高一数学(2.3.1-1直线与平面垂直的概念与判定)
第二章 2.3.1 直线与平面垂直的判定
§2.3直线、平面垂直的判定及其性质2.3.1直线与平面垂直的判定学习目标 1.了解直线与平面垂直的定义;了解直线与平面所成角的概念.2.掌握直线与平面垂直的判定定理.3.会用直线与平面垂直的判定定理判定线面垂直.知识点一直线与平面垂直的定义思考空间两条直线垂直一定相交吗?答案不一定相交,空间两条直线垂直分为两种情况:一种是相交垂直,一种是异面垂直. 知识点二直线与平面垂直的判定定理知识点三 直线与平面所成的角1.若直线l ⊥平面α,则l 与平面α内的直线可能相交,可能异面,也可能平行.( × )2.若直线l 与平面α内的无数条直线垂直,则l ⊥α.( × )3.直线与平面所成角为α,则0°<α≤90°.( × )4.如果一条直线与一个平面垂直,则这条直线垂直于这个平面内的所有直线.( √ )题型一 直线与平面垂直的定义及判定定理的理解 例1 下列命题中,正确的序号是________. ①若直线l 与平面α内的一条直线垂直,则l ⊥α; ②若直线l 不垂直于平面α,则α内没有与l 垂直的直线; ③若直线l 不垂直于平面α,则α内也可以有无数条直线与l 垂直; ④过一点和已知平面垂直的直线有且只有一条. 考点 直线与平面垂直的判定 题点 判定直线与平面垂直 答案 ③④解析 当l 与α内的一条直线垂直时,不能保证l 与平面α垂直,所以①不正确;当l 与α不垂直时,l 可能与α内的无数条平行直线垂直,所以②不正确,③正确;过一点有且只有一条直线垂直于已知平面,所以④正确.反思感悟(1)对于线面垂直的定义要注意“直线垂直于平面内的所有直线”说法与“直线垂直于平面内无数条直线”不是一回事,后者说法是不正确的,它可以使直线与平面斜交.(2)判定定理中要注意必须是平面内两相交直线.跟踪训练1(1)若三条直线OA,OB,OC两两垂直,则直线OA垂直于()A.平面OABB.平面OACC.平面OBCD.平面ABC(2)如果一条直线垂直于一个平面内的:①三角形的两边;②梯形的两边;③圆的两条直径;④正五边形的两边.能保证该直线与平面垂直的是________.(填序号)考点直线与平面垂直的判定题点判定直线与平面垂直答案(1)C(2)①③④解析(1)∵OA⊥OB,OA⊥OC,OB∩OC=O,OB,OC⊂平面OBC,∴OA⊥平面OBC.(2)根据直线与平面垂直的判定定理,平面内这两条直线必须是相交的,①③④中给定的两直线一定相交,能保证直线与平面垂直,而②梯形的两边可能是上、下底边,它们互相平行,不满足定理条件.题型二直线与平面垂直的判定例2如图,在三棱锥S-ABC中,∠ABC=90°,D是AC的中点,且SA=SB=SC.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.考点直线与平面垂直的判定题点直线与平面垂直的证明证明(1)因为SA=SC,D是AC的中点,所以SD⊥AC.在Rt△ABC中,AD=BD,由已知SA=SB,所以△ADS≌△BDS,所以SD⊥BD.又AC∩BD=D,AC,BD⊂平面ABC,所以SD⊥平面ABC.(2)因为AB=BC,D为AC的中点,所以BD⊥AC.由(1)知SD⊥BD.又因为SD∩AC=D,SD,AC⊂平面SAC,所以BD⊥平面SAC.反思感悟(1)利用线面垂直的判定定理证明线面垂直的步骤①在这个平面内找两条直线,使它们和这条直线垂直;②确定这个平面内的两条直线是相交的直线;③根据判定定理得出结论.(2)平行转化法(利用推论):①a∥b,a⊥α⇒b⊥α;②α∥β,a⊥α⇒a⊥β.跟踪训练2如图,AB为⊙O的直径,P A垂直于⊙O所在的平面,M为圆周上任意一点,AN⊥PM,N为垂足.(1)求证:AN⊥平面PBM.(2)若AQ⊥PB,垂足为Q,求证:NQ⊥PB.证明(1)∵AB为⊙O的直径,∴AM⊥BM.又P A⊥平面ABM,∴P A⊥BM.又∵P A∩AM=A,∴BM⊥平面P AM.又AN⊂平面P AM,∴BM⊥AN.又AN⊥PM,且BM∩PM=M,∴AN⊥平面PBM.(2)由(1)知AN⊥平面PBM,PB⊂平面PBM,∴AN⊥PB.又∵AQ⊥PB,AN∩AQ=A,∴PB⊥平面ANQ.又NQ⊂平面ANQ,∴PB⊥NQ.求直线与平面所成的角典例如图,在正方体ABCD-A1B1C1D1中,(1)求A 1B 与平面AA 1D 1D 所成的角; (2)求A 1B 与平面BB 1D 1D 所成的角. 考点 直线与平面所成的角 题点 直线与平面所成的角 解 (1)∵AB ⊥平面AA 1D 1D ,∴∠AA 1B 就是A 1B 与平面AA 1D 1D 所成的角, 在Rt △AA 1B 中,∠BAA 1=90°,AB =AA 1, ∴∠AA 1B =45°,∴A 1B 与平面AA 1D 1D 所成的角是45°. (2)连接A 1C 1交B 1D 1于点O ,连接BO .∵A 1O ⊥B 1D 1,BB 1⊥A 1O ,BB 1∩B 1D 1=B 1,BB 1,B 1D 1⊂平面BB 1D 1D , ∴A 1O ⊥平面BB 1D 1D ,∴∠A 1BO 就是A 1B 与平面BB 1D 1D 所成的角. 设正方体的棱长为1,则A 1B =2,A 1O =22. 又∵∠A 1OB =90°,∴sin ∠A 1BO =A 1O A 1B =12,又0°≤∠A 1BO ≤90°,∴∠A 1BO =30°,∴A 1B 与平面BB 1D 1D 所成的角是30°. [素养评析] (1)求直线与平面所成角的步骤 ①寻找过斜线上一点与平面垂直的直线.②连接垂足和斜足得到斜线在平面上的射影,斜线与其射影所成的锐角或直角即为所求的角. ③把该角归结在某个三角形中,通过解三角形,求出该角.(2)从求直线与平面所成角的步骤看,可以归纳为作、证、求三个环节,作、证充分体现了逻辑推理的数学核心素养,而求又突出了数学运算的素养.1.在正方体ABCD -A 1B 1C 1D 1的六个面中,与AA 1垂直的平面的个数是( ) A.1 B.2 C.3 D.6 答案 B2.给出下列三个命题:①一条直线垂直于一个平面内的三条直线,则这条直线和这个平面垂直;②一条直线与一个平面内的任何直线所成的角相等,则这条直线和这个平面垂直;③一条直线在平面内的射影是一点,则这条直线和这个平面垂直.其中正确的个数是()A.0B.1C.2D.3答案 C解析①错,②③对.3.空间中直线l和三角形的两边AC,BC同时垂直,则这条直线和三角形的第三边AB的位置关系是()A.平行B.垂直C.相交D.不确定考点直线与平面垂直的性质题点根据线面垂直的性质判定线线垂直答案 B解析由于直线l和三角形的两边AC,BC同时垂直,而这两边相交于点C,所以直线l和三角形所在的平面垂直,又因三角形的第三边AB在这个平面内,所以l⊥AB.4.如图,在正方体ABCD-A1B1C1D1中,与AD1垂直的平面是()A.平面DD1C1CB.平面A1DB1C.平面A1B1C1D1D.平面A1DB答案 B解析∵AD1⊥A1D,AD1⊥A1B1,A1D∩A1B1=A1,A1D,A1B1⊂平面A1DB1,∴AD1⊥平面A1DB1.5.如图,在正方体ABCD-A1B1C1D1中,异面直线BD1与A1D所成的角为________.考点异面直线所成的角题点求异面直线所成的角答案90°解析连接AD1,∵AB⊥A1D,AD1⊥A1D,AB∩AD1=A,AB,AD1⊂平面ABD1,∴A1D⊥平面ABD1,∴A1D⊥BD1.1.直线和平面垂直的判定方法(1)利用线面垂直的定义.(2)利用线面垂直的判定定理.(3)利用下面两个结论:①若a∥b,a⊥α,则b⊥α;②若α∥β,a⊥α,则a⊥β.2.线线垂直的判定方法(1)异面直线所成的角是90°.(2)线面垂直,则线线垂直.3.求线面角的常用方法(1)直接法(一作(或找)二证(或说)三计算).(2)转移法(找过点与面平行的线或面).(3)等积法(三棱锥变换顶点,属间接求法).一、选择题1.给出下列条件(其中l为直线,α为平面):①l垂直于α内三条不都平行的直线;②l垂直于α内无数条直线;③l垂直于α内正六边形的三条边.其中能得出l⊥α的所有条件序号是()A.②B.①C.①③D.③答案 C2.在正方体ABCD-A1B1C1D1中,下面结论错误的是()A.BD∥平面CB1D1B.AC1⊥BDC.AC1⊥平面CB1DD.异面直线AD与CB1所成的角为45°考点直线与平面垂直的判定题点判定直线与平面垂直答案 C解析由正方体的性质得BD∥B1D1,且BD⊄平面CB1D1,所以BD∥平面CB1D1,故A正确;因为BD⊥平面ACC1A1,所以AC1⊥BD,故B正确;异面直线AD与CB1所成的角即为AD 与DA1所成的角,故为45°,所以D正确.3.下列说法中,正确的有()①如果一条直线垂直于平面内的两条直线,那么这条直线和这个平面垂直;②过直线l外一点P,有且仅有一个平面与l垂直;③如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面;④垂直于角的两边的直线必垂直角所在的平面;⑤过点A垂直于直线a的所有直线都在过点A垂直于a的平面内.A.2个B.3个C.4个D.5个考点直线与平面垂直的判定题点判定直线与平面垂直答案 B解析①④不正确,其他三项均正确.4.如图所示,如果MC⊥菱形ABCD所在平面,那么MA与BD的位置关系是()A.平行B.垂直相交C.垂直但不相交D.相交但不垂直考点直线与平面垂直的性质题点根据线面垂直的性质判定线线垂直答案 C解析连接AC.因为ABCD是菱形,所以BD⊥AC.又MC⊥平面ABCD,则BD⊥MC.因为AC∩MC=C,所以BD⊥平面AMC.又MA⊂平面AMC,所以MA⊥BD.显然直线MA与直线BD不共面,因此直线MA与BD的位置关系是垂直但不相交.5.如图,α∩β=l,点A,C∈α,点B∈β,且BA⊥α,BC⊥β,那么直线l与直线AC的关系是()A.异面B.平行C.垂直D.不确定答案 C解析∵AB⊥α,l⊂α,∴AB⊥l,又∵BC⊥β,l⊂β,∴BC⊥l,∴l⊥平面ABC,∴l⊥AC.6.如图,在正方形ABCD中,E,F分别是BC,CD的中点,G是EF的中点,现在沿AE,AF及EF把这个正方形折成一个空间图形,使B,C,D三点重合,重合后的点记为H,那么,在这个空间图形中必有()A.AG⊥△EFH所在平面B.AH⊥△EFH所在平面C.HF⊥△AEF所在平面D.HG⊥△AEF所在平面考点直线与平面垂直的判定题点判定直线与平面垂直答案 B解析根据折叠前、后AH⊥HE,AH⊥HF不变,∴AH⊥平面EFH.7.如图所示,在正三棱柱ABC-A1B1C1中,若AB∶BB1=2∶1,则AB1与平面BB1C1C所成角的大小为()A.45°B.60°C.30°D.75°答案 A解析取BC的中点D,连接AD,B1D,∵AD⊥BC且AD⊥BB1,∴AD⊥平面BCC1B1,∴∠AB1D即为AB1与平面BB1C1C所成的角.设AB=2,则AA1=1,AD=62,AB1=3,∴sin∠AB1D=ADAB1=22,∴∠AB1D=45°.故选A.8.如图,在三棱锥P-ABC中,P A⊥平面ABC,AB⊥BC,P A=AB,D为PB的中点,则下列结论正确的有()①BC⊥平面P AB;②AD⊥PC;③AD⊥平面PBC;④PB⊥平面ADC.A.1个B.2个C.3个D.4个考点直线与平面垂直的判定题点判定直线与平面垂直答案 C解析∵P A⊥平面ABC,∴P A⊥BC,又BC⊥AB,P A∩AB=A,∴BC⊥平面P AB,故①正确;由BC⊥平面P AB,得BC⊥AD,又P A=AB,D是PB的中点,∴AD⊥PB,又PB∩BC=B,PB,BC⊂平面PBC,∴AD⊥平面PBC,∴AD⊥PC,故②③正确.故选C.二、填空题9.已知直线l,a,b,平面α,若要得到结论l⊥α,则需要在条件a⊂α,b⊂α,l⊥a,l⊥b中另外添加的一个条件是________.答案a与b相交10.如图所示,三棱锥P-ABC中,P A⊥平面ABC,P A=AB,则直线PB与平面ABC所成角的度数为________.答案45°解析因为P A⊥平面ABC,所以斜线PB在平面ABC上的射影为AB,所以∠PBA即为直线PB与平面ABC所成的角.在△P AB中,∠BAP=90°,P A=AB,所以∠PBA=45°,即直线PB 与平面ABC所成的角等于45°11.如图,在直三棱柱ABC-A1B1C1中,BC=CC1,当底面A1B1C1满足条件________时,有AB1⊥BC1.(注:填上你认为正确的一种条件即可,不必考虑所有可能的情况)考点直线与平面垂直的判定题点判定直线与平面垂直答案∠A1C1B1=90°解析如图所示,连接B1C,由BC=CC1,可得BC1⊥B1C,因此,要证AB1⊥BC1,则只要证明BC1⊥平面AB1C,即只要证AC⊥BC1即可,由直三棱柱可知,只要证AC⊥BC即可.因为A1C1∥AC,B1C1∥BC,故只要证A1C1⊥B1C1即可.(或者能推出A1C1⊥B1C1的条件,如∠A1C1B1=90°等)三、解答题12.如图所示,在四棱锥P-ABCD中,底面ABCD是矩形.已知AD=2,P A=2,PD=22,求证:AD⊥平面P AB.考点直线与平面垂直的判定题点直线与平面垂直的证明证明在△P AD中,由P A=2,AD=2,PD=22,可得P A2+AD2=PD2,即AD⊥P A.又AD⊥AB,P A∩AB=A,P A,AB⊂平面P AB,所以AD⊥平面P AB.13.如图,在四面体A-BCD中,∠BDC=90°,AC=BD=2,E,F分别为AD,BC的中点,且EF= 2.求证:BD⊥平面ACD.证明取CD的中点G,连接EG,FG.又∵E,F分别为AD,BC的中点,∴FG∥BD,EG∥AC.∵AC=BD=2,则EG=FG=1.∵EF=2,∴EF2=EG2+FG2,∴EG⊥FG,∴BD⊥EG.∵∠BDC=90°,BD⊥CD.又EG∩CD=G,∴BD⊥平面ACD.14.如图所示,四棱锥S-ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确的是()A.AC ⊥SBB.AB ∥平面SCDC.SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角D.AB 与SC 所成的角等于DC 与SA 所成的角考点 直线与平面所成的角题点 直线与平面所成的角答案 D解析 对于选项A ,由题意得SD ⊥AC ,AC ⊥BD ,SD ∩BD =D ,∴AC ⊥平面SBD ,故AC ⊥SB ,故A 正确;对于选项B ,∵AB ∥CD ,AB ⊄平面SCD ,∴AB ∥平面SCD ,故B 正确;对于选项C ,由对称性知SA 与平面SBD 所成的角与SC 与平面SBD 所成的角相等,故C 正确.15.如图,P A ⊥矩形ABCD 所在的平面,M ,N 分别是AB ,PC 的中点.(1)求证:MN ∥平面P AD ;(2)若PD 与平面ABCD 所成的角为45°,求证:MN ⊥平面PCD .考点 直线与平面垂直的判定题点 直线与平面垂直的证明证明 (1)取PD 的中点E ,连接NE ,AE ,如图.又∵N 是PC 的中点,∴NE ∥DC 且NE =12DC . 又∵DC ∥AB 且DC =AB ,AM =12AB , ∴AM ∥CD 且AM =12CD ,∴NE ∥AM ,且NE =AM , ∴四边形AMNE 是平行四边形,∴MN ∥AE .∵AE⊂平面P AD,MN⊄平面P AD,∴MN∥平面P AD.(2)∵P A⊥平面ABCD,∴∠PDA即为PD与平面ABCD所成的角,∴∠PDA=45°,∴AP=AD,∴AE⊥PD.又∵MN∥AE,∴MN⊥PD.∵P A⊥平面ABCD,CD⊂平面ABCD,∴P A⊥CD. 又∵CD⊥AD,P A∩AD=A,P A,AD⊂平面P AD,∴CD⊥平面P AD.∵AE⊂平面P AD,∴CD⊥AE,∴CD⊥MN.又CD∩PD=D,CD,PD⊂平面PCD,∴MN⊥平面PCD.。
高中 直线、平面垂直的判定与性质 知识点+例题+练习
教学过程在四棱锥P-ABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.规律方法证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面).解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.【训练1】(2013·江西卷改编)教学效果分析教学过程如图,直四棱柱ABCD-A1B1C1D1中,AB∥CD,AD⊥AB,AB=2,AD=2,AA1=3,E为CD上一点,DE=1,EC=3.证明:BE⊥平面BB1C1C.考点二平面与平面垂直的判定与性质【例2】(2014·深圳一模)如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB=BC=AA1,且AC=2BC,点D是AB的中点.证明:平面ABC1⊥平面B1CD.规律方法证明两个平面垂直,首先要考虑直线与平面的垂直,也教学效果分析教学过程可简单地记为“证面面垂直,找线面垂直”,是化归思想的体现,这种思想方法与空间中的平行关系的证明非常类似,这种转化方法是本讲内容的显著特征,掌握化归与转化思想方法是解决这类问题的关键.【训练2】如图,在长方体ABCDA1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中点.证明:平面ABM⊥平面A1B1M.考点三平行、垂直关系的综合问题教学效果分析教学过程【例3】(2013·山东卷)如图,在四棱锥P-ABCD中,AB⊥AC,AB⊥P A,AB∥CD,AB=2CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点.(1)求证:CE∥平面P AD;(2)求证:平面EFG⊥平面EMN.规律方法线面关系与面面关系的证明离不开判定定理和性质定理,而形成结论的“证据链”依然是通过挖掘题目已知条件来实现的,如图形固有的位置关系、中点形成的三角形的中位线等,都为论证提供了丰富的素材.【训练3】(2013·辽宁卷)如图,AB是圆O的直径,P A垂直圆O所在的平面,C是圆O上的点.(1)求证:BC⊥平面P AC;(2)设Q为P A的中点,G为△AOC的重心,求证:QG∥平面PBC.教学效果分析1.转化思想:垂直关系的转化2.在证明两平面垂直时一般先从现有的直线中寻找平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决.如有平面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直,然后进一步转化为线线垂直.故熟练掌握“线线垂直”、“面面垂直”间的转化条件是解决这类问题的关键.创新突破6——求解立体几何中的探索性问题【典例】(2012·北京卷)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.[反思感悟] (1)解决探索性问题一般先假设其存在,把这个假设作已知条件,和题目的其他已知条件一起进行推理论证和计算,在推理论证和计算无误的前提下,如果得到了一个合理的结论,则说明存在,如果得到了一个不合理的结论,则说明不存在.(2)在处理空间折叠问题中,要注意平面图形与空间图形在折叠前后的相互位置关系与长度关系等,关键是点、线、面位置关系的转化与平面几何知识的应用,注意平面几何与立体几何中相关知识点的异同,盲目套用容易导致错误.【自主体验】(2014·韶关模拟)如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD=12AB=2,点E为AC中点,将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图2.(1)求证:DA⊥BC;(2)在CD上找一点F,使AD∥平面EFB.基础巩固题组(建议用时:40分钟)一、填空题1.设平面α与平面β相交于直线m,直线a在平面α内,直线b 在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的________条件.2.(2014·绍兴调研)设α,β为不重合的平面,m,n为不重合的直线,则下列正确命题的序号是________.①若α⊥β,α∩β=n,m⊥n,则m⊥α;②若m⊂α,n⊂β,m⊥n,则n⊥α;③若n⊥α,n⊥β,m⊥β,则m⊥α;④若m∥α,n∥β,m⊥n,则α⊥β.3.如图,AB是圆O的直径,P A垂直于圆O所在的平面,C是圆周上不同于A,B的任一点,则图形中有________对线面垂直.4.若M是线段AB的中点,A,B到平面α的距离分别是4 cm,6 cm,则M到平面α的距离为________.5.(2014·郑州模拟)已知平面α,β,γ和直线l,m,且l⊥m,α⊥γ,α∩γ=m,β∩γ=l,给出下列四个结论:①β⊥γ;②l⊥α;③m⊥β;④α⊥β.其中正确的是________.6.如图,在四棱锥P ABCD中,P A⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为正确的条件即可)7.设α,β是空间两个不同的平面,m,n是平面α及β外的两条不同直线.从“①m⊥n;②α⊥β;③n⊥β;④m⊥α”中选取三个作为条件,余下一个作为结论,写出你认为正确的一个命题:________(用代号表示).8.如图,P A⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E,F分别是点A在PB,PC上的正投影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确结论的序号是________.二、解答题9.(2013·北京卷)如图,在四棱锥P ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面P AD⊥底面ABCD,P A⊥AD.E和F分别是CD和PC的中点.求证:(1)P A⊥底面ABCD;(2)BE∥平面P AD;(3)平面BEF⊥平面PCD.10.(2013·泉州模拟)如图所示,在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,点M是棱BB1上一点.(1)求证:B1D1∥平面A1BD;(2)求证:MD⊥AC;(3)试确定点M的位置,使得平面DMC1⊥平面CC1D1D.能力提升题组(建议用时:25分钟)一、填空题1.如图,在斜三棱柱ABCA1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在直线______上.2.如图,在四面体ABCD中,若截面PQMN是正方形,则在下列命题中,错误的为________.①AC⊥BD;②AC∥截面PQMN;③AC=BD;④异面直线PM与BD所成的角为45°.3.(2013·南通二模)如图,已知六棱锥P ABCDEF的底面是正六边形,P A⊥平面ABC,P A=2AB,则下列结论中:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面P AE;④∠PDA=45°.其中正确的有________(把所有正确的序号都填上).二、解答题4.(2014·北京西城一模)。
高一数学(人教A版)直线与平面垂直的概念及判定
请同学们观察:
A
(1)折痕AD与桌面垂直吗?
(2)如何翻折才能使折痕AD与
BD
C
桌面垂直呢?为什么呢?
通过实验操作,我们不难发现,
A
AD所在直线与桌面所在平面垂直的 B
充要条件是折痕AD是BC边上的高.
C
D
A
这个时候,由于翻折后垂直关
系不变,所以直线AD与平面内的
两条相交直线BD,DC都是垂直的.
l P
的射影所成的角,叫做这条直线和 这个平面所成的角.
A
O
例如,正方体ABCD-A1B1C1D1中,
A1B在平面AC上的射影为AB,
D1
故A1B与平面AC所成的角为∠A1BA; A1
A1C在平面AC上的射影为AC,
故A1C与平面AC所成的角为∠A1CA. D
同学们可以仿照着再举出几个 A
线面角的例子,加深对线面角的认识.
的两条平行直线垂直,那么无法保证该
l
直线与此平面的所有直线都垂直,如图
所示,直线与平面可能垂直,也可能不
垂直.
如果改为“无数条直线”可不可以呢?
“无数条直线”不等同于“任意一条直线”.
若“无数条直线”彼此相互平行,
l
则也无法判定直线是否与该平面垂直.
如图所示:
选一选 若一条直线与三角形的两边同时垂直,则这条
直线与三角形第三边的位置关系是( B )
A. 平行
B. 垂直
C. 相交但不垂直
D. 不确定
由直线与平面垂直的判定定理知,该直线与三角形 所在平面垂直,进而与三角形第三边垂直,所以答案为 B,同学们选对了吗?
想一想 某旗杆高24m,在它的顶端系两条长26m的绳
2.3.1直线与平面垂直的判定(经典)
如图,点Q是_点_P_在_平_面_内_的_射_影_ _线_段_PQ_是点P到平面 的垂线段
(2)斜线
一条直线和一个平面相交,但不和
这个平面垂直,这条直线叫做这个平面
的斜线.
P
斜线和平面的交点
叫做斜足。
从平面外一点向平 面引斜线,这点与斜
R
足间的线段叫做这点
到这个平面的斜线段
思考:平面外一点到一个平面的垂线段有 几条?斜线段有几条?
A
B
O
D
α
C
这条直线垂直于梯形所在的平面。(√ )
(4)若一条直线与一个平面不垂直,则这个平面内
没有与这条直线垂直的直线。(× )
定理应用
四:典型例题
例1 如图,已知 a//b,a,求证 b.
证明:在平面 内作两条相交
直线m,n.
a
b
m n
巩固练习
例2 如图,在三棱锥V—ABC中,VA=VC, AB=BC,求证:VB⊥AC。
如图,长方体ABCD—A1B1C1D1中,棱
AA1,BB1,CC1,DD1 所在直线与底面ABCD的 位置关系如何?它们彼此之间具有什么
位置关系? C1
D1
B1
A1
C
D
B
A
一、线面垂直的性质定理
垂直于同一个平面的两条直线平行
已知:a⊥α, b⊥α, 求证:a // b
证明:
假设 a与b不平行.
记直线b和α的交点为o,
A
A
B
D
CB
C D
过 ABC 的顶点A翻折纸片,得到折痕AD,将翻
折后的纸片竖起放置在桌面上(BD,DC于桌面接
触).
(1)折痕AD与桌面垂直吗?
高中数学知识点:直线和平面垂直的定义与判定
高中数学知识点:直线和平面垂直的定义与判定
1.直线和平面垂直的定义
如果直线l 和平面α内的任意一条直线都垂直,我们就说直线l 与平面α互相垂直,记作l α⊥.直线l 叫平面α的垂线;平面α叫直线l 的垂面;垂线和平面的交点叫垂足.
要点诠释:
(1)定义中“平面α内的任意一条直线”就是指“平面α内的所有直线”,这与“无数条直线”不同,注意区别.
(2)直线和平面垂直是直线和平面相交的一种特殊形式.
(3)若,a b αα⊥⊂,则a b ⊥.
2.直线和平面垂直的判定定理
文字语言:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.
图形语言:
符号语言:,,,m n m n B l l m l n ααα⊂⊂=⎫⇒⊥⎬⊥⊥⎭
I 特征:线线垂直⇒线面垂直
要点诠释:
(1)判定定理的条件中:“平面内的两条相交直线”是关键性词语,不可忽视
.
(2)要判定一条已知直线和一个平面是否垂直,取决于在这个平面内能否找出两条相交直线和已知直线垂直,至于这两条相交直线是否和已知直线有公共点,则无关紧要.
相关的重要结论
①过一点与已知直线垂直的平面有且只有一个;过一点与已知平面垂直的直线有且只有一条.
②如果两条平行线中的一条与一个平面垂直,那么另一条也与这个平面垂直.
③如果两个平行平面中的一个与一条直线垂直,那么另一个也与这条直线垂直.。
2.3--直线-平面垂直的判定及其性质
【课时小结】
1. 线面垂直的定义 若直线 l 垂直平面 a 内的任意一直线, 则叫 l⊥a. 应用: 若 l⊥a, 则 l 垂直平面 a 内的任意一直线. l⊥ a , l⊥m. ma,
【课时小结】
2. 线面垂直的判定定理 如果一条直线和一个平面内的两条相 交直线都垂直, 那么这条直线垂直于这个 平面. l⊥ a , l⊥ b , a a , b a , a∩b=P,
例2. 如图, 在正方体 ABCD-A1B1C1D1中, 求 直线 A1B 和平面 A1B1CD 所成的角. 求线面角的要点: (1) 找斜线在平面上的射影, 确定线面角. (2) 构造含线面角的三角形, 通常构造直角三角形. (3) 在三角形中求角的大小.
D1 C1 B1 O D
A1
C B
A
【课时小结】
a Q
A l
有三条线: ①平面的斜线, ②斜线在平面上的射影, ③平面内的一条直线 l.
结论: 如果 l ⊥斜线, 则 l⊥射影; 如果 l⊥射影, 则 l⊥斜线. (三垂线定理)
练习: (课本67页) 1. 如图, 在三棱锥 V-ABC中, VA=VC, AB=BC, 求证: VB⊥AC. 证明: 取 AC 边的中点 D, 连接 VD, BD. ∵ VA=VC, VD⊥AC, VB=BC, BD⊥AC, AC⊥平面VDB,
A O
a
B
C
2. 过△ABC所在平面 a 外一点 P, 作 PO⊥a, 垂足为 O, 连接 PA, PB, PC. (1) 若 PA=PB=PC, ∠C=90, 则 O 是 AB 边 的 中点 . (2) 若 PA=PB=PC, 则 O 是△ABC 的 外 心. (3) 若 PA⊥PB, PB⊥PC, PC⊥PA, 则 O 是 △ABC的 垂 心. P 解: (3) 由 PA⊥PB, PA⊥PC, 得 PA⊥平面PBC, PA⊥BC. A C O a 又由 PO⊥a 得 PO⊥BC, B 于是得 BC⊥平面POA, BC⊥AO. 同理可得 AB⊥CO, ∴O 为△ABC的垂心.
2.3.1直线与平面垂直的判定定理(优质课教学设计)
二、教学重点、难点:Fra bibliotek重点对直线与平面垂直的定义和判定定理的理解及其简单应用。
难点
探究、归纳直线与平面垂直的判定定理,线面角的求法。
三、教学设想
问题
设计意图
师生活动
1.直线与平面之间的有哪些位置关系?
回顾旧知,使学生在已有知识和经验的基础上,探索新知。
学生回顾,并回答。然后教师总结展示,直线的三种位置关系:平行、相交、在平面内。
12.提出问题:前面讨论了直线与平面垂直的问题,那么直线与平面不垂直时情况怎么样呢?
提出问题,激发学生的求知欲。
教师停顿给予疑问。
13.给出斜线与平面所成的角的相关概念
通过动态图,使学生直观的感受线面角的概念。
教师展示斜线与平面所成角的概念。
14.直线与平面所成角的范围
通过提问,使学生深刻的理解直线与平面所成角的范围。
通过辨析,加深定义的理解,掌握定义的实质。即“任意一条直线”是“所有直线”的意思,而不是“无数条直线”。定义的实质就是直线与平面内所有直线都垂直。
学生思考回答,教师展示反例。
7.思考:根据直线与平面的垂直的定义是否把平面中的直线一一找出,才能证明直线与平面垂直?能否有更简单的做法得到直线和平面垂直?
3、直线与平面所成的角;
17.布置作业(导学案)
巩固深化
学生课后独立完成。
(2)求直线A1B和平面A1B1CD所成的角.
应用判定定理解决数学内部的问题,加强线面角的认识。
学生独立思考,小组讨论合作,用小黑板展示结果,教师点评,及时给予鼓励。
16.本课小结
使学生对本节课所学的知识有一个整体性的认识,了解知识的来龙去脉。
教师引导学生概括:
高中数学知识点总结(第八章 立体几何 第五节 直线、平面垂直的判定与性质)
第五节 直线、平面垂直的判定与性质一、基础知识1.直线与平面垂直 (1)直线和平面垂直的定义:直线l 与平面α内的任意一条直线都垂直, 就说直线l 与平面α互相垂直.(2)直线与平面垂直的判定定理及性质定理:文字语言 图形语言符号语言判定定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直⎭⎪⎬⎪⎫a ,b ⊂αa ∩b =Ol ⊥a l ⊥b⇒l ⊥α 性质定理 垂直于同一个平面的两条直线平行⎭⎪⎬⎪⎫a ⊥αb ⊥α⇒a ∥b⎣⎢⎡⎦⎥⎤❶如果一条直线与平面内再多(即无数条)的直线垂直,但这些直线不相交就不能说明这条直线与此平面垂直. 2.平面与平面垂直的判定定理与性质定理文字语言 图形语言符号语言判定定理一个平面过另一个平面的垂线❷,则这两个平面垂直⎭⎪⎬⎪⎫l ⊂βl ⊥α⇒α⊥β 性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直⎭⎪⎬⎪⎫α⊥βl ⊂βα∩β=a l ⊥a ⇒l ⊥α[❷要求一平面只需过另一平面的垂线.]二、常用结论直线与平面垂直的五个结论(1)若一条直线垂直于一个平面,则这条直线垂直于这个平面内的任意直线.(2)若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.(3)垂直于同一条直线的两个平面平行.(4)一条直线垂直于两平行平面中的一个,则这一条直线与另一个平面也垂直.(5)两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.考点一直线与平面垂直的判定与性质[典例]如图,在四棱锥PABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC的中点.求证:(1)CD⊥AE;(2)PD⊥平面ABE.[证明](1)在四棱锥PABCD中,∵P A⊥底面ABCD,CD⊂底面ABCD,∴P A⊥CD,又∵AC⊥CD,且P A∩AC=A,∴CD⊥平面P AC.∵AE⊂平面P AC,∴CD⊥AE.(2)由P A=AB=BC,∠ABC=60°,可得AC=P A.∵E是PC的中点,∴AE⊥PC.由(1)知AE⊥CD,且PC∩CD=C,∴AE⊥平面PCD.∵PD⊂平面PCD,∴AE⊥PD.∵P A⊥底面ABCD,AB⊂底面ABCD,∴P A⊥AB.又∵AB⊥AD,且P A∩AD=A,∴AB⊥平面P AD,∵PD⊂平面P AD,∴AB⊥PD.又∵AB∩AE=A,∴PD⊥平面ABE.[解题技法]证明线面垂直的4种方法(1)线面垂直的判定定理:l ⊥a ,l ⊥b ,a ⊂α,b ⊂α,a ∩b =P ⇒l ⊥α. (2)面面垂直的性质定理:α⊥β,α∩β=l ,a ⊂α,a ⊥l ⇒a ⊥β. (3)性质:①a ∥b ,b ⊥α⇒a ⊥α,②α∥β,a ⊥β⇒a ⊥α. (4)α⊥γ,β⊥γ,α∩β=l ⇒l ⊥γ.(客观题可用) [口诀归纳]线面垂直的关键,定义来证最常见, 判定定理也常用,它的意义要记清. 平面之内两直线,两线相交于一点, 面外还有一直线,垂直两线是条件. [题组训练]1.(2019·安徽知名示范高中联考)如图,在直三棱柱ABC A 1B 1C 1中,AB =BC =BB 1,AB 1∩A 1B =E ,D 为AC 上的点,B 1C ∥平面A 1BD .(1)求证:BD ⊥平面A 1ACC 1;(2)若AB =1,且AC ·AD =1,求三棱锥A BCB 1的体积. 解: (1)证明:如图,连接ED ,∵平面AB 1C ∩平面A 1BD =ED ,B 1C ∥平面A 1BD , ∴B 1C ∥ED , ∵E 为AB 1的中点, ∴D 为AC 的中点, ∵AB =BC ,∴BD ⊥AC .∵A 1A ⊥平面ABC ,BD ⊂平面ABC ,∴A 1A ⊥BD . 又∵A 1A ,AC 是平面A 1ACC 1内的两条相交直线, ∴BD ⊥平面A 1ACC 1.(2)由AB =1,得BC =BB 1=1,由(1)知AD =12AC ,又AC ·AD =1,∴AC 2=2,∴AC 2=2=AB 2+BC 2,∴AB ⊥BC , ∴S △ABC =12AB ·BC =12,∴V A BCB 1=V B 1ABC =13S △ABC ·BB 1=13×12×1=16.2.如图,S是Rt△ABC所在平面外一点,且SA=SB=SC,D为斜边AC的中点.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.证明:(1)如图所示,取AB的中点E,连接SE,DE,在Rt△ABC中,D,E分别为AC,AB的中点.∴DE∥BC,∴DE⊥AB,∵SA=SB,∴SE⊥AB.又SE∩DE=E,∴AB⊥平面SDE.又SD⊂平面SDE,∴AB⊥SD.在△SAC中,∵SA=SC,D为AC的中点,∴SD⊥AC.又AC∩AB=A,∴SD⊥平面ABC.(2)∵AB=BC,∴BD⊥AC,由(1)可知,SD⊥平面ABC,又BD⊂平面ABC,∴SD⊥BD,又SD∩AC=D,∴BD⊥平面SAC.考点二面面垂直的判定与性质[典例](2018·江苏高考)在平行六面体ABCDA1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.[证明](1)在平行六面体ABCDA1B1C1D1中,AB∥A1B1.因为AB⊄平面A1B1C,A1B1⊂平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCDA1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.因为A1B∩BC=B,A1B⊂平面A1BC,BC⊂平面A1BC,所以AB1⊥平面A1BC.因为AB1⊂平面ABB1A1,所以平面ABB1A1⊥平面A1BC.[解题技法] 证明面面垂直的2种方法 定义法利用面面垂直的定义,即判定两平面所成的二面角为直二面角,将证明面面垂直问题转化为证明平面角为直角的问题定理法 利用面面垂直的判定定理,即证明其中一个平面经过另一个平面的一条垂线,把问题转化成证明线线垂直加以解决[题组训练]1.(2019·武汉调研)如图,三棱锥P ABC 中,底面ABC 是边长为2的正三角形,P A ⊥PC ,PB =2.求证:平面P AC ⊥平面ABC .证明:取AC 的中点O ,连接BO ,PO . 因为△ABC 是边长为2的正三角形, 所以BO ⊥AC ,BO = 3.因为P A ⊥PC ,所以PO =12AC =1.因为PB =2,所以OP 2+OB 2=PB 2,所以PO ⊥OB . 因为AC ∩OP =O , 所以BO ⊥平面P AC . 又OB ⊂平面ABC , 所以平面P AC ⊥平面ABC .2.(2018·安徽淮北一中模拟)如图,四棱锥P ABCD 的底面是矩形,P A ⊥平面ABCD ,E ,F 分别是AB ,PD 的中点,且P A =AD .求证:(1)AF ∥平面PEC ; (2)平面PEC ⊥平面PCD .证明:(1)取PC 的中点G ,连接FG ,EG , ∵F 为PD 的中点,G 为PC 的中点, ∴FG 为△CDP 的中位线, ∴FG ∥CD ,FG =12CD .∵四边形ABCD 为矩形,E 为AB 的中点, ∴AE ∥CD ,AE =12CD .∴FG =AE ,FG ∥AE , ∴四边形AEGF 是平行四边形,∴AF ∥EG ,又EG ⊂平面PEC ,AF ⊄平面PEC ,∴AF∥平面PEC.(2)∵P A=AD,F为PD中点,∴AF⊥PD,∵P A⊥平面ABCD,CD⊂平面ABCD,∴P A⊥CD,又∵CD⊥AD,AD∩P A=A,∴CD⊥平面P AD,∵AF⊂平面P AD,∴CD⊥AF.又PD∩CD=D,∴AF⊥平面PCD.由(1)知EG∥AF,∴EG⊥平面PCD,又EG⊂平面PEC,∴平面PEC⊥平面PCD.[课时跟踪检测]A级1.设a,b是两条不同的直线,α,β是两个不同的平面,则能得出a⊥b的是() A.a⊥α,b∥β,α⊥βB.a⊥α,b⊥β,α∥βC.a⊂α,b⊥β,α∥βD.a⊂α,b∥β,α⊥β解析:选C对于C项,由α∥β,a⊂α可得a∥β,又b⊥β,得a⊥b,故选C.2.(2019·湘东五校联考)已知直线m,l,平面α,β,且m⊥α,l⊂β,给出下列命题:①若α∥β,则m⊥l;②若α⊥β,则m∥l;③若m⊥l,则α⊥β;④若m∥l,则α⊥β.其中正确的命题是()A.①④B.③④C.①②D.①③解析:选A对于①,若α∥β,m⊥α,l⊂β,则m⊥l,故①正确,排除B.对于④,若m∥l,m⊥α,则l⊥α,又l⊂β,所以α⊥β.故④正确.故选A.3.已知P A垂直于以AB为直径的圆所在的平面,C为圆上异于A,B两点的任一点,则下列关系不正确的是()A.P A⊥BC B.BC⊥平面P ACC.AC⊥PB D.PC⊥BC解析:选C由P A⊥平面ACB⇒P A⊥BC,故A不符合题意;由BC⊥P A,BC⊥AC,P A∩AC=A,可得BC⊥平面P AC,所以BC⊥PC,故B、D不符合题意;AC⊥PB显然不成立,故C符合题意.4.如图,在四面体ABCD中,已知AB⊥AC,BD⊥AC,那么点D在平面ABC内的射影H必在()A.直线AB上B.直线BC上C.直线AC上D.△ABC内部解析:选A因为AB⊥AC,BD⊥AC,AB∩BD=B,所以AC⊥平央ABD,又AC⊂平面ABC,所以平面ABC⊥平面ABD,所以点D在平面ABC内的射影H必在直线AB上.5.如图,在正四面体PABC中,D,E,F分别是AB,BC,CA的中点,则下面四个结论不成立的是()A.BC∥平面PDFB.DF⊥平面P AEC.平面PDF⊥平面P AED.平面PDE⊥平面ABC解析:选D因为BC∥DF,DF⊂平面PDF,BC⊄平面PDF,所以BC∥平面PDF,故选项A正确.在正四面体中,AE⊥BC,PE⊥BC,AE∩PE=E,所以BC⊥平面P AE,又DF∥BC,则DF⊥平面P AE,从而平面PDF⊥平面P AE.因此选项B、C均正确.6.如图,已知∠BAC=90°,PC⊥平面ABC,则在△ABC,△P AC的边所在的直线中,与PC垂直的直线有________个;与AP垂直的直线有________个.解析:∵PC⊥平面ABC,∴PC垂直于直线AB,BC,AC.∵AB⊥AC,AB⊥PC,AC∩PC=C,∴AB⊥平面P AC,又∵AP⊂平面P AC,∴AB⊥AP,与AP垂直的直线是AB.答案:317.设α和β为不重合的两个平面,给出下列命题:①若α内的两条相交直线分别平行于β内的两条直线,则α∥β;②若α外的一条直线l与α内的一条直线平行,则l∥α;③设α∩β=l,若α内有一条直线垂直于l,则α⊥β;④直线l⊥α的充要条件是l与α内的两条直线垂直.其中所有的真命题的序号是________.解析:①正确;②正确;满足③的α与β不一定垂直,所以③错误;直线l⊥α的充要条件是l与α内的两条相交直线垂直,所以④错误.故所有的真命题的序号是①②.答案:①②8.在直三棱柱ABCA1B1C1中,平面α与棱AB,AC,A1C1,A1B1分别交于点E,F,G,H,且直线AA1∥平面α.有下列三个命题:①四边形EFGH是平行四边形;②平面α∥平面BCC1B1;③平面α⊥平面BCFE.其中正确命题的序号是________.解析:如图所示,因为AA1∥平面α,平面α∩平面AA1B1B=EH,所以AA1∥EH.同理AA1∥GF,所以EH∥GF,又ABCA1B1C1是直三棱柱,易知EH=GF=AA1,所以四边形EFGH是平行四边形,故①正确;若平面α∥平面BB1C1C,由平面α∩平面A1B1C1=GH,平面BCC1B1∩平面A1B1C1=B1C1,知GH∥B1C1,而GH∥B1C1不一定成立,故②错误;由AA1⊥平面BCFE,结合AA1∥EH知EH⊥平面BCFE,又EH⊂平面α,所以平面α⊥平面BCFE,故③正确.答案:①③9.(2019·太原模拟)如图,在四棱锥PABCD中,底面ABCD是菱形,∠BAD=60°,P A=PD=AD=2,点M在线段PC上,且PM=2MC,N为AD的中点.(1)求证:AD⊥平面PNB;(2)若平面P AD⊥平面ABCD,求三棱锥PNBM的体积.解:(1)证明:连接BD.∵P A=PD,N为AD的中点,∴PN⊥AD.又底面ABCD是菱形,∠BAD=60°,∴△ABD为等边三角形,∴BN⊥AD,又PN∩BN=N,∴AD⊥平面PNB.(2)∵P A=PD=AD=2,∴PN=NB= 3.又平面P AD⊥平面ABCD,平面P AD∩平面ABCD=AD,PN⊥AD,∴PN⊥平面ABCD,∴PN⊥NB,∴S△PNB=12×3×3=32.∵AD⊥平面PNB,AD∥BC,∴BC ⊥平面PNB .又PM =2MC , ∴V P NBM =V M PNB =23V C PNB =23×13×32×2=23.10.如图,在直三棱柱ABC A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且B 1D ⊥A 1F ,A 1C 1⊥A 1B 1.求证:(1)直线DE ∥平面A 1C 1F ; (2)平面B 1DE ⊥平面A 1C 1F .证明:(1)在直三棱柱ABC A 1B 1C 1中,AC ∥A 1C 1, 在△ABC 中,因为D ,E 分别为AB ,BC 的中点. 所以DE ∥AC ,于是DE ∥A 1C 1,又因为DE ⊄平面A 1C 1F ,A 1C 1⊂平面A 1C 1F , 所以直线DE ∥平面A 1C 1F .(2)在直三棱柱ABC A 1B 1C 1中,AA 1⊥平面A 1B 1C 1, 因为A 1C 1⊂平面A 1B 1C 1,所以AA 1⊥A 1C 1,又因为A 1C 1⊥A 1B 1,A 1B 1∩AA 1=A 1,AA 1⊂平面ABB 1A 1,A 1B 1⊂平面ABB 1A 1, 所以A 1C 1⊥平面ABB 1A 1, 因为B 1D ⊂平面ABB 1A 1, 所以A 1C 1⊥B 1D ,又因为B 1D ⊥A 1F ,A 1C 1∩A 1F =A 1,A 1C 1⊂平面A 1C 1F ,A 1F ⊂平面A 1C 1F , 所以B 1D ⊥平面A 1C 1F , 因为直线B 1D ⊂平面B 1DE , 所以平面B 1DE ⊥平面A 1C 1F .B 级1.(2018·全国卷Ⅱ)如图,在三棱锥P ABC 中,AB =BC =22,P A =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且MC =2MB ,求点C 到平面POM 的距离. 解:(1)证明:因为P A =PC =AC =4,O 为AC 的中点, 所以PO ⊥AC ,且PO =2 3. 连接OB , 因为AB =BC =22AC , 所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2.所以PO 2+OB 2=PB 2,所以PO ⊥OB . 又因为AC ∩OB =O ,所以PO ⊥平面ABC . (2)作CH ⊥OM ,垂足为H , 又由(1)可得OP ⊥CH , 所以CH ⊥平面POM .故CH 的长为点C 到平面POM 的距离.由题设可知OC =12AC =2,CM =23BC =423,∠ACB =45°,所以OM =253,CH =OC ·MC ·sin ∠ACB OM =455.所以点C 到平面POM 的距离为455.2.(2019·河南中原名校质量考评)如图,在四棱锥P ABCD 中,AB ∥CD ,AB ⊥AD ,CD =2AB ,平面P AD ⊥底面ABCD ,P A ⊥AD ,E ,F 分别是CD ,PC 的中点.求证:(1)BE ∥平面P AD ; (2)平面BEF ⊥平面PCD .证明:(1)∵AB ∥CD ,CD =2AB ,E 是CD 的中点, ∴AB ∥DE 且AB =DE , ∴四边形ABED 为平行四边形,∴AD ∥BE ,又BE ⊄平面P AD ,AD ⊂平面P AD , ∴BE ∥平面P AD .(2)∵AB ⊥AD ,∴四边形ABED 为矩形, ∴BE ⊥CD ,AD ⊥CD ,∵平面P AD ⊥底面ABCD ,平面P AD ∩底面ABCD =AD ,P A ⊥AD , ∴P A ⊥底面ABCD , ∴P A ⊥CD ,又P A ∩AD =A , ∴CD ⊥平面P AD ,∴CD ⊥PD , ∵E ,F 分别是CD ,PC 的中点, ∴PD ∥EF ,∴CD ⊥EF ,又EF ∩BE =E , ∴CD ⊥平面BEF ,∵CD ⊂平面PCD ,∴平面BEF ⊥平面PCD .。
高一 第15讲 必修二 空间直线、平面垂直的判定与性质-------
教 师 学生姓名 教材版本 北师大 学 科数学年级上课时间课 题 平行垂直 教学目 标 平行垂直教 学重 点平行垂直教 学 过 程一、知识梳理1.直线和平面垂直:(1)定义:如果一条直线l 和一个平面α内的任意一条直线都垂直,那么就说直线l 和平面α互相垂直.记作:l α⊥(2)判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面. 即,,,m n m n A l l m l n ααα⊂⊂=⎫⇒⊥⎬⊥⊥⎭(3)性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.即a ab b αα⊥⎫⇒⊥⎬⊥⎭2. 三垂线定理:(1)斜线在平面内的射影:从斜线上斜足以外的一点向平面引垂线,过斜足和垂足的直线叫做斜线在这个平面内的射影.注:垂线段比任何一条斜线段短.⑵三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直. 即,a PA a OP a OA OA ααα⊂,⊥,⎫⇒⊥⎬⊥⊂⎭三垂线定理的逆定理:在平面内的一条直线,如果它和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直.即 ,,a PA A a OA a OP O OP αααα⊂,⊥,⎫⇒⊥⎬⊥∈⊄⎭垂足为二、专题精讲题型一 线线、线面、面面垂直关系的综合问题例题1:l m 、为两条不重合的直线,αβγ、、为三个互不重合的平面,给出下面四个命题: ①αγβγαβ⊥⊥⇒⊥,;②//αγβγαβ⊥⇒⊥,;//l l αβαβ⊥⇒⊥③,;m l m l αβαβ⊥⊥⇒⊥④,,其中正确的命题有( )A 1个B 2个C 3个D 4个【反思小结】与平行问题一样,本题主要考查线线、线面、面面的垂直问题,高考几乎年年都单独考查学生对线面、面面垂直的判定定理和性质定理的准确、深刻的理解,考查学生对符号语言、图形语言、文字语言熟练转换的能力,以选择题、填空题居多,既可能就平行或垂直单独进行考查,又可能在平行中渗透垂直,垂直中兼顾平行,既考查空间想象能力,又考查逻辑推理能力。
高一数学必修二 2.3.1 直线与平面垂直的判定
123
知识梳理
3.直线和平面所成的角 (1)定义:一条直线和一个平面相交,但不和这个平面垂直,这条直 线叫做这个平面的斜线,斜线和平面的交点叫做斜足.过斜线上斜 足以外的一点向平面引垂线,过垂足和斜足的直线叫做斜线在这个 平面上的射影.平面的一条斜线和它在平面上的射影所成的锐角, 叫做这条直线和这个平面所成的角. (2)规定:一条直线垂直于平面,我们说它们所成的角是直角;一条 直线和平面平行,或在平面内,我们说它们所成的角是0°的角.因此, 直线与平面所成的角α的范围是0°≤α≤90°.
题型一
题型二
题型三
精选例题
题型四
反思利用直线与平面垂直的判定定理判定直线与平面垂直的步 骤:(1)在这个平面内找出两条直线,使它和已知直线垂直;(2)确定这 个平面内的这两条直线是相交直线;(3)根据判定定理得出结论.
题型一
题型二
题型三
精选例题
题型四
【变式训练1】 如图,在三棱锥S-ABC中,∠ABC=90°,D是AC的中点,且SA=SB=SC. (1)求证:SD⊥平面ABC; (2)若AB=BC,求证:BD⊥平面SAC. 证明:(1)因为SA=SC,D是AC的中点,所以SD⊥AC. 在Rt△ABC中,AD=BD,由已知SA=SB,所以△ADS≌△BDS. 所以SD⊥BD.又AC∩BD=D,所以SD⊥平面ABC. (2)因为AB=BC,D为AC的中点,所以BD⊥AC,由(1)知SD⊥BD.又 因为SD∩AC=D,所以BD⊥平面SAC.
ABCD所成的角的度数是
.
解析:因为B1B⊥平面ABCD, 所以∠B1AB是AB1与平面ABCD所成的角.在正方体ABCDA1B1C1D1中,四边形ABB1A1是正方形, 所以∠B1AB=45°. 答案:45°
高一数学必修二2.3.1直线与平面垂直的判定2.3.2平面与平面垂直的判定导学案(解析版)
2.3.1直线与平面垂直的判定 2.3.2平面与平面垂直的判定一、课标解读(1)使学生掌握直线和平面垂直的定义及判定定理; (2)使学生掌握直线和平面所成角的概念(3)使学生正确理解和掌握“二面角”、“二面角的平面角”及“直二面角”、“两个平面互相垂直”的概念;(4)使学生掌握两个平面垂直的判定定理及其简单的应用;(5)培养学生的几何直观能力,使他们在直观感知,操作确认的基础上学会归纳、概括结论。
二、自学导引问题1:(1)请同学们观察图片,说出旗杆与地面、树干与地面的位置有什么关系?(2)请把自己的数学书打开直立在桌面上,观察书脊与桌面的位置有什么关系? (3)思考:一条直线与平面垂直时,这条直线与平面内的直线有什么样的位置关系?有什么生活实例能验证这一关系呢?直线与平面垂直的定义:用符号语言表示为:问题2:如图,请同学们拿出准备好的一块(任意)三角形的纸片,我们一起来做一个实验:过△ABC 的顶点A 翻折纸片,得到折痕AD ,将翻折后的纸片竖起放置在桌面上,(BD 、DC 与桌面接触).观察并思考:①折痕AD 与桌面垂直吗?DCBA②如何翻折才能使折痕AD 与桌面所在的平面垂直? 直线与平面垂直的判定定理:用符号语言表示为:问题3:直线与平面所成角的概念?问题4:怎样作出二面角的平面角?问题5:平面与平面垂直的定义?问题6:两个平面互相垂直的判定方法有哪些? 三、典例精析例1 已知两两垂直所在平面外一点,是PC PB PA ABC P ,,∆,H 是ABC ∆ 的垂心.求证:⊥PH 平面ABC变式训练1 如图所示,ABC PA O C O AB 平面上的一点,为圆的直径,为圆⊥, F CP AF E BP AE 于于⊥⊥,.求证:AEF BP 平面⊥例2 如图所示,已知 60,90=∠=∠=∠CSA BSA BSC ,又SC SB SA ==. 求证:平面SBC ABC 平面⊥变式训练2 如图所示,在四面体ABCD 中,AC CD CB AD AB a BD =====,2 =a ,求证:平面BCD ABD 平面⊥._ C例3 如图所示,已知的斜线,是平面内,在平面ααOA BOC ∠且AOCAOB ∠=∠=60,a OC OB OA ===,a BC 2=,求所成的角与平面αOA .变式训练3 如图所示,在矩形ABCD 中,3,33==BC AD ,沿着对角线BD 将BCD ∆折起,使点C 移到'C 点,且'C 点在平面ABD 上的射影O 恰在AB 上.(1)求证:D AC BC ''平面⊥(2)求直线AB 与平面D BC '所成角的正弦值四、自主反馈1. 如图BC 是Rt ⊿ABC 的斜边,过A 作⊿ABC 所在平面α 垂线AP ,连PB 、PC ,过A 作AD ⊥BC 于D ,连PD ,那么图中直角三角形的个数是 ( )A .4个B .6个C .7个D .8个2.下列说法正确的是 ( ) A .直线a 平行于平面M ,则a 平行于M 内的任意一条直线 B .直线a 与平面M 相交,则a 不平行于M 内的任意一条直线C .直线a 不垂直于平面M ,则a 不垂直于M 内的任意一条直线D .直线a 不垂直于平面M ,则过a 的平面不垂直于M3.直三棱柱ABC —A 1B 1C 1中,∠ACB =90°,AC =AA 1=a ,则点A 到平面A 1BC 的距离是 ( )A.aB. 2aC.22a D. 3a 4.已知PA 、PB 、PC 是从点P 发出的三条射线,每两条射线的夹角都是60︒,则直线PC 与平面PAB 所成的角的余弦值为 。
直线、平面垂直的判定与性质
直线、平面垂直的判定及其性质知识要点梳理知识点一、直线和平面垂直的定义与判定1.直线和平面垂直定义如果直线和平面内的任意一条直线都垂直.我们就说直线与平面互相垂直.记作.直线叫平面的垂线;平面叫直线的垂面;垂线和平面的交点叫垂足。
要点诠释:(1)定义中“平面内的任意一条直线”就是指“平面内的所有直线”.这与“无数条直线”不同.注意区别。
(2)直线和平面垂直是直线和平面相交的一种特殊形式。
(3)若.则。
2.直线和平面垂直的判定定理判定定理:一条直线与一个平面内的两条相交直线都垂直.则该直线与此平面垂直。
符号语言:特征:线线垂直线面垂直要点诠释:(1)判定定理的条件中:“平面内的两条相交直线”是关键性词语.不可忽视。
(2)要判定一条已知直线和一个平面是否垂直.取决于在这个平面内能否找出两条相交直线和已知直线垂直.至于这两条相交直线是否和已知直线有公共点.则无关紧要。
知识点二、斜线、射影、直线与平面所成的角一条直线和一个平面相交.但不和这个平面垂直.这条直线叫做这个平面的斜线。
过斜线上斜足外的一点向平面引垂线.过垂足和斜足的直线叫做斜线在这个平面内的射影。
平面的一条斜线和它在平面上的射影所成的锐角.叫做这条直线和这个平面所成的角。
要点诠释:(1)直线与平面相交但不垂直.直线在平面的射影是一条直线。
(2)直线与平面垂直射影是点。
(3)斜线任一点在平面内的射影一定在斜线的射影上。
(4)一条直线垂直于平面.它们所成的角是直角;一条直线和平面平行或在平面内.它们所成的角是0°的角。
知识点三、二面角1.二面角定义平面内的一条直线把平面分成两部分.这两部分通常称为半平面.从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫二面角的棱.这两个半平面叫做二面角的面。
表示方法:棱为、面分别为的二面角记作二面角.有时为了方便.也可在内(棱以外的半平面部分)分别取点.将这个二面角记作二面角.如果棱记作.那么这个二面角记作二面角或。
直线、平面垂直的判定及其性质解析
直线、平面垂直的判定及其性质知识要点梳理知识点一、直线和平面垂直的定义与判定1.直线和平面垂直定义如果直线和平面内的任意一条直线都垂直,我们就说直线与平面互相垂直,记作.直线叫平面的垂线;平面叫直线的垂面;垂线和平面的交点叫垂足。
要点诠释:(1)定义中“平面内的任意一条直线”就是指“平面内的所有直线”,这与“无数条直线”不同,注意区别。
(2)直线和平面垂直是直线和平面相交的一种特殊形式。
(3)若,则。
2.直线和平面垂直的判定定理判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。
符号语言:特征:线线垂直线面垂直要点诠释:(1)判定定理的条件中:“平面内的两条相交直线”是关键性词语,不可忽视。
(2)要判定一条已知直线和一个平面是否垂直,取决于在这个平面内能否找出两条相交直线和已知直线垂直,至于这两条相交直线是否和已知直线有公共点,则无关紧要。
知识点二、斜线、射影、直线与平面所成的角一条直线和一个平面相交,但不和这个平面垂直,这条直线叫做这个平面的斜线。
过斜线上斜足外的一点向平面引垂线,过垂足和斜足的直线叫做斜线在这个平面内的射影。
平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角。
要点诠释:(1)直线与平面相交但不垂直,直线在平面的射影是一条直线。
(2)直线与平面垂直射影是点。
(3)斜线任一点在平面内的射影一定在斜线的射影上。
(4)一条直线垂直于平面,它们所成的角是直角;一条直线和平面平行或在平面内,它们所成的角是0°的角。
知识点三、二面角1.二面角定义平面内的一条直线把平面分成两部分,这两部分通常称为半平面.从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫二面角的棱,这两个半平面叫做二面角的面。
表示方法:棱为、面分别为的二面角记作二面角.有时为了方便,也可在内(棱以外的半平面部分)分别取点,将这个二面角记作二面角.如果棱记作,那么这个二面角记作二面角或。
直线与平面垂直的判定
二、直线和平面垂直的判定定理
如果一条直线和一个平面 内的两条相交直线都垂直,那 么这条直线垂直于这个平面。
三、线面l ⊥
m, l ⊥ n。 求证: l ⊥α。
l
B
m
n
α
l
l
B
m
n
α
l
B
m
n
α
l
B
m
ng
α
l
B
m g
ng
α
l
A
AB=A’B
B
m
n
g
α
A’
l
A
AB=A’B
B
m
n
g
α
A’
l
A
AB=A’B
B
m
n
g
α
A’
l
A
B
m
n
g
α
A’
l
A
B
m gn D
α
C
E
A’
l
A
B
m gn D
α
C
E
A’
l
A
l ⊥m
B
m gn D
α
C
E
A’
l
A
l ⊥m
B m
α
C
A’
l ⊥m
l
A
AC=A’C
B m
α
C
A’
l
A
AD=A’D
B
m gn D
α
C
E
A’
l
A
B
m gn D
α
C
E
CD=CD
A’
l
A
人教版高一数学第二章1-1直线与平面垂直的概念与判定(共15张PPT)教育课件
思考2:我们需要寻求一个简单可行的办 法来判定直线与平面垂直.
如果直线l与平面α内的一条直线垂直, 能保证l⊥α吗?
如果直线l与平面α内的两条直线垂直, 能保证l⊥α吗?
二、线面垂直的判定定理:
一条直线与一个平面内的两条相交直 线都垂直,则该直线与此平面垂直.
符号语言
l
lm
P αm n
l
m
nnP
l
A
α
垂线 垂面
垂足
如果直线l和平面相交,但不与平面α垂直 则直线l叫做平面α的斜线 交点叫做斜足 线面垂直所成角为 90o 线面平行, 或线在面内所成角为0o
线面所成的角的范围: [0o, 90o]
斜线
l
线面所成的角
斜足
射影
α
AB
l m
若m l l m
α
P
若PA⊥面ABC
AB面 ABC
C PA⊥AB
《
《
我
是
算
命
先
生
》
读
同学们加油!
有些人经常做一些计划,有的计划几乎 不去做 或者做 了坚持 不了多 久。其 实成功 的关键 是做很 坚持。 上帝没 有在我 们出生 的时候 给我们 什么额 外的装 备,也 许你对 未来充 满迷惑 ,也许 你觉得 是在雾 里看花 ,但是 只要我 们不停 的去做 ,去实 践,总 是可以 走到一 个鲜花 盛开的 地方, 也许在 那个时 候,你 就能感 受到什 么叫柳 暗花明 。走向 成功的 过程就 好像你 的起点 是南极 ,而成 功路径 的重点 在北极 。那么 无论你 往哪个 方向走 ,只要 中途的 方向不 变,最 终都会 到达北 极,那 就在于 坚持。
:
那
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线与平面垂直的判定 第一课时
直线与平面垂直的概念和判定
问题提出
1 5730 p 2
t
1.前面我们全面分析了直线与平面平行 的概念、判定和性质,对于直线与平面 相交,又有哪些相关概念和原理?我们 有必要进一步研究. 2.直线与直线存在有垂直关系,直线与 平面也存在有垂直关系,我们如何从理 论上加以认识?
A B
P A
D
B
C
D. 小结作业
P67 练习: 1. P74习题2.3B组:2,4.
思考3:如图,将一块三角形纸片 ABC沿折痕AD折起,把翻折后的纸片 竖起放置在桌面上,使BD、DC与桌 面接触,观察折痕AD与桌面的位置 关系. A A
D C
B
D
C
B
如何调整折痕AD的位置,才能使翻折后 直线AD与桌面所在的平面垂直?
A B B D C A D C
思考4:由上可知当折痕AD垂直平 面α 内的两条相交直线时,折痕AD 与平面α垂直.由此我们是否能得出 直线与平面垂直的判定方法?
α
a
P
b
思考6:如果一条直线垂直于一个 平面内的无数条直线,那么这条直 线与这个平面垂直吗?
理论迁移
例1 已知 a // b, a .求证: b .
a
b
α
c
d
a
b
α
c
d
例2 在三棱锥P-ABC中,PA⊥平面 ABC,AB⊥BC,PA=AB,D为PB的中点, 求证:AD⊥PC.
P D C
知识探究(一):直线与平面垂直的概念
思考1:田径场地面上竖立的旗杆与 地面的位置关系给人以什么感觉? 你还能列举一些类似的实例吗?
思考2:将一本书打开直立在桌面上, 观察书脊(想象成一条直线)与桌 面的位置关系呈什么状态?此时书 脊与每页书和桌面的交线的位置关 系如何?
思考3:如图,在阳光下观察直立于 地面的旗杆及它在地面的影子,随 着时间的变化,影子BC的位置在移 动,在各时刻旗杆AB所在直线与影 子BC所在直线的位置关系如何?
A B C
思考4:上述旗杆与地面、书脊与桌 面的位置关系,称为直线与平面垂 直.一般地,直线与平面垂直的基本 特征是什么?怎样定义直线与平面 垂直?
如果一条直线与平面内的任意 一条直线都垂直,则称这条直线与 这个平面垂直.
思考5:在图形上、符号上怎样表示 直线与平面垂直?
l
α
l
思考6:如果直线l与平面α 垂直,则 直线l叫做平面α 的垂线,平面α 叫 做直线l的垂面,它们的交点叫做垂 足.那么过一点可作多少条平面α 的 垂线?过一点可作多少个直线l的垂 面? 垂线
l
垂面
α
A
垂足
知识探究(二):直线与平面垂直的判定
思考1:对于一条直线和一个平面,如果 根据定义来判断它们是否垂直,需要解 决什么问题?如何操作?
思考2:我们需要寻求一个简单可行的办 法来判定直线与平面垂直. 如果直线l与平面α内的一条直线垂直, 能保证l⊥α吗? 如果直线l与平面α内的两条直线垂直, 能保证l⊥α吗?
定理: 如果一条直线和一个平面 内的两条相交直线都垂直,那么这 条直线垂直于这个平面.
思考5:上述定理通常称为直线和平面垂 直的判定定理,它是判定直线与平面垂 直的理论依据.结合下图,怎样用符号语 言表述这个定理? l
a , b , a b P, l a, l b l