Applying Embodied Interaction and Usability Engineering to Visualization on Large Displays
have tm-scores higher than 0.5 -回复
have tm-scores higher than 0.5 -回复题目:探索高于0.5的TMscores引言:TMscores是一种用于比较蛋白质结构相似性的评价指标,其取值范围从0到1。
当TMscore大于0.5时,意味着两个蛋白质结构之间存在较高的相似性。
本文将一步一步地解释TMscores以及如何获得高于0.5的TMscores。
第一部分:什么是TMscores?TMscores是根据蛋白质结构之间的相似性来计算的,主要基于两个结构的平均重叠区域大小以及二者之间的距离差异。
较高的TMscore表明两个蛋白质结构的折叠方式相似度较高。
TMscores可以用于比较不同蛋白质序列或蛋白质家族内的结构相似性。
第二部分:如何计算TMscores?计算TMscores需要使用专门的软件和算法,例如TM-align或TM-score。
这些软件使用不同的方法来比较两个蛋白质结构的相似性。
一般而言,计算TMscores的步骤包括:1. 蛋白质结构的预处理:这包括去除水分子、离子和其他杂质,使蛋白质结构更加纯净。
2. 提取蛋白质结构的特征:这种特征可以是氨基酸的空间坐标、二面角等。
3. 对比两个蛋白质结构:通过比较两个蛋白质结构的特征,计算它们之间的相似性。
4. 计算TMscores:基于结构的相似性和重叠区域大小,计算TMscore 的值。
第三部分:如何获得高于0.5的TMscores?要获得高于0.5的TMscores,需要注意以下几点:1. 蛋白质质量的准确性:蛋白质结构的准确性对TMscores的计算结果有较大影响。
使用高分辨率的实验方法或准确的模型构建工具能提高蛋白质结构的准确性。
2. 结构对齐的方法:不同的结构比对方法可能会导致不同的TMscores。
选择合适的结构比对方法是获得高TMscores的关键。
3. 结构调整的方法:在计算TMscores之前,可能需要进行一些结构调整,例如对齐结构的中心化或规范化。
胰腺癌相关基因寡核苷酸芯片的制备和初步应用
胰腺癌相关基因寡核苷酸芯片的制备和初步应用
胰腺癌是一种严重的恶性肿瘤,治疗效果差,预后不良。
因此,开发
胰腺癌相关基因的研究具有重要的临床意义。
本研究旨在制备一种胰腺癌
相关基因寡核苷酸芯片,以探索胰腺癌的发生机制和诊断治疗。
首先,从GenBank数据库中收集了与胰腺癌相关的基因序列,包括转
录因子、生长因子、信号转导因子等。
然后,设计并合成了含有这些序列
的寡核苷酸探针,并将其固定到芯片上,形成胰腺癌相关基因芯片。
最后,使用该芯片对胰腺癌组织和正常组织进行了比较分析。
初步应用结果显示,与正常组织相比,胰腺癌组织中多种基因的表达
水平显著改变,包括肿瘤抑制基因的下调和肿瘤促进基因的上调等。
这些
发现为进一步研究胰腺癌的发生机制和诊断治疗提供了重要的线索。
总之,胰腺癌相关基因寡核苷酸芯片的制备和初步应用对于胰腺癌的
研究具有重要的临床意义。
基于AMMI_模型的辽宁省水稻品种区域试验稳定性及适应性分析
基于AMMI 模型的辽宁省水稻品种区域试验稳定性及适应性分析姜秀英1,于永梅2,马作斌1,吕军1,王丽丽1,李跃东1,韩勇1,解文孝1*(1辽宁省水稻研究所,沈阳110101;2桓仁满族自治县农业综合服务中心,辽宁本溪117200)摘要:为评价辽宁省水稻品种的稳定性、丰产性、适应性及不同试验点的区分力,利用AMMI 模型对2019年辽宁省水稻区域试验中早熟组参试品种及试验点进行分析。
结果表明:基因型、环境、基因型与环境互作方差均达到极显著水平,三者平方和分别占总平方和的17.0%、49.72%、14.19%。
AMMI 模型中前2个主成分值达到极显著水平,共解释76.5%的交互作用,能有效地分析基因与环境互作效应。
源粳2号(g4)、美锋稻245(g2)、富禾稻258(g5)属高产稳产型品种,6个试验点中,区分力最强的是开原市示范繁殖农场(e1)。
关键词:AMMI 模型;水稻;稳定性;适应性水稻是辽宁省第二大粮食作物,在全省粮食生产和经济发展中占有重要地位,筛选适宜辽宁地区种植的水稻品种意义重大。
区域试验对品种丰产性、稳产性、适应性、抗逆性等进行鉴定,并进行品质分析、DNA 指纹检测等,为品种审定和加速良种推广与合理布局提供依据。
基因型与环境互作对作物品种的稳产性和区域适应性具有关键作用[1]。
品种评价必须考虑包括产量在内的多个性状。
进行多性状评价、选育高产稳产及广适型品种是育种家需要解决完成的重要课题。
以往对于区域试验数据的分析大多采用算术平均数、方差分析或线性回归分析等方法,然而这些方法在评价基因型与环境互作时具有较大的局基金项目:省水稻种植结构调整专项-优质高食味水稻新品种选育繁育示范推广;辽宁省应用基础研究计划项目,2022JH2/101300283;沈阳市科技特派团项目,22-319-2-48;中国博士后科学基金面上资助,2022MD713760。
收稿日期:2023-07-10作者简介:姜秀英(1973-),女,副研究员,硕士,主要从事常规水稻品种选育及区域试验工作。
基因组重组技术选育埃博霉素B高产菌株
( 1 陕西科技 大学生命科 学与工程 学院,西安 7 1 0 0 2 1 ;2陕西科技大 学资源与环境学院 , 西安 7 1 0 0 2 1 )
摘要 :目的 用基 因重组 技术 选育 埃博霉素高产菌株 。方法 本研究首先从不 同生境 中分 离筛选 到4 株能产生埃博霉素B 的纤维堆囊菌 ,以这些野 生菌株 作为Ge n o me s h u li f n g 递归原生质体融合 出发菌株 。结 果 通 过五轮基 因组重组成功选育到 了3 株遗传稳定 的高产埃博霉素B 重组菌株 ,其 中一株 重组菌株 s o F 5 . O 9 的埃博霉素B产量达到 了1 5 . 8 mg / L,比原始 出发菌株S o 0 7 — 9 埃博霉素B 产量提 高了3 5 . 1 倍 。结论 本研究证 明使用野生菌株作 为Ge n o me s h u li f n g 递归原生质体融合 出发菌株也 能有 效提 高
G o n g G u o — l i , C h e n S o n g , L i Hu i , Z e n g Q i a n , L i Na n a n d S o n g J u n - n a
( 1 S h a a n x i Un i v e r s i t y o f S c i e n c e a n d T e c h n o l o g y , C o l l e g e o f L i f e S c i e n c e a n d E n g n e e r i n g , Xi ’ a n 7 1 0 0 2 1 )
Th i s s t u d y s c r e e n e d o u t f o u r g e n e t i c d i v e r s i t y o f S o r a n g i u m c e l l u l o s u m f r o m d i f f e r e n t s o u r c e s o f s o i l t h a t p r o d u c e s e p o t h i l o n e B, a n d t h e s e wi l d s t r a i n s a c t a s s t a r t i n g s t r a i n s o f g e n o me s h u li f n g . Re s u l t s T h r e e h e r e d i t a r i l y s t a b l e
结肠镜检查前肠道准备的饮食管理
结肠镜检查前肠道准备的饮食管理*程芃1#郭殿华1柏愚2孟祥军3&李兆申2&海南西部中心医院(上海交通大学医学院附属第九人民医院海南分院)消化内科1(571799)海军军医大学第一附属医院消化内科2上海市消化道微生态及相关重大疾病研究重点实验室上海交通大学医学院附属第九人民医院消化内科3摘要理想的肠道准备是结肠镜检查成功的基础。
高质量的肠道准备主要包括饮食管理和肠道清洁两大部分,并应同时具备有效性和良好的耐受性。
其中饮食管理是肠道准备的关键环节,起着不可忽略的作用。
本文就当前国内外临床上采用的各种肠道准备的饮食管理方案作一综述。
关键词肠道准备;饮食管理;结肠镜检查;膳食纤维Dietary Management in Bowel Preparation Before Colonoscopy CHENG Peng 1,GUO Dianhua 1,BAI Yu 2,MENGXiangjun 3,LI Zhaoshen 2.1Department of Gastroenterology,Hainan West Central Hospital (Shanghai Ninth People ′sHospital,Shanghai Jiao Tong University School of Medicine),Danzhou,Hainan Province (571799);2Department of Gastroenterology,the First Affiliated Hospital of Naval Medical University,Shanghai;3Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research;Department of Gastroenterology,Shanghai Ninth People ′s Hospital,Shanghai Jiao Tong University School of Medicine,ShanghaiCo⁃correspondence to:MENG Xiangjun,Email:***********************;LI Zhaoshen,Email:***********************AbstractIdeal bowel preparation is fundamental for a successful colonoscopy.High ⁃quality bowel preparationmainly includes diet management and bowel cleansing,and should be both effective and well tolerated.Among them,diet management is the key point of bowel preparation and plays a non⁃negligible role.This article reviewed the various dietary management schemes used in the clinical practice of bowel preparation.Key wordsBowel Preparation;Diet Management;Colonoscopy;Dietary FiberDOI :10.3969/j.issn.1008⁃7125.2023.02.010*基金项目:海南省自然科学基金(821RC733);海南省卫生健康行业科研项目(20A200397)#Email:***************&本文共同通信作者:孟祥军,Email:***********************;李兆申,Email:***********************高质量的肠道准备主要包括饮食管理和肠道清洁两大部分,并与患者的依从性、药物剂量、服药时间、心理状态、健康教育等多方面综合因素有关。
美国科学家通过研究发现了白血病治疗新靶点
美国科学家通过研究发现了白血病治疗新靶点
佚名
【期刊名称】《中国医药工业杂志》
【年(卷),期】2006(37)11
【摘要】美国辛辛那提儿童医院医学中心近日宣布了一项前沿领域的成果:目前已知白细胞在免疫系统中发挥重要作用,该中心的研究者发现RhoHGTP酶在白细胞成熟和激活过程中扮演关键角色,此外还发现了该蛋白在这一过程中新的作用机制。
这些发现与此前的研究结果提示RhoH GTP酶可能成为治疗某些类型的白血病的新靶点。
该研究报告即将发表在《自然-免疫学》上(文章部分提前发表在《自然》杂志网站上)。
【总页数】1页(PI0012-I0012)
【关键词】美国科学家;白血病;靶点;治疗;《自然》杂志;GTP酶;免疫系统;儿童医院【正文语种】中文
【中图分类】S685.12
【相关文献】
1.白血病治疗新靶点——白血病干细胞 [J], 陈运贤;丁倩
2.美国科学家发现了新的液态聚合物 [J], 郑诗颖
3.我国科学家发现帕金森病可能的发病机制此项研究为人类PD病的预防和治疗提供了新的潜在靶点 [J],
4.研究发现骨桥蛋白可能成为治疗白血病的新靶点 [J], 温玉琴(编译)
5.美国科学家发现炎症性肠病治疗的新靶点 [J], 张坛
因版权原因,仅展示原文概要,查看原文内容请购买。
小麦选择性自噬关键基因NBR1的原核表达
收稿日期:2018-12-18基金项目:天津市自然科学基金(17JCZDJC33800);天津市高校中青年骨干创新人才培养计划(135305JF78);天津师范大学中青年教师学术创新推进计划(1353P2XC1604)作者简介:刘彦妮(1993—),女,山西人,在读硕士生,主要从事植物遗传学研究。
通讯作者简介:王华忠(1976—),男,天津人,教授,博士,主要从事遗传学研究。
小麦选择性自噬关键基因NBR1的原核表达刘彦妮,杨文文,王华忠(天津师范大学生命科学学院天津市动植物抗性重点实验室,天津300387)摘要:自噬参与了动植物的生长、发育、衰老和逆境胁迫响应等过程。
NBR1是选择性自噬的底物受体之一,其识别泛素化的特定蛋白底物并通过与自噬膜上的ATG8互作引导底物进入自噬降解过程。
在前期克隆了两个小麦NBR1基因的基础上,本研究通过常规的分子克隆技术构建了两个基因的原核表达载体并将其转化到大肠杆菌中,利用SDS-PAGE 方法鉴定了两个NBR1基因在大肠杆菌中的表达情况。
结果表明,导入大肠杆菌的两个小麦NBR1均能够被IPTG 诱导表达;表达重组蛋白两端含有His(6)标签,其表观分子量与理论分子量基本一致;重组蛋白在诱导后2h 即表现较高的表达量,并在诱导后4h 达到最高的表达量。
研究结果为后续小麦NBR1蛋白的纯化、抗体的制备以及该蛋白的互作性质、表达特征等功能研究工作奠定了基础。
关键词:选择性自噬;小麦;NBR1基因;原核表达中图分类号:S512.1文献标识码:A DOI 编码:10.3969/j.issn.1006-6500.2019.04.001Prokaryotic Expression of The Wheat Key Selective Autophagy Gene NBR1LIU Yanni,YANG Wenwen,WANG Huazhong(Tianjin Key Laboratory of Animal and Plant Resistance,School of Life Sciences,Tianjin Normal University,Tianjin 300387,China)Abstract :Autophagy plays an important role in the growth,development,aging and stress responses of plants and animals.NBR1functions in selective autophagy as a substrate receptor,which recognizes specific ubiquitinated proteins and presents them to the au ⁃tophagic degradation process through its interaction with ATG8on autophagic membranes.Previously,two wheat NBR1genes were cloned in Tianjin key laboratory of animal and plant resistance.In this study,prokaryotic expression vectors for the two wheat NBR1s were constructed and transformed into E.coli .Results from SDS-PAGE showed that wheat NBR1s could express efficiently in E.coli through IPTG induction.The expressed recombinant proteins had N-and C-terminal His (6)tags,and their molecular weights were consistent with the predicted values.High levels of recombinant proteins were detected at as early as 2h after IPTG induction,and the highest levels were reached at 4h after IPTG induction.These results laid a foundation for the preparation of recombinant wheat NBR1proteins and their antibodies for use in assays on the interaction and expression features of wheat NBR1s.Key words :selective autophagy;wheat (Triticum aestivum L.);NBR1gene;prokaryotic expression天津农业科学Tianjin Agricultural Sciences 圆园19,25(4):1-4自噬(autophagy )是一种保守的真核生物细胞内物质降解过程。
国际上著名的从事药剂学研究的专家
Intra Oral Delivery (口腔内传递)直接由口腔黏膜吸收,瞬间进入血液循环,有效成分不流失。
Universities, Departments,FacultiesResearchersButler University College of Pharmacy and Health Sciences Health Sciences USA Associate Professor Nandita G. DasMain focus on her research facilities are about peformulation, biopharmaceutics, drug targeting, anticancer drug delivery.Purdue University School of Pharmacy and Pharmacal Sciences Department of Industrial and Physical Pharmacy (IPPH) USA Professor Kinam ParkControlled Drug Delivery, Glucose-Sensitive Hydrogels for Self-Regulated Insulin Delivery, Superporous Hydrogel Composites, Oral Vaccination using Hydrogel Microparticles, Fractal Analysis of Pharmaceutical Solid Materials.St. John's University School of Pharmacy and Allied Health ProfessionsUSA Professor Parshotam L. MadanControlled and targeted drug delivery systems; Bio-erodible polymers as drug delivery systemsThe University of Iowa College of Dentistry Department of Oral Pathology, Radiology, and Medicine USA Professor Christopher A. Squierpermeability of skin, and oral mucosa to exogenous substances, including alcohol and tobacco, and drug deliveryThe University of Iowa College of Pharmacy Department of Pharmaceutics USA Associate Professor Maureen D. DonovanMucosal drug delivery especially via the nasal, gastrointestinal and vaginal epithelia; and mechanisms of drug absorption and disposition.The University of Texas at San Antonio College of Engineering Department of Biomedical Engineering USA Professor Jeffrey Y. ThompsonDental restorative materials and implantsThe University of Utah Pharmaceutics & Pharmaceutical Chemistry USA Professor John W. MaugerDr. Maugner is mainly focused on dissolution testing and coating technology of orally administered drug products with bitter taste about which he is one of the inventors of a filed patent.University of Kentucky College of Pharmacy Pharmaceutical Sciences USA Professor Peter CrooksDr. Crooks is internationally known for his research work in drug discovery, delivery, and development, which includes drug design and synthesis, pharmacophore development, drug biotransformation studies, prodrug design, and medicinal plant natural product research. His research also focuses on preclinical drug development, including drug metabolism and pharmacokinetics in animal models, dosage form development, and drug delivery assessment using both conventional and non-conventional routes, and preformulation/formulation studies.Associate Professor Russell MumperDr. Mumper's main research areas are thin-films and mucoadhesive gels for (trans)mucosal delivery of drugs, microbicides, and mucosal vaccines, and nanotemplate engineering of nano-based detection devices and cell-specific nanoparticles for tumor and brain targeting, gene therapy and vaccines.West Virginia University School of Pharmacy Department of Basic Pharmaceutical Sciences USA Associate Professor Paula Jo Meyer StoutDr. Stout's research areas are composed of dispersed pharmaceutical systems, sterile product formulation DDS for dental diseases and coating of sustained release formulations.Monash University Victorian College of Pharmacy Department of Pharmaceutics Australia Professor Barrie C. FinninTransdermal Drug Delivery. Physicochemical Characterisation of Drug Candidates. Topical Drug Delivery. Drug uptake by the buccal mucosaProfessor Barry L. ReedTransdermal Drug Delivery. Topical Drug Delivery. Formulation of Dental Pharmaceuticals.University of Gent Faculty of Pharmaceutical Sciences Department of Pharmaceutics Belgium Professor Chris Vervaet-Extrusion/spheronisation - Bioadhesion - Controlled release based on hot stage extrusion technology - Freeze-drying - Tabletting and - GranulationPh.D. Els AdriaensMucosal drug delivery (Vaginal and ocular) Nasal BioadhesionUniversity of Gent Faculty of Pharmaceutical SciencesLaboratory of Pharmaceutical Technology Belgium Professor Jean Paul Remonbioadhesive carriers, mucosal delivery, Ocular bioerodible minitablets, Compaction of enteric-coated pellets; matrix-in-cylinder system for sustained drug delivery; formulation of solid dosage forms; In-line monitoring of a pharmaceutical blending process using FT-Raman spectroscopy; hot-melt extruded mini-matricesDanish University of Pharmaceutical Sciences Department of Pharmaceutics Denmark Associate Professor Jette JacobsenLow soluble drugs ?in vitro lymphatic absorption Drug delivery to the oral cavity ?in vitro models (cell culture, diffusion chamber) for permeatbility and toxicity of drugs, in vivo human perfusion model, different formulation approaces, e.g. iontophoresis.。
外周血细胞ConA受体的电镜标记技术
外周血细胞ConA受体的电镜标记技术
喻毅强
【期刊名称】《医学研究生学报》
【年(卷),期】1989(000)004
【摘要】无
【总页数】1页(P75)
【作者】喻毅强
【作者单位】无
【正文语种】中文
【中图分类】R329
【相关文献】
1.小鼠腹腔巨噬细胞ConA受体的电镜定位研究 [J], 史勤;王福安
2.一种可用于分析水稻花药中钙调素蛋白分布的胶体金免疫电镜标记技术 [J], 夏快飞;徐信兰;叶秀麟;梁承邺
3.人腹腔巨shi细胞ConA与WGA受体的电镜定位研究 [J], 王福安;张太和
4.外周血细胞中溶菌酶的免疫电镜检测技术 [J], 喻毅强
5.小鼠腹腔巨噬细胞的conA受体分布及受体介导内吞 [J], 高玉民;朴英杰;胡雯;周翼模
因版权原因,仅展示原文概要,查看原文内容请购买。
申请交叉科学部项目
申请交叉科学部项目
尊敬的 Cross-Disciplinary Science and Engineering Program 委员会,
我在此申请交叉科学部项目,希望获得贵部门的支持与资助,以推进我所从事的研究工作。
作为一名科研工作者,我一直致力于探究不同领域之间的相互作用和交叉点。
我所研究的领域包括材料科学、化学、生物工程和生物医学。
通过对这些领域的深入研究,我发现它们之间存在着广泛的联系和潜在应用,这也是我申请贵部门项目的主要原因。
在这个项目的支持下,我希望能够进一步深入探究交叉科学的实践应用,并开展一系列相关研究。
我将把重点放在以下几个方面:
1. 设计和开发新材料,探究它们的化学和生物学性质及其应用。
2. 探索新的生物医学技术,包括仿生材料制备、基因编辑和药物筛选等领域。
3. 研究生物系统的复杂性,包括细胞及其外部环境之间的相互作用和信息交换。
通过这些研究,我相信我能够为我的学术领域做出更大的贡献,并为社会健康医疗事业做出更多贡献。
同时,我也将积极参与与其他领域专家的合作,促进学术交流和成果的应用。
我深信,通过贵部门项目的支持,我将能够实现自己的研究目标,取得突破性成果。
衷心感谢您的考虑和支持。
此致
敬礼。
同卵双胞胎食管、贲门组织P53、PCNA蛋白的表达
同卵双胞胎食管、贲门组织P53、PCNA蛋白的表达樊慧;李学民;周胜理;岳文彬;王晗晶;宋昕;郭明;范宗民;崔娟;杜娴娟;申秋;王立东;郭军辉;樊冬梅;李吉林;张延瑞;周福有;冯常炜;高社干;焦新英;张广平【期刊名称】《郑州大学学报(医学版)》【年(卷),期】2009(044)001【摘要】目的:探讨同卵双胞胎食管贲门组织中P53和细胞核增殖抗原(PCNA)蛋白表达特征.方法:采用免疫组织化学ABC方法,分析来自河南食管癌高发区同卵双胞胎食管(19对)、贲门(17对)组织中P53和PCNA蛋白的表达.结果:19对同卵双胞胎食管组织中,2个成员均为正常组织(NOR)11对,单发不典型增生(DYS)4对,单发食管鳞癌(SCC)3对,双发SCC1对,病理组织一致性为63.16%(12/19).17对同卵双胞胎贲门组织中,2个成员均为NOR 5对,单发DYS 12对,病理组织一致率为29.41%(5/17).食管与贲门组织病理组织一致率差异无统计学意义(P>0.05).在11对食管上皮组织均为NOR的同卵双胞胎中P53蛋白表达一致4对(36%),不一致7对(64%);PCNA蛋白表达一致10对(91%),不一致1对(8%).1对双发SCC同卵双胞胎中P53、PCNA蛋白表达均为阳性.5对贲门上皮组织均为NOR的同卵双胞胎P53蛋白表达均为阴性,PCNA蛋白表达均为阳性.结论:后天环境因素对食管上皮分子改变起重要调节作用.【总页数】3页(P34-36)【作者】樊慧;李学民;周胜理;岳文彬;王晗晶;宋昕;郭明;范宗民;崔娟;杜娴娟;申秋;王立东;郭军辉;樊冬梅;李吉林;张延瑞;周福有;冯常炜;高社干;焦新英;张广平【作者单位】河南省食管癌重点开放实验室,郑州大学第一附属医院,郑州大学基础医学院,郑州,450052;河南省食管癌重点开放实验室,郑州大学第一附属医院,郑州大学基础医学院,郑州,450052;磁县医院病理科,磁县,056500;河南省食管癌重点开放实验室,郑州大学第一附属医院,郑州大学基础医学院,郑州,450052;河南省食管癌重点开放实验室,郑州大学第一附属医院,郑州大学基础医学院,郑州,450052;濮阳市人民医院肿瘤科,濮阳,457000;河南省食管癌重点开放实验室,郑州大学第一附属医院,郑州大学基础医学院,郑州,450052;河南省食管癌重点开放实验室,郑州大学第一附属医院,郑州大学基础医学院,郑州,450052;河南省食管癌重点开放实验室,郑州大学第一附属医院,郑州大学基础医学院,郑州,450052;河南省食管癌重点开放实验室,郑州大学第一附属医院,郑州大学基础医学院,郑州,450052;河南省食管癌重点开放实验室,郑州大学第一附属医院,郑州大学基础医学院,郑州,450052;河南省食管癌重点开放实验室,郑州大学第一附属医院,郑州大学基础医学院,郑州,450052;河南省食管癌重点开放实验室,郑州大学第一附属医院,郑州大学基础医学院,郑州,450052;河南省食管癌重点开放实验室,郑州大学第一附属医院,郑州大学基础医学院,郑州,450052;河南省食管癌重点开放实验室,郑州大学第一附属医院,郑州大学基础医学院,郑州,450052;河南省食管癌重点开放实验室,郑州大学第一附属医院,郑州大学基础医学院,郑州,450052;林州市姚村食管癌医院病理科,林州,456592;河南省人民医院消化内科,郑州,450003;河南省食管癌重点开放实验室,郑州大学第一附属医院,郑州大学基础医学院,郑州,450052;郑州大学第二附属医院消化内科,郑州,450014;河南科技大学第一附属医院肿瘤科,河南科技大学肿瘤研究所,洛阳,471003;林州市姚村食管癌医院病理科,林州,456592;河南省食管癌重点开放实验室,郑州大学第一附属医院,郑州大学基础医学院,郑州,450052【正文语种】中文【中图分类】R735.1【相关文献】1.食管癌高发区同卵双胞胎食管、贲门和胃窦活检组织病理比较 [J], 张广平;周胜理;范宗民;岳文彬;崔娟;焦新英;周福有;常扶保;宋昕;宋爽;王立东;冯常炜;樊慧;李吉林;张延瑞;王晗晶;高社干;郭涛2.贲门癌癌旁和无症状人群贲门黏膜活检肠上皮化生组织中p53和PCNA的表达[J], 冯笑山;贺新伟;吴会芳;王立东;高社干;马保根;何欣;范宗民;高珊珊;郭花芹;王启鸣;郭瑞锋3.贲门癌与食管癌组织p53蛋白表达和基因突变分析 [J], 周琦;郑作昱;王立东;刘宾;秦艳茹;王道存;常志伟;易会兴;范宗民;李吉林4.同一个体食管和贲门癌旁不典型增生组织p53和PCNA蛋白表达的研究 [J], 王能超;王立东;杜娴娟;温巍;李韶华;周丽;齐红;任景丽;李吉林;范宗民;何欣;王苒;陈志国;郭志刚5.食管贲门双源癌患者癌组织中mdm2与Bcl-2和bax及p53蛋白的表达 [J], 吕晓东;王进;王立东;周建炜;李吉林;王俊宽;孙哲;刘小莉;王苒;江亚南;范宗民;高珊珊;何欣因版权原因,仅展示原文概要,查看原文内容请购买。
多色探针熔解曲线分析法评估结核分枝杆菌阳性患者对不同抗结核药物
- 82 -31(5):1172-1175.[6] GU H,WANG Y,DU M,et al. Effectiveness of using mean corpuscular volume and mean corpuscular hemoglobin for beta-thalassemia carrier screening in the guangdong population of China[J]. Biomedical and Environmental Sciences,2021,34(8):667-671.[7] MANTHEI D M,HARRO D M,KEREN D F. Incorrect migration of hemoglobin after capillary electrophoresis software update complicates diagnosis of an infant with hemoglobin S/Beta+thalassemia[J]. The Journal of Applied Laboratory Medicine,2021,6(5):1371-1375.[8]宋琪玲,郭杨柳,何勇均,等. RDW 筛查地中海贫血诊断界值的建立及其与MCV、MCH、HbA 2联合筛查的价值[J].中国实验血液学杂志,2021,29(3):847-852.[9] MAJI S K,DOLAI T K,PRADHAN S,et al. Implications of population screening for thalassemias and hemoglobinopathies in rural areas of West Bengal, India: report of a 10-year study of 287,258 cases[J]. Hemoglobin: International Journal for Hemoglobin Research,2020,44(6):432-437.[10]刘利,余楚壬,李珊珊,等. α地中海贫血基因携带者709例红细胞参数、血红蛋白A 2及基因检测结果分析[J].广东医学,2021,42(8):1006-1008.[11]宋琪玲,郭杨柳,何勇均,等. RDW 筛查地中海贫血诊断界值的建立及其与MCV、MCH、HbA 2联合筛查的价值[J].中国实验血液学杂志,2021,29(3):847-852.[12]周亚丽,李平萍,杨焜,等.临界血红蛋白A 2人群的β地中海贫血检出情况[J].广西医学,2021,43(5):587-589.(收稿日期:2023-11-09) (本文编辑:冯乐乐)①泉州市疾病预防控制中心 福建 泉州 362000多色探针熔解曲线分析法评估结核分枝杆菌阳性患者对不同抗结核药物耐药性的诊断效能陈李晓①【摘要】 目的:分析多色探针熔解曲线分析法(MMCA)评估结核分枝杆菌阳性患者对利福平、乙胺丁醇、链霉素、异烟肼、喹诺酮耐药性的诊断效能。
全能型酵母双杂交系统和蛋白表达系统
1.4 DUALhybrid 定制筛选服务
DUALsystems 公司除了提供 DUALhybrid 试剂盒外,还提供定制服务。此定制
服务分为两个独立的部分,研究者可以根据自己的需要,可选择其中的一部分或
选择完整的酵母双杂交服务。
Part I:
bai vector
提供用于酵母三杂交的载体。 优势:适用于酵母三杂交检测系统。
4)control plasmids
• pLexA-laminC, pLexA-p53 and pGAD-largeT
优势:降低假阳性,提高筛选的严谨性
5)Yeast
1.5 文献
综述: A novel genetic system to detect protein-protein interactions. Fields and Song Nature. 340, 245-6 (1989)
DUALmembrane系统是DUALsystems公司最独特的具有自主专利的产品系 列。它摆脱了传统酵母双杂交的最大局限性(即只能检测核蛋白之间的相互作 用),成为检测或筛选跨膜蛋白间相互作用强有力的检测技术。它利用分离的泛 素系统(split-ubiquitin)直接检测天然状态下膜蛋白间的相互作用,是目前市 面上唯一可提供检测膜蛋白间相互作用的新基因系统。
优势: -
研究者无需耗时建立酵母双杂交系统; 省略实验摸索的步骤,减少试剂的浪费,和大量的时间消耗; DUALsystems 公司已提供 超过10年的定制服务,经验丰富;
Free: 400 819 7199 Tel:010-52086640 reagent_bj@
酵母双杂交系统和蛋白表达系统
2)1 prey vector
自身免疫调节因子在小鼠胚胎干细胞向胸腺上皮祖细胞分化中的表达
自身免疫调节因子在小鼠胚胎干细胞向胸腺上皮祖细胞分化中的表达·研究原著·
马静怡,杨文江,李远迪,黄佑娇,高 550025) DOI:10.3969/j.issn.2095-4344.2111
实验室检测指标
Real-Time PCR 检测各 阶段 AIRE、INS2、GAD67 基因表达
文题释义: 自身免疫调节因子:基因分析显示由于单基因突变引起一种自身免疫病,此基因则被命名为自身免疫调节因 子即 AIRE 基因。AIRE 基因的突变或者缺失会造成胸腺内自身组织特异性抗原转录缺失,影响阴性选择,从 而致使自身反应性 T 细胞逃逸外周,引起自身免疫反应。AIRE 基因一直是免疫学相关研究中的热点。 胸腺上皮细胞:胸腺上皮细胞分为髓质胸腺上皮细胞和皮质胸腺上皮细胞,二者均来源于胸腺上皮祖细胞, 据研究报道髓质胸腺上皮细胞表达的 AIRE 基因调控着胸腺内的阴性选择,但是由于胸腺上皮祖细胞和胸腺 上皮细胞不易分离且数量少,其应用和研究一直受限。该实验在体外将胚胎干细胞分化为胸腺上皮祖细胞, 可以为相关研究提供细胞来源。
(2)小鼠来源胚胎干细胞 分化而来的胸腺上皮 祖细胞中 AIRE 基因 高表达且具有转录组 织特异性抗原的功 能,为细胞移植改善 胸腺内组织特异性抗 原表达提供了实验室 依据。
小鼠来 源胚胎 干细胞 分化为 胸腺上 皮祖细 胞
Western blot 检测 各阶段 AIRE、胰 岛素、 GAD67 蛋白表达
小鼠来源胚胎干细胞
鉴定:免疫荧光染色检测 OCT4、SSEA1 表达
内胚层
添加细胞因子分化 3 d
鉴定:免疫荧光染色检测 SOX17、FoxA2 表达
基于末端保护和寡核苷酸分子杂交的荧光传感器检测叶酸受体
福建分析测试 Fujian Analysis&Testing
基于末端保 护和寡核苷酸分子杂交的荧光传感器检测叶酸受体
黄神 炜 ,黄希 竞
(1.福 州市 第三 中学 ,福建 福州 350001; 2.福 州大 学化 学学 院 。福建 福 州 3501 16)
摘 要 :叶酸受体 (FR)与寡核苷 酸 的DNA修饰 的叶酸 (FA)相互作 用 ,可 以保护 寡核苷酸 的 DNA不被 核酸外切 酶 (Exo I)剪切 ,起 到末 端保护作用 。之后 ,受到叶酸受体保 护的寡核苷酸 的 DNA通过等温 杂交链反应 (HCR)可形成 DNA聚合物 (长 双链 DNA),该 DNA聚合物与 SYBR Green I作用发 出较强 的可 以检测 的荧 光信号 。在此基础 上 ,我 们构建 了一个 可以检测叶酸受体 的高灵敏度荧光 生物传感器 。叶酸受体 的浓 度与增强的荧光强度呈线性关 系 ,其 检测范围为 10pM至 10nM及 检测限为 3.3pM。该 方法可应用 于检测人 宫颈癌 细胞 当中的叶酸受体浓度 。 关键词 :叶酸受体 ;末端保护 ;杂交链式 反应 ;荧光 中图分类号 :0657.7 文献标识码 :A 文章 编号 :1009—8143(2018)02—0025—07 Doi:lO.39696.issn.1009-8143.2018.02.05
2.Fuzhou University Schoo!of Chemist ̄,Fuzhou,Fujian 3501 16,China) Abstract:The end—protective folate receptor(FR)interacts with folic acid(FA)modified by DNA of oligonucleotide to pro— tect the DNA of oligonucleotide from exo I cleavage.Then,DNA of oligonucleotide can form a DNA polymer(1ong double— stranded DNA)by isotherm al hybridization chain reaction (HCR).As SYBR Green I can bind to DNA minor groove to give
蛋白质组学在哺乳动物睾丸和精子发生中的应用_黄德伦
基因组学与应用生物学,2013年,第32卷,第2期,第272-275页Genomics and Applied Biology,2013,Vol.32,No.2,272-275评述与展望Review and Progress蛋白质组学在哺乳动物睾丸和精子发生中的应用黄德伦黄愉淋付强张明*亚热带农业生物资源保护与利用国家重点实验室,南宁,530004*通讯作者,mingzhang@摘要“蛋白质组学”一词由Wilkins 在1994年提出,被称作后基因组时代一个新兴的研究手段。
它从整体水平上对组织或者细胞的蛋白质表达、功能、相互作用进行研究,现在成为生命科学未来发展的主要分支之一。
睾丸是哺乳动物雄性生殖系统中的一个重要的器官,由曲精小管和间质细胞组成。
蛋白质组学在睾丸和精子发生研究上的应用及其技术手段的不断创新,对睾丸功能、生殖机理、生殖疾病的研究起到了极其重要的作用。
所以,从蛋白质水平对睾丸和精子发生进行研究,为更好地理解雄性哺乳动物的生殖机理和疾病提供了一个新思路。
关键词蛋白质组学,哺乳动物,睾丸,精子发生Proteomics Applied in Testis and Spermatogesis of MammalHuang DelunHuang Yulin Fu Qiang Zhang Ming *State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources,Animal Reproduction Institute,Nanning,530004*Corresponding author,mingzhang@ DOI:10.3969/gab.032.000272Abstract Proteomics,a name proposed initially by Wilkins in 1994,is considered as a new research area in that has developed in the post-genome era.It describes research into the expression,functions and interactions of pro-teins in organs or cells,and has developed rapidly to become an important branch in the life science.The testis,which comprise mainly seminiferous tubules and leydig cells,is a vital organ in the male mammal reproductive sys-tem.Proteomics has played an important role in reaching the function of testis,reproductive mechanism and male genital disease.The use of proteomics to study testis development and spermatogenesis represents a novel approach for better understanding the reproductive mechanism and disease of male mammals.Keywords Proteomics,Mammal,Testis,Spermatogenesis 基金项目:本研究由国家自然科学基金(311604210)资助睾丸是哺乳动物雄性生殖系统中的一个重要的器官,由曲精小管和间质细胞组成,其中曲精小管由各级的生精细胞和支持细胞构成。
美科学家应用新技术成功抗击癌症
美科学家应用新技术成功抗击癌症
黎彬;林乾
【期刊名称】《国外医学情报》
【年(卷),期】2004(25)2
【摘要】科学家们利用RNA干扰技术可成功地削弱癌细胞产生一种被称作端粒酶的关键蛋白的能力。
在绝大多数癌症类型的癌细胞中存在的这种酶可赋予细胞疯狂分裂、永不死亡的致命能力。
该研究目前为致力于端粒酶癌症研究的科学家们研制出前所未有的可有效治疗85%的癌症类型的抗癌药物提供了一次良好的机会。
【总页数】1页(P11)
【作者】黎彬;林乾
【作者单位】无
【正文语种】中文
【中图分类】R73
【相关文献】
1.综合防治,抗击癌症的必由之路——美国癌症数据的启示 [J], 郑莹;周昌明
2.美国科学家对癌症早期诊断提出质疑——发现过早期癌症非好事 [J], 荣兰
3.日本科学家开发出用唾液筛查癌症新技术 [J],
4.广州科学家将鼠成纤维细胞成功转化为多能干细胞,标志我国科学家掌握并发展了干细胞研究新技术 [J],
5.以科学家开发出快速简易的癌症诊断新技术 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
膜蛋白酵母表达
膜蛋白酵母表达
膜蛋白酵母表达是一种用于研究膜蛋白的实验技术。
在膜蛋白酵母表达实验中,将感兴趣的蛋白质作为诱饵,融合到带有人工转录因子的Cub结构域上,而其他的作为“猎物Y”融合到NubG。
通过给酵母报告菌L40转染这两种质粒,可以检测两种蛋白的相互作用。
这种相互作用可导致分裂泛素异二聚体的组装并在蛋白酶解作用下释放转录因子,继而转位人核,从而引起两种报告基因lacZ和HIS3的激活。
此外,在膜蛋白酵母表达实验之前,还需要进行功能验证实验。
功能验证实验是在膜系统酵母双杂筛选之前必须要完成的。
具体而言,将PBT3-N-bait(诱饵质粒)与pOst1-NubI(功能验证阳性对照质粒)共转NMY51酵母宿主菌,即功能验证组。
基本原理为NubI不依赖猎物蛋白能单独与Cub结合,从而激活报告基因。
如果功能验证结果为阳性,则可以继续进行膜蛋白酵母表达实验。
【高中生物】无需活细胞的蛋白合成新技术
【高中生物】无需活细胞的蛋白合成新技术来自美国能源部橡树岭国家实验室(oakridgenationallaboratory)的研究人员研发出了一种无需细胞培养,人工合成蛋白质的新系统,这一研究成果公布在12月22日的small杂志上。
该生物反应器使用大肠杆菌细胞提取物、绿色荧光蛋白DNA编码基因和必需代谢物的混合物。
与普通的活细胞系统不同,这种新的蛋白质合成机器使用一个由硅制成的长蛇形通道,该通道与一个可以结合“反应器”和“喂食器”通道材料的膜集成。
“利用这种工程膜可以很方便的实现代谢物、能源和抑制物之间的交换,”作者写道。
研究人员将双通道生物反应器的蛋白质合成与离心管中的参考混合反应和单通道生物反应器进行了比较。
离心管中的参考混合反应只是在摇床上的温水浴,直到停止产生蛋白质,最终产生325μG/ml的蛋白质浓度混合物。
单通道生物反应器中的蛋白产量则大约能提高24%。
而最新的这一新技术利用工程膜,最终产生的蛋白浓度为2mg/ml。
“通过这种方式,我们可以更快地生产出更多的蛋白质用于靶向生产,”这篇文章的作者斯科特·雷特尔说,“由于该系统不需要活细胞,它将减少生成蛋白质所需的设施,如果需要生成蛋白质,它可以在任何时间和任何地方获得,而不需要在运输和储存期间将蛋白质冷冻。
”此外,在体外人工构建能合成蛋白的核糖体,一直是合成生物学领域的研究热点,在此之前,人们也尝试了多种合成途径,但结果都不理想。
2021年,西北大学的michaelc.jewett和哈佛大学医学院的georgem.church领导研究团队,在天然酶的帮助下,模拟了细胞内的核糖体生成途径,获得了有功能的人造核糖体。
这项研究可以帮助人们进一步了解核糖体的形成和功能,开发更有效靶向核糖体组装的抗生素,设计具有特殊功能的新核糖体,甚至构建人工细胞。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Applying Embodied Interaction and Usability Engineering to Visualization onLarge DisplaysRobert Ball, Michael DellaNoce, Tao Ni, Francis Quek, and Chris NorthCenter for Human-Computer InteractionDepartment of Computer ScienceVirginia Polytechnic Institute and State University2202 Kraft Drive, Blacksburg, Virginia, 24060, USA{rgb6,mdellano,nitao,quek,north}@Large disp lays have rep eatedly been shown to help the field of visualization with betterperformance time, better accuracy, and additional insight. Large displays allow people to usemore of their embodied resources to better perform their tasks. However, a large display canonly be used as well as it can be interacted with. We p resent a number of interactiontechniques and devices including pointing, touch screens, 3D mice, head and hand tracking,and control p anel interaction and evaluate each. We also include the summary of oneexp eriment and refer to others on how large disp lays with embodied interaction candramatically help people perform tasks.resolution, large displays, interaction, visualization.1. INTRODUCTIONLarge displays have been shown to increase performance and accuracy with visualization tasks (e.g.[17]). They allow people to use a greater amount of their field of vision to perceive a greater amount of data. This increased field of view allows a greater amount of perception which allows greater insight into one’s data [13]. T hey allow people to gain insight into data that in ways that are impossible with small displays.However, large displays are inherently different from small displays [18]. They require different interactive techniques and paradigms. Techniques that work well on a single monitor may not work at all with a large display. Also, issues such as mouse rowing, losing one’s cursor, and trying to click on a widget five feet away are all issues that either do not exist or are minimized on a single monitor.In this paper we briefly explain five of the leading interactive paradigms with large displays (point, touch, mouse, head tracking, and control panel) and explain our experiences with each. We then evaluate each of the paradigms. When appropriate we show experiences applying usability engineering principles to improve the interaction. We also explain that in order for an interactive technique to be used effectively it should have the following characteristics:•Embodied interaction (natural usage)• Easy to learn• Easy to use1.1 Embodied InteractionPaul Dourish explains that embodied interaction is “interaction with computer systems that occupy our world, a world of physical and social reality, and that exploit this fact in how they interact with us [7].” In other words, an interactive device or technique that takes advantage of embodied interaction principles take advantage of how people actually interact with their real-world surroundings. T hese devices or techniques should be an extension of one’s body in as much a natural way as possible.T he human mind is not a disembodied computing device with visual input devices and discreet output devices, but the body works as a single integrated whole. Motor memory, proprioception, spatial memory,etc. are all resources of people that allow them to take advantage of large displays and help them more quickly create mental models of data that are more accurate than when relying more on virtual navigation. For example, a hammer becomes a natural extension of one’s body when one wants to pound something.A device or interactive technique might be easy to use, but at the same time not be natural. For example, a mouse is intuitive but not natural. One can easily grasp the mental model that moving the mouse on the table moves the cursor on the display in a similar way. However, the mouse is not natural because one must indirectly move the cursor. One must move the mouse on the horizontal plane (table) to have it move on the vertical plane (display).Examples of natural devices might include touch screens or pointing devices. If one wants to “click”, or push, a widget, possibly one of the most natural ways to do so it to push it with one’s finder on a touch screen. Likewise, if one wants to point to something on a display then why not just point to it with one’s finger or a laser pointer? The more natural a device is, the easier it will be for people to learn how to use it and the easier it will be for people to actually use it. In addition, natural devices and interactive techniques allow for a larger population to understand and use them.1.2 Easy to LearnDon Norman explains that in order for a device to be easy to learn, people must be able to easily create an appropriate mental mapping of the device [11]. In other words, people must be able to understand how the device works in some abstract way for them to use it. Any device or technique that does not seem intuitive or that require large manuals to use are less likely to catch on. If one cannot learn it, one cannot use it.1.3 Easy to UseFor any interactive device or technique to last the tests of time it must be easy to use. A device or technique that requires large amounts of mental or physical effort will not easily catch on or be used long term. Usability engineering principles of keeping things easy to use are usually lacking from most devices that people use [Norman]. It has been said that it is easy to create something complex; it takes genius to create something simple that is usable.2. RELATED WORKCzerwinski et al. [6] explain the current state of performance measurements and explain that their own study showed conclusively that participants using a multi-monitor configuration affording increased resolution (3 monitors wide) performed better than on a single monitor. Tan, et al. [19] also show how retention can be increased by using extra screen space to display different images in the user’s periphery to help recall more from a particular task session using their prototype called Infocockpit. Shupp, et. al[17] explored how performance of large displays varies with display size and display curvature.A few longitudinal studies have been performed on multiple monitors. Bishop and W elch [5] created a “desktop” environment that used projections on the wall to alleviate bezel and ergonomic issues. They report improvement in everyday work and an increase in physical interaction. Ball and North [1] performed a similar study but with multiple LCD monitors for a six month period of time with multiple users. They report a number of benefits in perceived increase in productivity and problems with bezels, adaptation to the display, and interaction problems.As more studies show the usefulness of large displays, different interactive techniques have followed. A number of different types of techniques, from using less traditional input techniques to different ways of interacting with the mouse have been developed. Large displays and multiple monitor displays are inherently different from smaller displays and logically should be interacted differently [18].A large amount of research has been done on pen-based interaction. For example, Tivoli [8], and Fluid Interaction [9] are all well-known examples. These techniques have historically been used for white-board type interactions.Mouse-based interactions have also been developed. Of particular note is the high-density cursor by Baudisch, et al. that focus on a greater visibility of the mouse cursor [4].Touch screens and camera-based touch gestures have also been implemented with large displays (e.g. Ringel, et al. [14]). Other well-known interaction techniques also exist, such as laser pointers (e.g. [12]), head-tracking (e.g. [1]), and hand gesture tracking (e.g. [20]).Khan, et al. [10] created an interface for physically larger displays that allows a user to see through a “telescope,” similar to a porthole, to another part of the display. The user then can manipulate the other part of the display through the telescope similar to remote computing. In addition, Microsoft Research has been active in the area of interaction for large displays. Their work can be summarized in [15].3. EXPERIENCESWe have experimented with a range of interaction devices and techniques. We will briefly discuss our experiences and the pros and cons of each. They include:• Pointing interaction•T ouchscreens•Wireless 3D gyro mouse• Head tracking interaction• Wired mouse•User interfaces and notification systems• Control panel interaction3.1 Pointing InteractionWe constructed an interactive pointer with our large display by tracking where the pointer is and where the display is. By taking the direction of the vector of the pointing device and intersecting that with the display plane we are able to accurately point to any location on our large display.Specifically, we used a VICON system (a near-infrared tracking system that tracks reflective beads) to track where the wand is in 3-dimension space. In addition, we used the VICON system to track the position of the display. Briefly, the VICON system takes the positions of all known objects every 1/60th of a second. We took the output of the VICON system and mapped the directional vector of the wand to the display. By using the VICON system we were also able to track the positions of the bezels and adjust accordingly. (Other pointing techniques, such as using laser pointers are described in [12].)In order to test the utility of the interactive pointer as a formative study we invited a kindergarten class to try the technique. T o make the experience interesting for the children we created a simple OpenGL program that allows one to draw wherever one is pointing. The children were given no instructions other than to draw pretty shapes and have fun. Figure 1 shows a child painting on the large display.FIGURE 1: A child using a pointer to draw on a large display.The children using the wand were able to accurately point to the display by receiving instant feedback of the position of the directional vector of the wand by seeing where they were pointing. The further back from the display the less accurate the exact position of the directional vector. As we knew the distance of the wand from the display using the VICON system, we adjusted accordingly by having a larger drawing cursor. The closer the wand was to the display the more accurate the drawing and the smaller drawing cursor.From our experience we found that the children were able to quick ly learn how to use the display. In addition, the pointer seemed very natural to the children; where one points is where one draws. With instant feedback, any inaccuracies can quickly be correctly by simply moving one’s hand accordingly.In addition, the pointer was easier to use than expected. Figure 1 shows a child using the pointer with her elbow bent and using mostly her wrist. By using a more relaxed arm movement the children did not fatigue as quickly as expected.However, there are two main problems with the pointing method that we used. First, although the cursor is positioned wherever one points, the cursor is only as steady as one’s hand. Second, in order to stop drawing or to change the color in our application one needs to have an additional device in the other hand. This problem is overcome using pointers that have buttons on them or possibly using speech or other similar techniques. However, these techniques introduce problems of their own. For example, pushing a button on the pointer usually moves the pointer however slightly and consequently moves the cursor as well.3.2 Touch ScreensSimilar to pointing devices, touch screens are natural devices that are both easy to learn and easy to use. In addition, unlike a mouse, a touch screen provides multiple points of access instead of a single point. However, unlike a pointer, one must physically move to the desired point on the large display in order for the cursor to be there. In addition, widgets on the display need to be larger than normal to compensate for finger widths.Touch screens can easily solve the problem of finding one’s cursor on a large display. Generally speak ing, users do not inherently care where their cursor is; they simply wish to perform a task. Regardless of where the cursor might be, a user could use a touch screen in conjunction with a mouse to simply position the cursor wherever they desire by touching the screen, then using the mouse as usual; there is not need to know where the cursor was, only to position the cursor where one wants it.Touch screens have recently gained in popularity for short term repetitive tasks. They are often found in restaurants and grocery stores where the server or cashier can quickly go through a sequence of button menus to mak e a food order or check out a customer. Using the concept of spatial memory they can streamline the process of ordering food or checking out.In addition, touch screens in conjunction with pointing devices have great potential as their strengths and weaknesses balance each other out. Also, large curved desktop displays, such as seen in Figure 2, can take advantage of the proximity of the monitors to the user. In other words, as people are in the center of a circle they can reach out to touch any part of the display with the same effort without the need to walk to distant parts of display. For more information on large, curved displays see [17].FIGURE 2: A user in the middle of a curved desktop display. If the monitors used are touch screens then the user can use less effort to touch any screen than if the display were flat.Our experience with touch screens shows that without adjusting widget sizes for finger width, precision with normal sized desk top icons can be problematic. This has especially been an issue with the start menu where a large number of links are available and precision is important to start the application that a person is interested in.By adjusting the widget size one has the increased problem of being able to use less of one’s display space although this is less of an issue with large displays. Another software problem that can occur is thatif one succeeds in increasing the size of all of one’s widgets, one does not necessarily want the size of text to increase as well.Finally, possibly one of the largest drawbacks to using touch screens is fatigue. Touch screens used in restaurants and grocery stores are often used for short tasks that take less than a few minutes to complete. However, if one completely replaced one’s mouse with a touch screen in a desktop situation, then arm fatigue would not be a trivial issue.3.3 Wireless 3D Gyro MouseA gyro mouse is a wireless mouse that one can use without the need for a table; one can walk around a room while still using the device. The gyro mouse is able to sense up and down movement as well as side to side movement while ignoring forward and backward movement. A picture of a gyro mouse can be seen in the red square in Figure 3.a. In contrast, Figure 3.b shows a user with a traditional mouse on a mobile table.FIGURE 3: a) A participant using the gyro mouse with the display. The gyro mouse is enlarged in the red square. b)A participant using a traditional mouse on a table.This device allows for a more natural interaction over standard mice. Instead of having to mentally map a horizontal plane to a vertical plane one need not have as complex a mental mapping as the cursor mimics physical movement. However, the gyro mouse is not as natural as a pointer in that it is still a mouse in that all movement is relative to the position of the cursor, not to where one is pointing. Also, other disadvantages that the gyro mouse has are similar to pointing devices: First, a device that one must hold requires more effort than a device stationed on a table and, second, the device is only as steady as one’s hand.In an experiment we ran 32 participants (10 female, 22 male) from the local area on a large display (see Figure 3) with ages that ranged from 24 to 39 through a series of geospatial visualization tasks: navigate to a target, find a target, find a specific pattern, and find as many patterns as possible. The experiment was a with-in subject experiment in that all participants performed all tasks. Using a VICON system we tracked participants’ physical navigation (their physical movement related to the task).A gyro mouse was given for the first three tasks specifically so that participants did not feel tethered to any particular location. However, for the last task participants were given a mobile lecture stand to write the patterns that they perceived from the visualization on the display on paper. The experiment compared varying degrees of display size from approximately one monitor to twenty-four monitors.We found for the first task (navigating to a point) that the physical range of movement was statistically significant with an average of 371% increase in range of movement from the one monitor to the twenty-four monitors (F(1,508)=123.28, p <0.01). The second task (finding a target) found similar results of an average of 304% increase in range of movement from one monitor to twenty-four monitors (F(1,762) =82.3, p<0.01). The third task (finding a particular pattern) also found similar results of an average of 466% increase in range of movement from one monitor to the twenty-four monitors (F(1,84)=39.4, p<0.01). However, for the last task, the task with a mobile stand, statistical analysis of the physical range of movement resulted in non-significance.Performance times were seen to improve for each task with larger display sizes except for the last task. Specifically, the first task (navigating to a point) improved 247% in performance time (F(1,508)=118.9, p<0.01); the second task (finding a target) improved 205% in performance time (F(1,762)=38.18, p<0.01); the third task (finding a particular pattern) improved 150% in performance time (F(1,90)=3.53, p=0.06).However, sta tistica l a na lysis of performa nce for the la st ta sk (non-directed pa ttern finding) resulted in non-significance with performance time.As a post-hoc analysis, we found a linear regression of physical navigation to performance time with an R2 of 0.858. This shows that the performance of the tasks was highly correlated to the physical navigation exhibited by the participants.In fa ct, we found tha t people felt “tethered” to the mobile ta ble even though it ha d wheels. Peoples’ performa nce time for the ta sks wa s consequently a ffected. In summa ry, the la rger the displa y a nd the more people could freely move a round, the better people’s performa nce time. On the other ha nd, the la rger displa y did not help performa nce time when people were “tethered” to the mobile ta ble thus showing the important of interaction devices with large displays.In a ddition, we found tha t pa rticipa nts a lwa ys chose to physica lly na viga te before exploring virtua l navigation (navigating with the mouse) possibilities. For example, for the first task there was an option of physically navigating to a target versus virtually navigating to a target. 100% of the participants (32 out of 32) chose to physica lly wa lk to the ta rget instea d of virtua lly pa nning the ta rget in front of them. Such preference wa s a lso seen in a ll other ta sks in tha t pa rticipa nts would exha ust their physica l na viga tion options before resorting to virtual navigation.3.4 Head Tracking InteractionAnother na tura l a pproa ch to intera ction is hea d tra cking. Hea d position a nd orienta tion ca n be used to simplify interaction with a large display. For example, in [1], head orientation was used to control which screen the mouse cursor occupied in a multi-monitor environment. Other device ma ppings a re conceivable.Using a simple 3-DOF hea d-orienta tion tra cker, we modified a geospa tia l visua liza tion progra m to respond to hea d rota tion a s input. By looking left one ma y pa n the ma p to the right a nd vice versa. Simila rly, by looking down one ma y pa n the ma p up a nd vice versa. The progra m a lso a ccepted two different forms of mouse input. The first type of mouse input is the tra ditional click-and-drag panning in which one clicks on the map and drags it in the opposite direction of the desired panning direction. The second type of mouse input is a click-and-drag continuous panning technique in which one clicks on the ma p a nd dra gs the mouse in the direction of the desired pa nning direction. Pa nning will continue in a given direction until the mouse is released and will be faster the further one drags.We ran a formative evaluation comparing head tilt tracking (see Figure 4.a), hand tilt tracking (see Figure 4.b), and the two different mouse interaction techniques. The data used were maps of Washington D.C. and downtown Chicago. The tasks consisted of finding and comparing different objects in the map.FIGURE 4: a) A participant using a head tilt tracker, highlighted by the red rectangle. b) A participant using a hand-head tilt tracker, highlighted by the red rectangle.We found tha t the ha nd tilt tra cker wa s the most efficient in terms of both user preference a nd performance time. Participants were able to naturally look at any part of the display they desired and then pan the map according to which direction they moved their hand. The mouse techniques were ranked a close second and third in terms of user preference and performance time.The head tilt tracker was deemed the worst both in user preference and performance time. According to user feedba ck, the displa y wa s too sma ll vertica lly. Users typica lly ha d to tilt their hea ds fa r a bove or below the bounds of the displa y to a chieve a rea sona ble scrolling speed. Not only did users find this uncomforta ble, but it drew their a ttention away from the display and the task a t hand. Another possible expla na tion for the poor performa nce of the hea d tilt tra cker is tha t scrolling a nd ga ze direction weretightly coupled. In other words, it was difficult for a user to scroll the map to the right while also scanning the map to their right. This was not the case with the mouse techniques or the hand tilt tracker.3.5 Wired MouseAlthough wired mice are not as natural as th e gyromouse, not everyone has a gyromouse available to th em or not sufficient motivation to move from a stationary location. As a result, in a related paper we showed the scalability of a dynamic size and speed cursor for large, high-resolution displays [3].We introduced the idea of a dynamic paradigm for wired mice. In our experiment we compared different paradigms of cursor input and speed cursor to cursor warping and standard cursor settings. In th e experiment we found gender bias for two different tasks (clicking and simple drag and drop), found that the cursor that was visually larger and had a much higher acceleration rate generally outperformed cursor warping and the standard cursor setting. In summary, we found that if a person has to use a wired mouse and, therefore be tethered to a single location, then it is better to adjust the cursor for size and speed to better fit the additional screen real estate available.3.6 User Interfaces and Notification SystemsFollowing the idea of a stationary person, we found that user interfaces and notification systems that are designed for a single monitor are not suitable for a large display. For example, a notification system that shows data and visualizations at the top of a single monitor may be several feet away from the user with a large display. As a result we studied notifications systems and user interfaces for large displays with games [16].As a possible solution we introduced a number of improvements to th e user interface to a popular strategy game. The different types of improvements included bringing the notifications to the user’s cursor wh en events occurred, on demand by th e user, at sch eduled intervals, and always sh own h overing around th e cursor. An experiment testing th e different types of notifications varied for different tasks. However, one relevant conclusion is that not changing the interface by keeping the notification systems in the same locations as was designed for a single monitor (i.e. the control part of the experiment) resulted in poorer performance times.3.7 Control Panel InteractionIn order to gain the maximum number of pixels for large displays one would need to control the displays from an external source. One common way of doing th is is using th e control panel approach. Th is approach involves controlling the display from another machine. The main advantage to this is that every pixel on the large display can be used for viewing data without the need to waste space for interaction purposes. Historically this approach is the most used approach.Unfortunately, when using this approach one usually uses a display that is smaller than the display one is trying to control introducing less th an a one-to-one mapping of pixels. Th is approach suffers from not being natural and not easy to use although it is relatively easy to learn. It is not natural in that one must change the representation of a display on one display in order for it to affect another. Also, it is not easy to use as there is no longer a one-to-one mapping of pixels requiring a greater amount of mental mapping so that clicking widgets or dragging windows can be difficult. However, if one is developing an application for a large display that requires little interaction, this may be a viable approach.4. CONCLUSIONLarge displays h ave considerable potential in general from multi-tasking performance improvements [2][6], retention improvements [19]. Th ey h ave also been sh own to improve strategies and insigh ts in dynamic geospatial visualization environments [16]. They especially have potential in the field of scientific exploration and knowledge discovery.However, in order for large displays to be used by th e general population th ey must h ave interaction devices and techniques that are a natural extension of one’s body, easy to learn, and easy to use. Any device or technique that takes too much effort to learn or use will either not gain acceptance or will be replaced.In th is paper we h ave sh ared our experiences of h ow well different devices and tech niques ach ieve success with interacting with large displays. Specifically, our contributions are:1. Physical navigation is preferred over virtual navigation.2. Un-tethered devices, such as wireless gyromice, encourage users to take advantage of the sizeof larger displays.3. Pointing devices by themselves are difficult to use as they can only point, but have potentialcoupled with other interactive methods.4. Touch screens are a natural method for interaction but can lead to fatigue quickly.5. Wired mice, if used, should be adjusted to the size of the display.6. Control panels, while easy to develop, are not suitable for most interactive applications of largedisplays.In conclusion, visualization is helped with large displays with performance, accuracy, and additional insight. However, the interactive techniques and devices used help or hurt these advantages. Interactive techniques and devices that do not confine people to one location, that allow people to move naturally and take advantage of their body, not just their mind, allow for people to perform at their fullest capability. 5. FUTURE WORK1. Compare different techniques and devices to each other and explore multi-modal inputs.2. Explore how people’s behavior might be different when interacting with displays when they arestanding/walking versus being stationary.REFERENCES[1] Ashdown, M., Oka, K., and Sato, Y. (2005) Combining head tracking and mouse input for a GUI onmultiple monitors. Extended abstracts of CHI ’05, pp. 1180–1191.[2] Ball, R. and North, C. (2005) An Analysis of User Behavior on High-Resolution Tiled Displays.Proceedings of INTERACT ‘05, Rome Italy, pp. 350-364.[3] TR-06-16. (2006) Dynamic size and speed cursor for large, high-resolution displays. ComputerScience, Virginia Tech, Blacksburg, Virginia, USA.[4] Baudisch, P. Cutrell, E., Robertson, G. (2003) High-Density Cursor: A Visualization Technique ThatHelps Users Keep Track of Fast-Moving Mouse Cursors. Proc. of INTERACT ’03, p. 236-243.[5] Bishop, G. and Welch, G. (2000) Working in the office of ‘real soon’ now.’IEEE CG&A, 20(4).[6] Czerwinski, M., Smith, G., Regan, T., Meyers, B., Robertson, G., Starkweather, G. (2003) Towardcharacterizing the productivity benefits of very large displays. In Proc. of Interact ’03.[7] Dourish, P. (2004) Where the Action Is: The Foundations of Embodied Interaction. MIT Press.[8] Elin, R. Pedersen, Kim McCall, Thomas P. Moran, and Frank G. Halasz. (1993) Tivoli: An electronicwhiteboard for informal workgroup meetings. In Proceedings of CHI ’93, pp. 391–398.[9] Guimbretière, F. Stone, M. and Winograd, T. (2001) Fluid Interaction with High-resolution Wall-sizeDisplays. In Proceedings of UIST 2001, 21-30,[10] Khan, A., Fitzmaurice, G., Almeida, D., Burtnyk, N., Kurtenbach, G. “A Remote Control Interface forLarge Displays.” In UIST 2004,127-136.[11] Norman, D. (1998) The Design of Everyday Things. Basic Books Press.[12] Olsen, D. and Nielsen, T. (2001) Laser pointer interaction. In SIGCHI ‘01, pp. 17 – 22.[13] Pirolli, P., Card, S., Wege, M. (2001) Visual information foraging in a focus + context visualization, inProceedings of CHI, 2001, pp. 506–513.[14] Ringel, M., Berg, H., Jin, Y., and et al. (2001) Barehands: Implement-free interaction with a wall-mounted display. CHI Extended Abstracts.[15] Robertson, G., Czerwinksi, M., Baudisch, P., Meyers, B., Robbins, D., Smith, G., and Tan, D. (2005)The Large-Display User Experience.” IEEE Computer Graphics and Applications. 25(4), pp. 44-51. [16] Sabri, A., Ball, R., Bhatia, S., Fabian, A., and North, C. (2006) High-Resolution Gaming: Interfaces,Notifications and the User Experience.” Interacting with Computers Journal. (To appear) September 2006.[17] Shupp, L., Ball, R., Yost, B., Booker, J., and North, C. (2006) Evaluation of Viewport Size andCurvature of Large, High-Resolution Display. Graphics Interface (GI) 2006.[18] Swaminathan, K and Sato, S. (1997) Interaction Design for Large Displays. Interactions, 4(1), 15-24.[19] Tan, D., Stefanucci, J., Proffitt, D., Pausch, R. The infocockpit: providing location and place to aidhuman memory.” In Proc. of PUI 2001. pp. 1-4.[20] Vogel, D. and Balakrishnan, R. (2005) Distant freehand pointing and clicking on very large, highresolution displays. In UIST ‘05.。