北京市丰台区2016届高三下学期综合练习(一)数学(理)试卷

合集下载

2016年北京高考真题数学理(含解析)

2016年北京高考真题数学理(含解析)

2016年普通高等学校招生全国统一考试(北京卷)数学(理工类)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.(1)已知集合{}|2A x x =<,{}1,0,1,2,3B =-则A B =( ) (A){}0,1 (B ){}0,1,2 (C ){}1,0,1- (D){}1,0,1,2-(2) 若,x y 满足20,3,0,x y x y x -≤⎧⎪+≤⎨⎪≥⎩ 则2x y +的最大值为( )(A )0 (B )3 (C )4 (D)5(3)执行如图所示的程序框图,若输入的a 值为1,则输出的k 值为( )(A )1(B )2(C)3 (D)4(4)设a,b是向量,则“a b="是“+a b a b=-”的( )(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(5)已知,x y∈R,且0x y>>,则()(A)11x y->(B)sin sin0x y->(C)1122x y⎛⎫⎛⎫-<⎪ ⎪⎝⎭⎝⎭(D)ln ln0x y+>(6)某三棱锥的三视图如图所示,则三棱锥的体积为( )(A)16(B)13(C)12(D)1(7)将函数πsin23y x⎛⎫=-⎪⎝⎭图像上的点π,4P t⎛⎫⎪⎝⎭向左平移()0s s>个单位长度得到点P'.若P'位于函数sin2y x=的图像上,则( )(A)12t=,s的最小值为π6(B)3t,s的最小值为π6(C)12t=,s的最小值为π3(D)3t=,s的最小值为π3(8) 袋中装有偶数个球,其中红球,黑球各占一半,甲 ,乙,丙 是三个空盒,每次从袋中随意取出两个球,将期中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则放入丙盒,重复上述过程,直到袋中所有球都被放入盒中,则( ).(A )乙盒中黑球不多于丙盒中黑球 (B )乙盒中红球与丙盒中黑球一样多 (C )乙盒中的红球不多于丙盒中红球 (D )乙盒中黑球与丙盒中红球一样多二、填空题共6题,每小题5分,共30分.(9)设a ∈R ,若复数()()1i i a ++在复平面内对应的点位于实轴上,则a =__________. (10)在()612x -的展开式中,2x 的系数为__________.(11)在极坐标系中,直线cos sin 10ρθθ-=与圆2cos ρθ=交于,A B 两点,则AB = __________.(12)已知{}n a 为等差数列,n S 为其前n 项和.若1356,0a a a =+=,则6S =__________. (13)双曲线()222210,0x y a b a b-=>>的渐近线为正方形OABC 的边,OA OC 所在的直线,点B为该双曲线的焦点,若正方形OABC 的边长为2,则a =__________. (14)设函数()33,2,x x f x x ⎧-=⎨-⎩,,x a x a ≤>①若0a =,则()f x 的最大值__________.②若()f x 无最大值,则实数a 的取值范围是__________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15. (本小题13分)在ABC △中,222a c b +=+ (1) 求B ∠的大小.(2) cos A C +的最大值.16. (本小题13分)A ,B ,C 三班共有100名学生,为调查他们的体育锻炼情况,通过分层(Ⅰ)试估计班的学生人数;(Ⅱ)从A 班和C 班抽出的学生中,各随机选取一人,A 班选出的人记为甲,C 班选出的人记为乙,假设所有学生的锻炼时间相互独立,求该周甲的锻炼时间比乙的锻炼时间长的概率; (Ⅲ)再从A ,B ,C 三班中个随机抽取抽取一名学生,题目该周期的锻炼时间分别是7,9,8.25(单位:小时),这3个新数据与表格构成的新样本的平均数记为1μ,表格中的数据的平均数记为0μ,试判断0μ和1μ的大小.(结论不要求证明)17. (本小题14分)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,5AC CD ==.(Ⅰ)求证:PD ⊥平面PAB ;(Ⅱ)求直线PB 与平面PCD 所成角的正弦值;(Ⅲ)在棱PA 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP的值;若不存在,说明理由.(18)(本小题13分)设函数()a x f x xe bx -=+,曲线()y f x =在点()()2,2f 处的切线方程为()14y e x =-+. (1)求,a b 的值;(2)求()f x 的单调区间。

丰台区2016年高三一模试题(理科综合)与答案讲述

丰台区2016年高三一模试题(理科综合)与答案讲述

丰台区2016年高三年级第二学期综合练习(一)理科综合2016. 03 注意事项:1. 答题前,考生务必先将答题卡上的学校、年级、班级、姓名、准考证号用黑色字迹签字笔填写清楚,并 认真核对条形码上的准考证号、姓名,在答题卡的 条形码粘贴区”贴好条形码。

2. 本次考试所有答题均在答题卡上完成。

选择题必须使用 2B 铅笔以正确填涂方式将各小题对应选项涂黑, 如需改动,用橡皮擦除干净后再选涂其它选项。

非选择题必须使用标准黑色字迹签字笔书写,要求字体工整、字 迹清楚。

3•请严格按照答题卡上题号在相应答题区内作答,超出答题区域书写的答案无效,在试卷、草稿纸上答题 无效。

4•请保持答题卡卡面清洁,不要装订、不要折叠、不要破损。

可能用到的相对原子质量: H 1 C 12 N 14 O 16第一部分(选择题 共120 分)本部分共20小题,每小题6分,共120分。

在每小题列出的四个选项中,选出最符合题目要求的一项。

1.下列有关细胞的叙述,正确的是A. 叶肉细胞中叶绿体产生的[H ]可进入线粒体参与生成水B. 内质网、高尔基体、核糖体都能进行蛋白质的合成和加工C. 硝化细菌、酵母菌、颤藻的细胞都含有核糖体、 DNA 和RNAD. 抗原与抗体发生特异性结合的反应是在细胞质基质中完成的2.右图是由3个圆所构成的概念关系图。

符合这种概念关系的是 A. I 抗体、n 受体、川蛋白质 B . I 递质、n 载体、川信号分子C. I 排尿反射、n 体温调节、川负反馈调节D . I 生殖隔离、n 地理隔离、川物种形成3.某家系的遗传系谱图及部分个体基因型如图所示, A1、A2、A3是位于X 染色体上的等位基因。

下列推断正确的是A. II — 2基因型为X A1X A 2的概率是1/4B. III — 1基因型为X A 1 Y 的概率是1/2C. III — 2基因型为X A 1 X A 2的概率是1/8D. IV — 1基因型为X A 1 X A 1的概率是1/4 4.下列探究活动中,保证取样的随机性对于得出正确结论最为重要的是 A. 调查进行性肌营养不良在患者家系中的遗传方式 B. 探究融雪剂对于高速路边土壤小动物丰富度的影响 C. 获得分解纤维素效率最高的土壤微生物单个菌落 D. 通过根尖细胞计数比较细胞周期中各时期的时间长短5. 烟盲蝽在烟草叶片上生活,以斜纹夜蛾幼虫等为食。

2016届北京市丰台区高三下学期统一练习(一模)数学(理科)

2016届北京市丰台区高三下学期统一练习(一模)数学(理科)

2016届北京市丰台区高三下学期统一练习(一模)数学(理科)一、选择题(共8小题;共40分)1. 已知全集为,集合,那么集合等于A. B.C. D.2. 在下列函数中,是偶函数,且在内单调递增的是A. B. C. D.3. 对高速公路某段上汽车行驶速度进行抽样调查,画出如下频率分布直方图.根据直方图估计在此路段上汽车行驶速度的众数和行驶速度超过的概率A. B. C. D.4. 若数列满足,且与的等差中项是,则等于A. B. C. D.5. 已知直线,和平面,若,则“”是“”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件6. 有三对师徒共个人,站成一排照相,每对师徒相邻的站法共有A. B. C. D.7. 如图,已知三棱锥的底面是等腰直角三角形,且,侧面底面,.则这个三棱锥的三视图中标注的尺寸,,分别是A. ,,B. ,,C. ,,D. ,,8. 经济学家在研究供求关系时,一般用纵轴表示产品价格(自变量),而用横轴来表示产品数量(因变量).某类产品的市场供求关系在不受外界因素(如政府限制最高价格等)的影响下,市场会自发调解供求关系:当产品价格低于均衡价格时,需求量大于供应量,价格会上升为;当产品价格高于均衡价格时,供应量大于需求量,价格又会下降,价格如此波动下去,产品价格将会逐渐靠进均衡价格.能正确表示上述供求关系的图形是A. B.C. D.二、填空题(共6小题;共30分)9. 已知双曲线的一条渐近线为,那么双曲线的离心率为______.10. 如图,为的直径,且,延长与在点处的切线交于点,若,则 ______.11. 在中,角,,的对边分别是,,,若,则______.12. 在梯形中,,,为中点,若,则______.13. 已知,满足(为常数),若最大值为,则 ______14. 已知函数若,则的取值范围是______.三、解答题(共6小题;共78分)15. 已知函数.(1)求的最小正周期;(2)当时,求函数的单调递减区间.16. 从某病毒爆发的疫区返回本市若干人,为了迅速甄别是否有人感染病毒,对这些人抽血,并将血样分成组,每组血样混合在一起进行化验.(1)若这些人中有人感染了病毒.①求恰好化验次时,能够查出含有病毒血样组的概率;②设确定出含有病毒血样组的化验次数为,求.(2)如果这些人中有人携带病毒,设确定出全部含有病毒血样组的次数的均值,请指出⑴②中与的大小关系.(只写结论,不需说明理由)17. 如图,在五面体中,四边形为菱形,且,对角线与相交于;平面,.(1)求证:;(2)求直线与平面所成角的正弦值.18. 已知函数.(1)求曲线在点处的切线方程;(2)求证:;(3)若在区间上恒成立,求的最小值.19. 已知椭圆的离心率为,短半轴长为.(1)求椭圆的方程;(2)设椭圆的短轴端点分别为,,点是椭圆上异于点,的一动点,直线,分别与直线于,两点,以线段为直径作圆.①当点在轴左侧时,求圆半径的最小值;②问:是否存在一个圆心在轴上的定圆与圆相切?若存在,指出该定圆的圆心和半径,并证明你的结论;若不存在,说明理由.20. 已知数列是无穷数列,,(,是正整数),(1)若,,写出,的值;(2)已知数列中,求证:数列中有无穷项为;(3)已知数列中任何一项都不等于,记为较大者 .求证:数列是单调递减数列.答案第一部分1. C2. A3. D4. B5. A6. C7. A8. D第二部分9.10.11.12.13.14.第三部分15. (1).的最小正周期为.(2)当,时,函数单调递减,即的递减区间为:,,由,,所以的递减区间为:.16. (1)①恰好化验次时,就能够查出含有病毒血样的组为事件.恰好化验次时,就能够查出含有病毒血样的组的概率为.②确定出含有病毒血样组的次数为,则的可能取值为,,.,,.则的分布列为:<br>\(\[ \begin{array}{|c|c|c|c|}\hlineX&1&2&3\\ \hlineP&\dfrac 1 4&\dfrac 1 4&\dfrac 1 2\\ \hline\end{array} \]\)<br>所以:.(2)17. (1)因为四边形为菱形,所以,且面,面,所以 面且面面,所以.(2)因为面,所以,,又因为,以为坐标原点,,,分别为轴,轴,轴,建立空间直角坐标系.的中点,连,.易证平面.又因为,得出以下各点坐标:,,,,向量,向量,向量设面的法向量为:,得到,令时,,设与所成角为,直线与面所成角为.直线与平面所成角的正弦值为.18. (1)设切线的斜率为,因为,切点为.切线方程为,化简得:.(2)要证:只需证明:在恒成立,当时,,在上单调递减;当时,,在上单调递增;当时,在恒成立,所以.(3)要使:在区间恒成立,等价于:在恒成立,等价于:在恒成立,因为①当时,,所以不满足题意,②当时,令,则或(舍).所以时,在上单调递减;时,在上单调递增;当时,当时,满足题意,所以,得到的最小值为.19. (1)因为的离心率为,短半轴长为.所以,得到,所以椭圆的方程为.(2)①设,,,所以直线的方程为:令,得到,同理得到,得到,所以,圆半径,当时,圆半径的最小值为.②当在左端点时,圆的方程为:,当在右端点时,设,,,所以直线的方程为:,令,得到,同理得到,圆的方程为:,易知与定圆相切,半径,由前一问知圆的半径因为,,圆的圆心坐标为,圆心距当时,,此时定圆与圆内切;当时,,此时定圆与圆外切;存在一个圆心在轴上的定圆与圆相切,该定圆的圆心为和半径.(注:存在另一个圆心在轴上的定圆与圆相切,该定圆的圆心为和半径.)20. (1),(2),假设,①当时,依题意有②当时,依题意有,③当时,依题意有,,,,由以上过程可知:若,在无穷数列中,第项后总存在数值为的项,以此类推,数列中有无穷项为.(3)证明:由条件可知,因为中任何一项不等于,所以.①若,则.因为,所以.若,则,于是;若,则,于是;若,则,于题意不符;所以,即.②若,则.因为,所以;因为,所以;所以,即.综上所述,对于一切正整数,总有,所以数列是单调递减数列.。

北京丰台区2016-2017高三期末数学(理)试卷

北京丰台区2016-2017高三期末数学(理)试卷

丰台区 2016~2017 学年度第一学期期末练习高三数学(理科)2017.01(本试卷满分共 150 分,考试时间120分钟)注意事项:1.答题前,考生务必先将答题卡上的学校、年级、班级、姓名、准考证号用黑色字迹签字笔填写清楚,并认真核对条形码上的准考证号、姓名,在答题卡的“条形码粘贴区”贴好条形码. 2.本次考试所有答题均在答题卡上完成.选择题必须使用 2B 铅笔以正确填涂方式将各小题对应选项涂黑,如需改动,用橡皮擦除干净后再选涂其它选项.非选择题必须使用标准黑色字迹签字笔书写,要求字体工整、字迹清楚.3.请严格按照答题卡上题号在相应答题区内作答,超出答题区域书写的答案无效,在试卷、草稿纸上答题无效.4.请保持答题卡卡面清洁,不要装订、不要折叠、不要破损.第一部分 (选择题 共 40 分)一、选择题共 8 小题,每小题 5 分,共 40 分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合 A x Zx 2x 1 0,B 2 1,,那么A B 等于( ) A . 2 1 0 1, ,, B . 2 1 0, ,C .2 1,D .12.如果a b0 ,那么下列不等式一定成立的是( )abA . a bB . 1a b 1C .1212D .ln aln b3.如果平面向量a 2 0, ,b 1 1,,那么下列结论中正确的是( )A .a bB .a b2 2C .a b bD .a b ∥4.已知直线m ,n 和平面,如果n,那么“m n ”是“m”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 5.在等比数列a n 中,a 1 3,a a a 1239,则a 4a a 56等于( ) A .9B .72C .9 或72D .9 或726.如果函数 f xsinx 3cosx 的两个相邻零点间的距离为2 ,那么 f1f2f3 f 9的值为( ) A .1B . 1CD . 37.中国历法推测遵循以测为辅、以算为主的原则.例如《周髀算经》和《易经》里对二十四节气的晷 (guĭ)影长的记录中,冬至和夏至的晷影长是实测得到的,其它节气的晷影长则是按照等差数列的规律计算得出的.下表为《周髀算经》对二十四节气晷影长的记录,其中115.1寸表示115寸1 分( 1 寸=10 分). 135.0125. 115.1 105.2 95.3 85.4 75.5 66.5 55.6 45.7 35.8 25.9蛰的晷影长应为( ) A .72.4 寸B .81.4 寸C .82.0 寸D .91.6 寸8.对于任何集合S ,用S 表示集合S 中的元素个数,用n S 表示集合S 的子集个数.若集合A B ,满足条件:A 2017,且n A n B n AB ,则 A B 等于( ) A .2017B .2016C .2015D .2014 第二部分(非选择题 共 110 分)二、填空题共 6 小题,每小题 5 分,共 30 分. 2i9.设i 虚数单位,则复数 __________.1i 10.设椭圆C :2x2y21a 0的左、右焦点分别为F F 1,2,点P 在椭圆C 上,如果 PF 1PF 2 10, a那么椭圆C 的离心率为___________.6 11.在1x x2的展开式中,常数项是__________(用数字作答).x y2 0≤ , 12.若x y ,满足2x y2 0≥ ,即z2x y的最大值为__________.y ≥0,13.如图,边长为 2 的正三角形ABC 放置在平面直角坐标系xOy 中,AC 在x 轴上,顶点 B 与y 轴上的定点 P 重合.将正三角形ABC 沿x 轴正方向滚动,即先以顶点C 为旋转中心顺时针旋转,当顶点 B 落在x 轴上时,再以顶点 B 为旋转中心顺时针旋转,如此继续.当△ABC 滚动到△ABC 1 1 1 时,顶点 B 运动轨迹的长度为_____________;在滚动过程中,OB OP 的最大值为____________.14.已知 f x 为偶函数,且 x ≥0 时, f xxx(x表示不超过 x 的最大整数).设g x f xkx k kR,当k 1时,函数g x有___________个零点;若函数g x有三个不同的零点,则k 的取值范围是__________.三、解答题共 6 小题,共 80 分.解答应写出文字说明,演算步骤或证明过程.15.(本小题共 13 分) (Ⅰ)求角C 的大小; (Ⅱ)求边 AB 的长.16.(本小题共 14 分)如图所示的多面体中,面 ABCD 是边长为 2 的正方形,平面 PDCQ 平面 ABCD ,PD DC E F G,,,分别为棱BC AD P A , , 的中点.如图,在 ABC △ 中, D 是 BC 上的点,2 3 CD AC AD, , sinB .(Ⅰ)求证:EG∥平面PDCQ;617.(本小题共14 分)数独游戏越来越受人们喜爱,今年某地区科技馆组织数独比赛,该区甲、乙、丙、丁四所学校的学生积极参赛,参赛学生的人数如下表所示:30 名参加问卷调查.(Ⅰ)问甲、乙、丙、丁四所中学各抽取多少名学生?(Ⅱ)从参加问卷调查的30名学生中随机抽取2 名,求这2 名学生来自同一所中学的概率;(Ⅲ)在参加问卷调查的30名学生中,从来自甲、丙两所中学的学生中随机抽取2 名,用X 表示抽得甲中学的学生人数,求X 的分布列.18.(本小题共13 分)已知函数f x xe x 与函数g x 1 x2 ax的图象在点0 0,处有相同的切线.2(Ⅰ)求a的值;(Ⅱ)设h x f x bg x b R,求函数h x在 1 2,上的最小值.19.(本小题共13分)已知抛物线C:y2 2px p0的焦点为F ,且经过点A 1 2,,过点F 的直线与抛物线C交于P Q,两点.(Ⅰ)求抛物线C的方程;p(Ⅱ)O为坐标原点,直线OP OQ,与直线x分别交于S T,两点,试判断FS FT是否为定2 值?若是,求出这个定值;若不是,请说明理由.(Ⅱ)已知二面角PBFC P ABCD的体积.20.(本小题共 13 分)已知无穷数列c n满足 c n11 1 2c n . (Ⅰ)若c,写出数列c n的前 5 项;(Ⅱ)对于任意0≤c 1≤1,是否存在实数M ,使数列c n中的所有项均不大于M ?若存在,求M的最小值;若不存在,请说明理由. (Ⅲ)当c 1为有理数,且c 1≥0时,若数列c n自某项后是周期数列,写出c 1的最大值.(直接写出结果,无需证明)(考生务必交答案答在答题卡上,在试卷上作答无效)。

2016年北京丰台高中三年级二模理科数学试卷与答案

2016年北京丰台高中三年级二模理科数学试卷与答案


(可以简单直观解释,也可以具体:
设 4 类案件的均值为 X ,则 X
2
2
S22 ( x1 x) ( x2 x) ( x3
4
3x x x.
4
2
2
x) ( x4 x)
( x1 x )2 (x 2 x)2 ( x3 x )2 ( x x) 2
4
( x1 x )2 ( x2 x )2 ( x3 x )2
4 ( x1 x) 2 ( x2 x)2 ( x3 x )2
______.
13. 安排 6 志愿者去做 3 项不同的工作,每项工作需要 2 人,由于工作需要, A, B 二人必须做同
一项工作, C, D 二人不能做同一项工作,那么不同的安排方案有
_________种.
14. 已知 x 1,x 3 是函数 f ( x) sin( x
)(
0) 两个相邻的两个极值点, 且 f ( x) 在 x
3
S12 )
17. (本小题共 14 分)
P
D
C
D
C
E
A
B
图1
A
图2
B
解:
(Ⅰ)在图 1 中,因为 AB∥ CD, AB=CD,
所以 ABCD为平行四边形,所以 AD∥ BC,
O
因为∠ B=90 , 所以 AD⊥ BE,当三角形 EDA沿 AD折起时, AD⊥ AB, AD⊥ AE,
即: AD⊥ AB, AD⊥ PA,
x , 方差为 S12 ,如果表中 n x ,
表中全部( 4 类)案件的判决案件数的方差为 S22 ,试判断 S12 与 S22 的大小关系,并写出你的
结论(结论不要求证明) .

北京市丰台区2016届高三下学期综合练习(一)理综试卷.pdf

北京市丰台区2016届高三下学期综合练习(一)理综试卷.pdf

,再恢复到处理前 ⑥下降 ⑦升高
30(18分)
观察某转基因抗虫棉品种多代种植的性状变化,发现其中的矮变异株。经过连续自交获得矮性状表现稳定的突变体
。用正常植株与矮突变体进行杂交,F2结果见表1。在苗期用赤霉素(GA3)处理,并测量其株高,结果见表2。
请回答问题:
利用
的方法将苏云金菌的杀虫晶体蛋白质基因导入普通植株,获得转基因抗虫品种。为确认矮突变体是否
黄花蒿叶青蒿素的基本步骤为:
元素确定→测定相对分子质量→波谱分析确定结构①、②的反应类型分别为还原反应、酯化反应
双氢青蒿素在水中的溶解性大于青蒿素
双氢青蒿素与蒿甲醚组成上相差-CH2-,二者互为同系物
.右图是利用微生物燃料电池处理工业含酚废水的原理示意图,下列说法不正确的是
A.该装置可将化学能转化为电能
反应Ⅰ:CO2(g)+3H2(g) CH3OH(g)+H2O(g) ΔH1=49.1kJ/mol
反应Ⅱ:CO2 (g)+H2(g) CO(g)+H2O(g) ΔH2
反应Ⅲ:CO(g)+2H2(g) CH3OH(g) ΔH3=90.0kJ/mol
① ΔH2=。
② 在下图中画出,不同温度下(T1>T2),反应Ⅱ中CO2的平衡转化率随压强变化的关系图(请在图上标注温度
13.关于分子间作用力,下列说法正确的是 )
A.分子间只存在引力
B.分子间只存在斥力
C.分子间同时存在引力和斥力
D.分子间小时,只存在,分子间时,只存在
14. 一个氘核和一个氚核经过核反应后生成氦核和中子,同时放出一个γ光子.已知氘核、氚核、中子、氦核的质
量分别为m1、m2、m3、m4,普朗克常量为h,真空中的光速为c.下列说法正确的是 )

2016北京市丰台区高三(一模)数学(理)

2016北京市丰台区高三(一模)数学(理)

2016北京市丰台区高三(一模)数 学(理) 2016.3第一部分 (选择题 共40分)一.选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知全集U =R ,集合{}|23A x x x =≤-≥或,{}|14B x x x =<->或,那么集合()U C A B I 等于( )(A ){}|24x x -<≤ (B ){}|23x x -<<(C ){}|21x x -<<-(D ){}|2134x x x 或-<<-<<2.在下列函数中,是偶函数,且在0+∞(,)内单调递增的是 (A )||2x y = (B )21y x =(C )|lg |y x = (D )cos y x =3.对高速公路某段上汽车行驶速度进行抽样调查,画出如下频率分布直方图.根据直方图估计在此路段上汽车行驶速度的众数和行驶速度超过80km/h 的概率(A ) 75,0.25 (B )80,0.35 (C )77.5,0.25 (D )77.5,0.354. 若数列{}n a 满足*12(0,)N n n n a a a n +=刮,且2a 与4a 的等差中项是5,则12n a a a +++L 等于 (A )2n(B )21n- (C )12n - (D )121n --5. 已知直线m ,n 和平面α,若n ⊥α,则“m ⊂α”是“n ⊥m ”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件6. 有三对师徒共6个人,站成一排照相,每对师徒相邻的站法共有 (A ) 72 (B )54 (C ) 48 (D ) 87.如图,已知三棱锥P ABC -的底面是等腰直角三角形,且∠ACB =90O,侧面PAB ⊥底面ABC ,AB =PA =PB =4.则这个三棱锥的三视图中标注的尺寸x ,y ,z 分别是(A)(B )4,2,侧视图(D)23,2,228. 经济学家在研究供求关系时,一般用纵轴表示产品价格(自变量),而用横轴来表示产品数量(因变量).某类产品的市场供求关系在不受外界因素(如政府限制最高价格等)的影响下,市场会自发调解供求关系:当产品价格P1低于均衡价格P0时,需求量大于供应量,价格会上升为P2;当产品价格P2高于均衡价格P0时,供应量大于需求量,价格又会下降,价格如此波动下去,产品价格将会逐渐靠进均衡价格P0.能正确表示上述供求关系的图形是(A)(B)(C)(D)第二部分(非选择题共110分)一、填空题共6小题,每小题5分,共30分.9.已知双曲线22221(0,0)x ya ba b-=>>的一条渐近线为3y x=,那么双曲线的离心率为_________.10. 如图,BC为⊙O的直径,且BC=6,延长CB与⊙O在点D处的切线交于点A,若AD=4,则AB=________.11. 在ABC∆中角A,B,C的对边分别是a,b,c,若3sin cos cosb Ac A a C=+,则sin A=________.12. 在梯形ABCD中,//AB CD,2AB CD=,E为BC中点,若AE x AB y ADu u u r u u u r u u u r=+,则x+y=_______.CBA DO 21单价需求曲线供应曲线21单价需求曲线供应曲线13. 已知,x y 满足0,,.x y x x y k ≥⎧⎪≤⎨⎪+≤⎩(k 为常数),若2z x y =+最大值为8,则k =________.14.已知函数1(1),()1).x x f x x +≤⎧⎪=>若()(1)f x f x >+,则x 的取值范围是______.二、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(本小题共13分)已知函数(=cos (cos )f x x x x )+ . (Ⅰ)求()f x 的最小正周期;(Ⅱ)当π[0,]2x ∈ 时,求函数(f x )的单调递减区间.16.(本小题共13分)从某病毒爆发的疫区返回本市若干人,为了迅速甄别是否有人感染病毒,对这些人抽血,并将血样分成4组,每组血样混合在一起进行化验. (Ⅰ)若这些人中有1人感染了病毒.①求恰好化验2次时,能够查出含有病毒血样组的概率; ②设确定出含有病毒血样组的化验次数为X ,求E (X ).(Ⅱ)如果这些人中有2人携带病毒,设确定出全部含有病毒血样组的次数Y 的均值E (Y ),请指出(Ⅰ)②中E (X )与E (Y )的大小关系.(只写结论,不需说明理由)如图,在五面体ABCDEF 中,四边形ABCD 为菱形,且∠BAD =60°,对角线AC 与BD 相交于O ;OF ⊥平面ABCD ,BC =CE =DE =2EF =2.(Ⅰ)求证: EF //BC ;(Ⅱ)求直线DE 与平面BCFE 所成角的正弦值.18.(本小题共14分) 已知函数()ln f x x x =.(Ⅰ)求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)求证:()1f x x ≥-; (Ⅲ)若22()(0)f x ax a a≥+≠在区间(0,)+∞上恒成立,求a 的最小值.已知椭圆G1.(Ⅰ)求椭圆G 的方程;(Ⅱ)设椭圆G 的短轴端点分别为,A B ,点P 是椭圆G 上异于点,A B 的一动点,直线,PA PB 分别与直线4x =于,M N 两点,以线段MN 为直径作圆C . ① 当点P 在y 轴左侧时,求圆C 半径的最小值;② 问:是否存在一个圆心在x 轴上的定圆与圆C 相切?若存在,指出该定圆的圆心和半径,并证明你的结论;若不存在,说明理由.20.(本小题共13分)已知数列{}n a 是无穷数列,12=,a a a b =(,a b 是正整数),11111(1),=(1)n nn n n n n nn a a a a a a aa a --+--⎧>⎪⎪⎨⎪≤⎪⎩.(Ⅰ)若122,=1a a =,写出45,a a 的值;(Ⅱ)已知数列{}n a 中*1)k a k N (=∈,求证:数列{}n a 中有无穷项为1; (Ⅲ)已知数列{}n a 中任何一项都不等于1,记212=max{,}(1,2,3,;n n n b a a n L -=max{,}m n 为,m n 较大者).求证:数列{}n b 是单调递减数列.数学试题答案一、选择题:本大题共8小题,每小题5分,共40分.9. 2 10. 2 11.14. (0,1] 三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.解:(Ⅰ) 2(cos cos f x x x x + 1cos2(=sin 222xf x x )++ 1cos2(2)2x f x x )++1(=sin(2)62f x x )π++22||2T πππω===()f x 的最小正周期为π. ----------------------------------7分(Ⅱ)当3222,262k x k k Z πππππ+≤+≤+∈ 时,函数(f x )单调递减, 即()f x 的递减区间为:2[,],63k k k Z ππππ++∈,由2[0,][,]263k k I πππππ++=[,]62ππ+,k Z ∈所以(f x )的递减区间为:[,]62ππ. ------------------------------------13分16. 解:(Ⅰ)①恰好化验2次时,就能够查出含有病毒血样的组为事件A. 1()4P A =恰好化验2次时,就能够查出含有病毒血样的组的概率为14.-----4分②确定出含有病毒血样组的次数为X,则X 的可能取值为1,2,3.1(1)4P X ==, 1(2)4P X ==,1(3)2P X ==. 则X 的分布列为:所以:E (X )=11191234424⨯+⨯+⨯=--------------------------------------11分 (Ⅱ) ()()E X E Y < ------------------------------------------------------------------13分 17. 解:(Ⅰ)因为四边形ABCD 为菱形所以AD ∥BC ,且BC ⊄面ADEF ,AD ⊂面ADEF所以BC ∥面ADEF 且面ADEF I 面BCEF EF =所以EF ∥BC . ----------------------------------------------------------6分 (Ⅱ)因为FO ⊥面ABCD 所以FO AO ⊥,FO OB ⊥ 又因为OB AO ⊥以O 为坐标原点,OA ,OB ,OF 分别为x 轴,y 轴,z 轴,建立空间直角坐标系,取CD 的中点M ,连,OM EM . 易证EM ⊥平面ABCD .又因为22BC CE DE EF ====,得出以下各点坐标:1(0,1,0),((0,1,0),(22B C D F E ---向量1(2DE u u u r =,向量(1,0)BC u u u r =-,向量(0,BF u u u r =- 设面BCFE 的法向量为:0000(,,)n x y z u u r=000,0n BC n BF u u u ru u ur ⎧⋅=⎪⎨⋅=⎪⎩得到000000y y ⎧-=⎪⎨-+=⎪⎩令0y =时0(n u u r=-设DF u u u r 与0n uu r 所成角为ϕ,直线DE 与面BCEF 所成角为θ.sin θ=|cos |ϕ=00||||||n DE n DE u u r u u u r uu r u u u r ⋅⋅1|((1)1|⨯-+=5 直线EF 与平面BCEF所成角的正弦值为5.--------------------------------------13分 18.设函数()ln f x x x =.(Ⅰ)求曲线()y f x =在点(1,(1))f 处的切线方程;(Ⅲ)若22()(0)f x ax a a≥+≠在区间(0,)+∞上恒成立,求a 的最小值. 解:(Ⅰ)设切线的斜率为k()ln 1f x x '=+ (1)ln111k f '==+=因为(1)1ln10f =⋅=,切点为(1,0).切线方程为01(1)y x -=⋅-,化简得:1y x =-.----------------------4分 (Ⅱ)要证:()1f x x ≥-只需证明:()ln 10g x x x x =-+≥在(0,)+∞恒成立, ()ln 11ln g x x x '=+-=当(0,1)x ∈时()0f x '<,()f x 在(0,1)上单调递减; 当(1,)x ∈+∞时()0f x '>,()f x 在(1,)+∞上单调递增; 当1x =时min ()(1)1ln1110g x g ==⋅-+=()ln 10g x x x x =-+≥在(0,)+∞恒成立所以()1f x x ≥-.----------------------------------------------------------------10分(Ⅲ)要使:22ln x x ax a ≥+在区间在(0,)+∞恒成立, 等价于:2ln x ax ax≥+在(0,)+∞恒成立,等价于:2()ln 0h x x ax ax=--≥在(0,)+∞恒成立 因为212()h x a x ax '=-+=2222a x ax ax-++=2212()()a x x a a ax -+- ①当0a >时,2(1)ln10h a a=--<,0a >不满足题意②当0a <时,令'()0h x =,则1x a =-或2x a=(舍).所以1(0,)x a ∈-时()0h x '<,()h x 在1(0,)a -上单调递减;1(,)x a ∈-+∞时()0h x '>,()h x 在1(,)a -+∞上单调递增;当1x a =-时min 11()()ln()12h x h a a =-=-++当1ln()30-+≥时,满足题意所以30e a -≤<,得到a 的最小值为 3e ------------------------------------14分19. 解:1.所以2221,2b ca abc =⎧⎪⎪=⎨⎪⎪=+⎩得到21,a b c ⎧=⎪=⎨⎪=⎩分(Ⅱ)① 设00(,)P x y ,(0,1),(0,1)A B - 所以直线PA 的方程为:0011y y x x --=令4x =,得到004(1)1M y y x -=+同理得到004(1)1N y y x +=-,得到08|||2|MN x =- 所以,圆C 半径004|1|(20)r x x =--≤< 当02x =-时,圆C 半径的最小值为3. -----------------------------------9分② 当P 在左端点时,圆C 的方程为:22(4)9x y -+= 当P 在右端点时,设(2,0)P ,(0,1),(0,1)A B - 所以直线PA 的方程为:112y x --=令4x =,得到1M y =-同理得到1N y =, 圆C 的方程为:22(4)1x y -+=,易知与定圆22(2)1x y -+=相切, 半径1R =由前一问知圆C 的半径0000041,204|1|41,02x x r x x x ⎧--≤<⎪⎪=-=⎨⎪-<≤⎪⎩ 因为004(1)1M y y x -=+,004(1)1N y y x +=-,圆C 的圆心坐标为004(4,)y x圆心距d =000004,2044||,02x x x x x ⎧--≤<⎪⎪=⎨⎪<≤⎪⎩ 当020x -?时,C 内切;当002x <?时,C 外切; 存在一个圆心在x 轴上的定圆与圆C 相切,该定圆的圆心为(2,0)和半径1R =.(注: 存在另一个圆心在x 轴上的定圆与圆C 相切,该定圆的圆心为(6,0)和半径1R =.得分相同) --------------------------------------------------------------14分20..解:(Ⅰ)452,1a a ==;-------------------------------------------------2分(Ⅱ)*1)k a k N (=∈,假设1k a m +=①当1m =时,依题意有231k k a a ++==⋅⋅⋅⋅⋅⋅= ②当1m >时,依题意有2k a m +=,31k a +=③当1m <时,依题意有21k a m +=,321k a m +=,41k a m +=,51k a m+=,61k a += 由以上过程可知:若*1)k a k N (=∈,在无穷数列{}n a 中,第k 项后总存在数值为1 的项,以此类推,数列{}n a 中有无穷项为1. -------------------------------6分(Ⅲ)证明:由条件可知1(1,2,3,)n a n >=L ,因为{}n a 中任何一项不等于1,所以+11,2,3,)n n a a n ≠=L (. ①若212n n a a ->,则21n n b a -=.因为212+12=n n na a a -,所以212+1n n a a ->. 若21221n n a a ->,则212+22122n n n n a a a a --=<,于是2-12+2n n a a >; 若21221n na a -<,则22222+222212121212n n n n n n n n n n na a a a a a a a a a a ----===⋅<<,于是2-12+2n n a a >;若21221n n a a -=,则2+21n a =,于题意不符; 所以212+12+2max{,}n n n a a a ->,即1n n b b +>. ②若212n n a a -<,则2n n b a =. 因为22+1=nn a a ,所以22+1n n a a >;2016北京市丰台区高三(一模)数学(理)11 / 11 11 / 11 因为22+22+1=n n n a a a ,所以22+2n n a a >; 所以22+12+2max{,}n n n a a a >,即1n n b b +>. 综上所述,对于一切正整数n ,总有1n n b b +>,所以数列{}n b 是单调递减数列.。

2016年高考数学(理)北京卷参考答案

2016年高考数学(理)北京卷参考答案

数学(理)(北京卷)参考答案第1页(共8页)绝密★考试结束前2016年普通高等学校招生全国统一考试数学(理)(北京卷)参考答案一、选择题(共8小题,每小题5分,共40分)(1)C (2)C (3)B (4)D (5)C(6)A(7)A(8)B二、填空题(共6小题,每小题5分,共30分) ( 9 )1-(10)60 (11)2(12)6 (13)2(14)2(,1)-∞-三、解答题(共6小题,共80分) (15)(共13分)解:(Ⅰ)由余弦定理及题设得所以222cos 2a c b B ac +-===又因为0πB <∠<, 所以π4B ∠=. (Ⅱ)由(Ⅰ)知3π4A C +=.cos A C+3πcos()4A A =+-()A A A =++A A =+ πsin()4A =+因为3(0,π)4A ∈,所以当π4A ∠=cos A C +取得最大值1.数学(理)(北京卷)参考答案第2页(共8页)(16)(共13分)解:(Ⅰ)由题意知,抽出的20名学生中,来自C 班的学生有8名.根据分层抽样方法,C 班的学生人估计为81004020⨯=人. (Ⅱ)在A 班中取到每个人的概率相同均为15设A 班中取到第i 个人事件为,1,2,3,4,5i A i = C 班中取到第j 个人事件为,1,2,3,4,5,6,7,8j C j =A 班中取到i j A C >的概率为i P所求事件为D则1234511111()55555P D P P P P P =++++ 12131313145858585858=⨯+⨯+⨯+⨯+⨯ 38=(Ⅲ)10μμ<.三组平均数分别为7,9,8.25,总均值08.2μ=但1μ中多加的三个数据7,9,8.25,平均值为8.08,比0μ小, 故拉低了平均值.数学(理)(北京卷)参考答案第3页(共8页)(17)(共14分)解:(Ⅰ)因为平面PAD ⊥平面ABCD ,所以AB ⊥平面PAD . 所以AB ⊥PD .又因为PA ⊥PD , 所以PD ⊥平面PAB .(Ⅱ)取AD 中点为O ,连结CO ,PO .因为PA PD =, 所以PO ⊥AD .又因为PO ⊂平面PAD ,平面PAD ⊥平面ABCD , 所以PO ⊥平面ABCD . 因为CO ⊂平面ABCD , 所以PO ⊥CO .因为CD AC ==所以CO ⊥AD .以O 为原点,如图建立空间直角坐标系O xyz -.由题意得 易知(001)P ,,,(110)B ,,,(010)D -,,,(200)C ,,, 则(111)PB =- ,,,(011)PD =-- ,,,(201)PC =- ,,,(210)CD =--,, 设n为平面PDC 的法向量,令00(,1)n x y = ,011,120n PD n n PC ⎧⋅=⎪⎛⎫⇒=-⎨ ⎪⎝⎭⋅=⎪⎩,,则PB 与平面PCD 夹角θ有数学(理)(北京卷)参考答案第4页(共8页)sin cos ,n PBn PB n PBθ⋅=<>===(Ⅲ)设存在M 点使得BM ∥平面PCD设AMAPλ=,()0,','M y z 由(Ⅱ)知()0,1,0A ,()0,0,1P ,()0,1,1AP =- ,()1,1,0B ,()0,'1,'AM y z =-有()0,1,AM AP M λλλ=⇒-所以()1,,BM λλ=--因为BM ∥平面PCD ,n为PCD 的法向量 所以0BM n ⋅=即102λλ-++=所以1=4λ所以综上,存在M 点,即当14AM AP =时,M 点即为所求.数学(理)(北京卷)参考答案第5页(共8页)(18)(共13分)解:(Ⅰ)()e a x f x x bx -=+所以()e e (1)e a x a x a x f x x b x b ---'=-+=-+因为曲线()y f x =在点(2,(2))f 处的切线方程为(e 1)4y x =-+ 所以(2)2(e 1)4f =-+,(2)e 1f '=- 即2(2)2e 22(e 1)4a f b -=+=-+①2(2)(12)e e 1a f b -'=-+=-②由①②解得:2a =,e b =(Ⅱ)由(Ⅰ)可知:2()e e x f x x x -=+,2()(1)e e x f x x -'=-+令2()(1)e x g x x -=-,所以222()e (1)e (2)e x x x g x x x ---'=---=-所以()g x 的最小值是22(2)(12)e 1g -=-=- 所以()f x '的最小值为(2)(2)e e 10f g '=+=-> 即()0f x '>对x ∀∈R 恒成立所以()f x 在(),-∞+∞上单调递增,无减区间.数学(理)(北京卷)参考答案第6页(共8页)(19)(共14分)解:(Ⅰ)由已知,112c ab a ==, 又222a b c =+,解得2,1,a b c ==所以椭圆的方程为2214x y +=. (Ⅱ)方法一:设椭圆上一点()00,P x y ,则220014x y +=. 直线PA :()0022y y x x =--,令0x =,得0022M y y x -=-. 所以00212y BM x =+- 直线PB :0011y y x x -=+,令0y =,得001N x x y -=-. 所以0021x AN y =+- 0000000000220000000000221122222214448422x y AN BM y x x y x y x y x y x y x y x y x y ⋅=+⋅+--+-+-=⋅--++--+=--+将220014x y +=代入上式得=4AN BM ⋅数学(理)(北京卷)参考答案第7页(共8页)故AN BM ⋅为定值.方法二:设椭圆上一点()2cos ,sin P θθ, 直线PA :()sin 22cos 2y x θθ=--,令0x =,得sin 1cos M y θθ=-. 所以sin cos 11cos BM θθθ+-=-直线PB :sin 112cos y x θθ-=+,令0y =,得2cos 1sin N x θθ=-.所以2sin 2cos 21sin AN θθθ+-=-2sin 2cos 2sin cos 11sin 1cos 22sin 2cos 2sin cos 21sin cos sin cos 4AN BM θθθθθθθθθθθθθθ+-+-⋅=⋅----+=--+=故AN BM ⋅为定值.数学(理)(北京卷)参考答案第8页(共8页)(20)(共13分)解:(Ⅰ)(){}25G A =,. (Ⅱ)因为存在1n a a >,设数列A 中第一个大于1a 的项为k a ,则1k i a a a >≥,其中21i k -≤≤,所以()k G A ∈,()G A ≠∅. (Ⅲ)设A 数列的所有“G 时刻”为12k i i i <<< ,对于第一个“G 时刻”1i ,有11i i a a a >≥,1231i i =- ,,,,则 111111i i i a a a a ---≤≤.对于第二个“G 时刻”()21i i >,有21i i i a a a >≥(2121i i =- ,,,).则212211i i i i a a a a ---≤≤.类似的321i i a a -≤,…,11k k i i a a --≤.于是,()()()()11221211k k k k k i i i i i i i i k a a a a a a a a a a ----+-++-+-=- ≥. 对于N a ,若()N G A ∈,则k i N a a =;若()N G A ∉,则k N i a a ≤,否则由⑵,知1k k i i N a a a + ,,,中存在“G 时刻”,与只有k 个“G 时刻”矛盾. 从而,11k i N k a a a a --≥≥,证毕.。

北京市丰台区高三数学下学期统一练习试题(一)文

北京市丰台区高三数学下学期统一练习试题(一)文

丰台区2015—2016学年度第二学期统一练习(一)高三数学(文科)第一部分 (选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知全集{}1,2,3,4,5,6,7,8U = ,集合{}2,3,5,6A = ,集合{}1,3,4,6,7B = ,则集合()U AB ð=(A ){}3,6 (B ){}2,5 (C ){}2,5,6 (D ){}2,3,5,6,8 2. 下列函数在其定义域上既是奇函数又是增函数的是(A )3y x = (B )1y x =-(C )tan y x = (D )(0),(0).x x y x x ≥⎧=⎨-<⎩3. 某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们每场比赛得分的情况用茎叶图表示,如图,则甲、乙两名运动员得分的中位数分别为(A ) 20、18 (B )13、19 (C )19、13 (D )18、204. 已知直线,m n 和平面α,m α⊄,n ∥a ,那么“n α⊂”是“m ∥α”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件5.已知双曲线的一个焦点F ,点P 在双曲线的一条渐近线上,点O 为双曲线的对称中心, 若△OFP 为等腰直角三角形,则双曲线的离心率为(A (B (C )2 (D 6. 已知等比数列{n a }中11a =,且4581258a a a a a a ++=++,那么5S 的值是(A )15 (B )31 (C )63 (D )647. 如图,已知三棱锥P ABC -的底面是等腰直角三角形,且∠ACB =90O,侧面PAB ⊥底面ABC ,AB =PA =PB =4.则这个三棱锥的三视图中标注的尺寸x ,y ,z 分别是(A)2 (B )4,2, (C),2 (D)8. 经济学家在研究供求关系时,一般用纵轴表示产品价格(自变量),用横轴表示产品数量(因变量).某类产品的市场供求关系在不受外界因素(如政府限制最高价格等)的影响下,市场会自发调解供求关系:当产品价格P 1低于均衡价格P 0时,则需求量大于供应量,价格会上升为P 2;当产品价格P 2高于均衡价格P 0时,则供应量大于需求量,价格又会下降,价格如此继续波动下去,产品价格将会逐渐靠近均衡价格P 0.能正确表示上述供求关系的图形是(A ) (B )(C ) (D )P P PP P B侧视图第二部分 (非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9.在锐角△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,若2s i n b a B =,则 ∠A =_________.10.已知△ABC 中,AB =4,AC =3,∠CAB=90o,则BA BC ⋅=___________.11.已知圆22:(1)(2)2C x y -+-=,则圆C 被动直线:20l kx y k -+-=所截得的弦长__________.12.已知1x >,则函数11y x x =+-的最小值为________. 13. 已知,x y 满足,2,3,y x y x x y ≥⎧⎪≤⎨⎪+≤⎩目标函数z mx y =+的最大值为5,则m 的值为 .14.函数()cos 22()x x f x x b b R -=---∈. ① 当b =0时,函数f(x)的零点个数_______;② 若函数f(x)有两个不同的零点,则b 的取值范围________.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)已知函数21()cos sin 2f x x x x =+-. (Ⅰ)求函数)(x f 的最小正周期;(Ⅱ)求)(x f 在区间[,]42ππ上的最大值和最小值.16. (本小题共13分)下图是根据某行业网站统计的某一年1月到12月(共12个月)的山地自行车销售量(1k 代表1000辆)折线图,其中横轴代表月份,纵轴代表销售量,由折线图提供的数据回答下列问题:(Ⅰ)在一年中随机取一个月的销售量,估计销售量不足200k 的概率;(Ⅱ)在一年中随机取连续两个月的销售量,估计这连续两个月销售量递增(如2月到3月递增)的概率;(Ⅲ)根据折线图,估计年平均销售量在哪两条相邻水平平行线线之间(只写出结果,不要过程).17. (本小题共14分)已知在△ABC 中,∠B =90o,D ,E 分别为边BC ,AC 的中点,将△CDE 沿DE 翻折后,使之成为四棱锥'C ABDE -(如图). (Ⅰ)求证:DE ⊥平面'BC D ; (Ⅱ)设平面'C DE平面'ABC l =,求证:AB ∥l ;(Ⅲ)若'C D BD ⊥,2AB =,3BD =,F 为棱'BC 上一点,设'BFFC λ=,当λ为何值时,三棱锥'C ADF -的体积是1?ABEDCC'DEFBA18. (本小题共13分)已知函数21()x f x x +=,数列{}n a 满足:1112,()()n na a f n N a *+==∈. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列{}n a 的前n 项和为n S ,求数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和n T .19 . (本小题共14分)已知函数2()ln 2m f x x x x =--. (Ⅰ)求曲线:()C y f x =在1x =处的切线l 的方程;(Ⅱ)若函数()f x 在定义域内是单调函数,求m 的取值范围;(Ⅲ)当1m >-时,(Ⅰ)中的直线l 与曲线:()C y f x =有且只有一个公共点,求m 的取值范围.20. (本小题共13分)已知椭圆C :22221(0)x y a b a b+=>>过点A (2,0),离心率12e =,斜率为(01)k k <≤直线l 过点M (0,2),与椭圆C 交于G ,H 两点(G 在M ,H 之间),与x 轴交于点B . (Ⅰ)求椭圆C 的标准方程;(Ⅱ)P 为x 轴上不同于点B 的一点,Q 为线段GH 的中点,设△HPG 的面积为1S ,BPQ ∆ 面积为2S ,求12S S 的取值范围.丰台区2016年高三年级第二学期数学统一练习(一)数 学(文科)参考答案二、填空题:本大题共6小题,每小题5分,共30分.9.6π 10.16 11. 3 13. 7314 . 0 ;-1b < 注:14题第一空2分,第二空3分。

北京市丰台区高三数学第二学期统一练习(一) 理 试题

北京市丰台区高三数学第二学期统一练习(一) 理 试题

y C y x =2y x =(1,1)B丰台区2011年高三年级第二学期统一练习(一)数 学(理科)一、本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知集合U =R ,2{560}A x x x =-+≥,那么UA =(A) {2x x <或3}x > (B) {23}x x << (C) {2x x ≤或3}x ≥ (D) {23}x x ≤≤2.6x x的展开式中常数项是 (A) -160(B) -20(C) 20(D) 1603.已知平面向量a ,b 的夹角为60°,(3,1)=a ,||1=b ,则|2|+=a b(A) 27(C)23(D)274.设等差数列{}n a 的公差d ≠0,14a d =.若k a 是1a 与2k a 的等比中项,则k =(A) 3或-1(B) 3或1(C) 3(D) 15.设m ,n 是两条不同的直线,α,β,γ是三个不同的平面.有下列四个命题: ① 若m β⊂,αβ⊥,则m α⊥; ② 若α//β,m α⊂,则m //β;③ 若n α⊥,n β⊥,m α⊥,则m β⊥; ④ 若αγ⊥,βγ⊥,m α⊥,则m β⊥. 其中正确命题的序号是 (A) ①③(B) ①② (C)③④ (D) ②③6.已知函数3,0,()ln(1),>0.x x f x x x ⎧≤=⎨+⎩ 若f (2-x 2)>f (x ),则实数x 的取值范围是(A) (,1)(2,)-∞-⋃+∞(B) (,2)(1,)-∞-⋃+∞(C) (1,2)-(D) (2,1)-7.从如图所示的正方形OABC 区域内任取一个点(,)M x y ,则点M 取自阴影部分的概率为(A) 12 (B)13 (C) 14(D) 168.对于定义域和值域均为[0,1]的函数f (x ),定义1()()f x f x =,21()(())f x f f x =,…,1()(())n n f x f f x -=,n =1,2,3,….满足()n f x x =的点x ∈[0,1]称为f 的n 阶周期点.设12,0,2()122,1,2x x f x x x ⎧≤≤⎪⎪=⎨⎪-<≤⎪⎩ 则f的n 阶周期点的个数是 (A) 2n(B) 2(2n -1)(C) 2n(D) 2n 2二、填空题:本大题共6小题,每小题5分,共30分.9.如图所示,在平面直角坐标系xOy 中,角α的终边与单位圆交于点A , 点A 的纵坐标为45,则cos α= . 10.双曲线的焦点在x 轴上,实轴长为4,离心率为3,则该双曲线的标准方 程为 ,渐近线方程为 . 11.已知圆M :x 2+y 2-2x -4y +1=0,则圆心M 到直线43,31,x t y t =+⎧⎨=+⎩(t 为参数)的距离为 .12.如图所示,过⊙O 外一点A 作一条直线与⊙O 交于C ,D 两点,AB 切⊙O 于B ,弦MN 过CD 的中点P .已知AC =4,AB =6,则MP ·NP = . 13.对某种花卉的开放花期追踪调查,调查情况如下:花期(天) 11~13 14~16 17~19 20~22 个数20403010则这种卉的平均花期为___天.14.将全体正奇数排成一个三角形数阵:13 5C D M OBAP Aαxy O7 9 11 13 15 17 19 ……按照以上排列的规律,第n 行(n ≥3)从左向右的第3个数为 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且b 2+c 2-a 2=bc .(Ⅰ)求角A 的大小; (Ⅱ)设函数2cos 2cos 2sin 3)(2x x x x f +=,当)(B f 取最大值23时,判断△ABC 的形状.16.(本小题共14分)如图,在四棱锥P -ABCD 中,底面ABCD 为直角梯形,AD //BC ,∠ADC =90°,平面PAD ⊥底面ABCD ,Q 为AD 的中点,M 是棱PC 上的点,PA =PD =2,BC =12AD =1,CD.(Ⅰ)若点M 是棱PC 的中点,求证:PA // 平面BMQ ; (Ⅱ)求证:平面PQB ⊥平面PAD ;(Ⅲ)若二面角M -BQ -C 为30°,设PM =tMC ,试确定t 的值 .17.(本小题共13分)某商场在店庆日进行抽奖促销活动,当日在该店消费的顾客可参加抽奖.抽奖箱中有大小完全相同的4个小球,分别标有字“生”“意”“兴”“隆”.顾客从中任意取出1个球,记下上面的字后放回箱中,再从中任取1个球,重复以上操作,最多取4次,并规定若取出“隆”字球,则停止取球.获奖规则如下:依次取到标有“生”“意”“兴”“隆”字的球为一等奖;不分顺序取到标有“生”“意”“兴”“隆”字的球,为二等奖;取到的4个球中有标有“生”“意”“兴”三个字的球为三等奖. (Ⅰ)求分别获得一、二、三等奖的概率; (Ⅱ)设摸球次数为ξ,求ξ的分布列和数学期望.18.(本小题共13分) 已知函数3211()(0)32f x x ax x b a =+++≥,'()f x 为函数()f x 的导函数. (Ⅰ)设函数f (x )的图象与x 轴交点为A ,曲线y =f (x )在A 点处的切线方程是33y x =-,求,a b 的值; (Ⅱ)若函数()'()axg x ef x -=⋅,求函数()g x 的单调区间.19.(本小题共14分)已知点(1,0)A -,(1,0)B ,动点P满足||||PA PB +=P 的轨迹为W .(Ⅰ)求W 的方程;PABCDQ MPABCD QM(Ⅱ)直线1y kx =+与曲线W 交于不同的两点C ,D ,若存在点(,0)M m ,使得CM DM =成立,求实数m 的取值范围.20.(本小题共13分)已知123{(,,,,)n n S A A a a a a ==,0i a =或1,1,2,,}i n =(2)n ≥,对于,n U V S ∈,(,)d U V 表示U 和V 中相对应的元素不同的个数.(Ⅰ)令(0,0,0,0,0)U =,存在m 个5V S ∈,使得(,)2d U V =,写出m 的值; (Ⅱ)令0(0,0,0,,0)n W =个,若,n U V S ∈,求证:(,)(,)(,)d U W d V W d U V +≥;(Ⅲ)令123(,,,,)n U a a a a =,若n V S ∈,求所有(,)d U V 之和.(考生务必将答案答在答题卡上,在试卷上作答无效)丰台区2011年高三年级第二学期数学统一练习(一) 数 学(理科)参考答案一、选择题:本大题共8小题,每小题5分,共40分.二、填空题:本大题共6小题,每小题5分,共30分.9.35- 10.221432x y -=,y =± 11.2 12.25413.16天(15.9天给满分) 14.n 2-n +5 注:两个空的填空题第一个空填对得3分,第二个空填对得2分.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且b 2+c 2-a 2=bc . (Ⅰ)求角A 的大小;(Ⅱ)设函数2cos 2cos 2sin 3)(2x x x x f +=,当)(B f 取最大值23时,判断△ABC 的形状.解:(Ⅰ)在△ABC 中,因为b 2+c 2-a 2=bc ,由余弦定理 a 2= b 2+c 2-2bc cos A 可得cos A =12.(余弦定理或公式必须有一个,否则扣1分) ……3分 ∵ 0<A <π , (或写成A 是三角形内角)……………………4分 ∴3A π=. ……………………5分 (Ⅱ)2cos 2cos 2sin 3)(2xx x x f +=11cos 22x x =++ ……………………7分 1sin()62x π=++, ……………………9分∵3A π= ∴2(0,)3B π∈∴5666B πππ<+< (没讨论,扣1分) …………………10分 ∴当62B ππ+=,即3B π=时,()f B 有最大值是23. ……………………11分又∵3A π=, ∴3C π=∴△ABC 为等边三角形. ……………………13分16.(本小题共14分)如图,在四棱锥P -ABCD 中,底面ABCD 为直角梯形,AD //BC ,∠ADC =90°,平面PAD ⊥底面ABCD ,Q 为AD 的中点,M 是棱PC 上的点,PA =PD =2,BC =12AD =1,CD (Ⅰ)若点M 是棱PC 的中点,求证:PA // 平面BMQ ; (Ⅱ)求证:平面PQB ⊥平面PAD ;(Ⅲ)若二面角M -BQ -C 为30°,设PM =tMC ,试确定t 的值 .证明:(Ⅰ)连接AC,交BQ于N,连接MN.……………………1分∵BC∥AD且BC=12AD,即BC//AQ.∴四边形BCQA为平行四边形,且N为AC中点,又∵点M在是棱PC的中点,∴MN // PA ……………………2分∵MN⊂平面MQB,PA⊄平面MQB,…………………3分∴PA // 平面MBQ.……………………4分(Ⅱ)∵AD // BC,BC=12AD,Q为AD的中点,∴四边形BCDQ为平行四边形,∴CD // BQ.……………………6分∵∠ADC=90°∴∠AQB=90°即QB⊥AD.又∵平面PAD⊥平面ABCD且平面PAD∩平面ABCD=AD,……………………7分∴BQ⊥平面PAD.……………………8分∵BQ⊂平面PQB,∴平面PQB⊥平面PAD.……………………9分另证:AD // BC,BC=12AD,Q为AD的中点∴BC // DQ且BC= DQ,∴四边形BCDQ为平行四边形,∴CD // BQ.∵∠ADC=90°∴∠AQB=90°即QB⊥AD.……………………6分∵PA=PD,∴PQ⊥AD.……………………7分∵PQ∩BQ=Q,∴AD⊥平面PBQ.……………………8分∵AD⊂平面PAD,∴平面PQB⊥平面PAD.(Ⅲ)∵PA=PD,Q为AD的中点,∴PQ⊥AD.∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,∴PQ ABCD.……………10分(不证明PQ⊥平面ABCD直接建系扣1分)如图,以Q为原点建立空间直角坐标系.则平面BQC的法向量为(0,0,1)n=;(0,0,0)Q,P,B,(C-.………11分设(,,)M x y z,则(,,PM x y z=-,(1,)MC x y z=----,∵PM tMC=,∴(1))(x t xyt yz t z=--⎧⎪=⎨⎪=-⎩),∴1txtyz⎧=-⎪+⎪⎪=⎨⎪⎪=⎪⎩……………………12分在平面MBQ中,QB=,(1tQMt=-+,∴平面MBQ法向量为(3,0,)m t=.……………………13分∵二面角M-BQ-C为30°,cos303n mn m︒⋅===+∴3t=.……………………14分17.(本小题共13分)某商场在店庆日进行抽奖促销活动,当日在该店消费的顾客可参加抽奖.抽奖箱中有大小完全相同的4个小球,分别标有字“生”“意”“兴”“隆”.顾客从中任意取出1个球,记下上面的字后放回箱中,再从中任取1个球,重复以上操作,最多取4次,并规定若取出“隆”字球,则停止取球.获奖规则如下:依次取到标有“生”“意”“兴”“隆”字的球为一等奖;不分顺序取到标有“生”“意”“兴”“隆”字的球,为二等奖;取到的4个球中有标有“生”“意”“兴”三个字的球为三等奖.(Ⅰ)求分别获得一、二、三等奖的概率;x(Ⅱ)设摸球次数为ξ,求ξ的分布列和数学期望.解:(Ⅰ)设“摸到一等奖、二等奖、三等奖”分别为事件A ,B ,C . ……1分则P (A )=111114444256⨯⨯⨯=,(列式正确,计算错误,扣1分) ………3分 P (B )33341-A =2565= (列式正确,计算错误,扣1分) ………5分三等奖的情况有:“生,生,意,兴”;“生,意,意,兴”;“生,意,兴,兴”三种情况.P (C )222444111*********()()()444444444444A A A =⨯⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯⨯964=.…7分(Ⅱ)设摸球的次数为ξ,则1,2,3ξ=. ……8分1(1)4P ξ==, 313(2)4416P ξ==⨯=,3319(3)44464P ξ==⨯⨯=,27(4)1(1)(2)(3)64P P P P ξξξξ==-=-=-==.(各1分)故取球次数ξ的分布列为…12分139271234 2.754166464E ξ=⨯+⨯+⨯+⨯=.(约为2.7) …13分18.(本小题共13分) 已知函数3211()(0)32f x x ax x b a =+++≥,'()f x 为函数()f x 的导函数. (Ⅰ)设函数f (x )的图象与x 轴交点为A ,曲线y =f (x )在A 点处的切线方程是33y x =-,求,a b 的值; (Ⅱ)若函数()'()axg x e f x -=⋅,求函数()g x 的单调区间.解:(Ⅰ)∵3211()(0)32f x x ax x b a =+++≥, ∴2'()1f x x ax =++. ……………………1分∵()f x 在(1,0)处切线方程为33y x =-,∴'(1)3(1)0f f =⎧⎨=⎩, ……………………3分∴1=a ,611-=b . (各1分) ……………………5分 (Ⅱ)'()()ax f x g x e=21ax x ax e ++=()x R ∈.'()g x =22(2)(1)()ax axax x a e a x ax e e +-++2[(2)]ax x ax a e -=-+-. ……………………7分 ①当0a =时,'()2g x x =,()g x 的单调递增区间为(0,)+∞,单调递减区间为(,0)-∞. ……………………9分②当0a >时,令'()0g x =,得0x =或2x a a=- ……………………10分 (ⅰ)当20a->,即0a <<时,()g x 的单调递增区间为22(0,)a a -,单调递减区间为(,0)-∞,22(,)a a-+∞;……11分 (ⅱ)当20a a-=,即a ='()g x =2220x x e -=-≤, 故()g x 在(,)-∞+∞单调递减; ……12分 (ⅲ)当20a a-<,即a >()g x 在22(,0)a a -上单调递增,在(0,)+∞,22(,)a a--∞上单调递 ………13分 综上所述,当0a =时,()g x 的单调递增区间为(0,)+∞,单调递减区间为(,0)-∞;当0a <<时,()g x 的单调递增区间为22(0,)a a-,单调递减区间为(,0)-∞, 当a =()g x 的单调递减区间为(,)-∞+∞;当a >()g x 的单调递增区间为22(,0)aa -,单调递减区间为(0,)+∞,22(,)a a--∞. (“综上所述”要求一定要写出来)19.(本小题共14分)已知点(1,0)A -,(1,0)B ,动点P 满足||||PA PB +=P 的轨迹为W . (Ⅰ)求W 的方程;(Ⅱ)直线1y kx =+与曲线W 交于不同的两点C ,D ,若存在点(,0)M m ,使得CM DM =成立,求实数m 的取值范围.解:(Ⅰ)由椭圆的定义可知,动点P 的轨迹是以A ,B 为焦点,长轴长为2分 ∴1c =,a =22b =. ……3分W 的方程是22132x y +=. …………4分(另解:设坐标1分,列方程1分,得结果2分)(Ⅱ)设C ,D 两点坐标分别为11(,)C x y 、22(,)D x y ,C ,D 中点为00(,)N x y .由221132y kx x y =+⎧⎪⎨+=⎪⎩ 得 22(32)630k x kx ++-=. ……6分所以122632kx x k +=-+ …………7分∴12023232x x kx k +==-+, 从而0022132y kx k =+=+. ∴MN 斜率2002232332MN y k k k x m mk +==---+. ………9分 又∵CM DM =, ∴CD MN ⊥,∴222132332k k k m k +=---+ 即 232k m k =-+ …10分 当0k =时,0m =; ……11分 当0k ≠时,212323k m k k k=-=-++]126,0()0,126[⋃-∈. ……13分 故所求m 的取范围是]126,126[-. ……14分 (可用判别式法)20.(本小题共13分)已知123{(,,,,)n n S A A a a a a ==, 0i a =或1,1,2,}i n =(2)n ≥,对于,n U V S ∈,(,)d U V 表示U 和V 中相对应的元素不同的个数.(Ⅰ)令(0,0,0,0,0)U =,存在m 个5V S ∈,使得(,)2d U V =,写出m 的值; (Ⅱ)令0(0,0,0,,0)n W =个,若,n U V S ∈,求证:(,)(,)(,)d U W d V W d U V +≥;(Ⅲ)令123(,,,,)n U a a a a =,若n V S ∈,求所有(,)d U V 之和.解:(Ⅰ)2510C =; ………3分(Ⅱ)证明:令123(,,)n u a a a a =……,123(,,)n v b b b b =……∵0i a =或1,0i b =或1;当0i a =,0i b =时,||i a +||0i b =||i i a b =-当0i a =,1i b =时,||i a +||1i b =||i i a b =- 当1i a =,0i b =时,||i a +||1i b =||i i a b =- 当1i a =,1i b =时,||i a +||2i b =||0i i a b ≥-= 故||i a +||i b ||i i a b ≥-∴(,)(,)d u w d v w +=123()n a a a a ++++123()n b b b b +++++123(||||||)n a a a a =++|++|123(||||||)n b b b b +++|++|112233(||||||)n n a b a b a b a b ≥-+-+--|++|(,)d u v = ………8分(Ⅲ)解:易知n S 中共有2n个元素,分别记为(1,2,,2)n k v k =123(,,)n v b b b b =……∵0i b =的k v 共有12n -个,1i b =的k v 共有12n -个.∴21(,)nkk d u v =∑=1111111122(2|0|2|1|2|0|2|120|21|)n n n n n n n n a a a a a a -------+-+-+---|++|+|=12n n - ……13分∴21(,)nkk d u v =∑=12n n -.法二:根据(Ⅰ)知使(,)k d u v r =的k v 共有rn C 个∴21(,)nkk d u v =∑=012012nn n n n CC C n C ++++21(,)nkk d u v =∑=12(1)(2)0nn n nn n n n Cn C n C C --+-+-++两式相加得 21(,)nkk d u v =∑=12n n -(若用其他方法解题,请酌情给分)。

丰台区2015-2016学年度第一学期期末高三数学(理)试题及答案

丰台区2015-2016学年度第一学期期末高三数学(理)试题及答案

丰台区高三数学第一学期统一练习(一)(理科)第 2 页 共 10 页
二、解答题共 6 小题,共 80 分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题 13 分) 如图, 在 ABC 中,AB =12 ,AC =3 6 ,BC =5 6 , 点 D 在边 BC 上, 且 ADC 60O . (Ⅰ)求 cos C ; (Ⅱ)求线段 AD 的长.
7. 若 F(c,0 )为椭圆 C :
x2 y 2 x y 2 1(a b 0) 的右焦点,椭圆 C 与直线 1 交于 2 a b a b
A,B 两点,线段 AB 的中点在直线 x c 上,则椭圆的离心率为 (A)
3 2
ห้องสมุดไป่ตู้
(B)
1 2
(C)
2 2
(D)
3 3
丰台区高三数学第一学期统一练习(一)(理科)第 1 页 共 10 页
8.在下列命题中: ①存在一个平面与正方体的 12 条棱所成的角都相等; ②存在一个平面与正方体的 6 个面所成较小的二面角都相等; ③存在一条直线与正方体的 12 条棱所成的角都相等; ④存在一条直线与正方体的 6 个面所成的角都相等. 其中真命题的个数为 (A)1 (B)2 (C)3 (D)4
11.设等差数列 {an } 的前 n 项和为 Sn ,若 S7 =42 ,则 a2 a3 a7 =
.
.
12.在 ABC 中, AC 1, BC 3 ,点 M , N 是线段 AB 上的动点,则 CM CN 的最大值为 _______. 13.某 几 何 体 的 三 视 图 如 图 所 示 , 则 该 几 何 体 的 体 积 为 .
第二部分(非选择题共 110 分) 二、填空题共 6 小题,每小题 5 分,共 30 分。 9.在 (2x 1)7 的展开式中, x 2 的系数等于_____.(用数字作答)

北京市丰台区高三数学下学期统一练习试题(一)文

北京市丰台区高三数学下学期统一练习试题(一)文

丰台区2015—2016学年度第二学期统一练习(一)高三数学(文科)第一部分 (选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知全集{}1,2,3,4,5,6,7,8U = ,集合{}2,3,5,6A = ,集合{}1,3,4,6,7B = ,则集合()U A B I ð=(A ){}3,6 (B ){}2,5 (C ){}2,5,6 (D ){}2,3,5,6,8 2. 下列函数在其定义域上既是奇函数又是增函数的是(A )3y x = (B )1y x =-(C )tan y x = (D )(0),(0).x x y x x ≥⎧=⎨-<⎩3. 某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们每场比赛得分的情况用茎叶图表示,如图,则甲、乙两名运动员得分的中位数分别为(A ) 20、18 (B )13、19 (C )19、13 (D )18、204. 已知直线,m n 和平面α,m α⊄,n ∥a ,那么“n α⊂”是“m ∥α”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件5.已知双曲线的一个焦点F ,点P 在双曲线的一条渐近线上,点O 为双曲线的对称中心, 若△OFP 为等腰直角三角形,则双曲线的离心率为(A 6 (B 2 (C )2 (D 3 6. 已知等比数列{n a }中11a =,且4581258a a a a a a ++=++,那么5S 的值是(A )15 (B )31 (C )63 (D )647. 如图,已知三棱锥P ABC -的底面是等腰直角三角形,且∠ACB =90O,侧面PAB ⊥底面ABC ,AB =PA =PB =4.则这个三棱锥的三视图中标注的尺寸x ,y ,z 分别是(A )23,22, 2 (B )4,2,22 (C )23,2,2 (D)23,2, 228. 经济学家在研究供求关系时,一般用纵轴表示产品价格(自变量),用横轴表示产品数量(因变量).某类产品的市场供求关系在不受外界因素(如政府限制最高价格等)的影响下,市场会自发调解供求关系:当产品价格P 1低于均衡价格P 0时,则需求量大于供应量,价格会上升为P 2;当产品价格P 2高于均衡价格P 0时,则供应量大于需求量,价格又会下降,价格如此继续波动下去,产品价格将会逐渐靠近均衡价格P 0.能正确表示上述供求关系的图形是(A ) (B )(C ) (D )P P 1P 单价需求曲线供应曲线P 1P 单价需求曲线供应曲线ABP侧视图zyy x第二部分 (非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9.在锐角△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,若2sin b a B =,则 ∠A =_________.10.已知△ABC 中,AB =4,AC =3,∠CAB=90o,则BA BC u u u r u u u r⋅=___________.11.已知圆22:(1)(2)2C x y -+-=,则圆C 被动直线:20l kx y k -+-=所截得的弦长__________.12.已知1x >,则函数11y x x =+-的最小值为________. 13. 已知,x y 满足,2,3,y x y x x y ≥⎧⎪≤⎨⎪+≤⎩目标函数z mx y =+的最大值为5,则m 的值为 .14.函数()cos 22()xxf x x b b R -=---∈.① 当b =0时,函数f(x)的零点个数_______;② 若函数f(x)有两个不同的零点,则b 的取值范围________.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)已知函数21()cos sin 2f x x x x =+-. (Ⅰ)求函数)(x f 的最小正周期;(Ⅱ)求)(x f 在区间[,]42ππ上的最大值和最小值.16. (本小题共13分)下图是根据某行业网站统计的某一年1月到12月(共12个月)的山地自行车销售量(1k 代表1000辆)折线图,其中横轴代表月份,纵轴代表销售量,由折线图提供的数据回答下列问题:(Ⅰ)在一年中随机取一个月的销售量,估计销售量不足200k 的概率;(Ⅱ)在一年中随机取连续两个月的销售量,估计这连续两个月销售量递增(如2月到3月递增)的概率;(Ⅲ)根据折线图,估计年平均销售量在哪两条相邻水平平行线线之间(只写出结果,不要过程).17. (本小题共14分)已知在△ABC 中,∠B =90o,D ,E 分别为边BC ,AC 的中点,将△CDE 沿DE 翻折后,使之成为四棱锥'C ABDE -(如图). (Ⅰ)求证:DE ⊥平面'BC D ;(Ⅱ)设平面'C DE I 平面'ABC l =,求证:AB ∥l ;(Ⅲ)若'C D BD ⊥,2AB =,3BD =,F 为棱'BC 上一点,设'BFFC λ=,当λ为何值时,三棱锥'C ADF -的体积是1?ABEDCC'DEFBA18. (本小题共13分)已知函数21()x f x x+=,数列{}n a 满足:1112,()()n n a a f n N a *+==∈.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列{}n a 的前n 项和为n S ,求数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和n T .19 . (本小题共14分)已知函数2()ln 2m f x x x x =--. (Ⅰ)求曲线:()C y f x =在1x =处的切线l 的方程;(Ⅱ)若函数()f x 在定义域内是单调函数,求m 的取值范围;(Ⅲ)当1m >-时,(Ⅰ)中的直线l 与曲线:()C y f x =有且只有一个公共点,求m 的取值范围.20. (本小题共13分)已知椭圆C :22221(0)x y a b a b +=>>过点A (2,0),离心率12e =,斜率为(01)k k <≤直线l 过点M (0,2),与椭圆C 交于G ,H 两点(G 在M ,H 之间),与x 轴交于点B . (Ⅰ)求椭圆C 的标准方程;(Ⅱ)P 为x 轴上不同于点B 的一点,Q 为线段GH 的中点,设△HPG 的面积为1S ,BPQ ∆ 面积为2S ,求12S S 的取值范围.AB PHG Q O xy M丰台区2016年高三年级第二学期数学统一练习(一)数 学(文科)参考答案一、选择题:本大题共8小题,每小题5分,共40分。

2016年高考北京理科数学试题及答案(word解析版)

2016年高考北京理科数学试题及答案(word解析版)

2016年普通高等学校招生全国统一考试(北京卷)数学(理科)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,选出符合题目要求的一项.(1)【2016年北京,理1,5分】已知集合{}|2A x x =<<,{}1,0,1,2,3=-,则A B =( ) (A ){}0,1 (B ){}0,1,2 (C ){}1,0,1- (D ){}1,0,1,2- 【答案】C【解析】集合{}22A x x =-<<,集合{}1,0,1,2,3B x =-,所以{}1,0,1AB =-,故选C .【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.(2)【2016年北京,理2,5分】若x ,y 满足2030x y x y x -≤⎧⎪+≤⎨⎪≥⎩,,,则2x y +的最大值为( )(A )0 (B )3 (C )4 (D )5 【答案】C【解析】可行域如图阴影部分,目标函数平移到虚线处取得最大值,对应的点为()1,2,最大值为2124⨯+=,故选C .【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.(3)【2016年北京,理3,5分】执行如图所示的程序框图,若输入的a 值为1,则输出的k 值为( )(A )1(B )2 (C )3 (D )4【答案】B 【解析】开始1a =,0k =;第一次循环12a =-,1k =;第二次循环2a =-,2k =,第三次循环1a =,条件判断为“是”跳出,此时2k =,故选B .【点评】本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答. (4)【2016年北京,理4,5分】设a ,b 是向量,则“a b =”是“a b a b +=-”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 【答案】D【解析】若=a b 成立,则以a ,b 为边组成平行四边形,那么该平行四边形为菱形,+a b ,a b -表示的是该菱形的对角线,而菱形的对角线不一定相等,所以+=a b a b -不一定成立,从而不是充分条件;反之,+=a b a b -成立,则以a ,b 为边组成平行四边形,则该平行四边形为矩形,矩形的邻边不一定相等,所以=a b 不一定成立,从而不是必要条件,故选D .【点评】本题考查的知识点是充要条件,向量的模,分析出“a b =”与“a b a b +=-”表示的几何意义,是解答 的关键.(5)【2016年北京,理5,5分】已知x y ∈R ,,且0x y >>,则( )(A )110x y -> (B )sin sin 0x y ->_ (C )11022xy⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭(D )ln ln 0x y +>【答案】C【解析】A .考查的是反比例函数1y x=在()0,+∞单调递减,所以11x y <即110x y -<所以A 错; B .考查的是三角函数sin y x =在()0,+∞单调性,不是单调的,所以不一定有sin sin x y >,B 错;C .考查的是指数函数12x y ⎛⎫= ⎪⎝⎭在()0,+∞单调递减,所以有1122x y ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭即11022x y⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭所以C 对;D 考查的是对数函数ln y x =的性质,ln ln ln x y xy +=,当0x y >>时,0xy >不一定有ln 0xy >,所以D 错,故 选C .【点评】本题考查了不等式的性质、函数的单调性,考查了推理能力与计算能力,属于中档题. (6)【2016年北京,理6,5分】某三棱锥的三视图如图所示,则该三棱锥的体积为( )(A )16 (B )13(C )12 (D )1【答案】A【解析】通过三视图可还原几何体为如图所示三棱锥,则通过侧视图得高1h =,底面积111122S =⨯⨯=,所以体积1136V Sh ==,故选A .【点评】本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.(7)【2016年北京,理7,5分】将函数sin 23y x π⎛⎫=- ⎪⎝⎭图象上的点,4P t π⎛⎫⎪⎝⎭向左平移()0s s >个单位长度得到点P ',若P '位于函数sin 2y x =的图象上,则( ) (A )12t =,s 的最小值为6π (B )3t =,s 的最小值为6π(C )12t =,s 的最小值为3π (D )3t =,s 的最小值为3π【答案】A【解析】点π,4P t ⎛⎫ ⎪⎝⎭在函数πsin 23y x ⎛⎫=- ⎪⎝⎭上,所以πππ1sin 2sin 4362t ⎛⎫⎛⎫=⨯-== ⎪ ⎪⎝⎭⎝⎭,然后πsin 23y x ⎛⎫=- ⎪⎝⎭向左平移s 个单位,即πsin 2()sin 23y x s x ⎛⎫=+-= ⎪⎝⎭,所以π+π,6s k k =∈Z ,所以s 的最小值为π6,故选A .【点评】本题考查的知识点是函数()()sin 0,0y x A ωϕω=+>>的图象和性质,难度中档.(8)【2016年北京,理8,5分】袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则( )(A )乙盒中黑球不多于丙盒中黑球 (B )乙盒中红球与丙盒中黑球一样多 (C )乙盒中红球不多于丙盒中红球 (D )乙盒中黑球与丙盒中红球一样多 【答案】B【解析】取两个球往盒子中放有4种情况:①红+红,则乙盒中红球数加1个; ②黑+黑,则丙盒中黑球数加1个; ③红+黑(红球放入甲盒中),则乙盒中黑球数加1个; ④黑+红(黑球放入甲盒中),则丙盒中红球数加1个.因为红球和黑球个数一样,所以①和②的情况一样多,③和④的情况完全随机.③和④对B 选项中的乙盒中的红球与丙盒中的黑球数没有任何影响.①和②出现的次数是一样的,所以对B 选项中的乙盒中的红球与丙盒中的黑球数的影响次数一样.故选B .【点评】该题考查了推理与证明,重点是找到切入点逐步进行分析,对学生的逻辑思维能力有一定要求,中档题. 二、填空题:共6小题,每小题5分,共30分。

北京市各城区2016届高三第一次统练(一模)数学理试题合集

北京市各城区2016届高三第一次统练(一模)数学理试题合集

北京市朝阳区2015-2016学年度第二学期高三年级统一考试数学答案(理工类) 2016.3一、选择题:(满分40分) 题号1 2 3 4 5 6 7 8 答案 D D A B C D A C二、填空题:(满分30分) 题号9 10 11 12 13 14 答案 10 21n a n =-,(3)(411)n n ++ (2,)4π 3(,]4-∞ 3(0,)4 121||i i i ab =-∑ 22(注:两空的填空,第一空3分,第二空2分)三、解答题:(满分80分)15.(本小题满分13分)解:(Ⅰ)当1ω=时,213()sin 3cos 222x f x x =+- 13sin cos 22x x =+ sin()3x π=+. 令22,232k x k k ππππ-≤+≤π+∈Z . 解得22,66k x k k 5πππ-≤≤π+∈Z . 所以()f x 的单调递增区间是[2,2],66k k k 5πππ-π+∈Z .……………………7分 (Ⅱ)由213()sin 3cos 222x f x x ωω=+- 13sin cos 22x x ωω=+ sin()3x ωπ=+. 因为()13f π=,所以sin()133ωππ+=. 则2332n ωπππ+=π+,n ∈Z . 解得162n ω=+. 又因为函数()f x 的最小正周期2T ωπ=,且0ω>, 所以当ω12=时,T 的最大值为4π. ………………………………………13分 16.(本小题满分13分)解:(Ⅰ)设事件A :从这个班级的学生中随机选取一名男生,一名女生,这两名学生阅读本数之和为4 .由题意可知, 13+417()=12896P A ⨯⨯=⨯.………………………………………4分 (Ⅱ)阅读名著不少于4本的学生共8人,其中男学生人数为4人,故X 的取值为0,1,2,3,4. 由题意可得44481(0)70C P X C ===; 134448168(1)7035C C P X C ====; 2244483618(2)7035C C P X C ====; 314448168(3)7035C C P X C ====;44481(4)70C P X C ===. 所以随机变量X 的分布列为 X0 1 2 3 4 P 170 835 1835 835 170随机变量X 的均值116361610123427070707070EX =⨯+⨯+⨯+⨯+⨯=.…………10分 (Ⅲ)21s >22s .…………………………………………………………………………13分17.(本小题满分14分)解:(Ⅰ)由已知1190A AB A AC ∠=∠=︒,且平面11AA C C ⊥平面11AA B B ,所以90BAC ∠=︒,即AC AB ⊥.又因为1AC AA ⊥且1AB AA A =,所以AC ⊥平面11AA B B .由已知11//A C AC ,所以11A C ⊥平面11AA B B .因为AP ⊂平面11AA B B ,所以11AC AP ⊥.…………………………………………………………………………4分 (Ⅱ)由(Ⅰ)可知1,,AC AB AA 两两垂直.分别以1,,AC AB AA 为x 轴、y 轴、z 轴建立空间直角坐标系如图所示.由已知 11111222AB AC AA A B AC =====,所以(0,0,0),(0,2,0),(2,0,0),A B C 1(0,1,2)B ,1(0,0,2)A . 因为M 为线段BC 的中点,P 为线段1BB 的中点,所以3(1,1,0),(0,,1)2M P . 易知平面ABM 的一个法向量(0,0,1)=m .设平面APM 的一个法向量为(,,)x y z =n , y x AMPCB A 1C 1B 1 z由 0,0,AM AP ⎧⋅=⎪⎨⋅=⎪⎩n n 得0, 30. 2x y y z +=⎧⎪⎨+=⎪⎩ 取2y =,得(2,2,3)=--n .由图可知,二面角P AM B --的大小为锐角, 所以3317cos ,1717⋅〈〉===⋅m nm n m n . 所以二面角P AM B --的余弦值为31717.………………………………9分 (Ⅲ)存在点P ,使得直线1A C //平面AMP .设111(,,)P x y z ,且1BP BB λ=,[0,1]λ∈,则111(,2,)(0,1,2)x y z λ-=-, 所以1110,2,2x y z λλ==-=.所以(0,2,2)AP λλ=-.设平面AMP 的一个法向量为0000(,,)x y z =n ,由 000,0,AM AP ⎧⋅=⎪⎨⋅=⎪⎩n n 得00000, (2)20. x y y z λλ+=⎧⎨-+=⎩ 取01y =,得02(1,1,)2λλ-=-n (显然0λ=不符合题意). 又1(2,0,2)AC =-,若1A C //平面AMP ,则10AC ⊥n . 所以10220AC λλ-⋅=--=n .所以23λ=. 所以在线段1BB 上存在点P ,且12BP PB =时,使得直线1A C //平面AMP .…………14分 18.(本小题满分13分)解:(Ⅰ)函数()f x 的定义域为{}0x x >.()1a x a f x x x+'=+=. (1)当0a ≥时,()0f x '>恒成立,函数()f x 在(0,)+∞上单调递增;(2)当0a <时, 令()0f x '=,得x a =-.当0x a <<-时,()0f x '<,函数()f x 为减函数;当x a >-时,()0f x '>,函数()f x 为增函数.综上所述,当0a ≥时,函数()f x 的单调递增区间为(0,)+∞.当0a <时,函数()f x 的单调递减区间为(0,)a -,单调递增区间为(+)a -∞,. ……………………………………………………………………………………4分(Ⅱ)由(Ⅰ)可知,(1)当1a -≤时,即1a ≥-时,函数()f x 在区间[]1,2上为增函数,所以在区间[]1,2上,min ()(1)1f x f ==,显然函数()f x 在区间[]1,2上恒大于零;(2)当12a <-<时,即21a -<<-时,函数()f x 在[)1a -,上为减函数,在(],2a - 上为增函数,所以min ()()ln()f x f a a a a =-=-+-.依题意有min ()ln()0f x a a a =-+->,解得e a >-,所以21a -<<-.(3)当2a -≥时,即2a ≤-时,()f x 在区间[]1,2上为减函数,所以min ()(2)2+ln 2f x f a ==.依题意有min ()2+ln 20f x a =>,解得2ln 2a >-,所以22ln 2a -<≤-. 综上所述,当2ln 2a >-时,函数()f x 在区间[]1,2上恒大于零.………………8分 (Ⅲ)设切点为000,ln )x x a x +(,则切线斜率01a k x =+, 切线方程为0000(ln )(1)()a y x a x x x x -+=+-. 因为切线过点(1,3)P ,则00003(ln )(1)(1)a x a x x x -+=+-. 即001(ln 1)20a x x +--=. ………………① 令1()(ln 1)2g x a x x =+-- (0)x >,则 2211(1)()()a x g x a x x x-'=-=. (1)当0a <时,在区间(0,1)上,()0g x '>, ()g x 单调递增;在区间(1,)+∞上,()0g x '<,()g x 单调递减,所以函数()g x 的最大值为(1)20g =-<.故方程()0g x =无解,即不存在0x 满足①式.因此当0a <时,切线的条数为0.(2)当0a >时, 在区间(0,1)上,()0g x '<,()g x 单调递减,在区间(1,)+∞上,()0g x '>,()g x 单调递增,所以函数()g x 的最小值为(1)20g =-<. 取21+1e e a x =>,则221112()(1e 1)2e 0a a g x a a a----=++--=>. 故()g x 在(1,)+∞上存在唯一零点. 取2-1-21e<e a x =,则221122()(1e 1)2e 24a a g x a a a a ++=--+--=--212[e 2(1)]a a a +=-+. 设21(1)t t a=+>,()e 2t u t t =-,则()e 2t u t '=-. 当1t >时,()e 2e 20t u t '=->->恒成立.所以()u t 在(1,)+∞单调递增,()(1)e 20u t u >=->恒成立.所以2()0g x >. 故()g x 在(0,1)上存在唯一零点.因此当0a >时,过点P (13),存在两条切线.(3)当0a =时,()f x x =,显然不存在过点P (13),的切线.综上所述,当0a >时,过点P (13),存在两条切线;当0a ≤时,不存在过点P (13),的切线.…………………………………………………13分19.(本小题满分14分)解:(Ⅰ)由题意可知,24a =,22b =,所以22c =. 因为(2,1)P 是椭圆C 上的点,由椭圆定义得124PF PF +=.所以12PF F ∆的周长为422+. 易得椭圆的离心率2=2c e a =.………………………………………………………4分 (Ⅱ)由22220,1,42x y m x y ⎧-+=⎪⎨+=⎪⎩得2242280x mx m ++-=. 因为直线l 与椭圆C 有两个交点,并注意到直线l 不过点P ,所以22844(8)0,0.m m m ⎧-⨯->⎨≠⎩解得40m -<<或04m <<.设11(,)A x y ,22(,)B x y ,则1222x x m +=-,21284m x x -=, 1122x m y +=,2222x m y +=. 显然直线PA 与PB 的斜率存在,设直线PA 与PB 的斜率分别为1k ,2k , 则1212121122y y k k x x --+=+-- 12211222(1)(2)(1)(2)22(2)(2)x m x m x x x x ++--+--=-- 122112(22)(2)(22)(2)2(2)(2)x m x x m x x x +--++--=-- 1212121222(4)()22422[2()2]x x m x x m x x x x +-+-+=-++ 2121222(8)(4)228216244442[2()2]m m m m x x x x ----+=-++ 2121222(8)(4)22821628[2()2]m m m m x x x x ----+=-++ 2212122216222828216208[2()2]m m m m x x x x --+-+==-++. 因为120k k +=,所以PMN PNM ∠=∠. 所以PM PN =. ………………………………………………………14分 20.(本小题满分13分)解:(Ⅰ)观察数列}{n a 的前若干项:2,5,8,11,14,17,20,23,26,29,32,35,…. 因为数列}{n a 是递增的整数数列,且等比数列以2为首项,显然最小公比不能是52,最小公比是4. (ⅰ)以2为首项,且公比最小的等比数列的前四项是2,8,32,128.(ⅱ)由(ⅰ)可知12b =,公比4q =,所以124n n b -=⋅.又31n n k n b a k ==-,所以13124,n n k n -*-=⋅∈N , 即11(241),3n n k n -*=⋅+∈N .再证n k 为正整数.显然11k =为正整数,2n ≥时,1222111(2424)24(41)2433n n n n n n k k ------=⋅-⋅=⋅⋅-=⋅, 即2124(2)n n n k k n --=+⋅≥,故11(241),3n n k n -*=⋅+∈N 为正整数. 所以,所求通项公式为11(241),3n n k n -*=⋅+∈N . ……………………………………………………………………………6分(Ⅱ)设数列{}n c 是数列}{n a 中包含的一个无穷等比数列,且115k c a ==,22231k c a k ==-,所以公比2315k q -=.因为等比数列{}n c 各项为整数,所以q 为整数. 取252k m =+(m *∈N ),则13+=m q ,故15(31)n n c m -=⋅+.只要证15(31)n n c m -=⋅+是数列}{n a 的项,即证31n k -15(31)n m -=⋅+. 只要证11[5(31)1]3n n k m -=++()n *∈N 为正整数,显然12k =为正整数. 又2n ≥时,12215[(31)(31)]5(31)3n n n n n k k m m m m -----=+-+=+, 即215(31)n n n k k m m --=++,又因为12k =,25(31)n m m -+都是正整数,故2n ≥时,n k 也都是正整数.所以数列{}n c 是数列}{n a 中包含的无穷等比数列,其公比13+=m q 有无数个不同的取值,对应着不同的等比数列,故数列}{n a 所包含的以52=a 为首项的不同无穷等比数列有无数多个.…………………………………………………………………………………………13分DABC海淀区高三年级第二学期期中练习参考答案数学(理科) 2016.4阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。

北京市丰台区2016届高三二模理科数学试卷 含解析

北京市丰台区2016届高三二模理科数学试卷 含解析

北京市丰台区2016届高三二模理科数学试卷
第I卷(选择题)
本试卷第一部分共有8道试题。

一、单选题(共8小题)
1.已知集合,那么=( )
A.B.C.D.
【知识点】集合的运算
【答案】D
【试题解析】
所以=。

故答案为:D
2.极坐标方程ρ=2cosθ表示的圆的半径是()
A.B.C.2D.1
【知识点】极坐标方程
【答案】D
【试题解析】化极坐标为直角坐标方程:
所以圆的半径为:1.
故答案为:D
A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件
3.“”是“”的( )
【知识点】充分条件与必要条件
【答案】A
【试题解析】若,则成立;
反过来,不成立,如x=-1也成立。

所以“”是“"的充分而不必要条件.
故答案为:A
4.已知向量,,,则等于_________ .( )
A.B.C.1D.-1
【知识点】平面向量坐标运算
【答案】C
【试题解析】,所以
故答案为:C
5.如图,设不等式组表示的平面区域为长方形ABCD,长方形ABCD内的曲线为抛物线的一部分,若在长方形ABCD内随机取一个点,则此点取自阴影部分的概率等于( )
A.B.C.D.
【知识点】积分
【答案】B
【试题解析】OBC阴影部分的面积为:
所以整个阴影的面积为:,
长方形ABCD的面积为:2.
所以在长方形ABCD内随机取一个点,则此点取自阴影部分的概率等于:
故答案为:B
6.要得到的图象,只需将函数的图象()
A.向上平移1个单位B.向下平移1个单位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

丰台区2015—2016学年度第二学期统一练习(一) 2016.3高三数学(理科) 第一部分 (选择题 共40分)一.选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知全集U =R ,集合{}|23A x x x =≤-≥或,{}|14B x x x =<->或,那么集合()U C A B 等于( )(A ){}|24x x -<≤ (B ){}|23x x -<<(C ){}|21x x -<<-(D ){}|2134x x x 或-<<-<<2.在下列函数中,是偶函数,且在0+∞(,)内单调递增的是(A )||2x y = (B )21y x =(C )|lg |y x = (D )cos y x = 3.对高速公路某段上汽车行驶速度进行抽样调查,画出如下频率分布直方图.根据直方图估计在此路段上汽车行驶速度的众数和行驶速度超过80km/h 的概率 (A ) 75,0.25 (B )80,0.35 (C )77.5,0.25 (D )77.5,0.35 4. 若数列{}n a 满足*12(0,)N n n n a a a n+=刮,且2a 与4a 的等差中项是5,则12n a a a +++ 等于 (A )2n(B )21n- (C )12n - (D )121n --5. 已知直线m ,n 和平面α,若n ⊥α,则“m ⊂α”是“n ⊥m ”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 6. 有三对师徒共6个人,站成一排照相,每对师徒相邻的站法共有 (A ) 72 (B )54 (C ) 48 (D ) 87.如图,已知三棱锥P ABC -的底面是等腰直角三角形,且∠ACB =90O,侧面PAB ⊥底面ABC ,AB =PA =PB =4.则这个三棱锥的三视图中标注的尺寸x ,y ,z 分别是(A),2,2 (B )4,2,(C),,2 (D),2,8. 经济学家在研究供求关系时,一般用纵轴表示产品价格(自变量),而用横轴来表示产品数量(因变量).某类产品的市场供求关系在不受外界因素(如政府限制最高价格等)的影响下,市场会自发调解供求关系:当产品价格P 1低于均衡价格P 0时,需求量大于供应量,价格会上升为P 2;当产品价格P 2高于均衡价格P 0时,供应量大于需求量,价格又会下降,价格如此波动下去,产品价格将会逐渐靠进均衡价格P 0.能正确表示上述供求关系的图形是(A ) (B )(C ) (D ) 第二部分 (非选择题 共110分) 一、填空题共6小题,每小题5分,共30分.俯视图侧视图主视图zyy xABPC9.已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线为y =,那么双曲线的离心率为_________.10. 如图,BC 为⊙O 的直径,且BC =6,延长CB 与⊙O 在点D 处的切线交于点A ,若AD =4,则AB =________.11. 在ABC ∆中角A ,B ,C 的对边分别是a ,b ,c ,若3sin cos cos b A c A a C =+,则sin A =________.12. 在梯形ABCD 中,//AB CD ,2AB CD =,E 为BC 中点,若AE x AB y AD=+,则x +y =_______.13. 已知,x y 满足0,,.x y x x y k ≥⎧⎪≤⎨⎪+≤⎩(k 为常数),若2z x y =+最大值为8,则k =________.14.已知函数1(1),()1).x x f x x +≤⎧⎪=>若()(1)f x f x >+,则x 的取值范围是______.二、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(本小题共13分)已知函数(=cos (cos )f x x x x )+ .(Ⅰ)求()f x 的最小正周期;(Ⅱ)当π[0,]2x ∈ 时,求函数(f x )的单调递减区间.CB ADO16.(本小题共13分)从某病毒爆发的疫区返回本市若干人,为了迅速甄别是否有人感染病毒,对这些人抽血,并将血样分成4组,每组血样混合在一起进行化验. (Ⅰ)若这些人中有1人感染了病毒.①求恰好化验2次时,能够查出含有病毒血样组的概率; ②设确定出含有病毒血样组的化验次数为X ,求E (X ).(Ⅱ)如果这些人中有2人携带病毒,设确定出全部含有病毒血样组的次数Y 的均值E (Y ),请指出(Ⅰ)②中E (X )与E (Y )的大小关系.(只写结论,不需说明理由)17.(本小题共13分)如图,在五面体ABCDEF 中,四边形ABCD 为菱形,且∠BAD =60°,对角线AC 与BD 相交于O ;OF ⊥平面ABCD ,BC =CE =DE =2EF =2. (Ⅰ)求证: EF //BC ;(Ⅱ)求直线DE 与平面BCFE 所成角的正弦值.18.(本小题共14分) 已知函数()ln f x x x =.(Ⅰ)求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)求证:()1f x x ≥-; (Ⅲ)若22()(0)f x ax a a≥+≠在区间(0,)+∞上恒成立,求a 的最小值.OCDABEF19.(本小题共14已知椭圆G1.(Ⅰ)求椭圆G 的方程;(Ⅱ)设椭圆G 的短轴端点分别为,A B ,点P 是椭圆G 上异于点,A B 的一动点,直线,PA PB 分别与直线4x =于,M N 两点,以线段MN 为直径作圆C . ① 当点P 在y 轴左侧时,求圆C 半径的最小值;② 问:是否存在一个圆心在x 轴上的定圆与圆C 相切?若存在,指出该定圆的圆心和半径,并证明你的结论;若不存在,说明理由.20.(本小题共13分)已知数列{}n a 是无穷数列,12=,a a a b =(,a b 是正整数),11111(1),=(1)n nn n n n n nn a a a a a a aa a --+--⎧>⎪⎪⎨⎪≤⎪⎩.(Ⅰ)若122,=1a a =,写出45,a a 的值;(Ⅱ)已知数列{}n a 中*1)k a k N (=∈,求证:数列{}n a 中有无穷项为1;(Ⅲ)已知数列{}n a 中任何一项都不等于1,记212=max{,}(1,2,3,;n n n b a a n -=max{,}m n为,m n 较大者).求证:数列{}n b 是单调递减数列.丰台区2016年高三年级第二学期数学统一练习(一)数 学(理科)参考答案一、选择题:本大题共8小题,每小题5分,共40分.二、填空题:本大题共6小题,每小题5分,共30分.9. 2 10. 2 11.12. 13. 14. (0,1] 三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.解:(Ⅰ) 2(cos cos f x x x x +1cos2(22xf x x )++1cos2(2)2x f x x )++1(=sin(2)62f x x )π++22||2T πππω===()f x 的最小正周期为π. ----------------------------------7分(Ⅱ)当3222,262k x k k Z πππππ+≤+≤+∈ 时,函数(f x )单调递减, 即()f x 的递减区间为:2[,],63k k k Z ππππ++∈,由2[0,][,]263k k πππππ++=[,]62ππ+,k Z ∈所以(f x )的递减区间为:[,]62ππ. ------------------------------------13分16. 解:(Ⅰ)①恰好化验2次时,就能够查出含有病毒血样的组为事件A. 1()4P A =恰好化验2次时,就能够查出含有病毒血样的组的概率为14.-----4分 ②确定出含有病毒血样组的次数为X,则X 的可能取值为1,2,3.1(1)4P X ==, 1(2)4P X ==,1(3)2P X ==. 则X 的分布列为:所以:E (X )=1234424⨯+⨯+⨯=--------------------------------------------11分(Ⅱ) ()()E X E Y < ------------------------------------------------------------------13分 17. 解:(Ⅰ)因为四边形ABCD 为菱形所以AD ∥BC ,且BC ⊄面ADEF ,AD ⊂面ADEF所以BC ∥面ADEF 且面ADEF 面BCEF EF = 所以EF ∥BC . ----------------------------------------------------------6分 (Ⅱ)因为FO ⊥面ABCD所以FO AO⊥,FO OB ⊥又因为OB AO ⊥以O 为坐标原点,OA ,OB ,OF 分别为x 轴,y 轴,z 轴,建立空间直角坐标系,取CD 的中点M ,连,OM EM . 易证EM ⊥平面ABCD . 又因为22BC CE DE EF ====,得出以下各点坐标:1(0,1,0),((0,1,0),(2B C D F E --向量1(2DE =,向量(1,0)BC =-,向量(0,BF =-设面BCFE 的法向量为:0000(,,)n x y z=000,0n BC n BF⎧⋅=⎪⎨⋅=⎪⎩得到00000y y ⎧-=⎪⎨-+=⎪⎩令0y =时0(n=-设DF 与0n所成角为ϕ,直线DE 与面BCEF 所成角为θ.sin θ=|cos |ϕ=00||||||n DE n DE⋅⋅直线EF 与平面BCEF分 18.设函数()ln f x x x =.(Ⅰ)求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)求证:()1f x x ≥-;(Ⅲ)若22()(0)f x ax a a≥+≠在区间(0,)+∞上恒成立,求a 的最小值. 解:(Ⅰ)设切线的斜率为k()ln 1f x x '=+ (1)ln111k f '==+=因为(1)1ln10f =⋅=,切点为(1,0).切线方程为01(1)y x -=⋅-,化简得:1y x =-.----------------------------4分 (Ⅱ)要证:()1f x x ≥-只需证明:()ln 10g x x x x =-+≥在(0,)+∞恒成立, ()ln 11ln g x x x '=+-=当(0,1)x ∈时()0f x '<,()f x 在(0,1)上单调递减; 当(1,)x ∈+∞时()0f x '>,()f x 在(1,)+∞上单调递增;当1x =时min ()(1)1ln1110g x g ==⋅-+=()ln 10g x x x x =-+≥在(0,)+∞恒成立所以()1f x x ≥-.--------------------------------------------------------------------------10分(Ⅲ)要使:22ln x x ax a ≥+在区间在(0,)+∞恒成立, 等价于:2ln x ax ax≥+在(0,)+∞恒成立,等价于:2()ln 0h x x ax ax=--≥在(0,)+∞恒成立 因为212()h x a x ax '=-+=2222a x ax ax -++=2212()()a x x a a ax -+- ①当0a >时,2(1)ln10h a a=--<,0a >不满足题意②当0a <时,令'()0h x =,则1x a =-或2x a=(舍).所以1(0,)x a ∈-时()0h x '<,()h x 在1(0,)a -上单调递减;1(,)x a ∈-+∞时()0h x '>,()h x 在1(,)a -+∞上单调递增;当1x a =-时min 11()()ln()12h x h a a =-=-++当1ln()30a-+≥时,满足题意所以30e a -≤<,得到a 的最小值为 3e ------------------------------------14分19. 解:1.所以2221,b ca ab c=⎧⎪⎪=⎨⎪⎪=+⎩得到21,a b c ⎧=⎪=⎨⎪=⎩分(Ⅱ)① 设00(,)P x y ,(0,1),(0,1)A B -所以直线PA 的方程为:0011y y x x --=令4x =,得到004(1)1M y y x -=+同理得到004(1)1N y y x +=-,得到08|||2|MN x =- 所以,圆C 半径004|1|(20)r x x =--≤< 当02x =-时,圆C 半径的最小值为3. --------------------------------------9分② 当P 在左端点时,圆C 的方程为:22(4)9x y -+= 当P 在右端点时,设(2,0)P ,(0,1),(0,1)A B - 所以直线PA 的方程为:112y x --=令4x =,得到1M y =-同理得到1N y =, 圆C 的方程为:22(4)1x y -+=, 易知与定圆22(2)1x y -+=相切, 半径1R =由前一问知圆C 的半径0000041,204|1|41,02x x r x x x ⎧--≤<⎪⎪=-=⎨⎪-<≤⎪⎩ 因为004(1)1M y y x -=+,004(1)1N y y x +=-,圆C 的圆心坐标为004(4,)yx圆心距d ==000004,2044||,02x x x x x ⎧--≤<⎪⎪=⎨⎪<≤⎪⎩ 当020x -?时,C 内切;当002x <?时,C 外切;存在一个圆心在x 轴上的定圆与圆C 相切,该定圆的圆心为(2,0)和半径1R =. (注: 存在另一个圆心在x 轴上的定圆与圆C 相切,该定圆的圆心为(6,0)和半径1R =.得分相同) ------------------------------------------------------------------------------------14分20..解:(Ⅰ)452,1a a ==;-----------------------------------------------------2分(Ⅱ)*1)k a k N (=∈,假设1k a m += ①当1m =时,依题意有231k k a a ++==⋅⋅⋅⋅⋅⋅=②当1m >时,依题意有2k a m +=,31k a +=③当1m <时,依题意有21k a m +=,321k a m +=,41k a m +=,51k a m+=,61k a += 由以上过程可知:若*1)k a k N (=∈,在无穷数列{}n a 中,第k 项后总存在数值为1 的项,以此类推,数列{}n a 中有无穷项为1. --------------------------------------------------6分(Ⅲ)证明:由条件可知1(1,2,3,)n a n >= ,因为{}n a 中任何一项不等于1,所以+11,2,3,)n n a a n ≠= (.①若212n n a a ->,则21n n b a -=. 因为212+12=n n n a a a -,所以212+1n n a a ->. 若21221n n a a ->,则212+22122n n n n a a a a --=<,于是2-12+2n n a a >; 若21221n na a -<,则22222+222212121212n n n n n n n n n n na a a a a a a a a a a ----===⋅<<,于是2-12+2n n a a >; 若21221n n a a -=,则2+21n a =,于题意不符; 所以212+12+2max{,}n n n a a a ->,即1n n b b +>.②若212n n a a -<,则2n n b a =. 因为22+12-1=n n n a a a ,所以22+1n n a a >; 因为22+22+1=n n n a a a ,所以22+2n n a a >; 所以22+12+2max{,}n n n a a a >,即1n n b b +>.综上所述,对于一切正整数n ,总有1n n b b +>,所以数列{}n b 是单调递减数列.-------------------------------------------------------------------------------13分。

相关文档
最新文档