⇒p ,即A 是B 的真子集,可A =∅或方程210x ax ++=的两根在区间[1,2]内,210a ∆=-∴<或0,12,2110,4210,a a a ∆⎧⎪⎪-⎪⎨⎪++⎪++⎪⎩…剟……解得22a -<„. 22.【答案】由28200x x --≤,得210x -剟,所以{|210P x x =-≤≤. 由|1|x m -≤,得11m x m -+剟.所以{|11}S x m x m =-+≤≤. (1)要使()P S P ⊆U ,则S P ⊆ ①若S =∅,则0m <;②若S ≠∅,则0,12,110,m m m ⎧⎪--⎨⎪+⎩……„解得03m 剟.综合①②可知,实数m 的取值范围为(,3]-∞.(2)由“x P ∈”是“x S ∈”的充要条件,知S P =,则12,110,m m -=-⎧⎨+=⎩此方程组无解,所以这样的实数m 不存在.第二章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若23A a ab =+,24B ab b =-,则A ,B 的大小关系是( ) A .A B „B .A B …C .A B <或A B >D .A B >2.下列结论正确的是( ) A .若ac bc >,则a b > B .若22a b >,则a b >C .若a b >,0c <,则a c b c ++<D .a b <3.下列变形是根据等式的性质的是( ) A .由213x -=得24x = B .由2x x =得1x = C .由29x =得x=3 D .由213x x -=得51x =-4.实数a ,b 在数轴上的位置如图所示,以下说法正确的是( )A .0a b +=B .b a <C .0ab >D .||||b a <5.已知||a b a <<,则( )A .11a b> B .1ab <C .1ab> D .22a b >6.若41x -<<,则222()1x x f x x -+=-( ) A .有最小值2B .有最大值2C .有最小值2-D .有最大值2-7.已知0a >,0b >,2a b +=,则14y a b=+的最小值是( ) A .72B .4C .92D .58.已知1x ,2x 是关于x 的方程230x bx +-=的两根,且满足121234x x x x +-=,那么b 的值为( ) A .5B .5-C .4D .4-9.不等式22120x ax a --<(其中0a <)的解集为( ) A .(3,4)a a -B .(4,3)a a -C .(3,4)-D .(2,6)a a10.某汽车运输公司购买了一批豪华大客车投入运营.据市场分析,每辆客车营运的总利润y (单位:10万元)与营运年数()*x x ∈N 为二次函数的关系(如图),则每辆客车营运_____年,营运的年平均利润最大( )A .3B .4C .5D .611.若正数x ,y 满足35x y xy +=,则34x y +的最小值是( ) A .245B .285C .5D .612.已知a b >,二次三项式220ax x b ++…对于一切实数x 恒成立,又0x ∃∈R ,使20020ax x b ++=成立,则22a b a b+-的最小值为( )A .1BC .2D .二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.当1x >时,不等式11x a x +-≥恒成立,则实数a 的取值范围为__________. 14.若0a b <<,则1a b -与1a的大小关系为__________.15.若正数a ,b 满足3ab a b =++,则ab 的取值范围是__________.16.已知关于x 的一元二次方程2320x x m -+=有两个不相等的实数根1x 、2x .若1226x x -=,则实数m 的值为__________.三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)解下列不等式(组):(1)2(2)01x x x +⎧⎨⎩>,<;(2)262318x x x --<„.18.(本小题满分12分)已知a ,b ,c 为不全相等的正实数,且1abc =.111a b c++<.19.(本小题满分12分)已知21()1f x x a x a ⎛⎫=-++ ⎪⎝⎭.(1)当12a =时,解不等式()0f x „; (2)若0a >,解关于x 的不等式()0f x „.20.(本小题满分12分)某镇计划建造一个室内面积为2800 m 的矩形蔬菜温室.在温室内,沿左、右两侧与后侧内墙各保留1 m 宽的通道,沿前侧内墙保留3 m 宽的空地.当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大种植面积是多少?21.(未小题满分12分)设函数2()3(0)f x ax bx a =++≠. (1)若不等式()0f x >的解集为(1,3)-,求a ,b 的值; (2)若(1)4f =,0a >,0b >,求14a b+的最小值.22.(本小题满分12分)解下列不等式. (1)2560x x --+<;(2)()(2)0a x a x -->.第二章综合测试答案解析一、 1.【答案】B【解析】()2222334240b A B a ab ab b a b ⎛⎫-=+--=-+ ⎪⎝⎭∵…,A B ∴….2.【答案】D【解析】当0c <时,A 选项不正确;当0a <时,B 选项不正确;两边同时加上一个数,不等号方向不改变,故C 选项错误. 3.【答案】A【解析】A .根据等式的性质1,在等式213x -=的左右两边同时加上1,可得24x =,故本选项正确;B .在等式2x x =的左右两边同时除以x ,可得1x =,但是当0x =时,不成立,故本选项错误;C .将等式29x =的左右两边开平方,可得3x =±,故本选项错误;D .根据等式的性质1,在等式213x x -=的左右两边同时加上(31)x +,可得561x x =+,故本选项错误. 4.【答案】D【解析】根据题图可知,21a --<<,01b <<,所以||||b a <. 5.【答案】D【解析】由||a b a <<,可知0||||b a <„,由不等式的性质可知22||||b a <,所以22a b >. 6.【答案】D【解析】2221()(1)11x x f x x x x -+==-+--.又41x -∴<<,10x -∴<,(1)0x --∴> 1()(1)2(1)f x x x ⎡⎤=---+-⎢⎥--⎣⎦∴„当且仅当111x x -=-,即0x =时等号成立.7.【答案】C【解析】2a b +=∵,12a b+=∴∴14142a bab a b +⎛⎫+=+⋅⎪⎝⎭52592222a b b a ⎛⎫=+++= ⎪⎝⎭… (当且仅当22a b b a =,即423b a ==时,等号成立) 故14y a b=+的最小值为92.8.【答案】A【解析】12,x x ∵是关于x 的方程230x bx +-=的两根,12x x b +=-∴,123x x =-, 121234x x x x +-=∵,94b -+=∴,解得5b =.9.【答案】B【解析】方程22120x ax a --=的两根为4a ,3a -,且43a a -<,43a x a <<-∴. 10.【答案】C【解析】求得函数式为2(6)11y x =--+,则营运的年平均利润2512122y x x x ⎛⎫=-+-= ⎪⎝⎭„, 当且仅当25x x=时,取“=”号,解得5x =. 11.【答案】C【解析】35x y xy +=∵,13155y x+=∴1334(34)1(34)55x y x y x y y x ⎛⎫+=+⨯=++ ⎪⎝⎭∴3941213555555x y y x =++++=…当且仅当31255x y y x =,即1x =,12y =时等号成立. 12.【答案】D【解析】a b ∵>,二次三项式220ax x b ++≥对于一切实数x 恒成立, 0a ∴>,且440ab ∆=-„,1ab ≥∴.再由0x ∃∈R ,使20020ax x b ++=成立,可得0∆…,1ab ∴…,又a b >,1a >.2224231101a a b a a a b a a a a+++==---∴> 2242484243624222211*********a a a a a a a a a a a a a a a a ⎛⎫+++ ⎪⎛⎫+++⎝⎭=== ⎪-+-⎛⎫⎝⎭+-+- ⎪⎝⎭ 22222221124412a a a a a a ⎛⎫⎛⎫+-++- ⎪ ⎪⎝⎭⎝⎭=⎛⎫+- ⎪⎝⎭令22112a a +=>,则24231(2)4(2)44(2)444822a t t t a a t t ⎛⎫+-+-+==-+++= ⎪---⎝⎭…, 当且仅当4t =,即a 时取等.故2431a a a ⎛⎫+ ⎪-⎝⎭的最小值为8,故22a b a b +-二、13.【答案】(,3]-∞ 【解析】1x ∵>,11(1)11311x x x x +=-++=--∴….3a ∴„. 14.【答案】11a b a-< 【解析】110()()a ab ba b a a a b a a b -+-==---∵<. 11a b a-∴< 15.【答案】[9,)+∞【解析】33ab a b =++…,所以1)0…,3,所以9ab ….16.【答案】2-【解析】由题意知123x x +=,1226x x -=∵,即12236x x x +-=, 2336x -=∴,解得21x =-,代入到方程中,得1320m ++=,解得2m =-. 三、17.【答案】(1)原不等式组可化为 2 0,11,x x x -⎧⎨-⎩<或><<即01x <<,所以原不等式组的解集为{|01}x x <<. (2)原不等式等价于22623,318,x x x x x ⎧--⎨-⎩≤<即2260,3180,x x x x ⎧--⎨--⎩<…因式分解,得(3)(2)0,(6)(3)0,x x x x -+⎧⎨-+⎩<…所以 2 3,36,x x -⎧⎨-⎩或<<剠所以132x --<≤或36x <„.所以不等式的解集为{|3236}x x x --<≤或≤<.18.【答案】证明:因为a ,b ,c 都是正实数,且1abc =,所以112a b +…11b c +=…11a c +=…以上三个不等式相加,得1112a b c ⎛⎫++ ⎪⎝⎭…,即111a b c++因为a,b,c不全相等,所以上述三个不等式中的“=”不同时成立.111a b c++<.19.【答案】(1)当12a=时,有不等式25()102f x x x=-+≤,1(2)02x x⎛⎫--⎪⎝⎭∴„,122x∴剟,即所求不等式的解集为1,22⎡⎤⎢⎥⎣⎦.(2)1()()0f x x x aa⎛⎫=--⎪⎝⎭∵„,0a>且方程1()0x x aa⎛⎫--=⎪⎝⎭的两根为1x a=,21xa=,∴当1aa>,即011a<<,不等式的解集为1,aa⎡⎤⎢⎥⎣⎦;当1aa<,即1a>,不等式的解集为1,aa⎡⎤⎢⎥⎣⎦;当1aa=,即1a=,不等式的解集为{1}.20.【答案】设矩形温室的左侧边长为 ma,后侧边长为 mb,蔬菜的种植面积为2mS,则800ab=.所以(4)(2)4288082(2)808648 S a b ab b a a b=--=--+=-+-„当且仅当2a b=,即40a=,20b=时等号成立,则648S=最大值.故当矩形温室的左侧边长为40 m,后侧边长为20 m时,蔬菜的种植面积最大,最大种植面积为2648 m.21.【答案】(1)因为不等式()0f x>的解集为(1,3)-,所以1-和3是方程()0f x=的两个实根,从而有(1)30,(3)9330,f a bf a b-=-+=⎧⎨=++=⎩解得1,2,ab=-⎧⎨=⎩(2)由(1)4f=,得1a b+=,又0a>,0b>,所以1414()a b a b a b ⎛⎫+=++ ⎪⎝⎭4559b a a b =+++… 当且仅当4b a a b =即1,32,3a b ⎧=⎪⎪⎨⎪=⎪⎩时等号成立,所以14a b+的最小值为9. 22.【答案】(1)2560x x --+<∵,2560x x +->∴, (1)(6)0x x -+∴>,解得6x -<或1x >,∴不等式2560x x --+<的解集是{| 6 1}x x x -<或>. (2)当0a <时,()(2)y a x a x =--的图象开口向下,与x 轴交点的横坐标为x a =,2x =,且2a <,()(2)0a x a a --∴>的解集为{|2}x a x <<.当0a =时,()(2)0a x a x --=,()(2)0a x a x --∴>无解.当0a >时,抛物线()(2)y a x a x =--的图像开口向上, 与x 轴交点的横坐标为x a =,2x =.当2a =时,不等式可化为22(2)0x ->,解得2x ≠. 当2a >时,解得2x <或x a >. 当2a <时,解得x a <或2x >.综上,当0a <时,不等式的解集是{|2}x a x <<; 当0a =时,不等式的解集是∅;当02a <<时,不等式的解集是{| 2}x x a x <或>; 当2a =时,不等式的解集是{|2}x x ≠; 当2a >时,不等式的解集是{|2}x x x a <或>.第三章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知2()1f x x =+,则[(1)]f f -的值等于( ) A .2B .3C .4D .5 2.已知函数()1f x x =+,其定义域为{1,0,1,2}-,则函数的值域为( ) A .[0,3]B .{0,3}C .{0,1,2,3}D .{|0}y y …3.函数0y =的定义域是( )A .{|01}x x 剟B .{| 1 1}x x x --<或>C .{|01}x x x ≠-<且D .{}|1 0x x x ≠-≠且4.已知二次函数()y f x =满足(2)(2)f x f x +=-,且函数图像截x 轴所得的线段长为8,则函数()y f x =的零点为( ) A .2,6B .2,6-C .2-,6D .2-,6-5.若函数()y f x =的定义域是{|01}x x ≤≤,则函数()()(2)(01)F x f x a f x a a =+++<<的定义域是( )A .1|22a a x x -⎧⎫-⎨⎬⎩⎭≤≤B .|12a x x a ⎧⎫--⎨⎬⎩⎭≤≤C .{|1}x a x a --≤≤D .1|2a x a x -⎧⎫-⎨⎬⎩⎭≤≤6.如图所示,可表示函数()y f x =的图像的只可能是( )ABCD7.已知函数2()1f x ax bx =++为定义在[2,1]a a -上的偶函数,则a b +的值是( ) A .1B .1-C .1或1-D .0或18.若()f x 满足()()f x f x -=-,且在(,0)-∞上是增函数,(2)0f -=,则()0xf x <的解集是( ) A .(2,0)(0,2)-UB .(,2)(0,2)-∞-UC .(,2)(2,)-∞-+∞UD .(2,0)(2,)-+∞U9.设函数()f x 与()g x 的定义域是{|1}x x ∈≠±R ,函数()f x 是一个偶函数,()g x 是一个奇函数,且1()()1f xg x x -=-,则()f x 等于( ) A .2221x x -B .211x -C .221x -D .221xx - 10.已知2()21(0)f x ax ax a =++>,若()0f m <,则(2)f m +与1的大小关系式为( ) A .(2)1f m +<B .(2)1f m +=C .(2)1f m +>D .(2)1f m +…11.函数()f x =( ) A .是奇函数但不是偶函数 B .是偶函数但不是奇函数 C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数12.已知2()2f x x x =+,若存在实数t ,使()3f x t x +„对[1,]x m ∈恒成立,则实数m 的最大值是( ) A .6B .7C .8D .9二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.已知1,[0,1],()2,[0,1],x f x x x ∈⎧=⎨-∉⎩,当[()]1f f x =时,x ∈__________.14.关于x 的方程240x x a --=有四个不相等的实数根,则实数a 的取值范围为__________.15.已知函数719()1x f x x +=+,则()f x 的图像的对称中心是__________,集合{}*|()x f x ∈=N __________.16.已知函数()f x 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有(1)(1)()xf x x f x +=+,则52f f ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭的值是__________.三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知函数2()2||1f x x x =--.(1)利用绝对值及分段函数知识,将函数()f x 的解析式写成分段函数; (2)在坐标系中画出()f x 的图像,并根据图像写出函数()f x 的单调区间和值域.18.(本小题满分12分)已知函数()f x 对任意实数x 均有()2(1)f x f x =-+,且()f x 在区间[0]1,上有解析式2()f x x =. (1)求(1)f -和(1.5)f 的值;(2)写出()f x 在区间[2,2]-上的解析式.19.(本小题满分12分)函数2()1ax bf x x +=+是定义在(,)-∞+∞上的奇函数,且1225f ⎛⎫= ⎪⎝⎭. (1)求实数a ,b 的值.(2)用定义证明()f x 在(1,1)-上是增函数;(3)写出()f x 的单调减区间,并判断()f x 有无最大值或最小值.如有,写出最大值或最小值(无需说明理由).20.(本小题满分12分)已知定义域为R 的单调函数()f x ,且(1)f x -的图像关于点(1,0)对称,当0x >时,1()3x f x x=-. (1)求()f x 的解析式;(2)若对任意的t ∈R ,不等式()()22220f t t f t k -+-<恒成立,求实数k 的取值范围.21.(本小题满分12分)对于定义域为D 的函数()y f x =,若同时满足下列条件:①()f x在D 内单调递增或单调递减;②存在区间[,]a b D ⊆,使()f x 在[,]a b 上的值域为[,]a b ,那么称()()x D y f x =∈为闭函数.(1)求闭函数3y x =-符合条件②的区间[,]a b . (2)判断函数31()(0)4f x x x x=+>是否为闭函数?并说明理由;(3)判断函数y k =+k 的取值范围.22.(本小题满分12分)设函数()f x 的定义域为R ,当0x >时,()1f x >,对任意,x y ∈R ,都有()()()f x y f x f y +=g ,且(2)4f =. (1)求(0)f ,(1)f 的值.(2)证明:()f x 在R 上为单调递增函数.(3)若有不等式1()2f x f x x ⎛⎫+ ⎪⎝⎭g <成立,求x 的取值范围.第三章测试答案解析一、 1.【答案】D【解析】由条件知(-1)2f =,(2)5f =,故选D . 2.【答案】C【解析】将x 的值依次代入函数表达式可得0,1,2,3,所以函数的值域为{0,1,2,3},故选C . 3.【答案】C【解析】由条件知10x +≠且0x x ->,解得0x <且1x ≠-.故选C 4.【答案】C【解析】由于函数()y f x =满足(2)(2)f x f x +=-,所以直线2x =为二次函数()y f x =图像的对称轴,根据二次函数图像的性质,图像与x 轴的交点必关于直线2x =对称.又两交点间的距高为8,则必有两交点的横坐标分别为1246x =+=,2242x =-=-.故函数的零点为2-,6.故选C . 5.【答案】A【解析】由条件知01,021,x a x a +⎧⎨+⎩剟剟,又01a <<则122a ax --≤≤,故选A .6.【答案】D【解析】由函数定义可得,任意一个x 有唯一的y 与之对应,故选D . 7.【答案】B【解析】因为函数2()1f x ax bx =++为定义在[2,1]a a -上的偶函数,所以21a a =-,1a =-,0b =,因此1a b +=-,故选B.8.【答案】A【解析】根据题意可知函数是奇函数,且在(,0)-∞,(0,)+∞上是增函数,对()0xf x <,分0x >,0x <进行讨论,可知解集为(2,0)(0,2)-U ,故选A.9.【答案】B【解析】1()()1f x g x x -=-∵,1()()1f x g x x ---=--∴,1()()1f xg x x +=--∴, 21122()111f x x x x =-=-+-∴,21()1f x x =-,故选B . 10.【答案】C【解析】因为2()21(0)f x ax ax a =++>,所以其图像的对称轴为直线1x =-,所以()(2)0f m f m =--<,又(0)1f =,所以(2)1f m +>,故选C .11.【答案】A【解析】由定义城可知x 因此原式化简为()f x =那么根据函数的奇偶性的定义,可知该函数是奇函数不是偶函数,故选A . 12.【答案】C【解析】由题意知,对任意[1,]x m ∈,2()2()3x t x t x +++…恒成立,这个不等式可以理解为()f x t +的图像在直线3y x =的图像的下面时x 的取值范围.要使m 最大,需使两图像交点的横坐标分别为1和m .当1x =时,3y =,代入可求得4t =-(0t =舍去).进而求得另一个交点为(8,24),故8m =.故选C. 二、13.【答案】[0,1][2,3]{5}U U【解析】因为1,[0,1],()2,[0,1],x f x x x ∈⎧=⎨-∉⎩所以要满足元[()]1f f x =,需()[0,1]f x ∈,[0,1]x ∈或2[0,1]x -∈或5x =,这样解得x 的取值范围是[0,1][2,3]{5}U U .14.【答案】(0,4)【解析】原方程等价于24x x a -=,在同一坐标系内作出函数24y x x =-与函数y a =的图像,如图所示:平移直线y a =,可得当04a <<时,两图像有4个不同的公共点,相应地方程240x x a --=有4个不相等的实数根,综上所述,可得实数a 的范围为04a <<. 15.(1,7)- {13,7,5,4,3,0,1,2,3,5,11}----- 【解析】因为函数71912()711x f x x x +==+++,则()f x 的图像的对称中心为(1,7)-, 集合{|()}{13,7,5,4,3,0,1,2,3,5,11}x f x *∈=-----N 16.【答案】0【解析】因为()f x 是定义在R 上的偶函数,因此令12x =-,可知11112222f f ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,所以102f ⎛⎫= ⎪⎝⎭,分别令32x =-,52x =-,可得302f ⎛⎫= ⎪⎝⎭,502f ⎛⎫= ⎪⎝⎭,令1x =-.得(0)0f =,因此可知502f f ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭. 三、17.【答案】(1)22321,0()2||121,0x x x f x x x x x x ⎧--=--=⎨+-⎩<….(2)图像如图所示.单调增区间为(1,0)-,(1,)+∞, 单调减区间为(,1)-∞-,(0,1). 值域为[2,)-+∞.18.【答案】(1)由题意知(1)2(11)2(0)0f f f -=--+=-=,1111(1,5)(10.5)(0.5)2248f f f =+=-=-⨯=-. (2)当[0,1]x ∈时,2()f x x =; 当(1,2]x ∈时,1(0,1]x -∈,211()(1)(1)22f x f x x =--=--; 当[1,0)x ∈-时,1[0,1)x +∈, 2()2(1)2(1)f x f x x =-+=-+;当[2,1)x ∈--时,1[1,0)x +∈-,22()2(1)22(11)4(2)f x f x x x ⎡⎤=-+=-⨯-++=+⎣⎦.所以22224(2),[2,1),2(1),[1,0),(),[0,1],1(1),(1,2].2x x x x f x x x x x ⎧+∈--⎪-+∈-⎪⎪=⎨∈⎪⎪--∈⎪⎩19.【答案】(1)2()1ax bf x x +=+∵是奇函数()()f x f x -=-∴, 2211ax b ax bx x -++=-++∴,0b =∴. 故2()1ax f x x =+,又1225f ⎛⎫= ⎪⎝⎭∵,1a =∴ (2)证明:由(1)知2()1xf x x =+,任取1211x x -<<<,()()()()()()1212121222121211111x x x x x xf x f x x x x x ---=-=++++1211x x -∵<<<,1211x x -∴<<,120x x -<,1210x x ->,2110x +>,2210x +>,()()120f x f x -∴<,即()()12f x f x <,()f x ∴在(1,1)-上是增函数.(3)单调减区间为(,1),(1,)-∞-+∞.当1x =-时,min 1()2f x =-;当1x =时,max 1()2f x =.20.【答案】(1)由题意知()f x 的图像关于点(0,0)对称,是奇函数,∴(0)0f = 当0x <时,0x ->,1()3x f x x--=--∴, 又∵函数()f x 是奇函数.∴()()f x f x -=-,1()3x f x x=-∴. 综上所述,1(0),()30(0).x x f x x x ⎧-≠⎪=⎨⎪=⎩(2)2(1)(0)03f f =-=∵<,且()f x 在R 上单调.∴()f x 在R 上单调递减.由()()22220f t t f t k -+-<,得()()2222f t t f t k ---<.∵()f x 是奇函数,∴()()2222f t t f k t --<,又∵()f x 是减函数, ∴2222t t k t -->即2320t t k -->对任意t ∈R 恒成立,∴4120k ∆=+<,得13k -<.21.【答案】(1)由题意,3y x =-,在[,]a b 上单调递减,则33,,,b a a b b a ⎧=-⎪=-⎨⎪>⎩解得1,1,a b =-⎧⎨=⎩所以,所求区间为[1,1]-.(2)取11x =,210x =,则()()1273845f x f x ==<,即()f x 不是(0,)+∞上的减函数.取,1110x -=,21100x =,()()12331010040400f x f x =++=<,即()f x 不是(0,)+∞上的增函数.所以,函数在定义域内不单调递增或单调递减,从而该函数不是闭函数.(3)若y k =+[,]a b ,在区间[,]a b 上,函数()f x 的值域为[,]a b,即a k b k ⎧=+⎪⎨=⎪⎩∴a ,b为方程x k =的两个实根,即方程22(21)20(2,)x k x k x x k -++-=-厖有两个不等的实根,故两根均大于等于2-,且对称轴在直线2x =-的右边.当2k -„时,有220,(2)2(21)20,212,2k k k ⎧⎪∆⎪-+++-⎨⎪+⎪-⎩>>…解得924k --<„.当2k ->时,有220,(21)20,21,2k k k k k k ⎧⎪∆⎪-++-⎨⎪+⎪⎩>>…无解.综上所述,9,24k ⎛⎤∈-- ⎥⎝⎦.22.【答案】(1)因为(20)(2)(0)f f f +=g ,所以44(0)f =⋅,所以(0)1f =, 又因为24(2)(11)(1)f f f ==+=,且当0x >时,()1f x >,所以(1)2f =.(2)证明:当0x <时,0x ->,所以()1f x ->,而(0)[()]()()f f x x f x f x =+-=-g , 所以1()()f x f x =-,所以0()1f x <<,对任意的12,x x ∈R , 当12x x <时,有()()()]()()()1212222121f x f x f x x x f x f x f x x -=⎡-+-=--⎣, 因为120x x <<,所以120x x -<,所以()1201f x x -<<,即()1210f x x --<, 所以()()120f x f x -<,即()()12f x f x <,所以()f x 在R 上是单调递增函数.(3)因为1()12f x f x ⎛⎫+ ⎪⎝⎭g <,所以11(1)f x f x ⎛⎫++ ⎪⎝⎭<,而()f x 在R 上是单调递增函数,所以111x x ++<,即10x x+<,所以210x x +<,所以0x <,所以x 的取值范围是(,0)-∞.。
高中数学必修一 第一章测试题(含答案)
必修一 第一章 集合与简易逻辑单元测试学校:___________姓名:___________班级:___________考号:___________一、单选题 1.已知全集U ={1,2,3,4,5,6,7},A ={2,3,5,7},B ={1,3,6,7},则∁U (A ∩B )=( ) A .{4}B .∅C .{1,2,4,5,6}D .{1,2,3,5,6}2.A ={2,3},B ={x ∈N|x 2−3x <0},则A ∪B =( ) A .{1,2,3}B .{0,1,2,}C .{0,2,3}D .{0,1,2,3}3.下列各组集合表示同一集合的是( ) A .M ={(3,2)},N ={(2,3)} B .M ={(x,y)|x +y =1},N ={y |x +y =1} C .M ={4,5},N ={5,4}D .M ={1,2},N ={(1,2)}4.已知全集U =Z ,集合M ={x|−1<x <2,x ∈Z},N ={−1,0,1,2},则()C U M N ⋂=( ) A .{−1,2}B .{−1,0}C .{0,1}D .{1,2}5.设集合U ={1,2,3,4},M ={1,2,3},N ={2,3},则∁U (M ∩N )=( ) A .{4}B .{1,2}C .{}2,3D .{1,4}6.下列各式中:①{0}∈{0,1,2};②{0,1,2}⊆{2,1,0};③∅⊆{0,1,2};④∅={0};⑤{0,1}={(0,1)};⑥0={0}.正确的个数是( ) A .1B .2C .3D .47.命题“∃x ∈R ,x 2−2x +2≤0”的否定是( ) A .∃x ∈R ,x 2−2x +2≥0 B .∃x ∈R ,2220x x -+> C .∀x ∈R ,2220x x -+>D .∀x ∈R ,x 2−2x +2≤08.王昌龄《从军行》中两句诗为“黄沙百战穿金甲,不破楼兰终不还”,其中后一句中“攻破楼兰”是“返回家乡”的( ) A .充分条件 B .必要条件C .充要条件D .既不充分也不必要条件9.若命题:“∃x ∈R ,使x 2−x −m =0”是真命题,则实数m 的取值范围是( ) A .[−14,0]B .10,4⎡⎤⎢⎥⎣⎦C .1,4⎡⎫-+∞⎪⎢⎣⎭D .1,4⎛⎤-∞ ⎥⎝⎦10.命题“∀x ∈[1,2],x 2-a ≤0”为真命题的一个充分不必要条件是( ) A .a ≥4B .a ≤4C .a ≥5D .a ≤511.已知集合A ={x|ax =x 2},B ={0,1,2},若A ⊆B ,则实数a 的值为( ) A .1或2B .0或1C .0或2D .0或1或212.已知集合A ={x|−2≤x ≤5},B ={x|m +1≤x ≤2m −1}.若B ⊆A ,则实数m 的取值范围为( ) A .m ≥3B .2≤m ≤3C .3m ≤D .m ≥2二、填空题 13.已知集合A ={−1,0,1},B ={0,a,a 2},若A =B ,则a =______.14.已知集合M ={(x,y)|x +y =2}、N ={(x,y)|x −y =4},那么集合M ∩N= 15.“方程220x x a --=没有实数根”的充要条件是________.16.已知A ,B 是两个集合,定义A −B ={x|x ∈A,x ∉B},若A ={x|−1<x <4},B ={x|x >2},则A −B =_______________.三、解答题 17.已知A ={a −1,2a 2+5a +1,a 2+1}, −2∈A ,求实数a 的值.18.已知集合A ={x |−4<x <2},B ={x |x <−5或x >1}.求A ∪B ,A ∩(∁R B ); 19.已知集合U ={1,2,3,4,5,6,7,8,9},A ={x|3≤x ≤7且x ∈U},B ={x|x =3n,n ∈Z 且x ∈U}.(1)写出集合B 的所有子集; (2)求A ∩B ,A ∪∁U B .20.已知全集U =R ,集合A ={x|−1≤x ≤3}. (1)求C U A ;(2)若集合B ={x |2x −a >0},且B ⊆(C U A ),求实数a 的取值范围.21.已知集合{}|123A x a x a =-≤≤+,{}|14B x x =-≤≤,全集U =R .(1)当a=1时,求(C U A)∩B;(2)若“x∈B”是“x∈A”的必要条件,求实数a的取值范围.22.命题p:“∀x∈[1,2],x2+x−a≥0”,命题q:“∃x∈R,x2+3x+2−a=0”.(1)写出命题p的否定命题¬p,并求当命题¬p为真时,实数a的取值范围;(2)若p和q中有且只有一个是真命题,求实数a的取值范围.参考答案:1.C【分析】先求交集,再求补集,即得答案.【详解】因为A={2,3,5,7},B={1,3,6,7},所以A∩B={3,7},A B={1,2,4,5,6}.又全集U={1,2,3,4,5,6,7},所以()U故选:C2.A【分析】根据一元二次不等式的运算求出集合B,再根据并集运算即可求出结果.【详解】因为B={x∈N|x2−3x<0},所以B={1,2},所以A∪B={1,2,3}.故选:A.【点睛】本题主要考查了集合的并集运算,属于基础题.3.C【分析】根据集合的表示法一一判断即可;【详解】解:对于A:集合M={(3,2)}表示含有点(3,2)的集合,N={(2,3)}表示含有点(2,3)的集合,显然不是同一集合,故A错误;对于B:集合M表示的是直线x+y=1上的点组成的集合,集合N=R为数集,故B错误;对于C:集合M、N均表示含有4,5两个元素组成的集合,故是同一集合,故C正确;对于D:集合M表示的是数集,集合N为点集,故D错误;故选:C4.A【解析】根据集合M,求出C U M,然后再根据交集运算即可求出结果.【详解】M={x|−1<x<2,x∈Z}={0,1}∴()C {1,2}U M N ⋂=-. 故选:A.【点睛】本题主要考查集合的交集和补集运算,属于基础题. 5.D【分析】根据交集、补集的定义计算可得;【详解】解:∵集合U ={1,2,3,4},M ={1,2,3},N ={2,3} ∴M ∩N ={2,3}, 则∁U (M ∩N)={1,4}. 故选:D . 6.B【分析】根据相等集合的概念,元素与集合、集合与集合之间的关系,空集的性质判断各项的正误.【详解】∈集合之间只有包含、被包含关系,故错误;②两集合中元素完全相同,它们为同一集合,则{0,1,2}⊆{2,1,0},正确; ③空集是任意集合的子集,故∅⊆{0,1,2},正确; ④空集没有任何元素,故∅≠{0},错误;⑤两个集合所研究的对象不同,故{0,1},{(0,1)}为不同集合,错误; ⑥元素与集合之间只有属于、不属于关系,故错误; ∈∈∈正确. 故选:B. 7.C【分析】根据存在量词命题的否定为全称量词命题判断即可;【详解】解:命题“∃x ∈R ,2220x x -+”为存在量词命题,其否定为:∀x ∈R ,2220x x -+>;故选:C 8.B【分析】“返回家乡”的前提条件是“攻破楼兰”,即可判断出结论. 【详解】“返回家乡”的前提条件是“攻破楼兰”, 故“攻破楼兰”是“返回家乡”的必要不充分条件 故选:B9.C【分析】利用判别式即可得到结果.【详解】∵“∃x∈R,使x2−x−m=0”是真命题,∴Δ=(−1)2+4m≥0,解得m≥−14.故选:C10.C【分析】先要找出命题为真命题的充要条件{a|a≥4},从集合的角度充分不必要条件应为{a|a≥4}的真子集,由选择项不难得出答案【详解】命题“∀x∈[1,2],x2-a≤0”为真命题,可化为∀x∈[1,2],a≥x2恒成立即只需a ≥(x2)max,即命题“∀x∈[1,2],x2-a≤0”为真命题的的充要条件为a≥4,而要找的一个充分不必要条件即为集合{a|a≥4}的真子集,由选择项可知C 符合题意.故选:C11.D【解析】先求出集合A,再根据A⊆B,即可求解.【详解】解:当a=0时,A={0},满足A⊆B,当a≠0时,A{0,a},若A⊆B,∴a=1或a=2,综上所述:a=0,1或a=2.故选:D.12.C【分析】讨论B=∅,B≠∅两种情况,分别计算得到答案.【详解】当B=∅时:m+1>2m−1∴m<2成立;当B≠∅时:{m+1≤2m−1m+1≥−22m−1≤5解得:2≤m≤3.综上所述:3m 故选C【点睛】本题考查了集合的关系,忽略掉空集的情况是容易发生的错误. 13.1-【分析】根据集合相等,元素相同,即可求得a 的值. 【详解】∵集合A ={−1,0,1},B ={0,a,a 2},A =B ,1a ∴=-,a 2=1.故答案是:1-. 14.{(3,1)}-【分析】确定集合中的元素,得出求交集就是由求得方程组的解所得. 【详解】因为M ={(x,y)|x +y =2}、N ={(x,y)|x −y =4}, 所以M ∩N ={(x,y)|{x +y =2x −y =4}={(3,−1)}.故答案为:{(3,1)}-. 15.a <−1【解析】利用判别式求出条件,再由充要条件的定义说明.【详解】解析因为方程220x x a --=没有实数根,所以有440a ∆=+<,解得a <−1,因此“方程220x x a --=没有实数根”的必要条件是a <−1.反之,若a <−1,则Δ<0,方程220x x a --=无实根,从而充分性成立.故“方程220x x a --=没有实数根”的充要条件是“a <−1”. 故答案为:a <−1【点睛】本题考查充要条件,掌握充要条件的定义是解题关键. 16.{x|−1<x ≤2}【分析】根据集合的新定义,结合集合A 、B 求A −B 即可.【详解】由题设,A −B ={x|x ∈A,x ∉B},又A ={x|−1<x <4},B ={x|x >2}, ∴A −B ={x|−1<x ≤2}. 故答案为:{x|−1<x ≤2} 17.−32【分析】由−2∈A ,有a −1=−2,或2a 2+5a +1=−2,显然a 2+1≠−2,解方程求出实数a 的值,但要注意集合元素的互异性.【详解】因为−2∈A ,所以有a −1=−2,或2a 2+5a +1=−2,显然a 2+1≠−2, 当a −1=−2时,a =−1,此时a −1=2a 2+5a +1=−2不符合集合元素的互异性,故舍去;当2a2+5a+1=−2时,解得a=−32,a=−1由上可知不符合集合元素的互异性,舍去,故a=−32.【点睛】本题考查了元素与集合之间的关系,考查了集合元素的互异性,考查了解方程、分类讨论思想.18.A∪B={x|x<−5或x>−4};A∩(∁R B)={x|−4<x≤1}【分析】由并集、补集和交集定义直接求解即可.【详解】由并集定义知:A∪B={x|x<−5或x>−4};∵∁R B={x|−5≤x≤1},∴A∩(∁R B)={x|−4<x≤1}.19.(1)∅,{3},{6},{9},{3,6},{3,9},{}6,9,{3,6,9};(2)A∩B={3,6},A∪∁U B={1,2,3,4,5,6,7,8}.【分析】(1)根据题意写出集合B,然后根据子集的定义写出集合B的子集;(2)求出集合A,利用交集的定义求出集合A∩B,利用补集和并集的定义求出集合A∪∁U B.【详解】(1)∵B={x|x=3n,n∈Z且x∈U},∴B={3,6,9},因此,B的子集有:∅,{3},{6},{9},{3,6},{3,9},{}6,9,{3,6,9};(2)由(1)知B={3,6,9},则∁U B={1,2,4,5,7,8},∵A={x|3≤x≤7且x∈U}={3,4,5,6,7},因此,A∩B={3,6},A∪∁U B={1,2,3,4,5,6,7,8}.【点睛】本题考查有限集合的子集,以及补集、交集和并集的运算,考查计算能力,属于基础题.20.(1) {x|x>3或x<−1};(2) a≥6.【分析】(1)利用数轴,根据补集的定义直接求出C U A;(2)解不等式化简集合B的表示,利用数轴根据B⊆(C U A),可得到不等式,解这个不等式即可求出实数a的取值范围.【详解】(1)因为集合A={x|−1≤x≤3}.所以C U A={x|x>3或x<−1};(2) B={x|2x−a>0}={x|x>a2}.因为B⊆(C U A),所以有362aa≤⇒≥.【点睛】本题考查了补集的定义,考查了已知集合的关系求参数问题,运用数轴是解题的关键. 21.(1)(C U A)∩B={x|−1≤x<0}(2)a <−4或0≤a ≤12【分析】(1)根据补集与交集的运算性质运算即可得出答案.(2)若“x ∈B ”是“x ∈A ”的必要条件等价于A ⊆B .讨论A 是否为空集,即可求出实数a 的取值范围.(1)当a =1时,集合{}|05A x x =≤≤,C U A ={x|x <0或x >5}, (C U A)∩B ={x|−1≤x <0}.(2)若“x ∈B ”是“x ∈A ”的必要条件,则A ⊆B , ①当A =∅时,a −1>2a +3,∴a <−4;②A ≠∅,则a ≥−4且a −1≥−1,2a +3≤4,∴0≤a ≤12. 综上所述,a <−4或0≤a ≤12. 22.(1)a >2 (2)a >2或a <−14【分析】(1)根据全称命题的否定形式写出¬p ,当命题¬p 为真时,可转化为(x 2+x −a)min ,当x ∈[1,2],利用二次函数的性质求解即可;(2)由(1)可得p 为真命题时a 的取值范围,再求解q 为真命题时a 的取值范围,分p 真和q 假,p 假和q 真两种情况讨论,求解即可 (1)由题意,命题p :“∀x ∈[1,2],x 2+x −a ≥0”,根据全称命题的否定形式,¬p :“∃x ∈[1,2],x 2+x −a <0” 当命题¬p 为真时,(x 2+x −a)min ,当x ∈[1,2]二次函数y =x 2+x −a 为开口向上的二次函数,对称轴为x =−12 故当x =1时,函数取得最小值,即(x 2+x −a)min 故实数a 的取值范围是a >2 (2)由(1)若p 为真命题a ≤2,若p 为假命题a >2 若命题q :“∃x ∈R ,x 2+3x +2−a =0” 为真命题 则Δ=9−4(2−a)≥0,解得14a ≥-故若q 为假命题a <−14由题意,p 和q 中有且只有一个是真命题, 当p 真和q 假时,a ≤2且a <−14,故a <−14; 当p 假和q 真时,a >2且14a ≥-,故a >2;综上:实数a 的取值范围是a >2或a <−14。
(人教版A版2017课标)高中数学必修第一册:第一章综合测试(附答案)
第一章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集{|13}U x Z x =∈-≤≤,集合{|03}A x x =∈Z ≤≤,则u A =ð( )A .{1}-B .{1,0}-C .{1,0,1}--D .{|10}x x -≤<2.已知集合{|32},{| 4 1}A x x B x x x =-=-<<<或>,则A B =I ( )A .{}|43x x --<<B .1{|}3x x -<<C .{}|12x x <<D .|31{}x x x -<或>3.命题“2,210x x x ∀∈-+R ≥”的否定是( )A .2,210x x x ∃∈-+R ≤B .2,210x x x ∃∈-+R ≥C .2,210x x x ∃∈-+R <D .2,210x x x ∀∈-+R <4.设x ∈R ,则“3x <”是“1x -<<3”的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件5.已知全集U =R ,{|1}M x x =<-,{|(2)0}N x x x =+<,则图中阴影部分表示的集合是( )A .{|10}A x x -≤<B .{|10}x x -<<C .{|21}x x --<<D .{|1}x x -<6.下列语句是存在量词命题的是( )A .整数n 是2和5的倍数B .存在整数n ,使n 能被11整除C .若370x -=,则73x = D .,()x M p x ∀∈7.已知{1,2,3},{2,4},A B ==定义集合,A B 间的运算*{|}A B x x A x B =∈∉且,则集合*A B 等于()A .{1,2,3}B .{2,4}C .{1,3}D .{2}8若命题“0x ∃∈R ,使得2003210x ax ++<”是假命题,则实数a 的取值范围是( )A .aB .a a ≤C .aD .a a <9.对于实数1,:01a a a α-+>,β:关于x 的方程210x ax -+=有实数根,则α是β成立的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 10.已知命题00:0,10p x x a ∃+-=>,若p 为假命题,则a 的取值范围是( )A .1a <B .1a ≤C .1a >D .1a ≥11.不等式组1,24x y x y +⎧⎨-⎩≥≤的解集为D ,下列命题中正确的是( ) A .(,),21x y D x y ∀∈+-≤B .(,),22x y D x y ∀∈+-≥C .(,),23x yD x y ∀∈+≤ D .(,),22x y D x y ∀∈+≥12.已知非空集合,A B 满足以下两个条件:(1){1,2,3,4,5,6},A B A B ==∅U I ;(2)若x A ∈,则1x B +∈.则有序集合对(,)A B 的个数为( )A .12B .13C .14D .15二、填空题(本大题共4小题,每小题5分,共20分.把答案写在题中的横线上)13.已知集合{|21,},{|2,}A x x k k B x x k k ==-∈==∈Z Z ,则A B =I ________.14某中学开展小组合作学习模式,高二某班某组同学甲给组内同学乙出题如下:若命题“2,20x x x m ∃∈++R ≤”是假命题,求m 的范围.同学乙略加思索,反手给了同学甲一道题:若命题“2,20x x x m ∀∈++R >”是真命题,求m 的范围.你认为,两位同学题中m 的范围是否一致?________(填“是”或“否”)15.设,a b 为正数,则“1a b ->”是“221a b ->”的________条件.(选填“充分不必要”“必要不充分”“充要”“既不充分也不必要”)16.已知集合{}22,,{0,1,3}A a a B =+=,且A B ⊆,则实数a 的值是________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.[10分]判断下列命题是全称量词命题还是存在量词命题,并判断其真假.(1)至少有一个整数,它既能被11整除,又能被9整除.(2)末位是0的实数能被2整除.(3)21,20x x ∃>->18.[12分]设全集U =R ,已知集合{1,2}A =,{|03}B x x =≤≤,集合C 为不等式组10,360x x +⎧⎨-⎩≥≤的解集. (1)写出集合A 的所有子集;(2)求u B ð和B C U .19.[12分]已知集合{}2|30,A x x ax a =-+=∈R .(1)若1A ∈,求实数a 的值;(2)若集合{}2|20,B x x bx b b =-+=∈R ,且{3}A B =I ,求A B U .20.[12分]已知集合{|32}A x x =-<<,{|05}B x x =≤<,{|}x m C x =<,全集为R .(1)求()A B R I ð;(2)若()A B C ⊆U ,求实数m 的取值范围.21.[12分]已知20,::11,0100,x p q m x m m x +⎧-+⎨-⎩≥≤≤>≤,若p 是q 的必要条件,求实数m 的取值范围.22.[12分]已知:20,:40p x q ax -->>,其中a ∈R 且0a ≠.(1)若p 是q 的充分不必要条件,求实数a 的取值范围;(2)若p 是q 的必要不充分条件,求实数a 的取值范围.第一章综合测试答案解析一、1.【答案】A2.【答案】C3.【答案】C4.【答案】C5.【答案】A6.【答案】B7.【答案】C8.【答案】C9.【答案】B10.【答案】D11.【答案】B【解析】Q 不等式组1,24,x y x y +⎧⎨-⎩≥≤1,24,x y x y +⎧∴⎨-+-⎩≥≥ 1,201,x y x y y +⎧∴∴+⎨-⎩≥≥≥,即22x y +-≥成立. ∴若124x y x y +⎧⎨-⎩≥≤的解集为D 时,(,),22x y D x y ∀∈+-≥成立,故选B . 12.【答案】A【解析】由题意分类讨论,得若{}1A =,则{2,3,4,5,6}B =;若{}2A =,则B {1,3,4,5,6}=;若{}3A =,则B {1,2,4,5,6}=;若{}4A =,则{1,2,3,5,6}B =;若{}5A =,则{1,2,3,4,6}B =;若{1,3}A =,则{2,4,5,6}B =;若{1,4}A =,则{2,3,5,6}B =;若{1,5}A =,则{2,3,4,6}B =;若{2,4}A =,则{1,3,5,6}B =;若{2,5}A =,则{1,3,4,6}B =;若{3,5}A =,则{1,2,4,6}B =;若{1,3,5}A =,则{2,4,6}B =.综上可得,有序集合对(,)A B 的个数为12.故选A .二、13.【答案】∅14.【答案】是15.【答案】充分不必要【解析】1a b -Q >,即1a b +>.又,a b Q 为正数,2222(1)121a b b b b ∴+=+++>>,即221a b ->成立;反之,当1a b =时,满足221a b ->,但1a b ->不成立.∴“1a b ->”是“221a b ->”的充分不必要条件.16.【答案】1【解析】:①0a =,{0,2}A =与A B ⊆矛盾,舍去;②1a =,{1,3}A =,满足A B ⊆;③3a =,{3,11}A =与A B ⊆矛盾,舍去.1a ∴=.三、17.【答案】(1)命题中含有存在量词“至少有一个”,因此是存在量词命题,真命题.(2)命题中省略了全称量词“所有”,是全称量词命题,真命题.(3)命题中含有存在量词“∃”,是存在量词命题,真命题.18.【答案】(1)A 的所有子集为,{1},{2},{1,2}∅.(2){|12}C x x =-≤≤,{|0 3}u B x x x =<或>ð,{|13}B C x x ∴⋃=-≤≤.19.【答案】(1)1,130,4A a a ∈∴-+=∴=Q(2){3},3,3A B A B ⋂=∴∈∈Q9330,1830,a b b -+=⎧∴⎨-+=⎩解得4,9.a b =⎧⎨=⎩{}2|430{1,3}A x x x ∴=-+==,{}23|29903,2B x x x ⎧⎫=-+==⎨⎬⎩⎭. 31,,32A B ⎧⎫∴⋃=⎨⎬⎩⎭. 20.【答案】(1){|05}B x x x =R <或≥ð,(){}|30A B x x ∴⋂=-R <<ð(2){|35}A B x x ⋃=-<<,()A B C ⋃Q ≤,5m ∴…,∴实数m 的取值范围为{|5}m m ≥.21.【答案】20:100x p x +⎧⎨-⎩≥,≤,Q :[2,10]p x ∴∈-. 又:[1,1],0q x m m m ∈-+Q >,且p 是q 的必要条件.[1,1][2,10]m m ∴-+⊆-012110m m m ⎧⎪∴--⎨⎪+⎩>≥≤03m ∴<≤.∴实数m 的取值范围是03m <≤.22.【答案】(1)设:{|20}p A x x =->,即:{|2}p A x x =>,:{|40}q B x ax =->,因为p 是q 的充分不必要条件,则A B Ü, 即0,42,a a⎧⎪⎨⎪⎩><解得2a >.所以实数a 的取值范围为2a >. (2)由(1)及题意得B A Ü.①当0a >时,由B A Ü得42a>,即02a <<; ②当0a <时,显然不满足题意.综上可得,实数a 的取值范围为02a <<.。
人教版高中数学必修一第一章《集合与函数》检测习题(含答案解析)
人教版高中数学必修一第一章《集合与函数》单元检测精选(含答案解析)(时间:120分钟 满分:150分)第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U 是实数集R ,M ={x |x 2>4},N ={x |x -12≥1},则上图中阴影部分所表示的集合是( )A .{x |-2≤x <1}B .{x |-2≤x ≤2}C .{x |1<x ≤2}D .{x |x <2}2.设2a =5b =m ,且a 1+b 1=2,则m 等于( )A. B .10C .20D .1003.设函数f (x )满足:①y =f (x +1)是偶函数;②在[1,+∞)上为增函数,则f (-1)与f (2)的大小关系是( )A .f (-1)>f (2)B .f (-1)<f (2)C .f (-1)=f (2)D .无法确定4.若集合A ={y |y =2x ,x ∈R },B ={y |y =x 2,x ∈R },则( )A .A ⊆B B .A BC .A =BD .A ∩B =∅5.某企业去年销售收入1000万元,年成本为生产成本500万元与年广告成本200万元两部分.若年利润必须按p %纳税,且年广告费超出年销售收入2%的部分也按p %纳税,其他不纳税.已知该企业去年共纳税120万元,则税率p %为( )A .10%B .12%C .25%D .40% 6.设则f (f (2))的值为( ) A .0B .1C .2D .37.定义运算:a *b =如1*2=1,则函数f(x)的值域为( ) A .RB .(0,+∞)C .(0,1]D .[1,+∞)8.若2lg(x -2y )=lg x +lg y ,则log 2y x 等于( )A .2B .2或0C .0D .-2或09.设函数,g (x )=log 2x ,则函数h (x )=f (x )-g (x )的零点个数是( ) A .4B .3C .2D .110.在下列四图中,二次函数y =ax 2+bx 与指数函数y =(a b )x 的图象只可为( )11.已知f (x )=a x -2,g (x )=log a |x |(a >0且a ≠1),若f (4)g (-4)<0,则y =f (x ),y =g (x )在同一坐标系内的大致图象是( )12.设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则有( )A .f (31)<f (2)<f (21)B .f (21)<f (2)<f (31)C .f (21)<f (31)<f (2)D .f (2)<f (21)<f (31)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f (f (3))的值等于________.14.已知集合A ={x |x ≥2},B ={x |x ≥m },且A ∪B =A ,则实数m 的取值范围是________.15.若函数f (x )=x x2+(a +1x +a 为奇函数,则实数a =________.16.老师给出一个函数,请三位同学各说出了这个函数的一条性质:①此函数为偶函数;②定义域为{x ∈R |x ≠0};③在(0,+∞)上为增函数.老师评价说其中有一个同学的结论错误,另两位同学的结论正确.请你写出一个(或几个)这样的函数________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)设集合A 为方程-x 2-2x +8=0的解集,集合B 为不等式ax -1≤0的解集.(1)当a =1时,求A ∩B ;(2)若A ⊆B ,求实数a 的取值范围.18.(本小题满分12分)设全集为R ,A ={x |3<x <7},B ={x |4<x <10},(1)求∁R (A ∪B )及(∁R A )∩B ;(2)C ={x |a -4≤x ≤a +4},且A ∩C =A ,求a 的取值范围.19.(本小题满分12分)函数f (x )=x +12x -1,x ∈3,5].(1)判断单调性并证明;(2)求最大值和最小值.20.(本小题满分12分)已知二次函数f(x)=-x2+2ax-a在区间0,1]上有最大值2,求实数a的值.21.(本小题满分12分)已知函数f(x)的值满足f(x)>0(当x≠0时),对任意实数x,y都有f(xy)=f(x)·f(y),且f(-1)=1,f(27)=9,当0<x<1时,f(x)∈(0,1).(1)求f(1)的值,判断f(x)的奇偶性并证明;(2)判断f (x )在(0,+∞)上的单调性,并给出证明;(3)若a ≥0且f (a +1)≤93,求a 的取值范围.22.(本小题满分12分)已知函数f (x )=x 2+x a(x ≠0).(1)判断f (x )的奇偶性,并说明理由;(2)若f (1)=2,试判断f (x )在2,+∞)上的单调性.参考答案与解析1.C [题图中阴影部分可表示为(∁U M )∩N ,集合M ={x |x >2或x <-2},集合N ={x |1<x ≤3},由集合的运算,知(∁U M )∩N ={x |1<x ≤2}.]2.A [由2a =5b =m 得a =log 2m ,b =log 5m ,∴a 1+b 1=log m 2+log m 5=log m 10.∵a 1+b 1=2,∴log m 10=2,∴m 2=10,m =.]3.A [由y =f (x +1)是偶函数,得到y =f (x )的图象关于直线x =1对称,∴f (-1)=f (3). 又f (x )在[1,+∞)上为单调增函数,∴f (3)>f (2),即f (-1)>f (2).]4.A [∵x ∈R ,∴y =2x >0,即A ={y |y >0}.又B ={y |y =x 2,x ∈R }={y |y ≥0},∴A ⊆B .]5.C [利润300万元,纳税300·p %万元,年广告费超出年销售收入2%的部分为200-1000×2%=180(万元),纳税180·p %万元,共纳税300·p %+180·p %=120(万元),∴p %=25%.]6.C [∵f (2)=log 3(22-1)=log 33=1,∴f (f (2))=f (1)=2e 1-1=2.]7.C[由题意可知f (x )=2-x ,x>0.2x x ≤0,作出f (x )的图象(实线部分)如右图所示;由图可知f (x )的值域为(0,1].]8.A [方法一 排除法.由题意可知x >0,y >0,x -2y >0,∴x >2y ,y x >2,∴log 2y x >1.方法二 直接法.依题意,(x -2y )2=xy ,∴x 2-5xy +4y 2=0,∴(x -y )(x -4y )=0,∴x =y 或x =4y ,∵x -2y >0,x >0,y >0,∴x >2y ,∴x =y (舍去),∴y x =4,∴log 2y x =2.]9.B [当x ≤1时,函数f (x )=4x -4与g (x )=log 2x 的图象有两个交点,可得h (x )有两个零点,当x >1时,函数f (x )=x 2-4x +3与g (x )=log 2x 的图象有1个交点,可得函数h (x )有1个零点,∴函数h (x )共有3个零点.]10.C [∵a b >0,∴a ,b 同号.若a ,b 为正,则从A 、B 中选.又由y =ax 2+bx 知对称轴x =-2a b <0,∴B 错,但又∵y =ax 2+bx 过原点,∴A 、D 错.若a ,b 为负,则C 正确.]11.B [据题意由f (4)g (-4)=a 2×log a 4<0,得0<a <1,因此指数函数y =a x (0<a <1)是减函数,函数f (x )=a x -2的图象是把y =a x 的图象向右平移2个单位得到的,而y =log a |x |(0<a <1)是偶函数,当x >0时,y =log a |x |=log a x 是减函数.]12.C [由f (2-x )=f (x )知f (x )的图象关于直线x =22-x +x =1对称,又当x ≥1时,f (x )=ln x ,所以离对称轴x =1距离大的x 的函数值大,∵|2-1|>|31-1|>|21-1|,∴f (21)<f (31)<f (2).]13.2 解析:由图可知f (3)=1,∴f (f (3))=f (1)=2.14.2,+∞) 解析:∵A ∪B =A ,即B ⊆A ,∴实数m 的取值范围为2,+∞).15.-1 解析:由题意知,f (-x )=-f (x ),即-x x2-(a +1x +a =-x x2+(a +1x +a ,∴(a +1)x =0对x ≠0恒成立,∴a +1=0,a =-1.16.y =x 2或y =1+x ,x<01-x ,x>0,或y =-x 2(答案不唯一)解析:可结合条件来列举,如:y =x 2或y =1+x ,x<01-x ,x>0或y =-x 2.解题技巧:本题为开放型题目,答案不唯一,可结合条件来列举,如从基本初等函数中或分段函数中来找.17.解:(1)由-x 2-2x +8=0,解得A ={-4,2}.当a =1时,B =(-∞,1].∴A ∩B =.(2)∵A ⊆B ,∴2a -1≤0,-4a -1≤0,∴-41≤a ≤21,即实数a 的取值范围是21.18.解:(1)∁R (A ∪B )={x |x ≤3或x ≥10},(∁R A )∩B ={x |7≤x <10}.(2)由题意知,∵A ⊆C ,∴a -4≤3,a +4≥7,解得3≤a ≤7,即a 的取值范围是3,7].19.解:(1)f (x )在3,5]上为增函数.证明如下:任取x 1,x 2∈3,5]且x 1<x 2.∵ f (x )=x +12x -1=x +12(x +1-3=2-x +13,∴ f (x 1)-f (x 2)=x1+13-x2+13=x2+13-x1+13=(x1+1(x2+13(x1-x2,∵ 3≤x 1<x 2≤5,∴ x 1-x 2<0,(x 2+1)(x 1+1)>0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴ f (x )在3,5]上为增函数.(2)根据f (x )在3,5]上单调递增知,f (x )]最大值=f (5)=23,f (x )]最小值=f (3)=45.解题技巧:(1)若函数在闭区间a ,b ]上是增函数,则f (x )在a ,b ]上的最大值为f (b ),最小值为f (a ).(2)若函数在闭区间a ,b ]上是减函数,则f (x )在a ,b ]上的最大值为f (a ),最小值为f (b ).20.解:由f (x )=-(x -a )2+a 2-a ,得函数f (x )的对称轴为x =a .①当a <0时,f (x )在0,1]上单调递减,∴f (0)=2,即-a =2,∴a =-2.②当a >1时,f (x )在0,1]上单调递增,∴f (1)=2,即a =3.③当0≤a ≤1时,f (x )在0,a ]上单调递增,在a,1]上单调递减,∴f (a )=2,即a 2-a =2,解得a =2或-1与0≤a ≤1矛盾.综上,a =-2或a =3.21.解:(1)令x =y =-1,f (1)=1.f (x )为偶函数.证明如下:令y =-1,则f (-x )=f (x )·f (-1),∵f (-1)=1,∴f (-x )=f (x ),f (x )为偶函数.(2)f (x )在(0,+∞)上是增函数.设0<x 1<x 2,∴0<x2x1<1,f (x 1)=f ·x2x1=f x2x1·f (x 2),Δy =f (x 2)-f (x 1)=f (x 2)-f x2x1f (x 2)=f (x 2)x2x1.∵0<f x2x1<1,f (x 2)>0,∴Δy >0,∴f (x 1)<f (x 2),故f (x )在(0,+∞)上是增函数.(3)∵f (27)=9,又f (3×9)=f (3)×f (9)=f (3)·f (3)·f (3)=f (3)]3,∴9=f (3)]3,∴f (3)=93,∵f (a +1)≤93,∴f (a +1)≤f (3),∵a ≥0,∴a +1≤3,即a ≤2,综上知,a 的取值范围是0,2].22.解:(1)当a =0时,f (x )=x 2,f (-x )=f (x ).∴函数f (x )是偶函数.当a ≠0时,f (x )=x 2+x a (x ≠0),而f (-1)+f (1)=2≠0,f (-1)-f (1)=-2a ≠0,∴ f (-1)≠-f (1),f (-1)≠f (1).∴ 函数f (x )既不是奇函数也不是偶函数.(2)f (1)=2,即1+a =2,解得a =1,这时f (x )=x 2+x 1.任取x 1,x 2∈2,+∞),且x 1<x 2,则f (x 1)-f (x 2)=x11-x21=(x 1+x 2)(x 1-x 2)+x1x2x2-x1=(x 1-x 2)x1x21, 由于x 1≥2,x 2≥2,且x 1<x 2,∴ x 1-x 2<0,x 1+x 2>x1x21,f (x 1)<f (x 2),故f (x )在2,+∞)上单调递增.。
高一数学必修一第一章测试题及答案
高中数学必修1检测题一、选择题: 每小题5分, 12个小题共60分 1. 已知全集 )等于 ( )A. {2, 4, 6}B. {1, 3, 5}C. {2, 4, 5}D. {2, 5}2.已知集合 , 则下列式子表示正确的有( ) ①A ∈1 ②A ∈-}1{ ③A ⊆φ ④A ⊆-}1,1{A. 1个B. 2个C. 3个D. 4个3.若 能构成映射, 下列说法正确的有 ( ) (1)A 中的任一元素在B 中必须有像且唯一; (2)A 中的多个元素可以在B 中有相同的像; (3)B 中的多个元素可以在A 中有相同的原像; (4)像的集合就是集合B .A.1个B.2个C.3个D.4个4、如果函数 在区间 上单调递减, 则实数 的取值范围是( ) A. B. C. D. 5.下列各组函数是同一函数的是 ( )①()f x =()g x =f(x)=x与()g x = ③0()f x x =与01()g x x=;④2()21f x x x =--与2()21g t t t =--。
A.①② B.①③ C.③④ D.①④A. (-1, 0)B. (0, 1)C. (1, 2)D. (2, 3)7. 若 ( )A. B. C. D.8、 若定义运算 , 则函数 的值域是( ) A [)0,+∞ B (]0,1 C [)1,+∞ D R 9. 函数 上的最大值与最小值的和为3, 则 ( ) A. B. 2 C. 4 D.10.下列函数中,在 上为增函数的是... )A. B、A. 一次函数模型B. 二次函数模型C. 指数函数模型D. 对数函数模型12.下列所给4个图象中, 与所给3件事吻合最好的顺序为 ( ) (1)我离开家不久, 发现自己把作业本忘在家里了, 于是立刻返回家里取了作业本再上学;(2)我骑着车一路以常速行驶, 只是在途中遇到一次交通堵塞, 耽搁了一些时间; (3)我出发后, 心情轻松, 缓缓行进, 后来为了赶时间开始加速。
高中数学新教材必修第一册第一章《集合》综合测试题(附答案)
新教材必修第一册第一章《集合》综合测试题(时间:120分钟 满分:150分)班级 姓名 分数一、选择题(每小题5分,共计60分)1.设全集I={0,1,2,3,4},集合A={0,1,2,3},集合B={2,3,4},则A C I ∪B C I =A .{0}B .{0,1}C .{0,1,4}D .{0,1,2,3,4}2.方程组3231x y x y -=⎧⎨-=⎩的解的集合是 A .{x =8,y=5} B .{8, 5} C .{(8, 5)}D .Φ3.有下列四个命题: ①{}0是空集; ②若Z a ∈,则a N -∉; ③集合{}2210A x R x x =∈-+=有两个元素;④集合6B x QN x ⎧⎫=∈∈⎨⎬⎩⎭是有限集。
其中正确命题的个数是A .0B .1C .2D .34. 已知{}{}22|1,|1==-==-M x y x N y y x , N M ⋂等于( )A. NB.MC.RD.∅ 5.如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 A .0 B .0 或1 C .1 D .不能确定6.已知}{R x x y y M∈-==,42,}{42≤≤=x x P 则M P 与的关系是 A .M P = B .M P ∈ C .M ∩P =Φ D . M ⊇P7.已知全集I =N ,集合A ={x |x =2n ,n ∈N},B ={x |x =4n ,n ∈N},则A .I =A∪BB .I =AC I ∪B C .I =A∪B C ID .I =A C I ∪B C I8.设集合M=},214|{},,412|{Z k k x x N Z k k x x ∈+==∈+=,则A .M =NB . M ≠⊂NC . N ≠⊂MD .M ∩=N Φ9. 已知函数2()1=++f x mx mx 的定义域是一切实数,则m 的取值范围是 ( )A.0<m ≤4B.0≤m ≤1C.m ≥4 D .0≤m ≤4 10.设集合A={x |1<x <2},B={x |x <a }满足A ≠⊂B ,则实数a 的取值范围是 A .[)+∞,2 B .(]1,∞- C .[)+∞,1D .(]2,∞-11.满足{1,2,3} ≠⊂M ≠⊂{1,2,3,4,5,6}的集合M 的个数是A .8B .7C .6D .512.如右图所示,I 为全集,M 、P 、S 为I 的子集。
人教版B版2017课标高中数学必修第一册第一章综合测试试卷-含答案01
第一章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集{0,1,2,3,4,5}U =,集合{1,2,3,5}A =,{2,4}B =,则()uA B = ( )A .{0,2,4}B .{4}C .{1,2,4}D .{0,2,3,4}2.已知集合{0,2,3}A =,{|,,}B x x a b a b A ==⋅∈,则集合B 的子集的个数是( )A .4B .8C .15D .163.如果甲是乙的必要不充分条件,乙是丙的充要条件,丙是丁的必要不充分条件,则丁是甲的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件4.设a ,b ∈R ,集合{1,,}0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,则b a -=( ) A .1 B .1- C .2 D .2-5.若集合{0,1,2}M =,{(,)|210210,,}N x y x y x y x y M =-+--∈且 ,则N 中元素的个数为( )A .9B .6C .4D .26.命题:q x ∀∈R ,3210x x -+ 的否定是( )A .32,10x x x ∃∈-+RB .32,10x x x ∃∈-+RC .32,10x x x ∃∈-+R >D .32,10x x x ∀∈-+R >7.已知p 是r 的充分条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件.现有下列命题:①s 是q 的充要条件;②p 是q 的充分条件;③r 是q 的必要条件;④p ⌝是s ⌝的必要条件;⑤r 是s 的充分条件.则正确命题的序号是( )A .①④⑤B .①②④C .②③⑤D .②④⑤8.已知集合{}2|0M x x x =->,{|1}N x x = ,则M N = ( )A .[1,)+∞B .(1,)+∞C .∅D .(,0)(1,)-∞+∞ 9.设集合{|0}M x x m =- ,{}2|(1)1,N y y x x ==--∈R .若M N =∅ ,则实数m 的取值范围是( )A .[1,)-+∞B .(1,)-+∞C .(,1]-∞-D .(,1)-∞- 10.已知全集U R =,集合{|(2)0}A x x x =+<,{|||1}B x x =≤,则如图所示的阴影部分表示的集合是( )A .(2,1)-B .[1,0)[1,2)-C .(2,1)[0,1]--D .[0,1]11.设条件p :关于x 的方程()221210m x mx -+-=的两根一个小于0,一个大于1,若p 是q 的必要不充分条件,则条件q 可设为( )A .(1,1)m ∈-B .(0,1)m ∈C .(1,0)m ∈-D .(2,1)m ∈- 12.关于x 的方程2210ax x ++=至少有一个负根的充要条件是( )A .01aB .1a <C .1aD .01a < 或0a <二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.已知非空集合M 满足:{1,2,3,4,5}M ⊆,且若x M ∈,则6x M -∈.则满足条件的集合M 有__________个.14.设全集S 有两个子集A ,B ,若sA x x B ∈⇒∈ ,则x A ∈是x sB ∈ 的条件是__________.15.关于x 的不等式2043x a x x +++的解集为(3,1)(2,)--+∞ 的充要条件是__________. 16.已知集合{|||1}A x x a =- ,{}2|540B x x x =-+ ,若A B =∅ ,则实数a 的取值范围是__________.三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知集合{|(2)[(31)]0}A x x x a =--+<,()22|01x a B x x a ⎧⎫-⎪⎪=⎨⎬-+⎪⎪⎩⎭. (1)当2a =时,求A B ⋂;(2)求使B A ⊆的实数a 的取值范围.18.(本小题满分12分)若{|68,,}A x x a b a b ==+∈Z ,{|2,}B x x m m ==∈Z ,求证:A B =.19.(本小题满分12分)已知命题p :方程2220a x ax +-=在区间[1,1]-上有解;命题q :只有一个实数x 满足不等式2220x ax a ++≤.若命题“p 或q ”是假命题,求实数a 的取值范围.20.(本小题满分12分)已知{}2|320A x x x =++≥,{}2|410,B x mx x m m =-+-∈R >,若 0A B = ,且A B A = ,求实数m 的取值范围.21.(本小题满分12分)已知{}2:|10p A x x ax =++≤,{}2:|320q B x x x =-+≤,若p 是q 的充分不必要条件,求实数a 的取值范围.22.(本小题满分12分)已知集合{}2|8200P x x x =--≤,{||1|}S x x m =- .(1)若()P S P ⊆ ,求实数m 的取值范围.(2)是否存在实数m ,使“x P ∈”是“x S ∈”的充要条件?若存在,求出m 的取值范围;若不存在,请说明理由.第一单元测试答案解析一、1.【答案】A【解析】由题意得uA {0,4}= ,又{2,4}B =,所以(){0,2,4}uA B = ,故选A .2.【答案】D【解析】∵{0,4,6,9}B =,∴B 的子集的个数为4216=.3.【答案】A【解析】因为丁⇒丙⇔乙⇒甲,故丁⇒甲(传递性).4.【答案】C【解析】∵集合{1,,}0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭, 又0a ≠∵,0a b +=∴,即a b =-,1b a=-∴,1b =. 2b a -=∴,故选C .5.【答案】C【解析】N ∵为点集,x M ∈,y M ∈,∴由x ,y 组成的点有(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2).其中满足210x y -+≥且210x y --≤的仅有(0,0),(0,1),(1,1),(2,1)四个元素.6.【答案】C【解析】原命题的否定是“32,10x x x ∃∈-+R >”.7.【答案】B【解析】由已知有p r ⇒,q r ⇒,r s ⇒,s q ⇒,由此得g s ⇒且s q ⇒,r q ⇒且q r ⇒,所以①正确,③不正确.又p q ⇒,所以②正确.④等价于p s ⇒,正确.r s ⇒且s r ⇒,⑤不正确.故选B .8.【答案】B【解析】由20x x ->得0x <或1x >,∵(1,)M N =+∞ .故选B . 9.【答案】D【解析】由已知得(,]M m =-∞,[1,)N =-+∞,∵M N =∅ ,1m ∴-<,故选D .10.【答案】C【解析】由已知得{|20}A x x =-<<,{|11}B x x =-≤≤,所以(2,1]A B =- ,[1,0)A B =- ,所以阴影部分表示的集合为()(2,1)[0,1]A B A B =--⋃ ,故选C .11.【答案】C【解析】构造函数()22121y m x mx =-+-,则0x =时,1y =-,函数的图像开口向上,由1x =时21210m m -+-<得2m >或0m <,又p 是q 的必要不充分条件,所以p ⇒q ,q p ⇒,故选C .12.【答案】C【解析】若0∆=,则440a -=,1a =,满足条件,当0∆>时,4401a a -⇒><.所以1a ≤. 二、13.【答案】7【解析】列举如下:{1,5}M =,{2,4}M =,{3}M =,{1,3,5)M =,{2,3,4}M =,{1,2,4,5}M =,{1,2,3,4,5}M =,共7个.14.【答案】必要 不充分【解析】由已知得S A B ⊆ ,两边取补集,有()S S S A B ⊇ ,即S A B ⊇ ,所以S x B x A ∈⇒∈ ,反之,不一定成立,故x ∈A 是S x B ∈ 的必要不充分条件.15.【答案】2a =-【解析】令2430x x ++=,得3x =-或1x =-,∴可猜想20a +=,即2a =-.代入原不等式得22043x x x -++>,解得(3,1)(2,)x ∈--+∞ .故2a =-. 16.【答案】(2,3)【解析】由题意得{|11}A x a x a =-+≤≤,{|14}B x x x 或 ,A B =∅ ,1114a a ->⎧⎨+<⎩∴,23a ∴<<. 三、17.【答案】(1)∵当2a =时,{|27}A x x =<<,{|45}B x x =<<,{|45}A B x x = ∴<<(2)由已知得{}2|21B x a x a =+<<,当13a <时,{|312}A x a x =+<<,要使B A ⊆,必须满足2231,12,a a a +⎧⎨+⎩ 此时1a =-;当13a =时,A =∅,使B A ⊆的a 不存在;当13a >时,(2,31)A a =+,要使B A ⊆,必须满足2222,131,12,a a a a a ⎧⎪++⎨⎪+≠⎩此时13a < . 综上可知,使B A ⊆的实数a 的取值范围为(1,3]{1}- .18.【答案】证明:①设t A ∈,则存在,a b ∈Ζ,使得682(34)t a b a b =+=+.34a b +∈Z ∵t B ∈∴,t B ∴∈即A B ⊆.②设t B ∈,则存在m ∈Z ,使得26(5)84t m m m ==⨯-+⨯.0a =∴t A ∈∴5m -∈Z ∵,4m ∈Z ,,即B A ⊆. 由①②知A B =.19.【答案】由2220a x ax +-=,得(2)(1)0ax ax +-=,显然0a ≠,2x a =-∴或1x a=. [1,1]x ∈-∵,故21a ≤或11a,||1a ∴ . “只有一个实数x 满足2220x ax a ++≤”即抛物线222y x ax a =++与x 轴只有一个交点, 2480a a ∆=-=∴,或2a =,∴命题“p 或q ”为真命题时“||1a ≥或0a =”.∵命题“p 或q ”为假命题,∴实数a 的取值范围为{|10 01}a a a -<<或<<.20.【答案】A B A = ∵,B A ⊆∴,又A B =∅ ,B =∅∴{}2|410,B x mx x m m =-+-∈R ∵>,∴对一切x ∈R ,使得2410mx x m -+-≤恒成立,于是有0,164(1)0,m m m ⎧⎨--⎩<≤解得m ∴实数m的取值范围是|m m ⎧⎪⎨⎪⎩⎭21.【答案】{}2|320{|12}B x x x x x =∈-+=R , p ∵是q 的充分不必要条件,p q ⇒∴,q ⇒p ,即A 是B 的真子集,答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2017秋人教A版·数学·必修1第一章 章末检测卷 Word版含解析
如图是张大爷晨练时离家距离(y)与行走时间若用黑点表示张大爷家的位置,则张大爷散步行走的路线x的关系知,在中间时间段-1≤x<2或x≥3},∪B={x|x≥-2}.2}(3)李刚家月用电量在什么范围时,选择方案一比选择方案二更好?【解析】 (1)当0≤x ≤30时,L (x )=2+0.5x . 当x >30时,L (x )=2+30×0.5+(x -30)×0.6=0.6x -1.所以L (x )=⎩⎨⎧2+0.5x ,0≤x ≤300.6x -1,x >30(注:x 也可不取0)(2)当0≤x ≤30时,由L (x )=2+0.5x =35得x =66,舍去. 当x >30时,由L (x )=0.6x -1=35得x =60, 所以李刚家该月用电60度.(3)设按方案二收费为F (x )元,则F (x )=0.58x . 当0≤x ≤30时,由L (x )<F (x ),得2+0.5x <0.58x , 所以x >25,所以25<x ≤30;当x >30时,由L (x )<F (x ),得,0.6x -1<0.58x , 所以x <50,所以30<x <50.综上,25<x <50,故李刚家月用电量在25度到50度范围内(不含25度、50度)时,选择方案一比方案二更好.22.(12分)已知函数f (x )=ax 2+bx +c (a ≠0),满足f (0)=2,f (x +1)-f (x )=2x -1.(1)求函数f (x )的解析式; (2)求函数f (x )的单调区间;(3)当x ∈[-1,2]时,求函数的最大值和最小值.【解析】 (1)由f (0)=2,得c =2, 又f (x +1)-f (x )=2x -1, 得2ax +a +b =2x -1,故⎩⎨⎧2a =2a +b =-1,解得:a =1,b =-2.所以f (x )=x 2-2x +2.(2)f (x )=x 2-2x +2=(x -1)2+1函数,图象的对称轴为x =1,且开口向上,所以f(x)单调递增区间为(1,+∞),单调递减区间为(-∞,1).(3)f(x)=x2-2x+2=(x-1)2+1,对称轴为x=1∈[-1,2],故f min(x)=f(1)=1,又f(-1)=5,f(2)=2,所以f max(x)=f(-1)=5.。
2017人教版新课标必修一数学第一章集合综合测试卷
第 1 页 共 1 页 必修一物理综合测试题(一)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共50分)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ) A .{1,4} B .{2,3} C .{9,16} D .{1,2}2.(2013·大纲高考题)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1) B .(-1,-12)C .(-1,0)D .(12,1)3.在下列四组函数中,f (x )与g (x )表示同一函数的是( ) A .f (x )=x -1,g (x )=x -1x -1B .f (x )=|x +1|,g (x )=⎩⎪⎨⎪⎧x +1,x ≥-1-x -1,x <-1C .f (x )=x +2,x ∈R ,g (x )=x +2,x ∈ZD .f (x )=x 2,g (x )=x |x |4.(2014·北京理,2)下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =x +1 B .y =(x -1)2 C .y =2-xD .y =log 0.5(x +1)5.函数y =ln x +2x -6的零点,必定位于如下哪一个区间( ) A .(1,2) B .(2,3) C .(3,4) D .(4,5)第 2 页 共 2 页 6.已知f (x )是定义域在(0,+∞)上的单调增函数,若f (x )>f (2-x ),则x 的取值范围是( ) A .x >1 B .x <1 C .0<x <2 D .1<x <27.设y 1=40.9,y 2=80.48,y 3=(12)-1.5,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 28.设0<a <1,函数f (x )=log a (a 2x -2a x -2),则使f (x )<0的x 的取值范围是( ) A .(-∞,0) B .(0,+∞) C .(-∞,log a 3) D .(log a 3,+∞)9.若函数f (x )、g (x )分别为R 上的奇函数、偶函数,且满足f (x )-g (x )=e x ,则有( ) A .f (2)<f (3)<g (0) B .g (0)<f (3)<f (2) C .f (2)<g (0)<f (3) D .g (0)<f (2)<f (3)10.如果一个点是一个指数函数的图像与一个对数函数的图像的公共点,那么称这个点为“好点”,在下面的五个点M (1,1),N (1,2),P (2,1),Q (2,2),G (2,12)中,“好点”的个数为( )A .0B .1C .2D .3第Ⅱ卷(非选择题 共100分)二、填空题(本大题共5个小题,每小题5分,共25分,把答案填在题中横线上)11.(2013·湖南高考)已知集合U ={2,3,6,8},A ={2,3},B ={2,6,8},则(∁U A )∩B =________.12.函数f (x )=⎩⎪⎨⎪⎧log 12x ,x ≥12x ,x <1的值域为________.第 3 页 共 3 页 13.用二分法求方程x 3+4=6x 2的一个近似解时,已经将一根锁定在区间(0,1)内,则下一步可断定该根所在的区间为________.14.已知f (x 6)=log 2x ,则f (8)=________.15.已知函数f (x )=x 2+ax (x ≠0,常数a ∈R ),若函数f (x )在x ∈[2,+∞)上为增函数,则a 的取值范围为________.三、解答题(本大题共6个小题,满分75分,解答应写出文字说明,证明过程或演算步骤)16.(本小题满分12分)设全集U 为R ,A ={x |x 2+px +12=0},B ={x |x 2-5x +q =0},若(∁U A )∩B ={2},A ∩(∁U B )={4},求A ∪B .17.(本小题满分12分)(1)不用计算器计算:log 327+lg25+lg4+7log 72+(-9.8)0 (2)如果f (x -1x )=(x +1x )2,求f (x +1).18.(本小题满分12分)(1)定义在(-1,1)上的奇函数f(x)为减函数,且f(1-a)+f(1-a2)>0,求实数a的取值范围.(2)定义在[-2,2]上的偶函数g(x),当x≥0时,g(x)为减函数,若g(1-m)<g(m)成立,求m的取值范围.19.(本小题满分12分)已知函数f(x)是定义在R上的奇函数,并且当x∈(0,+∞)时,f(x)=2x.(1)求f(log213)的值;(2)求f(x)的解析式..20.(本小题满分13分)已知二次函数f(x)=ax2+bx+c(a≠0)和一次函数g(x)=-bx(b≠0),其中a,b,c满足a>b>c,a+b+c=0(a,b,c∈R).(1)求证:两函数的图像交于不同的两点;(2)求证:方程f(x)-g(x)=0的两个实数根都小于2.第 4 页共4 页第 5 页 共 5 页 21.(本小题满分14分)一片森林原来面积为a ,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22, (1)求每年砍伐面积的百分比;(2)至今年为止,该森林已砍伐了多少年? (3)今后最多还能砍伐多少年? [。
(人教版A版2017课标)高中数学必修第一册 第一章综合测试卷(附答案)03
第一章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}21,0,1,2A =--,,{}|1B y y x x A ==-∈,,则下列关系正确的是( )A .AB =B .A B ⊆C .B A ⊆D .A B =∅∩2.已知集合{}2|320A x ax x =-+=中有且只有一个元素,那么实数a 的取值集合是( )A .98⎧⎫⎨⎬⎩⎭B .908⎧⎫⎨⎬⎩⎭,C .{}0D .203⎧⎫⎨⎬⎩⎭, 3.已知函数()()12232x x x f x f x x +⎧⎪-=⎨⎪+⎩,>,,≤,则()2f 的值等于( )A .4B .3C .2D .无意义4.已知函数()f x 的定义域为R ,则实数k 的取值范围是( )A .()()00-∞+∞,∪,B .[]04,C .[)04,D .()04,5.已知两个函数()f x 和()g x 的定义域和值域都是集合{}123,,,其定义如表所示,则()()f g x 对应的三个值依次为( )A .2,1,3B .1,2,3C .3,2,1D .1,3,26.已知函数()221x f x x =+,则()()()()1111234234f f f f f f f ⎛⎫⎛⎫⎛⎫++++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( ) A .3B .4C .72D .927.设全集为R ,函数()0f x =定义域为M ,则M =R ð( )A .{}|2x x ≥B .{}|21x x x -<且≠C .{}|21x x x -≥或=D .{}|21x x x ->或=8.若函数()()221341x x x f x a x a x ⎧-+⎪=⎨-+⎪⎩,<,,≥满足对任意实数12x x ≠,都有()()12120f x f x x x -->成立,则实数a 的取值范围是( )A .()1+∞,B .[)13,C .233⎡⎫-⎪⎢⎣⎭,D .()3-∞,9.已知()f x 是奇函数,()g x 是偶函数,且()()112f g -+=,()()114f g +-=,则()1g 等于( ) A .4B .3C .2D .110.已知()22f x x ax =-+与()ag x x=在区间[]12,上都是减函数,则a 的取值范围为( ) A .()01,B .(]01,C .()()1001-,∪,D .[)(]1001-,∪, 11.已知(){}2min 26f x x x x x =--,,,则()f x 的值域是( )A .(]2-∞,B .(]3-∞,C .[]02,D .[)2+∞,12.已知定义域为R 的函数()f x 在区间()4+∞,上为减函数,且函数()4y f x =+为偶函数,则( ) A .()()23f f >B .()()25f f >C .()()35f f >D .()()36f f >二、填空题:本大题共4小题,每小题5分,共20分.13.设集合{}24A t =-,,集合{}591B t t =--,,,若9A B ∈∩,则实数t =________.14.)13fx =+,则()f x =________.15.若函数y =的定义域为R ,则a 的取值范围为________. 16.已知函数()y f x =在()()00-∞+∞,∪,上为奇函数,且在()0+∞,上为增函数,()20f -=,则不等式()x f x ⋅<0的解集为________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知函数()mf x x x=+,且()13f =. (1)求m ;(2)判断函数()f x 的奇偶性.18.(本小题满分12分)设全集U =R ,{}|13A x x =≤≤,{}|23B x a x a =+<<. (1)当1a =时,求()U A B ∩ð;(2)若()U A B B =∩ð,求实数a 的取值范围.19.(本小题满分12分)设函数()()21f x ax bx a b =++,为实数,()()()00.f x x F x f x x ⎧⎪=⎨-⎪⎩,>,,<(1)若()10f -=,且对任意实数x 均有()0f x ≥成立,求()F x 的表达式;(2)在(1)的条件下,当[]22x ∈-,时,()()g x f x kx =-是单调函数,求实数k 的取值范围.20.(本小题满分12分)“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v (单位:千克/年)是养殖密度x (单位:尾/立方米)的函数.当04x <≤时,v 的值为2千克/年;当420x <≤时,v 是x 的一次函数;当20x >时,因缺氧等原因,v 的值为0千克/年.(1)当020x <≤时,求v 关于x 的函数表达式.(2)当养殖密度x 为多少时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.21.(本小题满分12分)定义在()11-,上的函数()f x 满足()()f x f x -=-,且()()1120f a f a -+-<.若()f x 是()11-,上的减函数,求实数a 的取值范围.22.(本小题满分12分)已知()f x 是二次函数,()()050f f ==,且()112f -=. (1)求()f x 的解析式;(2)求()f x 在[]0m ,上的最小值()g m ;(3)对(2)中的()g m ,求不等式()()21g t g t -<的解集.第一章综合测试答案解析一、 1.【答案】C【解析】由集合{}21,0,1,2A =--,,{}|1B y y x x A ==-∈,,得{}101B =-,,.又因为集合{}21,0,1,2A =--,,所以B A ⊆,故选C . 2.【答案】B【解析】Q 集合{}2|320A x ax x =-+=中有且只有一个元素,0a ∴=或0980a a ⎧⎨∆=-=⎩≠,,解得0a =或98a =,∴实数a 的取值集合是908⎧⎫⎨⎬⎩⎭,.3.【答案】C【解析】()()12232x x x f x f x x +⎧⎪-=⎨⎪+⎩Q ,>,,≤,()()5125252f f +∴===-.故选C .4.【答案】B【解析】()f x Q 的定义域为R ,∴不等式210kx kx ++≥的解集为R .①当0k =时,10≥恒成立,满足题意;②当0k ≠时,2040k k k ⎧⎨∆=-⎩>,≤,解得04k <≤.综上,04k ≤≤.故选B . 5.【答案】A【解析】当1x =时,()11g =,()()()112f g f ==;当2x =时,()23g =,()()()231f g f ==;当3x =时,()32g =,()()()323f g f ==,故选A . 6.【答案】C【解析】因为()221x f x x =+,所以222111111x f x x x ⎛⎫⎪⎛⎫⎝⎭== ⎪+⎝⎭⎛⎫+ ⎪⎝⎭,所以()11f x f x ⎛⎫+= ⎪⎝⎭, 故()()()()1111712343234112f f f f f f f ⎛⎫⎛⎫⎛⎫++++++=+= ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭.故选C . 7.【答案】C【解析】要使函数有意义,则120x x +⎧⎨-⎩≠0,>,得2x <且1x -≠,所以{}|21M x x x =<且≠-,所以{}|2M x x x ==R ≥或-1ð.故选C .8.【答案】C【解析】Q 对任意实数12x x ≠,都有()()12120f x f x x x -->成立,()f x ∴在R 上是增函数,()230314121a a a -⎧⎪∴⎨-⨯+-+⨯⎪⎩>,≥,解得233a -≤<.故选C . 9.【答案】B【解析】()f x Q 是奇函数,()()11f f -=-. 又()g x Q 是偶函数,()()11g g ∴-=.()()()()112112f g g f -+=∴-=Q ,.① ()()()()114114f g f g +-=∴+=Q ,.②由①②,得()13g =. 10.【答案】B【解析】()()2222f x x ax x a a =-+=--+,其单调递减区间为()a ∞,+,()f x 在区间[]12,上是减函数,则1a ≤.又()ag x x=在区间[]12,上是减函数,则0a >.01a ∴<≤.11.【答案】B【解析】(){}2min 26f x x x x x =--Q ,,,的同一平面直角坐标系中分别作出22y x x =-,6y x =-,y x =的图像,并取其函数值较小的部分,如图所示.则由图像可知函数(){}2min 26f x x x x x =--,,的值域为(]3-∞,,故选B . 12.【答案】D【解析】()4y f x =+Q 为偶函数,()()44f x f x ∴-+=+.令2x =,得()()()()224246f f f f =-+=+=,同理,()()35f f =.又知()f x 在()4+∞,上为减函数,56Q <,()()56f f ∴>.()()23f f ∴<,()()()265f f f =<,()()()356f f f =>.故选D .二、13.【答案】3-【解析】{}24A t =-Q ,,{}591B t t =--,,,且9A B ∈∩,29t ∴=,解得3t =或3t =-,当3t =时,根据集合元素互异性知不符合题意,舍去;当3t =-时,符合题意. 14.【答案】()()2131x x -+≥1t =,()21x t ∴=-,1t ≥,()()213f t t ∴=-+,()()()2131f x x x ∴=-+≥.15.【答案】[]19,【解析】Q 函数y =R ,()()2221101a x a x a ∴-+-++≥恒成立. 当210a -=时,1a =±,当1a =时,不等式恒成立,当1a =-时,无意义;当210a -≠时,()()22210214101a a a a ⎧-⎪⎨∆=---⋅⎪+⎩>,≤,解得19a <≤.综上所述,a 的取值范围为[]19,. 16.【答案】()()2002-,∪, 【解析】根据题意画出()f x 的大致图像,如图所示.由图像可知当20x -<<或02x <<时,()0x f x ⋅<. 三、17.【答案】解(1)()13f =Q ,13m ∴+=,2m ∴=. (2)由(1)知,()2f x x x=+,其定义域是{}|0xx x ∈R ≠,,关于原点对称.又()()22f x x x f x x x ⎛⎫-=--=-+=- ⎪⎝⎭Q ,∴函数()f x 是奇函数. 18.【答案】解(1)当1a =时,{}|24B x x =<<.{}|13A x x =Q ≤≤,{}|13U A x x x ∴=<或>ð, (){}|34U A B x x ∴=∩<<ð.(2)若()U A B B =∩ð,则U B A ⊆ð. ①B =∅时,23a a +≥,则3a ≥;②B ∅≠时,2331a a a +⎧⎨+⎩<,≤或2323a a a +⎧⎨⎩<,≥,则2a -≤或332a ≤<.综上,实数a 的取值范围是(]322⎡⎫-∞-+∞⎪⎢⎣⎭,∪,. 19.【答案】解(1)()10f -=Q ,1b a ∴=+,由()0f x ≥恒成立,知0a >且()()22241410b a a a a ∆=-=+-=-≤,1a ∴=,从而()221f x x x =++,()()()221010.x x F x x x ⎧+⎪∴=⎨-+⎪⎩,>,,< (2)由(1)可知()221f x x x =++,()()()221g x f x kx x k x ∴=-=+-+. ()g x Q 在[]22-,上是单调函数, 222k -∴--≤或222k--≥,解得2k -≤或6k ≥. 即实数k 的取值范围是(][)26-∞-+∞,∪,. 20.【答案】解(1)由题意得当04x <≤时,2v =. 设当420x <≤时,v ax b =+,由已知得20042a b a b +=⎧⎨+=⎩,,解得1852a b ⎧=-⎪⎪⎨⎪=⎪⎩,,所以1582v x =-+.故函数20415420.82x v x x ⎧⎪=⎨-+⎪⎩,<≤,,<≤ (2)设鱼的年生长量为()f x 千克/立方米,依题意,由(1)可得()220415420.82x x f x x x x ⎧⎪=⎨-+⎪⎩,<≤,,<≤当04x <≤时,()f x 为增函数,故()()max 4428f x f ==⨯=;当420x <≤时,()()2215125108282f x x x x =-+=--+,()()max 1012.5f x f ==.所以当020x <≤时,()f x 的最大值为12.5,即当养殖密度x 为10尾/立方米时,鱼的年生长量可以达到最大,最大值为12.5千克/立方米.21.【答案】解:由()()1120f a f a -+-<, 得()()112f a f a ---<.()()f x f x -=-Q ,()11x ∈-,, ()()121f a f a ∴--<. 又()f x Q 是()11-,上的减函数, 1111211121,a a a a --⎧⎪∴--⎨⎪--⎩<<,<<,>解得203a <<. 故实数a 的取值范围是203⎛⎫⎪⎝⎭,.22.【答案】解(1)因为()f x 是二次函数,且()()050f f ==, 所以设()()()50f x ax x a =-≠. 又因为()1612f a -==,所以2a =,所以()()225210f x x x x x =-=-.(2)由(1)知()f x 的对称轴为52x =,当502m <≤时,()f x 在区间[]0m ,上单调递减,所以()f x 的最小值为()2210f m m m =-;当52m >时,()f x 在区间502⎡⎤⎢⎥⎣⎦,上单调递减,在区间52m ⎡⎤⎢⎥⎣⎦,上单调递增,所以()f x 的最小值为52522f ⎛⎫=- ⎪⎝⎭.综上所述,()()2min521002255.22m m m f x g m m ⎧-⎪⎪==⎨⎪-⎪⎩,<≤,,>(3)因为()()21g t g t -<,所以210215212t t t t ⎧⎪-⎪-⎨⎪⎪-⎩>,<,<,解得112t <<,即不等式()()21g t g t -<的解集为1|12t t ⎧⎫⎨⎬⎩⎭<<.。
高中数学人教版A版精品试卷《(人教版A版2017课标)高中数学必修第一册 第一章综合测试01》
第一章综合测试答案解析一、1【答案】A【解析】A 显然正确;0不是集合,不能用符号“⊆”,B 错误;∅不是M 中的元素,C 错误;M 为无限集,D 错误2【答案】D【解析】{}=0469B ,,,,B ∴的子集的个数为42=163【答案】D【解析】对于①,当=4a为正整数;对于②,当=1x为正整数;对于③,当=1y为正整数,故选D4【答案】A【解析】由1231x --<<,得12x <<,即{}|12x x x ∈<<,由30x x -()<,得03x <<,即{}|03x x x ∈<<,{}|12x x <<是{}|03x x <<的真子集,{}|03x x <<不是{}|12x x <<的子集,故选A5【答案】D【解析】两个集合的交集其实就是曲线和直线的交点,注意结果是两对有序实数对6【答案】B【解析】{=|=0A B x x 或}1x ≥,A 错误;{}=12A B ,,B 正确;{}{}R =|1=0A B x x B ()<,C 错误;{}R =|0A B x x ()≠,D 错误7【答案】B【解析】方法一:11a a ⇒⇒>1011a a ⇒⇒)>>,∴甲是乙的充要条件,故选B 方法二:20a a a a a ⎧⇔⎨⎩>,>>,,1a ∴>,故选B 8【答案】C 【解析】由题意得N M ⊆,由Venn 图(图略)可知选C9【答案】C【解析】由题意知,0=2b x a-为函数2=y ax bx c ++图象的对称轴方程,所以0y 为函数y 的最小值,即对所有的实数x ,都有0y y ≥,因此对任意x ∈R ,0y y ≤是错误的,故选C10【答案】D【解析】{}=|1U B x x ->,{}=|0U A B x x ∴>{}=|0U A x x ≤,{}=|1U B A x x ∴-≤{=|0U U A B B A x x ∴()()>或}1x -≤11【答案】A【解析】一元二次方程2=0x x m ++有实数解1=1404m m ⇔∆-⇔≥≤当14m <时,14m ≤成立,但14m ≤时,14m <不一定成立故“14m <”是“一元二次方程2=0x x m ++有实数解”的充分不必要条件 12【答案】C【解析】A C A B ⊇()(),U U A C AB ∴⊆()(),∴①为真命题AC A B ⊆()(),U U A C AB ∴⊇()(),即U U U U AC A B ⊇()(),∴②图(图略)可知,③二、13【答案】x ∀∈R ,210x +≥ 【解析】存在量词命题的否定是全称量词命题14【答案】0【解析】依题意得,23=3m m ,所以=0m 或=1m 当=1m 时,违反集合中元素的互异性(舍去)15【答案】充分不必要【解析】由=2a 能得到1)(2)0(=a a --,但由1)(2)0(=a a --得到=1a 或=2a ,而不是=2a ,所以=2a 是1)(2)0(=a a --的充分不必要条件16【答案】12【解析】设全集U 为某班30人,集合A 为喜爱篮球运动的15人,集合B 为喜爱乒乓球运动的10人,如图设所求人数为x ,则108=30x ++,解得=12x三、17【答案】(1)命题的否定:有的正方形不是矩形,假命题(分)(2)命题的否定:不存在实数x ,使31=0x +,假命题(5分)(3)命题的否定:x ∀∈R ,2220x x ++>,真命题(分)(4)命题的否定:存在0x ,0y ∈R ,00110x y ++-<,假命题(10分)18【答案】(1){=|1U A x x -<或1x ≥,{=|12U A B x x ∴()≤≤(6分)(2){}=|01A B x x <<,{=|0U A B x x ∴()≤或}1x ≥(12分)19【答案】①若=A ∅,则2=240p ∆+-()<,解得40p -<<(4分)②若方程的两个根均为非正实数,则12120=200.10.=x x p p x x ∆⎧⎪+-+⎨⎪⎩≥,()≤,解得≥>(10分)综上所述,p 的取值范围是{}|4p p ->(12分)2021案】证明:①充分性:若存在0x ∈R ,使00ay <,则2220004=4b ab b a y ax bx ----()222000=444b abx a x ay ++-200=240b ax ay +-()>,∴方程=0y 有两个不等实数根(6分)②必要性:若方程=0y 有两个不等实数根则240b ab ->,设0=2bx a -, 则20=22b b ay a a b c a a ⎡⎤-+-+⎢⎥⎣⎦()()2224==0424b b ac b ac --+<(10分)由①②知,“方程=0y 有两个不等实根”的充要条件是“存在0x ∈R ,使00ay <”(12分)21【答案】(1)当=2a 时,{}=|17A x x ≤≤,{}=|27AUB x x -≤≤,(3分){R =|1A x x <或}7x >,{}R =|21A B x x -()≤<(6分)(2)=A B A ,A B ∴⊆①若=A ∅,则123a a -+>,解得4a -<;(8分)②若A ∅≠,则12311212234.a a a a a -+⎧⎪⎪---⎨⎪+⎪⎩≤,≥,解得≤≤≤,(10分) 综上可知,a 的取值范围是1|412a a a ⎧⎫--⎨⎬⎩⎭<或≤≤(12分) 22【答案】设选修甲、乙、丙三门课的同学分别组成集合A ,B ,C ,全班同学组成的集合为U ,则由已知可画出Venn 图如图所示(2分) 选甲、乙而不选丙的有2924=5-(人),选甲、丙而不选乙的有2824=4-(人),选乙、丙而不选甲的有2624=2-(人),(6分)仅选甲的有382454=5---(人),仅选乙的有352452=4---(人),仅选丙的有312442=1---(人),(8分)所以至少选一门的人数为24542541=45++++++,(10分)所以三门均未选的人数为5045=5-(12分)。
高中数学人教版A版精品试卷《(人教版A版2017课标)高中数学必修第一册 第一章综合测试03》
第一章综合测试答案解析一、1【答案】C【解析】由集合{}21,0,1,2A =--,,{}|1B y y x x A ==-∈,,得{}101B =-,,又因为集合{}21,0,1,2A =--,,所以B A ⊆,故选C2【答案】B 【解析】集合{}2|320A x ax x =-+=中有且只有一个元素,0a ∴=或0980a a ⎧⎨∆=-=⎩≠,,解得0a =或98a =,∴实数a 的取值集合是908⎧⎫⎨⎬⎩⎭, 3【答案】C【解析】()()12232x x x f x f x x +⎧⎪-=⎨⎪+⎩,>,,≤,()()5125252f f +∴===-故选C 4【答案】B【解析】()f x 的定义域为R ,∴不等式210kx kx ++≥的解集为R ①当0k =时,10≥恒成立,满足题意;②当0k ≠时,2040k k k ⎧⎨∆=-⎩>,≤,解得04k <≤综上,04k ≤≤故选B 5【答案】A【解析】当1x =时,()11g =,()()()112f g f ==;当2x =时,()23g =,()()()231f g f ==;当3x =时,()32g =,()()()323f g f ==,故选A6【答案】C【解析】因为()221x f x x =+,所以222111111x f x x x ⎛⎫ ⎪⎛⎫⎝⎭== ⎪+⎝⎭⎛⎫+ ⎪⎝⎭,所以()11f x f x ⎛⎫+= ⎪⎝⎭, ()()()()1111712343234112f f f f f f f ⎛⎫⎛⎫⎛⎫++++++=+= ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭ 7【答案】C【解析】要使函数有意义,则120x x +⎧⎨-⎩≠0,>,得2x <且1x -≠,所以{}|21M x x x =<且≠-,{}|2M x x x ==R ≥或-1 8【答案】C【解析】对任意实数12x x ≠,都有()()12120f x f x x x -->成立,()f x ∴在R 上是增函数,()230314121a a a -⎧⎪∴⎨-⨯+-+⨯⎪⎩>,≥,233a -≤< 9【答案】B【解析】()f x 是奇函数,()()11f f -=- 又()g x 是偶函数,()()11g g ∴-=()()()()112112f g g f -+=∴-=,①()()()()114114f g f g +-=∴+=,②由①②,得()13g =10【答案】B【解析】()()2222f x x ax x a a =-+=--+,其单调递减区间为()a ∞,+,()f x 在区间[]12,上是减函数,则1a ≤又()a g x x=在区间[]12,上是减函数,则0a >01a ∴<≤ 11【答案】B【解析】(){}2min 26f x x x x x =--,,,的同一平面直角坐标系中分别作出22y x x =-,6y x =-,y x =的图像,并取其函数值较小的部分,如图所示则由图像可知函数(){}2min 26f x x x x x =--,,的值域为(]3-∞,,故选B 12【答案】D【解析】()4y f x =+为偶函数,()()44f x f x ∴-+=+令2x =,得()()()()224246f f f f =-+=+=,同理,()()35f f =又知()f x 在()4+∞,上为减函数,56<,()()56f f ∴>()()23f f ∴<,()()()265f f f =<,()()()356f f f =>故选D二、13【答案】3-【解析】{}24A t =-,,{}591B t t =--,,,且9A B ∈∩,29t ∴=,解得3t =或3t =-,当3t =时,根据集合元素互异性知不符合题意,舍去;当3t =-时,符合题意14【答案】()()2131x x -+≥1t =,()21x t ∴=-,1t ≥,()()213f t t ∴=-+,()()()2131f x x x ∴=-+≥ 15【答案】[]19,【解析】函数y 的定义域为R ,()()2221101a x a x a ∴-+-++≥恒成立 当210a -=时,1a =±,当1a =时,不等式恒成立,当1a =-时,无意义;当210a -≠时,()()22210214101a a a a ⎧-⎪⎨∆=---⋅⎪+⎩>,≤,解得19a <≤综上所述,a 的取值范围为[]19, 16【答案】()()2002-,∪, 【解析】根据题意画出()f x 的大致图像,如图所示由图像可知当20x -<<或02x <<时,()0x f x ⋅<三、17【答案】解(1)()13f =,13m ∴+=,2m ∴=(2)由(1)知,()2f x x x=+,其定义域是{}|0x x x ∈R ≠,,关于原点对称 又()()22f x x x f x x x ⎛⎫-=--=-+=- ⎪⎝⎭,∴函数()f x 是奇函数 18【答案】解(1)当1a =时,{}|24B x x =<<{}|13A x x =≤≤,{}|13U A x x x ∴=<或>, (){}|34U A B x x ∴=∩<<(2)若()U A B B =∩,则U B A ⊆①B =∅时,23a a +≥,则3a ≥;②B ∅≠时,2331a a a +⎧⎨+⎩<,≤或2323a a a +⎧⎨⎩<,≥,则2a -≤或332a ≤< 综上,实数a 的取值范围是(]322⎡⎫-∞-+∞⎪⎢⎣⎭,∪, 19【答案】解(1)()10f -=,1b a ∴=+,由()0f x ≥恒成立,知0a >且 ()()22241410b a a a a ∆=-=+-=-≤,1a ∴=,从而()221f x x x =++,()()()221010.x x F x x x ⎧+⎪∴=⎨-+⎪⎩,>,,< (2)由(1)可知()221f x x x =++,()()()221g x f x kx x k x ∴=-=+-+()g x 在[]22-,上是单调函数,222k -∴--≤或222k --≥,解得2k -≤或6k ≥ 即实数k 的取值范围是(][)26-∞-+∞,∪, 2021案】解(1)由题意得当04x <≤时,2v =设当420x <≤时,v ax b =+,由已知得20042a b a b +=⎧⎨+=⎩,,解得1852a b ⎧=-⎪⎪⎨⎪=⎪⎩,,所以1582v x =-+ 故函数20415420.82x v x x ⎧⎪=⎨-+⎪⎩,<≤,,<≤ (2)设鱼的年生长量为()f x 千克/立方米,依题意,由(1)可得()220415420.82x x f x x x x ⎧⎪=⎨-+⎪⎩,<≤,,<≤ 当04x <≤时,()f x 为增函数,故()()max 4428f x f ==⨯=;当420x <≤时,()()2215125108282f x x x x =-+=--+,()()max 1012.5f x f == 所以当020x <≤时,()f x 的最大值为12.5,即当养殖密度x 为10尾/立方米时,鱼的年生长量可以达到最大,最大值为12.5千克/立方米21【答案】解:由()()1120f a f a -+-<,得()()112f a f a ---<()()f x f x -=-,()11x ∈-,,()()121f a f a ∴--<又()f x 是()11-,上的减函数,1111211121,a a a a --⎧⎪∴--⎨⎪--⎩<<,<<,>解得203a << 故实数a 的取值范围是203⎛⎫ ⎪⎝⎭, 22【答案】解(1)因为()f x 是二次函数,且()()050f f ==,所以设()()()50f x ax x a =-≠又因为()1612f a -==,所以2a =,所以()()225210f x x x x x =-=-(2)由(1)知()f x 的对称轴为52x =, 当502m <≤时,()f x 在区间[]0m ,上单调递减,所以()f x 的最小值为()2210f m m m =-; 当52m >时,()f x 在区间502⎡⎤⎢⎥⎣⎦,上单调递减,在区间52m ⎡⎤⎢⎥⎣⎦,上单调递增, 所以()f x 的最小值为52522f ⎛⎫=- ⎪⎝⎭综上所述,()()2min 521002255.22m m m f x g m m ⎧-⎪⎪==⎨⎪-⎪⎩,<≤,,> (3)因为()()21g t g t -<,所以210215212t t t t ⎧⎪-⎪-⎨⎪⎪-⎩>,<,<,解得112t <<, 即不等式()()21g t g t -<的解集为1|12t t ⎧⎫⎨⎬⎩⎭<<。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3题图
高中数学《必修一》第一章教学质量检测卷
时间:120分钟。
总分:150分。
一、选择题(将选择题的答案填入下面的表格。
本大题共10小题,每小题5分,共50分。
)
1、下列各组对象中不能构成集合的是( )
A 、佛冈中学高一(20)班的全体男生
B 、佛冈中学全校学生家长的全体
C 、李明的所有家人
D 、王明的所有好朋友 2、已知集合{}{}
5,1,A x R x B x R x =∈≤=∈>那么A
B 等于
( )
A.{1,2,3,4,5} B.{2,3,4,5} C.{2,3,4} D.{}
15x R x ∈<≤ 3、设全集{}1,2,3,4,5,6,7,8U =,集合{1,2,3,5}A =,{2,4,6}B =,
则图中的阴影部分表示的集合为( )
A .{}2
B .{}4,6
C .{}1,3,5
D .{}4,6,7,8 4、下列四组函数中表示同一函数的是( )
A.x x f =)(,2())g x x =
B.()2
2
1)(,)(+==x x g x x f
C.2()f x x ()g x x =
D.()0f x =,()11g x x x
=--
5、函数2
()21f x x ,(0,3)x。
()
7,f a 若则a 的值是 ( )
A 、1
B 、1-
C 、2
D 、2±
6、2,
0()[(1)]1 0x x f x f f x ()设,则 ,(
)+≥⎧=-=⎨
<⎩( ) A 、3 B 、1 C. 0 D.-1
7、()
3f x x 函数的值域为( )
A 、[3,
) B 、(,3] C 、[0),
D 、R
8、下列四个图像中,不可能是函数图像的是 ( )
9、设f(x)是R 上的偶函数,且在[0,+∞)上单调递增,则f(-2),f(3),f(-π)的大小顺序是:( ) A 、 f(-π)>f(3)>f(-2) B 、f(-π) >f(-2)>f(3) C 、 f(-2)>f(3)> f(-π) D 、 f(3)>f(-2)> f(-π) 10、在集合{a ,b ,c ,d}上定义两种运算⊕和⊗如下:
那么b ⊗ ()a c ⊕=( )
A .a
B .b
C .c
D .d 二、填空题(本大题共4小题,每小题5分,共20分) 11、函数0(3)2
y x x =
+--的定义域为
12、函数2()610f x x x =-+-在区间[0,4]的最大值是
13、若}4,3,2,2{-=A ,},|{2
A t t x x
B ∈==,用列举法表示B 是 . 14、下列命题:①集合{},,,a b c d 的子集个数有16个;②定义在R 上的奇函数()f x 必满足(0)0f =;
③()()2
()21221f x x x =+--既不是奇函数又不是偶函数;④偶函数的图像一定与y 轴相交;⑤1()f x x
=在()(),00,-∞+∞上是减函数。
其中真命题的序号是
(把你认为正确的命题的序号都填上).
三、解答题(本大题6小题,共80分.解答时应写出文字说明、证明过程或演算步骤). 15、(本题满分12分)已知集合A ={x| 73<≤x }, B={x| 2<x<10}, C={x|x<a} (1)求;B A ⋃ (2)求()
R C A B ; (3)若A C ⊆,求a 的取值范围.
x
O
y
x
y
y
y
O
O
O
A
B
C
D
16、(本题满分12分)已知函数31
()
f x x
x ,判断()
f x的奇偶性并且证明。
17、(本题满分14分)已知函数
3
()
1
x
f x
x
,求()
f x在区间[2,5]上的最大值和最小值
18、 (本题满分14分)已知函()
11f x x
(1)用分段函数的形式表示该函数; (2)画出该函数的图象; (3)写出该函数的值域。
19、(本题满分14分)已知定义在[]3,2-的一次函数()f x 为单调增函数,且值域为[]2,7,
(I )求()f x 的解析式;
(II )求函数[]()f f x 的解析式并确定其定义域。
20、 (本题满分14分)已知二次函数()f x 的最小值为1,且(0)(2)3f f ==。
(1)求()f x 的解析式;
(2)若()f x 在区间[2,1]a a +上不单调...
,求实数a 的取值范围; (3)在区间[1,1]-上,()y f x =的图象恒在221y x m =++的图象上方,试确定实数m 的取值范围。
高中数学《必修一》第一章教学质量检测卷
参考答案
一、选择题
二、填空题 11、|2,3x
R x
x
且 12、-1 13、4,9,16 14、 ① ②
三、解答题
15、解:(1)A ∪B={x ∣2<x<10}……………..4分 (2)|37R C A
x x
x
或
(C R A)∩B={ x ∣2<x<3或7≤x<10}.........................8分
(3)a≥7........................12分
16.解: ()f x 是奇函数…………….2分
证明: ()f x 的定义域是(-,0)(0,+)
,定义域关于原点对称…………….4分 在()f x 的定义域内任取一个x,则有 3
3
3
3
1
1()
()()()()f x x x f x x x …………….10分
所以, ()f x 是奇函数…………….12分
17.解:在[2,5]上任取两个数1
2x x ,则有…………….2分
1212121212333()()
()
011(1)(1)
x x x x f x f x x x x x …………….8分
所以,()f x 在[2,5]上是增函数。
…………….10分 所以,当2x
时,min
()(2)2f x f …………….12分
当5x
时,max
5
()(5)
2
f x f …………….14分 18、
解: (1)
…………….6分
(2)画图(略)…………….10分
(3)值域[]1,+∞ ……………14分
19、解:(1)设()(0)f x kx b k =+>…………….2分
由题意有:3227k b k b -+=⎧⎨+=⎩ …………….6分
1
5k b =⎧∴⎨=⎩
…………….8分 ()5f x x ∴=+,[]3,2x ∈-………….10分
(2)(())(5)10f f x f x x =+=+ {}3x ∈-…………….14分 20、.解:(1)由已知,设2()(1)1f x a x =-+,…………….2分
由(0)3f =,得2a =,故2
()243f x x x =-+。
…………………4分 (2)要使函数不单调,则211a a <<+,则1
02
a <<。
……………8分 (3)由已知,即2
243221x x x m -+>++,化简得2
310x x m -+->…………10分 设2
()31g x x x m =-+-,则只要min ()0g x >,……………12分 而min ()(1)1g x g m ==--,得1m <-。
……………14分
,(1)2,(1)
x x y
x x。