第2章电阻电路的一般分析方法

合集下载

电阻电路的一般分析方法

电阻电路的一般分析方法

电路常用分析方法第一:支路电流法:以各支路电流为未知量列写电路方程分析电路的方法。

独立方程的列写:(1)从电路的n 个结点中任意选择n-1个结点列写KCL 方程;(2)选择基本回路列写b-(n-1)个KVL 方程。

支路电流法的一般步骤:第二:回路电流法:以基本回路中沿回路连续流动的假想电流为未知量列写电路方程分析电路的方法。

它适用于平面和非平面电路。

1.列写的方程:回路电流法是对独立回路列写KVL 方程,方程数为:)1(--n b ,与支路电流法相比,方程减少1-n 个。

2.回路电流法适用于复杂电路,不仅适用于平面电路,还适用于非平面电路回路电流法的一般步骤:(1)选定)1(--=n b l 个独立回路,并确定其绕行方向;(2)对l 个独立回路,以回路电流为未知量,列写其KVL 方程;(3)求解上述方程,得到l 个回路电流;(4)求各支路电流。

回路电流法的特点:(1)通过灵活的选取回路可以减少计算量;(2)互有电阻的识别难度加大,易遗漏互有电阻。

理想电流源支路的处理:网孔电流法是回路电流法的一种特例。

引入电流源电压,增加回路电流和电流源电流的关系方程。

i来表示。

第三:网孔电流法:是一种沿着网孔边界流动的假想的环流,用m1.网孔电流法:是以网孔电流作为电路的独立变量的求解方法,仅适用于平面电路。

2.基本思想:利用假想的网孔电流等效代替支路电流来列方程。

3.列写的方程:KCL自动满足。

只需对网孔回路,列写KVL方程,方程数为网孔数。

网孔电流法的一般步骤:(1)选定各网孔电流的参考方向,它们也是列方程时的绕行方向。

(通常各网孔电流都取顺时针方向或都取逆时针方向)(2)根据电路,写出自阻、互阻及电源电压。

(3)根据推广公式,列网孔方程。

(4)求解网孔方程,解得网孔电流。

(5)根据题目要求,进行求解。

第四:结点电压法:以结点电压为未知量列写电路方程分析电路的方法。

适用于结点较少的电路。

结点电压法的一般步骤为:(1)选定参考结点,标定1n个独立结点;-(2)对1-n个独立结点,以结点电压为未知量,列写其KCL方程;(3)求解上述方程,得到1n个结点电压;-(4)通过结点电压求各支路电流;(5)其他分析。

第2章简单电阻电路分析-2理想电压源电流源的串并联和等效变换

第2章简单电阻电路分析-2理想电压源电流源的串并联和等效变换

利用上述关系式,可测量电阻。
返回首页
习题讨论课1—
简单—电阻电路分析
(总第七、八讲)
重点和要求:
1. 参考方向的正确使用。
2. 分压、分流、功率的计算。
3. 欧姆定律、KCL、KVL的使用。
4. 等效的概念 电源的等效变换、电阻的Y-变换。
1. 求入端电阻。
(1) 求Rab、 Rac 。
c
4
4
2
2
4
a 3
a
(2) 求 Rab .
4 2
6
4
2 0.6
b
ab
2. 用电源等效变换化简电路。
(3) 求 Rab .
2 2 1 2 4
a
b 4
a
a
6A
10
等效 R
+ 2A
+
_ 6V
_ Us
b
b
3. 电路如图
g
2A
R=3
(1) 求I1, I2, I3, Uab, Ueg;
e
1 a
b 2 f
(2) 若R变为5 ,
U
I
+
US _
+
U
Ri
_
0
Ii
U=US – Ri I
R Ri: 电源内阻, 一般很小。
一个实际电压源,可用一个理想电压源uS与一个电阻Ri 串联的支路模型来表征其特性。
二、实际电流源
实际电流源,当它向外电路供给电流时,并不
是全部流出,其中一部分将在内部流动,随着端电 压的增加,输出电流减小。
I
u
GiU
is us Ri ,
Gi
1 Ri

电工电子技术第2章 线性电路分析的基本方法

电工电子技术第2章 线性电路分析的基本方法

第2章 线性电阻电路的分析内容:网络方程法:支路电流法、节点电压法、回路电流法。

线性电路定理:替代定理、戴维宁定理、诺顿定理。

2.1 电阻的串联、并联和混联电路分析线性电阻电路的方法很多,但基本依据是KCL 、KVL 及元件的伏安关系()VAR 。

根据这些基本依据可推导出三种不同的分析电路的方法:等效法、方程法、定理法。

本章首先介绍等效变换,然后讨论支路电流法、网孔分析法及节点电位法,最后介绍常用定理,包括叠加定理和齐次定理、戴维南定理和诺顿定理等。

2.1.1 电路等效的一般概念1.等效电路的概念:在分析电路时,可以用简单的等效电路代替结构较复杂的电路,从而简化电路的分析计算,它是电路分析中常用的分析方法。

但值得注意的是,等效电路只是它们对外的作用等效,一般两个电路内部具有不同的结构,工作情况也不相同,因此,等效电路的等效只对外不对内。

2.等效电路的应用:简化电路。

2.1.2 电阻的串联、并联与混联1. 电阻的串联电阻串联的概念:两个或两个以上电阻首尾相联,中间没有分支,各电阻流过同一电流的连接方式,称为电阻的串联。

串联电阻值: 123R R R R =++ 电阻串联时电流相等,各电阻上的电压:1 11122223333RUU IR R UR RRUU IR R UR RRUU IR R UR R⎫===⎪⎪⎪===⎬⎪⎪===⎪⎭2. 电阻的并联电阻的并联概念:两个或两个以上电阻的首尾两端分别连接在两个节点上,每个电阻两端的电压都相同的连接方式,称为电阻的并联并联电阻电流值:123123123111U U UI I I I UR R R R R R⎧⎫=++=++=++⎨⎬⎩⎭并联电阻值:1231111R R R R=++电阻并联电路的等效电阻的倒数等于各个电阻的倒数之和。

电阻并联时电压相等,各电阻上的电流:111122223333GU RII IR R GGU RII IR R GGU RII IR R G⎫===⎪⎪⎪⎪===⎬⎪⎪===⎪⎪⎭3. 电阻的混联既有电阻串联又有电阻并联的电路叫混联电路。

《工程电路分析基础》包伯成 第2章 电阻电路的分析方法

《工程电路分析基础》包伯成 第2章 电阻电路的分析方法

流IX。
解法一 把电流源看作电压源来
处理
IX

iM2

+
(3) 联立上述5个方程求解得
7V –
7A
+ u

iM1
– iM3

iM 1 9 A iM 2 2 .5 A iM 3 2 A 2 Ω
(4) 最后求解其它变量
IXiM1 9A
第22页
工程电路分析基础
第二章 电阻电路的分析方法
解法二 构造“超网孔”的方法 (1) 设网孔电流的参考方向如下图所示。

源列入到网孔KVL方程。
网孔1 3iM1 iM2 2iM3 7u
网孔2 iM1 6iM2 3iM3 0
网孔3 2iM1 3iM2 6iM3 u
iM1 iM3 7
第再21页增列电流源支路与解变量网孔电流的约束方程
工程电路分析基础
第二章 电阻电路的分析方法
【例2–4】 试用网孔电流法求解下图所示电路中的电
第二章 电阻电路的分析方法
写成矩阵形式得:
R 1R 4R 5 R 5
R 5
R 2R 5R 6
R 4 im 1 uS 1uS4
R 6
im 2 uS2
R 4
R 6 R 3R 4R 6 im 3 uS3uS4
可以归纳出网孔电流方程的一般形式
第15页
R11 R12 R13 im1 uS11
第6页
工程电路分析基础
第二章 电阻电路的分析方法
支路电流法的步骤:
(1) 标定各支路电流(电压)的参考方向; (2) 选定(n–1)个节点,列写其KCL方程; (3) 选定b–(n–1)个独立回路,列写其KVL方程;

第2章电路分析

第2章电路分析

(3)根据KVL和VCR对(b-n+1)个独立回路列以支路电流 为变量的方程;
(4)求解各支路电流,进而求出其他所需求的量。
若电路中含有无伴电流源(无电阻与之并联),可设电流源 两端的电压为未知量, 见例2-5。
電子工業出版社
新编电气与电子信息类本科规划教材
例2-5
如图所示的电路中,已知:R1 =1 ,R2 =2 ,Us1 =5 V, Is3 =1 A。用支路电流法求各支路电流。 解:对结点①列KCL方程,有
树枝数=(n-1),连枝数=(b-n + 1)
電子工業出版社
新编电气与电子信息类本科规划教材
单连枝回路或基本回路:由一个连枝与相应的树枝构成的回路。
基本回路数 = 连枝数 = b-n+1 3.割集
满足下列两个条件的支路的集合。
① 移去该集合中的所有支路,图G将分成两个部分; ② 当少移去其中任一支路时,图G仍是连通的。
新编电气与电子信息类本科规划教材
图G的一条路径:从图G的某一结点出发,沿着 一些支路移动,从而到达另一结点(或回到原 出发点),这样的一系列支路。 连通图:任意两个结点之间至少存在一条路径。
電子工業出版社
新编电气与电子信息类本科规划教材
树和基本回路
树的定义:①包含图G中的全部结点和部分支路; ②树T是连通的,且不包含回路。
R12 R31 R1 R12 R23 R31 R23 R12 R2 R12 R23 R31 R31R23 R3 R12 R23 R32
当Y连接中3个电阻相等,即R1 = R2 = R3 = RY时,
R△= R12 = R23 = R31 = 3RY
i1 = im1,i2 = im1 -im2,i3 = im2

电路基础-第2章 直流电阻电路的分析计算

电路基础-第2章 直流电阻电路的分析计算

Ra

R5
R3R1 R3
R1

50 40 10 50 40

20
Rc

R5
R1R5 R3
R1

40 10 10 50 40

4
Rd

R5
R5R3 R3
R1

10 50 10 50 40

5
图2.10(b)是电阻混联网络, 串联的Rc、R2的等效电阻
图2.10例2.5图
R1 I1
a
I3
c I2
R2 I5
R5 I4
b
I
R3
R4
R0 d + Us -
c I2
Rc
R2
Ra o
a
b
I4
Rd
R4
I
R0
d +
Us

(a)
(b)
星形连接电阻=
三角形连接图电2.阻10中例两2.两5相图邻电阻之积
三角形连接电阻之和
解 将△形连接的R1, R3, R5等效变换为Y形连接的Ra, Rc、 Rd, 如图2.10(b)所示, 代入式(2.8)求得
+ -Us1
R1
a
+ Us2
I

R
R2
b
(a)
Is1
R1
a
I
Is2
R2
R
b
(b)
图2.14例2.6图
a
I
Is
R12
R
b
(c)
解 先把每个电压源电阻串联支路变换为电流源电阻并联 支路。 网络变换如图2.14(b)所示, 其中

电路与磁路(第三版)第02章

电路与磁路(第三版)第02章

于是:
12 12 I= = A = 3A [(1 + R1 ) //(5 + R2 )] + R3 [(1 + 2) //(5 + 1)] + 2 5 + R2 5 +1 I1 = ×I =( × 3)A = 2A 1 + R1 + 5 + R2 1+ 2 + 5 +1
第二章 电阻电路
2.3电源模型的等效变换和电源支路的串并联 2.3电源模型的等效变换和电源支路的串并联
第二章 电阻电路
内容提要
1.网络的等效变换; 2.电阻电路的一般分析方法:支路分析法、网孔分析法、 结点电压法; 3.网络定理:叠加定理、戴维宁定理、诺顿定理、替代 定理。
2.1电阻的串联、 2.1电阻的串联、并联 电阻的串联
一 等效变换 对外电路具有完全相同的伏安关系的网络,可以互相 替代,这种替代称为等效变换。
第二章 电阻电路 分流公式:并联的各电阻中电流与各电阻大小成 ② 分流公式 反比,即
Gk I k = GkU = I G
两个电阻并联的分流公式: ③ 两个电阻并联的分流公式
R2 R1 I1 = I , I2 = I R1 + R2 R1 + R2
四 电阻的混联 既有电阻元件串联又有电阻元件并联的电路称为电 阻元件的混联。
第二章 电阻电路 注意事项: 注意事项: ①电压源和电流源的等效关系只对外电路而言,对电 源内部则是不等效的。 ②等效变换时,两电源的参考方向要一一对应。 ③理想电压源与理想电流源之间不能等效变换。 ④任何一个理想电压源 US 和某个电阻 R 串联的电路, 都可化为一个电流为 IS 的理想电流源和这个电阻的并联 的电路,反之亦然。

电路分析 第二章 电阻汇总

电路分析   第二章 电阻汇总
处理方法一:引入电流源电压,增加回路电流和电 流源电流的关系方程。 处理方法二:选取独立回路,使理想电流源支路仅
仅属于一个回路,该回路电流即IS 。
3、具有受控源情况
处理方法:对含有受控电源支路的电路,可先把受控源 看作独立电源按上述方法列方程,再将控制量用回路 电流表示。
29
2.4 节点法
节点电压法:以节点电压为未知变量列写电路方程分析电路的方法。
第二章 电阻电路分析
2.1 图与电路方程 2.2 2b法和支路法 2.3 回路法和网孔法 2.4 节点法 2.5 齐次定理和叠加定理 2.6 替代定理 2.7 等效电源定理
(2-1)
线性电路的一般分析方法 • 普遍性:对任何线性电路都适用。 • 系统性:计算方法有规律可循。
方法的基础
• 电路的连接关系—KCL,KVL定律。 • 元件的电压、电流关系特性。 复杂电路的一般分析法就是根据KCL、KVL及元 件电压和电流关系列方程、解方程。根据列方程时所 选变量的不同可分为支路电流法、回路电流法和结点 电压法。
例 2.2 - 1如图2.2 - 2的电路,求各支路电流。 解: 选节点a为独立节
点, 可列出KCL 方程为:
-i1+ i2 + i3 =0
选网孔为独立回路,如图所 示。 可列出KVL方程为:
3 i1 + i2 =9 - i2 +2 i3 =-2.5 i1 联立三个方程可解得i1 =2A, i2 =3 A, i3 =-1 A。
(2-20)
小结 (1)支路电流法的一般步骤:
①标定各支路电流(电压)的参考方向; ②选定(n–1)个结点,列写其KCL方程; ③选定b–n+1个独立回路,指定回路绕行方

《电路分析基础(第三版)》-第2章电阻性网络分析的一般方法

《电路分析基础(第三版)》-第2章电阻性网络分析的一般方法

图 2-2
解:(1)求各支路电流。 该电路有三条支路、两个节 点。首先指定各支路电流的参考方向,见图2-2中所示。
6
列出节点电流方程
节点①
– і1 + і2 + і3 = 0 7 і 1 + 11 і 2 = 6 – 70 = – 64
-11i2+7i3= -6 і1= – 6A і2 = – 2A
(3)根据KVL列出回路方程。选取 l=m-(n-1) 个独立
的回路,选定绕性方向,由KVL列出l个独立的回路方 程。
4
回路1-3
i1 R1 i2 R2 i4 R4 u S 1 i3 R3 i4 R4 i5 R5 u S 2 i2 R2 i3 R3 i6 R6 0
节点①
节点②
iS1 iS2 i1 i2 0
iS 2 iS 3 i2 i3 0
u1 i1 G 1u1 R1 u1 u 2 i2 G 2 (u1 u 2 ) R2
11
用节点电压表示支路电流
u2 i3 G 3u2 R3
代入节点①、节点②电流方程,得到
iS1 iS2 u1 u1 u 2 0 R1 R2
iS 2 i S 3
整理后可得:
u1 u2 R2
u2 0 R3
1 1 1 ( ) u1 u 2 iS1 iS2 R1 R 2 R2
1 1 1 u1 ( ) u2 iS3 iS 2 R2 R2 R3
24
图2-5 例2-2图
解:方法一:在选取网孔时,使含有理想电流源 i s 支路仅属于一个网孔,该网孔电流 im is ,列写网 孔电流方程 网孔1 网孔2 附加方程

第二章 电阻电路分析

第二章 电阻电路分析

is
解:假设 us 对 u 的响应 u' K1us 为 i 对 u 的响应为 u' ' K i
s 2 s
+
us
-
N
R
u
-
则 u u'u' ' K1us K2is 代入已知条件解得 K1 2 , K2 1.5 则 us 1V , is 2A 时,u = 1V。
节点2: u2 10 节点3: ( 1 3 1 4 ) u3 1 4 u2 1 解得: u1 4V , u2 10V , u2 6V 则:
4
i
u2 u3 1A 4
u u13 1A 1 u1 u3 1V 3V
例5:解法二
解:当外界电路一定时,电源 流出的电流也是一定的。
线性有源 二端网络 N
i2
+
us 2
-
其中, Rii 称为网孔 i 的自电阻,是网孔 i 中所有电阻之和,取“+”。
Rij (i j ) 称为网孔 i 与网孔 j 的互电阻,是网孔 i 与网孔 j共同电阻
之和。若流过互电阻的网孔电流方向相同,取“+”;反之取“-”。
usii 称为网孔 i 的等效电压源,是网孔 i 中所有电压源的代数和。当网孔
i1
+
R1 l1
a
i2 i4 R4
R2 l2
b
i3
R3
-
i5 R5
l3
u s1
-
us 2
+
c 列出节点的KCL方程
a: b: c:
l1 : l2 : l3 :
i1 i2 i4 0

电路理论分析-第2章

电路理论分析-第2章

R1
(R (R
R1) R1)
RA RA
400 0.5 R1 400 0.5
100 0.5 100
电路中的电流为
I U 500 5A 1.8A
R1 100
该电流超过了滑线变阻器的额定电流,在电气工程中是不允许的,
此时的输出电压几乎为零。
10
实例分析1
+ 火线 U_
A
C
零线
B
A点等效电路
R
4 1 1 3
1A
PR I 2 R 3W
U RI 3V
PUS 41 4W
内部
PIS IsU 4 3 12W
PRS I 2Rs 1W
PRS U 2Gs 9W
25
例2 求电压U3
i1 5Ω
2i1
+
6V
3Ω 3Ω
_
解:由于电路中的R3对电流i1无影 响,暂且将其短路;
R1 5 i1
所谓端口上伏安关系相同,即外特性相同,指的是当N1 和N2分别接上同一个外电路时,它们对应端电压相等,对 应端电流相等,相应的外电路的功率也相等,则N1和N2对 外部电路是等效的。
3
§2.1 不含独立源电路的等效变换
一.无源二端网络电阻的串联、并联和混联连接
电阻串联( Series Connection of Resistors )
uS _
º
º
+
+
+
uS1_
uS2_
uS us us1 us2
_
º
20
2. 理想电流源的串联并联
并联
is is1 is2 isn isk
iS1 iS2

第二章电阻电路分析(2)

第二章电阻电路分析(2)

将控制变量i3用网孔电流表示,即补充方程
i3 i1 i2
代入上式,移项整理后得到以下网孔方程:
(R1 R3 )i1 R3i2 uS (r R3 )i1 (R2 R3 r)i2 0
例2-20 用节点分析法求图示电路的节点电压。
解:由于14V电压源连接到节点①和参考节点之间,节点 ①的 节点电压u1=14V成为已知量,可以不列出节点①的节点方 程。考虑到8V电压源电流i 列出的两个节点方程为:
(1S)u1 (1S 0.5S)u2 i 3A (0.5S)u1 (1S 0.5S)u3 i 0
例2-21 求图示单口网络的等效电阻。
解: 设想在端口外加电流源i,写出端口电压u的表达式
u u1 u1 ( 1)u1 ( 1)Ri Roi
求得单口的等效电阻
Ro

u i

(
1)R
求得单口的等效电阻
Ro

u i

(
1)R
由于受控电压源的存在,使端口电压增加了u1=Ri, 导致单口等效电阻增大到(+1)倍。若控制系数=-2,则单
受控源可以分成四种类型,分别称为电流控制的电压 源(CCVS),电压控制的电流源(VCCS),电流控制的电流 源(CCCS)和电压控制的电压源(VCVS),如下图所示。
每种受控源由两个线性代数方程来描述:
CCVS:
u1 0 u2 ri1
(2 25)
r具有电阻量纲,称为转移电阻。
VCCS: ii120gu1
第二章 简单电阻电路分析
2 -4
节点分析法
2 - 5 含受控源的电路分析法 2 - 6 简单非线性电阻电路分析

第二章电阻电路的分析

第二章电阻电路的分析

第二章 电阻电路的分析主要内容:定理法:叠加定理、替代定理、戴维南定理(诺顿定理); 等效变换法:独立电源的等效变换、电阻的Y -Δ转换、移源法; 系统化法:节点电压法、回路电流法。

§2-1 线性电路的性质·叠加定理(superposition theorem)一、 线性电路的概念由线性元件及独立电源组成的电路。

电源的作用是激励,其它元件则是对电源的响应。

二、 线性电路的性质 1、齐次性: 若有图示的线性电路,在单电源激励下,以2R 的电流2i 为输出响应,则容易得到:s u R R R R R R R i 13322132++=由于321,,R R R 为常数,故有:s ku i =2显然,2i 与su 成比例。

在数学中,被称为“齐次性”,而在电路理论中则称为“比例性”。

2、相加性在图示的两激励电路中,若仍以2R 的电流2i 作为输出响应,则有:u+ |2us u+ ||2us s i R R R u R R i 2112121+++=显然,2i 由两项组成,第一项为电压源单独作用时,在电阻上引起的响应,每二项为电流源单独作用时,在电阻上引起的响应,每一项只与某个激励源成比例。

也即,由两个激励所产生的响应,表示为每一个激励单独作用时产生的响应之和。

这在数学中称为“相加性”,在电路理论中则称为“叠加性”。

三、 叠加定理在任何线性电阻电路中,每一元件的电流或电压都是电路中各个独立电源单独作用时在该元件产生的电流或电压的叠加。

叠加性是线性电路的一个根本属性。

注:叠加定理适用于线性电路。

在叠加的各分电路中,不作用的电压源置零(即,电压源用短路代替),不作用的电流源置零(即,电流源用开路代替),电阻不更动,受控源保留在各分电路中。

和分电路中的电压、电流的参考方向可以取为原电路中的相同方向,求和时,应注意各分量前的“+”、“-”号。

原电路的功率不等于按各分电路计算所得的功率叠加,这是因为功率是电压和电流的乘积。

《电工电子技术基础》第2章 电路的基本分析方法

《电工电子技术基础》第2章 电路的基本分析方法
章目录 节首页 上一页 下一页
第2章 电路的基本分析方法 ——电源等效变换
章目录 节首页 上一页 下一页
第2章 电路的基本分析方法 ——电源等效变换
章目录 节首页 上一页 下一页
第2章 电路的基本分析方法 ——电源等效变换
如图2.2.11所示,计算电路中流过2 Ω电阻的电流I。
章目录 节首页 上一页 下一页
第2章 电路的基本分析方法 ——叠加定理
章目录 节首页 上一页 下一页
第2章 电路的基本分析方法 ——叠加定理
章目录 节首页 上一页 下一页
第2章 电路的基本分析方法 ——叠加定理
章目录 节首页 上一页 下一页
第2章 电路的基本分析方法——戴维宁定理
2.5 戴维宁定理
复杂电路中有时只需要计算其中某一条支路的响应,此时可 以将这条支路划出,而把其余部分看作一个有源二端网络。 有源二端网络 具有两个出线端的内含独立电源的电路 无源二端网络 不含独立电源的二端网络
回路,网孔的数目就等于总的独立回路数。
I1
I3
I2 I II
III
章目录 节首页 上一页 下一页
第2章 电路的基本分析方法 ——支路电流法
4.选取独立结点电流方程和独立回路电压方程组成联列方程组。
I1
I3
I1+I2 - I3=0 R1I1 - R2I2=US1 - US2
I2 I II
R2I2+R3I3=US2
III
5.方程总数等于支路总数,也就是所要求的变量数,方程组
有唯一的解。解方程组,可得到各支路电流I1、I2和I3。
I1
US1(R2 R3 ) R1R2 R2 R3
US2 R3 R3R1

第2章电阻电路分析

第2章电阻电路分析

如实际使用时收录机电压低于3V时,用万用表测得电源的实际输出电
压U=6V,则说明电源内阻分掉了3V的压降。 二次选择R1,实际接通电路后,
I =
U R1 R2
U0 U E U 96 R0 43 I I 69.8m
6 = 56 30 =69.8 mA
为了达到收录机工作时的电流 I=100mA,UR2=3V,总电阻R应为 E 9
+ U
3A
12V -
单独作用的电路图 12V电压源单独作用
I′
+

2Ω 3Ω 4Ω
12V -
+ U ′
-
12 12 I 1.5A 6 3 || (2 4) 6 2 3 U 1.5 4 2V 3 2 4
3A电流源单独作用时,连续应 用分流公式 4 3 I 3 0.5A 4 2 3 || 6 3 6 4 (2 3 || 6) 3AU 4 2 3 || 6 3 6V
O
结点电压与恒压源电压的关系为:U1=10V
U 2 2V, U 3 8V, I1 6A
课堂练习:列出结点电压方程
2Ω a
+ 30V 2Ω b 2Ω c 2A
+ 36V 3Ω 1Ω
三种电路分析方法比较
• 支路电流法是最基本的电路分析方法;
• 网孔的个数小于独立结点数时,用网孔
电流法较方便;
解题步骤: (1)标出各支路电流的参考方向, 列n一1个独立结点的ΣI=0方程。
独立结点a的方程:I1+I2-I3=0
(2)标出各元件电压的参考方向, 选择足够的回路,标出绕行方向,列出ΣU=0的方程。

第二章 电路分析的等效变换法

第二章 电路分析的等效变换法
i3 Y u31Y R2 u23Y R1 R1 R2 R2 R3 R3 R1
R1R2 R2R3 R3R1 R12 R3 R1R2 R2R3 R3R1 R23 R1 R1R2 R2R3 R3R1 R31 R2
i1 =u12 /R12 – u31 /R31
+
+
5V
_
5V
_
_
2.3.2 电流源的串并联 并联: 可等效成一个理想电流源 i S º iS1 iS2 iSk º 串联: º 2A 2A 2A º º 电流相同的理想电流源 才能串联。但每个电流 iS
º iS= iSk (注意参考方向) º
源的端电压无法确定。 º
2. 3. 3 电压源与电流源的串并联 Is
º
º
º
º
º
º
º
º
º
º
º
º
2.3 电源的等效变换
2.3.1 电压源的串并联 + uS1 _ + uSn _ º
º + uS _
º
串联: uS= uSk ( 注意参考方向。一致, 取+;否则,取 - 。) 并联: 电压相同的电压源才 能并联。但每个电压 源的电流无法确定。 º
º I
º
I
º + 5V º
=G1u2+G2u2+ +Gnu2
=p1+ p2++ pn 故可以直接用等效电阻计算并联电路“内部”的总功率。 (对照前面:“对外等效”,对内不一定等效。)
2.1.3 电阻的串并联 要求:弄清楚串、并联的概念。 计算举例: 例1.
4 º 2
3 Req = 4∥(2+3∥6) = 2

电工学(第七版)上册秦曾煌第二章

电工学(第七版)上册秦曾煌第二章
章目录 上一页 下一页 返回 退出
(3)由计算可知,本例中理想电压源与理想电流源 都是电源,发出的功率分别是:
PU1 = U1IU1 = 10×6 = 60W
PIS = UISIS = 10×2 = 20W 各个电阻所消耗的功率分别是:
PR = RI 2 = 1×62 = 36W
PR1
=
R1
I
2 R1
=
1×(-4)2
=
16W
PR2 = R2 IS2 = 2 ×22 = 8W
PR3
=
R3
I
R
2 3
=
5 ×22
=
20W
两者平衡:
(60 + 20) W = (36 + 16 + 8 + 20)W
80W = 80W
P49 2.3.4 P75 2.3.6-7
章目录 上一页 下一页 返回 退出
2.4 支路电流法
(b) I U 20V 2 mA R 10kΩ
跳转
2.1.3 电阻混连电路的计算
例1:计算图示电路中a、b间的等效电阻Rab。
8
8 a
4
4
7
6 3
b 8
10 10
(a)
(b)
解: (a) Rab 8 // 8 6 // 3 6
(b) Rab 4 // 4 10 //10// 7 3.5
支路电流法:以支路电流为未知量、应用基尔霍夫
定律(KCL、KVL)列方程组求解。
I1
a
I2
R1
R2
E1
I3 R3
3
E2
1
2
对上图电路
b
支路数:b =3 结点数:n = 2 回路数 = 3 单孔回路(网孔) = 2

电路分析基础第二章

电路分析基础第二章

- R2il1+ (R2 +R3) il2 =uS2

R11=R1+R2 — 回路1的自电阻。等于回路1中所有电阻之和。 R22=R2+R3 — 回路2的自电阻。等于回路2中所有电阻之和。
自电阻总为正。 R12= R21= –R2 — 回路1、回路2之间的互电阻。 当两个回路电流流过相关支路方向相同时,互电阻取正 号;否则为负号。
(2) 列 KVL 方程
(R1+R2)Ia
-R2Ib
= US1- US2
-R2Ia + (R2+R3)Ib
- R3Ic = US2
-R3Ib + (R3+R4)Ic = -US4
对称阵,且 互电阻为负
(3) 求解回路电流方程,得 Ia , Ib , Ic
(4) 求各支路电流: I1=Ia , I2=Ib-Ia , I3=Ic-Ib , I4=-Ic
0 : 无关
特例:不含受控源的线性网络 Rjk=Rkj , 系数矩阵为对称阵。 (平面电路, Rjk均为负(当回路电流均取顺(或逆)时针方向))
回路法的一般步骤: (1) 选定l=b-(n-1)个独立回路,并确定其绕行方向; (2) 对l个独立回路,以回路电流为未知量,列写其 KVL方程; (3) 求解上述方程,得到l个回路电流; (4) 求各支路电流(用回路电流表示);
-Ib+3Ic=3U2
增补方程: ② U2=3(Ib-Ia)
4Ia-3Ib=2
解得 Ia=1.19A
受控电压源
③ -12Ia+15Ib-Ic=0 9Ia-10Ib+3Ic=0
Ib=0.92A Ic=-0.51A
看作独立电 压源列方程

精品文档-电路基础(第三版)(王松林)-第2章

精品文档-电路基础(第三版)(王松林)-第2章

u1 u3 u2 0 u2 u5 u4 0 u3 u6 u5 0
(2.2-2)
第 2 章 电阻电路分析
各支路电流和电压的伏安关系方程(简称为支路方程)
u1 R1i1 ri2 u2 R2i2
uu34
R3i3 R4i4 uS 4
u5 R5i5 u6 R6 (i6 iS 6 ) R6i6 R6iS 6
2.1 2.1.1
当仅研究电路中各元件的相互连接关系时,一个二端 元件可用一条线段来表示,称为支路; 各支路的连接点画 为黑点,称为节点(或结点)。
第 2 章 电阻电路分析
图G是节点和支路(图论中分别称为顶点和边) 每条支路的两端都必须连接到相应的节点上。移去一条支路并 不把它相应的节点移去; 而移去一个节点,则应当把与该节点 相连的全部支路都同时移去。因此,图中不能有不与节点相连 的支路,但可以有孤立的节点,如图2.1-1(a)所示。全部节点 都被支路所连通的图称为连通图,否则称为非连通图。图2.11(a)是非连通图,它由相互分离的四个部分组成,称其分离度 ρ=4; 图2.1-1(b)是连通图,其分离度ρ=1。我们主要关心的 是连通图。
第 2 章 电阻电路分析
图 2.1-1 连通图与非连通图
第 2 章 电阻电路分析
全部支路都标有方向的图称为有向图(如图2.1-1(b)),
如果有一个图G,从图G中去掉某些支路和某些节点所形 成的图H称为图G的子图。
显然,子图H的所有支路和节点都包含在图G中。因此, 子图可以这样定义: 包含在图G内的图H称为图G的子图。例 如,图2.1-2(b)和(c)都是2.1.2(a)中图G
KVL 可列出回路电压方程(支路电压与回路方向一致取 “+”号,支路电压与回路方向相反取“-”号):
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6A E2 10A 90V 省略电源, 交代电位
c
20
5 6
d +90V
+140V
例2:电路如下图所示,(1) 零电位参考点在哪里? 画电路图表示出来。(2) 当电位器RP的滑动触点向 下滑动时,A、B两点的电位增高了还是降低了? 解: 12V – +12V A RP B R1 I R1 A RP B R2 – 12V 零电位参考点 去哪儿了? 电路简化时, 简没了。

1 R2
两电阻并联时的分流公式: I
I1 R2 R1 R2 I I2 R1 R1 R2 I
+ U –
R
注意分流公式的特点
例1 电路如图所示,已知R1=6, R2=15,
R3=R4=5。试求ab两端和cd两端的等效电阻。
Rab=R1+R2//(R3+R4) Rcd=R3//(R2+R4)
I A ( R1 R 4 R 3 ) I B R 4 U 0 I A R4 I B (R2 R4 ) E U 0
2.6 结点电压分析法
本节的要求:会列写结点电压法的 独立方程
结点电压的概念 任选电路中某一结点为零电位参考点(用 表示), 其他各结点对参考点的电压,称为结点电压。 结点电压的参考方向从各结点指向参考结点,即以各 结点为参考正极,参考点为参考负极。 这是默认的 取法,以后 不再声明了
2 2 0 L 0 L L 2 0 L S 4 S 3 L
Pm ax2
US 8 R0
2
3

0
L
0
L

0
4
R0 得唯一极大值点为RL=R0 ,最大功率
Pm a x
1 US 4 R0
2.3 电位
在电路的分析与计算时,常常要用到电位的概念。 电压是两点电位之差,它只能说明一点的电位高, 另一点的电位低,并不能知道某一点的电位究竟为 多少。在很多情况下,我们需要知道某点的电位。 利用电位的概念,还可以简化电路图,也可使计 算更为简单。在电子电路中,为简化电路,一般不 画出直流电源,而只标出各点的电位值。
例1:求图示电路 中各点的电位:Va、 4A E1 Vb、Vc、Vd 。 6 140V 解: 设 a为参考点, 即Va=0V Vb=Uba= –10×6= 60V Vc=Uca = 4×20 = 80 V Vd =Uda= 6×5 = 30 V Uab = 10×6 = 60 V Ucb = E1 = 140 V Udb = E2 = 90 V
支路电流法:以支路电流为未知量、应用KCL和 KVL列方程组进行求解的方法。 I1 I2 a
E1 R1 R2

I3
b
R3

E2
I1、I2、I3三个未知数,如何求出? 可列出3个关于I1、I2、I3的独立方程 然后求之。
步骤: ① 选取各未知支路电流的参考方向; ② 对结点列写KCL 方程;
I1 E1 R1 1
a
I2 R2
I3
b
R3
2
方法之一:每列一个KVL方程, 保证至少有一个新支路 方法之二:对网孔列写KVL方程
建议大家用此法 I1 E1 R1 1 a I2 R2 对结点 a: I1+I2–I3=0 对回路1: I1 R1 +I3 R3=E1 E2 对回路2: I2 R2+I3 R3=E2
(3) 联立解出 IG 说起来容易,
因支路数 b=6, 所以要列6个方程。
做起来难呀!
支路电流法: 列方程容易,
解方程难呀!
2.5 网孔电流分析法
1.网孔电流法
基本思想 为减少未知量(方程)的个数,假想每个回 路中有一个回路电流。各支路电流可用回路电 流的线性组合表示,来求得电路的解。
假想的网孔电流与支路电流有以下的关系: i1 = i i1 i4 = ii2– ii1 i2 = ii2 i5 = ii1 + ii3 i3 = ii2 + ii3 i6 = ii3
电位:电路中某点至参考点的电压,记为“VX” 。 通常设参考点的电位为零。 你们的师兄、师 某点电位为正,说明该点电位比参考点高; 姐经常在此犯错 某点电位为负,说明该点电位比参考点低。 误! 电压与电位的关系:
U ab V a V b
b点电位
a、b之间的电压
a点电位
U ab V a V b
用网孔电流替代支路电流列出各网孔电压方程: 网孔① R1ii1+ R4(ii1 –ii2 )+ R5(ii1 + ii3)= -uS1 网孔② R2ii2 + R4(ii2 –ii1)+ R3(ii2 + ii3)= uS2–uS3 网孔③ R6ii3 + R3(ii2 + ii3)+ R5(ii1 + ii3)= - uS3 网孔的自电阻 将网孔电压方程进行整理为: 网孔① (R1 + R4 + R5 )ii1 – R4ii2 + R5ii3 = -uS1 网孔② –R4ii1 +(R2 + R3+ R4)ii2 + R3ii3 = uS2 – uS3 网孔③ R5ii1 + R3ii2 +(R3 + R5 + R6)ii3 = - uS3 网孔的互电阻
U1 R1 R1 R2

U
U2
R2 R1 R2
U
+ U –
R
注意分压公式的特点
2. 电阻的并联
并联的概念
特点: (1) 各电阻联接在两个公共的结点之间; (2)各电阻两端的电压相同。
2个电阻的并联 I 等效电阻的倒数等于各电阻倒数之和: +I I
1 2
U –
R1 R2
1 R

1 R1
网孔电流法
以沿网孔连续流动的假想电流为未知量列 写电路方程分析电路的方法称网孔电流法。它仅 适用于平面电路。
可以画在一个平面上而不使任何两条支路交叉 的电路叫平面电路。
_ E
+
_ E +
_ E
+
i1 = i i1
i3 = ii2 + ii3 i5 = ii1 + ii3
i2 = ii2
i4 = ii2– ii1 i6 = ii3
小结
网孔的自电阻等于该网孔所有支路的电阻之和,总为 正值。
互电阻为两个网孔共有的电阻之和。若两个网孔电流 的流向相同,取正;否则取负。 若网孔电流均为顺时针(或逆时针),则互电阻为负值。 当网孔电流从电压源的“ + ”端流出时,该电压源前 取“ + ”号;否则取“ - ”号。
练习1:列写网孔方程。
R1 + E1 - R4 E3 - + R5 IC R6 - E4 + R8 R7 IA I3 R 3 IB E2 - I1 I2 R2 +
网孔A 网孔B 网孔C
( R1 R 3 R 4 R 5 ) I A R 3 I B ( R 4 R 5 ) I C E 1 E 3
I1 R 1 4 0Ω Is 1A IA I3 I2 R 2 2 0Ω R3 3 0Ω IB -
+ E 4 0V
IA IS I A R3 I B ( R2 R3 ) E 0
练习3:求图中流过电阻R3的电流I3。设Is为1A。
I1 R1 40Ω I3 R3 30Ω IA Is I2
第2章 电阻电路的一般分析方法
2.1 电阻的串联与并联
本节的要求:简单复习回顾电阻 串、并联的有关结论
1. 电阻的串联
串联的概念
特点: 1)各电阻一个接一个地顺序相联;
2)各电阻中通过同一电流。
2个电阻串联
I + U + U1 R1 – + U2 R 2 – I
等效电阻等于各电阻之和: R =R1+R2 两电阻串联时的分压公式:
将线性有源二端网络用戴维宁或诺顿等效电路代替
a 有源 二端 网络 b R0 + US E b RL IS R0 RL I a I a
b
U
RL R0 RL
U S
I
US R0 RL
U
RL R0 RL
U S
I
US R0 RL
二端网络传递给负载的功率(负载吸收的功率)
P UI RL ( Ro RL )
+ U 1A _
R2 20Ω IB
+ E _ 40V
IB IA IS
I A ( R1 R 3 ) U 0 I B R2 E U 0
练习4:列写网孔方程。
R1 40Ω R3 30Ω IA Is R2 20Ω IB
+ U 1A_
R4
+ E _ 40V
IB IA ISc20a5
d
6A E2 10A 90V
b 设 b为参考点,即Vb=0V Va = Uab=10×6 = 60 V Vc = Ucb = E1 = 140 V Vd = Udb =E2 = 90 V Uab = 10×6 = 60 V Ucb = E1 = 140 V Udb = E2 = 90 V
2
U S
2
当等效电源参数确定时,负载获得的功率与负载电阻值呈二次函数关系, 最大功率传输定理:若(等效)电源参数确 存在一个极值,我们现在来确定这个极值点, 令 且
d P dRL
2 RL R0 2
定(US和R0),当且仅当负载电阻RL= R0时 ( R R ) 2( R R ) R (R R ) dP 负载从电源(电源传输给负载)获得最大功 U U 0 2 R ) dR R (R R ) 率 1 ( U S
相关文档
最新文档