第10章 组合变形的强度计算

合集下载

工程力学之组 合 变 形

工程力学之组 合 变 形

工程力学第10章组合变形学习目标(1)了解组合变形的概念及其强度问题的分析方法;(2)掌握斜弯曲、拉伸(压缩)与弯曲和偏心压缩的应力及强度计算。

10.1 组合变形的概念例如,烟囱的变形,除自重W引起的轴向压缩外,还有水平风力引起的弯曲变形,同时产生两种基本变形,如图10-1(a)所示。

又如图10-1(b)所示,设有吊车的厂房柱子,作用在柱子牛腿上的荷载F,它们合力的作用线偏离柱子轴线,平移到轴线后同时附加力偶。

此时,柱子既产生压缩变形又产生弯曲变形。

再如图10-1(c)所示的曲拐轴,在力F作用下,AB 段同时产生弯曲变形和扭转变形。

10.1 组合变形的概念图10-110.1 组合变形的概念上述这些构件的变形,都是两种或两种以上的基本变形的组合,称为组合变形。

研究组合变形问题依据的是叠加原理,进行强度计算的步骤如下:(1)将所作用的荷载分解或简化为几个只引起一种基本变形的荷载分量。

(2)分别计算各个荷载分量所引起的应力。

(3)根据叠加原理,将所求得的应力相应叠加,即得到原来荷载共同作用下构件所产生的应力。

(4)判断危险点的位置,建立强度条件。

10.2例如图10-2(a)所示的横截面为矩形的悬臂梁,外力F作用在梁的对称平面内,此类弯曲称为平面弯曲。

斜弯曲与平面弯曲不同,如图10-2(b)所示同样的矩形截面梁,外力F的作用线通过横截面的形心而不与截面的对称轴重合,此梁弯曲后的挠曲线不再位于梁的纵向对称面内,这类弯曲称为斜弯曲。

斜弯曲是两个平面弯曲的组合,本节将讨论斜弯曲时的正应力及其强度计算。

10.2图10-210.210.2.1 正应力计算斜弯曲时,梁的横截面上同时存在正应力和切应力,但因切应力值很小,一般不予考虑。

下面结合图10-3(a)所示的矩形截面梁说明斜弯曲时正应力的计算方法。

图10-310.2.1 正应力计算10.2.1.1 外力的分解由图10-3(a)可知:10.2.1.2 内力的计算如图10-3(b)所示,距右端为a 的横截面上由F y 、F z 引起的弯曲矩分别是:10.2 10.2.1 正应力计算10.2.1.3 应力的计算由M z 和M y (即F y 和F z )在该截面引起K 点的正应力分别为:F y 和F z 共同作用下K 点的正应力为:10.210-110.210.2.1 正应力计算10.2.1.3 应力的计算通过以上分析过程,我们可以将组合变形问题计算的思路归纳为“先分后合”,具体如下:10.210.2.2 正应力强度条件同平面弯曲一样,斜弯曲梁的正应力强度条件仍为:10-2即危险截面上危险点的最大正应力不能超过材料的许用应力[σ]。

材料力学第10章 组合变形

材料力学第10章 组合变形

因此,截面O为危险截面。
危险截面上,由轴力引起的正应力均匀分布,其值

,由弯矩引起的正应力线性分布,其值为
。利用叠加原理,将拉伸及弯曲正应力叠加
后,危险截面上正应力沿截面高度的变化情况如图10.5
(e)所示,仍为线性分布。而且可以看出,最大拉应
力和最大压应力分别发生在O截面上、下边缘各点,其
值为
(10.4)
图10.5
依据上述分析,弯拉(压)组合变形时危险点处于单向应力状态,所以可将 截面上的σmax与材料的许用应力相比较建立其强度条件。对于拉压强度相等 的材料,强度条件为
对于抗拉与抗压性能不同的材料,强度条件为
下面举例说明弯拉(压)组合变形的强度计算。 例10.2如图10.6(a)所示的钢支架,已知载荷F=45 kN,尺寸如图。 (1)如材料为钢材,许用应力[σ]=160 MPa,试选择AC杆的工字钢型号。 (2)如材料为铸铁,许用拉应力[σt]=30 MPa,许用压应力[σc]=160 MPa,且AC杆截面形式和尺寸如图10.6(e)所示,A=15×10-3 m2,z0=75mm ,Iy=5.31×10-5 m4。试校核AC杆的强度。
其力矩矢量分别与y轴和z轴的正向一致(见图10.2(b))。 为了确定横截面上最大正应力点的位置,先求截面中性轴位置。记中性轴上 任一点的坐标为(y0,z0),由于中性轴上各点处的正应力均为零,所以由式 可得中性轴方程为
(10.2) 可见,中性轴是一条通过横截面形心的直线(见图10.2(c)),其与y轴的 夹角θ为
图10.3 例10.1如图10.4(a)所示,20a号工字钢悬臂梁承受均布载荷q和集中力
。已知钢的许用弯曲正应力[σ]=160 MPa,a=1 m。试求梁的许可 载荷集度[q]。 解由于梁所受到的横向力不在梁的两个纵向对称面内,此时可以将横向力向 两个纵向对称面分解(向y和z轴分解),从而将其看成是梁在其两个相互垂

组合变形的强度计算

组合变形的强度计算

yC

Ft l 4

5 0.2 4

0.25(kN m)
所以,轴的危险截面为C截面的左 侧截面。
例2
(3)校核强度。
r3
M
2

M
2 x

M
2 zC

M
2 yC

M
2 x
Wz
d 3 / 32
0.12
0.252 0.52 503 / 32
106

46.3(MPa)

例2
(2)画扭矩图及弯矩图。从扭矩图
可以看出,CD段各截面上扭矩相同,
大小为
M
x

Me

Ft

d 2
5 0.2 0.5(kN m) 2
而从弯矩图来看,无论是铅垂面还是 水平面内,最大弯矩均出现在截面C, 其最大值分别为
M zC

Fr l 4

2 0.2 4
0.1(kN m)
M
M
2 z

0.75M
2 x


Wz
三 弯拉(压)组合的强度计算举例
例1 图示为一摇臂钻床,钻孔时钻头所受轴向力P=15 kN。己知偏心距e=0.4 m,铸 铁立柱的直径d=125 mm,其许用拉应力为[ ]+=35 MPa,许用压应力[ ]-=120 MPa。 试校核铸铁立柱的强度。
解:(1)分析内力。采用截面法求立柱 横截面上的内力。截开后取上侧一部分 考虑,由其平衡条件可知,横截面上既 有轴力FN,又有弯矩M。所以立柱的变 形为弯曲与拉伸的组合变形。轴力和弯 矩的大小分别为
FN=F=15kN M =Pe =15×0.4 =6 kN·m (2)校核其强度。由于整个立柱内 的最大正应力为拉应力,且铸铁的许用 拉应力小于许用压应力,所以,只要最 大拉应力不超过许用拉应力,立柱的强 度也就足够了。

组合变形的强度计算

组合变形的强度计算

组合变形的强度计算 组合变形的概念拉伸与弯曲的组合一.组合变形的概念1.组合变形:在外力的作用下,构件若同时产生两种或两种以上基本变形的情况在小变形和线弹性的前提下,可以采用叠加原理研究组合变形问题所谓叠加原理是指若干个力作用下总的变形等于各个力单独作用下变形的总和(叠加)在复杂外载作用下,构件的变形会包含几种简单变形PRzxyPP2、组合变形的研究方法——叠加原理叠加原理应用的基本步骤:①外力分析:将载荷进行分解,得到与原载荷等效的几组载荷,使构件在每一组载荷的作用下,只产生一种基本变形.②内力分析:分析每种载荷的内力,确定危险截面.③应力分析:分别计算构件在每种基本变形情况下的危险将各基本变形情况下的应力叠加,确定最④强度计算:二.弯曲与拉伸(的组合杆件在外力作用下同时产生弯曲和拉伸(压缩)变形称为弯曲与拉伸(压缩)的组合偏心拉伸:弯曲与拉伸的组合变形链环受力立柱受力拉伸与弯曲组合的应力分析ϕϕsin p p cos p p y x ==A P x ='σy I M x l P M zy =''-=σ)(作用下:z T W M A N max max +=σzC W M A N max max -=σ危险截面处的弯矩抗弯截面模量y I M A N z +=''+'=σσσ根据叠加原理,可得x 横截面上的总应力为[]T z max max T W M A N σσ≤+=[]c zmax max C W M A N σσ≤-=强度条件为例:悬臂吊车,横梁由25 a 号工字钢制成,l =4m ,电葫芦重Q 1=4kN ,起重量Q2=20kN , α=30º, [σ]=100MPa,试校核强度。

取横梁AB为研究对象,受力如图b所示。

梁上载荷为P =Q1+Q2= 24kN,斜杆的拉力S 可分解为X B和Y B(1)外力计算横梁在横向力P和Y A、Y B作用下产生弯曲;同时在X A和X B作用下产生轴向压缩。

第十章 应力状态,强度理论与组合变形1

第十章 应力状态,强度理论与组合变形1

2 2
s
2 3
2(s1s 2
s 2s 3
s 3s1 )]
(10 11)
用主应力表示的体积改变比能为:
uV
= 1 2
6E
(s1 s 2
s 3 )2
用主应力表示的形状改变比能为:
usd
=
u
uv
=
1
6E
s 1
s2 2
s 2
s3
2
s 3
s
1
2
(10-13)
14
强度理论
问题:
复杂应力状态下 的强度?
屈服判据 s1-s3= sys Tresca条件, 1864, 法
实验验证: 很好地预测了塑性材料屈服。
设计:
强度条件: s1-s3[s]=sys/n
19
10.2.2 延性材料的屈服强度理论
四、形状改变比能理论(第四强度理论)
? ? 思考: Tresca条件与s2无关
滑移改变形状 能量
假说: 延性材料屈服取决于其形状改变比能 ud。
1 2
(s 1 s 2 )2 (s 2 s 3 )2 (s 3 s 1 )2 [s ] = s ys / n
21
强度理论汇总:
强度条件的一般形式: 工作应力许用应力
相当应力
破 s1 理论 坏
e1 理论
sr [s]
sr1 = s1 常用
脆性破坏 [s]=sb/n 塑性屈服 [s]=sys /n
5
注意到txy=tyx,解得:
sa=sxcos2a+s ysin2a-2t xy sinacosa t a=(s x-s y)sinacosa+txy(cos2a -sin2a)

工程力学 第二版 (范钦珊 唐静静 著) 高等教育出版社 课后答案 第10章 组合受力与变形杆件的强度计算

工程力学 第二版 (范钦珊 唐静静 著) 高等教育出版社 课后答案 第10章 组合受力与变形杆件的强度计算


FP a2
ww w
5
.k hd
b
m
上表面

σa 4 = σb 3
习题 10-7 图
和 ε 2 。证明偏心距 e与 ε1 、 ε 2 之间满足下列关系:
FP

ww w
e=
ε1 − ε 2 h × ε1 + ε 2 6

后 答

FP
M = FP e
习题 10-8 图
解:1,2 两处均为单向应力状态,其正应力分别为: 1 处:
第10章
组合变形与变形杆件的强度计算
10-1 根据杆件横截面正应力分析过程, 中性轴在什么情形下才会通过截面形心?试分析 下列答案中哪一个是正确的。 (A)My = 0 或 Mz = 0, FN ≠ 0 ; (B)My = Mz = 0, FN ≠ 0 ; (C)My = 0,Mz = 0, FN ≠ 0 ; (D) M y ≠ 0 或 M z ≠ 0 , FN = 0 。 正确答案是 D 。 解:只要轴力 FN x ≠ 0 , 则截面形心处其拉压正应力一定不为零, 而其弯曲正应力一定为零, 这样使其合正应力一定不为零,所以其中性轴一定不通过截面形心,所以答案选(D) 。 关于中性轴位置,有以下几种论述,试判断哪一种是正确的。 (A)中性轴不一定在截面内,但如果在截面内它一定通过形心; (B)中性轴只能在截面内并且必须通过截面形心; (C)中性轴只能在截面内,但不一定通过截面形心; (D)中性轴不一定在截面内,而且也不一定通过截面形心。 正确答案是 D 。 解:中性轴上正应力必须为零。由上题结论中性轴不一定过截面形心;另外当轴力引起的 拉(压)应力的绝对值大于弯矩引起的最大压(拉)应力的绝对值时,中性轴均不在截面内, 所以答案选(D) 。 并且垂 10-3 图示悬臂梁中, 集中力 FP1 和 FP2 分别作用在铅垂对称面和水平对称面内, 直于梁的轴线,如图所示。已知 FP1=1.6 kN,FP2=800 N,l=1 m,许用应力 σ =160 MPa。 试确定以下两种情形下梁的横截面尺寸: 1.截面为矩形,h=2b; 2.截面为圆形。

第十章_组合变形

第十章_组合变形
坐标为x的任意截面上
M z Fy (l x) F(l x) cos M y Fz (l x) F(l x)sin
固定端截面
x
M zmax Fl cos
M ymax Fl sin
2. 应力分析
x 截面上任意一点(y,z) 正应力
Mzy Myz
Iz
Iy
F (l x)( y cos z sin )
三、两个相互垂直平面的弯曲——梁的斜弯曲概念
杆件在通过横截面形心的外载下产生弯曲变形
四、两个相互垂直平面内的弯曲问题分析 (即斜弯曲的研究方法 ) 1.分解:外载沿横截面的两个形心主轴分解,得到两个
正交的平面弯曲
z y
Pz
Py
P
x
z jPz
P
Py
y
Fy F cos Fz F sin
1. 内力分析
叠加原理的成立要求:内力、应力、应变、变形等与外力之 间成线性关系.
二、工程实例 (Engineering eA
F1
x
P
y B
P
hg
P q
hg
水坝
厂房牛腿——偏心压缩
吊车杆——压弯组合变形
三、分析组合变形的总思路(基本方法) (Basic method for solving combined deformation)
3.应力分析(Stress analysis)
画出危险截面的应力分布图,利用叠加原理 将基本变形下的
应力和变形叠加,建立危险点的强度条件
=
+
=
+
+
组合变形和叠加原理
研究内容
斜弯曲
拉(压)弯组合变形 弯扭组合变形
l

材料力学(金忠谋)第六版答案第10章

材料力学(金忠谋)第六版答案第10章

材料力学(金忠谋)第六版答案第10章第十章组合变形的强度计算10-1图示为梁的各种截面形状,设横向力P 的作用线如图示虚线位置,试问哪些为平面弯曲?哪些为斜弯曲?并指出截面上危险点的位置。

(a)(b) (c) (d)斜弯曲平面弯曲平面弯曲斜弯曲弯心()()弯心弯心()()斜弯曲 弯扭组合平面弯曲 斜弯曲 “×”为危险点位置。

10-2矩形截面木制简支梁AB ,在跨度中点C 承受一与垂直方向成ϕ=15°的集中力P =10 kN 作用如图示,已知木材的弹性模量MPa100.14⨯=E 。

试确定①截面上中性轴的位置;②危险截面上的最大正应力;③C 点的总挠度的大小和方向。

解:66.915cos 10cos =⨯== ϕP P y KN 59.215sin 10sin =⨯== ϕP P z KN4310122015=⨯=z J4cm3310cm Wz=335625121520cm J y =⨯=3750cm W y =25.74366.94max =⨯==l P M y z KN-M 94.14359.24m ax =⨯==l P M z y KN-MMPaW M W M yy z z 84.9107501094.110101025.763633maxmax max =⨯⨯+⨯⨯=+=--σ中性轴:47.2515tan 562510tan tan tan 411=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛-=--ϕαy z J J2849333105434.0101010104831066.948--⨯=⨯⨯⨯⨯⨯⨯==z y y EJ l P f m 28933310259.010562510104831059.248--⨯=⨯⨯⨯⨯⨯⨯==y z z EJ l P f m602.0259.05434.022=+=f cm方向⊥中性轴:47.25=α10-3 矩形截面木材悬臂梁受力如图示,P 1=800 N ,P 2=1600 N 。

工程力学组合受力与变形时的强度计算

工程力学组合受力与变形时的强度计算


FN A
M W


3103
d 2

8 103
d 3
81.1

MPa
81.9
4
32
位置?
例题:图示钢板受集中力P=128KN作用,当板在
一侧切去深4cm的缺口时,求缺口截面的最大正应 力?若在板两侧各切去深4cm的缺口时,缺口截面 的最大正应力为多少?(不考虑应力集中) 10
P
360
求: 1.链环直段部分横截面上 的最大拉应力和最大压应力; 2. 中性轴与截面形心之间 的距离。
解:根据平衡,截面上将
作用有内力分量FNx 和Mz
Fx 0 M C 0
得到 FNx=800 N
Mz= 12 N·m
x FNx
FNx A

4FNx πd 2


π
4 800 122 106
简支梁在中点受力的情
形下,最大弯矩
Mmax=FPl / 4。得到两个 平面弯曲情形下的最大
d
弯矩:
c
M max
FPz
FPx l FPsin l
4
4
M max
(FPy )

FPy l 4

FP
cos l 4
在Mmax(FPy)作用的截面上,截面上边缘的角点 a、b 承受最大压应力;下边缘的角点c、d 承受最 大拉应力。
Pz P cos
以y为中性轴弯曲 M y Pz (l x)
P cos(l x) M cos
M z Py (l x)
P sin(l x) M sin
M z y M y sin M y z M z cos

材料力学 第十章组合变形(1,2,3)

材料力学 第十章组合变形(1,2,3)
C 10kN
1.2m
解:求支反力,由平衡方程
FB B
FA
' FA
F ' A 0,
FA FB 5kN
A
1.6m 1.6m
m g f A
10kN C
m FAy
作折杆的受力图,折杆及 受力对称,只需分析一半 即杆AC 将FA分解, 得杆的轴力 FN、弯矩M (x)
B
FAx
FN FAx 3kN
3 10 8 10 t 81.1 2 3 c d / 4 d / 32 81.9
3 3
M W
[例10-2]圆截面杆的偏心压缩时不产生拉 力的载荷作用范围
P
y
P
y
Pa
a
z

z
CL11TU12
P
y
Pa
y
P
y
Pa
z
z
z
P
y y
Pa
y
P
z
Pa
z P
y y
z
Pa
y
P

CL11TU10
解: X A 3kN, A 4kN Y
任意横截面x上的内力:
FN X A 3kN FS YA 4kN M ( x) YA x 4 x
1 1截面上危险截面, 其上:FN 3kN,M 8kN m

FN A
M W
t FN M c A W
CL11TU5
y0 Iz tg tg z0 Iz
为中性轴与z轴夹角
3.强度计算:
1)危险截面:当x=0时 M Z , M y 同时取最大,固定端处为危险面 2)危险点:危险面上 D1 , D2点 3)最大应力

第10章 组合变形

第10章 组合变形

+=
t ,max
c,max
t ,max
=
Fl Wy

F A
c ,max
=
− Fl Wy

F A
5、拉(压)弯组合变形下的强度计算
t ,max
=
Fl Wy

F A
[ t ]
c ,max
=| − Fl Wy

F A
|
[ c ]
拉弯组合变形下的危险点处于 单向应力状态
=
2

1 2
2 + 4 2
讨论 下列三组公式的适用范围?
第一组
任何截面、任何变形、任何应力状态
第二组
σ x或σy等于零的任何截面、任何变形的平面应力状态
第三组
圆截面、弯扭组合变形
例题:直径为D的直角拐作用一集中力Fp,画 弯矩和扭矩图,提取危险点的应力状态,写 出第三、四强度理论的相当应力
(1)受力分析与计算简图 (2)内力分析与内力图、确定危险截面 (3)由应力分布规律确定危险点,提取应力状态,确定主应力 (4)根据材料及危险点的应力状态选用合适的设计准则
1、等截面杆件的直径为D,长度为L,承受均布 载荷q、拉力P、以及外力偶M的联合作用,写 出第三强度理论的相当应力的表达式。
q
工程实例 (Engineering examples) 摇臂钻
D
3F
2F F
FD 2
1、外力向轴线简化,判定基本变形 弯扭组合 且为单向弯;
2、作内力图,确定危险面
My 3FL
T
FD/2
3 危险面上的内力
4、危险面上应力的分布规律,确定危险点

材料力学第10章 组合变形

材料力学第10章 组合变形

5
第二节 斜弯曲 在第6章讨论过平面弯曲,例如,如图10.2(a) 所示的矩形截面梁,外力F1,F2作用于同一纵向 平面内,作用线通过截面的弯心,且与形心主惯性 轴之一平行,梁弯曲后,梁的挠曲线位于外力所在 的形心主惯性平面内,这类弯曲为平面弯曲。如图 10.2(b)所示的矩形截面梁,外力F的作用线虽然通 过截面的弯心,但它与截面的形心主惯性轴斜交, 此时,梁弯曲后的挠曲线不再位于外力F所在的纵 向平面内,这类弯曲则称为斜弯曲(oblique bendin g)。
13
图10.4
图10.5
14
在梁的斜弯曲问题中,一般不考虑切应力的影 响,直接对危险截面上的危险点进行正应力强度计 算,其强度条件为
对于矩形、工字形及槽形截面梁,则可写成
15
五、斜弯曲梁的变形计算 梁在斜弯曲情况下的变形,仍可根据叠加原理 求解。如图10.3所示悬臂梁在自由端的挠度就等于 力F的分量Fy,Fz在各自弯曲平面内的挠度的矢量 和。因为
第10章
第一节 概述 一、组合变形的概念 前面有关章节分别讨论了杆件在各基本变形情 况下的强度计算和刚度计算。在实际工程中,许多 常用杆件往往并不处于单一的基本变形,而可能同 时存在着几种基本变形,它们的每一种变形所对应 的应力或变形属同一量级,在杆件设计计算时都必 须考虑。
1
图10.1
2
二、组合变形的求解方法 在小变形、线弹性材料的前提下,杆件同时存 在的几种基本变形,它们的每一种基本变形都是彼 此独立的,即在组合变形中的任一种基本变形都不 会改变另外一种基本变形相应的应力和变形。这样, 对于组合变形问题就能够用叠加原理来进行计算。
3
具体的方法及步骤是: ①荷载标准化。找出构成组合变形的所有基本 变形,将荷载化简为只引起这些基本变形的相当力 系。 ②基本变形计算。按构件原始形状和尺寸,计 算每一组基本变形的应力和变形。

弯曲与扭转组合变形的强度计算_工程力学_[共6页]

弯曲与扭转组合变形的强度计算_工程力学_[共6页]

σ1
σ+ 2
σ 2
2

2
,,
σ2
=
0
σ3
=
σ 2

σ 2
2
+τ2
对于塑性材料,通常选第三或第四强度理论,强度条件分别为
σ r3 = σ 2 + 4τ 2 ≤≤[σ≤] , σ r4 σ 2 + 3τ 2 [σ ]
(10.6)
将式(a)代入式(10.6)并注意到 Wp=2Wz,得到圆杆弯扭组合变形以内力表示的强度条件
= σ eq3
M 2 + = MT2 Wz
7.62 + 62 × 106 =
50.5 MPa <= [σ ]
80 MPa
π × 1253
32
计算结果表明轴 OA 的强度是足够的。
162
− 1125 × 103 1003 / 6
=6.99 MPa < [σ ]
故梁是安全的。
10.2 弯曲与扭转组合变形的强度计算
弯曲与扭转组合变形在机械工程中是很常见的,例如皮带轮传动轴、齿轮轴、曲柄轴等轴
类构件,在传递扭矩的同时往往还发生弯曲变形。
如图 10-5(a)所示水平直角曲拐,AB 段为圆杆,受集中力 F 作用。将 F 向 AB 杆的 B 端
σr3
= 1 M 2 + M Wz
2 n
≤≤[σ
]
,
σr4
= 1 M 2 + 0.75 Wz
M
2 n
[σ ]
(10.7)
工程中除了弯扭组合的杆件外,还有拉(压)与扭转的组合,或者拉压、弯曲与扭转的组 合变形,运用相同的分析方法,仍可用式(10.6)进行强度计算。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例11-1 图示为25 a工字钢简支梁。受均布荷载q及轴向压力FN作用。 已知q=10kN/m ,l=3m,FN=20kN。试求最大应力。
解:(1)求最大弯矩,它发生在跨中截面。 (2)分别求出最大弯矩及轴力所引起的最大应力 由弯矩引起的最大正应力 由轴力引起的压应力 最大总压应力
➢ 偏心拉压的应力计算
第十章 组合变形的强度计算
主要内容: 组合变形的概述 第一类组合变形——组合后为单向应力状态 第二类组合变形—组合后为复杂应力状态
§10-1 组合变形的概述
➢ 组合变形的概念
在外力的作用下,构件若同时产生两种或两种以上基本变形的 情况,就是组合变形。
塔器
搅拌轴
转轴
➢ 组合变形的强度计算 1.外力分析(目的是判断杆件产生何种组合变形)
解:(1)由于钢板在截面且AA处有一半圆槽,因而外力P对此截面为偏 心拉伸,其偏心距之值为:
截面A-A的轴力和弯矩分别为 轴力和弯矩在半圆槽底的a处都引起拉应力,故得最大应力为
A-A截面的b处,将产生最小拉应力
A-A截面上的应力分布如图所示。由于a点最大应力大于许 用应力,所以钢板的强度不够。 为了保证钢板具有足够的强度,在允许的条件下,可在下半 圆槽的对称位置再开一半圆槽,此时截面A-A上的应力
max
FN A
M max W
min
FN A
M max W
该截面的上下边缘上各点是危险点,这些危险
点上的应力都是正应力,亦即是简单应力状态。
4. 强度计算 进一步分析可知上边缘各点的拉应力最大
建立强度条件
max
FN A
M max W
[ ]
对于拉、压许用应力相同的材料, 当FN是拉力时,可由上式计算; 当FN为压力时,则式中的加号变为减号,取绝对值。
选“1”点,在“l”点附近取一单元体, 如图所示。在单元体左右两个侧面上 既有正应力又有切应力,则“1”点的 主应力为
对于弯扭组合受力的圆轴,一般用 塑性材料制成,强度条件可写为
对于弯扭组合受力的圆轴,一般用塑性材料制成,得圆 轴在弯曲和扭转组合形下的强度条件为
第三强度理论: 第四强度理论:
xd3
M 2 T2
Wz
xd4
M 2 0.75T 2
Wz
[σ] :塑性材料拉伸时的许用应力; M和T:分别为危险截面上的弯矩和扭矩。
两式不适用于非圆截面杆
例11-6 如图所示的传动轴是由电动机带动,轴长l=1.2 m,中间安装
一带轮,重力G=5kN,半径R=0.6m,平带紧边张力F1=6 kN,松 边张力F2=3kN。如轴直径d=100 mm,材料许用应力[σ]= 50 MPa。 试按第三强度理论校核轴的强度。
FN F cos
危险面在根部A截面处
3.应力分析(目的是找到危险面上的危险点) 根部危险截面上由轴向拉 力引起的拉应力均匀分布
FN Fx F cos
AA A
横截面面积
在最大弯矩作用下,危险截 面上的应力按线性规律分布
Wmax 应力的最大与 最小值
将力F分解为轴向分力 Fx和横向分力Fy
Fx F cos Fy F sin
弯曲 轴向拉伸
梁在F力作用下发生弯曲与轴向拉伸组合变形
2.内力分析(目的是找出危险面)
构件在垂直于轴线的分力Py作用下, 将引起各横截面上产生不同的弯矩, 最大弯矩发生在根部A截面处
M max Fl sin
轴在沿轴线的分力Fx作用下将引起各横截面上产生相同的轴向拉力
§10-3 第二类组合变形—组合后为复杂应力状态
弯曲与扭转的组合变形
拐轴AB段为等直圆杆,直径为
d,A端为固定端约束。现讨
论 在 力 F 的 作 用 下 AB 轴 的 受 力情况。
作出圆轴的扭矩图和弯矩图,
如图b、c所示。由图看出,在
固定端截面处的扭矩和弯矩都 为最大值(Mmax=Fl、Fa= Mx), 故该截面为危险截面。
解:将作用在带轮上的平带拉力F1和F2向轴线 简化,其结果如图 (b)所示。传动轴所受铅 垂力为F。分别作出弯矩图和扭矩图,如图 (c)、(d)所示,由此可以判断C截面为危险截 面。C截面上的Mmax和T分别为:
根据公式得
转轴的强度足够
习题参考解答或提示
当构件受到作用线与轴 线平行,但不通过横截面 形心的拉力(或压力)作 用时,此构件受到偏心载 荷,称为偏心拉伸(或压 缩)。 对于单向偏心拉伸杆 件相当于弯曲与轴向 拉伸的组合的杆件, 上述公式仍成立。
例11-3 带有缺口的钢板如图所示,已知钢板宽度b=8cm,厚度δ=1cm,上 边缘开有半圆形槽,其半径t=1cm,,已知拉力p=80KN,钢板许用应力[σ] =140MN/m2。试对此钢板进行强度校核。
相关文档
最新文档