高2013级高三文科数学测试题(二)数列,三角函数

合集下载

2013年文科全国各省市高考真题——数列(解答题带答案)

2013年文科全国各省市高考真题——数列(解答题带答案)

2013年全国各省市文科数学—数列1、(本小题满分10分)等差数列{}n a 中,71994,2,a a a ==(I )求{}n a 的通项公式;(II )设{}1,.n n n nb b n S na =求数列的前项和2、(本小题满分12分)已知等差数列{}n a 的前n 项和n S 满足30S =,55S =-。

(Ⅰ)求{}n a 的通项公式; (Ⅱ)求数列21211{}n n a a -+的前n 项和。

3、(本小题满分12分)已知等差数列{}n a 的公差不为零,125a =,且11113,,a a a 成等比数列。

(Ⅰ)求{}n a 的通项公式;(Ⅱ)求14732+n a a a a -++⋅⋅⋅+;4、2013山东文(20)(本小题满分12分)设等差数列{}n a 的前n 项和为n S ,且244S S =,122+=n n a a (Ⅰ)求数列{}n a 的通项公式(Ⅱ)设数列{}n b 满足*121211,2n n n b b b n N a a a +++=-∈ ,求{}n b 的前n 项和n T5、(本小题共13分)给定数列1a ,2a , ,n a 。

对1,2,3,,1i n =- ,该数列前i 项的最大值记为i A ,后n i -项1i a +,2i a +, ,n a 的最小值记为i B ,i i i d A B =-。

(1)设数列{}n a 为3,4,7,1,写出1d ,2d ,3d 的值。

(2)设1a ,2a , ,n a (4n ≥)是公比大于1的等比数列,且10a >,证明1d ,2d , ,1n d -是等比数列。

(3)设1d ,2d , ,1n d -是公差大于0的等差数列,且10d >,证明1a ,2a , ,1n a -是等差数列。

6、(本小题满分13分,(Ⅰ)小问7分,(Ⅱ)小问6分)设数列{}n a 满足:11a =,13n n a a +=,n N +∈.(Ⅰ)求{}n a 的通项公式及前n 项和n S ;(Ⅱ)已知{}n b 是等差数列,n T 为前n 项和,且12b a =,3123b a a a =++,求20T .7、 (本小题满分12分) 在等比数列{}n a 中,212a a -=,且22a 为13a 和3a 的等差中项, 求数列{}n a 的首项、公比及前n 项和。

2013年全国各地高考文科数学试题分类汇编:三角函数

2013年全国各地高考文科数学试题分类汇编:三角函数

2013年全国各地高考文科数学试题分类汇编:三角函数一、选择题1 .〔2013年高考大纲卷〔文〕〕a 是第二象限角,5sin ,cos 13a a ==则〔 〕 A .1213-B .513-C .513D .1213【答案】A2 .〔2013年高考课标Ⅰ卷〔文〕〕函数()(1cos )sin f x x x =-在[,]ππ-的图像大致为【答案】C ;3 .〔2013年高考卷〔文〕〕函数()2sin()(0,)22f x x ππωϕωϕ=+>-<<的局部图象如下图,那么,ωϕ的值分别是〔 〕A .2,3π-B .2,6π-C .4,6π-D .4,3π 【答案】A4 .〔2013年高考〔文〕〕在锐角∆ABC 中,角A,B 所对的边长分别为a,b. 假设2sinB=3b,那么角A 等于______〔 〕A .3πB .4πC .6πD .12π【答案】A5 .〔2013年高考卷〔文〕〕将函数)22)(2sin()(πθπθ<<-+=x x f 的图象向右平移)0(>ϕϕ个单位长度后得到函数)(x g 的图象,假设)(),(x g x f 的图象都经过点)23,0(P ,那么ϕ的值可以是〔 〕 A .35π B .65π C .2πD .6π【答案】B6 .〔2013年高考卷〔文〕〕设△ABC 的角A , B , C 所对的边分别为a , b , c , 假设cos cos sin b C c B a A +=, 那么△ABC 的形状为〔 〕A .直角三角形B .锐角三角形C .钝角三角形D .不确定【答案】A7 .〔2013年高考卷〔文〕〕在ABC ∆,角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B Ab +=,a b B >∠=且则〔 〕A .6πB .3π C .23π D .56π【答案】A8 .〔2013年高考课标Ⅱ卷〔文〕〕△ABC 的角A,B,C 的对边分别为a,b,c,b=2,B=,C=,那么△ABC 的面积为〔 〕 A .2+2B .+1C .2-2D .-1【答案】B9 .〔2013年高考卷〔文〕〕3sincos 23αα==若,则〔 〕 A .23-B .13-C .13D .23【答案】C10.〔2013年高考卷〔文〕〕ABC ∆的角A B C 、、的对边分别是a b c 、、,假设2B A =,1a =,3b =,那么c =〔 〕 A .23B .2C .2D .1【答案】B11.〔2013年高考课标Ⅱ卷〔文〕〕sin2α=,那么cos 2(α+)=〔 〕A .B .C .D .【答案】A12.〔2013年高考卷〔文〕〕51sin()25πα+=,那么cos α=〔 〕A .25-B .15-C .15D .25【答案】C13.〔2013年高考卷〔文〕〕将函数3cos sin ()y x x x =+∈R 的图象向左平移(0)m m >个单位长度后,所得到的图象关于y 轴对称,那么m 的最小值是〔 〕 A .π12B .π6C .π3D .5π6【答案】B14.〔2013年高考大纲卷〔文〕〕假设函数()()sin0=y x ωϕωω=+>的部分图像如图,则〔 〕A .5B .4C .3D .2【答案】B15.〔2013年高考卷〔文〕〕函数()sin 24f x x π⎛⎫=- ⎪⎝⎭在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值是〔 〕A .1-B .22-C .22D .0【答案】B16.〔2013年高考〔文〕〕设ABC ∆的角,,A B C 所对边的长分别为,,a b c ,假设2,3sin 5sin b c a A B +==,那么角C =〔 〕 A .3πB .23πC .34πD .56π 【答案】B 17.〔2013年高考课标Ⅰ卷〔文〕〕锐角ABC ∆的角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,6c =,那么b =〔 〕A .10B .9C .8D .5【答案】D18.〔2013年高考卷〔文〕〕函数f(x)=sin xcos x+32cos 2x 的最小正周期和振幅分别是 〔 〕A .π,1B .π,2C .2π,1D .2π,2【答案】A19.〔2013年高考卷〔文〕〕在△ABC 中,3,5a b ==,1sin 3A =,那么sin B =〔 〕 A .15B .59C 5.1 【答案】B20.〔2013年高考卷〔文〕〕函数x x x y sin cos +=的图象大致为【答案】D 二、填空题21.〔2013年高考卷〔文〕〕设sin 2sin αα=-,(,)2παπ∈,那么tan 2α的值是________.【答案】322.〔2013年高考课标Ⅱ卷〔文〕〕函数cos(2)()y x ϕπϕπ=+-≤<的图像向右平移2π个单位后,与函数sin(2)3y x π=+的图像重合,那么||ϕ=___________.【答案】56π23.〔2013年高考数学试题〔文科〕〕ABC ∆的角A 、B 、C 所对的边分别是a ,b ,c .假设2220a ab b c ++-=,那么角C 的大小是________(结果用反三角函数值表示).【答案】23π24.〔2013年高考数学试题〔文科〕〕假设1cos cos sin sin 3x y x y +=,那么()cos 22x y -=________. 【答案】79-25.〔2013年高考课标Ⅰ卷〔文〕〕设当x θ=时,函数()sin 2cos f x x x =-取得最大值,那么cos θ=______.【答案】255-; 26.〔2013年高考卷〔文〕〕设f(x)=sin3x+cos3x,假设对任意实数x 都有|f(x)|≤a,那么实数a 的取值围是_____._____【答案】2a ≥三、解答题27.〔2013年高考大纲卷〔文〕〕设ABC ∆的角,,A B C 的对边分别为,,a b c ,()()a b c a b c ac ++-+=.(I)求B(II)假设31sin sin 4A C =,求C .【答案】(Ⅰ)因为()()a b c a b c ac ++-+=,所以222a cb ac +-=-.由余弦定理得,2221cos 22a cb B ac +-==-, 因此,0120B =.(Ⅱ)由(Ⅰ)知060A C +=,所以cos()cos cos sin sin A C A C A C -=+ cos cos sin sin 2sin sin A C A C A C =-+cos()2sin sin A C A C =++131224-=+⨯32=, 故030A C -=或030A C -=-, 因此,015C =或045C =.28.〔2013年高考〔文〕〕函数f(x)=(1) 求2()3f π的值; (2) 求使1()4f x <成立的x 的取值集合【答案】解: (1) 41)212cos 232(sin 21)3sin sin 3cos(cos cos )(+⋅+⋅=⋅+⋅⋅=x x x x x x f ππ41)32(.414123sin 21)32(41)62sin(21-==-=+=⇒++=ππππf f x 所以. (2)由(1)知,)2,2()62(0)62sin(4141)62sin(21)(f ππππππk k x x x x -∈+⇒<+⇒<++=.),12,127(.),12,127(Z k k k Z k k k x ∈--∈--∈⇒ππππππππ所以不等式的解集是:29.〔2013年高考卷〔文〕〕在△ABC 中, 角A , B , C 所对的边分别是a , b , c . sin 3sin b A c B =, a = 3, 2cos 3B =. (Ⅰ) 求b 的值;(Ⅱ) 求sin 23B π⎛⎫- ⎪⎝⎭的值.【答案】30.〔2013年高考卷〔文〕〕函数(),12f x x x R π⎛⎫=-∈ ⎪⎝⎭.(1) 求3f π⎛⎫⎪⎝⎭的值; (2) 假设33cos ,,252πθθπ⎛⎫=∈ ⎪⎝⎭,求6f πθ⎛⎫- ⎪⎝⎭.【答案】(1)133124f ππππ⎛⎫⎛⎫⎛⎫=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)33cos ,,252πθθπ⎛⎫=∈ ⎪⎝⎭,4sin 5θ==-,1cos cos sin sin 64445f ππππθθθθ⎛⎫⎛⎫⎫∴--=+=- ⎪ ⎪⎪⎝⎭⎝⎭⎭.31.〔2013年高考卷〔文〕〕设函数2()sin cos (0)f x x x x ωωωω=->,且()y f x =的图象的一个对称中心到最近的对称轴的距离为4π,(Ⅰ)求ω的值 (Ⅱ)求()f x 在区间3[,]2ππ上的最大值和最小值 【答案】32.〔2013年高考卷〔文〕〕在锐角△ABC 中,角A,B,C 的对边分别为a,b,c,且2asinB=3b .(Ⅰ)求角A 的大小;(Ⅱ) 假设a=6,b+c=8,求△ABC 的面积.【答案】解:(Ⅰ)由得到:2sin sin 3sin A B B =,且3(0,)sin 0sin 22B B A π∈∴≠∴=,且(0,)23A A ππ∈∴=;(Ⅱ)由(1)知1cos 2A =,由得到:222128362()3366433623b c bc b c bc bc bc =+-⨯⇒+-=⇒-=⇒=,所以1283732323ABCS =⨯⨯=; 33.〔2013年高考卷〔文〕〕如图,在等腰直角三角形OPQ ∆中,90OPQ ∠=,22OP=,点M 在线段PQ 上.(1)假设3OM =,求PM 的长;(2)假设点N 在线段MQ 上,且30MON ∠=,问:当POM ∠取何值时,OMN ∆的面积最小?并求出面积的最小值.【答案】解:(Ⅰ)在OMP ∆中,45OPM∠=︒,OM =OP =,由余弦定理得,2222cos 45OM OP MP OP MP =+-⨯⨯⨯︒, 得2430MP MP -+=,解得1MP =或3MP =.(Ⅱ)设POM α∠=,060α︒≤≤︒, 在OMP ∆中,由正弦定理,得sin sin OM OPOPM OMP=∠∠, 所以()sin 45sin 45OP OM α︒=︒+,同理()sin 45sin 75OP ON α︒=︒+故1sin 2OMN S OM ON MON ∆=⨯⨯⨯∠ ()()221sin 454sin 45sin 75OP αα︒=⨯︒+︒+ ()()1sin 45sin 4530αα=︒+︒++︒====()131sin 23042α=++︒因为060α︒≤≤︒,30230150α︒≤+︒≤︒,所以当30α=︒时,()sin 230α+︒的最大值为1,此时OMN ∆的面积取到最小值.即230POM ∠=︒时,OMN ∆的面积的最小值为843-.34.〔2013年高考卷〔文〕〕向量1(cos ,),(3sin ,cos2),2x x x x =-=∈a b R , 设函数()·f x =a b . (Ⅰ) 求f (x)的最小正周期.(Ⅱ) 求f (x) 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.【答案】(Ⅰ) ()·f x =a b =)62sin(2cos 212sin 232cos 21sin 3cos π-=-=-⋅x x x x x x .最小正周期ππ==22T .所以),62sin()(π-=x x f 最小正周期为π. (Ⅱ)上的图像知,在,由标准函数时,当]65,6-[sin ]65,6-[)62(]2,0[ππππππx y x x =∈-∈.]1,21[)]2(),6-([)62sin()(-=∈-=πππf f x x f . 所以,f (x) 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值分别为21,1-.35.〔2013年高考卷〔文〕〕(本小题总分值13分,(Ⅰ)小问4分,(Ⅱ)小问9分)在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,且2223a b c ab =++. (Ⅰ)求A ;(Ⅱ)设3a =,S 为△ABC 的面积,求3cos cos S B C +的最大值,并指出此时B 的值.【答案】36.〔2013年高考卷〔文〕〕在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且3cos()cos sin()sin()5A B B A B A c ---+=-.(Ⅰ)求sin A 的值;(Ⅱ)假设42a =,5b =,求向量BA 在BC 方向上的投影.【答案】解:(Ⅰ)由3cos()cos sin()sin()5A B B A B A c ---+=- 得53sin )sin(cos )cos(-=---B B A B B A ,那么 53)cos(-=+-B B A ,即 53cos -=A又π<<A 0,那么 54sin =A(Ⅱ)由正弦定理,有 BbA a sin sin =,所以22sin sin ==a A b B , 由题知b a >,那么 B A >,故4π=B .根据余弦定理,有 )53(525)24(222-⨯⨯-+=c c , 解得 1=c 或 7-=c (负值舍去),向量BA 在BC 方向上的投影为=B BA cos 22 37.〔2013年高考卷〔文〕〕在△ABC 中,角A,B,C 的对边分别为a,b,c,sinAsinB+sinBsinC+cos2B=1.(1)求证:a,b,c 成等差数列;(2) 假设C=23π,求ab的值. 【答案】解:(1)由得sinAsinB+sinBsinC+1-2sin 2B=1.故sinAsinB+sinBsinC=2sin 2B因为sinB 不为0,所以sinA+sinC=2sinB 再由正弦定理得a+c=2b,所以a,b,c 成等差数列(2)由余弦定理知2222cos c a b ac C =+-得2222(2)2cos3b a a b ac π-=+-化简得35a b = 38.〔2013年高考卷〔文〕〕在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c . cos23cos()1A B C -+=.(Ⅰ)求角A 的大小; (Ⅱ)假设△ABC 的面积53S =,5b =,求sin sin B C 的值.【答案】(Ⅰ)由cos 23cos()1A B C -+=,得22cos 3cos 20A A +-=,即(2cos 1)(cos 2)0A A -+=,解得1cos 2A = 或cos 2A =-(舍去). 因为0πA <<,所以π3A =. (Ⅱ)由1133sin 53,2224S bc A bc bc ==⋅==得20bc =. 又5b =,知4c =. 由余弦定理得2222cos 25162021,a b c bc A =+-=+-=故21a =.又由正弦定理得222035sin sin sin sin sin 2147b c bc B C A A A a a a =⋅==⨯=.39.〔2013年高考〔文〕〕设函数()sin sin()3f x x x π=++.(Ⅰ)求()f x 的最小值,并求使()f x 取得最小值的x 的集合;(Ⅱ)不画图,说明函数()y f x =的图像可由sin y x =的图象经过怎样的变化得到.【答案】解:(1)3sincos 3cossin sin )(ππx x x x f ++=x x x x x cos 23sin 23cos 23sin 21sin +=++=)6sin(3)6sin()23()23(22ππ+=++=x x当1)6sin(-=+πx 时,3)(min -=x f ,此时)(,234,2236Z k k x k x ∈+=∴+=+πππππ所以,)(x f 的最小值为3-,此时x 的集合},234|{Z k k x x ∈+=ππ.(2)x y sin =横坐标不变,纵坐标变为原来的3倍,得x y sin 3=; 然后x y sin 3=向左平移6π个单位,得)6sin(3)(π+=x x f 40.〔2013年高考卷〔文〕〕函数21(2cos 1)sin 2cos 42f x x x x =-+(). (I)求f x ()的最小正周期与最大值;(II)假设(,)2παπ∈,且22f α=(),求α的值. 【答案】解:(I)因为21(2cos 1)sin 2cos 42f x x x x =-+()=1cos 2sin 2cos 42x x x + =1(sin 4cos 4)2x x +=2)24x π+,所以()f x 的最小正周期为2π,最大值为22.(II)因为2f α=(),所以sin(4)14πα+=. 因为(,)2παπ∈,所以9174(,)444πππα+∈,所以5442ππα+=,故916πα=. 41.〔2013年高考数学试题〔文科〕〕此题共有2个小题.第1小题总分值6分,第2小题总分值8分.函数()2sin()f x x ω=,其中常数0ω>. (1)令1ω=,判断函数()()()2F x f x f x π=++的奇偶性并说明理由;(2)令2ω=,将函数()y f x =的图像向左平移6π个单位,再往上平移1个单位,得到函数()y g x =的图像.对任意的a R ∈,求()y g x =在区间[,10]a a π+上零点个数的所有可能值.【答案】法一:解:(1)()2sin 2sin()2sin 2cos )24F x x x x x x ππ=++=+=+ ()F x 是非奇函数非偶函数.∵()0,()44F F ππ-==∴()(),()()4444F F F F ππππ-≠-≠-∴函数()()()2F x f x f x π=++是既不是奇函数也不是偶函数.(2)2ω=时,()2sin 2f x x =,()2sin 2()12sin(2)163g x x x ππ=++=++,其最小正周期T π=由2sin(2)103x π++=,得1sin(2)32x π+=-,[来源:学,科,网] ∴2(1),36k x k k Z πππ+=--⋅∈,即(1),2126k k x k Z πππ=--⋅-∈ 区间[],10a a π+的长度为10个周期,假设零点不在区间的端点,那么每个周期有2个零点;假设零点在区间的端点,那么仅在区间左或右端点处得一个区间含3个零点,其它区间仍是2个零点; 故当(1),2126k k a k Z πππ=--⋅-∈时,21个,否那么20个. 法二:42.〔2013年高考卷〔文〕〕设向量()()3sin ,sin ,cos ,sinx ,0,.2a x x b x x π⎡⎤==∈⎢⎥⎣⎦(I)假设.a b x =求的值;(II)设函数()(),.f x a b f x =求的最大值【答案】。

2013年全国各省市高考真题——三角函数(带答案)

2013年全国各省市高考真题——三角函数(带答案)

2013年全国各省市文科数学—三角函数1、2013大纲文T2.已知a 是第二象限角,5sin ,cos 13a a ==则 (A )1213-(B )513- (C )513 (D )12132、2013大纲文T9.若函数()()sin 0=y x ωϕωω=+>的部分图像如图,则(A )5 (B )4 (C )3 (D )23、2013新课标文T9.函数()(1cos )sin f x x x =-在[,]ππ-的图像大致为( )4、2013新课标文T10.已知锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,6c =,则b =( )(A )10(B )9(C )8(D )55、2013新课标Ⅱ文T4.ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2b =,6B π=,4C π=,则ABC ∆的面积为( )(A )2 (B 1 (C )2 (D 16、2013新课标Ⅱ文T6.已知2sin 23α=,则2cos ()4πα+=( ) (A )16 (B )13 (C )12 (D )237、2013辽宁文T6.在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c1sin cos sin cos ,2a B C c B Ab +=,a b B >∠=且则A .6π B .3πC .23πD .56π8、2013山东文T7.ABC ∆的内角A B C 、、的对边分别是a b c 、、, 若2B A =,1a =,b =,则c =(A)(D)19、2013山东文T9.函数x x x y sin cos +=的图象大致为10、2013北京文T5.在ABC ∆中,3a =,5b =,1sin 3A =,则sin B =( ) A .15 B .59CD .111、2013四川文T6.函数()2sin()(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是( )(A )2,3π-(B )2,6π-(C )4,6π-(D )4,3π12、2013天津文T6. 函数()sin 24f x x π⎛⎫=- ⎪⎝⎭在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值是(A) 1- (B) (D) 0 13、2013浙江文T6.函数f(x)=sin xcos x+32cos 2x 的最小正周期和振幅分别是 A 、π,1 B 、π,2 C 、2π,1 D 、2π,2 14、2013福建文T9.将函数)22)(2sin()(πθπθ<<-+=x x f 的图象向右平移)0(>ϕϕ个单位长度后得到函数)(x g 的图象,若)(),(x g x f 的图象都经过点)23,0(P ,则ϕ的值可以是( ) A .35π B .65π C .2π D .6π 15、2013广东文T4.已知51sin()25πα+=,那么cos α= A .25-B .15-C .15D .2516、2013安徽文T9. 设ABC ∆的内角,,A B C 所对边的长分别为,,a b c ,若2,3sin 5sin b c a A B +==,则角C =(A)3π (B) 23π (C) 34π (D) 56π 17、2013陕西文T9. 设△ABC 的内角A , B , C 所对的边分别为a , b , c , 若cos cos sin b C c B a A +=, 则△ABC 的形状为 (A) 直角三角形(B) 锐角三角形(C) 钝角三角形(D) 不确定18、2013湖南文T5.在锐角∆ABC 中,角A ,B 所对的边长分别为a ,b. 若2sinB=3b ,则角A 等于A.3π B.4π C.6πD.12π19、2013湖北文T6.将函数sin ()y x x x =+∈R 的图象向左平移(0)m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是 A .π12 B .π6C .π3D .5π620、2013江西文T3. sincos 2αα==若 ( ) A. 23-B. 13-C. 13D.2321、2013新课标文T16.设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=______.22、2013新课标Ⅱ文T16.函数cos(2)()y x ϕπϕπ=+-≤≤的图象向右平移2π个单位后,与函数sin(2)3y x π=+的图象重合,则ϕ=_________。

2013年数学高考题分类三角函数资料

2013年数学高考题分类三角函数资料

任意角和弧度制及任意角的三角函数、三角函数的诱导公式一、选择题1. (2013·浙江高考理科·T6)已知R α∈,sin 2cos αα+=则t a n 2α=( ) A.43 B. 34 C. 34- D. 43- 【解题指南】由已知条件和22sin cos 1αα+=联立方程组可求得sin α与cos α的值,从而求得tan α,再利用倍角公式求tan 2α.【解析】选C.由22sin 2cos sin cos 1αααα⎧+=⎪⎨⎪+=⎩,解得sin cos αα⎧=⎪⎪⎨⎪=⎪⎩或sin cos αα⎧=⎪⎪⎨⎪=⎪⎩所以1tan 3α=-或tan 3α=,当1tan 3α=-时,2222tan 33tan 21tan 4113ααα-===--⎛⎫-- ⎪⎝⎭当tan 3α=时,222tan 63tan 21tan 134ααα===---,故选C.2. (2013·广东高考文科·T4)已知51sin()25πα+=,那么cos α=( )A .25- B .15- C .15D .25【解题指南】本题考查三角函数诱导公式,可以直接利用公式计算. 【解析】选C. 51sin()sin(2+)sin cos 2225πππαπααα⎛⎫+=+=+== ⎪⎝⎭.3.(2013·大纲版全国卷高考文科·T2)已知α是第二象限角,5sin ,cos 13αα==则( ) A.1213- B.513- C.513 D.1213【解题指南】由1cos sin 22=+αα及αsin 求出αcos 的值,并利用a 所在象限判断αcos 的符号.【解析】选 A.因为1cos sin 22=+αα,所以169144sin 1cos 22=-=αα,则1312cos ±=α,又a 是第二象限角,所以1312cos -=α 二、填空题4.(2013·大纲版全国卷高考理科·T13)已知1sin ,cot 3是第三象限角,则=-=ααα .【解析】98sin 1cos 22=-=αα,而α为第三象限角,所以0cos <α,解得322cos -=α,又223322sin cos cot =--==ααα. 【答案】22三角函数的图象与性质一、选择题1.(2013·湖北高考文科·T6)与(2013·湖北高考理科·T4)相同将函数y=3cosx+sinx (x ∈R )的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( ) A.12π B. 6π C. 3π D 65π【解题指南】先化简,再平移,余弦函数关于y 轴对称。

2013高考数学(文)真题解析分类汇编-三角函数汇总

2013高考数学(文)真题解析分类汇编-三角函数汇总

2013年高考数学(文)解析分类汇编3:三角函数一、选择题1 .(2013年高考大纲卷(文2))已知a 是第二象限角,5sin ,cos 13a a ==则 ( )A .1213-B .513- C .513D .1213【答案】A 【解析】因为135sin =α,α为第二象限角,所以1312cos -=α.故选A.2 .(2013年高考课标Ⅰ卷(文9))函数()(1cos )sin f x x x =-在[,]ππ-的图像大致为【答案】C ;【解析】函数()(1cos )sin f x x x =-为奇函数,所以图象关于原点对称,所以排除B.02x π<<时,()0f x >,排除A.()(1cos )sin 1222f πππ=-=,排除D,选C.3 .(2013年高考四川卷(文6))函数()2sin()(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是( )A .2,3π-B .2,6π-C .4,6π-D .4,3π【答案】A 【解析】43129312543ππππ==+=T ,所以π=T ,所以πωπ=2,2=ω,)42sin(2)(+=x x f ,所以πϕπk =+-⨯)3(2,所以32ππϕ+=k ,又22πϕπ<<-,所以3πϕ-=,选A.4 .(2013年高考湖南(文5))在锐角ABC ∆中,角,A B 所对的边长分别为,a b .若2sin ,a B A =则角等于A .3π B .4π C .6π D .12π【答案】A【解析】本题考查正弦定理的应用。

由正弦定理得得2sin sin A B B =,即sin A =,以为三角形为锐角ABC ∆,所以3A π=,选A.5 .(2013年高考福建卷(文))将函数)22)(2sin()(πθπθ<<-+=x x f 的图象向右平移)0(>ϕϕ个单位长度后得到函数)(x g 的图象,若)(),(x g x f 的图象都经过点)23,0(P ,则ϕ的值可以是( )A .35π B .65π C .2π D .6π【答案】B【解析】本题考查的三角函数的图像的平移.把)23,0(P 代入)22)(2sin()(πθπθ<<-+=x x f ,解得3πθ=,所以)232sin()(ϕπ-+=x x g ,把)23,0(P 代入得,πϕk =或6ππϕ-=k ,观察选项,故选B6 .(2013年高考陕西卷(文9))设△ABC 的内角A , B , C 所对的边分别为a , b , c , 若cos cos sin b C c B a A +=, 则△ABC 的形状为( )A .直角三角形B .锐角三角形C .钝角三角形D .不确定【答案】A【解析】因为cos cos sin b C c B a A +=,所以A A B C C B sin sin cos sin cos sin =+又A C B B C C B sin )sin(cos sin cos sin =+=+。

高三文科数学三角函数的性质图像及其变换

高三文科数学三角函数的性质图像及其变换

2013 届学高三文科数学练习——三角函数的性质、图像及其变换班别:高三()班姓名:座号:一、选择题1、【2010 揭阳】 设函数 f (x) cos(2 x) , x R ,则 f ( x) 是()A .最小正周期为的奇函数 B .最小正周期为 的偶函数 C .最小正周期为2 的奇函数D .最小正周期为的偶函数22、【济宁一中】 函数 ysin(2 x) 图象的对称轴方程可能是()3A . xB . xC . xD . x12612 6y3、函数 f (x) sin(x)(0) 的一段图象如下图,则=( )11 B.1 C.D.A.2244 4、【台州调研】 “ x k( k z) ”是“ tanx=1”建立的( )4A .充足而不用要条件B .必需而不充足条件C .充足必需条件D .既不充足也不用要条件O12x15、【临沭一中】 为获得函数 y sin x 的图象,只要将 y sin( x) 函数的图像( )6A .向左平移个长度单位 B .向右平移个长度单位66C .向左平移5个长度单位D .向右平移5个长度单位666、【佛山质检】 把函数 y sin x ( xR ) 的图象上全部 的点向左平移个单位长度,再把所得图象上全部6点的横坐标伸长到本来 的 2倍(纵坐标不变) ,获得 的图象所表示 的函数为()A . ysin(2 x ), x RB . ysin(2 x3 ), x R131C . y x ), x RD . y x ), x Rsin(sin(2 6 2 67、【 2012 肇庆一模】 已知函数 y f (x) ,将 f (x) 的图象上的每一点的纵坐标保持不变,横坐标扩大到原来的 2 倍,而后把所得的图象沿着 x 轴向左平移 个单位,这样获得的是 y 1sin x 的图象,那么函数y f ( x) 的分析式是( 22 )A. f (x) 1 xB. f (x) 1 2xsin 2 2 sin2 2 2C. f ( x)1sin x2D. f (x)1sin 2x2 22 28、【 2010 重庆文】 以下函数中,周期为,且在 [, ] 上为减函数的是( )4 2A . y sin(2 x) B . ycos(2 x) C . y sin( x) D . y cos(x)22229、【 2012 青岛一模】 将函数 y sin( x) 的图象上全部点的横坐标伸长到本来的2 倍(纵坐标不变) ,3再将所得图象向左平移个单位,则所得函数图象对应的分析式为( )3A. y1) B.y sin(2 x) C. y1 D. y1 )sin( xsin xsin( x23622610、【 2012 佛山一中】 将函数 y 2sin x 图象上的全部点的横坐标减小到本来的1(纵坐标不变) ,获得图2象 C 1 ,再将图象 C 1 沿 x 轴向左平移个单位,获得图象C 2 ,则图象 C 2 的分析式能够是 ()16A . y2sin( )B . y2sin(2 x)x2 33C . y2sin(2 x) D . y 2sin(2 x )6 611、【山师大附中】 已知 a 是实数,则函数 f ( x) 1 asin ax 的图象不行能是()12、【 2012 德州一模】 已知函数 y Asin( x ) m 的最大值为 4,最小值为 0,两个对称轴间的最短距离为, 直线 x是其图象的一条对称轴,则切合条件的分析式是 ()26A. y 4 sin( 2 x)B. y2 sin( 2x) 266 C. y2 sin( x) 2 D . y2 sin( x) 23313、【华师大附中】 以下函数中,最小正周期为π,且图象对于直线x对称的是( )sin( x3sin(xA. ysin( 2x) B. ysin(2x) C. y) D. y )662 32614、【 2010 青岛】将奇函数 f (x)Asin( x)( A 0,0,)的图象向左平移个单位得22 6到的图象对于原点对称,则的值能够为()A . 2B . 3C . 4D . 6二、填空题15、【西城二模】函数 y sin x cos x 的最小正周期是 _________,最大值是 ________. 16、函数 f ( x) 2cos 2 x2 3 sin xcos x 1 在 [0, ] 的单一递加区间为17、【 2012 淄博一模】 已知函数 y=sin(x)(0,0)2的部分图象如下图,则 的值 .18、【珠海期末】设0 ,函数y sin( x) 2 的图像向右平移 4 个单位后与原图像重合,则的3最小值是.319、【金山中学】假如函数y 3 cos(2x ) 的图像对于点(4,0) 中心对称,那么| 的最小值是_ ___ 320、【嵊州一中】定义运算a b 为: a b a a b2 1 ,则函数f ( x) sin x cos x 的值域为b a,比如,1b三、填空题21、【 2012 旭日一模】已知函数 f (x) cos( x π) .3π43 π求 sin π的值;( ⅰ ) 若f ( ) ,此中,45 4 4( ⅱ ) 设g (x) f x f x ,求函数 g (x) 在区间π π, 上的最大值和最小值 .2 6 322、【深圳调研】已知函数f ( x) sin( x )(0,0 ) 为偶函数,其图象上相邻的两个最高点之间的距离为 2 .(Ⅰ)求 f ( x) 的分析式;(Ⅱ)若(3 , ), f ( ) 1 ,求 sin( 25)的值.2 3 3 323 、已知函数 f (x)1 sin 2xsincos2 xcos1 sin()(0) ,其图象过点 ( , 1 ) .1)求 的值;22 26 2((2)将函数 y f ( x) 的图象上各点的横坐标缩短到本来的1,纵坐标不变,获得函数 y g( x) 的图象,2求函数 g ( x) 在区间 [0,] 上的最大值和最小值 .424、【山师大附中】 已知函数 f ( x)3 sin x cos x cos 2x1, x R( 1)求函数 f ( x) 的最小正周期和单一增区间; 2( 2)作出函数在一个周期内的图象。

2013年数学高考题分类三角函数-推荐下载

2013年数学高考题分类三角函数-推荐下载

首先判断函数的奇偶性进行排除,然后再根据函数的图象特征取最佳值进行验证排除.,即x x x f sin )cos 1()(--=-)(f x f -=-关于原点对称,所以函数为奇函数,排除B.又当)(x f ,排除A. 当时012sin >=π43π=x 123+π等问题,合理利用管线敷设技术。

线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。

调试工作并且进行过关运行高中资料试卷技术指导。

对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

护装置调试技术,要求电力保护装置做到准确灵活。

对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

A. B.54【解题指南】观察图象可知,【解析】选B.由图像可知,2.(2013·山东高考理科π移个单位后,得到一个偶函数的图象,则C.D.4,6π-4,对函数,ωϕ()2sin(f x ω=.,根据图象可知359()412312T πππ=--==B.2,-D.4,3π式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。

线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。

对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。

2013年数学全国Ⅱ卷(文、理)三角函数试题浅析

2013年数学全国Ⅱ卷(文、理)三角函数试题浅析
系、 和角正弦 ( 切) 公式 、 三角形 内角 和定理 、 正、 余 弦定 理等知识 , 总之 , 试题 体现一个 “ 稳” 字, “ 双基” 考查仍是重 中之重 。 第二 , 就数学 思想方法 而言 , 转 化与化归思 想 、 方 程思想 、 分 类讨论思想考查 明显 , 是试题 的一大特点。
出版 社 . 2 0 0 8 .
第三 , 就分值而言 , 考题分值有所 降低 , 文科卷 1 5 分, 理科卷 l 7 分, 而去 年大纲卷 均在 2 0 分, 两小 题一大题 , 大题 考查解 三角
形 有关知识 , 分值 为 1 0 分。 第 四, 就考查形 式而言 , 理科第一道解答题和 以往一样 , 仍 是 解 三角形 , 而文科 大体未考查 三角 函数 , 解三角形 题 目放在选 择
因此 △A B C 面积 的最大值为厄 + 1 .
3 试题( 卷) 带 给 我 们 的 思 考
第六, 高考对 解三 角形 的考查 , 常 以小题形式 出现 , 属容 易
题, 有时也在 大题 中 出现 , 属 中档题 。正弦定理 、 余 弦定理 , 三角 形面积公式等是该部分考查的主要知识点 , 要熟练掌握转化思想 与方程思想 , 在 已知三 角形 中的某些元素 时, 利用 正弦定理 、 余弦 定理 , 三 角形 面积公式 , 可以得到有关三角形边角关 系的方程 , 在

No. 1 2 TI ME EDUC ATI ON Dec e m be r
2 0 1 3 年 数 学全 国 I l 卷( 文、 理) 三 角 函数试 题 浅 析
李启 勇
摘要 : 初等 函数 , 它的定义与性质有 着十分鲜明的特征 和规律 , 是 高考数学的一个必考 内容 , 本文先详细解析 了2 0 1 3 年新课标全

2013年全国各地高考文科数学试题分类汇编3:三角函数

2013年全国各地高考文科数学试题分类汇编3:三角函数

2013年全国各地高考文科数学试题分类汇编3:三角函数一、选择题错误!未指定书签。

.(2013年高考大纲卷(文))已知a 是第二象限角,5sin ,cos 13a a ==则 ( )A .1213-B .513-C .513D .1213【答案】A错误!未指定书签。

.(2013年高考课标Ⅰ卷(文))函数()(1cos )sin f x x x =-在[,]ππ-的图像大致为【答案】C ;错误!未指定书签。

.(2013年高考四川卷(文))函数()2s i n ()(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是( )A .2,3π-B .2,6π-C .4,6π-D .4,3π 【答案】A错误!未指定书签。

.(2013年高考湖南(文))在锐角∆ABC 中,角A,B 所对的边长分别为a,b. 若2sinB=3b,则角A 等于______ ( )A .3πB .4πC .6πD .12π【答案】A错误!未指定书签。

.(2013年高考福建卷(文))将函数)22)(2sin()(πθπθ<<-+=x x f 的图象向右平移)0(>ϕϕ个单位长度后得到函数)(x g 的图象,若)(),(x g x f 的图象都经过点)23,0(P ,则ϕ的值可以是 ( )A .35π B .65π C .2πD .6π【答案】B错误!未指定书签。

.(2013年高考陕西卷(文))设△ABC 的内角A , B , C 所对的边分别为a ,b ,c , 若cos cos sin b C c B a A +=, 则△ABC 的形状为( )A .直角三角形B .锐角三角形C .钝角三角形D .不确定【答案】A错误!未指定书签。

.(2013年高考辽宁卷(文))在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B Ab +=,a b B >∠=且则( )A .6πB .3πC .23πD .56π【答案】A错误!未指定书签。

13年高考真题—文科数学3:三角函数

13年高考真题—文科数学3:三角函数

2013高考真题分类汇编:三角函数1.【2013大纲版文2】已知α是第二象限角,5sin 13α=,则 cos α=( ) (A )1213- (B )513- (C )513 (D )1213 2.【2013新课标Ⅰ卷文9】函数()()1cos sin f x x x =-在[],ππ-的图像大致为( )3.【2013四川文6】函数()()()2sin 0,22f x x ωϕωπϕπ=+>-<<的部分图象如图所示,则,ωϕ的值分别是 ( )(A )2,3π- (B )2,6π- (C )4,6π- (D )4,3π 4.【2013湖南文5】在锐角ABC ∆中,角,A B 所对的边长分别为,a b 。

若2sin a B =,则角A 等于( )(A )π (B )4π (C )6π (D )12π5.【2013福建文】将函数()()()sin 222f x x θπθπ=+-<<的图象向右平移()0ϕϕ>个单位长度后得到函数()g x 的图象,若()(),f x g x 的图象都经过点()P ,则ϕ的值可以是( ) (A )53π (B )56π (C )2π (D )6π6.【2013陕西文9】设ABC ∆的内角,,A B C 所对的边分别为,,a b c ,若cos cos sin b C c B a A +=,则ABC ∆的形状为( )(A )直角三角形 (B )锐角三角形 (C )钝角三角形 (D )不确定7.【2013辽宁文6】已知ABC ∆的内角,,A B C 所对的边分别为,,a b c ,sin cos sin cos 2a B C c B A b +=,且a b >,则B ∠=( )(A )6π (B )3π (C )23π (D )56π8.【2013新课标文4】ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2b =,B π=,4C π=,则ABC ∆的面积为( )(A )2 (B 1 (C )2 (D 19.【2013江西文3】若sin 23α=,则cos α= ( ) (A )2- (B )1- (C )1 (D )2310.【2013山东文7】在锐角中ABC ∆,角,A B 所对的边长分别为,a b ,若2B A =,1a =,b =,则c = ( ) (A ) (B )2 (C (D )111.【2013新课标文6】已知2sin 23α=,则2cos 4πα⎛⎫+= ⎪⎝⎭( ) (A )16 (B )13 (C )12 (D )2312.【2013广东文4】已知51sin 25πα⎛⎫+= ⎪⎝⎭,那么cos α=( ) (A )25- (B )1- (C )15 (D )2513.【2013湖北文6】将函数()sin y x x x R =+∈的图像向左平移()0m m >个长度单位后,所得到的图像关于y 轴对称,则m 的最小值是( )(A )12π (B )6π (C )3π (D )56π14.【2013大纲版文9】函数()()sin 0y x ωϕω=+>的部分图像如图,则ω=( )(A )5 (B )4 (C )3 (D )215.【2013天津文6】函数()sin 24f x x π⎛⎫=- ⎪⎝⎭在区间[]0,2π上的最小值是( ) (A )1- (B ) (C (D )016.【2013安徽文】设ABC ∆的内角,,A B C 所对边的长分别为,,a b c ,若2b c a +=,3sin 5sin A B =,则角C =( ) (A )3π(B )23π (C )34π (D )56π 17.【2013新课标文10】已知锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,6c =,则b =( )(A )10 (B )9 (C )8 (D )518.【2013浙江文6】函数()sin cos 22f x x x x =+的最小正周期和振幅分别是( ) (A ),1π (B ),2π (C )2,1π (D )2,2π19.【2013北京文5】在ABC ∆中,3a =,5b =,1sin 3A =,则sinB =( )(A )15 (B )59(C )3 (D )1 20.【2013山东文9】函数x x x y sin cos +=的图象大致为( )21.【2013四川文14】设sin 2sin αα=-,()2,αππ∈,则tan 2α的值是________。

2013年文科全国各省市高考真题——函数(解答题带答案)

2013年文科全国各省市高考真题——函数(解答题带答案)

2013年全国各省市文科数学—函数1、2013大纲文T21.(本小题满分12分)已知函数()32=33 1.f x x ax x +++(I )求()f ;a x =的单调性;(II )若[)()2,0,.x f x a ∈+∞≥时,求的取值范围2、2013新课标1文T20.(本小题满分共12分)已知函数2()()4x f x e ax b x x =+--,曲线()y f x =在点(0,(0))f 处切线方程为44y x =+。

(Ⅰ)求,a b 的值;(Ⅱ)讨论()f x 的单调性,并求()f x 的极大值。

3、2013新课标Ⅱ文T21.(本小题满分12分)已知函数2()xf x x e -=。

(Ⅰ)求()f x 的极小值和极大值;(Ⅱ)当曲线()y f x =的切线l 的斜率为负数时,求l 在x 轴上截距的取值范围。

4、2013辽宁文T21.(本小题满分12分)(I )证明:当[]0,1sin ;2x x x x ∈≤≤时, (II )若不等式()[]3222cosx 40,12x ax x x x a ++++≤∈对恒成立,求实数的取值范围.5、2013山东文T21.(本小题满分12分)已知函数2()ln (,)f x ax bx x a b R =+-∈(Ⅰ)设0a ≥,求)(x f 的单调区间(Ⅱ) 设0a >,且对于任意0x >,()(1)f x f ≥。

试比较ln a 与2b -的大小6、2013北京文T18.(本小题共13分)已知函数2()sin cos f x x x x x =++(1)若曲线()y f x =在点(,())a f a 处与直线y b =相切,求a 与b 的值。

(2)若曲线()y f x =与直线y b =有两个不同的交点,求b 的取值范围。

7、2013重庆文T20.(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分)某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r 米,高为h 米,体积为V 立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率).(Ⅰ)将V 表示成r 的函数()V r ,并求该函数的定义域;(Ⅱ)讨论函数()V r 的单调性,并确定r 和h 为何值时该蓄水池的体积最大.8、2013天津文T20. (本小题满分14分)设[2,0]a ∈-, 已知函数332(5),03,0(,).2x f a x x a x x x x x a -+≤+-+>⎧⎪=⎨⎪⎩ (Ⅰ) 证明()f x 在区间(-1,1)内单调递减, 在区间(1, + ∞)内单调递增;(Ⅱ) 设曲线()y f x =在点(,())(1,2,3)i i i x f x i P =处的切线相互平行, 且1230,x x x ≠ 证明12313x x x ++>.9、2013浙江文T21.已知a∈R,函数f(x)=2x 3-3(a+1)x 2+6ax(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)若|a|>1,求f(x)在闭区间[0,|2a|]上的最小值.10、2013上海文T20.(本题满分14分)本题共有2个小题,第1小题满分5分,第2小题满分9分.甲厂以x 千克/小时的速度匀速生产某种产品(生产条件要求1≤x ≤10),每小时可获得的利润是100⎪⎭⎫ ⎝⎛-+x x 315元. (1)求证:生产a 千克该产品所获得的利润为100a ⎪⎭⎫ ⎝⎛-+2315x x 元; (2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求此最大利润.11、2013福建文T22.(本小题满分14分) 已知函数()1xa f x x e =-+(a R ∈,e 为自然对数的底数). (1)若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,求a 的值;(2)求函数()f x 的极值;(3)当1a =的值时,若直线:1l y kx =-与曲线()y f x =没有公共点,求k 的最大值.12、2013广东文T21.(本小题满分14分)设函数x kx x x f +-=23)( ()R k ∈. (1) 当1=k 时,求函数)(x f 的单调区间;(2) 当0<k 时,求函数)(x f 在[]k k -,上的最小值m 和最大值M .13、2013陕西文T21. (本小题满分14分)已知函数()e ,x f x x =∈R .(Ⅰ) 求f (x )的反函数的图象上图象上点(1,0)处的切线方程;(Ⅱ) 证明: 曲线y = f (x) 与曲线2112y x x =++有唯一公共点. (Ⅲ) 设a <b , 比较2a b f +⎛⎫ ⎪⎝⎭与()()f b f a b a --的大小, 并说明理由.14、2013湖南文T21.(本小题满分13分)已知函数f (x )=x e x 21x 1+-. (Ⅰ)求f (x )的单调区间;(Ⅱ)证明:当f (x 1)=f (x 2)(x 1≠x 2)时,x 1+x 2<0.参考答案:2、4、【解析】(I)记F,则当∈时,记H,则当∈时,<0,所以H在上是减函数,则H,即综上,≤,∈(II)解法一因为当∈时≤=所以,当时,不等式对∈恒成立下面证明,当时,不等式对∈不恒成立因为∈时,≥=≥=所以存在(例如取和中的较小值)满足即当a>−2时,≤0对∈不恒成立。

2013届高三文科数学三角函数概念恒等变换

2013届高三文科数学三角函数概念恒等变换

2013届高三文科数学练习——三角函数概念、三角恒等变换班别:高三( )班 姓名: 座号:一、选择题: 1.已知4sin 5α=,并且α是第二象限的角,那么tan α的值等于( ) A .43- B .34- C .43 D .342.若角0600的终边上有一点()a ,4-,则a 的值是( )A .34B .34-C .34±D .33.设00sin14cos14a =+,00sin16cos16b =+,c =,则,,a b c 大小关系( ) A .a b c << B .b a c <<C .c b a <<D .a c b << 4.(2007江西文4)若tan 3α=,4tan 3β=,则tan()αβ-等于( ) A.3-B.13-C.3 D.135.化简0sin 600的值是( )A .0.5B .0.5-C .2 D .2-6.如果1弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长为( )A .5.0sin 1B .sin 0.5C .2sin 0.5D .tan 0.57.若θ为锐角且2cos cos 1-=--θθ,则θθ1cos cos -+的值为( ) A .22 B .6 C .6 D .48.设5sin7a π=,2cos 7b π=,2tan 7c π=,则( ) A .a b c << B .a c b << C .b c a << D .b a c <<9.函数x x y 24cos sin +=的最小正周期为( )A .4π B .2πC .πD .2π 10.△ABC 中,090C ∠=,则函数2sin 2sin y A B =+的值的情况( )A .有最大值,无最小值B .无最大值,有最小值C .有最大值且有最小值D .无最大值且无最小值11.0000(1tan 21)(1tan 22)(1tan 23)(1tan 24)++++ 的值是( )A . 16B . 8C . 4D . 212.当04x π<<时,函数22cos ()cos sin sin xf x x x x=-的最小值是( )A .4B .12C .2D .1413.已知函数R x x x x f ∈+=,sin )2cos 1()(2,则)(x f 是( )A .最小正周期为π的奇函数 B. 最小正周期为π的偶函数C. 最小正周期为2π的奇函数 D. 最小正周期为2π的偶函数 14.函数2()sin cos f x x x x =在区间,42ππ⎡⎤⎢⎥⎣⎦上的最大值是( . )A.1B.12+ C. 3215.函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( )二、填空题16.已知角α终边上一点P 的坐标是(2sin2,-2cos2),则sin α= .17.已知sin α=55,则sin 4α-cos 4α的值为 .18.(2008·浙江理)若cos α+2sin α=-5,则tan α= .19.(2008·山东理)已知cos ⎪⎭⎫⎝⎛-6πα+sin α=354,则sin ⎪⎭⎫ ⎝⎛+67πα的值是 .20.sin163°·sin223°+sin253°·sin313°= .三.解答题xxA .B .C .D .21 已知tan α=2,求下列各式的值: (1)ααααcos 9sin 4cos 3sin 2--;(2)αααα2222cos 9sin 4cos 3sin 2--;(3)4sin 2α-3sin αcos α-5cos 2α.22.已知cos(π+α)=-21,且α是第四象限角,计算: (1)sin(2π-α); (2) [][])2cos()2sin()12(sin )12(sin παπαπαπαn n n n -∙++-+++ (n ∈Z ).23.求值:(1)已知cos ⎪⎭⎫⎝⎛-2βα =-54,sin ⎪⎭⎫ ⎝⎛-2αβ=135,且2π<α<π,0<β<2π,求cos2βα+的值;(2)已知tan α=43,cos(α+β)=-1411, α、β均为锐角,求cos β的值.24.已知函数2πππ()12sin 2sin cos 888f x x x x ⎛⎫⎛⎫⎛⎫=-++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.求: (I )函数()f x 的最小正周期;(II )函数()f x 的单调增区间.2013届高三文科数学练习——三角函数概念、三角恒等变换班别:高三( )班 姓名: 座号:一、选择题: 1.已知4sin 5α=,并且α是第二象限的角,那么 tan α的值等于( A )A .43-B .34- C .43 D .342.若角0600的终边上有一点()a ,4-,则a 的值是( B )A .34B .34-C .34±D .33.设00sin14cos14a =+,00sin16cos16b =+,c =, 则,,a b c 大小关系( D ) A .a b c << B .b a c <<C .c b a <<D .a c b << 4.(2007江西文4)若tan 3α=,4tan 3β=,则tan()αβ-等于( D ) A.3-B.13-C.3 D.135.化简0sin 600的值是( D )A .0.5B .0.5-C .2 D .2-6.如果1弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长为( A )A .5.0sin 1B .sin 0.5C .2sin 0.5D .tan 0.57.若θ为锐角且2cos cos 1-=--θθ,则θθ1cos cos -+的值为( A ) A .22 B .6 C .6 D .4 8.设5sin7a π=,2cos 7b π=,2tan 7c π=,则( D ) A .a b c << B .a c b << C .b c a <<D .b a c <<9.函数x x y 24cos sin +=的最小正周期为( B )A .4π B .2πC .πD .2π 10.△ABC 中,090C ∠=,则函数2sin 2sin y A B =+的值的情况( D )A .有最大值,无最小值B .无最大值,有最小值C .有最大值且有最小值D .无最大值且无最小值11.0000(1tan 21)(1tan 22)(1tan 23)(1tan 24)++++ 的值是( C )A . 16B . 8C . 4D . 212.当04x π<<时,函数22cos ()cos sin sin xf x x x x=-的最小值是( A )A .4B .12 C .2 D .1413.已知函数R x x x x f ∈+=,sin )2cos 1()(2,则)(x f 是( D )A .最小正周期为π的奇函数 B. 最小正周期为π的偶函数C. 最小正周期为2π的奇函数 D. 最小正周期为2π的偶函数 14.函数2()sin cos f x x x x =在区间,42ππ⎡⎤⎢⎥⎣⎦上的最大值是( C. )A.1C. 3215.函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( A )二、填空题16.已知角α终边上一点P 的坐标是(2sin2,-2cos2),则sin α= . 答案 -cos2 17.已知sin α=55,则sin 4α-cos 4α的值为 . 答案 53-xxA .B .C .D .18.(2008·浙江理)若cos α+2sin α=-5,则tan α= . 答案 219.(2008·山东理)已知cos ⎪⎭⎫⎝⎛-6πα+sin α=354,则sin ⎪⎭⎫ ⎝⎛+67πα的值是 . 答案 54-20.sin163°·sin223°+sin253°·sin313°= .答案 21 三.解答题21 已知tan α=2,求下列各式的值: (1)ααααcos 9sin 4cos 3sin 2--;(2)αααα2222cos 9sin 4cos 3sin 2--;(3)4sin 2α-3sin αcos α-5cos 2α. 解 (1)原式=19243229tan 43tan 2-=-⨯-⨯=--αα.(2)759243229tan 43tan 2cos 9sin 4cos 3sin 222222222=-⨯-⨯=--=--αααααα. (3)∵sin 2α+cos 2α=1, ∴4sin 2α-3sin αcos α-5cos 2α=αααααα2222cos sin cos 5cos sin 3sin 4+--=114523441tan 5tan 3tan 422=+-⨯-⨯=+--ααα22.已知cos(π+α)=-21,且α是第四象限角,计算: (1)sin(2π-α); (2)[][])2cos()2sin()12(sin )12(sin παπαπαπαn n n n -∙++-+++ (n ∈Z ).解 ∵cos(π+α)=-21,∴-cos α=-21,cos α=21,又∵α是第四象限角,∴sin α=-23cos 12-=-α. (1)sin(2π-α)=sin [2π+(-α)]=sin(-α)=-sin α=23. (2)[][])2cos()2sin()12(sin )12(sin παπαπαπαn n n n -∙++-+++=)2cos()2sin()2sin()2sin(απαπαππαππ+-∙++--+++n n n n=αααπαπcos sin )sin()sin(∙+-++=αααπαcos sin )sin(sin ∙---=αααcos sin sin 2∙-=αcos 2-=-4.23.求值:(1)已知cos ⎪⎭⎫⎝⎛-2βα =-54,sin ⎪⎭⎫ ⎝⎛-2αβ=135,且2π<α<π,0<β<2π,求cos2βα+的值;(2)已知tan α=43,cos(α+β)=-1411, α、β均为锐角,求cos β的值. 解 (1)⎪⎭⎫ ⎝⎛-2βα+⎪⎭⎫ ⎝⎛-2αβ =2βα+,∵2π<α<π,0<β<2π. ∴2βα-∈⎪⎭⎫⎝⎛ππ,4,2αβ-∈⎪⎭⎫ ⎝⎛-4,2ππ∴sin ⎪⎭⎫ ⎝⎛-2βα=)2(cos 12βα--=53,cos ⎪⎭⎫ ⎝⎛-2αβ=1312)2(sin 12=--αβ,∴cos 2βα+=cos ⎥⎦⎤⎢⎣⎡-+-)2()2(αββα=cos ⎪⎭⎫⎝⎛-2βαcos ⎪⎭⎫ ⎝⎛-2αβ-sin ⎪⎭⎫ ⎝⎛-2βαsin ⎪⎭⎫ ⎝⎛-2αβ=)54(-×1312-135×53=-6563.(2)∵tan α=43,且α为锐角, ∴34cos sin =αα,即sin α=43cos α,又∵sin 2α+cos 2α=1, ∴sin α=734,cos α=71.∵0<α,β<2π,∴0<α+β<π,∴sin(α+β)=)(cos 12βα+-=1435.而β=(α+β)-α, ∴cos β=cos [(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=⎪⎭⎫ ⎝⎛-1411×71+1435×734=21.24.已知函数2πππ()12sin 2sin cos 888f x x x x ⎛⎫⎛⎫⎛⎫=-++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.求: (I )函数()f x 的最小正周期;(II )函数()f x 的单调增区间.解:ππ()cos(2)sin(2)44f x x x =+++πππ))2442x x x =++=+=.(I )函数()f x 的最小正周期是2ππ2T ==;(II )当2ππ22πk x k -≤≤,即πππ2k x k -≤≤(k ∈Z )时,函数()f x x=是增函数,故函数()f x 的单调递增区间是π[ππ]2k k -,(k ∈Z ).。

2013年高考数学试题分类汇编——三角函数 2

2013年高考数学试题分类汇编——三角函数 2

2013年全国各地高考试题汇编(湖南.文)已知函数()cos cos()3f x x x =⋅-(1)求2()3f π的值(2)求使1()4f x <成立的x 的取值集合 (2013陕西.理)已知向量1(cos ,),,cos2),2x x x x =-=∈a b R ,设函数()·f x =a b . (1) 求()f x 的最小正周期. (2) 求()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.(2013湖南.理)已知函数()sin()cos()63f x x x ππ=-+-,2()2sin 2xg x =.(1)若α是第一象限角,且()5f α=,求()g α的值; (2)求使()()f x g x ≥成立的x 的取值集合.(2013湖北.文)在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c . 已知cos23cos()1A B C -+=. (1)求角A 的大小;(2)若△ABC 的面积S =5b =,求sin sinBC 的值.2013江西.理)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知cos (cos )cos 0C A A B += (1) 求角B 的大小;若1a c +=,求b 的取值范围 2013四川.理)在ABC ∆中,角,,A B C 的对边分别c b a 、、,且53)cos(sin )sin(cos 2cos 22-=++---C A B B A B B A (1)求A cos 的值;若5,24==b a ,求向量在方向上的投影。

(2013新课标Ⅱ.理)ABC ∆在内角,,A B C 的对边分别为,,a b c ,已知cos sin a b C c B =+. (1)求B ;(2)若2b =,求ABC ∆面积的最大值。

(1)求,a c 的值; (2)求sin()A B -的值.(2013全国卷.文)设ABC ∆的内角,,A B C 的对边分别为,,,()()a b c a b c a b c ac ++-+= (1)求角B (2)若413sin sin -=C A ,求角C (2013江苏卷)已知)sin ,(cos )sin ,(cos ββαα=b a ,=,παβ<<<0. (1)若2||=-b a ,求证:b a ⊥; (2)设)1,0(=c ,若c b a =+,求βα,的值. 2013上海.理)已知函数()2sin (0)f x x ωω=> (1)若()y f x =在2[,]43ππ-上单调递增,求ω的取值范围;(2)令2ω=,将函数()y f x =的图像向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图像.区间[,](,,)a b a b R a b ∈<,满足: ()y g x =在[,]a b 上至少含有30个零点.在所有满足上述条件的[,]a b 中,求b a -的最小值.2010年高考三角函数汇编一、选择题(2010上海文数)18.若△ABC 的三个内角满足sin :sin :sin 5:11:13A B C =,则△ABC (A )一定是锐角三角形. (B )一定是直角三角形.(C )一定是钝角三角形. (D)可能是锐角三角形,也可能是钝角三角形.2010湖南文数)7.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若∠C=120°,,则 A.a >b B.a <b C. a =b D.a 与b 的大小关系不能确定(2010浙江理数)(9)设函数()4sin(21)f x x x =+-,则在下列区间中函数()f x 不.存在零点的是 (A )[]4,2-- (B )[]2,0- (C )[]0,2 (D )[]2,4(2010浙江理数)(4)设02x π<<,则“2sin 1x x <”是“sin 1x x <”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 (2010全国卷2理数)(7)为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像(A )向左平移4π个长度单位(B )向右平移4π个长度单位(C )向左平移2π个长度单位 (D )向右平移2π个长度单位 (2010陕西文数)3.函数f (x )=2sin x cos x 是(A)最小正周期为2π的奇函数 (B )最小正周期为2π的偶函数 (C)最小正周期为π的奇函数(D )最小正周期为π的偶函数(2010辽宁文数)(6)设0ω>,函数sin()23y x πω=++的图像向右平移43π个单位后与原图像重合,则ω的最小值是 (A )23 (B ) 43 (C ) 32(D ) 3 (2010辽宁理数)(5)设ω>0,函数y=sin(ωx+3π)+2的图像向右平移34π个单位后与原图像重合,则ω的最小值是 (A )23 (B)43 (C)32(D)3 (2010全国卷2文数)已知2sin 3α=,则cos(2)x α-=(A)B )19-(C )19(D(2010江西理数)7.E ,F 是等腰直角△ABC 斜边AB 上的三等分点,则tan ECF ∠=( )A. 1627B. 23C. 3D. 34(2010重庆文数)(6)下列函数中,周期为π,且在[,]42ππ上为减函数的是(A )sin(2)2y x π=+(B )cos(2)2y x π=+(C )sin()2y x π=+(D )cos()2y x π=+ (2010重庆理数)已知函数()sin (0,)2y x πωϕωϕ=+><的部分图象如题(6)图所示,则A. ω=1 ϕ= 6πB. ω=1 ϕ=- 6πC. ω=2 ϕ= 6πD. ω=2 ϕ= -6π(2010山东文数)(10)观察2'()2x x =,4'3()4x x =,'(cos )sin x x =-,由归纳推理可得:若定义在R 上的函数()f x 满足()()f x f x -=,记()g x 为()f x 的导函数,则()g x -=(A )()f x (B)()f x - (C) ()g x (D)()g x - (2010四川理数)(6)将函数sin y x =的图像上所有的点向右平行移动10π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是 (A )sin(2)10y x π=-(B )sin(2)5y x π=-(C )1sin()210y x π=- (D )1sin()220y x π=-15、(2010天津文数)(8)5y Asin x x R 66ππωϕ⎡⎤=∈⎢⎥⎣⎦右图是函数(+)()在区间-,上的图象,为了得到这个函数的图象,只要将y sin x x R =∈()的图象上所有的点(A)向左平移3π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变(B) 向左平移3π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变(C) 向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变(D) 向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变(2010天津理数)(7)在△ABC 中,内角A,B,C 的对边分别是a,b,c ,若22a b -,sin C B =,则A= (A )030 (B )060 (C )0120 (D )0150 (2010全国卷1理数)(2)记cos(80)k -︒=,那么tan100︒=(2010湖南理数)6、在△ABC 中,角A ,B ,C 所对的边长分别为a,b,c ,若∠C=120°,c =,则A 、a>bB 、a<bC 、a=bD 、a 与b 的大小关系不能确定 (2010湖北理数)3.在ABC ∆中,a=15,b=10,A=60°,则cos B =A -3 B 3 C -3 D 3(2010浙江理数)(11)函数2()sin(2)4f x x x π=--的最小正周期是__________________ .(2010山东文数)(15) 在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c,若a =2b =,sin cos B B +则角A 的大小为 .(2010广东理数)11.已知a,b,c 分别是△ABC 的三个内角A,B,C 所对的边,若则sinC= . (2010福建理数)14.已知函数f(x)=3sin(x-)(>0)6πωω和g(x)=2cos(2x+)+1ϕ的图象的对称轴完全相同。

2013年全国各地高考文:三角函数-推荐下载

2013年全国各地高考文:三角函数-推荐下载

对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2013年全国各地高考文科数学试题分类汇编3:三角函数

2013年全国各地高考文科数学试题分类汇编3:三角函数

2013年全国各地高考文科数学试题分类汇编3:三角函数一、选择题错误!未指定书签。

.(2013年高考大纲卷(文))已知a 是第二象限角,5sin ,cos 13a a ==则 ( )A .1213-B .513-C .513D .1213【答案】A错误!未指定书签。

.(2013年高考课标Ⅰ卷(文))函数()(1cos )sin f x x x =-在[,]ππ-的图像大致为【答案】C ;错误!未指定书签。

.(2013年高考四川卷(文))函数()2sin()(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是( )A .2,3π-B .2,6π-C .4,6π-D .4,3π【答案】A错误!未指定书签。

.(2013年高考湖南(文))在锐角∆ABC 中,角A,B 所对的边长分别为a,b. 若2sinB=3b,则角A 等于______ ( )A .3πB .4π C .6πD .12π【答案】A错误!未指定书签。

.(2013年高考福建卷(文))将函数)22)(2sin()(πθπθ<<-+=x x f 的图象向右平移)0(>ϕϕ个单位长度后得到函数)(x g 的图象,若)(),(x g x f 的图象都经过点)23,0(P ,则ϕ的值可以是 ( )A .35π B .65π C .2πD .6π【答案】B错误!未指定书签。

.(2013年高考陕西卷(文))设△ABC 的内角A , B , C 所对的边分别为a , b , c , 若cos cos sin b C c B a A +=, 则△ABC 的形状为 ( )A .直角三角形B .锐角三角形C .钝角三角形D .不确定【答案】A错误!未指定书签。

.(2013年高考辽宁卷(文))在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 1s i n c o ss i n c o s ,2a B C c B Ab +=,a b B >∠=且则( )A .6πB .3π C .23π D .56π 【答案】A错误!未指定书签。

高2013级高三文科数学测试题(二)数列_三角函数

高2013级高三文科数学测试题(二)数列_三角函数

文科数列、三角函数综合测试题一.选择题1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( ) A .B=A∩C B .B ∪C=C C .A C D .A=B=C2.等差数列{a n } 中,S 15=90,则a 8= ( )(A)3 (B)4 (C)6 (D)12 3. sin15cos75cos15sin105+等于( )A.0B.12C.2D.14.函数)32sin(2π+=x y 的图象( )A .关于原点对称B .关于点(-6π,0)对称 C .关于y 轴对称 D .关于直线x=6π对称 5.设{a n }是公差为-2的等差数列,如果a 1+ a 4+ a 7+……+ a 97=50,则a 3+ a 6+ a 9……+ a 99= ( )(A)182 (B)-80 (C)-82 (D)-846.已知1sin()63πα+=,则cos()3πα-的值为( )A 12B 12-C 13D 13-7.为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像( )A 向左平移4π个长度单位B 向右平移4π个长度单位C 向左平移2π个长度单位D 向右平移2π个长度单位8.已知函数f (x )=3sin ωx +cos ωx (ω>0),y =f (x )的图象与直线y =2的两个相邻交点的距离等于π,则f (x )的单调递增区间是( ) A.[k π-π12,k π+5π12],k ∈Z B.[k π+5π12,k π+11π12],k ∈Z C.[k π-π3,k π+π6],k ∈Z D.[k π+π6,k π+2π3],k ∈Z9.已知等比数列前10项的和为10,前20项的和为30,那么前30项的和为( )(A)60 (B)70 (C)90 (D)12610.函数)0)(sin()(>+=ωϕωx M x f 在区间],[b a 上是增函数,且M b f M a f =-=)(,)(, 则)cos()(ϕω+=x M x g 在],[b a 上 ( )A 是增函数B 是减函数C 可以取得最大值MD 可以取得最小值M - 二.填空题11.函数)4sin(cos )4cos(sin ππ+++=x x x x y 的最小正周期T=12. 已知等腰三角形顶角的余弦值等于54,则这个三角形底角的正弦值为 13.正数a 、b 、c 成等比数列, x 为a 、b 的等差中项, y 为b 、c 的等差中项, 则a cx y+的值为__ __.14.已知函数f (x )=3sin ⎝⎛⎭⎫ωx -π6(ω>0)和g (x )=2cos(2x +φ)+1的图象的对称轴完全相同.若x ∈⎣⎡⎦⎤0,π2,则f (x )的取值范围是________. 15. 关于函数f(x)=4sin(2x +3π), (x ∈R)有下列命题:①y =f(x)是以2π为最小正周期的周期函数; ② y =f(x)可改写为y =4cos(2x -6π);③y =f(x)的图象关于(-6π,0)对称;④ y =f(x)的图象关于直线x =-6π对称;其中正确的序号为 .三.解答题 16. 已知函数f (x )=xx cos 2sin 1-(Ⅰ)求f (x )的定义域;(Ⅱ)设α是第四象限的角,且tan α=34-,求f (α)的值.17.在等比数列{}n a 的前n 项和中,1a 最小,且128,66121==+-n n a a a a ,前n 项和126=n S ,求n 和公比q.18.已知函数()sin(3)(0,(,),0f x A x A x ϕϕπ=+>∈-∞+∞<<在12x π=时取得最大值4.(1) 求()f x 的最小正周期;(2) 求()f x 的解析式;(3) 若f (23α +12π)=125,求sin α.19.已知等差数列{}n a 满足:37a =,5726a a +=.{}n a 的前n 项和为n S . (Ⅰ)求n a 及n S ;(Ⅱ)令211n n b a =-(n ∈N *),求数列{}n b 的前n 项和n T .20.已经函数22cos sin 11(),()sin 2.224x x f x g x x -==- (Ⅰ)函数()f x 的图象可由函数()g x 的图象经过怎样变化得出?(Ⅱ)求函数()()()h x f x g x =-的最小值,并求使用()h x 取得最小值的x 的集合。

2013年全国各地高考文科数学试题分类汇编:数列

2013年全国各地高考文科数学试题分类汇编:数列

2013年全国各地高考文科数学试题分类汇编:数列一、选择题1 .〔2013年高考大纲卷〔文〕〕数列{}n a 满足{}12430,,103n n n a a a a ++==-则的前项和等于〔 〕A .()-10-61-3B .()-1011-39C .()-1031-3D .()-1031+3【答案】C2 .〔2013年高考〔文〕〕设n S 为等差数列{}n a 的前n 项和,8374,2S a a ==-,那么9a =〔 〕A .6-B .4-C .2-D .2【答案】A3 .〔2013年高考课标Ⅰ卷〔文〕〕设首项为1,公比为23的等比数列{}n a 的前n 项和为n S ,那么 〔 〕 A .21n n S a =-B .32n n S a =-C .43n n S a =-D .32n n S a =-【答案】D4 .〔2013年高考卷〔文〕〕下面是关于公差0d >的等差数列()n a 的四个命题:{}1:n p a 数列是递增数列;{}2:n p na 数列是递增数列;3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列;{}4:3n p a nd +数列是递增数列;其中的真命题为〔 〕 A .12,p pB .34,p pC .23,p pD .14,p p【答案】D 二、填空题5 .〔2013年高考卷〔文〕〕假设2、a 、b 、c 、9成等差数列,那么c a -=____________.【答案】726 .〔2013年高考卷〔文〕〕假设等比数列{}n a 满足243520,40a a a a +=+=,那么公比q =__________;前n 项n S =_____.【答案】2,122n +-7 .〔2013年高考卷〔文〕〕设数列{}n a 是首项为1,公比为2-的等比数列,那么1234||||a a a a +++=________【答案】158 .〔2013年高考卷〔文〕〕某住宅小区计划植树不少于100棵,假设第一天植2棵,以后每天植树的棵树是前一天的2倍,那么需要的最少天数n(n∈N*)等于_____________.【答案】69 .〔2013年高考卷〔文〕〕等比数列{}n a 是递增数列,n S 是{}n a 的前n 项和,假设13a a ,是方程2540x x -+=的两个根,那么6S =____________.【答案】6310.〔2013年高考卷〔文〕〕观察以下等式:23(11)21(21)(22)213(31)(32)(33)2135+=⨯++=⨯⨯+++=⨯⨯⨯照此规律, 第n 个等式可为________.【答案】)12(5312)()3)(2)(1(-⋅⋅⋅⋅=++++n n n n n n n11.〔2013年高考数学试题〔文科〕〕在等差数列{}n a 中,假设123430a a a a +++=,那么23a a +=_________.【答案】15 三、解答题12.〔2013年高考卷〔文〕〕等差数列{}n a 的公差1d=,前n 项和为n S .(1)假设131,,a a 成等比数列,求1a ; (2)假设519S a a >,求1a 的取值围.【答案】解:(1)因为数列{}n a 的公差1d=,且131,,a a 成等比数列,所以2111(2)a a =⨯+,即21120a a --=,解得11a =-或12a =. (2)因为数列{}n a 的公差1d =,且519S a a >, 所以21115108a a a +>+;即2113100a a +-<,解得152a -<<13.〔2013年高考大纲卷〔文〕〕等差数列{}n a 中,71994,2,a a a ==(I)求{}n a 的通项公式; (II)设{}1,.n n n nb b n S na =求数列的前项和 【答案】(Ⅰ)设等差数列{}n a 的公差为d,那么1(1)n a a n d =+-因为719942a a a =⎧⎨=⎩,所以11164182(8)a d a d a d +=⎧⎨+=+⎩.解得,111,2a d ==.所以{}n a 的通项公式为12n n a +=. (Ⅱ)1222(1)1n n b na n n n n ===-++, 所以2222222()()()122311n n S n n n =-+-++-=++. 14.〔2013年高考卷〔文〕〕n S 是等比数列{}n a 的前n 项和,4S ,2S ,3S 成等差数列,且23418a a a ++=-.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)是否存在正整数n ,使得2013n S ≥?假设存在,求出符合条件的所有n 的集合;假设不存在,说明理由.【答案】(Ⅰ)设数列{}n a 的公比为q ,那么10a ≠,0q ≠. 由题意得2432234,18,S S S S a a a -=-⎧⎨++=-⎩ 即 23211121,(1)18,a q a q a q a q q q ⎧--=⎪⎨++=-⎪⎩ 解得13,2.a q =⎧⎨=-⎩故数列{}n a 的通项公式为13(2)n n a -=-.(Ⅱ)由(Ⅰ)有 3[1(2)]1(2)1(2)n n n S ⋅--==----. 假设存在n ,使得2013n S ≥,那么1(2)2013n --≥,即(2)2012.n -≤- 当n 为偶数时,(2)0n ->, 上式不成立;当n 为奇数时,(2)22012n n -=-≤-,即22012n ≥,那么11n ≥.综上,存在符合条件的正整数n ,且所有这样的n 的集合为{21,,5}n n k k k =+∈≥N .15.〔2013年高考〔文〕〕设n S 为数列{n a }的前项和,01≠a ,2n n S S a a •=-11,∈n N *(Ⅰ)求1a ,2a ,并求数列{n a }的通项公式;(Ⅱ)求数列{n na }的前n 项和.【答案】解: (Ⅰ) 11111121.S S a a n a S ⋅=-=∴=时,当 .1,011=≠⇒a a11111111222221----=⇒-=---=-=>n n n n n n n n n a a a a S a a S a a s s a n 时,当- .*,221}{11N n a q a a n n n ∈===⇒-的等比数列,公比为时首项为(Ⅱ)n n n n qa n qa qa qa qT a n a a a T ⋅++⋅+⋅+⋅=⇒⋅++⋅+⋅+⋅= 321321321321设1432321+⋅++⋅+⋅+⋅=⇒n n a n a a a qT上式左右错位相减:n n n nn n n n na qq a na a a a a T q 21211)1(111321⋅--=---=-++++=-++*,12)1(N n n T n n ∈+⋅-=⇒.16.〔2013年高考卷〔文〕〕(本小题总分值13分,(Ⅰ)小问7分,(Ⅱ)小问6分)设数列{}n a 满足:11a =,13n n a a +=,n N +∈. (Ⅰ)求{}n a 的通项公式与前n 项和n S ;(Ⅱ){}n b 是等差数列,n T 为前n 项和,且12b a =,3123b a a a =++,求20T .【答案】17.〔2013年高考卷〔文〕〕首项为32的等比数列{}n a 的前n 项和为(*)n S n ∈N , 且234,2,4S S S -成等差数列. (Ⅰ) 求数列{}n a 的通项公式; (Ⅱ) 证明13*)61(n n S n S +≤∈N .【答案】18.〔2013年高考卷〔文〕〕本小题共13分)给定数列12n a a a ,,,.对1,2,,1i n =-,该数列前i 项的最大值记为i A ,后n i -项12i i n a a a ++,,,的最小值记为i B ,i i i d A B =-. (Ⅰ)设数列{}n a 为3,4,7,1,写出1d ,2d ,3d 的值;(Ⅱ)设12n a a a ,,,(4n ≥)是公比大于1的等比数列,且10a >.证明:1d ,2d ,,1n d -是等比数列;(Ⅲ)设1d ,2d ,,1n d -是公差大于0的等差数列,且10d >,证明:1a ,2a ,,1n a -是等差数列【答案】解:(I)1232,3,6d d d ===.(II)因为10a >,公比1q >,所以12n a a a ,,,是递增数列. 因此,对1,2,,1i n =-,i i A a =,1i i B a +=.于是对1,2,,1i n =-,111(1)i i i i i i d A B a a a q q -+=-=-=-.因此0i d ≠且1i id q d +=(1,2,,2i n =-),即1d ,2d ,,1n d -是等比数列.(III)设d 为1d ,2d ,,1n d -的公差.对12i n ≤≤-,因为1i i B B +≤,0d >,所以111i i i A B d +++=+i i B d d ≥++i i B d >+=i A . 又因为{}11max ,i i i A A a ++=,所以11i i i i a A A a ++=>≥. 从而121n a a a -,,,是递增数列,因此i i A a =(1,2,,2i n =-).又因为111111B A d a d a =-=-<,所以1121n B a a a -<<<<.因此1n a B =. 所以121n n B B B a -====.所以i i a A ==i i n i B d a d +=+. 因此对1,2,,2i n =-都有11i i i i a a d d d ++-=-=,即1a ,2a ,,1n a -是等差数列.19.〔2013年高考卷〔文〕〕设等差数列{}n a 的前n 项和为n S ,且244S S =,122+=n n a a(Ⅰ)求数列{}n a 的通项公式(Ⅱ)设数列{}n b 满足*121211,2n n n b b b n N a a a +++=-∈ ,求{}n b 的前n 项和n T 【答案】20.〔2013年高考卷〔文〕〕在公差为d 的等差数列{a n }中,a 1=10,且a 1,2a 2+2,5a 3成等比数列.(Ⅰ)求d,a n ; (Ⅱ) 假设d<0,求|a 1|+|a 2|+|a 3|++|a n | .【答案】解:(Ⅰ)由得到:22221311(22)54(1)50(2)(11)25(5)a a a a d a d d d +=⇒++=+⇒+=+224112122125253404611n n d d d d d d d a n a n==-⎧⎧⇒++=+⇒--=⇒⎨⎨=+=-⎩⎩或; (Ⅱ)由(1)知,当0d<时,11n a n =-,①当111n ≤≤时,123123(1011)(21)0||||||||22n n n n n n n a a a a a a a a a +--≥∴++++=++++==②当12n ≤时,1231231112132123111230||||||||()11(2111)(21)212202()()2222n n n n a a a a a a a a a a a a n n n n a a a a a a a a ≤∴++++=++++-+++---+=++++-++++=⨯-=所以,综上所述:1232(21),(111)2||||||||21220,(12)2n n n n a a a a n n n -⎧≤≤⎪⎪++++=⎨-+⎪≥⎪⎩;21.〔2013年高考卷〔文〕〕在等比数列{}n a 中,212a a -=,且22a 为13a 和3a 的等差中项,求数列{}n a 的首项、公比与前n 项和.【答案】解:设{}n a 的公比为q .由可得211=-a q a ,211134q a a q a +=,所以2)1(1=-q a ,0342=+-q q ,解得 3=q 或 1=q ,由于2)1(1=-q a .因此1=q 不合题意,应舍去,故公比3=q ,首项11=a .所以,数列的前n 项和213-=n n S22.〔2013年高考卷〔文〕〕设各项均为正数的数列{}n a 的前n 项和为n S ,满足21441,,n n S a n n N *+=--∈且2514,,a a a 构成等比数列.(1) 证明:2145a a =+;(2) 求数列{}n a 的通项公式; (3) 证明:对一切正整数n ,有1223111112n n a a a a a a ++++<. 【答案】(1)当1n =时,22122145,45a a a a =-=+,21045n a a a >∴=+(2)当2n ≥时,()214411n n S a n -=---,22114444n n n n n a S S a a -+=-=--()2221442n n n n a a a a +=++=+,102n n n a a a +>∴=+∴当2n ≥时,{}n a 是公差2d =的等差数列.2514,,a a a 构成等比数列,25214a a a ∴=⋅,()()2222824a a a +=⋅+,解得23a =, 由(1)可知,212145=4,1a a a =-∴=21312a a -=-=∴{}n a 是首项11a =,公差2d =的等差数列.∴数列{}n a 的通项公式为21n a n =-.(3)()()1223111111111335572121n n a a a a a a n n ++++=++++⋅⋅⋅-+11111111123355721211111.2212n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⋅-+-+-+- ⎪ ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎡⎤=⋅-<⎢⎥+⎣⎦ 23.〔2013年高考〔文〕〕设数列{}n a 满足12a =,248a a +=,且对任意*n N ∈,函数1212()()cos -sin n n n n n f x a a a x a x a x ++++=-++⋅⋅ 满足'()02f π=(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)假设122nn n a b a =+(),求数列{}n b 的前n 项和n S . 【答案】解:由12a =248a a +=1212()()cos -sin n n n n n f x a a a x a x a x ++++=-++⋅⋅ 1212--sin -cos n n n n n f x a a a a x a x ++++'=+⋅⋅()121'()--02n n n n f a a a a π+++=+= 所以,122n n n a a a ++=+{}n a ∴是等差数列. 而12a =34a =1d =2-111n a n n ∴=+⋅=+() (2)111122121222n n n a n nb a n n +=+=++=++()()() 111-22122121-2n n n n S ++=+()()21=31-2131-2n n n n n n ++=++() 24.〔2013年高考课标Ⅱ卷〔文〕〕等差数列{}n a 的公差不为零,a 1=25,且a 1,a11,a 13成等比数列.(Ⅰ)求{}n a 的通项公式; (Ⅱ)求14732n a a a a -++++.【答案】25.〔2013年高考卷〔文〕〕正项数列{a n }满足2(21)20nn a n a n ---=.(1)求数列{a n }的通项公式a n ; (2)令1(1)n nb n a =+,求数列{b n }的前n 项和T n .【答案】解:(21)20n n ---=2n n n n (1)由a a 得(a -2n)(a +1)=0由于{a n }是正项数列,那么2n =n a . (2)由(1)知2n =n a ,故11111()(1)(1)(2)2(1)n n b n a n n n n ===-+++11111111(1...)(1)222312122n T n n n n ∴=-+-++-=-=+++n 26.〔2013年高考卷〔文〕〕设S n 表示数列{}n a 的前n 项和.(Ⅰ) 假设{}n a 为等差数列, 推导S n 的计算公式;(Ⅱ) 假设11,0a q =≠, 且对所有正整数n , 有11nn q S q-=-. 判断{}n a 是否为等比数列.【答案】解:(Ⅰ) 设公差为d,那么d n a a n)1(1-+=)()()()(2111121121121a a a a a a a a S a a a a S a a a a S n n n n n n n n nn n ++++++++=⇒⎩⎨⎧++++=++++=---- )21(2)()(2111d n a n a a n S a a n S n n n n -+=+=⇒+=⇒. (Ⅱ) 1,011≠≠=q q a 由题知,.n n n n n n n n n n q qq q q q q q S S a q q S N n =--=-----=-=⇒--=∈∀++++11111111111*,*21111N n q a n qn a n n n n ∈=⇒⎩⎨⎧≥==--,.所以,}{n a 数列是首项11=a ,公比1≠q 的等比数列.27.〔2013年高考数学试题〔文科〕〕此题共有3个小题.第1小题总分值3分,第2小题总分值5分,第3小题总分值8分.函数()2||f x x =-.无穷数列{}n a 满足1(),*n n a f a n N +=∈. (1)假设10a =,求2a ,3a ,4a ;(2)假设10a >,且1a ,2a ,3a 成等比数列,求1a 的值;(3)是否存在1a ,使得1a ,2a ,3a ,,n a 成等差数列?假设存在,求出所有这样的1a ;假设不存在,说明理由.【答案】11 /1128.〔2013年高考课标Ⅰ卷〔文〕〕等差数列{}n a 的前n 项和n S 满足30S =,55S =-.(Ⅰ)求{}n a 的通项公式; (Ⅱ)求数列21211{}n n a a -+的前n 项和. 【答案】(1)设{a n }的公差为d,那么S n =1(1)2n n na d -+. 由可得111330,1, 1.5105,a d a d a d +=⎧==-⎨+=-⎩解得{}n =2-.n a a n 故的通项公式为(2)由(I)知212111111(),(32)(12)22321n n a a n n n n -+==----- 从而数列21211n n n a a -+⎧⎫⎨⎬⎩⎭的前项和为1111111-+-++)2-1113232112n n n n -=---(.。

2013高考全国卷2文科数学试卷及答案

2013高考全国卷2文科数学试卷及答案

绝密★启用前2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)文科数学注意事项:1。

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前考生将自己的姓名、准考证号填写在答题卡上。

2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号框涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号框。

写在本试卷上无效。

3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4。

考试结束,将试题卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题。

每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的.(1)已知集合M={x|—3<X〈1},N={—3,—2,—1,0,1},则M∩N=(A){-2,—1,0,1}(B){—3,-2,—1,0}(C){—2,-1,0}(D){—3,—2,—1 }(2)||=(A)2(B)2 (C)(D)1(3)设x,y满足约束条件,则z=2x-3y的最小值是(A) (B)-6 (C)(D)-(4)△ABC的内角A,B,C的对边分别为a,b,c,已知b=2,B=,C=,则△ABC的面积为(A)2+2 (B)(C)2(D)-1(5)设椭圆C:+=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点PF2⊥F1F2,∠PF1F2=30。

,则C的离心率为(A)(B)(C)(D)(6)已知sin2α=,则cos2(α+)=(A)(B)(C)(D)(7)执行右面的程序框图,如果输入的N=4,那么输出的S=(A)1(B)1+(C)1++++(D)1++++(8)设a=log32,b=log52,c=log23,则(A)a>c>b (B) b>c>a (C)c>b>a (D)c>a>b(9)一个四面体的顶点在点间直角坐系O—xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可为(A)(B)(C) (D)( 10)设抛物线C:y2=4x的焦点为F,直线L过F且与C交于A,B两点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高2013级文科数学测试题(二)
一.选择题
1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( ) A .B=A∩C B .B ∪C=C C .A C D .A=B=C
2.等差数列{a n } 中,S 15=90,则a 8= ( )
(A)3 (B)4 (C)6 (D)12
3. sin15cos75cos15sin105+
等于( )
A.0
B.
12
C.
2
D.1
4.函数)3
2sin(2π
+
=x y 的图象
( )
A .关于原点对称
B .关于点(-
6π,0)对称 C .关于y 轴对称 D .关于直线x=6
π
对称 5.设{a n }是公差为-2的等差数列,如果a 1+ a 4+ a 7+……+ a 97=50,则a 3+ a 6+ a 9……+ a 99= ( )
(A)182 (B)-80 (C)-82 (D)-84
6.已知1sin(
)63π
α+=,则cos()3π
α-的值为( ) A 12 B 1
2
- C 13 D 13-
7.为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6
y x π
=+的图像( )
A 向左平移4π个长度单位
B 向右平移4π
个长度单位
C 向左平移2π个长度单位
D 向右平移2
π
个长度单位
8.已知函数f (x )=3sin ωx +cos ωx (ω>0),y =f (x )的图象与直线y =2的两个相邻交点的距离等于π,则f (x )的单调递增区间是( )
A.[k π-π12,k π+5π12],k ∈Z
B.[k π+5π12,k π+11π
12],k ∈Z
C.[k π-π3,k π+π6],k ∈Z
D.[k π+π6,k π+2π
3
],k ∈Z
9.已知等比数列前10项的和为10,前20项的和为30,那么前30项的和为( )
(A)60 (B)70 (C)90 (D)126
10.函数)0)(sin()(>+=ωϕωx M x f 在区间],[b a 上是增函数,且M b f M a f =-=)(,)(, 则)cos()(ϕω+=x M x g 在],[b a 上 ( )
A 是增函数
B 是减函数
C 可以取得最大值M
D 可以取得最小值M - 二.填空题
11.函数)4
sin(cos )4
cos(sin π
π
+
++
=x x x x y 的最小正周期T=
12. 已知等腰三角形顶角的余弦值等于
5
4
,则这个三角形底角的正弦值为 13.正数a 、b 、c 成等比数列, x 为a 、b 的等差中项, y 为b 、c 的等差中项, 则a c
x y
+的值为__ __.
14.已知函数f (x )=3sin ⎝⎛⎭⎫ωx -π6(ω>0)和g (x )=2cos(2x +φ)+1的图象的对称轴完全相同.若x ∈⎣⎡⎦⎤0,π2,则f (x )的取值范围是________. 15. 关于函数f(x)=4sin(2x +
3
π
), (x ∈R)有下列命题:
①y =f(x)是以2π为最小正周期的周期函数; ② y =f(x)可改写为y =4cos(2x -6
π
);
③y =f(x)的图象关于(-
6
π
,0)对称;
④ y =f(x)的图象关于直线x =-6
π
对称;其中正确的序号为 .
三.解答题 16. 已知函数f (x )=
x
x cos 2sin 1-
(Ⅰ)求f (x )的定义域;(Ⅱ)设α是第四象限的角,且tan α=3
4
-
,求f (α)的值.
17.在等比数列{}n a 的前n 项和中,1a 最小,且128,66121==+-n n a a a a ,前n 项和126=n S ,求n 和公比q.
18.已知函数()sin(3)(0,(,),0f x A x A x ϕϕπ=+>∈-∞+∞<<在12
x π
=时取得最大值4.
(1) 求()f x 的最小正周期;(2) 求()f x 的解析式;(3) 若f (23α +12π)=125
,求sin α.
19.已知等差数列{}n a 满足:37a =,5726a a +=.{}n a 的前n 项和为n S . (Ⅰ)求n a 及n S ;(Ⅱ)令2
1
1
n n b a =-(n ∈N *),求数列{}n b 的前n 项和n T .
20.已经函数22cos sin 11
(),()sin 2.224
x x f x g x x -=
=- (Ⅰ)函数()f x 的图象可由函数()g x 的图象经过怎样变化得出?
(Ⅱ)求函数()()()h x f x g x =-的最小值,并求使用()h x 取得最小值的x 的集合。

21.设函数f (x )=(2cos x +a sin x )sin x +cos 2x (x ∈R),且f (π2)=f (π
4
).
(Ⅰ)求函数f (x )的值域;(Ⅱ)设f (x )图象上过任意一点P 的切线斜率为k ,证明:|k |≤2 2.
(附加题:不计入考试成绩)
1.sin 21°+sin 22°+…+sin 289°=________.
2.若方程sin x +cos x =k 在0≤x ≤π上有两解,则k 的取值范围是 .
3.设函数())
()cos
0f x ϕϕπ=+<<。

若()()/f x f x +是奇函数,则ϕ=
4.函数)6
56(3sin 2ππ≤≤=x x y 与函数y=2的图像围成一个封闭图形,这个封闭图形的面积是
5.函数y =|sin x |-2sin x 的值域是 ( )
A.[-3,-1]
B.[-1,3]
C.[0,3]
D.[-3,0] 6.函数
x x
y cos 2sin 3-=
的值域为( )
(A )]1,1[- (B )]3,3[- (C )[]
1,3-]1,3[- (D )]3,1[- 7.定义在R 上的偶函数()f x 满足()()2f x f x =+,当[]3,4x ∈时,()2f x x =-,则 ( )
A .11sin
cos 22f f ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭
B .sin cos 33f f ππ⎛⎫⎛
⎫> ⎪ ⎪⎝⎭⎝⎭
C .()()sin1cos1f f <
D .33sin cos 22f f ⎛⎫⎛
⎫> ⎪ ⎪⎝⎭⎝

8.设0>a ,π20<≤x ,若函数b x a x y +-=sin cos 2的最大值为0,最小值为4-,试求a 与b 的值,并求y 使取最大值和最小值时x 的值。

9.如图所示,函数π
2cos()(00)2
y x x >ωθωθ=+∈R ,,≤
≤的图象与y 轴相交于点M (0,且该函数的最小正周期为π.(1)求θ和ω的值;
(2)已知点π02
A ⎛⎫ ⎪⎝⎭,,
点P 是该函数图象上一点,点00()Q x y ,是PA
的中点,当02y =,0ππ2x ⎡⎤
∈⎢⎥⎣⎦
,时,求0x 的值。

相关文档
最新文档