中考计算题精选-因式分解(强烈推荐) (203)

合集下载

因式分解精选例题(附答案)

因式分解精选例题(附答案)

因式分解 例题讲解及练习【例题精选】:(1)3223220155y x y x y x ++ 评析:先查各项系数(其它字母暂时不看),确定5,15,20的最大公因数是5,确定系数是5 ,再查各项是否都有字母X ,各项都有时,再确定X 的最低次幂是几,至此确认提取X 2,同法确定提Y ,最后确定提公因式5X 2Y 。

提取公因式后,再算出括号内各项。

解:3223220155y x y x y x ++=)431(522y xy y x -+ (2)23229123y x yz x y x -+- 评析:多项式的第一项系数为负数,应先提出负号,各项系数的最大公因数为3,且相同字母最低次的项是X 2Y解:23229123y x yz x y x -+- =)3129(2223y x yz x y x +-- =)43(32223y x yz x y x +--=)1423(32+--xy y x(3)(y-x)(c-b-a)-(x-y)(2a+b-c)-(x-y)(b-2a)评析:在本题中,y-x 和x-y 都可以做为公因式,但应避免负号过多的情况出现,所以应提取y-x解:原式=(y-x)(c-b-a)+(y-x)(2a+b-c)+(y-x)(b-2a)=(y-x)(c-b-a+2a+b-c+b-2a)=(y-x)(b-a)(4) (4) 把343232x y x -分解因式评析:这个多项式有公因式2x 3,应先提取公因式,剩余的多项式16y 4-1具备平方差公式的形式解:343232x y x -=2)116(43-y x =2)14)(14(223+-y y x =)14)(12)(12(223++-y y y x (5) (5) 把827xy y x -分解因式评析:首先提取公因式xy 2,剩下的多项式x 6-y 6可以看作2323)()(y x -用平方差公式分解,最后再运用立方和立方差公式分解。

解一元二次方程经典练习题——因式分解法

解一元二次方程经典练习题——因式分解法
答:当地球运行到月球和太阳的中间,如果地球挡住了太阳射向月球的光,便发生月食。
6、解关于x的方程
(1)x2-2mx-8m2=0;(2)x2+(2m+1)x+m2+m=0
7、
8、答:说明米饭不是甜的,但米饭含有淀粉,在我们咀嚼的过程中发生了变化,变得有甜味了。已知x2+3xy-4y2=0(y≠0),试求 的值
4、科学家研究表明昆虫头上的触角就是它们的“鼻子”,能分辨出各种气味,比人的鼻子灵敏得多。
18、北斗七星构成勺形,属于大熊座,北极星属于小熊座。
4、如何借助大熊座找到北极星?(P58)
25、意大利的科学家伽利略发明了望远镜,天文学家的“第三只眼”是天文望远镜,可以分为光学望远镜和射电望远镜两种。
5、三角形的一边长为10,另两边长为方程x2-14x+48=0的两个根,求三角形的周长?
x(x- )= -x(2t+3)2=3(2t+3)
2、平方差,解方程:
(x+5)(x-5)=0 x2-25=04x2-1=0 (x-2)2=256
3、十字交叉,解方程:
4x2-4x+1=0 (x+3)(x+2)=0x2-5x+6=0x2-2x-3=0
x2-4x-21=0
(x-1)(x+3)=12 3x2+2x-1=0 (x-1)2-4(x-1)-21=0
解一元二次方程——因式分解法
一.公因式:
(一)1.解方程
x2-5x=0x(x-1)=03x2=6xx2-Байду номын сангаасx=7xt(t+3)=28
x2=7x x2+12x=0(1+ )x2-(1- )x=0(3-y)2+y2=9
(二)1.解方程
4x(x+3)+3(x+3)=03x(x+1)+4(x+1)=0(2x+1)2+3(2x+1)=0

初三数学因式分解50题

初三数学因式分解50题

初三数学因式分解50题初三数学因式分解是一个非常重要的数学知识点,它是代数运算中的基础内容。

因式分解是将一个多项式表示为若干个不可约的因式的乘积的过程。

因式分解的题目可以涉及到一元二次方程、一元三次方程、多项式等内容。

下面我将为你列举50个初三数学因式分解的题目,并给出详细的解答。

1. 因式分解 2x^2 + 7x + 3。

2. 因式分解 3x^2 12x.3. 因式分解 4x^2 9。

4. 因式分解 x^2 5x + 6。

5. 因式分解 2x^2 11x + 5。

6. 因式分解 3x^2 + 2x 8。

7. 因式分解 4x^2 4x 3。

8. 因式分解 5x^2 12x + 7。

9. 因式分解 6x^2 + 7x 3。

10. 因式分解 x^2 9。

11. 因式分解 2x^2 8x + 8。

12. 因式分解 3x^2 5x 2。

13. 因式分解 4x^2 + 12x + 9。

14. 因式分解 5x^2 3x 2。

15. 因式分解 6x^2 + 5x 6。

16. 因式分解 x^2 4。

17. 因式分解 2x^2 7x + 3。

18. 因式分解 3x^2 + 6x + 3。

19. 因式分解 4x^2 16。

20. 因式分解 5x^2 11x + 6。

21. 因式分解 6x^2 13x + 6。

22. 因式分解 x^2 6x + 9。

23. 因式分解 2x^2 9x + 4。

24. 因式分解 3x^2 10x + 7。

25. 因式分解 4x^2 5x 6。

26. 因式分解 5x^2 + 8x + 3。

27. 因式分解 6x^2 7x 3。

28. 因式分解 x^2 7x + 10。

29. 因式分解 2x^2 3x 2。

30. 因式分解 3x^2 12x + 12。

31. 因式分解 4x^2 9x 5。

32. 因式分解 5x^2 + 2x 3。

33. 因式分解 6x^2 5x 6。

34. 因式分解 x^2 8x + 15。

因式分解题目集合

因式分解题目集合

因式分解题目集合以下是一些因式分解的题目,希望能够帮助您练因式分解的技巧。

1. 题目:因式分解 $3x^2 + 6x$。

题目:因式分解 $3x^2 + 6x$。

解答:首先,我们可以提取公因式$3x$,得到$3x(x + 2)$。

:首先,我们可以提取公因式 $3x$,得到 $3x(x + 2)$。

2. 题目:因式分解 $4x^2 - 9$。

题目:因式分解 $4x^2 - 9$。

解答:这是一个平方差公式的应用。

我们可以将 $4x^2$ 看作$(2x)^2$,将 $9$ 看作 $3^2$。

根据平方差公式,我们有 $4x^2 - 9 = (2x + 3)(2x - 3)$。

:这是一个平方差公式的应用。

我们可以将$4x^2$ 看作 $(2x)^2$,将 $9$ 看作 $3^2$。

根据平方差公式,我们有 $4x^2 - 9 = (2x + 3)(2x - 3)$。

3. 题目:因式分解 $x^3 - 8$。

题目:因式分解 $x^3 - 8$。

解答:可以利用立方差公式来处理此题。

我们可以将 $x^3$ 看作 $(x)^3$,将 $8$ 看作 $2^3$。

根据立方差公式,我们有 $x^3 - 8 = (x - 2)(x^2 + 2x + 4)$。

:可以利用立方差公式来处理此题。

我们可以将 $x^3$ 看作 $(x)^3$,将 $8$ 看作 $2^3$。

根据立方差公式,我们有 $x^3 - 8 = (x - 2)(x^2 + 2x + 4)$。

4. 题目:因式分解 $9y^2 - 25$。

题目:因式分解 $9y^2 - 25$。

解答:这是一个平方差公式的应用。

我们可以将 $9y^2$ 看作$(3y)^2$,将 $25$ 看作 $5^2$。

根据平方差公式,我们有 $9y^2 - 25 = (3y + 5)(3y - 5)$。

:这是一个平方差公式的应用。

我们可以将$9y^2$ 看作 $(3y)^2$,将 $25$ 看作 $5^2$。

因式分解公式法练习题及答案

因式分解公式法练习题及答案

因式分解公式法练习题及答案一. 一元二次多项式因式分解1. 练习题1.将多项式4x2+12x+9进行因式分解。

2.对于多项式3x2+13x+12,找到它的两个因式。

2. 答案1.多项式4x2+12x+9可以因式分解为(2x+3)2。

2.多项式3x2+13x+12可以因式分解为(x+4)(3x+3)。

二. 因式分解与整式运算结合1. 练习题1.将多项式2x3−4x2+2x进行因式分解。

2.对于多项式(2x−1)2−(x−1)2,求它的因式分解形式。

2. 答案1.多项式2x3−4x2+2x可以因式分解为2x(x−1)2。

2.多项式(2x−1)2−(x−1)2可以因式分解为(x−1)(3x)。

三. 因式分解与方程1. 练习题1.解方程2x2+7x+3=0。

2.解方程x3−8=0。

2. 答案1.解方程2x2+7x+3=0的解为 $x = -\\frac{1}{2}, x = -3$。

2.解方程x3−8=0的解为x=2。

四. 多项式因式分解的应用1. 练习题1.某长方形的周长为14x+10,面积为4x2+6x+1,求长方形的长和宽。

2.某数的立方加上该数的平方再加上该数等于100,求该数。

2. 答案1.设长方形的长为l,宽为w,根据题意得出方程2(l+w)=14x+10和lw=4x2+6x+1。

将第一个方程变形为l+w=7x+5,将第二个方程变形为lw=(2x+1)(2x+1)。

由此,解得长方形的长为2x+1,宽为2x+1。

2.设数为n,根据题意可以列出方程n3+n2+n=100。

化简后可得n3+n2+n−100=0。

通过因式分解,我们可以将此方程写成(n−4)(n+ 5)(n+5)=0。

因此,解得该数为−5。

超经典的因式分解练习题有答案精品

超经典的因式分解练习题有答案精品

超经典的因式分解练习题有答案精品1. 因式分解.(1) a(a-b) -2(w-b).(2)x²-2x²+x.2.因式分解:(1)12m²κ⁻¹−8m²κ⁴;(2) x³-4x²y+4xy².3.将下列多项式因式分解:(1) 2x²-6x;(2) -6x²+12a-6;(3) 4x²-(y²-4y-4).4. 因式分解: (m+1) (m-9) +8m.5.因式分解:25x²{a-b}+49y² (b-a).6.因式分解:2x¹-8r³y8xy².7.因式分解:(1) 4a²-9;(2) 16m³-8me+n³.8. 因式分解:(1) 2ax²-2m²;(2) 3a²-6a²b+3ab².9. 因式分解:(1) m²-m;(2) x³-4x²+4x.10. 因式分解:4.²(x-1) -9 (x+7).11.因式分解:-3a+12a²-12a³.12. 因式分解:(1) m²-y³;(2) x(x-y) ty(y-x).参考答案10. 因式分解.(1) a(a-b) -2(a-b).(2) x³2x³+x.【分析】(1) 原式提取公因式分解即可;(2) 原式提取公因式,再利用完全平方公式分解即可.【解答】解: (1) a (a -b) -2(a -b) = (a-b) ( a -2).(2)x³-2x²+x=x (x²-2x-1)=x(x-1)².【点评】此题考查了提公园式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11.因式分解:(1) 12m³k⁴-8m²n³;(2)x³-4r³y+4xy².【分析】(1) 找到公因式,提取公因式即可:(2) 先提取公因式,再看用完全平方公式.【解答】解: (1) 原式=4m²n⁴ (3m-2m²);(2)原式: =x(x²-4xy-4y²)=x (x-2y)².【点评】本题考查了整式的因式分解,掌握提取公因式法,公式法是解决本题的关键。

初中因式分解经典题型(含详细答案)

初中因式分解经典题型(含详细答案)

初中因式分解经典题型精选第一组:基础题1、a²b+2ab+b2、2a²-4a+23、16-8(m-n)+(m-n)²4、a²(p-q)-p+q5、a(ab+bc+ac)-abc【答案】1、a²b+2ab+b=b(a²+2a+1)=b(a+1)²2、2a²-4a+2=2(a²-2a+1)=2(a-1)²3、16-8(m-n)+(m-n)²然后运用完全平方公式=4²-2*4*(m-n)+(m-n)²=[4-(m-n)] ²=(4-m+n) ²4、a²(p-q)-p+q=a²(p-q)-(p-q)=(p-q)(a²-1)=(p-q)(a+1)(a-1)5、a(ab+bc+ac)-abc=a[(ab+bc+ac)-bc]=a(ab+bc+ac-bc)bc与-bc 抵消=a(ab+ac)提取公因式a=a²(b+c)第二组:提升题6、(x-y-1)²-(y- x-1)²7、a3b-ab38、b4-14b²+19、x4+x²+2ax+1﹣a²10、a5+a+1【答案】6、(x-y-1)²-(y- x-1)²用平方差公式=[(x-y-1)+(y-x-1)][(x-y-1)-(y-x-1)]去括号,合并同类项=(-2)(2x-2y)提取2= -4(x-y)7、a3b-ab3提取公因式ab=ab(a²-b²)用平方差公式=ab(a+b)(a-b)8、b4-14b²+1将-14b²拆分为:+2b²-16b²=b4+2b²-16b²+1将-16b²移到最后=b4+2b²+1-16b²将前三项结合在一起=(b4+2b²+1)-16b²=( b²+1)²-(4b)²用平方差公式=[( b²+1)+4b][( b²+1)-4b] =( b²+4b+1)( b²-4b+1)9、x4+x²+2ax+1﹣a²将+x²拆分为:+2x²- x²=x4+2x²- x² +2ax+1﹣a²将x4、+2x²、+1结合,将-x²、+2ax、﹣a²结合=(x4+2x²+1)+(-x²+2ax﹣a²)提取-1=( x²+1)² -(x²-2ax+a²)=( x²+1)²-( x-a)²用平方差公式=[(x²+1)+(x-a)][(x²+1)-(x-a)]=(x²+x-a+1)(x²-x+a+1)10、a5+a+1在式子中添加:-a²+a²=a5 - a²+ a²+a+1将前两项结合,后面三项结合=(a5-a²)+(a²+a+1)提取公因式a²=a²(a3-1)+(a²+a+1)用立方差公式=a²(a-1)(a²+a+1)+(a²+a+1)提取公因式(a²+a+1)=(a²+a+1)[a²(a-1)+1]=(a²+a+1)(a3-a²+1)第三组:进阶题11、x4-2y4-2x3y+xy312、(ac-bd)²+(bc+ad)²13、x²(y-z)+y²(z-x)+z²(x-y)14、x²-4ax+8ab-4b²15、xy² +4xz -xz²-4x【答案】11、x4-2y4-2x3y+xy3x4与xy3结合,-2y4与-2x3y结合=(x4+xy3)+(-2y4-2x3y)x-2y,=x(x3+y3)-2y(x3+y3)提取公因式(x3+y3)=(x3+y3)(x-2y)=(x+y)(x2-xy+y2)(x-2y)12、(ac-bd)²+(bc+ad)²去括号展开= a²c² - 2abcd + b²d²+b²c² +2abcd + a²d²- 2abcd与+2abcd 抵消=a²c² + b²d² +b²c² + a²d²a²c²与b²c²结合,b²d²与a²d²结合=(a²c²+b²c²)+( b²d²+a²d²)c², d ²,=c²(a²+b²)+d²(a²+b²)提取公因式(a²+b²)=(a²+b²)(c²+d²)13、x²(y-z)+y²(z-x)+z²(x-y)=x²(y-z)+y²z -y²x +z²x -z²yy²z与-z²y结合,z²x 与-y²x=x²(y-z)+(y²z -z²y)+(z²x-y²x)提取公因式zy提取公因式=x²(y-z)+ zy(y-z)+x(z²-y²)提取公因式(y-z),=(y-z)(x²+zy)+x(z+y)(z-y)y-z),后一项 +x则变为 -x =(y-z)[(x²+zy)-x(z+y)]=(y-z)(x²+zy-xz-xy)14、x²-4ax+8ab-4b²²与-4b²结合,-4ax与+8ab结合=(x²-4b²)+(-4ax+8ab)-4a=(x+2b)(x-2b)-4a(x-2b)x-2b),=(x-2b)[(x+2b)-4a]=(x-2b)(x+2b-4a)15、xy² +4xz -xz²-4xx,=x(y²+4z -z²-4)=x[y²+(4z -z²-4)]-1,=x[y²-(z²-4z+4)]用完全平方公式进行分解,=x[y²-(z-2)²]=x[y+(z-2))][y-(z-2)]=x(y+z-2)(y-z+2)第四组:经典题16、a6(a²-b²)+b6(b²-a²)17、4m3-31m+1518、a3+5a²+3a-919、x4(1- y)²+2x²(y²-1)+(1+ y)²20、2x4 -x3-6x²- x+ 2【答案】16、a6(a²-b²)+b6(b²-a²)-1=a6(a²-b²)-b6(a²-b²)提取公因式(a²-b²)=(a²-b²)(a6-b6)=(a²-b²)(a²-b²)(a4+a²b²+b4)=(a²-b²)²(a4+a²b²+b4)=(a+b)²(a-b)²(a4+a²b²+b4)17、4m3-31m+15-31m拆分为:-m-30m=4m3-m-30m+15=(4m3-m)+(-30m+15)m-15=m(4m²-1)-15(2m-1)=m(2m+1)(2m-1)-15(2m-1)(2m-1),=(2m-1)[m(2m+1)-15]=(2m-1)(2m²+m-15)=(2m-1)(2m-5)(m+3)18、a3+5a²+3a-93a拆分为:-6a+9a =a3+5a²-6a+9a-9=(a3+5a²-6a)+(9a-9)a9=a(a²+5a-6)+9(a-1)=a(a+6)(a-1)+9(a-1)提取公因式(a-1)=(a-1)[a(a+6)+9]=(a-1)(a²+6a+9)=(a-1)(a+3)²19、x4(1- y)²+2x²(y²-1)+(1+ y)²-1=x4(1- y)² - 2x²(1-y²)+(1+ y)²=[x²(1-y)]² -2x²(1-y)(1+y)+(1+ y)²=(x²-yx²-1- y)²20、2x4 -x3-6x²- x+ 2-x拆分为:3x-4x =2x4 -x3-6x²+3x-4x+ 2=(2x4 -x3)+(-6x²+3x)+(-4x+ 2)=(2x-1)(x3-3x-2)第五组:精选题21、a3+2a2+3a+222、x4-6x²+123、x3+3x+424、2a2b2+2a2c2+2b2c2+a4+b4+c425、a3-3a-226、2x3+3x2-127、a2+3ab+2b2+2a+b-3【答案】21、a3+2a2+3a+23a拆分为:a+2a =a3+2a2+a+2a+2=(a3+2a2+a)+(2a+2)=a(a2+2a+1)+2(a+1)=a(a+1)2+2(a+1)a+1)=(a+1)[a(a+1)+2]=(a+1)(a2+a+2)22、x4-6x²+1-6x2拆分为:-2x2-4x2 =x4-2x²-4x²+1-4x2移到最后=x4-2x²+1-4x²=(x4-2x²+1)-4x²=(x2-1)2-(2x)2=[(x2-1)+2x][(x2-1)-2x] =(x2+2x-1)(x2-2x-1)23、x3+3x+44拆分为:3+1=x3+3x+3+1x3与1结合,3x与3结合=(x3+1) + (3x+3)3=(x+1)(x2-x+1)+3(x+1)x+1)=(x+1)[(x2-x+1)+3]=(x+1)(x2-x+4)24、2a2b2+2a2c2+2b2c2+a4+b4+c4=(a4+b4+2a2b2)+(2a2c2+2b2c2)+c4 =(a2+b2)2+2c2(a2+b2)+c4=[(a2+b2)+c2]2=(a2+b2+c2)225、a3-3a-2-3a拆分为:-a-2a=a3-a-2a-2=(a3-a)+(-2a-2)=a(a2-1)-2(a+1)=a(a+1)(a-1)-2(a+1)a+1)=(a+1)[a(a-1)-2]=(a+1)(a2-a-2)=(a+1)(a+1)(a-2)=(a+1)2(a-2)26、2x3+3x2-13x2拆分为:2x2+x2 =2x3+2x2+x2-1=(2x3+2x2)+(x2-1)=2x2(x+1)+(x+1)(x-1)x+1)=(x+1)[2x2+(x-1)]=(x+1)(2x2+x-1)=(x+1)(2x-1)(x+1)=(x+1)2(2x-1)27、a2+3ab+2b2+2a+b-3=(a2+3ab+2b2)+(2a+b)-3 =(a+b)(a+2b)+(2a+b)-3 =[(a+b)-1][(a+2b)+3] =(a+b-1)(a+2b+3)十字叉乘法故:x2+6x+5=(x+1)(x+5)故:2x2+5x+2=(2x+1)(x+2)故:4x2+5x-3=(2x-1)(2x+3)黄勇权2019-7-14。

因式分解100题试题附答案精选全文完整版

因式分解100题试题附答案精选全文完整版

100题搞定因式分解计算因式分解100题(试题版)日期:________时间:________姓名:________成绩:________一、解答题(共100小题)1.因式分解:4a2b﹣b.2.因式分解:a2(a﹣b)+25(b﹣a).3.因式分解:x3+3x2y﹣4x﹣12y.4.因式分解:9(x+y)2﹣(x﹣y)2.5.因式分解:2a2b﹣12ab+18b.6.因式分解:﹣x3y+4x2y2﹣4xy3.7.因式分解:a2(x﹣y)+4b2(y﹣x).8.因式分解:4a3b+4a2b2+ab3.9.因式分解:(a+b)2﹣4a2.10.因式分解:3ax2﹣6axy+3ay2.11.因式分解:6x4﹣5x3﹣4x2.12.因式分解:(x﹣3y)(x﹣y)﹣(﹣x﹣y)213.因式分解:2m(a﹣b)﹣3n(b﹣a)14.因式分解:m2﹣(2m+3)2.16.因式分解:x2﹣4xy+4y2﹣117.因式分解:(9x+y)(2y﹣x)﹣(3x+2y)(x﹣2y)18.因式分解:a2﹣4﹣3(a+2)19.因式分解:(x﹣1)2+2(x﹣5).20.因式分解:4x3﹣8x2+4x.21.因式分解:x3﹣2x2﹣3x22.因式分解:2x2﹣4xy+3x﹣6y24.因式分解:9x2﹣6x+1.25.因式分解:4ma2﹣mb2.26.因式分解:x2﹣2xy﹣8y2.27.因式分解:a2+4a(b+c)+4(b+c)2.28.因式分解:x2﹣4y2+4﹣4x29.因式分解:xy2﹣4xy+4x.30.因式分解:x4﹣5x2﹣36.31.因式分解:x3﹣2x2y+xy2.32.在实数范围内因式分解:x2﹣4xy﹣3y2.33.因式分解:9a2(x﹣y)+4b2(y﹣x)34.因式分解:x4﹣10x2+9.35.因式分解:x2﹣y2﹣2x+1.36.因式分解:(2x﹣y)(x+3y)﹣(x+y)(y﹣2x).37.因式分解:6(x+y)2﹣2(x﹣y)(x+y).38.因式分解:2m4n﹣12m3n2+18m2n3.39.因式分解:a2(x﹣y)+4(y﹣x).40.在实数范围内因式分解:﹣2a2b2+ab+2.41.因式分解:x2﹣9+3x(x﹣3)42.因式分解:4xy2+4x2y+y3.43.因式分解:(x2+4x)2﹣2(x2+4x)﹣15.44.因式分解:6xy2+9x2y+y3.45.因式分解:x3﹣3x2+2x.46.因式分解:x(a﹣b)+y(b﹣a)﹣3(b﹣a).47.因式分解:3ax﹣18by+6bx﹣9ay48.因式分解:(2a﹣b)(3a﹣2)+b(2﹣3a)49.因式分解:(a﹣3)2+(3﹣a)50.因式分解:(a+b)﹣2a(a+b)+a2(a+b)51.因式分解:12x4﹣6x3﹣168x252.因式分解:(2m+3n)(2m﹣n)﹣n(2m﹣n)53.因式分解:3x2(x﹣2y)﹣18x(x﹣2y)﹣27(2y﹣x)54.因式分解:(x﹣1)(x+1)(x﹣2)﹣(x﹣2)(x2+2x+4)55.因式分解:8x2y2﹣10xy﹣1256.因式分解:6(x+y)2﹣2(x+y)(x﹣y)57.因式分解:9(a﹣b)(a+b)﹣3(a﹣b)258.因式分解:4xy(x+y)2﹣6x2y(x+y)59.因式分解:﹣24m2x﹣16n2x.60.因式分解:4a(x﹣y)﹣2b(y﹣x)61.因式分解:ax4﹣14ax2﹣32a.62.因式分解:x3+5x2y﹣24xy2.63.因式分解:(1﹣3a)2﹣3(1﹣3a)64.因式分解:x(x﹣y)3+2x2(y﹣x)2﹣2xy(x﹣y)2.65.因式分解:x5﹣2x3﹣8x.366.因式分解:x2-y2+2x+y+467.因式分解:2(x+y)2﹣20(x+y)+50.68.因式分解:1+a+a(1+a)+a(1+a)2+a(1+a)3.69.因式分解:x2y﹣x2z+xy﹣xz.70.因式分解:(x2﹣x)2﹣8x2+8x+12.71.因式分解:x4﹣(3x﹣2)2.72.因式分解:(3m﹣1)2﹣(2m﹣3)2.73.因式分解:(2x+5)2﹣(2x﹣5)2.74.因式分解:(﹣2x﹣1)2(2x﹣1)2﹣(4x2﹣2x﹣1)275.因式分解:(m+1)(m﹣9)+8m.76.因式分解:9(a﹣b)2+36(b2﹣ab)+36b277.因式分解:(a2+4)2﹣16a2.78.因式分解:9(m+n)2﹣(m﹣n)279.因式分解:x4﹣8x2y2+16y4.80.因式分解:25x2﹣9(x﹣2y)281.因式分解:4x2y2﹣(x2+y2)2.82.因式分解:x(x﹣12)+4(3x﹣1).83.因式分解:(x2﹣3)2+2(3﹣x2)+1.84.因式分解:(x+2)(x﹣6)+16.85.因式分解:2m(2m﹣3)+6m﹣1.86.因式分解:x4﹣16y4.87.因式分解:(a2+1)2﹣4a2.88.因式分解:(2x+y)2﹣(x+2y)2.89.因式分解:(x2﹣6)2﹣6(x2﹣6)+990.因式分解:(x2+x)2﹣(x+1)2.91.因式分解:8(x2﹣2y2)﹣x(7x+y)+xy.92.因式分解:x4﹣10x2y2+9y4.93.因式分解:(x2+x﹣5)(x2+x﹣3)﹣394.因式分解:(m2+2m)2﹣7(m2+2m)﹣895.因式分解:(x2+2x)2﹣2(x2+2x)﹣396.因式分解:2x2+6x﹣3.5.97.因式分解:3x2﹣12x+998.因式分解:(x﹣4)(x+7)+18.99.因式分解:5a2b2+23ab﹣10.100.因式分解:(x+y)2﹣(4x+4y)﹣32.因式分解100题参考答案部分可能有误仅供参考一、解答题(共100小题)1.【解答】解:4a2b﹣b=b(4a2﹣1)=b(2a+1)(2a﹣1).2.【解答】解:a2(a﹣b)+25(b﹣a)=a2(a﹣b)﹣25(a﹣b)=(a﹣b)(a2﹣52)=(a﹣b)(a+5)(a﹣5).3.【解答】解:x3+3x2y﹣4x﹣12y=(x3+3x2y)﹣(4x+12y)=x2(x+3y)﹣4(x+3y)=(x+3y)(x2﹣4)=(x+3y)(x+2)(x﹣2).4.【解答】解:9(x+y)2﹣(x﹣y)2=[3(x+y)﹣(x﹣y)][3(x+y)+(x﹣y)]=(2x+4y)(4x+2y)=4(x+2y)(2x+y).5.【解答】解:原式=2b(a2﹣6a+9)=2b(a﹣3)2.6.【解答】解:原式=﹣xy(x2﹣4xy+4y2)=﹣xy(x﹣2y)2.7.【解答】解:原式=(x﹣y)(a2﹣4b2)=(x﹣y)(a+2b)(a﹣2b).故答案为:(x﹣y)(a+2b)(a﹣2b).8.【解答】解:原式=ab(4a2+4ab+b2)=ab(2a+b)2.9.【解答】解:原式=(a+b+2a)(a+b﹣2a)=(3a+b)(b﹣a).10.【解答】解:原式=3a(x2﹣2xy+y2)=3a(x﹣y)2.11.【解答】解:6x4﹣5x3﹣4x2=x2(6x2﹣5x﹣4)=x2(2x+1)(3x﹣4).12.【解答】解:原式=x2﹣xy﹣3xy+y2﹣(x2+xy+y2),=x2﹣xy﹣3xy+y2﹣x2﹣xy﹣y2,=﹣xy+y2,=﹣y(x﹣y).13.【解答】解:2m(a﹣b)﹣3n(b﹣a)=(a﹣b)(2m+3n).14.【解答】解:原式=(m+2m+3)(m﹣2m﹣3)=(3m+3)(﹣m﹣3)=﹣3(m+1)(m+3).15.【解答】解:原式=[3(x﹣y)+2]2=(3x﹣3y+2)2.16.【解答】解:x2﹣4xy+4y2﹣1=(x2﹣4xy+4y2)﹣1=(x﹣2y)2﹣1=(x﹣2y+1)(x﹣2y﹣1).17.【解答】解:(9x+y)(2y﹣x)﹣(3x+2y)(x﹣2y)=(2y﹣x)(9x+y+3x+2y)=3(2y﹣x)(4x+y).18.【解答】解:原式=(a+2)(a﹣2)﹣3(a+2)=(a+2)(a﹣5).19.【解答】解:原式=x2﹣2x+1+2x﹣10=x2﹣9=(x+3)(x﹣3).20.【解答】解:原式=4x(x2﹣2x+1)=4x(x﹣1)2.21.【解答】解:x3﹣2x2﹣3x=x(x2﹣2x﹣3)=x(x﹣3)(x+1).22.【解答】解:原式=2x(x﹣2y)+3(x﹣2y)=(x﹣2y)(2x+3).23.【解答】解:(x﹣2y)(x+3y)﹣(x﹣2y)2=(x﹣2y)(x+3y﹣x+2y)=5y(x﹣2y).24.【解答】解:原式=(3x﹣1)2.25.【解答】解:4ma2﹣mb2,=m(4a2﹣b2),=m(2a+b)(2a﹣b).26.【解答】解:x2﹣2xy﹣8y2=(x﹣4y)(x+2y).27.【解答】解:原式=[a+2(b+c)]2=(a+2b+2c)2.28.【解答】解:x2﹣4y2+4﹣4x=(x2﹣4x+4)﹣4y2=(x﹣2)2﹣4y2=(x+2y﹣2)(x﹣2y﹣2).29.【解答】解:xy2﹣4xy+4x=x(y2﹣4y+4)=x(y﹣2)2.30.【解答】解:原式=(x2﹣9)(x2+4)=(x+3)(x﹣3)(x2+4).31.【解答】解:x3﹣2x2y+xy2,=x(x2﹣2xy+y2),=x(x﹣y)2.32.【解答】解:x2﹣4xy﹣3y2=x2﹣4xy+4y2﹣7y2=(x﹣2y)2﹣7y2=(x﹣2y+y)(x﹣2y﹣y).33.【解答】解:9a2(x﹣y)+4b2(y﹣x)=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).34.【解答】解:原式=(x2﹣1)(x2﹣9)=(x+1)(x﹣1)(x+3)(x﹣3).35.【解答】解:原式=(x2﹣2x+1)﹣y2=(x﹣1)2﹣y236.【解答】解:原式=(2x﹣y)(x+3y)+(x+y)(2x﹣y)=(2x﹣y)(x+3y+x+y)=(2x﹣y)(2x+4y)=2(2x﹣y)(x+2y).37.【解答】解:6(x+y)2﹣2(x﹣y)(x+y)=2(x+y)[3(x+y)﹣(x﹣y)]=2(x+y)(2x+4y)=4(x+y)(x+2y)38.【解答】解:2m4n﹣12m3n2+18m2n3=2m2n(m2﹣6mn+9n2)=2m2n(m﹣3n)2.39.【解答】原式=a2(x﹣y)﹣4(x﹣y)=(x﹣y)(a2﹣4)=(x﹣y)(a+2)(a﹣2).40.【解答】解:令﹣2a2b2+ab+2=0,则ab=,所以﹣2a2b2+ab+2=﹣2(ab﹣)(ab﹣).41.【解答】解:x2﹣9+3x(x﹣3)=(x﹣3)(x+3)+3x(x﹣3)=(x﹣3)(x+3+3x)=(x﹣3)(4x+3).42.【解答】解:4xy2+4x2y+y3=y(4xy+4x2+y2)=y(y+2x)2.43.【解答】解:原式=(x2+4x﹣5)(x2+4x+3)=(x+5)(x﹣1)(x+3)(x+1).44.【解答】解:原式=y(6xy+9x2+y2)=y(3x+y)2.45.【解答】解:x3﹣3x2+2x=x(x2﹣3x+2)=x(x﹣1)(x﹣2)46.【解答】解:原式=x(a﹣b)﹣y(a﹣b)+3(a﹣b)=(a﹣b)(x﹣y+3).47.【解答】解:原式=(3ax﹣9ay)+(6bx﹣18by)=3a(x﹣y)+6b(x﹣y)=3(x﹣y)(a+2b).48.【解答】解:(2a﹣b)(3a﹣2)+b(2﹣3a)=(2a﹣b)(3a﹣2)﹣b(3a﹣2)=(3a﹣2)(2a﹣b﹣b)=2(3a﹣2)(a﹣b).49.【解答】解:原式=(3﹣a)2+(3﹣a)=(3﹣a)(3﹣a+1)=(3﹣a)(4﹣a).50.【解答】解:原式=(a+b)(1﹣2a+a2)=(a+b)(1﹣a)251.【解答】解:12x4﹣6x3﹣168x2=6x2(2x2﹣x﹣28)52.【解答】解:原式=(2m ﹣n )(2m +3n ﹣n )=(2m ﹣n )(2m +2n )=2(2m ﹣n )(m +n ).53.【解答】解:3x 2(x ﹣2y )﹣18x (x ﹣2y )﹣27(2y ﹣x )=3x 2(x ﹣2y )﹣18x (x ﹣2y )+27(x ﹣2y )=3(x ﹣2y )(x 2﹣6x +9)=3(x ﹣2y )(x ﹣3)2.54.【解答】解:原式=(x ﹣2)(x 2﹣1﹣x 2﹣2x ﹣4)=(x ﹣2)(﹣2x ﹣5)=﹣2x 2﹣x +10.55.【解答】解:原式=2(4x 2y 2﹣5xy ﹣6)=2(4xy +3)(xy ﹣2).56.【解答】解:6(x +y )2﹣2(x +y )(x ﹣y )=2(x +y )[3(x +y )﹣(x ﹣y )]=2(x +y )(2x +4y )=4(x +y )(x +2y ).57.【解答】解:原式=3(a ﹣b )[3(a +b )﹣(a ﹣b )]=6(a ﹣b )(a +2b ).58.【解答】解:原式=2xy (x +y )•2(x +y )﹣2xy (x +y )•3x =2xy (x +y )•[2(x +y )﹣3x ]=2xy (x +y )(2y ﹣x ).59.【解答】解:原式=﹣8x (3m 2+2n 2).60.【解答】解:4a (x ﹣y )﹣2b (y ﹣x )=4a (x ﹣y )+2b (x ﹣y )=2(x ﹣y )(2a +b ).61.【解答】解:ax 4﹣14ax 2﹣32a =a (x 4﹣14x 2﹣32)=a (x 2+2)(x 2﹣16)=a (x 2+2)(x +4)(x ﹣4).62.【解答】解:原式=x (x 2+5xy ﹣24y 2)=x (x +8y )(x ﹣3y ).63.【解答】解:(1﹣3a )2﹣3(1﹣3a )=(1﹣3a )(1﹣3a ﹣3)=(1﹣3a )(﹣3a ﹣2)=﹣(1﹣3a )(3a +2)=﹣3a ﹣2+9a 2+6a =9a 2+3a ﹣2.64.【解答】解:x (x ﹣y )3+2x 2(y ﹣x )2﹣2xy (x ﹣y )2=x (x ﹣y )2[(x ﹣y )+2x ﹣2y ]=3x (x ﹣y )3.65.【解答】解:原式=x (x 4﹣2x 2﹣8)=x (x 2﹣4)(x 2+2)=x (x +2)(x ﹣2)(x 2+2).66.【解答】解:原式=x 2+2x +1-y 2+y +43=(x +1)2-(y ﹣)2⎫⎛⎫⎛31y x y x ()()322122167.【解答】解:2(x+y)2﹣20(x+y)+50.=2[(x+y)2﹣10(x+y)+25].=2(x+y﹣5)2.68.【解答】解:1+a+a(1+a)+a(1+a)2+a(1+a)3=(1+a)[1+a+a(1+a)+a(1+a)2]=(1+a)2[1+a+a(1+a)]=(1+a)4.69.【解答】解:x2y﹣x2z+xy﹣xz.=(x2y﹣x2z)+(xy﹣xz).=x2(y﹣z)+x(y﹣z).=x(x+1)(y﹣z).70.【解答】解:原式=(x2﹣x)2﹣8(x2﹣x)+12=(x2﹣x﹣2)(x2﹣x﹣6)=(x+1)(x﹣2)(x+2)(x﹣3)71.【解答】解:原式=(x2)2﹣(3x﹣2)2=(x2+3x﹣2)(x2﹣3x+2)=(x2+3x﹣2)(x﹣1)(x﹣2).72.【解答】解:原式=[(3m﹣1)+(2m﹣3)][(3m﹣1)﹣(2m﹣3)]=(5m﹣4)(m+2).73.【解答】解:原式=[(2x+5)+(2x﹣5)][(2x+5)﹣(2x﹣5)]=4x•10=40x.74.【解答】解:原式=[(﹣2x﹣1)(2x﹣1)+4x2﹣2x﹣1][(﹣2x﹣1)(2x﹣1)﹣4x2+2x+1]=﹣4x(﹣4x2+x+1).75.【解答】解:原式=m2﹣8m﹣9+8m=m2﹣9=(m+3)(m﹣3).76.【解答】解:原式=9[(a﹣b)2+4b(a﹣b)+4b2]=9(a﹣b+2b)2=9(a+b)2.77.【解答】解:原式=(a2+4)2﹣(4a)2,=(a2+4+4a)(a2+4﹣4a),=(a+2)2(a﹣2)2.78.【解答】解:原式=[3(m+n)]2﹣(m﹣n)2=(3m+3n+m﹣n)(3m+3n﹣m+n)=4(2m+n)(m+2n).79.【解答】解:原式=(x2﹣4y2)2=(x+2y)2(x﹣2y)2.80.【解答】解:原式=[5x﹣3(x﹣2y)][5x+3(x﹣2y)]=(2x﹣6y)(8x﹣6y)=4(x+3y)(4x﹣3y).81.【解答】解:4x2y2﹣(x2+y2)2=﹣[(x2+y2)2﹣(2xy)2]=﹣(x2+y2+2xy)(x2+y2﹣2xy)=﹣(x+y)2(x﹣y)2.82.【解答】解:原式=x2﹣12x+12x﹣4=x2﹣4=(x+2)(x﹣2).83.【解答】解:(x2﹣3)2+2(3﹣x2)+1=(x2﹣3)2﹣2(x2﹣3)+1=(x2﹣4)2=(x+2)2(x﹣2)2.84.【解答】解:原式=x2﹣4x+4=(x﹣2)2.85.【解答】解:原式=4m2﹣6m+6m﹣1=4m2﹣1=(2m+1)(2m﹣1).86.【解答】解:x4﹣16y4=(x2+4y2)(x2﹣4y2)=(x2+4y2)(x+2y)(x﹣2y).87.【解答】解:原式=(a2+1+2a)(a2+1﹣2a)=(a+1)2(a﹣1)2.88.【解答】解:(2x+y)2﹣(x+2y)2=(2x+y+x+2y)(2x+y﹣x﹣2y)=3(x+y)(x﹣y).89.【解答】解:原式=(x2﹣6﹣3)2=(x2﹣9)2=(x+3)2(x﹣3)2.90.【解答】解:原式=(x2+x+x+1)(x2+x﹣x﹣1)=(x2+2x+1)(x2﹣1)=(x+1)2(x+1)(x﹣1)=(x+1)3(x﹣1).91.【解答】解:原式=8x2﹣16y2﹣7x2﹣xy+xy=x2﹣16y2=(x+4y)(x﹣4y).92.【解答】解:原式=(x2﹣9y2)(x2﹣y2)=(x﹣3y)(x+3y)(x﹣y)(x+y).93.【解答】解:原式=(x2+x)2﹣8(x2+x)+12=(x2+x﹣2)(x2+x﹣6)=(x﹣1)(x+2)(x﹣2)(x+3).94.【解答】解:(m2+2m)2﹣7(m2+2m)﹣8,=(m2+2m﹣8)(m2+2m+1),=(m+4)(m﹣2)(m+1)2.95.【解答】解:原式=(x2+2x﹣3)(x2+2x+1),=(x+3)(x﹣1)(x+1)2;96.【解答】解:原式=(2x﹣1)(x+).97.【解答】解:3x2﹣12x+9=3(x2﹣4x+3)=3(x﹣3)(x﹣1).98.【解答】解:(x﹣4)(x+7)+18=x2+3x﹣10=(x﹣2)(x+5).99.【解答】解:原式=(5ab﹣2)(ab+5).100.【解答】解:(x+y)2﹣(4x+4y)﹣32=(x+y)2﹣4(x+y)﹣32=(x+y+4)(x+y﹣8).。

因式分解专项练习100题及答案

因式分解专项练习100题及答案

因式分解专项练习100题及答案一、提取公因式(1)(61)(53)(61)(23)(61)(62)-++---+---m n m n m n(2)4242-66x yz x y(3)(72)(81)(72)(74)(72)(41)--++--++--x x x x x x(4)4442a a x y-45(5)2333323++61515x y z x z x z(6)(53)(34)(53)(33)-----+a b a b(7)323a c bc+515(8)43-1216xyz xyz(9)431025c b c +(10)3333189ax y a x y +(11)324226a bc a b c-(12)23341435a x y x -(13)(61)(25)(91)(61)x x x x -+-+-(14)33434332816x y z y z y z++(15)(32)(41)(32)(75)(32)(21)x x x x x x -++-++-+(16)(52)(2)(25)(52)m n n m +-++-+(17)(65)(43)(65)(64)x x x x +--+-(18)(85)(91)(85)(94)(85)(42)+--+++++-+a b a b a b(19)(23)(35)(23)(71)(23)(93)--+--++---m n m n m n (20)(35)(32)(35)(4)(35)(1)x x x x x x---+-++-+二、公式法(21)22-+x xy y12122(22)22-a b481(23)22-x y784529(24)2-+x x12396324(25)22-x y289121(26)2290064a b -(27)2281450625m mn n -+(28)2249238289m mn n ++(29)225628881x x ++(30)257664x -三、分组分解法(31)281040xy x y --+(32)8122842ab a b --+(33)221635262124x y xy yz zx-++-(34)21187060ax ay bx by+--(35)2294221469a c ab bc ca++--(36)45352721mx my nx ny-+-(37)2212621728a b ab bc ca--++(38)863224xy x y -+-+(39)4102870ab a b +++(40)142070100ax ay bx by+--(41)222720452057x z xy yz zx++--(42)2273554426a b ab bc ca++++(43)302064xy x y ----(44)4101640ax ay bx by--+(45)2212354928x y xy yz zx-+--(46)363060mx my nx ny--+(47)424954xy x y -++-(48)18168172ab a b --+(49)2438010ab a b +++(50)819182ax ay bx by-+-四、拆添项(51)2281491268413a b a b -+++(52)229143024m n m n -+++(53)4224-+x x y y363316(54)4224m m n n++364716 (55)22m n m n---+8191621277 (56)22----449249813x y x y (57)4224-+m m n n93364(58)22-+--m n m n64251289017 (59)22----x y x y9643611213 (60)22-+--x y x y81610827五、十字相乘法(61)223579424942x xy y x y++--(62)2228114254545x y z xy yz---+(63)22458835434510x xy y x y -++-+(64)22145521455025x xy y x y -++-+(65)2221261539236x xy y x y -----(66)2216232876a ab b a b --+++(67)22225424450x y z yz xz-++-(68)2243014192912m mn n m n +++++(69)221526713152m mn n m n ++--+(70)222523x xy y x y +-+++(71)22228630463111x y z xy yz xz+-+-+(72)2222415821432x y z xy yz xz-+--+(73)2285921556742m mn n m n -+-++(74)22915412133x xy y x y ++--+(75)22232237a b c ab bc ac-+---(76)2159341515x xy x y ++++(77)226271510174x xy y x y +---+(78)22241128602624x xy y x y --+++(79)22812839228x xy y x y +--++(80)23036553025p pq p q --++六、双十字相乘法(81)2223520245342x y z xy yz xz+--+-(82)22273422113x y z xy yz xz+-+-+(83)22256356212910x y z xy yz xz-----(84)22228282065198a b c ab bc ac+-+-+(85)22264212946x y z xy yz xz-----(86)2214133592635x xy y x y -+-++(87)22227493042769x y z xy yz xz-+-++(88)2226184242711x y z xy yz xz+++--(89)22243110472921x xy y x y ++---(90)22228101827354a b c ab bc ac-++++七、因式定理(91)3222x x x +--(92)321845192a a a -+-(93)323744x x x +++(94)3228115x x x +++(95)32--+671510y y y (96)3212351710++-x x x (97)32x x x+++526356 (98)32+++x x x157911745 (99)32-+-522236x x x (100)32--+35159x x x因式分解专项练习100题答案一、提取公因式(1)(61)(32)m n---(2)426()x y z y-(3)(72)(114)x x--+ (4)442(45)a x y-(5)2333(255)x z y x++(6)(53)(67)a b--+ (7)235(3)c a bc+(8)34(34)xyz z-(9)425(25)c b c+(10)3229(2)ax y a y+(11)32(3)a bc c ab-(12)3237(25)x a y x-(13)(61)(74)x x---(14)33338(42)y z x z z++ (15)(32)(137)x x-+ (16)(52)(3)m n+-(17)(65)(21)x x-+-(18)(85)(45)a b+-+ (19)(23)(137)m n---(20)(35)(3)x x--+二、公式法(21)2(11)x y-(22)(29)(29)a b a b+-(23)(2823)(2823)x y x y+-(24)2(1118)x-(25)(17)(17)x y x y+-(26)(308)(308)a b a b+-(27)2(925)m n-(28)2(717)m n+(29)2(169)x+(30)(248)(248)x x+-三、分组分解法(31)2(5)(4)x y--(32)2(27)(23)a b--(33)(87)(253)x y x y z-+-(34)(310)(76)a b x y-+(35)(7)(926)a c ab c-+-(36)(53)(97)m n x y+-(37)(4)(367)a b a b c+-+ (38)2(4)(43)x y-+-(39)2(7)(25)a b++(40)2(5)(710)a b x y-+(41)(94)(355)x z x y z-+-(42)(7)(756)a b a b c+++(43)2(51)(32)x y-++(44)2(4)(25)a b x y--(45)(357)(47)x y z x y--+(46)3(10)(2)m n x y--(47)(49)(6)x y---(48)(29)(98)a b--(49)(310)(81)a b++(50)(92)(9)a b x y+-四、拆添项(51)(971)(9713)a b a b++-+(52)(32)(312)m n m n++-+(53)2222(694)(694)x xy y x xy y++-+ (54)2222(64)(64)m mn n m mn n++-+ (55)(937)(9311)m n m n+---(56)(271)(2713)x y x y++--(57)2222(398)(398)m mn n m mn n++-+ (58)(8517)(851)m n m n++--(59)(381)(3813)x y x y++--(60)(99)(93)x y x y++--五、十字相乘法(61)(577)(76)x y x y+-+ (62)(925)(975)x y z x y z+--+ (63)(955)(572)x y x y-+-+ (64)(275)(735)x y x y-+-+ (65)(731)(356)x y x y++--(66)(832)(23)a b a b++-+ (67)(524)(526)x y z x y z--+-(68)(423)(74)m n m n++++ (69)(32)(571)m n m n+-+-(70)(23)(1)x y x y-+++ (71)(465)(76)x y z x y z+++-(72)(434)(652)x y z x y z++-+ (73)(76)(837)m n m n----(74)(33)(341)x y x y+-+-(75)(2)(32)a b c a b c--+-(76)(533)(35)x y x+++ (77)(634)(51)x y x y--+-(78)(346)(874)x y x y-+++(79)(847)(24)x y x y--+-(80)(65)(565)p p q---六、双十字相乘法(81)(544)(756)x y z x y z-+--(82)(3)(74)x y z x y z+++-(83)(852)(773)x y z x y z++--(84)(745)(474)a b c a b c+-++ (85)(273)(364)x y z x y z--++ (86)(27)(735)x y x y----(87)(975)(376)x y z x y z++-+ (88)(334)(26)x y z x y z+-+-(89)(853)(327)x y x y+++-(90)(456)(723)a b c a b c++-+七、因式定理(91)(1)(1)(2)x x x+-+(92)(2)(61)(31)a a a---(93)2(2)(32)x x x+++ (94)2(1)(265)x x x+++ (95)2(2)(655)y y y-+-(96)(2)(31)(45)x x x+-+ (97)(3)(51)(2)x x x+++ (98)(3)(35)(53)x x x+++ (99)(1)(52)(3)x x x---(100)2(3)(343)x x x-+-。

因式分解练习题及答案

因式分解练习题及答案

因式分解练习题及答案1. 直接因式分解题目1:将4x2x−2xx进行因式分解。

解答1:我们可以先观察两项之间的共因子2xx,然后再对剩余部分进行因式分解。

因此,我们可以将4x2x−2xx分解为2xx(2xx−1)。

题目2:将3x2x3−6xx4进行因式分解。

解答2:我们可以先观察两项之间的共因子3xx3,然后再对剩余部分进行因式分解。

因此,我们可以将3x2x3−6xx4分解为3xx3(x−2x)。

2. 提取公因式题目3:将12x2x+18xx2进行因式分解。

解答3:我们可以先观察两项之间的共因子6xx,然后再对剩余部分进行因式分解。

因此,我们可以将12x2x+18xx2分解为6xx(2x+3x)。

题目4:将25x3−15x2x进行因式分解。

解答4:我们可以先观察两项之间的共因子5x2,然后再对剩余部分进行因式分解。

因此,我们可以将25x3−15x2x分解为5x2(5x−3x)。

3. 完全平方公式题目5:将x2+4xx+4x2进行因式分解。

解答5:我们可以观察到x2+4xx+4x2是一个完全平方,可以使用完全平方公式。

完全平方公式:x2+2xx+x2=(x+x)2因此,我们可以将x2+4xx+4x2分解为(x+2x)2。

4. 差平方公式题目6:将x2−16x2进行因式分解。

解答6:我们可以观察到x2−16x2是一个差的平方,可以使用差平方公式。

差平方公式:x2−x2=(x+x)(x−x)因此,我们可以将x2−16x2分解为(x+4x)(x−4x)。

5. 因式分解的应用题目7:将x2+3x−10进行因式分解。

解答7:我们可以使用因式分解的方法来解这个二次方程。

首先,我们需要找到两个数之和为3,并且乘积为−10。

经过计算,我们可以得到5和−2满足这个条件。

因此,我们可以将x2+3x−10分解为(x+5)(x−2)。

这样,我们可以将方程转化为(x+5)(x−2)=0,进而求得x=−5或x=2。

通过这个例子,我们可以看到因式分解在解二次方程时的应用。

(完整版)因式分解练习题(中考试题精选(可编辑修改word版)

(完整版)因式分解练习题(中考试题精选(可编辑修改word版)

密封线因式分解1. 下列各式中,能用平方差公式分解因式的是()A . x 2 + 4 y 2B. x 2 - 2 y +1 C. -x 2 + 4 y 2 D. -x 2 - 4 y 22. 下列分解因式正确的是()A .2x 2 - xy - x = 2x (x - y -1) B .- xy 2 + 2xy - 3y = - y (xy - 2x - 3)C . x (x - y ) - y (x - y ) = (x - y )2D . x 2 - x - 3 = x (x -1) - 33. 把代数式 xy 2 - 9x 分解因式,结果正确的是( )A. x ( y 2 - 9)B. x ( y + 3)2C. x ( y + 3)( y - 3)D. x ( y + 9)( y - 9) 、4. (3a - y )(3a + y ) 是下列哪一个多项式因式分解的结果( )A. 9a 2 + y 2B. -9a 2 + y 2 C. 9a 2 - y 2 D. -9a 2 - y 25. 一次课堂练习,小敏同学做了如下 4 道因式分解题,你认为小敏做得不够完整的一题是( )A. x 3 - x = x (x 2 -1)B. x 2 - 2xy + y 2 = (x - y )2C. x 2 y - xy 2 = xy (x - y )D. x 2 - y 2 = (x - y )(x + y )6.下列因式分解错误的是()A . x 2 - y 2 = (x + y )(x - y )B . x 2 + 6x + 9 = (x + 3)2C . x 2 + xy = x (x + y )D . x 2 + y 2 = (x + y )28. 将整式9 - x 2 分解因式的结果是( )A . (3 - x )2B . (3 + x )(3 - x )C . (9 - x )2D . (9 + x )(9 - x ) 9. 若 x = 1, y = 1 ,则 x 2 + 4xy + 4 y 2 的值是().2班姓名考场考号封A.2B.4 C.3 D.21 210. 下列多项式中,能用公式法分解因式的是( )( A ) x 2 - xy( B ) x 2 + xy ( C ) x 2 + y 2( D )x 2 - y 211、(x +1)2-y 2 分解因式应是 ( )A . (x +1-y )(x +1+y)B . (x +1+y )(x -1+y )C . (x +1-y )(x -1-y )D . (x +1+y )(x -1-y )二、填空题12. 因式分解: (x + 2)(x + 3) + x 2 - 4 =.13. 分解因式: (x + 3)2 - (x + 3) =.14. 已知m + n = 5 , mn = 3 ,则m 2n + mn 2 = .15 把45ab 2 - 20a 因式分解的结果是. 16 分解因式: 3a 2b - 4ab =.17 因式分解: 2a 2 - 4a =.18、分解因式:(1) a 2 - 9 = ;(2) x3- x =(3) 4a 2 - 9b 2 =;(4) -25a 2 y 4 +16b 2 =(5) 3a 3 - 75a = ;(6) 9a3b - ab =19、分解因式:(1) x 4- y 4 =;(2) m2- 4m 2n 2 =20、分解因式: x4- (5x + 3)2 =21 分解因式: 25- (2n +1)2=22、分解因式:-9a 2 + 1 = 9班姓名考场考号密线号考线场考封名姓密班。

因式分解中考经典题型

因式分解中考经典题型

因式分解中考经典题型因式分解是代数学中的一个重要内容,也是中学数学中的经典题型之一。

因式分解要求将一个多项式表达式重新写成其乘积的形式,其中每个乘积因式都是多项式的一部分。

下面是一些中考经典的因式分解题型以及相关的解题方法和参考内容。

【题型一:提公因式】提公因式是因式分解中最基础的题型之一,要求将一个多项式中的公因式提出来。

例如:题目:将多项式$6x^3+9x^2$进行因式分解。

解析:可以观察到$6x^3$和$9x^2$的公因式为$3x^2$,因此可以将公因式提出来,得到因式分解为:$3x^2(2x+3)$。

【题型二:平方差公式】平方差公式是因式分解中的常用方法,适用于分解二次三项式。

例如:题目:将多项式$x^2-4$进行因式分解。

解析:可以观察到$x^2-4$符合平方差公式$(a+b)(a-b)=a^2-b^2$的形式,其中$a=x$,$b=2$,因此可以将多项式分解为$(x+2)(x-2)$。

【题型三:完全平方法】完全平方法是应用平方公式的一种特殊情况,适用于分解某些特定的多项式。

例如:题目:将多项式$x^4-16$进行因式分解。

解析:可以观察到$x^4-16$符合完全平方法$x^4-a^4=(x^2+a^2)(x^2-a^2)$的形式,其中$a=4$,因此可以将多项式分解为$(x^2+4)(x^2-4)$。

进一步,我们可以将$x^2-4$继续应用平方差公式进行分解,得到最终的因式分解为$(x^2+4)(x+2)(x-2)$。

【题型四:分组因式法】分组因式法是一种应用代数性质的因式分解方法,适用于某些特殊的多项式。

例如:题目:将多项式$2x^3+3x^2+2x+3$进行因式分解。

解析:可以观察到$2x^3+3x^2+2x+3$的第一项和第三项以及第二项和第四项可以分别进行合并。

因此,我们可以将多项式重写为$(2x^3+2x)+(3x^2+3)$,然后再提取公因式,分解为$2x(x^2+1)+3(x^2+1)$,最终化简为$(2x+3)(x^2+1)$。

初三数学因式分解计算题

初三数学因式分解计算题

以下是一道初三数学因式分解的计算题,供您参考:
题目:已知x+y=10,xy=6,求(x-y)2的值。

解答:
首先,我们需要用到一个公式:(a+b)2=a2+2ab+b2。

已知x+y=10,xy=6,可以算出(x+y)2=102=100,即x2+2xy+y2=100-xy。

将已知的xy代入可得x2+y2=86。

又因为(x-y)2=x2-2xy+y2,将上述两个式子带入即可得到(x-y)2=(x-y)×(x2+y2-2xy)=(x-y)×(86-12)=74(x-y)。

又已知x+y=10,所以(x-y)×74=(x-y)×(10-2)=7(x-y)。

所以,(x-y)2=7。

这道题不仅考察了同学们对因式分解公式的掌握程度,还考察了同学们的灵活运用能力。

通过这道题,同学们可以进一步巩固所学知识,提高解题能力。

当然,这只是其中一道初三数学因式分解的计算题。

在初三数学的学习中,还有很多类似的题目需要同学们去练习和掌握。

建议同学们在平时多做一些相关练习,不断巩固和提高自己的解题能力。

初中因式分解练习题

初中因式分解练习题

初中因式分解练习题在初中数学中,因式分解是一个重要的概念和技巧。

它是将一个多项式表达式拆分成乘积的形式,以便更好地理解和计算。

本文将提供一些初中因式分解的练习题,以帮助学生掌握这一技巧。

1. 将以下多项式进行因式分解:a) 2x^2 + 8xb) x^2 + 5x + 6c) 3x^3 - 272. 求解以下方程:a) x^2 - 4 = 0b) 2x^2 + 5x - 12 = 0c) 4x^2 - 9 = 03. 对以下多项式进行因式分解,并求解方程:a) x^2 + 6x + 9b) x^2 - 4x + 4c) x^2 - 7x + 124. 求解以下方程组:a) {2x - 3y = 5{x + y = 3b) {3x - 4y = 2{2x + 3y = 15. 将以下多项式进行因式分解,并求解方程:a) 4x^2 - 16b) 5x^2 + 20xc) 2x^2 - 506. 求解以下方程组:a) {x^2 - 4 = 0{x + y = 8b) {x^2 - y^2 = 0{x + y = 57. 对以下多项式进行因式分解,并求解方程:a) x^4 - 16b) x^3 + 8c) x^4 + 4x^2 + 48. 求解以下方程组:a) {x^2 + 2x - 8 = 0{2x - 3y = 4b) {x^2 + y^2 - 25 = 0{x + y = 7以上是一些初中因式分解的练习题,希望能够帮助学生更好地理解和掌握因式分解的方法。

通过不断练习和思考,学生将能够熟练地运用因式分解来解决数学问题。

祝你们学业有成!。

因式分解法例题20道

因式分解法例题20道

因式分解法例题20道例题 1:$x^2 5x + 6$分解因式:$(x 2)(x 3)$例题 2:$x^2 + 7x + 10$分解因式:$(x + 2)(x + 5)$例题 3:$x^2 9$分解因式:$(x + 3)(x 3)$例题 4:$x^2 + 4x + 4$分解因式:$(x + 2)^2$例题 5:$x^2 16$分解因式:$(x + 4)(x 4)$例题 6:$x^2 6x + 9$分解因式:$(x 3)^2$例题 7:$2x^2 + 4x$分解因式:$2x(x + 2)$例题 8:$3x^2 12$分解因式:$3(x + 2)(x 2)$例题 9:$x^3 x$分解因式:$x(x + 1)(x 1)$例题 10:$x^2 8x + 16$分解因式:$(x 4)^2$例题 11:$x^2 + 10x + 25$分解因式:$(x + 5)^2$例题 12:$x^2 1$分解因式:$(x + 1)(x 1)$例题 13:$4x^2 9$分解因式:$(2x + 3)(2x 3)$例题 14:$x^2 4x 12$分解因式:$(x 6)(x + 2)$例题 15:$x^2 + 5x 6$分解因式:$(x + 6)(x 1)$例题 16:$x^2 7x + 12$分解因式:$(x 3)(x 4)$例题 17:$2x^2 5x 3$分解因式:$(2x + 1)(x 3)$例题 18:$3x^2 + 7x + 2$分解因式:$(3x + 1)(x + 2)$例题 19:$5x^2 17x + 6$分解因式:$(5x 2)(x 3)$例题 20:$4x^2 11x 3$分解因式:$(4x + 1)(x 3)$下面我们来详细讲解一下因式分解的方法。

首先,最常见的方法是提公因式法。

比如在例题 7 中,$2x^2 +4x$,我们可以先找出公因式 2x,然后将式子变形为$2x(x + 2)$。

其次是运用公式法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档