二次函数存在性问题--平行四边形
(教学反思)二次函数综合(动点)问题平行四边形存在问题
《二次函数综合(动点)问题——平行四边形存在性问题》
教学反思
本节课是在学习二次函数y=ax2+bx+c的图像和性质及平行四边形性质的基础上来探究二次函数中动点问题与平行四边形模型的一节复习课;通过教学,让熟练掌握二次函数y=ax2+bx+c的图像和性质;熟练掌握平行四边形的性质;并会对平行四边形模型进行探究,分类讨论不同的情况;在整个教学中,我首先在学生掌握二次函数
y=ax2+bx+c的图像和性质的基础上,先脱离二次函数,再回到二次函数的情景中研究;先从简单入手探究平面直角坐标系中动点情况下平行四边形的存在问题,然后回到二次函数前提下的平行四边形存在问题。
利用几何画板,充分运用数形结合、转化、方程等数学思想来帮助解题。
在整个教学过程中培养了学生的处理图像综合运用的能力;让学生养成从特殊到一般,从简单到复杂的学习方法;形成对图形的处理能力,形成解题技巧,树立对解决此类问题的信心。
专题6二次函数与平行四边形存在性问题(解析版)
专题6 二次函数与平行四边形存在性问题以二次函数为载体的平行四边形存在性问题是中考的热点难点之一,其图形复杂,知识覆盖面广,综合性较强,对学生分析问题和解决问题的能力要求高.对这类题,常规解法是先画出平行四边形,再依据“平行四边形的一组对边平行且相等”或“平行四边形的对角线互相平分”来解决.由于先要画出草图,若考虑不周,很容易漏解.解决抛物线中的平行四边形存在性问题,常用的结论和方法有:线段中点坐标公式、平行四边形顶点坐标公式、画平行四边形.1. 平面直角坐标系中,点 A 的坐标是11(,)x y ,点B 的坐标是22(,)x y ,则线段AB 的中点坐标是1212(,)22x x y y ++. 2. 平行四边形ABCD 的顶点坐标分别为(,)A A x y 、(,)B B x y 、(,)C C x y 、(,)D D x y ,则A C B D x x x x +=+,A CB D y y y y +=+.3.已知不在同一直线上的三点A、B、C,在平面内找到一个点D,使以A、B、C、D为顶点的四边形是平行四边形,有三种情况:【例1】(2020•甘孜州)如图,在平面直角坐标系xOy中,直线y=kx+3分别交x轴、y轴于A,B两点,经过A,B两点的抛物线y=﹣x2+bx+c与x轴的正半轴相交于点C(1,0).(1)求抛物线的解析式;(2)若P为线段AB上一点,∠APO=∠ACB,求AP的长;(3)在(2)的条件下,设M是y轴上一点,试问:抛物线上是否存在点N,使得以A,P,M,N为顶点的四边形为平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法解决问题即可.(2)求出AB ,OA ,AC ,利用相似三角形的性质求解即可.(3)分两种情形:①P A 为平行四边形的边时,点M 的横坐标可以为±2,求出点M 的坐标即可解决问题.②当AP 为平行四边形的对角线时,点M ″的横坐标为﹣4,求出点M ″的坐标即可解决问题.【解析】(1)∵直线y =kx +3分别交y 轴于B ,令x =0,得到y =3,∴B (0,3)由题意抛物线经过B (0,3),C (1,0),∴{c =3−1+b +c =0, 解得,{b =−2c =3, ∴抛物线的解析式为y =﹣x 2﹣2x +3;(2)对于抛物线y =﹣x 2﹣2x +3,令y =0,解得x =﹣3或1,∴A (﹣3,0),∵B (0,3),C (1,0),∴OA =OB =3,OC =1,AB =3√2,∵∠APO =∠ACB ,∠P AO =∠CAB ,∴△P AO ∽△CAB ,∴AP AC =AO AB , ∴AP 4=3√2, ∴AP =2√2.(3)由(2)可知,P (﹣1,2),AP =2√2,①当AP 为平行四边形的边时,点N 的横坐标为2或﹣2,∴N (﹣2,3),N ′(2,﹣5),②当AP 为平行四边形的对角线时,点N ″的横坐标为﹣4,∴N ″(﹣4,﹣5),综上所述,满足条件的点N 的坐标为(﹣2,3)或(2,﹣5)或(﹣4,﹣5).【点评】本题考查二次函数综合题,考查了待定系数法,相似三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.【例2】(2020•天水)如图所示,拋物线y =ax 2+bx +c (a ≠0)与x 轴交于A 、B 两点,与y 轴交于点C ,且点A 的坐标为A (﹣2,0),点C 的坐标为C (0,6),对称轴为直线x =1.点D 是抛物线上一个动点,设点D 的横坐标为m (1<m <4),连接AC ,BC ,DC ,DB .(1)求抛物线的函数表达式;(2)当△BCD 的面积等于△AOC 的面积的34时,求m 的值; (3)在(2)的条件下,若点M 是x 轴上一动点,点N 是抛物线上一动点,试判断是否存在这样的点M ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形.若存在,请直接写出点M 的坐标;若不存在,请说明理由.【分析】(1)由题意得出方程组,解方程组即可;(2)过点D 作DE ⊥x 轴于E ,交BC 于G ,过点C 作CF ⊥ED 交ED 的延长线于F ,求出点B 的坐标为(4,0),由待定系数法求出直线BC 的函数表达式为y =−32x +6,则点D 的坐标为(m ,−34m 2+32m +6),点G 的坐标为(m ,−32m +6),求出S △BCD =−32m 2+6m =92,解方程即可;(3)求出点D 的坐标为(3,154),分三种情况,①当DB 为对角线时,证出DN ∥x 轴,则点D 与点N关于直线x =1对称,得出N (﹣1,154)求出BM =4,即可得出答案;②当DM 为对角线时,由①得N (﹣1,154),DN =4,由平行四边形的性质得出DN =BM =4,进而得出答案; ③当DN 为对角线时,点D 与点N 的纵坐标互为相反数,N (1+√14,−154)或N (1−√14,−154),再分两种情况解答即可.【解析】(1)由题意得:{−b 2a =14a −2b +c =0c =6, 解得:{ a =−34b =32c =6, ∴抛物线的函数表达式为:y =−34x 2+32x +6; (2)过点D 作DE ⊥x 轴于E ,交BC 于G ,过点C 作CF ⊥ED 交ED 的延长线于F ,如图1所示: ∵点A 的坐标为(﹣2,0),点C 的坐标为(0,6),∴OA =2,OC =6,∴S △AOC =12OA •OC =12×2×6=6,∴S △BCD =34S △AOC =34×6=92,当y =0时,−34x 2+32x +6=0,解得:x 1=﹣2,x 2=4,∴点B 的坐标为(4,0),设直线BC 的函数表达式为:y =kx +n ,则{0=4k +n 6=n, 解得:{k =−32n =6, ∴直线BC 的函数表达式为:y =−32x +6,∵点D 的横坐标为m (1<m <4),∴点D 的坐标为:(m ,−34m 2+32m +6),点G 的坐标为:(m ,−32m +6),∴DG =−34m 2+32m +6﹣(−32m +6)=−34m 2+3m ,CF =m ,BE =4﹣m ,∴S △BCD =S △CDG +S △BDG =12DG •CF +12DG •BE =12DG ×(CF +BE )=12×(−34m 2+3m )×(m +4﹣m )=−32m 2+6m ,∴−32m 2+6m =92,解得:m 1=1(不合题意舍去),m 2=3,∴m 的值为3;(3)由(2)得:m =3,−34m 2+32m +6=−34×32+32×3+6=154, ∴点D 的坐标为:(3,154), 分三种情况讨论:①当DB 为对角线时,如图2所示:∵四边形BDNM 是平行四边形,∴DN ∥BM ,∴DN ∥x 轴,∴点D 与点N 关于直线x =1对称,∴N (﹣1,154),∴DN =3﹣(﹣1)=4,∴BM =4,∵B (4,0),∴M (8,0);②当DM 为对角线时,如图3所示:由①得:N (﹣1,154),DN =4,∵四边形BDNM 是平行四边形,∴DN =BM =4,∵B (4,0),∴M (0,0);③当DN 为对角线时,∵四边形BDNM 是平行四边形,∴DM =BN ,DM ∥BN ,∴∠DMB =∠MBN ,∴点D 与点N 的纵坐标互为相反数,∵点D (3,154),∴点N 的纵坐标为:−154, 将y =−154代入y =−34x 2+32x +6中, 得:−34x 2+32x +6=−154, 解得:x 1=1+√14,x 2=1−√14,当x =1+√14时,如图4所示:则N (1+√14,−154), 分别过点D 、N 作x 轴的垂线,垂足分别为E 、Q ,在Rt △DEM 和Rt △NQB 中,{DM =BN DE =NQ, ∴Rt △DEM ≌Rt △NQB (HL ),∴BQ =EM ,∵BQ =1+√14−4=√14−3,∴EM=√14−3,∵E(3,0),∴M(√14,0);当x=1−√14时,如图5所示:则N(1−√14,−15 4),同理得点M(−√14,0);综上所述,点M的坐标为(8,0)或(0,0)或(√14,0)或(−√14,0).【点评】本题是二次函数综合题目,考查了待定系数法求函数的解析式、坐标与图形性质、平行四边形的性质、全等三角形的判定与性质等知识;本题综合性强,有一定难度.【例3】(2020•青海)如图1(注:与图2完全相同)所示,抛物线y=−12x2+bx+c经过B、D两点,与x轴的另一个交点为A,与y轴相交于点C.(1)求抛物线的解析式.(2)设抛物线的顶点为M,求四边形ABMC的面积.(请在图1中探索)(3)设点Q在y轴上,点P在抛物线上.要使以点A、B、P、Q为顶点的四边形是平行四边形,求所有满足条件的点P的坐标.(请在图2中探索)【分析】(1)用待定系数法解答便可;(2)求出抛物线与坐标轴的交点A、C坐标及抛物线顶点M的坐标,再将四边形ABMC的面积分为三角形的面积的和,进行计算便可;(3)分两种情况:AB为平行四边形的边;AB为平行四边形的对角线.分别解答便可.【解析】(1)把B (3,0)和D (﹣2,−52)代入抛物线的解析式得, {−92+3b +c =0−2−2b +c =−52, 解得,{b =1c =32, ∴抛物线的解析式为:y =−12x 2+x +32;(2)令x =0,得y =−12x 2+x +32=32, ∴C(0,32),令y =0,得y =−12x 2+x +32=0, 解得,x =﹣1,或x =3,∴A (﹣1,0),∵y =−12x 2+x +32=−12(x −1)2+2, ∴M (1,2),∴S 四边形ABMC =S △AOC +S △COM +S △MOB=12OA ⋅OC +12OC ⋅x M +12OB ⋅y M=12×1×32+12×32×1+12×3×2=92;(3)设Q (0,n ),①当AB 为平行四边形的边时,有AB ∥PQ ,AB =PQ , a ).P 点在Q 点左边时,则P (﹣4,n ),把P (﹣4,n )代入y =−12x 2+x +32,得n =−212,∴P (﹣4,−212); ②当AB 为平行四边形的边时,有AB ∥PQ ,AB =PQ , 当P 点在Q 点右边时,则P (4,n ), 把P (4,n )代入y =−12x 2+x +32,得 n =−52, ∴P (4,−52);③当AB 为平行四边形的对角线时,如图2,AB 与PQ 交于点E , 则E (1,0), ∵PE =QE , ∴P (2,﹣n ),把P (2,﹣n )代入y =−12x 2+x +32,得 ﹣n =32, ∴n =−32, ∴P (2,32).综上,满足条件的P 点坐标为:(﹣4,−212)或(4,−52)或(2,32).【点评】本题是二次函数的综合题,主要考查了待定系数法,二次函数的图象与性质,四边形的面积计算,平行四边形的性质,第(2)题关键是把四边形分割成三角形进行解答,第(3)题关键是分情况讨论.【例4】(2020•玉林)如图,已知抛物线:y 1=﹣x 2﹣2x +3与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点C .(1)直接写出点A ,B ,C 的坐标;(2)将抛物线y1经过向右与向下平移,使得到的抛物线y2与x轴交于B,B'两点(B'在B的右侧),顶点D的对应点为点D',若∠BD'B'=90°,求点B'的坐标及抛物线y2的解析式;(3)在(2)的条件下,若点Q在x轴上,则在抛物线y1或y2上是否存在点P,使以B′,C,Q,P 为顶点的四边形是平行四边形?如果存在,求出所有符合条件的点P的坐标;如果不存在,请说明理由.【分析】(1)令x=0或y1=0,解方程可得结论.(2)设平移后的抛物线的解析式为y2=﹣(x﹣a)2+b,如图1中,过点D′作D′H⊥OB′于H.,连接BD′,B′D′.构建方程组解决问题即可.(3)观察图象可知,当点P的纵坐标为3或﹣3时,存在满足条件的平行四边形.分别令y1和y2等于3或﹣3,解方程即可解决问题.【解析】(1)对于y1=﹣x2﹣2x+3,令y1=0,得到﹣x2﹣2x+3=0,解得x=﹣3或1,∴A(﹣3,0),B(1,0),令x=0,得到y1=3,∴C(0,3).(2)设平移后的抛物线的解析式为y2=﹣(x﹣a)2+b,如图1中,过点D′作D′H⊥OB′于H,连接BD′.∵D′是抛物线的顶点,∴D′B=D′B′,D′(a,b),∵∠BD′B′=90°,D′H⊥BB′,∴BH=HB′,∴D′H=BH=HB′=b,∴a=1+b,又∵y2=﹣(x﹣a)2+b,经过B(1,0),∴b=(1﹣a)2,解得a=2或1(不合题意舍弃),b=1,∴B′(3,0),y2=﹣(x﹣2)2+1=﹣x2+4x﹣3.(3)如图2中,观察图象可知,当点P的纵坐标为3或﹣3时,存在满足条件的平行四边形.对于y1=﹣x2﹣2x+3,令y1=3,x2+2x=0,解得x=0或﹣2,可得P1(﹣2,3),令y1=﹣3,则x2+2x﹣6=0,解得x=﹣1±√7,可得P2(﹣1−√7,﹣3),P3(﹣1+√7,﹣3),对于y2=﹣x2+4x﹣3,令y2=3,方程无解,令y2=﹣3,则x2﹣4x=0,解得x=0或4,可得P4(0,﹣3),P5(4,﹣3),综上所述,满足条件的点P的坐标为(﹣2,3)或(﹣1−√7,﹣3)或(﹣1+√7,﹣3)或(0,﹣3)或(4,﹣3).【点评】本题属于二次函数综合题,考查了二次函数的性质,平行四边形的判定和性质,等腰直角三角形的性质等知识,解题的关键是学会利用参数构建方程组解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.【例5】(2020•绵阳)如图,抛物线过点A (0,1)和C ,顶点为D ,直线AC 与抛物线的对称轴BD 的交点为B (√3,0),平行于y 轴的直线EF 与抛物线交于点E ,与直线AC 交于点F ,点F 的横坐标为4√33,四边形BDEF 为平行四边形.(1)求点F 的坐标及抛物线的解析式;(2)若点P 为抛物线上的动点,且在直线AC 上方,当△P AB 面积最大时,求点P 的坐标及△P AB 面积的最大值;(3)在抛物线的对称轴上取一点Q ,同时在抛物线上取一点R ,使以AC 为一边且以A ,C ,Q ,R 为顶点的四边形为平行四边形,求点Q 和点R 的坐标.【分析】(1)由待定系数法求出直线AB 的解析式为y =−√33x +1,求出F 点的坐标,由平行四边形的性质得出﹣3a +1=163a ﹣8a +1﹣(−13),求出a 的值,则可得出答案; (2)设P (n ,﹣n 2+2√3n +1),作PP '⊥x 轴交AC 于点P ',则P '(n ,−√33n +1),得出PP '=﹣n 2+73√3n ,由二次函数的性质可得出答案;(3)联立直线AC 和抛物线解析式求出C (73√3,−43),设Q (√3,m ),分两种情况:①当AQ 为对角线时,②当AR 为对角线时,分别求出点Q 和R 的坐标即可. 【解析】(1)设抛物线的解析式为y =ax 2+bx +c (a ≠0), ∵A (0,1),B (√3,0), 设直线AB 的解析式为y =kx +m , ∴{√3k +m =0m =1,解得{k =−√33m =1,∴直线AB 的解析式为y =−√33x +1,∵点F 的横坐标为4√33,∴F 点纵坐标为−√33×4√33+1=−13, ∴F 点的坐标为(43√3,−13), 又∵点A 在抛物线上, ∴c =1,对称轴为:x =−b2a =√3, ∴b =﹣2√3a ,∴解析式化为:y =ax 2﹣2√3ax +1, ∵四边形DBFE 为平行四边形. ∴BD =EF , ∴﹣3a +1=163a ﹣8a +1﹣(−13), 解得a =﹣1,∴抛物线的解析式为y =﹣x 2+2√3x +1;(2)设P (n ,﹣n 2+2√3n +1),作PP '⊥x 轴交AC 于点P ',则P '(n ,−√33n +1), ∴PP '=﹣n 2+73√3n ,S △ABP =12OB •PP '=−√32n 2+72n =−√32(n −76√3)2+4924√3, ∴当n =76√3时,△ABP 的面积最大为4924√3,此时P (76√3,4712). (3)∵{y =−√33x +1y =−x 2+2√3x +1,∴x =0或x =73√3, ∴C (73√3,−43), 设Q (√3,m ), ①当AQ 为对角线时, ∴R (−43√3,m +73),∵R 在抛物线y =−(x −√3)2+4上, ∴m +73=−(−43√3−√3)2+4,解得m =−443,∴Q (√3,−443),R (−43√3,−373); ②当AR 为对角线时, ∴R (103√3,m −73), ∵R 在抛物线y =−(x −√3)2+4上, ∴m −73=−(103√3−√3)2+4, 解得m =﹣10, ∴Q (√3,﹣10),R (103√3,−373).综上所述,Q (√3,−443),R (−43√3,−373);或Q (√3,﹣10),R (103√3,−373).【点评】本题是二次函数综合题,考查了待定系数法,二次函数的性质,二次函数图象上点的坐标特征,平行四边形的性质等知识,熟练掌握二次函数的性质及方程思想,分类讨论思想是解题的关键. 【例6】(2020•雅安)已知二次函数y =ax 2+2x +c (a ≠0)的图象与x 轴交于A 、B (1,0)两点,与y 轴交于点C (0,﹣3),(1)求二次函数的表达式及A 点坐标;(2)D 是二次函数图象上位于第三象限内的点,求点D 到直线AC 的距离取得最大值时点D 的坐标; (3)M 是二次函数图象对称轴上的点,在二次函数图象上是否存在点N ,使以M 、N 、B 、O 为顶点的四边形是平行四边形?若有,请写出点N 的坐标(不写求解过程).【分析】(1)利用待定系数法解决问题即可.(2)如图1中连接AD ,CD .由题意点D 到直线AC 的距离取得最大,推出此时△DAC 的面积最大.过点D 作x 轴的垂线交AC 于点G ,设点D 的坐标为(x ,x 2+2x ﹣3),则G (x ,﹣x ﹣3),推出DG =﹣x ﹣3﹣(x 2+2x ﹣3)=﹣x ﹣3﹣x 2﹣2x +3=﹣x 2﹣3x ,利用二次函数的性质求解即可. (3)分两种情形:OB 是平行四边形的边或对角线分别求解即可. 【解析】(1)把B (1,0),C (0,﹣3)代入y =ax 2+2x +c 则有{c =−3a +2+c =0,解得{a =1c =−3,∴二次函数的解析式为y =x 2+2x ﹣3,令y =0,得到x 2+2x ﹣3=0,解得x =﹣3或1, ∴A (﹣3,0).(2)如图1中连接AD ,CD . ∵点D 到直线AC 的距离取得最大, ∴此时△DAC 的面积最大, 设直线AC 解析式为:y =kx +b , ∵A (﹣3,0),C (0,﹣3), ∴{b =−3−3k +b =0, 解得,{k =−1b =−3,∴直线AC 的解析式为y =﹣x ﹣3,过点D 作x 轴的垂线交AC 于点G ,设点D 的坐标为(x ,x 2+2x ﹣3),则G(x,﹣x﹣3),∵点D在第三象限,∴DG=﹣x﹣3﹣(x2+2x﹣3)=﹣x﹣3﹣x2﹣2x+3=﹣x2﹣3x,∴S△ACD=12•DG•OA=12(﹣x2﹣3x)×3=−32x2−92x=−32(x+32)2+278,∴当x=−32时,S最大=278,点D(−32,−154),∴点D到直线AC的距离取得最大时,D(−32,−154).(3)如图2中,当OB是平行四边形的边时,OB=MN=1,OB∥MN,可得N(﹣2,﹣3)或N′(0,﹣3),当OB为对角线时,点N″的横坐标为2,x=2时,y=4+4﹣3=5,∴N″(2,5).综上所述,满足条件的点N的坐标为(﹣2,﹣3)或(0,﹣3)或(2,5).【点评】本题考查待定系数法求二次函数解析式、二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.1.(2020•齐齐哈尔)综合与探究在平面直角坐标系中,抛物线y=12x2+bx+c经过点A(﹣4,0),点M为抛物线的顶点,点B在y轴上,且OA=OB,直线AB与抛物线在第一象限交于点C(2,6),如图①.(1)求抛物线的解析式;(2)直线AB的函数解析式为y=x+4,点M的坐标为(﹣2,﹣2),cos∠ABO=√22;连接OC,若过点O的直线交线段AC于点P,将△AOC的面积分成1:2的两部分,则点P的坐标为(﹣2,2)或(0,4);(3)在y轴上找一点Q,使得△AMQ的周长最小.具体作法如图②,作点A关于y轴的对称点A',连接MA'交y轴于点Q,连接AM、AQ,此时△AMQ的周长最小.请求出点Q的坐标;(4)在坐标平面内是否存在点N,使以点A、O、C、N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.【分析】(1)将点A 、C 的坐标代入抛物线表达式即可求解;(2)点A (﹣4,0),OB =OA =4,故点B (0,4),即可求出AB 的表达式;OP 将△AOC 的面积分成1:2的两部分,则AP =13AC 或23AC ,即可求解;(3)△AMQ 的周长=AM +AQ +MQ =AM +A ′M 最小,即可求解; (4)分AC 是边、AC 是对角线两种情况,分别求解即可.【解析】(1)将点A 、C 的坐标代入抛物线表达式得:{12×16−4b +c =012×4+2b +c =6,解得{b =2c =0,故抛物线的表达式为:y =12x 2+2x ;(2)点A (﹣4,0),OB =OA =4,故点B (0,4), 设直线AB 的解析式为y =kx +4, 将点A 坐标代入得,﹣4k +4=0, ∴k =1.∴直线AB 的表达式为:y =x +4; 则∠ABO =45°,故cos ∠ABO =√22;对于y =12x 2+2x ,函数的对称轴为x =﹣2,故点M (﹣2,﹣2); OP 将△AOC 的面积分成1:2的两部分,则AP =13AC 或23AC ,则y P y C=13或23,即y P 6=13或23,解得:y P =2或4,故点P (﹣2,2)或(0,4); 故答案为:y =x +4;(﹣2,﹣2);√22;(﹣2,2)或(0,4);(3)△AMQ 的周长=AM +AQ +MQ =AM +A ′M 最小, 点A ′(4,0),设直线A ′M 的表达式为:y =kx +b ,则{4k +b =0−2k +b =−2,解得{k =13b =−43, 故直线A ′M 的表达式为:y =13x −43,令x=0,则y=−43,故点Q(0,−43);(4)存在,理由:设点N(m,n),而点A、C、O的坐标分别为(﹣4,0)、(2,6)、(0,0),①当AC是边时,点A向右平移6个单位向上平移6个单位得到点C,同样点O(N)向右平移6个单位向上平移6个单位得到点N(O),即0±6=m,0±6=n,解得:m=n=±6,故点N(6,6)或(﹣6,﹣6);②当AC是对角线时,由中点公式得:﹣4+2=m+0,6+0=n+0,解得:m=﹣2,n=6,故点N(﹣2,6);综上,点N的坐标为(6,6)或(﹣6,﹣6)或(﹣2,6).【点评】本题考查的是二次函数综合运用,涉及到一次函数的性质、平行四边形的性质、图形的平移、面积的计算等,其中(4),要注意分类求解,避免遗漏.2.(2020•平顶山二模)如图,已知二次函数y=−38x2+bx+c的图象与x轴交于点A、C,与y轴交于点B,直线y=34x+3经过A、B两点.(1)求b、c的值.(2)若点P是直线AB上方抛物线上的一动点,过点P作PF⊥x轴于点F,交直线AB于点D,求线段PD的最大值.(3)在(2)的结论下,连接CD,点Q是抛物线对称轴上的一动点,在抛物线上是否存在点G,使得以C、D、G、Q为顶点的四边形是平行四边形,若存在,请直接写出点G的坐标;若不存在,请说明理由.【分析】(1)由直线AB 的解析式可求出点A ,B 的坐标,将A ,B 两点的坐标代入y =−38x 2+bx +c 可得出答案;(2)设点P (m ,−38m 2−34m +3),则D (m ,34m +3),可得出PD =−38m 2−32m ,由二次函数的性质可得出答案;(3)分类讨论,一是当CD 为平行四边形对角线时,二是当CD 为平行四边形一边时,利用中点坐标公式及平移规律即可求出点G 的坐标.【解析】(1)∵直线y =34x +3经过A 、B 两点. ∴当x =0时,y =3,当y =0时,x =﹣4,∴直线y =34x +3与坐标轴的交点坐标为A (﹣4,0),B (0,3).分别将x =0,y =3,x =﹣4,y =0代入y =−38x 2+bx +c 得,{c =30=−38×(−4)2−4b +c , 解得,b =−34,c =3,(2)由(1)得y =−38x 2−34x +3,设点P (m ,−38m 2−34m +3),则D (m ,34m +3),∴PD =−38m 2−34m +3−(34m +3)=−38m 2−32m =−38(m +2)2+32, ∴当m =﹣2时,PD 最大,最大值是32.(3)存在点G ,使得以C 、D 、G 、Q 为顶点的四边形是平行四边形,G 点的坐标为(1,158)或(3,−218)或(−5,−218); ∵y =−38x 2−34x +3, ∴y =0时,x =﹣4或x =2, ∴C (2,0),由(2)可知D (﹣2,32),抛物线的对称轴为x =﹣1,设G (n ,−38n 2−34n +3),Q (﹣1,p ),CD 与y 轴交于点E ,E 为CD 的中点, ①当CD 为对角线时, n +(﹣1)=0, ∴n =1, 此时G (1,158).②当CD 为边时,若点G 在点Q 上边,则n +4=﹣1,则n =﹣5,此时点G 的坐标为(﹣5,−218). 若点G 在点Q 上边,则﹣1+4=n ,则n =3,此时点G 的坐标为(3,−218).综合以上可得使得以C 、D 、G 、Q 为顶点的四边形是平行四边形的G 点的坐标为(1,158)或(3,−218)或(−5,−218);【点评】本题是二次函数综合题,考查了二次函数的有关性质、一次函数的性质、平行四边形的判定和性质,熟练掌握二次函数的性质是解题的关键.3.(2020•菏泽)如图,抛物线y =ax 2+bx ﹣6与x 轴相交于A ,B 两点,与y 轴相交于点C ,OA =2,OB =4,直线l 是抛物线的对称轴,在直线l 右侧的抛物线上有一动点D ,连接AD ,BD ,BC ,CD . (1)求抛物线的函数表达式;(2)若点D 在x 轴的下方,当△BCD 的面积是92时,求△ABD 的面积;(3)在(2)的条件下,点M 是x 轴上一点,点N 是抛物线上一动点,是否存在点N ,使得以点B ,D ,M ,N 为顶点,以BD 为一边的四边形是平行四边形,若存在,求出点N 的坐标;若不存在,请说明理由.【分析】(1)根据OA =2,OB =4确定点A 和B 的坐标,代入抛物线的解析式列方程组解出即可; (2)如图1,过D 作DG ⊥x 轴于G ,交BC 于H ,利用待定系数法求直线BC 的解析式,设D (x ,34x 2−32x﹣6),则H (x ,32x ﹣6),表示DH 的长,根据△BCD 的面积是92,列方程可得x 的值,因为D 在对称轴的右侧,所以x =1不符合题意,舍去,利用三角形面积公式可得结论; (3)分两种情况:N 在x 轴的上方和下方,根据y =±154确定N 的坐标,并正确画图. 【解析】(1)∵OA =2,OB =4, ∴A (﹣2,0),B (4,0),把A (﹣2,0),B (4,0)代入抛物线y =ax 2+bx ﹣6中得:{4a −2b −6=016a +4b −6=0,∴抛物线的解析式为:y =34x 2−32x ﹣6;(2)如图1,过D 作DG ⊥x 轴于G ,交BC 于H ,当x =0时,y =﹣6, ∴C (0,﹣6),设BC 的解析式为:y =kx +n ,则{n =−64k +n =0,解得:{k =32n =−6, ∴BC 的解析式为:y =32x ﹣6,设D (x ,34x 2−32x ﹣6),则H (x ,32x ﹣6),∴DH =32x ﹣6﹣(34x 2−32x ﹣6)=−34x 2+3x ,∵△BCD 的面积是92,∴12DH ⋅OB =92,∴12×4×(−34x 2+3x)=92,解得:x =1或3,∵点D 在直线l 右侧的抛物线上, ∴D (3,−154),∴△ABD 的面积=12AB ⋅DG =12×6×154=454;(3)分两种情况:①如图2,N 在x 轴的上方时,四边形MNBD 是平行四边形,∵B (4,0),D (3,−154),且M 在x 轴上, ∴N 的纵坐标为154,当y =154时,即34x 2−32x ﹣6=154,解得:x =1+√14或1−√14, ∴N (1−√14,154)或(1+√14,154);②如图3,点N 在x 轴的下方时,四边形BDNM 是平行四边形,此时M 与O 重合,∴N(﹣1,−15 4);综上,点N的坐标为:(1−√14,154)或(1+√14,154)或(﹣1,−154).【点评】此题主要考查二次函数的综合问题,会求函数与坐标轴的交点,会利用待定系数法求函数解析式,会利用数形结合的思想解决平行四边形的问题,并结合方程思想解决问题.4.(2020•东莞市校级一模)已知,抛物线y=x2+bx+c与x轴交点为A(﹣1,0)和点B,与y轴交点为C (0,﹣3),直线L:y=kx﹣1与抛物线的交点为点A和点D.(1)求抛物线和直线L的解析式;(2)如图,点M为抛物线上一动点(不与A、D重合),当点M在直线L下方时,过点M作MN∥x轴交L于点N,求MN的最大值;(3)点M为抛物线上一动点(不与A、D重合),M'为直线AD上一动点,是否存在点M,使得以C、D、M、M′为顶点的四边形是平行四边形?如果存在,请直接写出点M的坐标,如果不存在,请说明理由.【分析】(1)用待定系数法即可求解;(2)设点M的坐标为(m,m2﹣2m﹣3),则点N(﹣m2+2m+2,m2﹣2m﹣3),则MN=﹣m2+m+2,进而求解;(3)分CD 为边、CD 为对角线两种情况,利用图象平移和中点公式求解即可. 【解析】(1)将点A 、C 的坐标代入抛物线表达式得{1−b +c =0c =−3,解得:{b =−2c =−3,故抛物线的表达式为:y =x 2﹣2x ﹣3①,将点A 的坐标代入直线L 的表达式得:0=﹣k ﹣1,解得:k =﹣1, 故直线L 的表达式为:y =﹣x ﹣1②;(2)设点M 的坐标为(m ,m 2﹣2m ﹣3), 点N 的纵坐标与点M 的纵坐标相同,将点N 的纵坐标代入y =﹣x ﹣1得:m 2﹣2m ﹣3=﹣x ﹣1, 解得:x =﹣m 2+2m +2,故点N (﹣m 2+2m +2,m 2﹣2m ﹣3), 则MN =﹣m 2+2m +2﹣m =﹣m 2+m +2,∵﹣1<0,故MN 有最大值,当m =−b2a =12时,MN 的最大值为94;(3)设点M (m ,n ),则n =m 2﹣2m ﹣3③,点M ′(s ,﹣s ﹣1), ①当CD 为边时,点C 向右平移2个单位得到D ,同样点M (M ′)向右平移2个单位得到M ′(M ), 即m ±2=s 且n =﹣s ﹣1④,联立③④并解得:m =0(舍去)或1或1±√172, 故点M 的坐标为(1,﹣4)或(1+√172,1−√172)或(1−√172,1+√172); ②当CD 为对角线时,由中点公式得:12(0+2)=12(m +s )且12(﹣3﹣3)=12(n ﹣s ﹣1)⑤,联立③⑤并解得:m =0(舍去)或﹣1,故点M (1,﹣4); 综上,点M 的坐标为(1,﹣4)或(1+√172,1−√172)或(1−√172,1+√172). 【点评】本题考查的是二次函数综合运用,涉及到一次函数的性质、平行四边形的性质等,其中(3),要注意分类求解,避免遗漏.【题组二】5.(2020•雁塔区校级二模)已知抛物线L :y =x 2+bx +c 经过点A (﹣1,0)和(1,﹣2)两点,抛物线L 关于原点O 的对称的为抛物线L ′,点A 的对应点为点A ′. (1)求抛物线L 和L ′的表达式;(2)是否在抛物线L 上存在一点P ,抛物线L ′上存在一点Q ,使得以AA ′为边,且以A 、A ′、P 、Q 为顶点的四边形是平行四边形?若存在,求出P 点坐标;若不存在,请说明理由.【分析】(1)利用待定系数法可求抛物线L 解析式,由中心对称的性质可求抛物线L ′的表达式; (2)分两种情况讨论,由平行四边形的性质可求解.【解析】(1)∵抛物线L :y =x 2+bx +c 经过点A (﹣1,0)和(1,﹣2)两点, ∴{0=1−b +c −2=1+b +c , 解得:{b =−1c =−2,∴抛物线L 的解析式为:y =x 2﹣x ﹣2, ∵y =x 2﹣x ﹣2=(x −12)2−94, ∴顶点坐标为(12,−94),∵抛物线L 关于原点O 的对称的为抛物线L ′, ∴抛物线L ′的解析式为:y =﹣(x +12)2+94; (2)∵点A 关于原点O 对应点为点A ′, ∴点A '(1,0), ∴AA '=2,∵以AA ′为边,且以A 、A ′、P 、Q 为顶点的四边形是平行四边形, ∴PQ =AA '=2,PQ ∥AA ', 设点P (x ,x 2﹣x ﹣2), 当点P 在点Q 的左侧, ∴点Q 的横坐标为x +2, ∴x 2﹣x ﹣2=﹣(x +2+12)2+94, ∴x =﹣1,∴点P (﹣1,0)(不合题意舍去);当点P在点Q的右侧,∴点Q的横坐标为x﹣2,∴x2﹣x﹣2=﹣(x﹣2+12)2+94,∴x1=√2+1,x2=−√2+1,∴点P1(√2+1,√2),P2(−√2+1,−√2).【点评】本题是二次函数综合题,考查了二次函数的性质,中心对称的性质,平行四边形的性质,灵活运用这些性质解决问题是本题的关键.6.(2020•怀化)如图所示,抛物线y=x2﹣2x﹣3与x轴相交于A、B两点,与y轴相交于点C,点M为抛物线的顶点.(1)求点C及顶点M的坐标.(2)若点N是第四象限内抛物线上的一个动点,连接BN、CN,求△BCN面积的最大值及此时点N的坐标.(3)若点D是抛物线对称轴上的动点,点G是抛物线上的动点,是否存在以点B、C、D、G为顶点的四边形是平行四边形.若存在,求出点G的坐标;若不存在,试说明理由.(4)直线CM交x轴于点E,若点P是线段EM上的一个动点,是否存在以点P、E、O为顶点的三角形与△ABC相似.若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)令抛物线解析式中x=0即可求出C点坐标,写出抛物线顶点式,即可求出顶点M坐标;(2)过N点作x轴的垂线交直线BC于Q点,设N(n,n2﹣2n﹣3),求出BC解析式,进而得到Q点坐标,最后根据S△BCN=S△NQC+S△NQB即可求解;(3)设D点坐标为(1,t),G点坐标为(m,m2﹣2m﹣3),然后分成①DG是对角线;②DB是对角线;③DC是对角线时三种情况进行讨论即可求解;(4)连接AC ,由CE =CB 可知∠EBC =∠E ,求出MC 的解析式,设P (x ,﹣x ﹣3),然后根据△PEO 相似△ABC ,分成EO BA=EP BC和EO BC=EP BA讨论即可求解.【解析】(1)令y =x 2﹣2x ﹣3中x =0,此时y =﹣3, 故C 点坐标为(0,﹣3), 又∵y =x 2﹣2x ﹣3=(x ﹣1)2﹣4, ∴抛物线的顶点M 的坐标为(1,﹣4);(2)过N 点作x 轴的垂线交直线BC 于Q 点,连接BN ,CN ,如图1所示: 令y =x 2﹣2x ﹣3=0, 解得:x =3或x =﹣1, ∴B (3,0),A (﹣1,0), 设直线BC 的解析式为:y =ax +b ,将C (0,﹣3),B (3,0)代入直线BC 的解析式得:{−3=b 0=3a +b ,解得:{a =1b =−3,∴直线BC 的解析式为:y =x ﹣3,设N 点坐标为(n ,n 2﹣2n ﹣3),故Q 点坐标为(n ,n ﹣3),其中0<n <3,则S △BCN =S △NQC +S △NQB =12⋅QN ⋅(x Q −x C )+12⋅QN ⋅(x B −x Q )=12⋅QN ⋅(x Q −x C +x B −x Q )=12⋅QN ⋅(x B −x C ),(其中x Q ,x C ,x B 分别表示Q ,C ,B 三点的横坐标),且QN =(n ﹣3)﹣(n 2﹣2n ﹣3)=﹣n 2+3n ,x B ﹣x C =3,故S △BCN =12⋅(−n 2+3n)⋅3=−32n 2+92n =−32(n −32)2+278,其中0<n <3, 当n =32时,S △BCN 有最大值为278,此时点N 的坐标为(32,−154),(3)设D 点坐标为(1,t ),G 点坐标为(m ,m 2﹣2m ﹣3),且B (3,0),C (0,﹣3) 分情况讨论:①当DG 为对角线时,则另一对角线是BC ,由中点坐标公式可知:线段DG 的中点坐标为(x D +x G 2,y D +y G 2),即(1+m 2,t+m 2−2m−32),线段BC 的中点坐标为(x B +x C 2,y B +y C 2),即(3+02,0−32),此时DG 的中点与BC 的中点为同一个点,∴{1+m 2=32t+m 2−2m−32=−32,解得{m =2t =0, 经检验,此时四边形DCGB 为平行四边形,此时G 坐标为(2,﹣3);②当DB 为对角线时,则另一对角线是GC ,由中点坐标公式可知:线段DB 的中点坐标为(x D +x B 2,y D +y B 2),即(1+32,t+02), 线段GC 的中点坐标为(x G +x C 2,y G +y C 2),即(m+02,m 2−2m−3−32), 此时DB 的中点与GC 的中点为同一个点,∴{1+32=m+02t+02=m 2−2m−3−32,解得{m =4t =2, 经检验,此时四边形DCBG 为平行四边形,此时G 坐标为(4,5);③当DC 为对角线时,则另一对角线是GB ,由中点坐标公式可知:线段DC 的中点坐标为(x D +x C 2,y D +y C 2),即(1+02,t−32), 线段GB 的中点坐标为(x G +x B 2,y G +y B 2),即(m+32,m 2−2m−3+02), 此时DC 的中点与GB 的中点为同一个点,∴{1+02=m+32t−32=m 2−2m−3+02,解得{m =−2t =8, 经检验,此时四边形DGCB 为平行四边形,此时G 坐标为(﹣2,5);综上所述,G 点坐标存在,为(2,﹣3)或(4,5)或(﹣2,5);(4)连接AC ,OP ,如图2所示:设MC 的解析式为:y =kx +m ,将C (0,﹣3),M (1,﹣4)代入MC 的解析式得:{−3=m −4=k +m, 解得:{k =−1m =−3∴MC 的解析式为:y =﹣x ﹣3,令y =0,则x =﹣3,∴E 点坐标为(﹣3,0),∴OE =OB =3,且OC ⊥BE ,∴CE =CB ,∴∠CBE =∠E ,设P (x ,﹣x ﹣3),又∵P 点在线段EM 上,∴﹣3<x <1,则EP =√(x +3)2+(−x −3)2=√2(x +3),BC =√32+32=3√2,由题意知:△PEO 相似于△ABC ,分情况讨论:①△PEO ∽△CBA ,∴EOBA=EP BC , ∴34=√2(x+3)3√2, 解得x =−34,满足﹣3<x <1,此时P 的坐标为(−34,−94);②△PEO ∽△ABC ,∴EO BC =EP BA , ∴3√2=√2(x+3)4, 解得x =﹣1,满足﹣3<x <1,此时P 的坐标为(﹣1,﹣2).综上所述,P 点的坐标为(−34,−94)或(﹣1,﹣2).【点评】本题是二次函数综合题目,考查了二次函数的图象和性质、待定系数法求直线的解析式、平行四边形的性质、相似三角形的性质和判定、等腰三角形的判定与性质等知识;本题综合性较强,具有一定的难度,熟练掌握二次函数的图形和性质,学会用代数的方法求解几何问题.7.(2020•碑林区校级三模)在平面直角坐标系中,O为坐标原点,抛物线L:y=ax2﹣4ax(a>0)与x轴正半轴交于点A.抛物线L的顶点为M,对称轴与x轴交于点D.(1)求抛物线L的对称轴.(2)抛物线L:y=ax2﹣4ax关于x轴对称的抛物线记为L',抛物线L'的顶点为M',若以O、M、A、M'为顶点的四边形是正方形,求L'的表达式.(3)在(2)的条件下,点P在抛物线L上,且位于第四象限,点Q在抛物线L'上,是否存在点P、点Q使得以O、D、P、Q为顶点的四边形是平行四边形,若存在,求出点P坐标,若不存在,请说明理由.【分析】(1)根据抛物线的对称轴公式计算即可.(2)利用正方形的性质求出点M,M′的坐标即可解决问题.(3)分OD是平行四边形的边或对角线两种情形求解即可.【解析】(1)∵抛物线L:y=ax2﹣4ax(a>0),∴抛物线的对称轴x=−−4a2a=2.(2)如图1中,对于抛物线y=ax2﹣4ax,令y=0,得到ax2﹣4ax=0,解得x=0或4,∴A(4,0),∵四边形OMAM′是正方形,∴OD=DA=DM=DM′=2,∴M((2,﹣2),M′(2,2)把M(2,﹣2)代入y=ax2﹣4ax,可得﹣2=4a﹣8a,∴a=1 2,∴抛物线L′的解析式为y=−12(x﹣2)2+2=−12x2+2x.(3)如图3中,由题意OD=2.当OD 为平行四边形的边时,PQ =OD =2,设P (m ,12m 2﹣2m ),则Q [m ﹣2,−12(m ﹣2)2+2(m ﹣2)]或[m +2,−12(m +2)2+2(m +2)],∵PQ ∥OD ,∴12m 2﹣2m =−12(m ﹣2)2+2(m ﹣2)或12m 2﹣2m =−12(m +2)2+2(m +2), 解得m =3±√3或1±√3,∴P (3+√3,√3)或(3−√3,−√3)或(1−√3,√3)和(1+√3,−√3),当OD 是平行四边形的对角线时,点P 的横坐标为1,此时P (1,−32),∵点P 在第四象限,∴满足条件的点P 的坐标为(3−√3,−√3)或(1+√3,−√3)或(1,−32).【点评】本题属于二次函数综合题,考查了二次函数的性质,正方形的性质,平行四边形的判定和性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.8.(2020•泰安二模)如图①抛物线y =ax 2+bx +4(a ≠0)与x 轴,y 轴分别交于点A (﹣1,0),B (4,0),点C 三点.(1)试求抛物线解析式;(2)点D (3,m )在第一象限的抛物线上,连接BC ,BD .试问,在对称轴左侧的抛物线上是否存在一点P ,满足∠PBC =∠DBC ?如果存在,请求出点P 的坐标;如果不存在,请说明理由;(3)点N 在抛物线的对称轴上,点M 在抛物线上,当以M 、N 、B 、C 为顶点的四边形是平行四边形时,请直接写出点M 的坐标.【分析】(1)把已知点A 、B 代入抛物线y =ax 2+bx +4中即可求解;(2)将二次函数与方程、几何知识综合起来,先求点D 的坐标,再根据三角形全等证明∠PBC =∠DBC ,最后求出直线BP 解析式即可求出P 点坐标;(3)根据平行四边形的判定即可写出点M 的坐标.【解析】如图:(1)∵抛物线y =ax 2+bx +3(a ≠0)与x 轴,y 轴分别交于点A (﹣1,0),B (4,0),点C 三点. ∴{a −b +4=016a +4b +4=0, 解得{a =−1b =3. ∴抛物线的解析式为y =﹣x 2+3x +4.(2)存在.理由如下:y =﹣x 2+3x +4=﹣(x ﹣1.5)2+6.25.∵点D (3,m )在第一象限的抛物线上,∴m =4,∴D (3,4),∵C (0,4)∵OC =OB ,∴∠OBC =∠OCB =45°.连接CD ,∴CD ∥x 轴,∴∠DCB =∠OBC =45°,∴∠DCB =∠OCB ,在y 轴上取点G ,使CG =CD =3,再延长BG 交抛物线于点P ,。
中考数学压轴题专题-二次函数与平行四边形存在性问题
专题6二次函数与平行四边形存在性问题以二次函数为载体的平行四边形存在性问题是中考的热点难点之一,其图形复杂,知识覆盖面广,综合性较强,对学生分析问题和解决问题的能力要求高.对这类题,常规解法是先画出平行四边形,再依据“平行四边形的一组对边平行且相等”或“平行四边形的对角线互相平分”来解决.由于先要画出草图,若考虑不周,很容易漏解.解决抛物线中的平行四边形存在性问题,常用的结论和方法有:线段中点坐标公式、平行四边形顶点坐标公式、画平行四边形.1.平面直角坐标系中,点A 的坐标是11(,)x y ,点B 的坐标是22(,)x y ,则线段AB 的中点坐标是1212(,)22x x y y ++.2.平行四边形ABCD 的顶点坐标分别为(,)A A x y 、(,)B B x y 、(,)C C x y 、(,)D D x y ,则A C B D x x x x +=+,A CB D y y y y +=+. 3.已知不在同一直线上的三点A 、B 、C ,在平面内找到一个点D ,使以A 、B 、C 、D 为顶点的四边形是平行四边形,有三种情况:【例1】(2021•赤峰)如图,抛物线y =﹣x 2+bx +c 与x 轴交于A (﹣3,0)、B (1,0)两点,与y 轴交于点C ,对称轴l 与x 轴交于点F ,直线m ∥AC ,点E 是直线AC 上方抛物线上一动点,过点E 作EH ⊥m ,垂足为H ,交AC 于点G ,连接AE 、EC 、CH 、AH .(1)抛物线的解析式为;(2)当四边形AHCE 面积最大时,求点E 的坐标;(3)在(2)的条件下,连接EF ,点P 是x 轴上一动点,在抛物线上是否存在点Q ,使得以F 、E 、P 、Q 为顶点,以EF 为一边的四边形是平行四边形.若存在,请直接写出点Q 的坐标;若不存在,说明理由.【例2】(2021•湘西州)如图,已知抛物线y=ax2+bx+4经过A(﹣1,0),B(4,0)两点,交y轴于点C.(1)求抛物线的解析式;(2)连接BC,求直线BC的解析式;(3)请在抛物线的对称轴上找一点P,使AP+PC的值最小,求点P的坐标,并求出此时AP+PC的最小值;(4)点M为x轴上一动点,在抛物线上是否存在一点N,使得以A、C、M、N四点为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.【例3】(2021•梧州)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点A(﹣1,0),B(0,3),顶点为C.平移此抛物线,得到一条新的抛物线,且新抛物线上的点D(3,﹣1)为原抛物线上点A的对应点,新抛物线顶点为E,它与y轴交于点G,连接CG,EG,CE.(1)求原抛物线对应的函数表达式;(2)在原抛物线或新抛物线上找一点F,使以点C,E,F,G为顶点的四边形是平行四边形,并求出点F的坐标;(3)若点K是y轴上的一个动点,且在点B的上方,过点K作CE的平行线,分别交两条抛物线于点M,N,且点M,N分别在y轴的两侧,当MN=CE时,请直接写出点K的坐标.【例4】(2021•郴州)将抛物线y=ax2(a≠0)向左平移1个单位,再向上平移4个单位后,得到抛物线H:y=a(x﹣h)2+k.抛物线H与x轴交于点A,B,与y轴交于点C.已知A(﹣3,0),点P是抛物线H上的一个动点.(1)求抛物线H的表达式;(2)如图1,点P在线段AC上方的抛物线H上运动(不与A,C重合),过点P作PD⊥AB,垂足为D,PD交AC于点E.作PF⊥AC,垂足为F,求△PEF的面积的最大值;(3)如图2,点Q是抛物线H的对称轴l上的一个动点,在抛物线H上,是否存在点P,使得以点A,P,C,Q为顶点的四边形是平行四边形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.【例5】(2021•海南)已知抛物线y=ax2+x+c与x轴交于A、B两点,与y轴交于C点,且点A的坐标为(﹣1,0)、点C的坐标为(0,3).(1)求该抛物线的函数表达式;(2)如图1,若该抛物线的顶点为P,求△PBC的面积;(3)如图2,有两动点D、E在△COB的边上运动,速度均为每秒1个单位长度,它们分别从点C和点B同时出发,点D沿折线COB按C→O→B方向向终点B运动,点E沿线段BC按B→C方向向终点C运动,当其中一个点到达终点时,另一个点也随之停止运动.设运动时间为t秒,请解答下列问题:①当t为何值时,△BDE的面积等于;②在点D、E运动过程中,该抛物线上存在点F,使得依次连接AD、DF、FE、EA得到的四边形ADFE是平行四边形,请直接写出所有符合条件的点F的坐标.1.(2021•海州区一模)如图,抛物线y=ax2+bx﹣3的图象与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,直线l与抛物线交于点B,交y轴于点D(0,3).(1)求该抛物线的函数表达式;(2)点P(m,0)为线段OB上一动点,过点P作x轴的垂线EF,分别交抛物线与直线l于点E,F,连接CE,CF,BE,求四边形CEBF面积的最大值及此时m的值;(3)点M为y轴右侧抛物线上一动点,过点M作直线MN∥AC交直线l于点N,是否存在点M,使以A,C,M,N四点为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标;若不存在,请说明理由.2.(2020•平顶山二模)如图,已知二次函数y=−38x2+bx+c的图象与x轴交于点A、C,与y轴交于点B,直线y=34x+3经过A、B两点.(1)求b、c的值.(2)若点P是直线AB上方抛物线上的一动点,过点P作PF⊥x轴于点F,交直线AB于点D,求线段PD的最大值.(3)在(2)的结论下,连接CD,点Q是抛物线对称轴上的一动点,在抛物线上是否存在点G,使得以C、D、G、Q为顶点的四边形是平行四边形,若存在,请直接写出点G的坐标;若不存在,请说明理由.3.(2020•菏泽)如图,抛物线y=ax2+bx﹣6与x轴相交于A,B两点,与y轴相交于点C,OA=2,OB =4,直线l是抛物线的对称轴,在直线l右侧的抛物线上有一动点D,连接AD,BD,BC,CD.(1)求抛物线的函数表达式;(2)若点D在x轴的下方,当△BCD的面积是92时,求△ABD的面积;(3)在(2)的条件下,点M是x轴上一点,点N是抛物线上一动点,是否存在点N,使得以点B,D,M,N为顶点,以BD为一边的四边形是平行四边形,若存在,求出点N的坐标;若不存在,请说明理由.4.(2020•东莞市校级一模)已知,抛物线y=x2+bx+c与x轴交点为A(﹣1,0)和点B,与y轴交点为C (0,﹣3),直线L:y=kx﹣1与抛物线的交点为点A和点D.(1)求抛物线和直线L的解析式;(2)如图,点M为抛物线上一动点(不与A、D重合),当点M在直线L下方时,过点M作MN∥x 轴交L于点N,求MN的最大值;(3)点M为抛物线上一动点(不与A、D重合),M'为直线AD上一动点,是否存在点M,使得以C、D、M、M′为顶点的四边形是平行四边形?如果存在,请直接写出点M的坐标,如果不存在,请说明理由.【题组二】5.(2020•雁塔区校级二模)已知抛物线L:y=x2+bx+c经过点A(﹣1,0)和(1,﹣2)两点,抛物线L 关于原点O的对称的为抛物线L′,点A的对应点为点A′.(1)求抛物线L和L′的表达式;(2)是否在抛物线L上存在一点P,抛物线L′上存在一点Q,使得以AA′为边,且以A、A′、P、Q为顶点的四边形是平行四边形?若存在,求出P点坐标;若不存在,请说明理由.6.(2021•盘龙区二模)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点A(﹣4,0),点M为抛物线的顶点,点B在y轴上,且OA=OB,直线AB与抛物线在第一象限交于点C(2,6).(1)求抛物线的解析式及顶点M的坐标;(2)求直线AB的函数解析式及sin∠ABO的值;连接OC.若过点O的直线交线段AC于点P,将三角形AOC的面积分成1:2的两部分,请求出点P的坐标;(3)在坐标平面内是否存在点N,使以点A、O、C、N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.7.(2020•碑林区校级三模)在平面直角坐标系中,O为坐标原点,抛物线L:y=ax2﹣4ax(a>0)与x 轴正半轴交于点A.抛物线L的顶点为M,对称轴与x轴交于点D.(1)求抛物线L的对称轴.(2)抛物线L:y=ax2﹣4ax关于x轴对称的抛物线记为L',抛物线L'的顶点为M',若以O、M、A、M'为顶点的四边形是正方形,求L'的表达式.(3)在(2)的条件下,点P在抛物线L上,且位于第四象限,点Q在抛物线L'上,是否存在点P、点Q使得以O、D、P、Q为顶点的四边形是平行四边形,若存在,求出点P坐标,若不存在,请说明理由.8.(2020•泰安二模)如图①抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.(1)试求抛物线解析式;(2)点D(3,m)在第一象限的抛物线上,连接BC,BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P的坐标;如果不存在,请说明理由;(3)点N在抛物线的对称轴上,点M在抛物线上,当以M、N、B、C为顶点的四边形是平行四边形时,请直接写出点M的坐标.【题组三】9.(2021•铜梁区校级一模)已知抛物线y=ax2+bx+3与x轴交于A、B两点(点A在点B的左侧).与y 轴交于点C.其中OC=OB,tan∠CAO=3.(1)求抛物线的解析式;(2)P是第一象限内的抛物线上一动点,Q为线段PB的中点,求△CPQ面积的最大值时P点坐标:(3)将抛物线沿射线CB方向平移2个单位得新抛物线y'.M为新抛物线y′的顶点.D为新抛物线y'上任意一点,N为x轴上一点.当以M、N、C、D为顶点的四边形是平行四边形时,直接写出所有符合条件的点N的坐标.并选择一个你喜欢的N点.写出求解过程.10.(2020•烟台模拟)如图,抛物线y=ax2+43x+c的图象与x轴交于A(﹣3,0),B两点,与y轴交于点C(0,﹣2),连接AC.点P是x轴上的动点.(1)求抛物线的表达式;(2)过点P作x轴的垂线,交线段AC于点D,E为y轴上一点,连接AE,BE,当AD=BE时,求AD+AE的最小值;(3)点Q为抛物线上一动点,是否存在点P,使得以A、C、P、Q为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,说明理由.11.(2020•龙城区一模)已知:二次函数y=ax2+bx+c的图象的顶点为(﹣1,4),与x轴交于A,B两点,与y轴交于点C(0,3),如图.(1)求二次函数的表达式;(2)在抛物线的对称轴上有一点M,使得△BCM的周长最小,求出点M的坐标;(3)连结AD、CD,求cos∠ADC的值;(4)若点Q在抛物线的对称轴上,抛物线上是否存在点P,使得以A、B、Q、P四点为顶点的四边形为平行四边形?若存在,求出满足条件的点P的坐标;若不存在,请说明理由.12.(2020•长沙模拟)如图1,二次函数y=ax2+bx+c(a≠0)的图象交x轴于A(﹣1,0)、B(3,0)两点,交y轴于点C(0,﹣3),点D为该二次函数图象顶点.(1)求该二次函数解析式,及D点坐标;(2)点P是抛物线的对称轴上一点,以点P为圆心的圆经过A、B两点,且与直线CD相切,求点P 的坐标;=S△AOC,点E为直线AM上一动点,在x轴上是(3)如图2,若M为线段BC上一点,且满足S△AMC否存在点F,使以点F、E、B、C为顶点的四边形为平行四边形?若存在,请直接写出点F的坐标,若不存在,请说明理由.【题组四】13.(2020•东莞市一模)如图,抛物线y=x2+bx+c与x轴交于点A(﹣1,0),与y轴交于点C(0,﹣3).(1)求该抛物线的解析式及顶点坐标;(2)若P是线段OB上一动点,过P作y轴的平行线交抛物线于点H,交BC于点N,设OP=t时,△BCH的面积为S.求S关于t的函数关系式;若S有最大值,请求出S的最大值,若没有,请说明理由.(3)若P是x轴上一个动点,过P作射线PQ∥AC交抛物线于点Q,在抛物线上是否存在这样的点Q,使以A,P,Q,C为顶点的四边形为平行四边形?若存在,请直接写出P点的坐标;若不存在,请说明理由.14.(2021•深圳模拟)如图,抛物线y=ax2+bx﹣3与x轴交于A,B两点,与y轴交于C点,且经过点(2,﹣3a),对称轴是直线x=1,顶点是M.(1)求抛物线对应的函数表达式;(2)经过C,M两点作直线与x轴交于点N,在抛物线上是否存在这样的点P,满足以点P,A,C,N为顶点的四边形为平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)设直线y=﹣x+3与y轴的交点是D,在线段BD上任取一点E(不与B,D重合),经过A,B,E 三点的圆交直线BC于点F,试判断△AEF的形状,并说明理由.15.(2020•郑州一模)如图,直线y=−23x+4与x轴交于点C,与y轴交于点B,抛物线y=ax2+103x+c经过B、C两点.(1)求抛物线的解析式;(2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标;(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.16.(2021•碑林区校级模拟)如图,抛物线M:y=ax2+bx+b﹣a经过点(1,﹣3)和(﹣4,12),与两坐标轴的交点分别为A,B,C,顶点为D.(1)求抛物线M的表达式和顶点D的坐标;(2)若抛物线N:y=﹣(x﹣h)2+与抛物线M有一个公共点为E,则在抛物线N上是否存在一点F,使得以B、C、E、F为顶点的四边形是以BC为边的平行四边形?若存在,请求出h的值;若不存在,请说明理由.【题组五】17.(2020•东营区模拟)如图,抛物线y=ax2+bx+3(a≠0)的对称轴为直线x=﹣1,抛物线交x轴于A、C两点,与直线y=x﹣1交于A、B两点,直线AB与抛物线的对称轴交于点E.(1)求抛物线的解析式.(2)点P在直线AB上方的抛物线上运动,若△ABP的面积最大,求此时点P的坐标.(3)在平面直角坐标系中,以点B、E、C、D为顶点的四边形是平行四边形,请直接写出符合条件点D的坐标.18.(2020•唐山二模)如图,抛物线y=ax2+bx﹣3过A(1,0),B(﹣3,0),直线AD交抛物线于点D,点D的横坐标为﹣2,点P(m,n)是线段AD上的动点.(1)求直线AD及抛物线的解析式;(2)过点P的直线垂直于x轴,交抛物线于点Q,求线段PQ的长度l与m的关系式,m为何值时,PQ最长?(3)在平面内是否存在整点(横、纵坐标都为整数)R,使得P,Q,D,R为顶点的四边形是平行四边形?若存在,直接写出点R的坐标;若不存在,说明理由.19.(2020•安定区校级三模)如图,抛物线经过A(﹣1,0),B(5,0),C(0,−5)三点(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,则点P的坐标为(2,−32);(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.20.(2020•高州市模拟)如图,在平面直角坐标系中,已知抛物线y=ax2+bx+2(a≠0)与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)如图①,若点D是抛物线上一个动点,设点D的横坐标为m(0<m<3),连接CD、BD、BC、AC,当△BCD的面积等于△AOC面积的2倍时,求m的值;(3)若点N为抛物线对称轴上一点,请在图②中探究抛物线上是否存在点M,使得以B,C,M,N 为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M的坐标;若不存在,请说明理由.【题组五】21.(2021•九龙坡区模拟)如图1,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,设点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q,过点P作PN⊥BC,交BC于点N.(1)求此抛物线的解析式;(2)请用含m的代数式表示PN,并求出PN的最大值以及此时点P的坐标;(3)如图2,将抛物线y=ax2+bx+4沿着射线CB的方向平移,使得新抛物线y'过原点,点D为原抛物线y与新抛物线y'的交点,若点E为原抛物线的对称轴上一动点,点F为新抛物线y'上一动点,求点F使得以A,D,E,F为顶点的四边形为平行四边形,请直接写出点F的坐标,并写出一个F点的求解过程.22.(2020•湖州)如图,已知在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c(c>0)的顶点为D,与y 轴的交点为C.过点C的直线CA与抛物线交于另一点A(点A在对称轴左侧),点B在AC的延长线上,连结OA,OB,DA和DB.(1)如图1,当AC∥x轴时,①已知点A的坐标是(﹣2,1),求抛物线的解析式;②若四边形AOBD是平行四边形,求证:b2=4c.(2)如图2,若b=﹣2,B B=35,是否存在这样的点A,使四边形AOBD是平行四边形?若存在,求出点A的坐标;若不存在,请说明理由.23.(2020•遂宁)如图,抛物线y=ax2+bx+c(a≠0)的图象经过A(1,0),B(3,0),C(0,6)三点.(1)求抛物线的解析式.(2)抛物线的顶点M与对称轴l上的点N关于x轴对称,直线AN交抛物线于点D,直线BE交AD于点E,若直线BE将△ABD的面积分为1:2两部分,求点E的坐标.(3)P为抛物线上的一动点,Q为对称轴上动点,抛物线上是否存在一点P,使A、D、P、Q为顶点的四边形为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.24.(2021•滨城区一模)如图,抛物线y=ax2+bx﹣5(a≠0)经过x轴上的点A(1,0)和点B(5,0)及y轴上的点C,经过B、C两点的直线为y=kx+b(k≠0).(1)求抛物线的解析式.(2)点P从A出发,在线段AB上以每秒1个单位的速度向B运动,同时点E从B出发,在线段BC 上以每秒2个单位的速度向C运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t 秒,求t为何值时,△PBE的面积最大并求出最大值.(3)过点A作AM⊥BC于点M,过抛物线上一动点N(不与点B、C重合)作直线AM的平行线交直线BC于点Q.若点A、M、N、Q为顶点的四边形是平行四边形,求点N的横坐标.【题组七】25.(2021•重庆)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过A(0,﹣1),B(4,1).直线AB 交x轴于点C,P是直线AB下方抛物线上的一个动点.过点P作PD⊥AB,垂足为D,PE∥x轴,交AB于点E.(1)求抛物线的函数表达式;(2)当△PDE的周长取得最大值时,求点P的坐标和△PDE周长的最大值;(3)把抛物线y=x2+bx+c平移,使得新抛物线的顶点为(2)中求得的点P.M是新抛物线上一点,N 是新抛物线对称轴上一点,直接写出所有使得以点A,B,M,N为顶点的四边形是平行四边形的点M 的坐标,并把求其中一个点M的坐标的过程写出来.26.(2021•凉山州)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于C点,AC=,OB=OC=3OA.(1)求抛物线的解析式;(2)在第二象限内的抛物线上确定一点P,使四边形PBAC的面积最大,求出点P的坐标;(3)在(2)的结论下,点M为x轴上一动点,抛物线上是否存在一点Q,使点P、B、M、Q为顶点的四边形是平行四边形,若存在,请直接写出Q点的坐标;若不存在,请说明理由.27.(2021•武汉)抛物线y=x2﹣1交x轴于A,B两点(A在B的左边).(1)▱ACDE的顶点C在y轴的正半轴上,顶点E在y轴右侧的抛物线上;①如图(1),若点C的坐标是(0,3),点E的横坐标是,直接写出点A,D的坐标.②如图(2),若点D在抛物线上,且▱ACDE的面积是12,求点E的坐标.(2)如图(3),F是原点O关于抛物线顶点的对称点,不平行y轴的直线l分别交线段AF,BF(不含端点)于G,H两点.若直线l与抛物线只有一个公共点,求证:FG+FH的值是定值.28.(2021•广东)已知二次函数y=ax2+bx+c的图象过点(﹣1,0),且对任意实数x,都有4x﹣12≤ax2+bx+c ≤2x2﹣8x+6.(1)求该二次函数的解析式;(2)若(1)中二次函数图象与x轴的正半轴交点为A,与y轴交点为C;点M是(1)中二次函数图象上的动点.问在x轴上是否存在点N,使得以A、C、M、N为顶点的四边形是平行四边形.若存在,求出所有满足条件的点N的坐标;若不存在,请说明理由.。
中点坐标法解决二次函数中平行四边形存在性问题
另辟蹊径 解决二次函数中平行四边形存在性问题以二次函数为载体的平行四边形存在性问题是近年来中考的热点, 其图形复杂,知识覆 盖面广,综合性较强,对学生分析问题和解决问题的能力要求高. 对这类题,常规解法是先 画出平行四边形,再依据“平行四边形的一组对边平行且相等”或 “平行四边形的对角线互相平分”来解决•由于先要画出草图,若考虑不周,很容易漏解•为此,笔者另辟蹊径,借 助探究平行四边形顶点坐标公式来解决这一类题. 1两个结论,解题的切入点数学课标,现行初中数学教材中没有线段的中点坐标公式, 也没有平行四边形的顶点坐标公式,我们可帮助学生来探究,这可作为解题的切入点。
1.1线段中点坐标公式平面直角坐标系中,点 A 坐标为(x i ,y i ),点B 坐标为(X 2, y 2),则线段AB 的中点坐标为(x i +X 2y i +y 2、2,2证明:如图1,设AB 中点P 的坐标为(X p ,y p ).由X p -x i =X 2-x p ,得X p = ~X 1 X 2,同理21.2平行四边形顶点坐标公式□ ABCD 的顶点坐标分别为 A(X A , y A )、B(X B , y B )、C(X c , y c )、D(X D ,y 。
),则:X A +X C =X B +X D ;y A +y c =y B +y D .证明: 如图2,连接AC 、BD ,相交于点E .•••点E 为AC 的中点, 又•••点E 为BD 的中点, 如图3,已知不在同一直线上的三点A 、B 、C ,在平面内另找一个点D ,使以A 、B 、C 、3 两类存在性问题解题策略例析与反思 3.1三个定点、一个动点,探究平行四边形的存在性问题2i例1已知抛物线y=x -2x+a (a v 0)与y 轴相交于点 A ,顶点为M.直线y= ~ x-a 分别 与x 轴、y 轴相交于B 、C 两点,并且与直线 AM 相交于点N.(i )填空:试用含a 的代数式分别表示点M 与N 的坐标,贝U M ( ), N ();r ,所以线段AB 的中点坐标为(宁,丁).E 点坐标为(,亠空).2 2E 点坐标为(X BX D2y B y D 2).…X A +X C =X B +X D ; y A +y c =y B +y 。
二次函数中的平行四边形存在性问题
二次函数中的平行四边形存在性问题
例1:在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.:(1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S.求S 关于m 的函数关系式,并求出S 的最大值; (3)若点P 是抛物线上的动点,点Q 是直线y=-x 上的动点,判断有几个位置能使以点P 、Q 、B 、0为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.
1、如图1,抛物线322++-=x x y 与x 轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴相交于点C ,顶点为
D .
(1)直接写出A 、B 、C 三点的坐标和抛物线的对称轴;(2)连结BC ,与抛物线的对称轴交于点E ,点P 为线段BC 上的一个动点,过点P 作PF //DE 交抛物线于点F ,设点P 的横坐标为m .①用含m 的代数式表示线段PF 的长,并求出当m 为何值时,四边形PEDF 为平行四边形?设△BCF 的面积为S ,求S 与m 的函数关系.
例2、已知抛物线322++-=x x y 与x 轴的一个交点为 A(-1,0),与y 轴的正半轴交于点C . 问坐标平面内是否存在点M ,使得以点M 和抛物线上的三点A 、B 、C 为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由.
1、已知抛物线22y x x a =-+(0a <)与y 轴相交于点A ,顶点为M .直线12
y x a =-分别与x 轴,y 轴相交于B C ,两点,并且与直线AM 相交于点N .在抛物线22y x x a =-+(0a <)上是否存在一点P ,使得以P A C N ,,,为顶点的四边形是平行四边形?若存在,求出P 点的坐标;若不存在,试说明理由.。
2二次函数之平行四边形存在问题
二次函数之平行四边形存在问题:考虑到求证平行四边形存在,必先了解平行四边形性质:(1)对应边平行且相等;(2)对角线互相平分。
将其用坐标表示出来便是:对边平行且相等可转化为x A -x B=x D -x C ;y A -y B=y D -y C ,可以理解为 B 点移动到 A 点,C 点移动到 D 点,移动路径完全相同。
对角线互相平分转化为:xA+xC2=xB+xD2yA+yC, 2=yB+yD2 ;可以理解为 AC 的中点也是 BD 的中点。
【注意】1.虽然由两个性质推得的式子并不一样,但是其实可以化为统一:当AC 和BD 为对角线的时候,结果可简记为 A+C=B+D(各个点对应的横纵坐标相加)。
2.以上是对平行四边形性质的分析,而我们要求证是平行四边形存在性问题,此处当有一问:若坐标系中四个点的A、B、C、D 满足“A+C=B+D”,则四边形 ABCD 是否一定为平行四边形?反例:1之所以存在反例,是因为“四边形 ABCD 是平行四边形”和“AC 、BD 的中点是同一个点” 并不是完全等价转化,故存在反例。
3.虽有反例,但并不影响运用此结论解题,另外,还需要注意对对角线的讨论: (1)四边形 ABCD 是平行四边形,AC 、BD 一定是对角线;(2)以 A 、B 、C 、D 四点为顶点的四边形是平行四边形:对角线不确定需要分类讨论。
【题型分类】平行四边形存在性问题通常可分为“三定一动”和“两定两动”两大类型。
1.三定一动已知 A (1,2)、B (5,3)、C (3,5),在坐标系内 确定一点 D ,使得 A 、B 、C 、D 四点为顶点的四边形是平行四边形。
思路 1:利用对角线互相平分,分类讨论:设 D 点坐标为(m,n),又 A (1,2)、B (5,3)、C (3,5),可得:{5+3=1+m (1)BC 为对角线时, 3+5=2+n ,可得 D (7,6);2+5=3+n,解得D (-1,4);(2)AC 为对角线时,{1+3=5+m2(3)AD 为对角线时,2.两定两动1+5=3+m2+3=5+n,解得D3(3,0)。
专题08 二次函数中特殊四边形存在性问题的四种考法(解析版)-2024年常考压轴题攻略(9上人教版)
专题08二次函数中特殊四边形存在性问题的四种考法类型一、平行四边形存在性问题(1)求抛物线的表达式;(2)如图1,连接BC ,PB ,PC ,设PBC 的面积为①求S 关于t 的函数表达式;②求P 点到直线BC 的距离的最大值,并求出此时点(3)如图2,设抛物线的对称轴为l ,l 与x 轴的交点为边形CDPM 是平行四边形?若存在,直接写出点【答案】(1)22y x=-(2)①23922S t t =-+;②点P 到直线BC 的距离的最大值为(3)存在,()1,6M 【分析】(1)待定系数法求解析式即可求解;(2)①在图1中,过点P 作PF y ∥轴,交BC 于点P 的坐标为()2,23t t t -++,则点F 的坐标为(t 2139222S PF OB t t =⋅=-+;②根据二次函数的性质得出当32t =时,S 取最大值,最大值为面积法求得点P 到直线BC 的距离,进而得出P (3)如图2,连接PC ,交抛物线对称轴l 于点设直线BC 的解析式为将()3,0B 、()0,3C 代入30,3m n n +=⎧⎨=⎩,解得:∴直线BC 的解析式为∵点P 的坐标为(,t t -∴点F 的坐标为(,t -∴(223PF t t =-++-∴1322S PF OB =⋅=-②12S PF OB =⋅=-∵302-<,∴当32t =时,S 取最大值,最大值为抛物线2y x bx =-++∴抛物线的对称轴为直线 1D C x x -=,∴1P M x x -=,∴2P x =,()2,3P ∴,在223y x x =-++中,当()0,3C ∴,∴3C D y y -=,∴3M P y y -=,∴6M y =,∴点M 的坐标为()1,6;当2P x ¹时,不存在,理由如下,若四边形CDPM 是平行四边形,则 点C 的横坐标为0,点∴点P 的横坐标12t =⨯又 2P x ¹,(1)求点C 的坐标;(2)点P 为直线AC 下方抛物线上一点,过点此时点P 的坐标;(3)抛物线顶点为M ,在平面内是否存在点若存在请求出N 点坐标并在备用图中画出图形;若不存在,请说明理由.【答案】(1)()4,5C (2)315,24P ⎛⎫- ⎪⎝⎭(3)存在,点N 的坐标为:()154N -,,【详解】(1)解:在2=23y x x --中,令解得:11x =-,23x =,()()1,0,3,0A B ∴-,直线y x m =+经过点()1,0A -,∴01m =-+,解得:1m =,∴直线AC 的解析式为1y x =+,联立方程组,得2123y x y x x =+⎧⎨=--⎩,解得:1110x y =-⎧⎨=⎩,2245x y =⎧⎨=⎩()4,5C ∴;(2)如图1,设点2(,23)P n n n --,则点∴2212334()PE n n n n n =+---=-++ 10-<,∴当32n =时,PE 取得最大值254,此时,(3) 2223(1)4y x x x =--=--,∴抛物线顶点为()14M -,,如图2,点,,,A B M N 为顶点的四边形是平行四边形时,设①BM 为对角线时,AN 的中点与BM ∴(1)3122m +-+=,04022n +-+=,解得:∴()154N -,,②AM 为对角线时,BN 的中点与AM ∴31122m +-+=,04022n +-+=,解得:(1)求此拋物线的解析式;(2)在抛物线的对称轴上有一点P ,使得PA PC +值最小,求最小值;(3)点M 为x 轴上一动点,在拋物线上是否存在一点N ,使以边形为平行四边形?若存在,直接写出点N 的坐标;若不存在,请说明理由.【答案】(1)215222y x x =--(2)552(3)54,2⎛⎫- ⎪⎝⎭,5214,2⎛⎫+ ⎪⎝⎭,5214,2⎛⎫- ⎪⎝⎭【分析】(1)把()1,0A -,()5,0B 两点代入求出a 、b 的值即可;(2)因为点A 关于对称轴对称的点B 的坐标为()5,0,连接BC 点坐标即可;(3)分点N 在x 轴下方或上方两种情况进行讨论.拋物线的解析式为212y x =-∴其对称轴为直线2b x a =-=-当0x =时,52y =-,50,2C ⎛⎫∴- ⎪⎝⎭,又()5,0B ,∴设BC 的解析式为(y kx b =+5052k b b +=⎧⎪∴⎨=-⎪⎩,解得:12k =,52b =-,∴BC 的解析式为1522y x =-,当2x =时,1532222y =⨯-=-,①当点N 在x 轴下方时,抛物线的对称轴为2x =,0,C ⎛- ⎝154,2N ⎛⎫∴- ⎪⎝⎭,②当点N 在x 轴上方时,如图,过点在2AN D △和2M CO △中,22N AD AN N DA ∠⎧⎪⎨⎪∠⎩252N D OC ∴==,即2N 点的纵坐标为21552222x x ∴--=,解得:2x =+25214,2N ⎛⎫∴+ ⎪⎝⎭,35214,2N ⎛⎫- ⎪⎝⎭综上所述符合条件的N 的坐标有⎛ ⎝【点睛】本题考查的是二次函数综合题,式、平行四边的判定与性质、全等三角形等知识,两点间距离的求解,在解答(意进行分类讨论.(1)求抛物线的解析式:(2)在抛物线的对称轴上是否存在点P ,使PCD 是以CD 为腰的等腰三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)点E 在x 轴上运动,点F 在抛物线上运动,当以点B ,C ,E ,F 为顶点的四边形是平行四边形,直接写出点E 的坐标.【答案】(1)213222y x x =-++(2)存在,3,42⎛⎫ ⎪⎝⎭或35,22⎛⎫ ⎪⎝⎭或35,22⎛⎫- ⎪⎝⎭(3)541,02⎛⎫-+ ⎪ ⎪⎝⎭或541,02⎛⎫-- ⎪ ⎪⎝⎭或(7,0)或(1,0)【分析】(1)用待定系数法即可求解;(2)分两种情况:以C 为顶点,即CP CD =;以D 为顶点,即CD =等腰三角形的定义建立方程即可完成;(3)分三种情况:当BC 是对角线时;当BE 是对角线时;当BF 是对角线时;分别设点与F 的坐标,利用中点坐标公式即可求解.【详解】(1)解:∵点B 的坐标是(40),,点C 的坐标是(02),,∴16602a c c ++=⎧⎨=⎩,解得:122a c ⎧=-⎪⎨⎪=⎩,∴所求抛物线解析式为213222y x x =-++;(2)解:存在(1)求抛物线的表达式;(2)若点E 在第一象限内对称右侧的抛物线上,四边形ODEB 的面积为(3)在(2)的条件下,若点F 是对称轴上一点,点H 是坐标平面内一点,在对称轴右侧的抛物线上是否存在点G ,使以E ,F ,G ,H 为顶点的四边形是菱形,且存在,请直接写出点G 的坐标;如果不存在,请说明理由.【答案】(1)232333y x x =-++(2)()2,33E 2039⎫⎪⎭或532,339⎛⎫⎪⎝⎭)根据待定系数法求解即可;∵232333y x x =-++()23143x =--+,∴()1,43D .令232333y x x =-++中0y =,则解得=1x -或3x =,抛物线的对称轴与x轴交于点M,过点∵四边形EFGH 是菱形,EFG ∠∴EF FG GH EG ===,∵60EFG ∠=︒,∴EFG 是等边三角形.∴60FEG EF FG ∠=︒=,,∵()2,33E ,()0,33C ,(1,4D ∴2CE CD ==,()24333-+同理可证: EFG 是等边三角形,∵CF FE =,=GE FE ,∴DG ∴CDG CEG ∆∆≌.∴DCG ∠=∴直线CG 的表达式为:33y =与抛物线表达式联立得33y y ⎧=⎪⎨⎪=-(1)求抛物线的表达式;(2)若点D 是直线AC 上方拋物线上一动点,连接BC ,AD ADM △的面积为1S ,BCM 的面积为2S ,当121S S -=时,求点(3)如图2,若点P 是抛物线上一动点,过点P 作PQ x ⊥轴交直线上是否存在点E ,使以P ,Q ,E ,C 为顶点的四边形是菱形,若存在,请直接写出点坐标;若不存在,请说明理由【答案】(1)223y x x =-++(2)271,22⎛⎫+ ⎪ ⎪⎝⎭或271,22⎛⎫- ⎪ ⎪⎝⎭.(3)符合条件的点E 有三个,坐标为:()0,1E ,(10,132E -【分析】(1)把点()30A ,和()10B -,代入解析式求解即可;(2)由121S S -=得121S S =+从而121ABM ABM S S S S +=++ 程求解即可;(3)分类当CQ 为对角线和菱形边时,利用直线AC 与x 轴成标的方程,进而求出点的坐标.【详解】(1)把点()3,0A 和()1,0B -代入得:93330a b a b ++=⎧⎨-+=⎩解得:12a b =-⎧⎨=⎩,∴抛物线的解析式为223y x x =-++;(2)设(),D x y ,对于抛物线223y x x =-++,令0x =,则()0,3C ∴.121S S -= ,121S S ∴=+.∵()30A ,,()0,3C ,∴3OA OB ==,45OCA ∴∠=︒,此时四边形CEQP 是正方形.PQ EQ ∴=.设()2,23P m m m -++,则23PQ m m =-+,23m m m ∴-+=,解得m =此时32OE OC m =-=-=②当CQ 为菱形的边时,如图设()2,23P m m m -++,则∴HQ m =,2PQ m =-+作QH OC ⊥于点H ,45OCA ∠︒= ,∴22CQ HQ m ==.∴23CE PQ m m ==-+=解得:132m =-,23m =()323213OE =+-=+()10,132E ∴-,(20,1E +综上所述,符合条件的点【点睛】本题考查待定系数法求函数的解析式,二次函数的性质,二次函数与几何综合,数形结合是解题的关键.【变式训练2】如图1,在平面直角坐标系中,点(点A 在点B 左侧),与(1)求ABC 的面积;(3)解:∵抛物线212y x x =--∴()211942212y x x x =--+=-2++∵将抛物线2142y x x =--+沿着水平方向向右平移∴新抛物线为:()112y x =--2+∴原抛物线与新抛物线的交点,∴()()1111992222x x -=--22+++,∴解得:0x =,【点睛】本题考查了二次函数的图象及性质,二次函数与特殊图形,二次函数的平移规律,掌握二次函数与特殊图形的位置关系是解题的关键.类型三、矩形存在性问题(1)求抛物线的解析式;(2)如图,点P 是抛物线上位于直线直线AC 于点D ,交x 轴于点E ,(3)在抛物线上是否存在点M ,对于平面内任意点一条边的四边形为矩形,若存在,请直接写出【答案】(1)2142y x x =--(2)335,28P ⎛⎫- ⎪⎝⎭;254(3)()4,8M -、()8,4N -【分析】(1)把点()4,0A 和点B a 、b 的值;(2)先用待定系数法求出直线2211,422D t t t t ⎛⎫--- ⎪⎝⎭,然后求出最大值时t 的值,即可求出点P (3)假设抛物线上是存在点M ,一条边的四边形为矩形,过点O 点A 且与OH 平行的直线解析式,经计算验证可得过点立方程可求得M 的坐标,通过平移即可求得点【详解】(1)解:把点()4,0A 和点∵()4,0A ,()0,4C -,∴OAC 为等腰直角三角形,∴点H 为AC 的中点,即(H 则OH 所在的直线方程为y =∵四边形AMNC 为矩形,∴过A 与直线AC 相垂直的直线函数解析式中的∴设AM 所在的直线解析式为∵点A 在直线AM 上,(1)求点A 、B 、C 的坐标;(2)将抛物线L 向右平移1个单位,得到新抛物线对称轴l 上是否存在点D ,使得以点D 的坐标;若不存在,请说明理由.【答案】(1)()1,0A -,()3,0B (2)存在,点D 的坐标为()2,1或【分析】(1)分别令0y =和x (2)先求得平移后的抛物线L 角线时,根据矩形的性质求解即可.【详解】(1)解:令0y =,则解得11x =-,23x =,当AD 为对角线时,连接AC ,过点 ()1,0A -,()0,1C -,∴1OA OC ==,∴45OCA ∠=︒∴45OCG ∠=︒∴1OG OC ==,∴()1,0G .设CG 所在直线解析式为y kx =+将()0,1C -,()1,0G 代入得,⎧⎨⎩解得11k b =⎧⎨=-⎩,∴CG 所在直线解析式为1y x =-当2x =时,1211y x =-=-=.∴()2,1D .当AD 为边时,同理过点A 作AC 易得AH 所在直线解析式为y =当AC 为对角线时,DE 也为对角线,∴此种情况不存在.(1)求抛物线的表达式;(2)若点P 为第一象限内抛物线上的一点,设PBC 的面积为S ,求S 坐标;(3)已知M 是抛物线对称轴上一点,在平面内是否存在点N ,使以B 的四边形是矩形?若存在,直接写出N 点坐标;若不存在,请说明理由.【答案】(1)22+3y x x =-+(2)S 最大值为278,315(,)24P (3)存在,点1(2,(317))2N +或1(2,(317))2-或(2,1)-或(4,1).【分析】(1)运用抛物线交点式解析式求解,设抛物线(1)(y a x x =+解;(2)如图,过点P 作PD AC ⊥,垂足为点D ,交BC 于点E ,设(,P m 的解析式3y x =-+,于是23PE m m =-+,从而13(22S PE OC m ==- 时,S 最大值为278,进而求得315(,)24P ;设2(,23)P m m m -++设直线BC 的解析式为y kx =033k hh =+⎧⎨=⎩,解得13k h =-⎧⎨=⎩∴3y x =-+则点(,3)E m m -+,2PE m =-∴2113(22S PE OC m ==´-+ ∴当32m =时,S 最大值为2782915233344m m -++=-++=∴315(,)24P ;(3)存在.设(1,)M p ,如图,223BC =222(13)(0)CM p p =-+-=如图,当BM 为对角线时,∠222BM CM BC =+,即26p p -+01330n p q +=+⎧⎨+=+⎩解得21n q =-⎧⎨=⎩∴点(2,1)N -如图,当CM 为对角线时,MBC ∠222BM BC CM +=,即26p p -+(1)求抛物线的对称轴方程;(2)若点P 满足PAB PBA ∠=∠,求点P 的坐标;(3)设M 是抛物线的对称轴上一点,N 是坐标平面内一点,正方形的面积.【答案】(1)32x =-(2)()51,51P --+(3)正方形AMPN 的面积为172或372【分析】(1)由4y x =+可知()4,0A -,()0,4B ,进而求得抛物线解析式为即可得抛物线的对称轴方程;(2)由题意可知PAB PBA ∠=∠,可知PA PB =,进而值OP 其与AB 交于点Q ,可得()2,2Q -,可求得OP 的解析式为则90PDM ACM ∠=∠=︒∴DPM PMD PMD ∠+∠=∠∴(AAS PDM MCA △≌△∴PD MC =,MD AC =,∵()4,0A -,3,02C ⎛⎫- ⎪⎝⎭,∴35422MD AC ==-=,则90PEM ACM ∠=∠=︒∴EPM PME PME ∠+∠=∠∴(AAS PEM MCA △≌△∴PE MC =,ME AC =,∵()4,0A -,3,02C ⎛⎫- ⎪⎝⎭,∴35422ME AC ==-=,则P y CE MC ME ==+=即:32P x m =-,P y m =-(1)求A ,B ,C 三点的坐标,并直接写出直线(2)在点P 的运动过程中,求使四边形(3)点N 为平面内任意一点,在(2N 为顶点的四边形是正方形?若存在,请直接写出点【答案】(1)()1,0A -,()3,0B ,C (2)32m =-(3)()1221,2Q +,2252,2Q ⎛+ ⎝【分析】(1)分别令0y =,0x =,可求出点∵()3,0B ,()0,3C ,∴3OB OC ==,∴BOC 是等腰直角三角形,∴点()221,2Q +,∴()22132322EQ =+--=-∴PE EQ =,此时点()221,2Q +使得以P ,E 如图,过点E 作EQ PM ⊥于点Q ,过点由(2)得:45BED ∠=︒,∵PM BC ∥,∴45BED DPQ ∠=∠=︒,∴PEQ ,PSQ 是等腰直角三角形,∴此时点Q 使得以P ,E ,Q ,N 为顶点的四边形是正方形;∴132222PS SE PE -===,∴点5232,12S ⎛⎫-- ⎪ ⎪⎝⎭,对于321y x =-++,当5212y =-时,222x =+,(1)求抛物线的解析式;(2)点E 在第一象限内,过点E 作EF y ∥轴,交BC 于点F ,作EH 点H 在点E 的左侧,以线段,EF EH 为邻边作矩形EFGH ,当矩形求线段EH 的长;(3)点M 在直线AC 上,点N 在平面内,当四边形OENM 是正方形时,请直接写出点标.【答案】(1)抛物线的解析式为2142y x x =-++;(2)4EH =;(3)点N 的坐标为()44,或7322⎛⎫- ⎪⎝⎭,.【分析】(1)利用待定系数法即可求解;(2)先求得直线BC 的解析式为4y x =-+,设2142x E x x ⎛ ⎝-++,对称性质求得21422H x x x ⎛⎫- ⎪+⎝-+⎭,,推出2122GH EF x -=-+矩形周长公式列一元二次方程计算即可求解;(3)先求得直线AC 的解析式为24y x =+,分别过点M 、E 作90OPE MQO ∠=∠=︒,90OEP ∠=︒∴OEP MOQ ≌△△,∴PE OQ =,PO MQ =,设2142m E m m ⎛⎫ ⎪⎝-++⎭,,∴PE OQ m ==-,12P m O M Q ==-∵点M 在直线AC 上,∴244212m m m -⎛⎫=+ ⎪⎝⎭-,解得m =当4m =时,()04M ,,()40E ,,即点M 与点C 重合,点E 与点B 重合时,四边形当1m =-时,512M ⎛⎫-- ⎪⎝⎭,,512E ⎛- ⎝,点O 向左平移52个单位,再向下平移则点E 向左平移52个单位,再向下平移∴551122N ⎛⎫--- ⎪⎝⎭,,即7322N ⎛⎫- ⎪⎝⎭,.课后训练(1)求抛物线的解析式;(2)如图2,点P 、Q 为直线BC 下方抛物线上的两点,点Q 的横坐标比点过点P 作PM y ∥轴交BC 于点M ,过点Q 作QN y ∥轴交BC 于点N ,求值及此时点Q 的坐标;(3)如图3,将抛物线()230y ax bx a =+-≠先向右平移1个单位长度,再向下平移长度得到新的抛物线y ',在y '的对称轴上有一点D ,坐标平面内有一点E D 、E 为顶点的四边形是矩形,请直接写出所有满足条件的点E 的坐标.【答案】(1)抛物线的解析式为2=23y x x --(2)当1a =时,max ()4PM QN +=,()2,3Q -(3)()1,2E --或()5,2-或3171,2⎛⎫-- ⎪ ⎪⎝⎭或3171,2⎛⎫-+ ⎪ ⎪⎝⎭【分析】(1)直接运用待定系数法即可解答;(2)设()2,23P a a a --,则()21,4Q a a +-,进而得到(),3M a a -,(N 出222422(1)4PM QN a a a +=-++=--+,最后根据二次函数的性质即可解答;(3)分以BC 为矩形一边和对角线两种情况,分别根据等腰直角三角形的性质、平移和矩形的判定定理解答即可.【详解】(1)解:把()1,0A -和()3,0B 代入()230y ax bx a =+-≠,得309330a b a b --=⎧⎨+-=⎩,解得1a =,2b =-∴222422(1)4PM QN a a a +=-++=--+∴当1a =时,max ()4PM QN +=∴()2,3Q -.(3)解:由题意可得:()()()222=1213152x y x x x x --'---=---=-,∴y '的对称轴为2x =∵抛物线()230y ax bx a =+-≠与y 轴交于点C .∴()0,3C -,∵()3,0B ,∴3OC OB ==,45BCO CBO ∠=∠=︒;如图:当BC 为矩形一边时,且点D 在x 轴的下方,过D 作DF y ⊥轴,∵D 在y '的对称轴为2x =,∴2FD =,∴2CF FD ==,325OF =+=,即点()2,5D -,∴点C 向右平移2个单位、向下平移3个单位可得到点D ,则点B 向右平移2个单位、向下平移3个单位可得到()5,3E -;如图:当BC 为矩形一边时,且点D 在x 轴的上方,y '的对称轴为2x =与x 轴交于F ,∵D 在y '的对称轴为2x =,∴2FO =,∴321BF =-=,∵45CBO ∠=︒,即45DBO ∠=︒,∴321BF FD ==-=,即点()2,1D ,∴点B 向左平移1个单位、向上平移1个单位可得到点D ,则点C 向左平移1个单位、向上平移1个单位可得到点()1,2E --;如图:当BC 为矩形对角线时,设∴BC 的中点F 的坐标为32⎛ ⎝∴2322322m d n +⎧=⎪⎪⎨+⎪=⎪⎩,解得:m d =⎧⎨+⎩又∵DE BC =,∴()()22222133d n -+-=+联立173d n d n ⎧-=±⎪⎨+=⎪⎩,解得:∴点E 的坐标为3171,2⎛-- ⎝综上,存在()1,2E --或(5,的四边形是矩形.【点睛】本题主要考查了运用待定系数法求解析式、与几何的综合等知识点,掌握二次函数的性质和矩形的判定定理是解答本题的关键.2.如图,在平面直角坐标系中,抛物线与y 轴交于点C ,点P 为抛物线上的动点.(1)求该抛物线的函数表达式;(2)点D 为直线y x =上的动点,当点P 在第四象限时,求四边形PBDC 面积的最大值及此时点P 的坐标;(3)已知点E 为x 轴上一动点,点Q 为平面内任意一点,是否存在以点P ,C ,E ,Q 为顶点的四边形是以PC 为对角线的正方形,若存在,请直接写出点Q 的坐标,若不存在,请说明理由.【答案】(1)2=23y x x --(2)278,315,24P ⎛⎫- ⎪⎝⎭(3)3333,2⎛⎫+- ⎪ ⎪⎝⎭;3333,2⎛⎫-- ⎪ ⎪⎝⎭;(3,3)-;(3,2)【分析】(1)用待定系数法求函数的解析式即可;(2)作直线BC ,过P 作PH x ⊥轴于点G ,交BC 于点H .设()2,23P m m m --,则(,3)H m m -,23PH m m =-+,则2139()228BPC S t ∆=--+,当32t =时,BPC △的面积最大值为从而求出此时四边形PBDC 面积的最大值,P 点坐标;(3)设()2,23P m m m --,(,0)E n ,分四种情况画出图形,利用正方形性质求解即可.【详解】(1)解:将(1,0)A -,(3,0)B 代入23y ax bx =+-中,得309330a b a b --=⎧⎨+--⎩,解得12a b =⎧⎨=-⎩.∴该抛物线的函数表达式为2=23y x x --.(2)解:作直线BC ,过P 作PH x ⊥轴于点G ,交BC 于点H .设直线BC 的表达式为:y kx =+得303k n n +=⎧⎨=-⎩,解得13k n =⎧⎨=-⎩,3y x ∴=-.设()2,23P m m m --,则(,H m m ∵BPC CPH BPHS S S =+△△△∴1122BPC S PH OG PH BG =⋅+⋅△∴(21322BPC S PH OB m =⨯=-+△∴28323272BPC S m ⎛⎫=-+ ⎪⎝-⎭△,∴当32m =时,BPC △面积的最大值为BC 与直线y x =平行,1122DBC OBC S S OB OC ∴==⋅=△△∴四边形PBDC 面积的最大值为当32m =时,2332322y ⎛⎫-⨯- ⎪⎝⎭=315,24P ⎛⎫∴- ⎪⎝⎭(3)解:设()2,23P m m m --,I.如图,当点E 在原点时,即点∵四边形PECQ 为正方形,∴点3(3,)Q -,II.如解图3-2,当四边形PECQ 作PI x ⊥轴,垂足为I ,作QH ⊥又∵90CEO OCE ∠+∠=︒,∴OCE PEO ∠=∠,∴(ASA)OCE PEI ≅ △∴3CO IE ==,22EO IP m ==-同理可得:3QH CO IE ===,∴3OE OI IE m =+=+,HO IO=∴2323m m m +=--,解得:m ∴3332HO IO +==,∴点)33(3,32Q +-,同理可得:PI OE CH ==,IE QH =∴3OE IE IO m =-=+,∴2233m m m =---,解得:m =∴3332HO IO -+==,∴点3,(Q -IV.如解图3-4,当四边形PECQ 为正方形时,同理可得:PI OE CH ==,EI HQ =∴2323m m m -=--,解得:m =∴2HO IO ==,∴点(3,2)Q ,综上所述:点Q 坐标为3333,2⎛+- ⎝【点睛】此题重点考查二次函数的图象与性质、数解析式、正方形性质、全等三角形的判定与性质、一元二次方程的解法、数形结合与分类讨论数学思想的运用等知识与方法,此题综合性强,难度较大,属于考试压轴题.3.如图,抛物线212y x bx c =++与物线交于A 、D 两点,与y 轴交于点综上所述,341,22N ⎛⎫+ ⎪ ⎪⎝⎭或341,22N ⎛- ⎝【点睛】本题考查了待定系数法求解析式,面积问题,平行四边形的性质,熟练掌握是二次函数的性质解题的关键.4.在平面直角坐标系中,抛物线2y ax =(1)求抛物线的表达式;(2)若直线x m =与x 轴交于点求出抛物线上点M 的坐标;(3)若点P 为抛物线y ax =位长度后,Q 为平移后抛物线上一动点,在(构成平行四边形?若能构成,求出【答案】(1)223y x x =-++(2)315,24⎛⎫ ⎪⎝⎭(3)1(2-,15)4或3(2-,7)4或【分析】(1)利用待定系数法,即可求出抛物线的表达式;(2)由“直线x m =与x 轴交于点的坐标,进而可得出AN 再利用二次函数的性质,即可求出(3)利用平移的性质,可得出平移后抛物线的表达式为点的坐标特征,可求出点点P 的坐标为(1,)m ,点Q 线三种情况考虑,由平行四边形的对角线互相平分,可得出关于得出n 值,再将其代入点【详解】(1)解:将(1,0)-09303a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得:∴抛物线的表达式为y =-(2) 直线x m =与x 轴交于点∴点M 的坐标为2(,m m -。
2024年九年级中考数学专题 课件- :二次函数平行四边形存在性问题
3.如图,抛物线
与x轴交于点A、
B 两点,抛物线的对称轴为直线x=1,
(1)求m的值及抛物线的解析式;
(2)过A的直线与抛物线的另一交点C的横 坐标为2. 直线AC的解析式;
3.如图,抛物线
与x轴交于点A、
B 两点,抛物线的对称轴为直线x=1,
(3)点Q是抛物线上的一个动点, 在x轴上是 否存在点F ,使得以点A、C、F、Q为顶点四
四、方法归纳
四、方法归纳 二次函数平行四边形存在性问题做题技巧
0 1 写坐标:写出已知坐标,设未知坐标 0 2 通用方法:对角线分类讨论
中点坐标公式:
0 3 若平行四边形一边在坐标轴上或平行于坐标 轴,分两种情况:1、AB为边 2、AB为对角线
0 4 写坐标
五、学以致用
五、学以致用
1.如图,抛物线
与x轴相交于A、B两点,顶点为P.
(1)求点A、B的坐标;
(2)坐标平面内是否存在点F,使得以A、B、P、F为顶点的四边
形为平行四边形?直接写出所有符合条件的点F的坐标。
2.已知抛物线L:y=-x2+bx+c经过点O(0,0)、A(4,0),L关于 x轴对称的抛物线为L′,点B的坐标为(0,8). (1)求抛物线L和L′的函数表达式。 (2)点M在抛物线L的对称轴上,点P在抛物线L′上,是否 存在这样的点M与点P,使以A、B、M、P为顶点的四边形是平 行四边形?若存在,请求出点P的坐标;若不存在,请说明 理由。
中考专题: 二次函数平行四边形存在性问题
五
三
一
学 四例 二平
目
以 致 用
方 法 归
题 解 析
纳
中 点 坐 标 公 式
行 四 边 形 性 质
二次函数平行四边形存在性问题例题
二次函数平行四边形存在性问题例题例题:已知二次函数f(x) = ax² + bx + c,其中a ≠ 0,现给定两点A(x₁, y₁)和B(x₂, y₂),求是否存在一个平行四边形ABCD,使得AC和BD都平行于直线y = kx + m。
解题思路:首先,我们需要确定k和m的值,因为平行四边形ABCD中的AC和BD必须平行于直线y = kx + m。
根据平行的性质,我们可以得到AC和BD的斜率都为k。
所以,我们首先需要求得二次函数f(x)的斜率。
二次函数f(x) = ax² + bx + c的斜率可以通过求导得到。
将f(x)对x求导,得到f'(x) = 2ax + b。
所以,二次函数f(x)的斜率k =f'(x)处的斜率 = 2ax + b。
在已知的两点A(x₁, y₁)和B(x₂, y₂)处,可以得到f(x₁) = ax₁² +bx₁ + c = y₁和f(x₂) = ax₂² + bx₂ + c = y₂。
我们可以根据这两个条件,列出方程组,并通过求解方程组来求得平行四边形ABCD的存在性。
方程组如下所示:1. ax₁² + bx₁ + c = y₁2. ax₂² + bx₂ + c = y₂为了方便计算,可以移项,得到以下形式:1'. ax₁² + bx₁ + c - y₁ = 02'. ax₂² + bx₂ + c - y₂ = 0现在我们需要判断是否存在一个平行四边形ABCD,使得AC和BD都平行于直线y = kx + m。
根据平行四边形的性质,可以得知AC的斜率等于k,即AC的斜率为2ax + b,同样,BD的斜率也等于k。
所以我们需要判断是否存在一组x₁、y₁、x₂、y₂的值,使得如下两个方程成立:3. 2ax₁ + b = k4. 2ax₂ + b = k将方程3和方程4化简,得到如下形式:3'. 2ax₁ + b - k = 04'. 2ax₂ + b - k = 0现在我们有了方程2'和方程4',我们可以组成如下新的方程组:2'. ax₂² + bx₂ + c - y₂ = 04'. 2ax₂ + b - k = 0这是一个二次函数与一次函数的方程组,我们可以通过求解这个方程组来判断是否存在平行四边形ABCD。
二次函数中的平行四边形问题
学习过程一、复习预习(一)利用待定系数法求抛物线解析式的三种常用形式: (1)【一般式】已知抛物线上任意三点时,通常设解析式为 ,然后解三元方程组求解; (2)【顶点式】已知抛物线的顶点坐标和抛物线上另一点时,通常设解析式为 求解; (3)【交点式】已知抛物线与轴的交点的坐标时,通常设解析式为 。
(二)抛物线上两个点A (x 1,y ),B (x 2,y )之间的关系: (1)如果两点关于对称轴对称,则有对称轴2x 21x x +=;(2)两点之间距离公式:已知两点()()2211y ,x Q ,y ,x P ,则由勾股定理可得:221221)()(y y x x PQ -+-=练一练:已知A (0,5)和B (-2,3),则AB = 。
(3)中点公式:已知两点()()2211y ,x Q ,y ,x P ,则线段PQ 的中点M 为⎪⎭⎫⎝⎛++222121y y ,x x 。
练一练:已知A (0,5)和B (-2,3),则线段AB 的中点坐标是(4)如图:PG ∥X 轴,QG ∥Y 轴,P 点的横坐标为,G 点的横坐标为,纵坐标为,Q 点的纵坐标为,则线段PG=,QG=。
(三)求三角形的面积: (1)直接用面积公式计算;(2)割补法;(3)铅垂高法; 如图,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高”(h ).我们可得出一种计算三角形面积的新方法:S △ABC =12ah ,即三角形面积等于水平宽与铅垂高乘积的一半。
B 铅垂高 水平宽haA(四)二次函数中三角形面积、周长的存在性问题解题思路:(1)如果是一个三角形面积为一个三角形面积的多少倍,则分别表示出每个三角形的面积去求解;如果是一个三角形面积为固定值,则用含有未知数的式子去表示面积去求解;如果是三角形周长最小,则做对称点去求解;如果是三角形面积最大,则划归为二次函数最值问题去求解。
专题:二次函数背景下的特殊四边形存在性问题(学生版)
专题:二次函数背景下的特殊四边形存在性问题一、知识储备二、方法归纳1.平行四边形的存在性问题:①从边的关系出发,对边平行且相等可转化为:可以理解为点B 移动到点A ,点C 移动到点D ,移动路径完全相同.②从对角线关系出发,对角线互相平分转化为:可以理解为AC 的中点也是BD 的中点.图1图2图1可表示为⎩⎨⎧-=--=-C D B A C D B A y y y y x x x x ,图2可表示为 ⎪⎪⎩⎪⎪⎨⎧+=++=+2222D B C A DB C A y y y y x x x x 。
二者均可可以化为统一,以AC 、BD 为对角线时,可得:⎩⎨⎧+=++=+D B C ADB C A y y y y x x x x .2. 菱形的存在性问题:转化为平行四边形+等腰三角形(两点间的距离公式、两圆一线作等腰);3. 矩形的存在性问题:转化为平行四边形+直角三角形(勾股定理、Rt 斜中、隐形圆、构造K 型相似);4. 正方形的存在性问题:转化为平行四边形+等腰直角三角形(构造K 型全等)。
解题策略:一般情况下构成四边形的四个点中,有两个点是定点两个点是动点,我们常设一个动点(非二次函数上),利用图形位置与数量关系,表示出另一个动点(二次函数上),再将表示的点代入点的函数解析式求解即可。
三、典例分析例1:如图,已知直角坐标系中,抛物线与轴交于,两点,与轴交于点,点的坐标为,点的坐标分别为.(1)求抛物线的解析式;(2)有一动点从C 点出发,个单位的速度向点运动,过点作轴的垂线,交抛物线于点,交轴于点,连接、,设点运动的时间为秒. ①求出点的坐标(用表示);②当四边形为平行四边形时,求出的值;(3)点是抛物线对称轴上的一个动点,点是坐标平面内的一点,是否存在这样的点,,使得以、、、四点组成的四边形是矩形?若存在,请直接写出点的坐标;若不存在,请说明理由.2.如图,已知抛物线2y x bx c =++与x 轴相交于(1,0)A -,(,0)B m 两点,与y 轴相交于点(0,3)C -,抛物线的顶点为D . (1)求B 、D 两点的坐标;(2)若P 是直线BC 下方抛物线上任意一点,过点P 作PH x ⊥轴于点H ,与BC 交于点M ,设F 为y 轴一动点,当线段PM 长度最大时,求12PH HF CF ++的最小值;(3)在第(2)问中,当12PH HF CF ++取得最小值时,将OHF ∆绕点O 顺时针旋转60︒后得到△OH F '',过点F '作OF '的垂线与x 轴交于点Q ,点R 为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S ,使得点D 、Q 、R 、S 为顶点的四边形为菱形,若存在,请直接写出点S 的坐标,若不存在,请说明理由.24y ax bx =++x A B y C A (2,0)-B (8,0)D B Dx E x F CE OD D (04)t t <<D t DOCE t P Q P Q P Q B C Q四、课后练习1.如图,在平面直角坐标系中,已知抛物线2y x bx c =++与直线AB 相交于A ,B 两点,其中(3,4)A --,(0,1)B -. (1)求该抛物线的函数表达式;(2)点P 为直线AB 下方抛物线上的任意一点,连接PA ,PB ,求PAB ∆面积的最大值; (3)将该抛物线向右平移2个单位长度得到抛物线21111(0)y a x b x c a =++≠,平移后的抛物线与原抛物线相交于点C ,点D 为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E ,使以点B ,C ,D ,E 为顶点的四边形为菱形,若存在,请直接写出点E 的坐标;若不存在,请说明理由.2.如图,在平面直角坐标系中,二次函数的图象与一次函数的图象相交于、两点,与轴的负半轴交于点,交轴于点,,点坐标为. (1)求该二次函数的函数表达式;(2)为线段上一动点,将以所在直线为轴翻折,点的对称点为点,若有一个顶点在轴上,求点的坐标;(3)设点在抛物线的对称轴上,点在直线上,问是否存在这样的点、,使得以、、、为顶点的四边形是平行四边形?若存在,请直接写出点、的坐标;若不存在,请说明理由.3.如图1,抛物线与轴交于,两点(点在点的左侧),与轴交于点,直线与抛物线相交于另一点,点为抛物线的顶点.(1)求直线的解析式及点的坐标; (2)如图2,直线上方的抛物线上有一点,过点作于点,过点作平行于轴的直线交直线于点,当周长最大时,在轴上找一点,在上找一点,使得值最小,请求出此时点的坐标及的最小值;(3)在第(2)问的条件下,点为抛物线对称轴上的一点,在平面直角坐标系中是否存在点,使以点,,,为顶点的四边形为矩形?若存在,请直接写出点的坐标;若不存在,请说明理由.20)y ax bx a =++≠(0)y ax a a =-≠A B x C AB y D :1:2BD AD =B (1,0)M CB ACM ∆AM C N AMN ∆y N E F AB E F A C E F EF 2y x =-x A B A B yC :AE y ED BCE AE P P PF BC ⊥F P y BCG PFG ∆yM AE N 12PM MN NE ++N 12PM MN NE ++R S N E R SS。
二次函数存在性问题(菱形、平行四边形、矩形)
今天讲解二次函数背景下的四边形存在性问题.这里的四边形存在性问题,一般是以几种特殊的四边形为主,常考察的有平行四边形、菱形、 矩形、正方形.当然,三角形的存在性问题和四边形的存在性问题是一样, 如等腰三角形实际上和 菱形是一致的, 直角三角形和矩形是一样的, 等腰直角三角形和正方形是一致的.本文我们将重点讲解这类问题的求解逻辑以及注意事项,同时给大家理出一个比较通用的解题 模板.1如图,抛物线y = ax 2 + bx + 3 交x 轴于点A (−1, 0) 和点B (3, 0) ,与 y 轴交于点C ,连接BC , 交对称轴于点D .(1) 求抛物线的解析式;(2)点 P 是直线BC 上方的抛物线上点,连接PC ,PD .求 △PCD 的面积的最大值以及此时 点P 的坐标;(3)将抛物线y = ax 2 + bx + 3 向右平移 1 个单位得到新抛物线,新抛物线与原抛物线交于点E , 点F 是新抛物线的对称轴上的一点,点 G 是坐标平面内一点.当以D 、E 、F 、 G 四点为顶点的 四边形是菱形时,直接写出点F 的坐标,并写出求解其中一个点F 的坐标的过程.前两小问就不详说了,直接上结论, 抛物线解析式为y = −x 2 + 2x + 3 ;点 P | , | .( 3 15 )\2 4 )第 3 小问为菱形存在性问题, 以D 、E 、F 、 G 四点为顶点的四边形是菱形.四个点中, D , E 是定点,F 是平移后新抛物线对称轴上的动点,由于点F 的横坐标是确定的,只有纵坐标在变化, 我们可以称其为“G 如果只需要点F 的坐标,那么没有必要求解平移后抛物线的解析式.根据平移的性质,将原抛物线 向右平移 1 个单位长度, 那么原抛物线的对称轴也向右平移 1 个单位长度, 因此新抛物线的对称轴 为x = 2 ,几 F (2, m ) .但由于此时E 为量抛物线的交点,因此还是要把平移后的抛物线解析式求出 来,根据“左加右减”,平移后的抛物线解析式为y = − (x −1)2+ 2(x −1) + 3 = −x 2 + 4x ,联立两抛物(|y = −x 2 + 2x + 3 ( 3 15 ) 线〈|ly = −x 2 + 4x ,解得E |\2 , 4 )| .菱形的探究相对是比较简单的,对于这类探究性问题,一般都是先从确定的信息入手.菱形是 以D 、E 、F 、 G 为顶点, 其中DE 为定线段,那么存在的可能有DE 是一条边,也可能是一条对 对角线.前面提到,等腰三角形和菱形的分析是一致的,这里我们结合等腰三角形的存在性问题一 起分析.由于 G 是“自由点”,可以随机应变,因此讨论以D 、E 、F 为顶点的三角形是等腰三角 形.同样, 由于定线段DE 可能是等腰三角形的一条腰,也可能是底边.当DE 为一条腰时,第一种情形是点D 为顶点,即DE = DF ,也即半动点F 到D 的距离和E 到D 的距离相等,因此点F 在以点D 为圆心, DE 为半径的圆上,作出该圆,如图 1 所示,可知此时圆与新抛物线的对称轴有两个交点F 1 ,F 2 ,结合图象可以判断,此时两个点应该都是满足的.那么 再加上对应的“自由点” G ,就是以DE 为边菱形了.当DE 为一条腰时, 另一种情形是点E 为顶点, 即ED = EF ,也即半动点F 到E 的距离和D 到E 的距离相等,因此点F 在以点E 为圆心, ED 为半径的圆上,作出该圆,如图 2 所示,可知此时 圆与新抛物线的对称轴同样有两个交点F 1 ,F 2 ,结合图象, 此时的F 3 存在和DE 共线的风险,因此后续需要检验一下.根据坐标可以知道,x E =,通常像这类圆心可能为两个点中点的,一般都要留个心眼, 检验一下.此时再加上对应的“自由点” G ,也是以DE 为边菱形.当DE 为底边时,则F 为顶点, 即FD = FE ,即 F 到线段DE 的两端点的距离相等,可知此时F 在线段DE 的垂直平分线上,作出线段DE 的垂直平分线,如图 3 所示,可知此时有一个交点F 5 .加 上对应的“自由点” G ,此时便是以DE 为对角线的菱形.对于等腰三角形和菱形的存在性问题,如上图情形,我们称其为“两圆一线”法.由于这类题一般不需要书写完整过程,因此在解题过程中,把准备工作做好, 即对应的点坐标, 解析式等先求出来, 动点坐标假设好, 再把定线段DE ,半定线段DF 、EF 长度表示出来. 根据上 述分析,结合“两圆一线”分别使得三条线段两两相等建立方程,即DE = DF ,DE = EF ,DF = EF , 求解出动点坐标即可.(实际解题过程中, 一般使用线段平方的形式.此外, 只需关注下方解析中公 式计算部分即可,文字叙述部分可忽略)此题还是比较友善的,只需求出F 坐标.如果需要求解点G 的坐标,则还要加一个步骤.这里 以DEG 1F 1 为例,若要求 G 1 坐标,一般有两种比较常用的思路.一是利用菱形的对边平行且相等,即F 1G 1 可以看成是DE 平移得来的, 那么点D → F 1 的平移变化也即点E → G 1 的平移变化. 二是利用菱形的对角线相互平分,因此EF 1 的中点也即DG 1 的中点,利用中点坐标求解出 G 1 坐标.这两种处理 在平行四边形存在性问题中也是有力手段.(|y = −x 2 + 2x + 3 ( 3 15 ) 149 ( 149 )由题, y = −x 2 + 2x + 3 向右平移 1 个单位得到新抛物线y = − (x −1)2+ 2(x −1) + 3 = −x 2 + 4x ,联立〈|ly = −x 2 + 4x ,解得 E |\2 , 4 )| , 新抛物线的对称轴为x = 2 ,设 F (2, m ) ,由于 D (1, 2) ,则DE 2 =,EF 2 = + m −2= m 2 − m +,DF 2 = 1+ (m − 2)2= m 2 − 4m + 5 ,①当DE 、DF 为一组邻边时,则 DE 2 = DF 2 ,即 = m 2 − 4m + 5 ,37 ( ) ( )②当ED 、EF 为一组邻边时,则 ED 2 = EF 2 ,即 = m 2 − m + ,16 8 16 11 ( 11)③当EF 为对角线时,则FD = FE ,即 m 2 − m + = m 2 − 4m + 5 , 2 16解得m = ,此时 F 的坐标为|2, | ;( ) ( ) ( 149 )( 11) 当F |2, |时, y F + y D = 2y E ,x D + x F = 2x E ,即 E 为D 、F 中点, 不合题意, 舍去; 15 229 \ 2 )综上, F 点的坐标为||\2, 2 + 4 )|| 或||\2, 2 − 4 )|| 或(2, 2) 或|\2, 56 )| . 56 \ 56 )解得m = 2 或m = ,此时F 的坐标为(2, 2) 或|2, | ,2 \ 2 )解得m = 2 土 4 ,此时 F 的坐标为||\2, 2 + 4 )|| 或||\2, 2 − 4 )|| ;53 15 2291 .已知二次函数y = ax2 + bx − 2(a 丰 0)与x 轴交于A ( −, 0) ,B (4, 0) ,与 y 轴交于点C .(1) 求抛物线的解析式;(2) 连接AC ,BC ,点 P 是直线BC 下方抛物线上一点,过 P 作PD ∥AC 交直线BC 于点D ,PE ∥x 轴交直线BC 于点, E ,求△PDE 面积的最大值及此时点, P 的坐标;(3) 在(2)的条件下, 将原抛物线沿x 轴向左平移3个单位得到新抛物线,点 M 是新抛物线对称轴上一点, 点 N 是平面直角坐标系内一点, 当以点M 、 N 、P 、B 为顶点的四边形为菱形 时,请直接写出所有符合条件的N 点的坐标;并任选其中一个N 点,写出求解过程.立〈y= − 2 x 2 + 4x − 2 ,解得D 7 , 11 .1-1如图 1,抛物线y = ax 2 + bx + 4 交x 轴于A (−2, 0) ,B (4, 0) 两点,与y 轴交于点C ,连接 AC , BC .(1) 求抛物线的解析式;(2) P 是拋物线上位于直线BC 上方的一个动点,过点P 作PQ ∥y 轴交BC 于点Q , 过点P 作PE ⊥ BC 于点E ,过点 E 作EF ⊥ y 轴于点F ,求出2PQ + EF 的最大值及此时点P 的坐标;(3)如图 2,将抛物线y = ax 2 + bx + 4 沿着射线CB 的方向平移,使得新抛物线y ,过点(3,1) , 点D 为原抛物线y 与新抛物线y ,的交点,若点 G 为原抛物线的对称轴上一动点,点H 为新抛物线y , 上一动点,直接写出所有使得以 A ,D , G ,H 为顶点的四边形为平行四边形的点H 的坐标,并 把求其中一个点H 的坐标的过程写出来.抛物线解析式为y = − x 2 + x + 4 ;点 P | , | .相当于是沿着射线BC 方向平移,故舍去, 因此可得平移后抛物线的解析式为y = − x 2 + 4x − .联2 2 ( 1 13 y = − x 2 + x +4 \2 8 )这类平行四边的探究也并不难, 同样先从确定的信息入手.平行四边形是以A ,D ,G ,H 为 顶点,其中AD 是定线段, G 是半动点,H 在新的抛物线上.和菱形的讨论一样,我们要考虑AD 是 一条边的情形, 也要考虑AD 是对角线的情形.当 AD 是一条边时, 实际上此时也右两种情形,一是是平行四边形为ADHG ,也即AH ,DG 为 对角线;另一种则是平行四边形为ADGH ,也即 AG ,DH 为对角线.当然,不管是那种情形,由 于 AD 是一条边,根据平行四边形对边平行且相等的性质, GH 这条边可以看作是将AD 平移后得到1 (8 28 )2 \3 9 )第 3 小问中, 抛物线沿着射线CB 方向平移, 由于后续的点在新抛物线上, 因此还是要求出平移 后抛物线的解析式.这类沿着射线平移的,一般采用正交分解的形式平移,由点 C (0, 4) ,B (4, 0) 可 知,沿着射线 CB 平移,即向右平移t 个单位,则向下也平移t 个单位,因此假设平移后新抛物线的 解析式为y = − (x − t )2+ (x − t ) + 4 − t ,因为平移后经过点(3,1) ,代入可解得t = − 1 或t = 3 ,当 t = − 1 , 1 13的,由于半动点 G 在原抛物线对称轴x = 1 上,那么点 G 有可能是点 A 平移后得到的, 此时点H 就 是点D 平移后得到的,如图 1 所示;同理,当点 G 是点D 平移后得到的,那么此时点H 就是点A 平 移后得到的,如图 2 所示.设点 G (1, m ),根据平移的性质,结合点坐标的变化规律,当 A → G 时, 即(−2, 0) —(1, m ) ,则有D|2 , 8 )| —H | 2 , 8 + m )| ,由于点H 在新抛物线上, 且横坐标已知了,代入新抛物线即可 11 1 (13 213 13 13 (13 13 此外, 除了用平移性质得到H 点的坐标外,此时 AH 是一条对角线,也利用对角线相互平分, 则 A 、 H 的 中 点 和 D 、 G 的 中 点 是 同 一 个 , 利 用 中 点 坐 标 则 有 x A + x H = x D + x G ,故 13 13 13 (13 13 x H = x D + x G − x A = 2 ,将x = 2 代入新抛物线解析式,可求得H 点纵坐标y = − 8 ,故H | 2 , − 8 )|.当 AG 是一条对角线时, 则有x A + x G = x D + x H ,故 x H = x A + x G − x D = − ,代入新抛物线解析 277 ( 9 277式,可求得此时H 的纵坐标为 − ,故H |− , − | .8 2 8 ) 当 AD 是一条对角线时,则有x A + x D = x H + x G ,故 x H = x A + x D − x G = ,代入新抛物线解析式, 37 ( 1 37 可求得此时H 的纵坐标为 − ,故 H | , − | .8 2 8 )同样地,在解题过程中, 把准备工作做好,即对应的点坐标,解析式等先求出来,动点坐标假设好, 将点坐标表示列出来(通常都是横坐标),选定一个定点,如这里我们选定 x A ,将其与剩下 三点横坐标x D 、x G 、x H 两两组合,建立中点坐标关系式, 即x A + x D = x H + x G ,x A + x G = x D + x H 以 及x A + x H = x D + x G ,求解出点H 横坐标,再代入解析式中求出点H 纵坐标即可.求得纵坐标 8 + m = − 2 | 2 )| + 4 2 − 2 = − 8 ,此时H | 2 , − 8 )| . ( 7 11 (13 1113 (13 13)由题, 设平移后的抛物线解析式为y = − (x − t )2+ (x − t ) + 4− t ,因为平移后经过点(3,1),代入可解得t = − 1 (舍) 或t = 3 ,2 2联立〈y = − 2 x 2 + 4x − 2 ,解得 D 7 , 11 , y = − x 2 + x + 4 \2 8 )则x A =−2 ,x D = ,x G = 1,设 H 点横坐标为x H ,①当AH 为一条对角线时,x A + x H = x D + x G ,则 x H = ,代入可求得此时H | , − | ; 9 ( 9 277 )1 (1 37 )综上, H 的坐标为| , − |或|− , − |或| , − | .( 1 13 ③当AD 为一条对角线时,x A + x D = x H + x G ,则x H = ,代入可求得此时H | , − | ;(13 13) ( 9 277 ) (1 37 )2 \2 8 )\ 2 8 ) \ 2 8 ) \2 8 )②当AG 为一条对角线时,x A + x G = x D + x H ,则x H = − ,代入可求得此时H |− , − | ;2 \ 2 8 ) 2 \ 2 8 )故平移后抛物线的解析式为y = − x 2 + 4x − ,1 131.如图,在平面直角坐标系中,抛物线y= ax2 + bx+ 3(a 0) 与y轴交于点C,与x轴交于A,B两点(点A在点B的右侧),且点A的坐标为( 3, 0) ,连接BC,过点A作AD∥BC交y轴于点D,OB= 3OA.(1) 求抛物线的解析式;(2) 如图1,点E为射线AD上一点,点P为第二象限内抛物线上一点,求四边形PBEC面积的最大值及此时点P的坐标;(3) 如图2,将原抛物线沿x轴正方向平移得到新抛物线y,y经过点C,平移后点A的对应点为点A,点N为线段AD的中点,点Q为新抛物线y的对称轴上一点,在新抛物线y上存在一点M,使以点M,Q,A,N为顶点的四边形为平行四边形,请直接写出点M的坐标,并选择一个你喜欢的点写出求解过程.2.如图,抛物线y= x2 + bx+ c与x轴相交于点A(−1, 0) 和点B,交y轴于点C,tan 三ACO= .(1) 求抛物线的解析式;(2) 如图1 ,P点为一象限内抛物线上的一个动点,点D是BC中点,连接PD,BD,PB.求△BDP面积的最大值以及此时P点坐标;,M为新抛物线对称轴上(3) 如图2,将抛物线向左平移 1 个单位长度,得到新的抛物线y1一点,N为直线AC上一动点,在(2) 的条件下,是否存在点M,使得以点P、B、M、N为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.| 4 21如图,已知抛物线y = ax 2 + bx − 4 与x 轴交于A ,B 两点, 与y 轴交于点C ,且点A 的坐标 为(−2, 0) ,直线BC 的解析式为y = x − 4 .(1) 求抛物线的解析式;(2)如图 1,过点 A 作 AD ∥BC 交抛物线于点D (异于点 A ), P 是直线BC 下方抛物线上一 点,过点P 作PQ ∥y 轴, 交AD 于点Q ,过点 Q 作QR ⊥ BC 于点R ,连接PR .求△PQR 面积的最 大值及此时点P 的坐标;(3) 如图 2,点 C 关于x 轴的对称点为点C ,将抛物线沿射线 C A 的方向平移2个单位长度得到新的抛物线y ,新抛物线y 与原抛物线交于点M ,原抛物线的对称轴上有一动点 N ,平面直 角坐标系内是否存在一点K ,使得以 D ,M ,N ,K 为顶点的四边形是矩形?若存在,请直接写 出点K 的坐标;若不存在, 请说明理由.抛物线解析式为y = x 2 − x − 4 ;S △PQR 的最大值为 9,点P (4, −6) .第 3 小问中,抛物线沿着射线C A 方向平移, 由于点M 为两抛物线交点, 因此需求出平移后抛 物线的解析式.根据A (−2, 0) ,C (0, 4) ,可知Rt △AOC 中AO : OC : AC = 1: 2 : ,因此将抛物线沿着射线C A 方向平移2个单位长度,则相当于向下平移 4 个单位长度,向左平移 2 个单位长度,因此平移后的抛物线为y = 1 (x + 2)2− 3 (x + 2) − 4 − 4 = 1 x 2 − 1 x −10 ,联立〈y = x 2 − x −10,解4 2 4 2y = x 2 − x − 4( 1得M (6, −4) .又 BC : y = 1 x − 4 ,可知 AD : y = 1 x + 1,联立〈 y = 2 x + 1,解得D (10, 6) .2 2 |y = 1 x 2 − 3x − 4因为以D ,M ,N ,K 为顶点的四边形是矩形,此时定线段是DM ,半动点为N ,自由点为K .和 前面讨论菱形、平行四边形时的流程基本大同小异,定线段DM 可能是矩形的边,也可能是矩形的 对角线,因此要分两种情形讨论.矩形的存在性问题和直角三角形的存在性问题是一致的,如本题 中,探究以D ,M ,N 为顶点的三角形是直角三角形. 同样地,先以直角三角形为例,那么D ,M ,1 3 4 2在实际解题中设 K (x , y ) 即可), 利用中点关系〈 M K D N ,则〈 K,整理得N 均有可能为直角顶点.当M 为直角顶点时,过M 作DM 垂线与对称轴交点即为点N 所在位置,如图 1 所示.对于N 点 坐标的求解,一方面,由于MN ⊥ DM ,则 k MN . k DM = − 1,结合点M 坐标,由此可求得直线MN 解 析式,将其与对称轴方程联立即可求得点N 坐标.另一方面,可以构造如图所示的K 型相似,即构DH MH1 腰直角三角形, 或者四边形中的正方形, 那么可以构造此类的K 型全等求解.在此直角三角形的基础上,加上自由点K ,就变成矩形问题了.对于矩形问题,同样可以求出点N 坐标后,利用平移关系或者对角线的中点关系,求相应的点K 的坐标.当然,如果是探究矩形 的存在性问题,也可以直接利用中点关系求得点K 的坐标.由点N (3, n ),设K (x K , y K ) (熟练后,(x + x = x + x (6 + x = 10 + 3 l y M + y K = y D + y N l−4 + y K = 6 + n 〈,再由对角线相等,即MK = DN ,代入即有1+ (y + 4)2= 49 + (16 − y )2,解得 y =,( 36 )同样适用.当D 为直角顶点时,三角形如图2 所示.同样, 加上自由点K ,就变成矩形问题了. 这里我们5 2 2 ( 44 )l y M + y N = y D + y K |y K = − \ 5 )对于直角三角形或矩形问题, 如上图情形,我们可以称其为“两线一圆”.若只求点N 坐标,一 般利用斜率关系,求出解析式后进一步求解.如果是矩形问题要求自由点的坐标,可以用对角线平 分且相等, 建立方程求解.当然, 先求点N ,利用点N 作为台阶进一步求解也是没问题的, 大家选 用自己顺手的方法即可.造 △MN 1G ∽△DMH ,利用 = ,可求出长度,进而得到点 N 坐标.更特殊地,如果是等以垂线方式求解.由于k DM = 2 ,则 k DN = − 5 ,故此时DN : y = − 5 x + 10 ,令x = 3 ,可解得N |\3, 5 )| , 由中点可知,〈(x M + x N = x D + x K ,可解得〈(|x K = − 16 ,此时 K −1,− 6 .l 5当N 为直角顶点时,则有NM ⊥ ND ,因此点N 在以DM 为直径的圆上.此种情形若只是求点N 坐标,策略比较多, 一方面,可以利用斜率, 由k ND . k NM= − 1求出点N 坐标;另一方面,可以利用线段长度求解,设DM 中点为为R ,则此时圆心为R ,因此NR = RD = DM ,由此也可求得点N 坐 标, 此外, 还可以利用勾股定理ND 2 + NM 2 = DM 2 .当加入自由点K ,变成矩形问题后,除了先求 出点N 坐标, 利用平移或中点求解点K 坐标外,也可以利用前面的对角线平分且相等来求解. 故此时K |7, | .此法借助的是矩形的对角线平分且相等的性质,该处理对于DM 是对角线的情形 \ 5 ) GM N G式和长度关系式子,即〈 M K D N 且MK 2 = DN 2 ,〈 M N D K 且MN 2 = DK 2 以及(x M + x D = x N + x K 4 2 4 2|l 4 2(x M + x K = x D + x N (6 + x = 10 + 3 (x = 7由MK 2 = DN 2 ,代入即有1+ (y + 4)2= 49 + (16 − y )2,解得 y = 36,故此时K 7,36;由MN 2 = DK 2 ,代入即有9 + (y +14)2 = 121+ (y − 6)2,解得 y = − 6 ,故此时K −1,− 6 ;(x M + x D = x N + x K (6 + 10 = 3 + x (x = 13 同样地,在解题过程中, 把准备工作做好,即对应的点坐标安排到位,动点坐标假设好,选定 一个定点, 如这里我们选定M ,将其与剩下三点横坐标D 、 N 、K 两两组合, 建立中点坐标关系 (x + x = x + x (x + x = x + xl y M + y K = y D + y N l y M + y N = y D + y K〈 且MD 2 = NK 2,利用方程组求解出对应的点K 的坐标. l y M + y D = y N + y K附:坐标平面内点A (x 1 , y 1 ) ,B (x 2 , y 2 ) ,其中x 1 丰 x 2 ,则过A 、B 两点的直线的斜率k =由题, 将抛物线沿着射线 C ,A 方向平移2个单位长度, 即将其向下平移 4 个单位长度, 向左平移 2 个单位长度, 因此平移后的抛物线为y =1(x + 2)2 − 3 (x + 2) − 4 − 4 = 1 x 2 − 1 x −10 , 联立〈y = x 2− x −10,解得M (6, −4) ,y = x 2 − x − 4( 1又 BC : y = 1 x − 4 ,可知 AD : y = 1 x + 1,联立〈 y = 2 x + 1,解得D (10, 6) ,2 2 |y = 1 x 2 − 3x − 4由M (6, −4) ,D (10, 6) ,设 N (3, n ) ,K (x , y ) ,①当MK 为一条对角线时,〈,即〈 ,整理得〈 , l y M + y K = y D + y N l −4 + y = 6 + n l n = y −105 \ 5 )②当MN 为一条对角线时,〈(x M + x N = x D + x K,即〈(6 + 3 = 10 + x,整理得〈(x = − 1l y M + y N = y D + y K l −4 + n = 6 + y l n = 10 + y5 \ 5 )③当MD 为一条对角线时,〈 ,即〈 ,整理得〈l y M + y D = y N + y K l−4 + 6 = n + y l n = 2 − y由MD 2 = NK 2 ,代入即有116 = 100 + (2 − 2y )2,解得y =− 1 或y = 3 ,故此时K (13, −1) 或(13,3) ; ( 36 ) ( 6 )综上, 点K 的坐标为|7, |或|−1,− |或(13, −1) 或(13,3) .\ 5 ) \ 5 ) y 1 − y 2. x 1 − x 21.如图1,二次函数y= ax2 + bx+ c(a丰0)与x轴交于点A(−2, 0) 、点B(点A在点B左侧),与y轴交于点C(0,3) ,tan 三CBO= .(1) 求二次函数解析式;(2)如图2,点P是直线BC上方抛物线上一点,PD∥y轴交BC于D,PE∥BC交x轴于点E,求PD+ BE的最大值及此时点P的坐标;(3) 在(2) 的条件下,当PD+ BE取最大值时,连接PC,将△PCD绕原点O顺时针旋转90。
二次函数存在性问题--平行四边形
二次函数存在性问题 专题---------平行四边形存在性姓名:例1:如图,在平面直角坐标系xOy 中,抛物线y=(x ﹣m )2﹣m 2+m 的顶点为A ,与y 轴的交点为B ,连结AB ,AC ⊥AB ,交y 轴于点C ,延长CA 到点D ,使AD=AC ,连结BD .作AE ∥x 轴,DE ∥y 轴.(1)当m=2时,求点B 的坐标;(2)求DE 的长?(3)①设点D 的坐标为(x ,y ),求y 关于x 的函数关系式?②过点D 作AB 的平行线,与第(3)①题确定的函数图象的另一个交点为P ,当m 为何值时,以,A ,B ,D ,P 为顶点的四边形是平行四边形?1、已知二次函数c bx x y ++=2,其图像抛物线交x 轴的于点A (1,0)、B (3,0),交y 轴于 点C.直线l 过点C ,且交抛物线于另一点E (点E 不与点A 、B 重合).(1)求此二次函数关系式;(2)若直线1l 经过抛物线顶点D ,交x 轴于点F ,且1l ∥l ,则以点C 、D 、E 、F 为顶点的四边形能否为平行四边形?若能,求出点E 的坐标;若不能,请说明理由.(3)若过点A 作AG ⊥x 轴,交直线l 于点G ,连OG 、BE ,试证明OG ∥BE.例2:如图,矩形OABC 在平面直角坐标系xOy 中,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC 边上,且抛物线经过O ,A 两点,直线AC 交抛物线于点D .(1)求抛物线的解析式;(2)求点D 的坐标;(3)若点M 在抛物线上,点N 在x 轴上,是否存在以A ,D ,M ,N 为顶点的四边形是平行四边形?若存在,求出点N 的坐标;若不存在,请说明理由.1、如图,抛物线y=x2+bx+c与x轴交于A(5,0)、B(﹣1,0)两点,过点A作直线AC⊥x 轴,交直线y=2x于点C;(1)求该抛物线的解析式;(2)求点A关于直线y=2x的对称点A′的坐标,判定点A′是否在抛物线上,并说明理由;(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段CA′于点M,是否存在这样的点P,使四边形PACM是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.:3、如图,抛物线经过A(﹣1,0),B(5,0),C(0,)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;(3)点M 为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.。
2023年中考数学总复习专题6二次函数与平行四边形存在性问题(学生版)
专题6 二次函数与平行四边形存在性问题以二次函数为载体的平行四边形存在性问题是中考的热点难点之一,其图形复杂,知识覆盖面广,综合性较强,对学生分析问题和解决问题的能力要求高.对这类题,常规解法是先画出平行四边形,再依据“平行四边形的一组对边平行且相等”或“平行四边形的对角线互相平分”来解决.由于先要画出草图,若考虑不周,很容易漏解.解决抛物线中的平行四边形存在性问题,常用的结论和方法有:线段中点坐标公式、平行四边形顶点坐标公式、画平行四边形.1. 平面直角坐标系中,点 A 的坐标是11(,)x y ,点B 的坐标是22(,)x y ,则线段AB 的中点坐标是1212(,)22x x y y ++. 2. 平行四边形ABCD 的顶点坐标分别为(,)A A x y 、(,)B B x y 、(,)C C x y 、(,)D D x y ,则A C B D x x x x +=+,A CB D y y y y +=+.3. 已知不在同一直线上的三点A 、B 、C ,在平面内找到一个点D ,使以A 、B 、C 、D 为顶点的四边形是平行四边形,有三种情况:【例1】.(2022•娄底)如图,抛物线y=x2﹣2x﹣6与x轴相交于点A、点B,与y轴相交于点C.(1)请直接写出点A,B,C的坐标;(2)点P(m,n)(0<m<6)在抛物线上,当m取何值时,△PBC的面积最大?并求出△PBC面积的最大值.(3)点F是抛物线上的动点,作FE∥AC交x轴于点E,是否存在点F,使得以A、C、E、F为顶点的四边形是平行四边形?若存在,请写出所有符合条件的点F的坐标;若不存在,请说明理由.【例2】.(2022•毕节市)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y 轴交于点C,顶点为D(2,1),抛物线的对称轴交直线BC于点E.(1)求抛物线y=﹣x2+bx+c的表达式;(2)把上述抛物线沿它的对称轴向下平移,平移的距离为h(h>0),在平移过程中,该抛物线与直线BC始终有交点,求h的最大值;(3)M是(1)中抛物线上一点,N是直线BC上一点.是否存在以点D,E,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.【例3】.(2022•聊城)如图,在直角坐标系中,二次函数y=﹣x2+bx+c的图象与x轴交于A,B两点,与y轴交于点C(0,3),对称轴为直线x=﹣1,顶点为点D.(1)求二次函数的表达式;(2)连接DA,DC,CB,CA,如图①所示,求证:∠DAC=∠BCO;(3)如图②,延长DC交x轴于点M,平移二次函数y=﹣x2+bx+c的图象,使顶点D沿着射线DM方向平移到点D1且CD1=2CD,得到新抛物线y1,y1交y轴于点N.如果在y1的对称轴和y1上分别取点P,Q,使以MN为一边,点M,N,P,Q为顶点的四边形是平行四边形,求此时点Q的坐标.【例4】.(2022•郴州)已知抛物线y=x2+bx+c与x轴相交于点A(﹣1,0),B(3,0),与y轴相交于点C.(1)求抛物线的表达式;(2)如图1,将直线BC向上平移,得到过原点O的直线MN.点D是直线MN上任意一点.①当点D在抛物线的对称轴l上时,连接CD,与x轴相交于点E,求线段OE的长;②如图2,在抛物线的对称轴l上是否存在点F,使得以B,C,D,F为顶点的四边形是平行四边形?若存在,求出点F与点D的坐标;若不存在,请说明理由.1.(2021•滨城区一模)如图,抛物线y=ax2+bx﹣5(a≠0)经过x轴上的点A(1,0)和点B(5,0)及y轴上的点C,经过B、C两点的直线为y=kx+b(k≠0).(1)求抛物线的解析式.(2)点P从A出发,在线段AB上以每秒1个单位的速度向B运动,同时点E从B出发,在线段BC上以每秒2个单位的速度向C运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t秒,求t为何值时,△PBE的面积最大并求出最大值.(3)过点A作AM⊥BC于点M,过抛物线上一动点N(不与点B、C重合)作直线AM的平行线交直线BC于点Q.若点A、M、N、Q为顶点的四边形是平行四边形,求点N的横坐标.2.(2021•九龙坡区模拟)如图1,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,设点P的横坐标为m,过点P作PM ⊥x轴,垂足为点M,PM交BC于点Q,过点P作PN⊥BC,交BC于点N.(1)求此抛物线的解析式;(2)请用含m的代数式表示PN,并求出PN的最大值以及此时点P的坐标;(3)如图2,将抛物线y=ax2+bx+4沿着射线CB的方向平移,使得新抛物线y'过原点,点D为原抛物线y与新抛物线y'的交点,若点E为原抛物线的对称轴上一动点,点F为新抛物线y'上一动点,求点F使得以A,D,E,F为顶点的四边形为平行四边形,请直接写出点F的坐标,并写出一个F点的求解过程.3.(2021•碑林区校级模拟)如图,抛物线M:y=ax2+bx+b﹣a经过点(1,﹣3)和(﹣4,12),与两坐标轴的交点分别为A,B,C,顶点为D.(1)求抛物线M的表达式和顶点D的坐标;(2)若抛物线N:y=﹣(x﹣h)2+与抛物线M有一个公共点为E,则在抛物线N上是否存在一点F,使得以B、C、E、F为顶点的四边形是以BC为边的平行四边形?若存在,请求出h的值;若不存在,请说明理由.4.(2021•本溪模拟)如图,平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于A(﹣,0),B(3,0)两点,与y轴交于点C,抛物线的顶点为点E.(1)填空:△ABC的形状是.(2)求抛物线的解析式;(3)经过B,C两点的直线交抛物线的对称轴于点D,点P为直线BC上方抛物线上的一动点,当△PCD 的面积最大时,求P点坐标;(4)M在直线BC上,N在抛物线上,以M、N、E、D为顶点的四边形为平行四边形,直接写出符合条件的点M的坐标.5.(2021•深圳模拟)如图,抛物线y=ax2+bx﹣3与x轴交于A,B两点,与y轴交于C点,且经过点(2,﹣3a),对称轴是直线x=1,顶点是M.(1)求抛物线对应的函数表达式;(2)经过C,M两点作直线与x轴交于点N,在抛物线上是否存在这样的点P,满足以点P,A,C,N 为顶点的四边形为平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)设直线y=﹣x+3与y轴的交点是D,在线段BD上任取一点E(不与B,D重合),经过A,B,E 三点的圆交直线BC于点F,试判断△AEF的形状,并说明理由.6.(2021•铜梁区校级一模)已知抛物线y=ax2+bx+3与x轴交于A、B两点(点A在点B的左侧).与y轴交于点C.其中OC=OB,tan∠CAO=3.(1)求抛物线的解析式;(2)P是第一象限内的抛物线上一动点,Q为线段PB的中点,求△CPQ面积的最大值时P点坐标:(3)将抛物线沿射线CB方向平移2个单位得新抛物线y'.M为新抛物线y′的顶点.D为新抛物线y'上任意一点,N为x轴上一点.当以M、N、C、D为顶点的四边形是平行四边形时,直接写出所有符合条件的点N的坐标.并选择一个你喜欢的N点.写出求解过程.7.(2021•盘龙区二模)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点A(﹣4,0),点M为抛物线的顶点,点B在y轴上,且OA=OB,直线AB与抛物线在第一象限交于点C(2,6).(1)求抛物线的解析式及顶点M的坐标;(2)求直线AB的函数解析式及sin∠ABO的值;连接OC.若过点O的直线交线段AC于点P,将三角形AOC的面积分成1:2的两部分,请求出点P的坐标;(3)在坐标平面内是否存在点N,使以点A、O、C、N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.8.(2021•海州区一模)如图,抛物线y=ax2+bx﹣3的图象与x轴交于A(﹣1,0),B(3,0)两点,与y 轴交于点C,直线l与抛物线交于点B,交y轴于点D(0,3).(1)求该抛物线的函数表达式;(2)点P(m,0)为线段OB上一动点,过点P作x轴的垂线EF,分别交抛物线于直线l于点E,F,连接CE,CF,BE,求四边形CEBF面积的最大值及此时m的值;(3)点M为y轴右侧抛物线上一动点,过点M作直线MN∥AC交直线l于点N,是否存在点M,使以A,C,M,N四点为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标;若不存在,请说明理由.9.(2021•南昌县一模)如图,已知二次函数L1:y=mx2+2mx﹣3m+1(m≥1)和二次函数L2:y=﹣m(x ﹣3)2+4m﹣1(m≥1)图象的顶点分别为M,N,与x轴分别相交于A、B两点(点A在点B的左边)和C、D两点(点C在点D的左边).(1)函数y=mx2+2mx﹣3m+1(m≥1)的顶点坐标为;当二次函数L1,L2的y值同时随着x 的增大而增大时,则x的取值范围是;(2)当AD=MN时,判断四边形AMDN的形状(直接写出,不必证明);(3)抛物线L1,L2均会分别经过某些定点:①求所有定点的坐标;②若抛物线L1位置固定不变,通过左右平移抛物线L2的位置使这些定点组成的图形为菱形,则抛物线L2应平移的距离是多少?10.(2022•渝中区校级模拟)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a≠0)与y轴交于点C,与x轴交于A、B两点,且点A的坐标为(﹣1,0),连接BC,OB=2OC.(1)求抛物线的表达式;(2)如图1,点P是直线BC下方抛物线上一点,过点P作直线BC的垂线,垂足为H,过点P作PQ ∥y轴交BC于点Q,求△PHQ周长的最大值及此时点P坐标;(3)如图2,将抛物线水平向左平移4个单位得到新抛物线y';点D是新抛物线y'上的点且横坐标为﹣3,点M为新抛物线y'上一点,点E、F为直线AC上的两个动点,请直接写出使得以点D、M、E、F为顶点的四边形是平行四边形的点M的横坐标,并把求其中一个点M的横坐标的过程写出来.11.(2022•平桂区二模)如图,抛物线y=ax2+bx+c与x轴交于A(﹣1,0)、B(3,0)两点,与直线y =﹣x+3交于点B、C(0,n).(1)求点C的坐标及抛物线的对称轴;(2)求该抛物线的表达式;(3)点P在抛物线的对称轴上,纵坐标为t.若平移BC使点B与P重合,求点C的对应点C′的坐标(用含t的代数式表示);若点Q在抛物线上,以B、C、P、Q为顶点的四边形是平行四边形,且PQ∥BC,求点P的坐标.12.(2022•龙岗区校级模拟)在平面直角坐标系xOy中,对于二次函数y=﹣x2+2mx﹣m2+4(m是常数),当m=1时,记二次函数的图象为C1;m≠1时,记二次函数的图象为C2.如图1,图象C1与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C;如图2,图象C2与x轴交于D、E两点(点D在点E的左侧).(1)请直接写出点A、B、C的坐标;(2)当点O、D、E中恰有一点是其余两点组成线段的中点时,m=;(3)如图3,C2与C1交于点P,当以点A、C、D、P为顶点的四边形是平行四边形时,求m的值.13.(2022•康巴什一模)如图,抛物线y=﹣x2+6x﹣5与x轴交于点A和点B,与y轴交于点C,经过B、C两点的直线为y=x﹣5.(1)写出相应点的坐标:A,B,C;(2)点P从A出发,在线段AB上以每秒1个单位的速度向B运动,同时点E从B出发,在线段BC上以每秒2个单位的速度向C运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t秒,求t为何值时,△PBE的面积最大,并求出最大值.(3)过点A作AM⊥BC于点M,过抛物线上一动点N(不与点B、C重合)作直线AM的平行线交直线BC于点Q.若点A、M、N、Q为顶点的四边形是平行四边形,求点N的横坐标.14.(2022•武城县模拟)如图,直线l:y=﹣x+1与x轴、y轴分别交于点B、C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A.(1)求该抛物线的解析式;(2)若点P在直线l下方的抛物线上,过点P作PD∥x轴交l于点D,PE∥y轴交l于点E,求PD+PE 的最大值;(3)设F为直线l上的点,点P仍在直线l下方的抛物线上,以A、B、P、F为顶点的四边形能否构成平行四边形?若能,求出点F的坐标;若不能,请说明理由.15.(2022•沙坪坝区校级模拟)在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于点A(﹣2,0)、点B (点A在点B的左侧),与y轴交于点C,且过点(2,3).(1)求抛物线的表达式;(2)如图1,点P为直线BC上方抛物线上(不与B、C重合)一动点,过点P作PD∥y轴,交BC于D,过点P作PE∥x轴,交直线BC于E,求PE+DB的最大值及此时点P的坐标;(3)如图2,将原抛物线沿x轴向左平移1个单位得到新抛物线y′,点M为新抛物线y′上一点,点N为原抛物线对称轴上一点,当以点A、C、M、N为顶点的四边形为平行四边形时,求点N的坐标,并写出求其中一个N点坐标的解答过程.16.(2022•开州区模拟)如图1,抛物线y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,过点B作直线BD∥直线AC,交抛物线y于另一点D,点P为直线AC上方抛物线上一动点.(1)求线段AB的长.(2)过点P作PF∥y轴交AC于点Q,交直线BD于点F,过点P作PE⊥AC于点E,求2PE+3PF 的最大值及此时点P的坐标.(3)如图2,将抛物线y=向右平移3个单位得到新抛物线y′,点M为新抛物线上一点,点N为原抛物线对称轴一点,直接写出所有使得A、B、M、N为顶点的四边形是平行四边形时点N的坐标,并写出其中一个点N的坐标的求解过程.17.(2022•凤翔县二模)如图,在平面直角坐标系中,抛物线的图象经过A(﹣1,0),C(0,﹣2)两点,将抛物线C1向右平移2个单位得到抛物线C2,平移后点A的对应点为点B.(1)求抛物线C1与C2的函数表达式;(2)若点M是抛物线C1上一动点,点N是抛物线C2上一动点,请问是否存在这样的点M、N,使得以A、B、M、N为顶点且以AB为边的四边形是面积为8的平行四边形?若存在,求出点M、N的坐标;若不存在,请说明理由.18.(2022•碑林区校级模拟)如图,在平面直角坐标系中,抛物线W:y=x2﹣2x与x轴正半轴交于点A.直线y=x﹣2与x轴交于点B,与y轴交于点C.(1)求线段AB的长度;(2)将抛物线W平移,使平移后的抛物线交y轴于点D,与直线BC的一个交点为P,若以A、B、D、P为顶点的四边形是以AB为边的平行四边形,求平移后的抛物线表达式.19.(2020秋•文昌期末)如图,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0)、B两点,交直线l于点A、C(2,﹣3).(1)求该抛物线的解析式;(2)在y轴上是否存在点D,使S△ABD=S△ABC?若存在,请求出所有符合条件的点D的坐标;若不存在,请说明理由;(3)P是线段AC上的一个动点,过点P做PE∥y轴交抛物线于点E,求线段PE长度的最大值;(4)点F是抛物线上的动点,在x轴上是否存在点G,使得以点A,C,G,F为顶点的四边形是平行四边形?如果存在,请直接写出所有满足条件的点G的坐标;如果不存在,请说明理由.20.(2022•眉山)在平面直角坐标系中,抛物线y=﹣x2﹣4x+c与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,且点A的坐标为(﹣5,0).(1)求点C的坐标;(2)如图1,若点P是第二象限内抛物线上一动点,求点P到直线AC距离的最大值;(3)如图2,若点M是抛物线上一点,点N是抛物线对称轴上一点,是否存在点M使以A,C,M,N 为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.。
专题60 二次函数背景下的特殊平行四边形存在性问题(解析版)
模型介绍要求证平行四边形的存在,得先了解平行四边形的性质:(1)对应边平行且相等.(2)对角线互相平分.这是图形的性质,我们现在需要的是将其性质运用在在坐标系中:(1)对边平行且相等可转化为:A B D C AB DC x x x x y y y y -=-⎧⎨-=-⎩,可以理解为点B 移动到点A ,点C 移动到点D,移动路径完全相同.(2)对角线互相平分转化为:2222A CB D AC B Dx x x x y y y y ++⎧=⎪⎪⎨++⎪=⎪⎩,可以理解为AC 的中点也是BD的中点.【小结】虽然由两个性质推得的式子并不一样,但其实可以化为统一:A B D C A C D B A B D C AC D B x x x x x x x x y y y y y y y y -=-+=+⎧⎧→⎨⎨-=-+=+⎩⎩,2222A CB D AC B Dx x x x y y y y ++⎧=⎪⎪⎨++⎪=⎪⎩→A C B D A C B D x x x x y y y y +=+⎧⎨+=+⎩.当AC 和BD 为对角线时,结果可简记为:A C B D +=+(各个点对应的横纵坐标相加)以上是对于平行四边形性质的分析,而我们要求证的是平行四边形存在性问题,此处当有一问:若坐标系中的4个点A 、B 、C 、D 满足“A +C =B +D ”,则四边形ABCD 是否一定为平行四边形?反例如下:之所以存在反例是因为“四边形ABCD 是平行四边形”与“AC 、BD 中点是同一个点”并不是完全等价的转化,故存在反例.虽有反例,但并不影响运用此结论解题,另外,还需注意对对角线的讨论:(1)四边形ABCD 是平行四边形:AC 、BD 一定是对角线.(2)以A 、B 、C 、D 四个点为顶点是四边形是平行四边形:对角线不确定需要分类讨论.【题型分类】1.三定一动已知A (1,2)B (5,3)C (3,5),在坐标系内确定点D 使得以A 、B 、C 、D 四个点为顶点的四边形是平行四边形.思路1:利用对角线互相平分,分类讨论:设D 点坐标为(m ,n ),又A (1,2)B (5,3)C (3,5),可得:(1)BC 为对角线时,531352m n +=+⎧⎨+=⎩,可得()17,6D ;(2)AC 为对角线时,135253m n +=+⎧⎨+=+⎩,解得()21,4D -;(3)AB 为对角线时,153235m n +=+⎧⎨+=+⎩,解得()33,0D .当然,如果对这个计算过程非常熟悉的话,也不用列方程解,直接列算式即可.比如:1=D B C A +-,2=D A C B +-,3D A B C =+-.(此处特指点的横纵坐标相加减)2.两定两动已知A (1,1)、B (3,2),点C 在x 轴上,点D 在y 轴上,且以A 、B 、C 、D 为顶点的四边形是平行四边形,求C 、D 坐标.【分析】设C 点坐标为(m ,0),D 点坐标为(0,n ),又A (1,1)、B (3,2).(1)当AB 为对角线时,130120m n +=+⎧⎨+=+⎩,解得43m n =⎧⎨=⎩,故C (4,0)、D (0,3);(2)当AC 为对角线时,130102m n +=+⎧⎨+=+⎩,解得21m n =⎧⎨=-⎩,故C (2,0)、D (0,-1);(3)当AD 为对角线时,103120m n +=+⎧⎨+=+⎩,解得21m n =-⎧⎨=⎩,故C (-2,0)、D (0,1).【动点综述】“三定一动”的动点和“两定两动”的动点性质并不完全一样,“三定一动”中动点是在平面中,横纵坐标都不确定,需要用两个字母表示,这样的我们姑且称为“全动点”,而有一些动点在坐标轴或者直线或者抛物线上,用一个字母即可表示点坐标,称为“半动点”.从上面例子可以看出,虽然动点数量不同,但本质都是在用两个字母表示出4个点坐标.若把一个字母称为一个“未知量”也可理解为:全动点未知量=半动点未知量×2.找不同图形的存在性最多可以有几个未知量,都是根据图形决定的,像平行四边形,只能有2个未知量.究其原因,在于平行四边形两大性质:(1)对边平行且相等;(2)对角线互相平分.但此两个性质统一成一个等式:A C B D AC BD x x x x y y y y +=+⎧⎨+=+⎩,两个等式,只能允许最多存在两个未知数,即我们刚刚所讲的平行四边形存在性问题最多只能存在2个未知量.由图形性质可知未知量,由未知量可知动点设计,由动点设计可化解问题.例题精讲考点一:二次函数背景下的平行四边形存在性问题【例1】.如图,抛物线y =ax 2+bx +6与x 轴交于A (2,0),B (﹣6,0)两点.(1)求该抛物线的表达式;(2)点P是抛物线上一点,点Q是抛物线对称轴上一点,是否存在点P,使得以B、Q、C、P为顶点的四边形是平行四边形,若存在,请求出点P的坐标;若不存在,请说明理由.解:(1)将点A(2,0),B(﹣6,0)代入抛物线y=ax2+bx+6得:,解得,∴抛物线的表达式为y=﹣x2﹣2x+6;(2)存在点P,使得以B、Q、C、P为顶点的四边形是平行四边形,理由如下:∵y=﹣x2﹣2x+6=﹣(x+2)2+8,∴抛物线对称轴为直线x=﹣2,在y=﹣x2﹣2x+6中,令x=0得y=6,∴C(0,6),设P(m,﹣m2﹣2m+6),Q(﹣2,t),又B(﹣6,0),①以CP,QB为对角线,则CP,QB的中点重合,∴,解得,∴P(﹣8,﹣10);②以CQ,PB为对角线,则CQ,PB中点重合,∴,解得,∴P(4,﹣10);③以CB,PQ为对角线,则CB,PQ中点重合,∴,解得,∴P((﹣4,6);综上所述,点P的坐标为(﹣4,6)或(﹣8,﹣10)或(4,﹣10).变式训练【变1-1】.如图所示,在平面直角坐标系xOy中,抛物线y=(m﹣1)x2﹣(3m﹣4)x﹣3与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴是经过(1,0)且与y轴平行的直线,点P是抛物线上的一点,点Q是y轴上一点;(1)求抛物线的函数关系式;(2)若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;(3)若tan∠PCB=,求点P的坐标.解:(1)当y=0时,(m﹣1)x2﹣(3m﹣4)x﹣3=0,解得x1=,x2=3,即A(,0)B(3,0),由A,B关于x=1对称,得=﹣1,解得m=2,即A(﹣1,0),函数解析式为y=x2﹣2x﹣3;(2)由四边形ABPQ是平行四边形,得PQ∥AB,PQ=AB=4,当PQ=4,即x=4时,y=5,即P(4,5);当x=﹣4时,y=21,即P(﹣4,21),AB为对角线,A(﹣1,0),B(3,0),设P(a,a2﹣2a﹣3),Q(0,n),则,解得,P(2,﹣3).综上所述:四边形ABPQ是平行四边形P(4,5),(﹣4,21),(2,﹣3);(3)如图,过P作PQ⊥x轴于Q,交CB延长线于R,过P作PH⊥BC于H,设P(m,m2﹣2m﹣3),∵抛物线y=x2﹣4x+3与坐标轴交于A,B,C三点,∴x=0,则y=﹣3;y=0,则0=x2﹣4x+3,解得:x1=﹣1,x2=3,故A(﹣1,0),B(3,0),C(0,﹣3),设直线BC的解析式为:y=kx+b,则,解得:,故直线BC解析式:y=x﹣3,∴R(m,m﹣3),PR=m2﹣2m﹣3﹣(m﹣3)=m2﹣3m,∵OB=OC=3,∴∠CBQ=135°,∴∠HPR=45°,∵CO=OB,∴∠OCR=45°,∴CR=OQ=m,∴PH=RH=PR÷=m(m﹣3),又∵CR=OQ=m,∴CH=m+m(m﹣3)=m(m﹣1)由tan∠PCB===,解得:m=5,则m2﹣2m﹣3=12,故P(5,12).当点P在直线BC的下方时,同法可得:=,解得m=或0(舍弃),∴P(,﹣),综上所述,满足条件点P坐标为(5,12)或(,﹣).考点二:二次函数背景下的菱形存在性问题【例2】.如图,抛物线y=ax2+bx+3交x轴于A(3,0),B(﹣1,0)两点,交y轴于点C,动点P在抛物线的对称轴上.(1)求抛物线的解析式;(2)当以P,B,C为顶点的三角形周长最小时,求点P的坐标及△PBC的周长;(3)若点Q是平面直角坐标系内的任意一点,是否存在点Q,使得以A,C,P,Q为顶点的四边形是菱形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.解:(1)∵抛物线y=ax2+bx+3交x轴于A(3,0),B(﹣1,0)两点,∴,解得:,∴该抛物线的解析式为y=﹣x2+2x+3;(2)在y=﹣x2+2x+3中,令x=0,得y=3,∴C(0,3),∵△PBC的周长为:PB+PC+BC,BC是定值,∴当PB+PC最小时,△PBC的周长最小.如图1,点A、B关于对称轴l对称,连接AC交l于点P,则点P为所求的点.∵AP=BP,∴△PBC周长的最小值是AC+BC,∵A(3,0),B(﹣1,0),C(0,3),∴AC=3,BC=.∴△PBC周长的最小值是:3+.抛物线对称轴为直线x=﹣=1,设直线AC的解析式为y=kx+c,将A(3,0),C(0,3)代入,得:,解得:,∴直线AC的解析式为y=﹣x+3,∴P(1,2);(3)存在.设P(1,t),Q(m,n)∵A(3,0),C(0,3),则AC2=32+32=18,AP2=(1﹣3)2+t2=t2+4,PC2=12+(t﹣3)2=t2﹣6t+10,∵四边形ACPQ是菱形,∴分三种情况:以AP为对角线或以AC为对角线或以CP为对角线,①当以AP为对角线时,则CP=CA,如图2,∴t2﹣6t+10=18,解得:t=3±,∴P1(1,3﹣),P2(1,3+),∵四边形ACPQ是菱形,∴AP与CQ互相垂直平分,即AP与CQ的中点重合,当P1(1,3﹣)时,∴=,=,解得:m=4,n=﹣,∴Q1(4,﹣),当P2(1,3+)时,∴=,=,解得:m=4,n=,∴Q2(4,),②以AC为对角线时,则PC=AP,如图3,∴t2﹣6t+10=t2+4,解得:t=1,∴P3(1,1),∵四边形APCQ是菱形,∴AC与PQ互相垂直平分,即AC与CQ中点重合,∴=,=,解得:m=2,n=2,∴Q3(2,2),③当以CP为对角线时,则AP=AC,如图4,∴t2+4=18,解得:t=±,∴P4(1,),P5(1,﹣),∵四边形ACQP是菱形,∴AQ与CP互相垂直平分,即AQ与CP的中点重合,∴=,=,解得:m=﹣2,n=3,∴Q4(﹣2,3+),Q5(﹣2,3﹣),综上所述,符合条件的点Q的坐标为:Q1(4,﹣),Q2(4,),Q3(2,2),Q4(﹣2,3+),Q5(﹣2,3﹣).变式训练【变2-1】.如图,抛物线y=ax2+bx﹣1(a≠0)交x轴于A,B(1,0)两点,交y轴于点C,一次函数y=x+3的图象交坐标轴于A,D两点,E为直线AD上一点,作EF⊥x轴,交抛物线于点F(1)求抛物线的解析式;(2)若点F位于直线AD的下方,请问线段EF是否有最大值?若有,求出最大值并求出点E的坐标;若没有,请说明理由;(3)在平面直角坐标系内存在点G,使得G,E,D,C为顶点的四边形为菱形,请直接写出点G的坐标.解:(1)将y=0代入y=x+3,得x=﹣3.∴点A的坐标为(﹣3,0).设抛物线的解析式为y=a(x﹣x1)(x﹣x2),点A的坐标为(﹣3,0),点B的坐标为(1,0),∴y=a(x+3)(x﹣1).∵点C的坐标为(0,﹣1),∴﹣3a=﹣1,得a=,∴抛物线的解析式为y=x2+x﹣1;(2)设点E的坐标为(m,m+3),线段EF的长度为y,则点F的坐标为(m,m2+m﹣1)∴y=(m+3)﹣(m2+m﹣1)=﹣m2+m+4即y=(m﹣)2+,此时点E的坐标为(,);(3)点G的坐标为(2,1),(﹣2,﹣2﹣1),(2,2﹣1),(﹣4,3).理由:①如图1,当四边形CGDE为菱形时.∴EG垂直平分CD∴点E的纵坐标y==1,将y=1代入y=x+3,得x=﹣2.∵EG关于y轴对称,∴点G的坐标为(2,1);②如图2,当四边形CDEG为菱形时,以点D为圆心,DC的长为半径作圆,交AD于点E,可得DC=DE,构造菱形CDEG设点E的坐标为(n,n+3),点D的坐标为(0,3)∴DE==∵DE=DC=4,∴=4,解得n1=﹣2,n2=2.∴点E的坐标为(﹣2,﹣2+3)或(2,2+3)将点E向下平移4个单位长度可得点G,点G的坐标为(﹣2,﹣2﹣1)(如图2)或(2,2﹣1)(如图3)③如图4,“四边形CDGE为菱形时,以点C为圆心,以CD的长为半径作圆,交直线AD于点E,设点E的坐标为(k,k+3),点C的坐标为(0,﹣1).∴EC==.∵EC=CD=4,∴2k2+8k+16=16,解得k1=0(舍去),k2=﹣4.∴点E的坐标为(﹣4,﹣1)将点E上移4个单位长度得点G.∴点G的坐标为(﹣4,3).综上所述,点G的坐标为(2,1),(﹣2,﹣2﹣1),(2,2﹣1),(﹣4,3).考点三:二次函数背景下的矩形存在性问题【例3】.综合与探究如图,在平面直角坐标系中,抛物线y=ax2+2x+c(a≠0)与x轴交于点A、B,与y轴交于点C,连接BC,OA=1,对称轴为直线x=2,点D为此抛物线的顶点.(1)求抛物线的解析式;(2)抛物线上C、D两点之间的距离是2;(3)点E是第一象限内抛物线上的动点,连接BE和CE,求△BCE面积的最大值;(4)点P在抛物线对称轴上,平面内存在点Q,使以点B、C、P、Q为顶点的四边形为矩形,请直接写出点Q的坐标.解:(1)∵OA=1,∴A(﹣1,0),又∵对称轴为x=2,∴B(5,0),将A,B代入解析式得:,解得,∴,自变量x为全体实数;(2)由(1)得:C(0,),D(2,),∴CD=,故答案为2;(3)∵B(5,0),C(0,),∴直线BC的解析式为:,设E(x,),且0<x<5,作EF∥y轴交BC于点F,则F(x,),∴EF=﹣()=,∴,有最大值为;当x=时,S△BCE(4)设P(2,y),Q(m,n),由(1)知B(5,0),C(0,),若BC为矩形的对角线,由中点坐标公式得:,解得:,又∵∠BPC=90°,∴PC2+PB2=BC2,即:,解得y=4或y=﹣,∴n=或n=4,∴Q(3,)或Q(3,4),若BP为矩形的对角线,由中点坐标公式得,解得,又∵∠BCP=90°,BC2+CP2=BP2,即:,解得y=,∴Q(7,4),若BQ为矩形的对角线,由中点坐标公式得,解得:,又∵∠BCQ=90°,∴BC2+CQ2=BQ2,即:,解得n=,∴Q(﹣3,﹣),综上,点Q的坐标为(3,)或(3,4),或(7,4)或(﹣3,﹣).变式训练【变3-1】.如图1,若二次函数y=﹣x2+3x+4的图象与x轴交于点A、B,与y轴交于点C,连接AC、BC.(1)求三角形ABC的面积;(2)若点P是抛物线在一象限内BC上方一动点,连接PB、PC,是否存在点P,使四边形ABPC的面积为18,若存在,求出点P的坐标;若不存在,说明理由;(3)如图2,若点Q是抛物线上一动点,在平面内是否存在点K,使以点B、C、Q、K 为顶点,BC为边的四边形是矩形?若存在,请直接写出点K的坐标;若不存在,请说明理由.解:(1)令x=0,则y=4,∴C(0,4),令y=0,则﹣x2+3x+4=0,解得x=4或x=﹣1,∴A(﹣1,0),B(4,0),∴AB=5,=×5×4=10;∴S△ABC(2)存在,理由如下:=10,∵四边形ABPC的面积为18,S△ABC∴△BCP的面积为8,设直线BC的解析式为y=kx+4,将点B(4,0)代入,得k=﹣1,∴直线BC的解析式为y=﹣x+4,过P点作PM⊥x轴,交BC于点M,设P(t,﹣t2+3t+4),则M(t,﹣t+4),=×4×PM=2(﹣t2+3t+4+t﹣4)=2(﹣t2+4t)=8,∴S△BCP∴t=2,∴P(2,6);(3)存在,理由如下:设Q(m,﹣m2+3m+4),当m>0时,如图1,∵矩形是以BC为边,∴QK∥BC,CQ⊥BC,KB⊥BC,过点Q作QH⊥y轴交H点,过K作KG⊥x轴交G点,∵CQ=BK,∠OCB=∠OBC=45°,∴∠HCQ=∠GBK=45°,∴△CHQ≌△BGK(AAS),∴HC=HQ=BG=GK,∴m=﹣m2+3m+4﹣4,∴m=2或m=0(舍),∴HQ=2,∴K(6,2);当m<0时,如图2,∵矩形是以BC为边,∴QK∥BC,KC⊥BC,BQ⊥BC,设KC与x轴的交点为F,BQ与y轴的交点为H,过点Q作QG⊥y轴交G点,过K作KE⊥x轴交E点,∵∠OCB=∠OBC=45°,∴∠OBH=∠OHB=45°,∠FCO=∠CFO=45°,∴OF=OC=OB=OH=4,∠HQG=∠EFK=45°,∵KC=BQ,CF=HB,∴FK=QH,∴△QHG≌△KFE(AAS),∴QG=HG=EF=EK,∴﹣m=﹣4﹣(﹣m2+3m+4),∴m=﹣2或m=4(舍),∴GQ=2,∴K(﹣6,﹣2);综上所述,K点的坐标为(﹣6,﹣2)或(6,2).考点四:二次函数背景下的正方形存在性问题【例4】.已知O为坐标原点,抛物线y=x2﹣3x﹣4与x轴交于A,B两点(点A在点B的右侧),有点C(﹣2,6).(1)求A,B两点的坐标.(2)若点D(1,﹣3),点E在线段OA上,且∠ACB=∠ADE,延长ED交y轴于点F,求△EFO的面积.(3)若M在直线AC上,点Q在抛物线上,是否存在点M和点N,使以Q,M,N,A 为顶点的四边形是正方形?若存在,直接写出M点的坐标.若不存在,请说明理由.解:(1)令x2﹣3x﹣4=0,解得x=4或x=﹣1,∵A(4,0),B(﹣1,0);(2)过点B作BG⊥AC,过点E作EH⊥OA,设E(m,0),∵C(﹣2,6),D(1,﹣3),AC=6,AD=3,BC=,由△ABC的面积可得,5×6=6BG,∴BG=,由△ADE的面积可得,3|4﹣m|=3EH,∴EH=|4﹣m|,∵∠ACB=∠ADE∴=,∴=,∴2m2﹣41m+57=0,∴m=或m=19,∵点E在线段OA上,∴E(,0),则ED的直线解析式为y=6x﹣9,∴F(0,﹣9),∴△EFO的面积=×OE×OF=××9=;(3)直线AC的解析式为y=﹣x+4,∴∠CAO=45°,设M(t,﹣t+4),如图1:当AC为正方形QAMN边时,M点与N点关于x轴对称,∴N(t,t﹣4),∴M、N的中点为(t,0),∴A、Q中点也为(t,0),∴Q(2t﹣4,0),∵点Q在抛物线上,∴2t﹣4=﹣1,∴t=,∴M(,);如图2:当M、Q关于x轴对称时,M(0,4),此时Q(0,﹣4)在抛物线上;如图3:当Q(0,﹣4)时,M(8,﹣4);如图4:当Q(﹣1,0)时,M(﹣1,5);综上所述:M(,)或M(0,4)或M(8,﹣4)或M(﹣1,5).变式训练【变4-1】.如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线的对称轴DE交x轴于点E,连接BD.(1)求经过A,B,C三点的抛物线的函数表达式;(2)点Q在该抛物线的对称轴上,若△BCQ是以BC为直角边的直角三角形,求点Q 的坐标;(3)若P为BD的中点,过点P作PF⊥x轴于点F,G为抛物线上一动点,M为x轴上一动点,N为直线PF上一动点,当以F、M、N、G为顶点的四边形是正方形时,请求出点M的坐标.解:(1)∵抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,∴,解得,,∴经过A,B,C y=﹣x2+2x+3.(2)如图1,连接BC,CD.由题意,C(0,3),B(3,0),∴OB=OC=3,∵∠BOC=90°,∴∠OBC=∠OCB=45°∵y=﹣(x﹣1)2+4,∴抛物线顶点D的坐标为(1,4),∵△BCQ是以BC为直角边的直角三角形,当∠Q′BC=90′时,∠ABQ′=45°,∴EB=EQ′=2,∴Q′(1,﹣2),当∠QCB=90°时,此时点Q与点D重合,Q(1,4),综上所述,满足条件的点Q的坐标为(1,4)或(1,﹣2).(3)如图2中,设点M的坐标为(a,0),则点G的坐标为(a,﹣a2+2a+3),∵以F、M、N、G为顶点的四边形是正方形,∴FM=MG,即|2﹣a|=|﹣a2+2a+3|,当2﹣a=﹣a2+2a+3时,整理得,a2﹣3a﹣1=0,解得,a=,当2﹣a=﹣(﹣a2+2a+3)时,整理得,a2﹣a﹣5=0,解得,a=,∴当以F、M、N、G为顶点的四边形是正方形时,点M的坐标为(,0),(,0),(,0),(,0).1.综合与探究如图,在平面直角坐标系中,抛物线y=ax2+bx﹣4交x轴于A,B两点,交y轴于点C,且OA=2OC=8OB,点P是第三象限内抛物线上的一动点,连接AC,过点P作PE∥y 轴,与AC交于点E.(1)求此抛物线的解析式;(2)当PC∥AB时,求点P的坐标;(3)用含x的代数式表示PE的长,并求出当PE的长取最大值时对应的点P的坐标;(4)在(3)的条件下,平面内是否存在点Q,使以A、P、C、Q为顶点的四边形是平行四边形,若存在,直接写出点Q的坐标,若不存在,请说明理由.解:(1)令x=0,则y=﹣4,∴C(0,﹣4),∴OC=4,∵OA=2OC=8OB,∴OA=8,OB=1,∴A(﹣8,0),B(1,0),将A、B代入y=ax2+bx﹣4,得,∴,∴y=x2+x﹣4;(2)当PC∥AB时,P点的纵坐标为﹣4,∴x2+x﹣4=﹣4,∴x=0或x=﹣7,∵P点在第三象限,∴P(﹣7,﹣4);(3)设AC的直线解析式为y=kx+b,∴,解得,∴y=﹣x﹣4,设P(x,x2+x﹣4),则E(x,﹣x﹣4),∴PE=﹣x﹣4﹣(x2+x﹣4)=﹣x2﹣4x=﹣(x+4)2+8,∴当x=﹣4时,PE有最大值8,此时P(﹣4,﹣10);(4)存在点Q,使得以A、P、C、Q为顶点的四边形是平行四边形,理由如下:设Q(m,n),①当AC为对角线时,AC的中点为(﹣4,﹣2),PQ的中点为(,),∴﹣4=,﹣2=,∴m=﹣4,n=6,∴Q(﹣4,6);②当AP为对角线时,AP的中点为(﹣6,﹣5),CQ的中点为(,),∴﹣6=,﹣5=,∴m=﹣12,n=﹣6,∴Q(﹣12,﹣6);③当AQ为对角线时,AQ的中点为(,),CP的中点为(﹣2,﹣7),∴=﹣2,=﹣7,∴m=4,n=﹣14,∴Q(4,﹣14);综上所述:以A、P、C、Q为顶点的四边形是平行四边形时,Q点坐标为(﹣4,6)或(﹣12,﹣6)或(4,﹣14).2.如图,二次函数y=x2+bx+c的图象交x轴于点A(﹣3,0),B(1,0),交y轴于点C.点P(m,0)是x轴上的一动点,PM⊥x轴,交直线AC于点M,交抛物线于点N.(1)求这个二次函数的表达式;(2)①若点P仅在线段AO MN的最大值;②若点P在x轴上运动,则在y轴上是否存在点Q,使以M,N,C,Q为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.解:(1)把A(﹣3,0),B(1,0)代入y=x2+bx+c中,得,解得,∴y=x2+2x﹣3.(2)①设直线AC的表达式为y=kx+b,把A(﹣3,0),C(0,﹣3)代入y=kx+b′.得,解得,∴y=﹣x﹣3,∵点P(m,0)是x轴上的一动点,且PM⊥x轴.∴M(m,﹣m﹣3),N(m,m2+2m﹣3),∴MN=(﹣m﹣3)﹣(m2+2m﹣3)=﹣m2﹣3m=﹣(m+)2+,∵a=﹣1<0,∴此函数有最大值.又∵点P在线段OA上运动,且﹣3<﹣<0,∴当m=﹣时,MN有最大值.②如图2﹣1中,当点M在线段AC上,MN=MC,四边形MNQC是菱形时.∵MN=﹣m2﹣3m,MC=﹣m,∴﹣m2﹣3m=﹣m,解得m=﹣3+或0(舍弃)∴MN=3﹣2,∴CQ=MN=3﹣2,∴OQ=3+1,∴Q(0,﹣3﹣1).如图2﹣2中,当MC是菱形的对角线时,四边形MNCQ是正方形,此时CN=MN=CQ =2,可得Q(0,﹣1).如图2﹣3中,当点M在CA延长线上时,MN=CM,四边形MNQC是菱形时,则有,m2+3m=﹣m,解得m=﹣3﹣或0(舍弃),∴MN=CQ=3+2,∴OQ=CQ﹣OC=3﹣1,∴Q(0,3﹣1).当点P在y轴的右侧时,显然MN>CM,此时满足条件的菱形不存在.综上所述,满足条件的点Q的坐标为(0,﹣3﹣1)或(0,﹣1)或(0,3﹣1).3.如图,抛物线y=ax2+2x+c的对称轴是直线x=1,与x轴交于点A,B(3,0),与y轴交于点C,连接AC.(1)求此抛物线的解析式;(2)已知点D是第一象限内抛物线上的一个动点,过点D作DM⊥x轴,垂足为点M,DM交直线BC于点N,是否存在这样的点N,使得以A,C,N为顶点的三角形是等腰三角形.若存在,请求出点N的坐标,若不存在,请说明理由;(3)已知点E是抛物线对称轴上的点,在坐标平面内是否存在点F,使以点B、C、E、F为顶点的四边形为矩形,若存在,请直接写出点F的坐标;若不存在,请说明理由.解:(1)抛物线y=ax2+2x+c的对称轴是直线x=1,与x轴交于点A,B(3,0),∴A(﹣1,0),∴,解得,∴抛物线的解析式y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3,∴C(0,3),设直线BC的解析式为y=kx+3,将点B(3,0)代入得:0=3k+3,解得:k=﹣1,∴直线BC的解析式为y=﹣x+3;设点D坐标为(t,﹣t2+2t+3),则点N(t,﹣t+3),∵A(﹣1,0),C(0,3),∴AC2=12+32=10,AN2=(t+1)2+(﹣t+3)2=2t2﹣4t+10,CN2=t2+(3+t﹣3)2=2t2,①当AC=AN时,AC2=AN2,∴10=2t2﹣4t+10,解得t1=2,t2=0(不合题意,舍去),∴点N的坐标为(2,1);②当AC=CN时,AC2=CN2,∴10=2t2,解得t1=,t2=﹣(不合题意,舍去),∴点N的坐标为(,3﹣);③当AN=CN时,AN2=CN2,∴2t2﹣4t+10=2t2,解得t=,∴点N的坐标为(,);综上,存在,点N的坐标为(2,1)或(,3﹣)或(,);(3)设E(1,a),F(m,n,∵B(3,0),C(0,3),∴BC=3,①以BC为对角线时,BC2=CE2+BE2,∴(3)2=12+(a﹣3)2+a2+(3﹣1)2,解得:a=,或a=,∴E(1,)或(1,),∵B(3,0),C(0,3),∴m+1=0+3,n+=0+3或n+=0+3,∴m=2,n=或n=,∴点F的坐标为(2,)或(2,);②以BC为边时,BE2=CE2+BC2或CE2=BE2+BC2,∴a2+(3﹣1)2=12+(a﹣3)2+(3)2或12+(a﹣3)2=a2+(3﹣1)2+(3)2,解得:a=4或a=﹣2,∴E(1,4)或(1,﹣2),∵B(3,0),C(0,3),∴m+0=1+3,n+3=0+4或m+3=1+0,n+0=3﹣2,∴m=4,n=1或m=﹣2,n=1,∴点F的坐标为(4,1)或(﹣2,1),综上所述:存在,点F的坐标为(2,)或(2,)或(4,1)或(﹣2,1).4.如图1,在平面直角坐标系xOy中,抛物线C:y=﹣x2+bx+c与x轴相交于A,B两点,顶点为D,其中A(﹣4,0),B(4,0),设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C'.(1)求抛物线C的函数解析式;(2)若抛物线C'与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围;(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C'上的对应点P',设M是C上的动点,N是C'上的动点,试探究四边形PMP'N能否成为正方形?若能,求出m的值;若不能,请说明理由.解:(1)由题意把点A(﹣4,0),B(4,0),代入y=﹣x2+bx+c中,得:,解得:,∴抛物线C的函数解析式为:y=﹣x2+8;(2)如图1,由题意抛物线C′的顶点坐标为(2m,﹣8),设抛物线C′的解析式为:y=(x﹣2m)2﹣8,由,消去y得到:,∵抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,∴,解得:,∴满足条件的m的取值范围为:4<m<4;(3)结论:四边形PMP'N能成为正方形.理由:情形1,如图2,作PE⊥x轴于E,MH⊥x轴于H.由题意易知P(4,4),当△PFM是等腰直角三角形时,四边形PMP'N是正方形,∴PF=FM,∠PFM=90°,∵∠PEF=∠FHM=90°,∴∠PFE+∠FPE=90°,∠PFE+∠MFH=90°,在△PFE和△FMH中,∴,∴△PFE≌△FMH(AAS),∴PE=FH=4,EF=HM=4﹣m,∴M(m+4,m﹣4),∵点M在y=﹣x2+8上,∴m﹣4=﹣(m+4)2+8,解得或(舍),∴m=﹣6+2时,四边形PMP'N是正方形.情形2,如图,四边形PMP′是正方形,同法可得M(m﹣4,4﹣m),把M(m﹣4,4﹣m)代入y=﹣x2+8中,4﹣m=﹣(m﹣4)2+8,解得m=12或m=0(舍去),∴m=12时,四边形PMP′N是正方形.综上,四边形PMP′N能成为正方形,m=﹣6+2或12.5.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣4(a≠0)与x轴交于点A(﹣1,0),B(4,0),与y轴交于点C.(1)求该抛物线的解析式;(2)直线l为该抛物线的对称轴,点D与点C关于直线l对称,点F为直线AD下方抛物线上一动点,连接FA,FD,求△FAD面积的最大值;(3)在(2)的条件下,将抛物线y=ax2+bx﹣4(a≠0)沿射线AD平移4个单位,得到新的抛物线y1,点E为点F的对应点,点P为y1的对称轴上任意一点,在y1上确定一点Q,使得以点D,E,P,Q为顶点的四边形是平行四边形,请直接写出所有符合条件的点Q的坐标.解:(1)将A(﹣1,0),B(4,0)代入y=ax2+bx﹣4得,∴,∴y=x2﹣3x﹣4,(2)当x=0时,y=﹣4,∴点C(0,﹣4),∵点D与点C关于直线l对称,且对称轴为直线x=,∴D(3,﹣4),∵A(﹣1,0),∴直线AD的函数关系式为:y=﹣x﹣1,设F(m,m2﹣3m﹣4),作FH∥y轴交直线AD于H,∴H(m,﹣m﹣1),∴FH=﹣m﹣1﹣(m2﹣3m﹣4)=﹣m2+2m+3,=S△AFH+S△DFH==2(﹣m2+2m+3)=﹣2m2+4m+6,∴S△AFD最大为8,当m=﹣=1时,S△AFD(3)∵直线AD与x轴正方向夹角为45°,∴沿AD方向平移,实际可看成向右平移4个单位,再向下平移4个单位,∵F(1,﹣6),∴E(5,﹣10),抛物线y=x2﹣3x﹣4平移后y1=x2﹣11x+20,∴抛物线y1的对称轴为:直线x=,当DE为平行四边形的边时:若D平移到对称轴上F点,则Q的横坐标为,代入y1=x2﹣11x+20得y=﹣,∴Q(,﹣),若E平移到对称轴上F点,则Q的横坐标为,代入y1=x2﹣11x+20得y=,∴Q(,﹣),若DE为平行四边形的对角线时,若E平移到对称轴上F点,则Q平移到D点,∴Q的横坐标为,代入y1=x2﹣11x+20得y=﹣,∴Q(,﹣),∴Q()或Q()或Q().6.如图,直线y=﹣x+4分别交x轴、y轴于A、C两点,抛物线y=﹣x2+mx+4经过点A,且与x轴的另一个交点为点B.连接BC,过点C作CD∥x轴交抛物线于点D(1)求抛物线的函数表达式;(2)若点E是抛物线上的点,求满足∠ECD=∠BCO的点E的坐标;(3)点M在y轴上且位于点C上方,点N在直线AC上,点P为第一象限内的抛物线上一点,若以点C、M、N、P为顶点的四边形是菱形,求菱形的边长.解:(1)y=﹣x+4,令x=0,则y=4,令y=0,则x=4,则点A、C的坐标分别为(4,0)、(0,4),将点A的坐标代入抛物线的表达式并解得:m=3,故抛物线的表达式为:y=﹣x2+3x+4…①,令y=0,则x=﹣1或4,故点B(﹣1,0);(2)①当点E在CD上方时,tan∠BCO==,则直线CE的表达式为:y=x+4…②,联立①②并解得:x=0或(舍去0),则点E(,);②当点E在CD下方时,同理可得:点E′(,);故点E的坐标为E(,)或(,);(3)①如图2,当CM为菱形的一条边时,过点P作PQ∥x轴,∵OA=OC=4,∴∠PMQ=∠CAO=45°,设点P(x,﹣x2+3x+4),则PM=PQ=x,C、M、N、P为顶点的四边形是菱形,则PM=PN,即:x=﹣x2+3x+4﹣(﹣x+4),解得:x=0或4﹣(舍去0),故菱形边长为x=4﹣2;②如图3,当CM为菱形的对角线时,同理可得:菱形边长为2;故:菱形边长为4﹣2或2.7.如图,已知直线y=2x+n与抛物线y=ax2+bx+c相交于A,B两点,抛物线的顶点是A(1,﹣4),点B在x轴上.(1)求抛物线的解析式;(2)若点M是y轴上一点,点N是坐标平面内一点,当以A、B、M、N为顶点的四边形是矩形时,求点M的坐标.(3)在抛物线上是否存在点Q,使∠BAQ=45°,若存在,请直接写出点Q的横坐标;若不存在,说明理由.解:(1)将点A(1,﹣4)代入直线y=2x+n得,2+n=﹣4,∴n=﹣6,∴直线y=2x﹣6,当y=0时,代入直线得:0=2x﹣6,解得:x=3,∴点B坐标(3,0),设抛物线表达式为y=a(x﹣1)2﹣4,将点B代入抛物线得,0=4a﹣4,解得:a=1,∴抛物线表达式y=(x﹣1)2﹣4;(2)当以A、B、M、N为顶点的四边形是矩形时,有两种情况:①如图,当AB为边时,设点M(0,m),已知点A(1,﹣4),点B(3,0)∴MA2=12+(m+4)2,AB2=(1﹣3)2+(﹣4﹣0)2=20,BM2=32+m2,∴MB2=AM2+AB2,即12+(m+4)2+20=32+m2,解得m=﹣,即点M的坐标(0,﹣),延长BN交y轴于点M′,作AG⊥y轴于G,BH⊥GA交GA的延长线于点H.由△BOM′∽△BHA,可得=,∴=,∴OM′=,∴M′(0,),②如图,当AB为对角线时,取线段AB的中点P,作辅助圆⊙P,与y轴交于点M1,M2,作PG⊥y轴于点G,点P坐标(,),即(2,﹣2),由①可得线段AB==2,∴⊙P半径,在Rt△PM1G中,PM1=,PG=2,M1G==1,根据垂径定理可得,M2G=1,∴点M1坐标(0,﹣1),点M2坐标(0,﹣3);综上所述,当以A、B、M、N为顶点的四边形是矩形时,点M坐标为:(0,﹣)或(0,)或(0,﹣1)或(0,﹣3);(3)存在点Q的横坐标为﹣2或,使∠BAQ=45°.理由如下:假设存在满足条件的点Q,如图,当四边形ADBC为正方形,且点Q1,Q2分别在直线AD和直线AC上时,∠BAQ=45°,设过线段AB中点P,且与线段AB垂直的直线:y=﹣+b,将点P(2,﹣2)代入得:﹣2=﹣1+b,解得b=﹣1,∴直线为y=﹣,设点C点坐标(n,﹣n﹣1),在Rt△ABD中,∠BAQ=45°,AB=2,sin45°=,解得BD=,∴BD==,解得n1=0,n2=4,∴点C坐标(0,﹣1),点D坐标(4,﹣3),设直线AD表达式为:y=qx+p,将点A(1,﹣4),点D(4,﹣3)代入得,,解得,∴直线AD的表达式为y=﹣,同理可得直线AC的表达式为y=﹣3x﹣1,联立直线AD与抛物线y=(x﹣1)2﹣4可得,﹣=(x﹣1)2﹣4,解得x1=1,x2=,同理联立直线AC与抛物线可解得x3=1,x4=﹣2,∴点Q的横坐标为﹣2或.8.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(﹣3,0),B(0,3),C(1,0).(1)求此抛物线的解析式.(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.①动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标;②连接PA,以AP为边作图示一侧的正方形APMN,随着点P的运动,正方形的大小、(结位置也随之改变.当顶点M或N恰好落在抛物线对称轴上时,求出对应的P点的坐标.果保留根号)解:(1)∵抛物线y=ax2+bx+c经过点A(﹣3,0),B(0,3),C(1,0),∴,解得,所以,抛物线的解析式为y=﹣x2﹣2x+3;(2)①∵A(﹣3,0),B(0,3),∴OA=OB=3,∴△AOB是等腰直角三角形,∴∠BAO=45°,∵PF⊥x轴,∴∠AEF=90°﹣45°=45°,又∵PD⊥AB,∴△PDE是等腰直角三角形,∴PD越大,△PDE的周长越大,易得直线AB的解析式为y=x+3,设与AB平行的直线解析式为y=x+m,联立,消掉y得,x2+3x+m﹣3=0,当△=32﹣4×1×(m﹣3)=0,即m=时,直线与抛物线只有一个交点,PD最长,此时x=﹣,y=﹣+=,∴点P(﹣,)时,△PDE的周长最大;②抛物线y=﹣x2﹣2x+3的对称轴为直线x=﹣=﹣1,(i)如图1,点M在对称轴上时,过点P作PQ⊥对称轴于Q,在正方形APMN中,AP=PM,∠APM=90°,∴∠APF+∠FPM=90°,∠QPM+∠FPM=90°,∴∠APF=∠QPM,∵在△APF和△MPQ中,,∴△APF≌△MPQ(AAS),∴PF=PQ,设点P的横坐标为n(n<0),则PQ=﹣1﹣n,即PF=﹣1﹣n,∴点P的坐标为(n,﹣1﹣n),∵点P在抛物线y=﹣x2﹣2x+3上,∴﹣n2﹣2n+3=﹣1﹣n,整理得,n2+n﹣4=0,解得n1=(舍去),n2=,﹣1﹣n=﹣1﹣=,所以,点P的坐标为(,);(ii)如图2,点N在对称轴上时,设抛物线对称轴与x轴交于点Q,∵∠PAF+∠FPA=90°,∠PAF+∠QAN=90°,∴∠FPA=∠QAN,又∵∠PFA=∠AQN=90°,PA=AN,∴△APF≌△NAQ,∴PF=AQ,设点P坐标为P(x,﹣x2﹣2x+3),则有﹣x2﹣2x+3=﹣1﹣(﹣3)=2,解得x=﹣1(不合题意,舍去)或x=﹣﹣1,此时点P坐标为(﹣﹣1,2).综上所述,当顶点M恰好落在抛物线对称轴上时,点P坐标为(,),当顶点N恰好落在抛物线对称轴上时,点P的坐标为(﹣﹣1,2).9.如图,抛物线y=ax2+bx+c(a≠0)的图象经过A(1,0),B(3,0),C(0,6)三点.(1)求抛物线的解析式.(2)抛物线的顶点M与对称轴l上的点N关于x轴对称,直线AN交抛物线于点D,点E为抛物线在直线AD下方的一个动点,连接AE、DE,问:△ADE的面积是否存在最大值?若存在,请求出面积的最大值和点E的坐标.若不存在,请说明理由.(3)P为抛物线上的一动点,Q为对称轴上一动点,若以A、D、P、Q为顶点的四边形为平行四边形,请直接写出点P的坐标(至少写两个).解:(1)∵抛物线y=ax2+bx+c(a≠0)的图象经过点A(1,0),B(3,0),∴设抛物线的解析式为y=a(x﹣1)(x﹣3),把点C(0,6)代入,∴6=a(0﹣1)(0﹣3),∴a=2,∴y=2(x﹣1)(x﹣3)=2x2﹣8x+6,∴抛物线解析式为y=2x2﹣8x+6;(2)∵y=2x2﹣8x+6=2(x﹣2)2﹣2,∴顶点M的坐标为(2,﹣2)∵抛物线的顶点M与对称轴l上的点N关于x轴对称,∴点N(2,2),设直线AN的解析式为:y=kx+b,由题意可得:,解得:,∴直线AN解析式为:y=2x﹣2,联立y=2x2﹣8x+6得:,解得:,,∴点D(4,6),设△ADE的面积为S,点E(e,2e2﹣8e+6),过点E作EF⊥x轴交直线AD于点F,则点F坐标为(e,2e﹣2),∴EF=(2e﹣2)﹣(2e2﹣8e+6)=﹣2e2+10e﹣8,∴S=•EF•|D x﹣A x|=×3×(﹣2e2+10e﹣8)=﹣3(e2﹣5e﹣4)=,所以,当时,△ADE的面积,此时点E坐标为;(3)由(2)知,A(1,0),D(4,6),设Q(2,m),P(x,2x2﹣8x+6),①以AD为对角线时,∵以A,D,P,Q为顶点的四边形为平行四边形,∴,解得:,∴P(3,0);②以AP为对角线时,∵以A,D,P,Q为顶点的四边形为平行四边形,∴,解得:,∴P(5,16);③以AQ为对角线时,∵以A,D,P,Q为顶点的四边形为平行四边形,∴,解得:,∴P(﹣1,16);综上所述,当点P的坐标为(5,16)或(﹣1,16)或(3,0)时,以A,D,P,Q为顶点的四边形为平行四边形.10.如图,一次函数y=x﹣图象与坐标轴交于点A、B,二次函数y=x2+bx+c 图象过A、B两点.(1)求二次函数解析式;(2)点B关于抛物线对称轴的对称点为点C,点P是对称轴上一动点,在抛物线上是否存在点Q,使得以B、C、P、Q为顶点的四边形是菱形?若存在,求出Q点坐标;若不存在,请说明理由.解:(1)在y=x﹣中,令x=0得y=﹣,令y=0得x=3,∴A(3,0),B(0,﹣),∵二次函数y=x2+bx+c图象过A、B两点,∴,解得,∴二次函数解析式为y=x2﹣x﹣;(2)存在,理由如下:由二次函数y=x2﹣x﹣可得其对称轴为直线x==1,设P(1,m),Q(n,n2﹣n﹣),而B(0,﹣),∵C与B关于直线x=1对称,∴C(2,﹣),①当BC、PQ为对角线时,如图:。
二次函数与平行四边形存在性问题专题讲义(对点法——一招制胜)
二次函数与平行四边形存在性问题专题讲义一、知识链接:1.坐标系中的点的平移点P(x,y)的平移方式平移后点的坐标规律沿x轴平移向右平移a个单位长度(x+a,y)左右平移,横坐标左减右加,纵坐标不变向左平移a个单位长度(x-a,y)沿y轴平移向上平移b个单位长度(x,y+b)上下平移,横坐标不变,纵坐标上加下减向下平移b个单位长度(x,y-b)2.图形的平移:从本质上讲就是图形上点的平移例1:如下图,线段AB平移得到线段AB',已知A(-2,2),B(-3,-1)B'(3,1)则:向右平移6个单位长度芳V1)向上平移2个单位长度例2•在平行四边形ABCD中,其中已知A(-1,0),B(1,-2),C(3,1),则D点坐标?向右2个单位长度(仁-2)C(31)向上3个单位长度向右2个单位长度(-1,0)D(?,?)向上3个单位长度二、知识迁移例3:如图,在平面直角坐标系中,口ABCD的顶点坐标分别为A(x,y)、B(x,y)、1122点A的坐标是三、对点法①若点A 与点B 相对,则点D 与点C 相对 ②若点A 与点D 相对,则点B 与点C 相对 ③若点A 与点C 相对,则点B 与点D 相对四、典型例题学习五、小试牛刀1. 抛物线中的平行四边形存在性问题(“三定一动”)•.•AB〃CD,AB=CD.•.边CD 可看成由边BA 向右、向上平移n 个单位长度得丿|什平移(爲"牛单位矗U I 兀4J 4RfV1,、|;RT 书乐-叩个单位中厂V”"\ £>1不2」2丿向计移(旳-忖个单位蟲/即:平面直角坐标系中,平行四边形两组相对顶点的横坐标之和相等,纵坐⑶4,>+4)例4.如图,平面直角坐标系中,已知A(-l,0),B(l,-2),C(3,l)点D 是平面内一动点,若以点 A 、B 、C 、D 为顶点的四边形是平行四边形,则点D 的坐标是思路点拨:先求出A(-1,0)B(2,0)C(0,2)设点M(x,y)①点A与点B相对②点A与点C相对③点A与点M相对—1+2二x二0+0二2+y=—1+0二x=30+2二0+、二—1+x二x二0+y二0+7二例5.已知,抛物线y二-X2+x+2与X轴的交点为A、B,与y轴的交点为C,点M是平面内一点,判断有几个位置能使以点M、A、B、C为顶点的四边形是平行四边形,请写出相应的坐•••M(1,-2)或(-3,2)或(3,2)2.抛物线中的平行四边形存在性问题(“两定两动”)1例6•如图,平面直角坐标系中,y=—-x2+x与x轴相交于点B(4,0),点Q在抛物线的对称4轴上,点P在抛物线上,且以点0、B、Q、P为顶点的四边形是平行四边形,写出相应的点P 的坐标.线上的动点,点Q是直线y二-x上的动点,判断有几个位置能使以点P、Q、B、O为顶点变试题:2.如图,平面直角坐标中,y二X2-2x-3与X轴相交于点A(-1,O),点C的坐标是(2,-3),点P抛物线上的动点,点Q是x轴上的动点,判断有几个位置能使以点A、C、P、Q为顶点的四边形为平行四边形,写出相应的点Q的坐标.六、方法分享二次函数综合问题中,平行四边形的存在性问题,无论是“三定一动”,还是“两定两动”,甚至是“四动”问题,能够一招制胜的方法就是“对点法”,需要分三种情况,得出三个方程组求解。
中点坐标公式与二次函数中平行四边形存在性问题
图2图 3 图1二次函数中平行四边形存在性问题 以二次函数为载体的平行四边形存在性问题是近年来中考的热点,其图形复杂,知识覆盖面广,综合性较强,对学生分析问题和解决问题的能力要求高.对这类题,常规解法是先画出平行四边形,再依据“平行四边形的一组对边平行且相等”或“平行四边形的对角线互相平分”来解决.由于先要画出草图,若考虑不周,很容易漏解.为此,笔者另辟蹊径,借助探究平行四边形顶点坐标公式来解决这一类题.1 两个结论,解题的切入点数学课标,现行初中数学教材中没有线段的中点坐标公式,也没有平行四边形的顶点坐标公式,我们可帮助学生来探究,这可作为解题的切入点。
1.1 线段中点坐标公式平面直角坐标系中,点A 坐标为(x 1,y 1),点B 坐标为(x 2,y 2),则线段AB 的中点坐标为(221x x +,221y y +). 证明 : 如图1,设AB 中点P 的坐标为(x P ,y P ).由x P -x 1=x 2-x P ,得x P =221x x +,同理y P =221y y +,所以线段AB 的中点坐标为(221x x +,221y y +). 1.2 平行四边形顶点坐标公式□ABCD 的顶点坐标分别为A (x A ,y A )、B (x B ,y B )、C (x C ,y C )、D (x D ,y D ),则:x A +x C =x B +x D ;y A +y C =y B +y D . 证明: 如图2,连接AC 、BD ,相交于点E .∵点E 为AC 的中点,∴E 点坐标为(2C A x x +,2C A y y +). 又∵点E 为BD 的中点,∴E 点坐标为(2D B x x +,2D B y y +). ∴x A +x C =x B +x D ;y A +y C =y B +y D .即平行四边形对角线两端点的横坐标、纵坐标之和分别相等.2 一个基本事实,解题的预备知识如图3,已知不在同一直线上的三点A 、B 、C ,在平面内另找一个点D ,使以A 、B 、C 、D 为顶点的四边形是平行四边形.答案有三种:以AB 为对角线的□ACBD 1,以AC 为对角线的□ABCD 2,以BC 为对角线的□ABD 3C . 3 两类存在性问题解题策略例析与反思3.1 三个定点、一个动点,探究平行四边形的存在性问题例1 已知抛物线y=x 2-2x+a (a <0)与y 轴相交于点A ,顶点为M .直线y=21x-a 分别与x 轴、y 轴相交于B 、C 两点,并且与直线AM 相交于点N .(1)填空:试用含a 的代数式分别表示点M 与N 的坐标,则M ( ), N ( );图 4图5(2)如图4,将△NAC 沿y 轴翻折,若点N 的对应点N ′恰好落在抛物线上,AN ′与x 轴交于点D ,连接CD ,求a 的值和四边形ADCN 的面积;(3)在抛物线y=x 2-2x+a (a <0)上是否存在一点P ,使得以P 、A 、C 、N 为顶点的四边形是平行四边形?若存在,求出点P 的坐标;若不存在,试说明理由.解:(1)M (1,a-1),N (a 34,-a 31);(2)a=-49;S 四边形ADCN =16189; (3)由已知条件易得A (0,a )、C (0,-a )、N (a 34,-a 31).设P (m ,m 2-2m +a ). ①当以AC 为对角线时,由平行四边形顶点坐标公式(解题时熟练推导出),得:⎪⎪⎩⎪⎪⎨⎧+-+-=-+=+a m m a a a m a 23134002,∴⎪⎪⎩⎪⎪⎨⎧-==81525a m . ∴P 1(25,-85); ②当以AN 为对角线时,得:⎪⎪⎩⎪⎪⎨⎧+-+-=-+=+a m m a a a m a 23103402,∴⎪⎪⎩⎪⎪⎨⎧==81525a m (不合题意,舍去). ③当以CN 为对角线时,得:⎪⎪⎩⎪⎪⎨⎧+-+=--+=+a m m a a a m a 23103402,∴⎪⎪⎩⎪⎪⎨⎧-=-=8321a m . ∴P 2(-21,87). ∴在抛物线上存在点P 1(25,-85)和P 2(-21,87),使得以P 、A 、C 、N 为顶点的四边形是平行四边形. 反思:已知三个定点的坐标,可设出抛物线上第四个顶点的坐标,运用平行四边形顶点坐标公式列方程(组)求解.这种题型由于三个定点构成的三条线段中哪条为对角线不清楚,往往要以这三条线段分别为对角线分类,分三种情况讨论.3.2 两个定点、两个动点,探究平行四边形存在性问题例2 如图5,在平面直角坐标系中,抛物线A (-1,0),B (3,0),C (0,-1)三点.(1)求该抛物线的表达式;(2)点Q 在y 轴上,点P 在抛物线上,要使以点Q 、P 、A 、B 为顶点的四边形是平行四边形,求所有满足条件点P 的坐标.解 :(1)易求抛物线的表达式为y=132312--x x ; (2)由题意知点Q 在y 轴上,设点Q 坐标为(0,t );点P 在抛物线上,图6 设点P 坐标为(m ,132312--m m ). 尽管点Q 在y 轴上,也是个动点,但可理解成一个定点,这样就转化为三定一动了.①当以AQ 为对角线时,由四个顶点的横坐标公式得:-1+0=3+m ,∴m=-4,∴P 1(-4,7);②当以BQ 为对角线时,得:-1+m=3+0,∴m=4,∴P 2(4,35); ③当以AB 为对角线时,得:-1+3=m+0,∴m=2,∴P 3(2,-1).综上,满足条件的点P 为P 1(-4,7)、P 2(4,35)、P 3(2,-1). 反思:这种题型往往特殊,一个动点在抛物线上,另一个动点在x 轴(y 轴)或对称轴或某一定直线上.设出抛物线上的动点坐标,另一个动点若在x 轴上,纵坐标为0,则用平行四边形顶点纵坐标公式;若在y 轴上,横坐标为0,则用平行四边形顶点横坐标公式.该动点哪个坐标已知就用与该坐标有关的公式.本例中点Q 的纵坐标t 没有用上,可以不设.另外,把在定直线上的动点看成一个定点,这样就转化为三定一动了,分别以三个定点构成的三条线段为对角线分类,分三种情况讨论.例3 如图6,在平面直角坐标系中,已知抛物线经过A (-4,0),B (0,-4),C (2,0)三点.(1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值;(3)若点P 是抛物线上的动点,点Q 是直线y =-x 上的动点,判断有几个位置能使以点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.解:(1)易求抛物线的解析式为y=21x 2+x-4; (2)s=-m 2-4m (-4<m <0);s 最大=4(过程略);(3)尽管是直接写出点Q 的坐标,这里也写出过程.由题意知O (0,0)、B (0,-4).由于点Q 是直线y=-x 上的动点,设Q (s ,-s ),把Q 看做定点;设P (m ,21m 2+m -4). ①当以OQ 为对角线时,∴s=-252±.∴Q 1(-2+52,2-52),Q 2(-2-52,2+52);②当以BQ 为对角线时,∴s 1=-4,s 2=0(舍).∴Q 3(-4,4);③当以OB 为对角线时,∴s1=4,s2=0(舍).∴Q4(4,-4).综上,满足条件的点Q为Q1(-2+52)、Q3(-4,4)、Q4(4,-4).2,2+52,2-52)、Q2(-2-5反思:该题中的点Q是直线y=-x上的动点,设动点Q的坐标为(s,-s),把Q看做定点,就可根据平行四边形顶点坐标公式列方程组了.4 问题总结这种题型,关键是合理有序分类:无论是三定一动,还是两定两动,统统把抛物线上的动点作为第四个动点,其余三个作为定点,分别以这三个定点构成的三条线段为对角线分类,分三种情况讨论,然后运用平行四边形顶点坐标公式转化为方程(组).这种解法,不必画出平行四边形草图,只要合理分类,有序组合,从对角线入手不会漏解,条理清楚,而且适用范围广.其本质是用代数的方法解决几何问题,体现的是分类讨论思想、数形结合的思想.。
二次函数存在性问题之平行四边形
二次函数存在性问题之平行四边形1.如图,抛物线y =-x 2+bx +c 与直线221+=x y 交于C 、D 两点,其中点C 在y 轴上,点D 的坐标为)27 3(,. 点P 是y 轴右侧的抛物线上一动点,过点P 作PE ⊥x 轴于点E ,交CD 于点F . (1)求抛物线的解析式;(2)若点P 的横坐标为m ,当m 为何值时,以O 、C 、P 、F 为顶点的四边形是平行四边形?请说明理由. (3)若存在点P ,使∠PCF =45°,请直接写出....相应的点P 的坐标.备用图4.如图,已知二次函数的图象过点A (0,﹣3),B (,),对称轴为直线x=﹣,点P 是抛物线上的一动点,过点P 分别作PM ⊥x 轴于点M ,PN ⊥y 轴于点N ,在四边形PMON 上分别截取PC=MP ,MD=OM ,OE=ON ,NF=NP .(1)求此二次函数的解析式;(2)求证:以C 、D 、E 、F 为顶点的四边形CDEF 是平行四边形;(3)在抛物线上是否存在这样的点P ,使四边形CDEF 为矩形?若存在,请求出所有符合条件的P 点坐标;若不存在,请说明理由.6.如图,在坐标系xoy 中,△ABC 是等腰直角三角形,∠BAC =90°,A(1,0),B(0,2),抛物线2212-+bx x y =的图象过C 点。
(1)求抛物线的解析式;(3分)(2)平移该抛物线的对称轴所在直线l 。
当l 移动到何处时,恰好将△ABC 的面积分为相等的两部分?(3分)(3)点P 是抛物线上一动点,是否存在点P ,使四边形PACB 为平行四边形?若存在,求出P 点坐标,若不存在,说明理由。
(4分)AO BCy xlAO BCy x备用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数存在性问题专题
---------平行四边形存在性
姓名:
例1:如图,在平面直角坐标系xOy中,抛物线y=(x﹣m)2﹣m2+m的顶点为A,与y 轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.(1)当m=2时,求点B的坐标;(2)求DE的长?(3)①设点D 的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以,A,B,D,P为顶点的四边形是平行四边形?
1、已知二次函数c
+
=2,其图像抛物线交x轴的于点A(1,0)、B(3,0),交y轴于
x
y+
bx
点C.直线l过点C,且交抛物线于另一点E(点E不与点A、B重合).(1)求此二次函数关系
式;(2)若直线1l 经过抛物线顶点D ,交x 轴于点F ,且1l ∥l ,则以点C 、D 、E 、F 为顶点的四边形能否为平行四边形?若能,求出点E 的坐标;若不能,请说明理由.(3)若过点A 作AG ⊥x 轴,交直线l 于点G ,连OG 、BE ,试证明OG ∥BE.
例2:如图,矩形OABC 在平面直角坐标系xOy 中,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC 边上,且抛物线经过O ,A 两点,直线AC 交抛物线于点D .(1)求抛物线的解析式;(2)求点D 的坐标;(3)若点M 在抛物线上,点N 在x 轴上,是否存在以A ,D ,M ,N 为顶点的四边形是平行四边形?若存在,求出点N 的坐标;若不存在,请说明理由.
1、如图,抛物线y=x2+bx+c与x轴交于A(5,0)、B(﹣1,0)两点,过点A作直线AC⊥x 轴,交直线y=2x于点C;(1)求该抛物线的解析式;(2)求点A关于直线y=2x的对称点A′的坐标,判定点A′是否在抛物线上,并说明理由;(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段CA′于点M,是否存在这样的点P,使四边形PACM是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.
:
3、如图,抛物线经过A(﹣1,0),B(5,0),C(0,)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;(3)点M 为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.。