8 第8讲 离散型随机变量的均值与方差
离散型随机变量的分布列、均值与方差
离散型随机变量的分布列、均值与方差1.离散型随机变量的均值与方差 一般地,若离散型随机变量X 的分布列为(1)分布列的性质①p i ≥0,i =1,2,3,…,n . ②11=∑=ni i p(2)均值称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平. (3)方差称D (X )=i 12))((P X E x ni i ∑=-为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根D (X )为随机变量X 的标准差. 2.均值与方差的性质 (1)E (aX +b )=aE (X )+b .(2)D (aX +b )=a 2D (X ).(a ,b 为常数)3.判断下列结论的正误(正确的打“√”错误的打“×”)(1)随机变量的均值是常数,样本的平均值是随机变量,它不确定.(√)(2)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离变量平均程度越小.(√)(3)离散型随机变量的概率分布列中,各个概率之和可以小于1.(×) (4)离散型随机变量的各个可能值表示的事件是彼此互斥的.(√) (5)期望值就是算术平均数,与概率无关.(×)(6)随机变量的均值是常数,样本的平均值是随机变量.(×)(7)在篮球比赛中,罚球命中1次得1分,不中得0分.如果某运动员罚球命中的概率为0.7,那么他罚球1次的得分X 的均值是0.7.(√)(8)在一组数中,如果每个数都增加a ,则平均数也增加a .(√) (9)在一组数中,如果每个数都增加a ,则方差增加a 2.(×)(10)如果每个数都变为原来的a 倍,则其平均数是原来的a 倍,方差是原来的a 2倍.(√)考点一 离散型随机变量的分布列及性质[例1] (1)设X 是一个离散型随机变量,其分布列为则q 等于( )A .1B .1±22C .1-22D .1+22 解析:由分布列的性质知⎩⎪⎨⎪⎧1-2q ≥0,q 2≥0,12+1-2q +q 2=1,∴q =1-22.答案:C(2)设离散型随机变量X 的分布列为求:①2X +1的分布列; ②|X -1|的分布列. 解:由分布列的性质知:0.2+0.1+0.1+0.3+m =1,∴m =0.3. 首先列表为从而由上表得两个分布列为①2X +1的分布列为②|X -1|的分布列为[方法引航] (1)概率值均为非负数.(2)求随机变量在某个范围内的取值概率时,根据分布列,将所求范围内随机变量对应的取值概率相加即可,其依据是互斥事件的概率加法公式.1.随机变量的分布列为:其中a ,b ,c 成等差数列,若E (ξ)=13,则D (ξ)=________. 解析:由a ,b ,c 成等差数列及分布列性质得, ⎩⎪⎨⎪⎧a +b +c =1,2b =a +c ,-a +c =13,解得b =13,a =16,c =12.∴D (ξ)=16×2)311(--+13×2)310(-+12×2)311(-=59.答案:592.在本例(2)条件下,求X 2的分布列. 解:X 2的分布列为考点二 离散型随机变量的均值与方差[例2] (1)(2017·湖南益阳调研)某工厂有两条相互不影响的生产线分别生产甲、乙两种产品,产品出厂前需要对产品进行性能检测.检测得分低于80的为不合格品,只能报废回收;得分不低于80的为合格品,可以出厂,现随机抽取这两种产品各60件进行检测,检测结果统计如下:②生产一件甲种产品,若是合格品可盈利100元,若是不合格品则亏损20元;生产一件乙种产品,若是合格品可盈利90元,若是不合格品则亏损15元,在①的前提下:a .记X 为生产1件甲种产品和1件乙种产品所获得的总利润,求随机变量X 的分布列和数学期望;b .求生产5件乙种产品所获得的利润不少于300元的概率.解:①甲种产品为合格品的概率约为4560=34,乙种产品为合格品的概率约为4060=23. ②a .随机变量X 的所有取值为190,85,70,-35,且P (X =190)=34×23=12,P (X =85)=34×13=14,P (X =70)=14×23=16,P (X =-35)=14×13=112. 所以随机变量X 的分布列为所以E (X )=1902+854+706-3512=125.b .设生产的5件乙种产品中合格品有n 件,则不合格品有(5-n )件, 依题意得,90n -15(5-n )≥300,解得n ≥257,取n =4或n =5, 设“生产5件乙种产品所获得的利润不少于300元”为事件A ,则P (A )=C 454)32(13+5)32(=112243. (2)(2016·高考全国乙卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数. ①求X 的分布列;②若要求P (X ≤n )≥0.5,确定n 的最小值;③以购买易损零件所需费用的期望值为决策依据,在n =19与n =20之中选其一,应选用哪个?解:①由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.从而P (X =16)=0.2×0.2=0.04; P (X =17)=2×0.2×0.4=0.16; P (X =18)=2×0.2×0.2+0.4×0.4=0.24; P (X =19)=2×0.2×0.2+2×0.4×0.2=0.24; P (X =20)=2×0.2×0.4+0.2×0.2=0.2;P (X =21)=2×0.2×0.2=0.08; P (X =22)=0.2×0.2=0.04. 所以X 的分布列为②由①知P (X ≤③记Y 表示2台机器在购买易损零件上所需的费用(单位:元). 当n =19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040.当n=20时,E(Y)=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080. 可知当n=19时所需费用的期望值小于当n=20时所需费用的期望值,故应选n=19.[方法引航](1)已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解;(2)已知随机变量ξ的均值、方差,求ξ的线性函数η=aξ+b的均值、方差和标准差,可直接用ξ的均值、方差的性质求解;(3)由已知条件,作出对两种方案的判断.可依据均值、方差的意义,对实际问题作出判断.某商店试销某种商品20天,获得如下数据:试销结束后(3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X为第二天开始营业时该商品的件数,求X的分布列.解:(1)P(当天商店不进货)=P(当天商品销售量为0件)+P(当天商品销售量为1件)=120+520=310.(2)由题意知,X的可能取值为2,3.P(X=2)=P(当天商品销售量为1件)=520=1 4;P(X=3)=P(当天商品销售量为0件)+P(当天商品销售量为2件)+P(当天商品销售量为3件)=120+920+520=34.所以X的分布列为考点三[例3] (1)若X ~B (n ,p ),且E (X )=6,D (X )=3,则P (X =1)的值为( ) A .3·2-2 B .2-4 C .3·2-10 D .2-8解析:∵E (X )=np =6,D (X )=np (1-p )=3,∴p =12,n =12,则P (X =1)=C 112·12·11)21(=3·2-10.答案:C(2)某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为110和p .①若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值;②设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的分布列及均值E (ξ).解:①设“至少有一个系统不发生故障”为事件C ,那么 1-P (C )=1-110·p =4950,解得p =15. ②由题意,得 P (ξ=0)=3)101(=11 000,P (ξ=1)=C 132)101)(1011(-=271 000, P (ξ=2)=C 23×2)1011(-×110=2431 000,P (ξ=3)=3)1011(-=7291 000. 所以,随机变量ξ的分布列为故随机变量ξ的均值E (ξ)=0×11 000+1×271 000+2×2431 000+3×7291 000=2710. (或∵ξ~B )109,3(,∴E (ξ)=3×910=2710.)[方法引航] 如果ξ~B (n ,p ),可直接按公式E (ξ)=np ,D (ξ)=np (1-p )求解.假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或被并闭,且概率均为0.5.记此时教室里敞开的窗户个数为X.(1)求X的分布列;(2)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时刻教室里敞开的窗户个数为Y,求Y的数学期望.解:(1)∵X的所有可能取值为0,1,2,3,4,X~B(4,0.5),∴P(X=0)=C044)21(=116,P(X=1)=C144)21(=14,P(X=2)=C244)21(=38,P(X=3)=C344)21(=14,P(X=4)=C444)21(=116,∴X的分布列为(2)Y的所有可能取值为3,4,则P(Y=3)=P(X=3)=1 4,P(Y=4)=1-P(Y=3)=34,∴Y的数学期望E(Y)=3×14+4×34=154.[规范答题]求离散型随机变量的期望与方差[典例](2017·山东青岛诊断)为了分流地铁高峰的压力,某市发改委通过听众会,决定实施低峰优惠票价制度.不超过22公里的地铁票价如下表:6公里的概率分别为14,13,甲、乙乘车超过6公里且不超过12公里的概率分别为12,13.(1)求甲、乙两人所付乘车费用不相同的概率;(2)设甲、乙两人所付乘车费用之和为随机变量ξ,求ξ的分布列与数学期望.[规范解答] (1)由题意可知,甲、乙乘车超过12公里且不超过22公里的概率分别为14,13.2分则甲、乙两人所付乘车费用相同的概率P 1=14×13+12×13+14×13=13.3分 所以甲、乙两人所付乘车费用不相同的概率P =1-P 1=1-13=23.4分 (2)由题意可知,ξ=6,7,8,9,10.且P (ξ=6)=14×13=112, P (ξ=7)=14×13+12×13=14.P (ξ=8)=14×13+14×13+12×13=13. P (ξ=9)=12×13+14×13=14.P (ξ=10)=14×13=112,10分 所以ξ的分布列为则E (ξ)=6×112+7×14+8×13+9×14+10×112=8.12分[规范建议] 1.分清各事件间的关系:独立事件、互斥事件、对立事件.2.求随机变量的分布列,先把随机变量所有可能值列举出来,逐个求对应的概率. 3.利用期望公式求期望值.[高考真题体验]1.(2016·高考四川卷)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是________.解析:同时抛掷两枚质地均匀的硬币,至少有一枚硬币正面向上的概率为1-2)21(=34,且X ~B )43,2(,∴均值是2×34=32.答案:322.(2015·高考广东卷)已知随机变量X 服从二项分布B (n ,p ).若E (X )=30,D (X )=20,则p =________.解析:因为X~B(n,p),所以E(X)=np=30,D(X)=np(1-p)=20,解得n=90,p=1 3.答案:1 33.(2016·高考全国甲卷)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:(1)(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(3)求续保人本年度的平均保费与基本保费的比值.解:(1)设A表示事件:“一续保人本年度的保费高于基本保费”,则事件A发生当且仅当一年内出险次数大于1,故P(A)=0.2+0.2+0.1+0.05=0.55.(2)设B表示事件:“一续保人本年度的保费比基本保费高出60%”,则事件B发生当且仅当一年内出险次数大于3,故P(B)=0.1+0.05=0.15.又P(AB)=P(B),故P(B|A)=P(AB)P(A)=P(B)P(A)=0.150.55=311.因此所求概率为311.(3)记续保人本年度的保费为X元,则X的分布列为E(X)=0.85a×0.30×0.05=1.23a.因此续保人本年度的平均保费与基本保费的比值为1.23.4.(2013·高考课标全国卷Ⅱ)经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如下图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57 000元的概率.(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X ∈[100,110),则取X =105,且X =105的概率等于需求量落入[100,110)的频率),求T 的数学期望. 解:(1)当X ∈[100,130)时,T =500X -300(130-X )=800X -39 000, 当X ∈[130,150]时,T =500×130=65 000. 所以T =⎩⎨⎧800X -39 000,100≤X <130,65 000, 130≤X ≤150.(2)由(1)知利润T 不少于57 000元当且仅当120≤X ≤150.由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度内的利润T 不少于57 000元的概率的估计值为0.7. (3)依题意可得T 的分布列为所以E (T )=45 000×0.1课时规范训练 A 组 基础演练1.设随机变量ξ的分布列为P (ξ=k )=15(k =2,4,6,8,10),则D (ξ)等于( ) A .5 B .8 C .10 D .16 解析:选B.∵E (ξ)=15(2+4+6+8+10)=6, ∴D (ξ)=15[(-4)2+(-2)2+02+22+42]=8.2.已知某一随机变量X 的分布列如下,且E (X )=6.3,则a 的值为( )A.5 B .6 C .解析:选C.由分布列性质知:0.5+0.1+b =1,∴b =0.4. ∴E (X )=4×0.5+a ×0.1+9×0.4=6.3,∴a =7.3.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .400 解析:选B.记“不发芽的种子数为ξ”, 则ξ~B (1 000,0.1),所以E (ξ)=1 000×0.1=100, 而X =2ξ,故E (X )=E (2ξ)=2E (ξ)=200.4.如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过混合后,从中随机取一个小正方体,记它的油漆面数为X ,则X 的均值E (X )等于( )A.126125 B.65 C.168125 D.75解析:选B.125个小正方体中8个三面涂漆,36个两面涂漆,54个一面涂漆,27个没有涂漆,∴从中随机取一个正方体,涂漆面数X 的均值E (X )=54125×1+36125×2+8125×3=150125=65. 5.一射手对靶射击,直到第一次命中为止,每次命中的概率都为0.6,现有4颗子弹,则射击停止后剩余子弹的数目X 的期望值为( )A .2.44B .3.376C .2.376D .2.4 解析:选C.X 的所有可能取值为3,2,1,0,其分布列为∴E (X )=3×0.6+2×0.24+6.已知随机变量ξ的分布列为P (ξ=k )=12k -1,k =1,2,3,…,n ,则P (2<ξ≤5)=________. 解析:P (2<ξ≤5)=P (ξ=3)+P (ξ=4)+P (ξ=5)=14+18+116=716.答案:7 167.有一批产品,其中有12件正品和4件次品,有放回地任取3件,若X表示取到次品的件数,则D(X)=__________.解析:由题意知取到次品的概率为14,∴X~B)41,3(,∴D(X)=3×14×)411(-=916.答案:9 168.随机变量ξ的分布列如下:其中a,b,c成等差数列,则P(|ξ|d的取值范围是________.解析:因为a,b,c成等差数列,所以2b=a+c.又a+b+c=1,所以b=13.所以P(|ξ|=1)=a+c=23.又a=13-d,c=13+d,根据分布列的性质,得0≤13-d≤23,0≤13+d≤23,所以-13≤d≤13,此即公差d的取值范围.答案:23]31,31[-9.一次考试共有12道选择题,每道选择题都有4个选项,其中有且只有一个是正确的.评分标准规定:“每题只选一个选项,答对得5分,不答或答错得零分”.某考生已确定有8道题的答案是正确的,其余题中:有两道题都可判断两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只好乱猜.请求出该考生:(1)得60分的概率;(2)所得分数ξ的分布列和数学期望.解:(1)设“可判断两个选项是错误的”两道题之一选对为事件A,“有一道题可以判断一个选项是错误的”选对为事件B,“有一道题不理解题意”选对为事件C,∴P(A)=12,P(B)=13,P(C)=14,∴得60分的概率为P=12×12×13×14=148.(2)ξ可能的取值为40,45,50,55,60.P(ξ=40)=12×12×23×34=18;P(ξ=45)=C12×12×12×23×34+12×12×13×34+12×12×23×14=1748;P(ξ=50)=12×12×23×34+C12×12×12×13×34+C12×12×12×23×14+12×12×13×14=1748;P(ξ=55)=C12×12×12×13×14+12×12×23×14+12×12×13×34=748;P(ξ=60)=12×12×13×14=148.ξ的分布列为E(ξ)=40×18+45×1748+50×1748+55×748+60×148=57512.10.随着人们对环境关注度的提高,绿色低碳出行越来越受到市民重视,为此某市建立了公共自行车服务系统,市民凭本人二代身份证到公共自行车服务中心办理诚信借车卡借车,初次办卡时卡内预先赠送20分,当诚信积分为0时,借车卡将自动锁定,限制借车,用户应持卡到公共自行车服务中心以1元购1个积分的形式再次激活该卡,为了鼓励市民租用公共自行车出行,同时督促市民尽快还车,方便更多的市民使用,公共自行车按每车每次的租用时间进行扣分收费,具体扣分标准如下:①租用时间不超过1小时,免费;②租用时间为1小时以上且不超过2小时,扣1分;③租用时间为2小时以上且不超过3小时,扣2分;④租用时间超过3小时,按每小时扣2分收费(不足1小时的部分按1小时计算).甲、乙两人独立出行,各租用公共自行车一次,两人租车时间都不会超过3小时,设甲、乙租用时间不超过一小时的概率分别是0.5和0.6;租用时间为1小时以上且不超过2小时的概率分别是0.4和0.2.(1)求甲、乙两人所扣积分相同的概率;(2)设甲、乙两人所扣积分之和为随机变量ξ,求ξ的分布列和数学期望.解:(1)设甲、乙所扣积分分别为x1,x2,由题意可知,P(x1=0)=0.5,P(x1=1)=0.4,P(x1=2)=1-0.5-0.4=0.1,P(x2=0)=0.6,P(x2=1)=0.2,P(x2=2)=1-0.6-0.2=0.2,所以P(x1=x2)=P(x1=x2=0)+P(x1=x2=1)+P(x1=x2=2)=0.5×0.6+0.4×0.2+0.1×0.2=0.4.(2)由题意得,变量ξ的所有取值为0,1,2,3,4.P (ξ=0)=0.5×0.6=0.3,P (ξ=1)=0.5×0.2+0.6×0.4=0.34,P (ξ=2)=0.5×0.2+0.6×0.1+0.4×0.2=0.24, P (ξ=3)=0.4×0.2+0.2×0.1=0.1, P (ξ=4)=0.1×0.2=0.02, 所以ξ的分布列为E (ξ)=0×0.3+1×0.34+2B 组 能力突破1.已知X 的分布列则在下列式子中①E (X )=-13;②D (X )=2327;③P (X =0)=13,正确的个数是( )A .0B .1C .2D .3解析:选C.由E (X )=(-1)×12+0×13+1×16=-13,故①正确.由D (X )=2)311(+-×12+2)310(+×13+2)311(+×16=59,知②不正确.由分布列知③正确.2.已知ξ的分布列如下表,若η=2ξ+2,则D (η)的值为( )A.-13B.59C.109D.209解析:选D.E (ξ)=-1×12+0×13+1×16=-13,D (ξ)=2)311(+-×12+2)310(+×13+2)311(+×16=59∴D (η)=D (2ξ+2)=4D (ξ)=209,故选D.3.已知随机变量X +η=8,若X ~B (10,0.6),则E (η)和D (η)分别是( )A .6和2.4B .2和2.4C .2和5.6D .6和5.6 解析:选B.由已知随机变量X +η=8,所以η=8-X .因此,E (η)=8-E (X )=8-10×0.6=2,D (η)=(-1)2D (X )=10×0.6×0.4=2.4.4.两封信随机投入A ,B ,C 三个空邮箱,则A 邮箱的信件数ξ的数学期望E (ξ)=________. 解析:两封信投入A ,B ,C 三个空邮箱,投法种数是32=9,A 中没有信的投法种数是2×2=4,概率为49,A 中仅有一封信的投法种数是C 12×2=4,概率为49, A 中有两封信的投法种数是1,概率为19,故A 邮箱的信件数ξ的数学期望是49×0+49×1+19×2=23. 答案:235.李先生家在H 小区,他在C 科技园区工作,从家开车到公司上班有L 1,L 2两条路线(如图),路线L 1上有A 1,A 2,A 3三个路口,各路口遇到红灯的概率均为12;路线L 2上有B 1,B 2两个路口,各路口遇到红灯的概率依次为34,35.(1)若走路线L 1,求最多遇到1次红灯的概率; (2)若走路线L 2,求遇到红灯次数X 的数学期望;(3)按照“平均遇到红灯的次数最少”的要求,请你帮助李先生分析上述两条路线中,选择哪条路线上班更好些,并说明理由.解:(1)设“走路线L 1最多遇到1次红灯”为事件A ,则P (A )=C 03×2)21(+C 13×12×2)21(=12. 所以走路线L 1最多遇到1次红灯的概率为12. (2)依题意,知X 的可能取值为0,1,2. P (X =0)=)531)(431(--=110.P (X =1)=34×)531(-+)431(-×35=920,P (X =2)=34×35=920. 随机变量X 的分布列为所以E (X )=110×0+920×1+920×2=2720.(3)设选择路线L 1遇到红灯的次数为Y ,随机变量Y 服从二项分布,即Y ~B )21,3(,所以E (Y )=3×12=32.因为E (X )<E (Y ),所以选择路线L 2上班更好.。
离散型随机变量的均值与方差
课堂互动讲练
(3)设技术革新后的三等品率为x, 则此时1件产品的平均利润为 Ex=6×0.7+2×(1-0.7-0.01-x)+ x+(-2)×0.01 =4.76-x(0≤x≤0.29),9分 依题意,Ex≥4.73, 即4.76-x≥4.73, 解得x≤0.03. 所以三等品率最多为3%. 12分
课堂互动讲练
(2)EY=E(2X+3)=2EX+3 =2×(-13)+3=73; DY=D(2X+3)=4DX=4×59=290. 【名师点评】 ξ是一个随机变 量,则η=f(ξ)一般仍是一个随机变 量,在求η的期望和方差时,要应用期 望和方差的性质.
课堂互动讲练
考点四 均值与方差的实际应用
利用期望和方差比较随机变量的 取值情况,一般是先比较期望,期望 不同时,即可比较出产品的优劣或技 术水平的高低,期望相同时,再比较 方差,由方差来决定产品或技术水平 的稳定情况.
课堂互动讲练
P(X≥7)=P(X≤3) =12×[1-P(3<X<7)], =12×(1-0.9544)=0.0228, ∵P(4<X<6)=0.6826, ∴P(5<X<6)=12P(4<X<6) =0.3413.
课堂互动讲练
考点二 求离散型随机变量的期记与方差
求离散型随机变量X的均值与方差 的步骤:
课堂互动讲练
(1)求q2的值; (2)求随机变量ξ的数学期望Eξ; (3)试比较该同学选择都在B处投 篮得分超过3分与选择上述方式投篮 得分超过3分的概率的大小.
课堂互动讲练
【思路点拨】 首先由P(ξ=0)= 0.03计算出q2,从而可写出分布 列.本题便可求解.
【解】 (1)由题设知,“ξ=0”对 应的事件为“在三次投篮中没有一次投 中”,由对立事件和相互独立事件性质 可知
8 第8讲 离散型随机变量的均值与方差、正态分布
第8讲 离散型随机变量的均值与方差、正态分布1.离散型随机变量的均值与方差 一般地,若离散型随机变量X 的分布列为(1)称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望.它反映了离散型随机变量取值的平均水平.(2)方差称D (X )= i =1n(x i -E (X ))2p i 为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,并称其算术平方根D (X )为随机变量X 的标准差.2.均值与方差的性质 (1)E (aX +b )=aE (X )+b .(2)D (aX +b )=a 2D (X ).(a ,b 为常数) 3.两点分布与二项分布的均值、方差(1)若随机变量X 服从两点分布,则E (X )=p ,D (X )=p (1-p ). (2)若X ~B (n ,p ),则E (X )=np ,D (X )=np (1-p ). 4.正态曲线的特点(1)曲线位于x 轴上方,与x 轴不相交. (2)曲线是单峰的,它关于直线x =μ对称. (3)曲线在x =μ处达到峰值1σ2π .(4)曲线与x 轴之间的面积为1.(5)当σ一定时,曲线随着μ的变化而沿x 轴平移.(6)当μ一定时,曲线的形状由σ确定.σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散.导师提醒牢记均值与方差的七个常用性质若Y =aX +b ,其中a ,b 是常数,X 是随机变量,则(1)E (k )=k ,D (k )=0,其中k 为常数. (2)E (aX +b )=aE (X )+b ,D (aX +b )=a 2D (X ). (3)E (X 1+X 2)=E (X 1)+E (X 2). (4)D (X )=E (X 2)-(E (X ))2.(5)若X 1,X 2相互独立,则E (X 1·X 2)=E (X 1)·E (X 2). (6)若X 服从两点分布,则E (X )=p ,D (X )=p (1-p ).(7)若X 服从二项分布,即X ~B (n ,p ),则E (X )=np ,D (X )=np (1-p ).判断正误(正确的打“√”,错误的打“×”)(1)随机变量的均值是常数,样本的平均数是随机变量,它不确定.( )(2)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离变量的平均程度越小.( )(3)正态分布中的参数μ和σ完全确定了正态分布,参数μ是正态分布的均值,σ是正态分布的标准差.( )(4)一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.( )(5)均值是算术平均数概念的推广,与概率无关.( ) 答案:(1)√ (2)√ (3)√ (4)√ (5)×已知X 的分布列为设Y =2X A.73 B .4 C .-1D .1解析:选A.E (X )=-12+16=-13,E (Y )=E (2X +3)=2E (X )+3=-23+3=73.已知ξ~B ⎝⎛⎭⎫4,13,并且η=2ξ+3,则方差D (η)=( ) A.329B.89C.439D.599解析:选A.由题意知,D (ξ)=4×13×⎝⎛⎭⎫1-13=89, 因为η=2ξ+3,所以D (η)=4·D (ξ)=4×89=329.已知随机变量ξ服从正态分布N (2,σ2),且P (ξ<4)=0.8,则P (0<ξ<4)=( )A .0.6B .0.4C .0.3D .0.2解析:选A.由P (ξ<4)=0.8,得P (ξ≥4)=0.2.又正态曲线关于x =2对称,则P (ξ≤0)=P (ξ≥4)=0.2,所以P (0<ξ<4)=1-P (ξ≤0)-P (ξ≥4)=0.6.一个正四面体ABCD 的四个顶点上分别标上1分,2分,3分和4分,往地面抛掷一次,记不在地面上的顶点的分数为X ,则X 的均值为________.解析:X 的分布列为所以E (X )=1×14+2×14+3×14+4×14=52.答案:52一个人将编号为1,2,3,4的四个小球随机放入编号为1,2,3,4的四个盒子,每个盒子放一个小球,球的编号与盒子的编号相同时就放对了,否则就放错了.设放对个数记为ξ,则ξ的期望为________.解析:将四个不同小球放入四个不同盒子,每个盒子放一个小球,共有A 44种不同放法,放对的个数ξ可取的值有0,1,2,4,其中P (ξ=0)=9A 44=38, P (ξ=1)=C 14×2A 44=13,P (ξ=2)=C 24A 44=14,P (ξ=4)=1A 44=124,E (ξ)=0×38+1×13+2×14+4×124=1. 答案:1离散型随机变量的均值与方差(多维探究)角度一 离散型随机变量的均值与方差的计算某小组共10人,利用假期参加义工活动.已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率; (2)设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望与方差.【解】 (1)由已知,有P (A )=C 13C 14+C 23C 210=13. 所以事件A 发生的概率为13.(2)随机变量X 的所有可能取值为0,1,2.P (X =0)=C 23+C 23+C 24C 210=415, P (X =1)=C 13C 13+C 13C 14C 210=715, P (X =2)=C 13C 14C 210=415.所以随机变量X 的分布列为随机变量X 的数学期望E (X )=0×415+1×715+2×415=1.方差D (X )=415(0-1)2+715(1-1)2+415(2-1)2=815.角度二 二项分布的均值与方差的计算(2019·成都第一次诊断性检测)某部门为了解一企业在生产过程中的用水量情况,对其每天的用水量做了记录,得到了大量该企业的日用水量的统计数据,从这些统计数据中随机抽取12天的数据作为样本,得到如图所示的茎叶图(单位:吨).若用水量不低于95吨,则称这一天的用水量超标.(1)从这12天的数据中随机抽取3个,求至多有1天的 用水量超标的概率;(2)以这12天的样本数据中用水量超标的频率作为概率,估计该企业未来3天中用水量超标的天数,记随机变量X 为未来这3天中用水量超标的天数,求X 的分布列、数学期望和方差.【解】 (1)记“从这12天的数据中随机抽取3个,至多有1天的用水量超标”为事件A ,则P (A )=C 14C 28C 312+C 38C 312=168220=4255.(2)以这12天的样本数据中用水量超标的频率作为概率,易知用水量超标的概率为13.X 的所有可能取值为0,1,2,3, 易知X ~B ⎝⎛⎭⎫3,13,P (X =k )=C k 3⎝⎛⎭⎫13k⎝⎛⎭⎫233-k,k =0,1,2,3,则P (X =0)=827,P (X =1)=49,P (X =2)=29,P (X =3)=127.所以随机变量X 的分布列为数学期望E (X )=3×13=1,D (X )=3×13×⎝⎭⎫1-13=23.(1)求离散型随机变量ξ的均值与方差的步骤 ①理解ξ的意义,写出ξ可能的全部取值; ②求ξ取每个值的概率; ③写出ξ的分布列; ④由均值的定义求E (ξ); ⑤由方差的定义求D (ξ). (2)二项分布的期望与方差如果ξ~B (n ,p ),则用公式E (ξ)=np ;D (ξ)=np (1-p )求解,可大大减少计算量. [提醒] 均值E (X )由X 的分布列唯一确定,即X 作为随机变量是可变的,而E (X )是不变的,它描述X 取值的平均水平.1.(2019·洛阳市第一次统一考试)雾霾天气对人体健康有伤害,应对雾霾污染、改善空气质量的首要任务是控制PM 2.5,要从压减燃煤、严格控车、调整产业、强化管理、联防联控、依法治理等方面采取重大举措,聚焦重点领域,严格考核指标.某省环保部门为加强环境执法监管,派遣四个不同的专家组对A 、B 、C 三个城市进行治霾落实情况抽查.(1)若每个专家组随机选取一个城市,四个专家组选取的城市可以相同,也可以不同,求恰有一个城市没有专家组选取的概率;(2)每一个城市都要由四个专家组分别对抽查情况进行评价,并对所选取的城市进行评价,每个专家组给检查到的城市评价为优的概率为12,若四个专家组均评价为优则检查通过不用复检,否则需进行复检.设需进行复检的城市的个数为X ,求X 的分布列和期望.解:(1)随机选取,共有34=81种不同方法,恰有一个城市没有专家组选取的有C 13(C 14A 22+C 24)=42种不同方法,故恰有一个城市没有专家组选取的概率为4281=1427.(2)设事件A :“一个城市需复检”,则P (A )=1-⎝⎛⎭⎫124=1516,X 的所有可能取值为0,1,2,3,P (X =0)=C 03·⎝⎛⎭⎫1163=14 096,P (X =1)=C 13·⎝⎛⎭⎫1162·⎝⎛⎭⎫15161=454 096,P (X =2)=C 23·⎝⎛⎭⎫1161·⎝⎛⎭⎫15162=6754 096,P (X =3)=C 33·⎝⎛⎭⎫15163=3 3754 096. 所以X 的分布列为 X ~B ⎝⎭⎫3,1516,E (X )=3×1516=4516. 2.已知6只小白鼠中有1只感染了病毒,需要对6只小白鼠进行病毒DNA 化验来确定哪一只受到了感染.下面是两种化验方案:方案甲:逐个化验,直到能确定感染病毒的小白鼠为止.方案乙:将6只小白鼠分为两组,每组三只,将其中一组的三只小白鼠的待化验物质混合在一起化验,若化验结果显示含有病毒DNA ,则表明感染病毒的小白鼠在这三只当中,然后逐个化验,直到确定感染病毒的小白鼠为止;若化验结果显示不含病毒DNA ,则在另外一组中逐个进行化验.(1)求执行方案乙化验次数恰好为2次的概率;(2)若首次化验的化验费为10元,第二次化验的化验费为8元,第三次及以后每次化验的化验费都是6元,求方案甲所需化验费的分布列和期望.解:(1)执行方案乙化验次数恰好为2次的情况分两种:第一种,先化验一组,结果显示不含病毒DNA ,再从另一组中任取一只进行化验,其恰好含有病毒DNA ,此种情况的概率为C 35C 36×1C 13=16;第二种,先化验一组,结果显示含病毒DNA ,再从中逐个化验,恰好第一只含有病毒,此种情况的概率为C 25C 36×1C 13=16.所以执行方案乙化验次数恰好为2次的概率为16+16=13.(2)设用方案甲化验需要的化验费为η(单位:元),则η的可能取值为10,18,24,30,36.P (η=10)=16,P (η=18)=56×15=16,P (η=24)=56×45×14=16,P (η=30)=56×45×34×13=16,P (η=36)=56×45×34×23=13,则化验费η的分布列为所以E (η)=10×16+18×16+24×16+30×16+36×13=773(元).均值与方差的实际应用(师生共研)(2018·高考全国卷Ⅰ)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p (0<p <1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f (p ),求f (p )的最大值点p 0.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p 0作为p 的值,已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(ⅰ)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求EX;(ⅱ)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?【解】(1)20件产品中恰有2件不合格品的概率为f(p)=C220p2(1-p)18.因此f′(p)=C220 [2p(1-p)18-18p2(1-p)17]=2C220p(1-p)17(1-10p).令f′(p)=0,得p=0.1.当p∈(0,0.1)时,f′(p)>0;当p∈(0.1,1)时,f′(p)<0.所以f(p)的最大值点为p0=0.1.(2)由(1)知,p=0.1.(i)令Y表示余下的180件产品中的不合格品件数,依题意知Y~B(180,0.1),X=20×2+25Y,即X=40+25Y.所以EX=E(40+25Y)=40+25EY=490.(ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.由于EX>400,故应该对余下的产品作检验.均值与方差的实际应用(1)D(X)表示随机变量X对E(X)的平均偏离程度,D(X)越大表明平均偏离程度越大,说明X的取值越分散;反之,D(X)越小,X的取值越集中在E(X)附近,统计中常用D(X)来描述X的分散程度.(2)随机变量的均值反映了随机变量取值的平均水平,方差反映了随机变量取值偏离于均值的程度,它们从整体和全局上刻画了随机变量,是生产实际中用于方案取舍的重要的理论依据,一般先比较均值,若均值相同,再用方差来决定.1.(2019·广东省七校联考)某工厂的检验员为了检测生产线上生产零件的情况,现从产品中随机抽取了80个零件进行测量,根据测量的数据作出如图所示的频率分布直方图.注:尺寸数据在[63.0,64.5)内的零件为合格品,频率作为概率. (1)从产品中随机抽取4个,记合格品的个数为ξ,求ξ的分布列与期望. (2)从产品中随机抽取n 个,全是合格品的概率不小于0.3,求n 的最大值.(3)为了提高产品合格率,现提出A ,B 两种不同的改进方案进行试验.若按A 方案进行试验后,随机抽取15个产品,不合格品个数X 的期望是2;若按B 方案进行试验后,随机抽取25个产品,不合格品个数Y 的期望是4.你会选择哪种改进方案?解:(1)由频率分布直方图可知,抽取的产品为合格品的频率为(0.75+0.65+0.2)×0.5=0.8,即抽取1个产品为合格品的概率为45,从产品中随机抽取4个,合格品的个数ξ的所有可能取值为0,1,2,3,4,则P (ξ=0)=⎝⎛⎭⎫154=1625, P (ξ=1)=C 14×45×⎝⎛⎭⎫153=16625,P (ξ=2)=C 24×⎝⎛⎭⎫452×⎝⎛⎭⎫152=96625, P (ξ=3)=C 34×⎝⎛⎭⎫453×15=256625, P (ξ=4)=⎝⎛⎭⎫454=256625. 所以ξ的分布列为ξ的数学期望E (ξ)=4×45=165.(2)从产品中随机抽取n 个产品,全是合格品的概率为⎝⎛⎭⎫45n,依题意得⎝⎛⎭⎫45n≥0.3,故n 的最大值为5.(3)设按A 方案进行试验后,随机抽取1个产品是不合格品的概率是a ,则随机抽取15个产品,不合格品个数X ~B (15,a );设按B 方案进行试验后,随机抽取1个产品是不合格品的概率是b ,则随机抽取25个产品,不合格品个数Y ~B (25,b ).依题意得E (X )=15a =2,E (Y )=25b =4,所以a =215,b =425.因为215<425,所以应选择方案A .2.(2019·辽宁五校联合体模拟)某商场决定从2种服装、3种家电、4种日用品中,选出3种商品进行促销活动.(1)试求选出的3种商品中至少有一种是家电的概率;(2)该商场对选出的某商品采用抽奖方式进行促销,即在该商品现价的基础上将价格提高60元,规定购买该商品的顾客有3次抽奖机会,若中奖一次,则获得数额为n 元的奖金;若中奖两次,则获得数额为3n 元的奖金;若中奖三次,则获得数额为6n 元的奖金.假设顾客每次抽奖中奖的概率都是14,请问:该商场将奖金数额n 最高定为多少元,才能使促销方案对该商场有利?解:(1)设选出的3种商品中至少有一种是家电为事件A ,从2种服装、3种家电、4种日用品中,选出3种商品,共有C 39种不同的选法,选出的3种商品中,没有家电的选法有C 36种,所以选出的3种商品中至少有一种是家电的概率为 P (A )=1-C 36C 39=1-521=1621.(2)设顾客三次抽奖所获得的资金总额(单位:元)为随机变量ξ, 则其所有可能的取值为0,n ,3n ,6n .当ξ=0时,表示顾客在三次抽奖中都没有中奖. 所以P (ξ=0)=C 03⎝⎛⎭⎫140⎝⎛⎭⎫1-143=2764,P (ξ=n )=C 13⎝⎛⎭⎫141⎝⎛⎭⎫1-142=2764,P (ξ=3n )=C 23⎝⎛⎭⎫142⎝⎛⎭⎫1-141=964, P (ξ=6n )=C 33⎝⎛⎭⎫143⎝⎛⎭⎫1-140=164.所以顾客在三次抽奖中所获得的奖金总额的期望值是 E (ξ)=0×2764+n ×2764+3n ×964+6n ×164=15n16,由15n16≤60,解得n ≤64, 所以该商场将奖金数额n 最高定为64元,才能使促销方案对该商场有利.正态分布(师生共研)(1)(2019·惠州市第二次调研)设随机变量ξ服从正态分布N (4,3),若P (ξ<a -5)=P (ξ>a +1),则实数a 等于( )A .7B .6C .5D .4(2)已知随机变量X 服从正态分布N (1,σ2),若P (X >2)=0.15,则P (0≤X ≤1)=( ) A .0.85 B .0.70 C .0.35D .0.15【解析】 (1)由随机变量ξ服从正态分布N (4,3)可得正态分布密度曲线的对称轴为直线x =4,又P (ξ<a -5)=P (ξ>a +1),所以x =a -5与x =a +1关于直线x =4对称,所以(a -5)+(a +1)=8,即a =6.选B.(2)P (0≤X ≤1)=P (1≤X ≤2)=0.5-P (X >2)=0.35. 【答案】 (1)B (2)C正态分布下的概率计算常见的两类问题(1)利用正态分布密度曲线的对称性研究相关概率问题,涉及的知识主要是正态曲线关于直线x =μ对称,及曲线与x 轴之间的面积为1.(2)利用3σ原则求概率问题时,要注意把给出的区间或范围与正态变量的μ,σ进行对比联系,确定它们属于(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)中的哪一个.1.(2019·太原模拟)已知随机变量X 服从正态分布N (3,1),且P (X ≥4)=0.158 7,则P (2<X <4)=( )A .0.682 6B .0.341 3C .0.460 3D .0.920 7解析:选A.因为随机变量X 服从正态分布N (3,1),且P (x ≥4)=0.158 7,所以P (X ≤2)=0.158 7,所以P (2<X <4)=1-P (X ≤2)-P (X ≥4)=0.682 6,故选A.2.某校在一次月考中有900人参加考试,数学考试的成绩服从正态分布X ~N (90,a 2)(a >0,试卷满分150分),统计结果显示数学考试成绩在70分到110分之间的人数约为总人数的35,则此次月考中数学考试成绩不低于110分的学生约有________人.解析:因为成绩服从正态分布X ~N (90,a 2), 所以其正态分布曲线关于直线x =90对称,又因为成绩在70分到110分之间的人数约为总人数的35,由对称性知成绩在110分以上的人数约为总人数的12×⎝⎛⎭⎫1-35=15,所以此次数学考试成绩不低于110分的学生约有15×900=180(人).答案:180利用期望与方差进行决策某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买.则每个500元,现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数.(1)求X 的分布列:(2)若要求P (X ≤n )≥0.5,确定n 的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一.应选用哪个?【解】(1)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.可知X的所有可能取值为16,17,18,19,20,21,22,P(X=16)=0.2×0.2=0.04;P(X=17)=2×0.2×0.4=0.16;P(X=18)=2×0.2×0.2+0.4×0.4=0.24;P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24;P(X=20)=2×0.2×0.4+0.2×0.2=0.2;P(X=21)=2×0.2×0.2=0.08;P(X=22)=0.2×0.2=0.04.所以X的分布列为(2)由(1)知P(X≤18)=0.44,P(X≤19)=0.68,故n的最小值为19.(3)记Y表示2台机器在购买易损零件上所需的费用(单位:元).当n=19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040.当n=20时,E(Y)=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080.可知当n=19时所需费用的期望值小于n=20时所需费用的期望值,故应选n=19.利用期望与方差进行决策的方法(1)若我们希望实际的平均水平较理想时,则先求随机变量ξ1,ξ2的期望,当E(ξ1)=E(ξ2)时,不应误认为它们一样好,需要用D (ξ1),D (ξ2)来比较这两个随机变量的偏离程度,偏离程度小的更好.(2)若我们希望比较稳定时,应先考虑方差,再考虑均值是否相等或者接近.(3)若对平均水平或者稳定性没有明确要求时,一般先计算期望,若相等,则由方差来确定哪一个更好.若E (ξ1)与E (ξ2)比较接近,且期望较大者的方差较小,显然该变量更好;若E (ξ1)与E (ξ2)比较接近且方差相差不大时,应根据不同选择给出不同的结论,即是选择较理想的平均水平还是选择较稳定.(2019·洛阳第一次统考)甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司,底薪80元,每单送餐员抽成4元;乙公司,无底薪,40单以内(含40单)的部分送餐员每单抽成6元,超出40单的部分送餐员每单抽成7元.假设同一公司的送餐员一天的送餐单数相同,现从这两家公司各随机选取一名送餐员,并分别记录其50天的送餐单数,得到如下频数表:甲公司送餐员送餐单数频数表(1)3天送餐单数都不小于40的概率.(2)若将频率视为概率,回答下列两个问题:①记乙公司送餐员日工资为X (单位:元),求X 的分布列和数学期望E (X );②小王打算到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,请利用所学的统计学知识为小王作出选择,并说明理由.解:(1)记抽取的3天送餐单数都不小于40为事件M , 则P (M )=C 325C 350=23196.(2)①设乙公司送餐员的送餐单数为a , 当a =38时,X =38×6=228, 当a =39时,X =39×6=234,当a =40时,X =40×6=240, 当a =41时,X =40×6+1×7=247, 当a =42时,X =40×6+2×7=254.所以X 的所有可能取值为228,234,240,247,254. 故X 的分布列为 X 228 234 240 247 254 P110151525110所以E (X )=228×110+234×15+240×15+247×25+254×110=241.8.②依题意,甲公司送餐员的日平均送餐单数为38×0.2+39×0.3+40×0.2+41×0.2+42×0.1=39.7,所以甲公司送餐员的日平均工资为80+4×39.7=238.8元. 由①得乙公司送餐员的日平均工资为241.8元. 因为238.8<241.8,所以推荐小王去乙公司应聘.[基础题组练]1.设随机变量X 服从正态分布N (0,1),若P (X >1)=p ,则P (-1<X <0)=( ) A.12+p B .1-p C .1-2pD.12-p 解析:选D.因为随机变量X 服从正态分布N (0,1),所以正态分布曲线关于直线x =0对称,所以P (X >0)=P (X <0)=12,P (X >1)=P (X <-1)=p ,所以 P (-1<X <0)=P (X <0)-P (X <-1)=12-p .2.口袋中有编号分别为1,2,3的三个大小和形状相同的小球,从中任取2个,则取出的球的最大编号X 的期望为( )A.13B.23C .2D.83解析:选D.因为口袋中有编号分别为1,2,3的三个大小和形状相同的小球,从中任取2个,所以取出的球的最大编号X 的可能取值为2,3,所以P (X =2)=1C 23=13,P (X =3)=C 12C 11C 23=23,所以E (X )=2×13+3×23=83. 3.(2018·安徽合肥一模)已知某公司生产的一种产品的质量X (单位:克)服从正态分布N (100,4),现从该产品的生产线上随机抽取10 000件产品,其中质量在[98,104]内的产品估计有( )(附:若X 服从N (μ,σ2),则P (μ-σ<X <μ+σ)=0.682 7,P (μ-2σ<X <μ+2σ=0.954 5) A .4 093件 B .4 772件 C .6 827件D .8 186件解析:选D.由题意可得,该正态分布的对称轴为x =100,且σ=2,则质量在[96,104]内的产品的概率为P (μ-2σ<X <μ+2σ)=0.954 5,而质量在[98,102]内的产品的概率为P (μ-σ<X <μ+σ)=0.682 7,结合对称性可知,质量在[98,104]内的产品的概率为0.682 7+0.954 5-0.682 72=0.818 6,据此估计质量在[98,104]内的产品的数量为10 000×0.818 6=8186(件).4.已知随机变量X +η=8,若X ~B (10,0.6),则E (η),D (η)分别是( ) A .6,2.4 B .2,2.4 C .2,5.6D .6,5.6解析:选B.由已知随机变量X +η=8,所以η=8-X . 因此,求得E (η)=8-E (X )=8-10×0.6=2, D (η)=(-1)2D (X )=10×0.6×0.4=2.4.5.某篮球队对队员进行考核,规则是①每人进行3个轮次的投篮;②每个轮次每人投篮2次,若至少投中1次,则本轮通过,否则不通过.已知队员甲投篮1次投中的概率为23.如果甲各次投篮投中与否互不影响,那么甲3个轮次通过的次数X 的期望是( )A .3 B.83 C .2D.53解析:选B.在一轮投篮中,甲通过的概率为P =89,未通过的概率为19.由题意可知,甲3个轮次通过的次数X 的可能取值为0,1,2,3,则P (X =0)=⎝⎛⎭⎫193=1729, P (X =1)=C 13×⎝⎛⎭⎫891×⎝⎛⎭⎫192=24729P (X =2)=C 23×⎝⎛⎭⎫892×⎝⎛⎭⎫191=192729, P (X =3)=⎝⎛⎭⎫893=512729. 所以随机变量X 的分布列为数学期望E (X )=0×1729+1×24729+2×192729+3×512729=83.6.(2019·辽宁五校联合体模拟)已知随机变量X 服从正态分布N (72,4),则P (X <70或X >76)等于________.(附:(P (μ-σ<X <μ+σ)=0.682 7,P (μ-2σ<X <μ+2σ)=0.954 5)解析:因为随机变量X 服从正态分布N (72,4),所以μ=72,σ=2,所以P (70<X <74)=0.682 7,P (68<X <76)=0.954 5,所以P (X <70)=0.158 65,P (X >76)=0.022 75,所以P (X <70或X >76)=0.158 65+0.022 75=0.181 4.答案:0.181 47.若随机变量ξ的分布列如下表所示,E (ξ)=1.6,则a -b =________.解析:易知a ,b ∈[0,1],由0.1+a +b +0.1=1,得a +b =0.8,又由E (ξ)=0×0.1+1×a +2×b +3×0.1=1.6,得a +2b =1.3,解得a =0.3,b =0.5,则a -b =-0.2.答案:-0.28.某学校为了给运动会选拔志愿者,组委会举办了一个趣味答题活动.参选的志愿者回答三个问题,其中两个是判断题,另一个是有三个选项的单项选择题,设ξ为回答正确的题数,则随机变量ξ的数学期望E (ξ)=________.解析:由已知得ξ的可能取值为0,1,2,3. P (ξ=0)=12×12×23=212,P (ξ=1)=12×12×23+12×12×23+12×12×13=512,P (ξ=2)=12×12×23+12×12×13+12×12×13=412,P (ξ=3)=12×12×13=112.所以E (ξ)=0×212+1×512+2×412+3×112=43.答案:439.(2019·西安模拟)一个盒子中装有大量形状、大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为[5,15],(15,25],(25,35],(35,45],由此得到样本的重量频率分布直方图(如图).(1)求a 的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;(2)从盒子中随机抽取3个小球,其中重量在[5,15]内的小球个数为X ,求X 的分布列和数学期望.(以直方图中的频率作为概率).解:(1)由题意,得(0.02+0.032+a +0.018)×10=1,解得a =0.03.由频率分布直方图可估计盒子中小球重量的众数为20克,而50个样本中小球重量的平均数为x =0.2×10+0.32×20+0.3×30+0.18×40=24.6(克).故由样本估计总体,可估计盒子中小球重量的平均数为24.6克. (2)该盒子中小球重量在[5,15]内的概率为15,则X ~B ⎝⎛⎭⎫3,15,X 的可能取值为0,1,2,3.P (X =0)=C 03⎝⎛⎭⎫150⎝⎛⎭⎫453=64125,P (X =1)=C 13⎝⎛⎭⎫151×⎝⎛⎭⎫452=48125, P (X =2)=C 23⎝⎛⎭⎫152×⎝⎛⎭⎫451=12125, P (X =3)=C 33⎝⎛⎭⎫153⎝⎛⎭⎫450=1125. 所以X 的分布列为所以E (X )=0×64125+1×48125+2×12125+3×1125=35.(或者E (X )=3×15=35.)10.(2019·长沙模拟)某中药种植基地有两处种植区的药材需在下周一、下周二两天内采摘完毕,基地员工一天可以完成一处种植区的采摘,下雨会影响药材品质,基地收益如下表所示:20万元;有雨时,收益为10万元.额外聘请工人的成本为a 万元.已知下周一和下周二有雨的概率相同,两天是否下雨互不影响,基地收益为20万元的概率为0.36.(1)若不额外聘请工人,写出基地收益X 的分布列及基地的预期收益; (2)该基地是否应该额外聘请工人,请说明理由.解:(1)设下周一无雨的概率为p ,由题意得,p 2=0.36,解得p =0.6,基地收益X 的可能取值为20,15,10,7.5,则P (X =20)=0.36,P (X =15)=0.24,P (X =10)=0.24,P (X =7.5)=0.16.所以基地收益X 的分布列为E (X )=20×0.36+15×0.24+10×0.24+7.5×0.16=14.4(万元), 所以基地的预期收益为14.4万元. (2)设基地额外聘请工人时的收益为Y 万元,则其预期收益E (Y )=20×0.6+10×0.4-a =16-a (万元),E (Y )-E (X )=1.6-a (万元). 综上,当额外聘请工人的成本高于1.6万元时,不额外聘请工人;成本低于1.6万元时,额外聘请工人;成本恰为1.6万元时,额外聘请或不聘请工人均可以.[综合题组练]1.某鲜奶店每天以每瓶3元的价格从牧场购进若干瓶鲜牛奶,然后以每瓶7元的价格出售.如果当天卖不完,剩下的鲜牛奶作垃圾处理.(1)若鲜奶店一天购进30瓶鲜牛奶,求当天的利润y (单位:元)关于当天需求量n (单位:瓶,n ∈N )的函数解析式;(2)鲜奶店记录了100天鲜牛奶的日需求量(单位:瓶),绘制出如下的柱形图(例如:日需求量为25瓶时,频数为5):以100天记录的各需求量的频率作为各需求量发生的概率.①若该鲜奶店一天购进30瓶鲜奶,X 表示当天的利润(单位:元),求X 的分布列及数学期望;②若该鲜奶店计划一天购进29瓶或30瓶鲜牛奶,你认为应购进29瓶还是30瓶?请说明理由.解:(1)当n ≥30时,y =30×(7-3)=120;当n ≤29时,y =(7-3)n -3(30-n )=7n -90.故y =⎩⎪⎨⎪⎧7n -90,0≤n ≤29120,n ≥30,n ∈N .(2)①X 的可能取值为85,92,99,106,113,120, P (X =85)=0.05,P (X =92)=0.1, P (X =99)=0.1, P (X =106)=0.05, P (X =113)=0.1, P (X =120)=0.6. X 的分布列为E (X )=(85+106)×0.05+(92+99+113)×0.1+120×0.6=111.95.②购进29瓶时,当天利润的数学期望为t =(25×4-4×3)×0.05+(26×4-3×3)×0.1+(27×4-2×3)×0.1+(28×4-1×3)×0.05+29×4×0.7=110.75,因为111.95>110.75,所以应购进30瓶.2.(2019·洛阳尖子生第二次联考)现有两种投资方案,一年后投资盈亏的情况如下表:投资股市(1)当p =14时,求q 的值.(2)已知甲、乙两人分别选择了“投资股市”和“购买基金”进行投资,如果一年后他们中至少有一人获利的概率大于45,求p 的取值范围.(3)丙要将家中闲置的10万元钱进行投资,决定在“投资股市”和“购买基金”这两种方案中选择一种,已知p =12,q =16,那么丙选择哪种投资方案,才能使得一年后投资收益的数学期望较大?请说明理由.解:(1)因为“购买基金”后,投资结果只有“获利”“不赔不赚”“亏损”三种,且三种投资结果相互独立,所以p +13+q =1.又p =14,所以q =512.(2)记事件A 为“甲投资股市且获利”,事件B 为“乙购买基金且获利”,事件C 为“一年后甲、乙两人中至少有一人投资获利”,则C =AB ∪AB ∪AB ,且A ,B 独立. 由题意可知,P (A )=12,P (B )=p ,所以P (C )=P (AB )+P (AB )+P (AB ) =12(1-p )+12p +12p =12+12p . 因为P (C )=12+12p >45,所以p >35.又p +13+q =1,q ≥0,所以p ≤23.所以p 的取值范围为⎝⎛⎦⎤35,23.(3)假设丙选择“投资股市”的方案进行投资,记X 为丙投资股市的获利金额(单位:万元),所以随机变量X 的分布列为则E (X )=4×12+0×18+(-2)×38=54.假设丙选择“购买基金”的方案进行投资,记Y 为丙购买基金的获利金额(单位:万元), 所以随机变量Y 的分布列为则E (Y )=2×12+0×13+(-1)×16=56.因为E (X )>E (Y ),所以丙选择“投资股市”,才能使得一年后的投资收益的数学期望较大.3.(2019·高考全国卷Ⅰ)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物实验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i-1+bp i+cp i+1(i =1,2,…,7),其中a=P(X=-1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.(ⅰ)证明:{p i+1-p i}(i=0,1,2,…,7)为等比数列;(ⅱ)求p4,并根据p4的值解释这种试验方案的合理性.解:(1)X的所有可能取值为-1,0,1.P(X=-1)=(1-α)β,P(X=0)=αβ+(1-α)(1-β),P(X=1)=α(1-β).所以X的分布列为(2)(ⅰ)证明:由(1)得a=0.4,b=0.5,c=0.1.因此p i=0.4p i-1+0.5p i+0.1p i+1,故0.1(p i+1-p i)=0.4(p i-p i-1),即p i+1-p i=4(p i-p i-1).又因为p1-p0=p1≠0,所以{p i+1-p i}(i=0,1,2,…,7)为公比为4,首项为p1的等比数列.(ⅱ)由(ⅰ)可得p8=p8-p7+p7-p6+…+p1-p0+p0=(p8-p7)+(p7-p6)+…+(p1-p0)。
离散型随机变量的均值与方差
(1)均值
称 E(X)=x1p1+x2p2+…+xipi+…+xnpn 为
随机变量 X 的均值或 数学期望 ,它反映了离
散型随机变量取值的 平均水平 .
(2)方差 n
称
D(X)=
∑
i=1
(xi-E(X))2pi 为随机变量 X 的
方差,它刻画了随机变量 X 与其均值 E(X) 的 平均偏离程度 ,其算术平方根 DX 为
2.方差的意义 D(X)表示随机变量 X 对 E(X)的平均偏离程 度,D(X)越大表明平均偏离程度越大,说 明 X 的取值越分散,反之 D(X)越小,X 的 取值越集中,由方差定义知,方差是建立 在期望这一概念之上的.在 E(X)附近,统 计中常用 DX来描述 X 的分散程度.
基础自测
1.随机变量 ξ 的分布列如下:
=E(ξ2)+4E(ξ)+4=11+12+4=27.
D(2ξ-1)=4D(ξ)=8,
Dξ-1= Dξ= 2.
探究提高 ξ 是随机变量,则 η=f(ξ)一般仍是 随机变量,在求 η 的均值和方差时,熟练应用 均值和方差的性质,可以避免再求 η 的分布列 带来的繁琐运算.
变式训练 2 袋中有 20 个大小相同的球,其中 记上 0 号的有 10 个,记上 n 号的有 n 个(n =1,2,3,4).现从袋中任取一球,ξ 表示所取 球的标号. (1)求 ξ 的分布列、均值和方差; (2)若 η=aξ+b,E(η)=1,D(η)=11,试求 a,b 的值.
题型分类 深度剖析
题型一 离散型随机变量的均值与方差的求法 例 1(2010·福建)设 S 是不等式 x2-x-6≤0 的解集,
整数 m,n∈S. (1)记“使得 m+n=0 成立的有序数组(m,n)” 为事件 A,试列举 A 包含的基本事件; (2)设 ξ=m2,求 ξ 的分布列及其均值 E(ξ).
第十章 第八节 离散型随机变量的均值与方差、正态分布
[归纳领悟 归纳领悟] 归纳领悟 1.均值是一个实数,由X的分布列唯一确定,即作为 .均值是一个实数, 的分布列唯一确定, 的分布列唯一确定 随机变量的X是可变的,可取不同值, 随机变量的 是可变的,可取不同值,而E(X)是不 是可变的 是不 变的,它描述 取值的平均状态 取值的平均状态. 变的,它描述X取值的平均状态. 2.求E(X)可直接利用均值公式 . 可直接利用均值公式. 可直接利用均值公式
6 整理得pq= 整理得 = ,p+q=1. + = 25 2 3 由p>q,可得 = ,q= . ,可得p= = 5 5 (3)由题意知 (3)由题意知a=P(ξ=1)=P(A1 A 2 A 3)+P( A 1A2 A 3)+P( A 1 A 2A3) 由题意知a=P(ξ=1)= )+ )+ 4 1 1 37 = (1-p)(1-q)+ p(1-q)+ (1-p)q= . - - + - + - = 5 5 5 125 58 b=P(ξ=2)=1-P(ξ=0)-P(ξ=1)-P(ξ=3)= . = = = - = - = - = = 125 9 E(ξ)=0×P(ξ=0)+1×P(ξ=1)+2×P(ξ=2)+3×P(ξ=3)= . = × = + × = + × = + × = = 5
ξ P
0 6 125
1 a
2 b
3 24 125
(1)求该生至少有 门课程取得优秀成绩的概率; 求该生至少有1门课程取得优秀成绩的概率 求该生至少有 门课程取得优秀成绩的概率; (2)求p,q的值; 求 , 的值 的值; (3)求数学期望 求数学期望E(ξ). 求数学期望 .
事件A 表示“该生第i门课程取得优秀成绩 门课程取得优秀成绩” = 解:事件 i表示“该生第 门课程取得优秀成绩”,i=1,2,3. 4 由题意知P(A1)= ,P(A2)=p,P(A3)=q. 由题意知 = = , = 5 (1)由于事件“该生至少有1门课程取得优秀成绩”与事件“ξ 由于事件“该生至少有 门课程取得优秀成绩 与事件“ 门课程取得优秀成绩” 由于事件 =0”是对立的,所以该生至少有 门课程取得优秀成绩的概 ”是对立的,所以该生至少有1门课程取得优秀成绩的概 6 119 率是1- = = - . 率是 -P(ξ=0)=1- = 125 125 1 6 (2)由题意知 =0)=P( A 1 A 2 A 3)= (1-p)(1-q)= 由题意知P(ξ= = 由题意知 = - - = , 5 125 4 24 P(ξ=3)=P(A1A2A3)= pq= . = = = = 5 125
高考数学一轮总复习课件:离散型随机变量的分布列、均值与方差
超几何分布
在含有M件次品的N件产品中,任取n件,其中恰有X件次
CMkCN-Mn-k
品,则P(X=k)=________C_N_n __,k=0,1,2,…,m,其中m
=min{M,n},且n≤N,M≤N,n,M,N∈N*.称分布列:
X
0
P
CM0CN-Mn-0 CNn
为超几何分布列.
1
…
m
CM1CN-Mn-1 CNn
…
CMmCN-Mn-m CNn
如果随机变量X的分布列具有上表的形式,那么称随机变量
X服从超几何分布,记作X~H(N,M,n).
1.判断下列说法是否正确(打“√”或“×”). (1)抛掷均匀硬币一次,出现正面的次数是随机变量. (2)在离散型随机变量的分布列中,随机变量取各个值的概 率之和可以小于1. (3)离散型随机变量的各个可能值表示的事件是彼此互斥 的.
思考题2 (1)(2021·吉林省汪清县高三月考)已知随机变 量ξ的分布列如下表,则x=____12____.
ξ01 2
P x2 x
1 4
【解析】
由随机变量概率分布列的性质可知:x2+x+
1 4
=1,且0≤x≤1,解得x=12.
(2)(2021·青铜峡市高三期末)设随机变量ξ的概率分布列如下
表,则P(|ξ-3|=1)=( A )
3.设ξ是一个离散型随机变量,则下列不一定能成为ξ的概
率分布列的一组数是( C )
A.0,0,0,1,0
B.0.1,0.2,0.3,0.4
C.p,1-p(p为实数)
D.1×1 2,2×1 3,…,(n-11)·n,1n(n∈N*,n≥2)
解析
显然A、B满足分布列的两个性质;对于D,有
离散型随机变量的分布列、均值与方差
离散型随机变量的分布列、均值与方差1.离散型随机变量的均值与方差 一般地,若离散型随机变量X 的分布列为(1)分布列的性质①p i ≥0,i =1,2,3,…,n . ②11=∑=ni i p(2)均值称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平. (3)方差称D (X )=i 12))((P X E x ni i ∑=-为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根D (X )为随机变量X 的标准差. 2.均值与方差的性质 (1)E (aX +b )=aE (X )+b .(2)D (aX +b )=a 2D (X ).(a ,b 为常数)3.判断下列结论的正误(正确的打“√”错误的打“×”)(1)随机变量的均值是常数,样本的平均值是随机变量,它不确定.(√)(2)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离变量平均程度越小.(√)(3)离散型随机变量的概率分布列中,各个概率之和可以小于1.(×) (4)离散型随机变量的各个可能值表示的事件是彼此互斥的.(√) (5)期望值就是算术平均数,与概率无关.(×)(6)随机变量的均值是常数,样本的平均值是随机变量.(×)(7)在篮球比赛中,罚球命中1次得1分,不中得0分.如果某运动员罚球命中的概率为0.7,那么他罚球1次的得分X 的均值是0.7.(√)(8)在一组数中,如果每个数都增加a ,则平均数也增加a .(√) (9)在一组数中,如果每个数都增加a ,则方差增加a 2.(×)(10)如果每个数都变为原来的a 倍,则其平均数是原来的a 倍,方差是原来的a 2倍.(√)考点一 离散型随机变量的分布列及性质[例1] (1)设X 是一个离散型随机变量,其分布列为则q 等于( )A .1B .1±22C .1-22D .1+22 解析:由分布列的性质知⎩⎪⎨⎪⎧1-2q ≥0,q 2≥0,12+1-2q +q 2=1,∴q =1-22.答案:C(2)设离散型随机变量X 的分布列为求:①2X +1的分布列; ②|X -1|的分布列. 解:由分布列的性质知:0.2+0.1+0.1+0.3+m =1,∴m =0.3. 首先列表为从而由上表得两个分布列为①2X +1的分布列为②|X -1|的分布列为[方法引航] (1)概率值均为非负数.(2)求随机变量在某个范围内的取值概率时,根据分布列,将所求范围内随机变量对应的取值概率相加即可,其依据是互斥事件的概率加法公式.1.随机变量的分布列为:其中a ,b ,c 成等差数列,若E (ξ)=13,则D (ξ)=________. 解析:由a ,b ,c 成等差数列及分布列性质得, ⎩⎪⎨⎪⎧a +b +c =1,2b =a +c ,-a +c =13,解得b =13,a =16,c =12.∴D (ξ)=16×2)311(--+13×2)310(-+12×2)311(-=59.答案:592.在本例(2)条件下,求X 2的分布列. 解:X 2的分布列为考点二 离散型随机变量的均值与方差[例2] (1)(2017·湖南益阳调研)某工厂有两条相互不影响的生产线分别生产甲、乙两种产品,产品出厂前需要对产品进行性能检测.检测得分低于80的为不合格品,只能报废回收;得分不低于80的为合格品,可以出厂,现随机抽取这两种产品各60件进行检测,检测结果统计如下:②生产一件甲种产品,若是合格品可盈利100元,若是不合格品则亏损20元;生产一件乙种产品,若是合格品可盈利90元,若是不合格品则亏损15元,在①的前提下:a .记X 为生产1件甲种产品和1件乙种产品所获得的总利润,求随机变量X 的分布列和数学期望;b .求生产5件乙种产品所获得的利润不少于300元的概率.解:①甲种产品为合格品的概率约为4560=34,乙种产品为合格品的概率约为4060=23. ②a .随机变量X 的所有取值为190,85,70,-35,且P (X =190)=34×23=12,P (X =85)=34×13=14,P (X =70)=14×23=16,P (X =-35)=14×13=112. 所以随机变量X 的分布列为所以E (X )=1902+854+706-3512=125.b .设生产的5件乙种产品中合格品有n 件,则不合格品有(5-n )件, 依题意得,90n -15(5-n )≥300,解得n ≥257,取n =4或n =5, 设“生产5件乙种产品所获得的利润不少于300元”为事件A ,则P (A )=C 454)32(13+5)32(=112243. (2)(2016·高考全国乙卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数. ①求X 的分布列;②若要求P (X ≤n )≥0.5,确定n 的最小值;③以购买易损零件所需费用的期望值为决策依据,在n =19与n =20之中选其一,应选用哪个?解:①由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.从而P (X =16)=0.2×0.2=0.04; P (X =17)=2×0.2×0.4=0.16; P (X =18)=2×0.2×0.2+0.4×0.4=0.24; P (X =19)=2×0.2×0.2+2×0.4×0.2=0.24; P (X =20)=2×0.2×0.4+0.2×0.2=0.2;P (X =21)=2×0.2×0.2=0.08; P (X =22)=0.2×0.2=0.04. 所以X 的分布列为②由①知P (X ≤③记Y 表示2台机器在购买易损零件上所需的费用(单位:元). 当n =19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040.当n=20时,E(Y)=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080. 可知当n=19时所需费用的期望值小于当n=20时所需费用的期望值,故应选n=19.[方法引航](1)已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解;(2)已知随机变量ξ的均值、方差,求ξ的线性函数η=aξ+b的均值、方差和标准差,可直接用ξ的均值、方差的性质求解;(3)由已知条件,作出对两种方案的判断.可依据均值、方差的意义,对实际问题作出判断.某商店试销某种商品20天,获得如下数据:试销结束后(3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X为第二天开始营业时该商品的件数,求X的分布列.解:(1)P(当天商店不进货)=P(当天商品销售量为0件)+P(当天商品销售量为1件)=120+520=310.(2)由题意知,X的可能取值为2,3.P(X=2)=P(当天商品销售量为1件)=520=1 4;P(X=3)=P(当天商品销售量为0件)+P(当天商品销售量为2件)+P(当天商品销售量为3件)=120+920+520=34.所以X的分布列为考点三[例3] (1)若X ~B (n ,p ),且E (X )=6,D (X )=3,则P (X =1)的值为( ) A .3·2-2 B .2-4 C .3·2-10 D .2-8解析:∵E (X )=np =6,D (X )=np (1-p )=3,∴p =12,n =12,则P (X =1)=C 112·12·11)21(=3·2-10.答案:C(2)某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为110和p .①若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值;②设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的分布列及均值E (ξ).解:①设“至少有一个系统不发生故障”为事件C ,那么 1-P (C )=1-110·p =4950,解得p =15. ②由题意,得 P (ξ=0)=3)101(=11 000,P (ξ=1)=C 132)101)(1011(-=271 000, P (ξ=2)=C 23×2)1011(-×110=2431 000,P (ξ=3)=3)1011(-=7291 000. 所以,随机变量ξ的分布列为故随机变量ξ的均值E (ξ)=0×11 000+1×271 000+2×2431 000+3×7291 000=2710. (或∵ξ~B )109,3(,∴E (ξ)=3×910=2710.)[方法引航] 如果ξ~B (n ,p ),可直接按公式E (ξ)=np ,D (ξ)=np (1-p )求解.假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或被并闭,且概率均为0.5.记此时教室里敞开的窗户个数为X.(1)求X的分布列;(2)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时刻教室里敞开的窗户个数为Y,求Y的数学期望.解:(1)∵X的所有可能取值为0,1,2,3,4,X~B(4,0.5),∴P(X=0)=C044)21(=116,P(X=1)=C144)21(=14,P(X=2)=C244)21(=38,P(X=3)=C344)21(=14,P(X=4)=C444)21(=116,∴X的分布列为(2)Y的所有可能取值为3,4,则P(Y=3)=P(X=3)=1 4,P(Y=4)=1-P(Y=3)=34,∴Y的数学期望E(Y)=3×14+4×34=154.[规范答题]求离散型随机变量的期望与方差[典例](2017·山东青岛诊断)为了分流地铁高峰的压力,某市发改委通过听众会,决定实施低峰优惠票价制度.不超过22公里的地铁票价如下表:6公里的概率分别为14,13,甲、乙乘车超过6公里且不超过12公里的概率分别为12,13.(1)求甲、乙两人所付乘车费用不相同的概率;(2)设甲、乙两人所付乘车费用之和为随机变量ξ,求ξ的分布列与数学期望.[规范解答] (1)由题意可知,甲、乙乘车超过12公里且不超过22公里的概率分别为14,13.2分则甲、乙两人所付乘车费用相同的概率P 1=14×13+12×13+14×13=13.3分 所以甲、乙两人所付乘车费用不相同的概率P =1-P 1=1-13=23.4分 (2)由题意可知,ξ=6,7,8,9,10.且P (ξ=6)=14×13=112, P (ξ=7)=14×13+12×13=14.P (ξ=8)=14×13+14×13+12×13=13. P (ξ=9)=12×13+14×13=14.P (ξ=10)=14×13=112,10分 所以ξ的分布列为则E (ξ)=6×112+7×14+8×13+9×14+10×112=8.12分[规范建议] 1.分清各事件间的关系:独立事件、互斥事件、对立事件.2.求随机变量的分布列,先把随机变量所有可能值列举出来,逐个求对应的概率. 3.利用期望公式求期望值.[高考真题体验]1.(2016·高考四川卷)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是________.解析:同时抛掷两枚质地均匀的硬币,至少有一枚硬币正面向上的概率为1-2)21(=34,且X ~B )43,2(,∴均值是2×34=32.答案:322.(2015·高考广东卷)已知随机变量X 服从二项分布B (n ,p ).若E (X )=30,D (X )=20,则p =________.解析:因为X~B(n,p),所以E(X)=np=30,D(X)=np(1-p)=20,解得n=90,p=1 3.答案:1 33.(2016·高考全国甲卷)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:(1)(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(3)求续保人本年度的平均保费与基本保费的比值.解:(1)设A表示事件:“一续保人本年度的保费高于基本保费”,则事件A发生当且仅当一年内出险次数大于1,故P(A)=0.2+0.2+0.1+0.05=0.55.(2)设B表示事件:“一续保人本年度的保费比基本保费高出60%”,则事件B发生当且仅当一年内出险次数大于3,故P(B)=0.1+0.05=0.15.又P(AB)=P(B),故P(B|A)=P(AB)P(A)=P(B)P(A)=0.150.55=311.因此所求概率为311.(3)记续保人本年度的保费为X元,则X的分布列为E(X)=0.85a×0.30×0.05=1.23a.因此续保人本年度的平均保费与基本保费的比值为1.23.4.(2013·高考课标全国卷Ⅱ)经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如下图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57 000元的概率.(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X ∈[100,110),则取X =105,且X =105的概率等于需求量落入[100,110)的频率),求T 的数学期望. 解:(1)当X ∈[100,130)时,T =500X -300(130-X )=800X -39 000, 当X ∈[130,150]时,T =500×130=65 000. 所以T =⎩⎨⎧800X -39 000,100≤X <130,65 000, 130≤X ≤150.(2)由(1)知利润T 不少于57 000元当且仅当120≤X ≤150.由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度内的利润T 不少于57 000元的概率的估计值为0.7. (3)依题意可得T 的分布列为所以E (T )=45 000×0.1课时规范训练 A 组 基础演练1.设随机变量ξ的分布列为P (ξ=k )=15(k =2,4,6,8,10),则D (ξ)等于( ) A .5 B .8 C .10 D .16 解析:选B.∵E (ξ)=15(2+4+6+8+10)=6, ∴D (ξ)=15[(-4)2+(-2)2+02+22+42]=8.2.已知某一随机变量X 的分布列如下,且E (X )=6.3,则a 的值为( )A.5 B .6 C .解析:选C.由分布列性质知:0.5+0.1+b =1,∴b =0.4. ∴E (X )=4×0.5+a ×0.1+9×0.4=6.3,∴a =7.3.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .400 解析:选B.记“不发芽的种子数为ξ”, 则ξ~B (1 000,0.1),所以E (ξ)=1 000×0.1=100, 而X =2ξ,故E (X )=E (2ξ)=2E (ξ)=200.4.如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过混合后,从中随机取一个小正方体,记它的油漆面数为X ,则X 的均值E (X )等于( )A.126125 B.65 C.168125 D.75解析:选B.125个小正方体中8个三面涂漆,36个两面涂漆,54个一面涂漆,27个没有涂漆,∴从中随机取一个正方体,涂漆面数X 的均值E (X )=54125×1+36125×2+8125×3=150125=65. 5.一射手对靶射击,直到第一次命中为止,每次命中的概率都为0.6,现有4颗子弹,则射击停止后剩余子弹的数目X 的期望值为( )A .2.44B .3.376C .2.376D .2.4 解析:选C.X 的所有可能取值为3,2,1,0,其分布列为∴E (X )=3×0.6+2×0.24+6.已知随机变量ξ的分布列为P (ξ=k )=12k -1,k =1,2,3,…,n ,则P (2<ξ≤5)=________. 解析:P (2<ξ≤5)=P (ξ=3)+P (ξ=4)+P (ξ=5)=14+18+116=716.答案:7 167.有一批产品,其中有12件正品和4件次品,有放回地任取3件,若X表示取到次品的件数,则D(X)=__________.解析:由题意知取到次品的概率为14,∴X~B)41,3(,∴D(X)=3×14×)411(-=916.答案:9 168.随机变量ξ的分布列如下:其中a,b,c成等差数列,则P(|ξ|d的取值范围是________.解析:因为a,b,c成等差数列,所以2b=a+c.又a+b+c=1,所以b=13.所以P(|ξ|=1)=a+c=23.又a=13-d,c=13+d,根据分布列的性质,得0≤13-d≤23,0≤13+d≤23,所以-13≤d≤13,此即公差d的取值范围.答案:23]31,31[-9.一次考试共有12道选择题,每道选择题都有4个选项,其中有且只有一个是正确的.评分标准规定:“每题只选一个选项,答对得5分,不答或答错得零分”.某考生已确定有8道题的答案是正确的,其余题中:有两道题都可判断两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只好乱猜.请求出该考生:(1)得60分的概率;(2)所得分数ξ的分布列和数学期望.解:(1)设“可判断两个选项是错误的”两道题之一选对为事件A,“有一道题可以判断一个选项是错误的”选对为事件B,“有一道题不理解题意”选对为事件C,∴P(A)=12,P(B)=13,P(C)=14,∴得60分的概率为P=12×12×13×14=148.(2)ξ可能的取值为40,45,50,55,60.P(ξ=40)=12×12×23×34=18;P(ξ=45)=C12×12×12×23×34+12×12×13×34+12×12×23×14=1748;P(ξ=50)=12×12×23×34+C12×12×12×13×34+C12×12×12×23×14+12×12×13×14=1748;P(ξ=55)=C12×12×12×13×14+12×12×23×14+12×12×13×34=748;P(ξ=60)=12×12×13×14=148.ξ的分布列为E(ξ)=40×18+45×1748+50×1748+55×748+60×148=57512.10.随着人们对环境关注度的提高,绿色低碳出行越来越受到市民重视,为此某市建立了公共自行车服务系统,市民凭本人二代身份证到公共自行车服务中心办理诚信借车卡借车,初次办卡时卡内预先赠送20分,当诚信积分为0时,借车卡将自动锁定,限制借车,用户应持卡到公共自行车服务中心以1元购1个积分的形式再次激活该卡,为了鼓励市民租用公共自行车出行,同时督促市民尽快还车,方便更多的市民使用,公共自行车按每车每次的租用时间进行扣分收费,具体扣分标准如下:①租用时间不超过1小时,免费;②租用时间为1小时以上且不超过2小时,扣1分;③租用时间为2小时以上且不超过3小时,扣2分;④租用时间超过3小时,按每小时扣2分收费(不足1小时的部分按1小时计算).甲、乙两人独立出行,各租用公共自行车一次,两人租车时间都不会超过3小时,设甲、乙租用时间不超过一小时的概率分别是0.5和0.6;租用时间为1小时以上且不超过2小时的概率分别是0.4和0.2.(1)求甲、乙两人所扣积分相同的概率;(2)设甲、乙两人所扣积分之和为随机变量ξ,求ξ的分布列和数学期望.解:(1)设甲、乙所扣积分分别为x1,x2,由题意可知,P(x1=0)=0.5,P(x1=1)=0.4,P(x1=2)=1-0.5-0.4=0.1,P(x2=0)=0.6,P(x2=1)=0.2,P(x2=2)=1-0.6-0.2=0.2,所以P(x1=x2)=P(x1=x2=0)+P(x1=x2=1)+P(x1=x2=2)=0.5×0.6+0.4×0.2+0.1×0.2=0.4.(2)由题意得,变量ξ的所有取值为0,1,2,3,4.P (ξ=0)=0.5×0.6=0.3,P (ξ=1)=0.5×0.2+0.6×0.4=0.34,P (ξ=2)=0.5×0.2+0.6×0.1+0.4×0.2=0.24, P (ξ=3)=0.4×0.2+0.2×0.1=0.1, P (ξ=4)=0.1×0.2=0.02, 所以ξ的分布列为E (ξ)=0×0.3+1×0.34+2B 组 能力突破1.已知X 的分布列则在下列式子中①E (X )=-13;②D (X )=2327;③P (X =0)=13,正确的个数是( )A .0B .1C .2D .3解析:选C.由E (X )=(-1)×12+0×13+1×16=-13,故①正确.由D (X )=2)311(+-×12+2)310(+×13+2)311(+×16=59,知②不正确.由分布列知③正确.2.已知ξ的分布列如下表,若η=2ξ+2,则D (η)的值为( )A.-13B.59C.109D.209解析:选D.E (ξ)=-1×12+0×13+1×16=-13,D (ξ)=2)311(+-×12+2)310(+×13+2)311(+×16=59∴D (η)=D (2ξ+2)=4D (ξ)=209,故选D.3.已知随机变量X +η=8,若X ~B (10,0.6),则E (η)和D (η)分别是( )A .6和2.4B .2和2.4C .2和5.6D .6和5.6 解析:选B.由已知随机变量X +η=8,所以η=8-X .因此,E (η)=8-E (X )=8-10×0.6=2,D (η)=(-1)2D (X )=10×0.6×0.4=2.4.4.两封信随机投入A ,B ,C 三个空邮箱,则A 邮箱的信件数ξ的数学期望E (ξ)=________. 解析:两封信投入A ,B ,C 三个空邮箱,投法种数是32=9,A 中没有信的投法种数是2×2=4,概率为49,A 中仅有一封信的投法种数是C 12×2=4,概率为49, A 中有两封信的投法种数是1,概率为19,故A 邮箱的信件数ξ的数学期望是49×0+49×1+19×2=23. 答案:235.李先生家在H 小区,他在C 科技园区工作,从家开车到公司上班有L 1,L 2两条路线(如图),路线L 1上有A 1,A 2,A 3三个路口,各路口遇到红灯的概率均为12;路线L 2上有B 1,B 2两个路口,各路口遇到红灯的概率依次为34,35.(1)若走路线L 1,求最多遇到1次红灯的概率; (2)若走路线L 2,求遇到红灯次数X 的数学期望;(3)按照“平均遇到红灯的次数最少”的要求,请你帮助李先生分析上述两条路线中,选择哪条路线上班更好些,并说明理由.解:(1)设“走路线L 1最多遇到1次红灯”为事件A ,则P (A )=C 03×2)21(+C 13×12×2)21(=12. 所以走路线L 1最多遇到1次红灯的概率为12. (2)依题意,知X 的可能取值为0,1,2. P (X =0)=)531)(431(--=110.P (X =1)=34×)531(-+)431(-×35=920,P (X =2)=34×35=920. 随机变量X 的分布列为所以E (X )=110×0+920×1+920×2=2720.(3)设选择路线L 1遇到红灯的次数为Y ,随机变量Y 服从二项分布,即Y ~B )21,3(,所以E (Y )=3×12=32.因为E (X )<E (Y ),所以选择路线L 2上班更好.。
离散型随机变量的期望及方差
3.一个均匀小正方体的六个面中,三个面上标以数0,两个 面上标以数1,一个面上标以数2.将这个小正方体抛掷2次,则向上 的数之积的数学期望________.
解析:随机变量 ξ 的取值为 0,1,2,4,P(ξ=0)=34,P(ξ=1)=19,P(ξ =2)=19,P(ξ=4)=316,因此 Eξ=49.
(1)X的概率分布;
(2)X的数学期望.
解:摸球的情形有以下5种:甲1白,乙2白(0元);甲1红,乙2 白或甲1白,乙1红1白(10元);甲1红,乙1红1白(20元);甲1白,乙 2红(50元);甲1红,乙2红(60元).
(1)X的所有可能的取值为0,10,20,50,60, P(X=0)=(190)3=1702090; P(X=10)=110×(190)2+190×11082=1204030; P(X=20)=110×11082=110800;
[例1] 袋中有20个大小相同的球,其中记上0号的有10个,记 上n号的有n个(n=1,2,3,4).现从袋中任取一个,ξ表示所取球的标 号.
(1)求ξ的分布列、期望和方差;
(2)若η=aξ+b,Eη=1,Dη=11,试求a,b的值. [课堂记录] (1)ξ 的分布列为
ξ0 1 2 3 4
P
1 2
P(X=50)=190×1102=10900; P(X=60)=1103=10100; ∴X 的概率分布为
(2)EX=0×1702090+10×1204030+20×110800+50×10900+60×10100= 3.3(元).
热点之二 期望与方差的性质及应用 利用均值和方差的性质,可以避免复杂的运算.常用性质 有: (1)EC=C(C为常数); (2)E(aX+b)=aEX+b(a,b为常数); (3)E(X1+X2)=EX1+EX2;E(aX1+bX2)=aE(X1)+bE(X2);
离散型随机变量的均值与方差
5 0.8
8 0.5
10 0.2
12 0.3
E(Y1)=5×0.8+10×0.2=6, D(Y1)=(5-6)2×0.8+(10-6)2×0.2=4, E(Y2)=2×0.2+8×0.5+12×0.3=8, D(Y2)=(2-8)2×0.2+(8-8)2×0.5+(12-8)2×0.3 =12.
3.正态曲线的特点: (1)曲线位于x轴 (3)曲线在
x= μ 上方 ,与x轴不相交; x= μ
(2)曲线是单峰的,它关于直线 处达到峰值
1
对称; ;
(4)曲线与x轴之间的面积为
;
(5)当σ一定时,曲线随着μ的变化而沿x轴平移
(6)当μ一定时,曲线的形状由σ确定.σ越小曲线
越“ ”瘦高 ,表示总体的分布越集中;σ越大,曲
离散型随机变量的均值方差
一、均值
1.一般地,若离散型随机变量X的分布列为
X P x1 p1 x2 p2 … … xi pi … … xn Pn
则称E(X)= x1p1+x2p2+…+xipi+…+xnpn 为
随机变量X的均值或数学期望,它反映了离散
型随机变量取值的 平均水平 .
2.若Y=aX+b,其中a,b为常数,则Y也 是随机变量,且E(aX+b)=
(2) f ( x ) D
[ x 2 3(100 x )2 ]
(4 x 2 600 x 3 1002 ).
当 x= =75时,f(x)=3为最小值.
正态分布下的概率计算常见的有两类: 1.利用正态分布密度曲线的对称性研究相关概 率问题,涉及的知识主要是正态曲线关于直线x =μ对称,及曲线与x轴之间的面积为1. 2.利用3σ原则求概率问题时,要注意把给出的 区间或范围与正态变量的μ,σ进行对比联系,
离散型随机变量的均值与方差
[方法锦囊]
P 0.1 0.2 0.16 0.54
(1)求离散型随机变量的 均值与方差关键是确定
Y 的数学期望为 E(Y)=55×0.1+65×0.2+75×0.16+
随机变量的所有可能 值,写出随机变量的分
85×0.54=76.4.
布列,正确运用均值、
由以上的计算结果可以看出,E(X)<E(Y),即购进 17 枝玫瑰花时的平均利润大于购进 16 枝时的平均利 润.故花店一天应购进 17 枝玫瑰花.
方差公式进行计算. (2)要注意观察随机变量 的概率分布特征,若属 二项分布的,可用二项
分布的均值与方差公式
计算,则更为简单.
考向一离散型随机变量的均值和方差
【训练 1】 A、B 两个代表队进行乒乓球对抗赛,每队三名
队员,A 队队员是 A1、A2、A3,B 队队员是 B1、B2、B3,按 以往多次比赛的统计,对阵队员之间的胜负概率如下:
P(X=3)=23×25×25=785,
P(X=2)=23×25×35+13×25×25+23×35×25=2758,
[审题视点]
(1)根 据 日 需求 量 分 类 求 出 函 数 解析 式 . (2) ①根据当天的需求量, 写出相应的利润,列 出分布列,求出数学 期望和方差,②比较 两种情况的数学期望 或方差即可.
【例 2】►设随机变量 X 具有分布 P(X=k)=15,k= 1,2,3,4,5,求 E(X+2)2,D(2X-1), DX-1. 解 ∵E(X)=1×15+2×15+3×15+4×15+5×15=155=3. E(X2)=1×15+22×15+32×15+42×15+52×15=11. D(X)=(1-3)2×15+(2-3)2×15+(3-3)2×15+(4-3)2×15 +(5-3)2×15=15(4+1+0+1+4)=2. ∴ E(X + 2)2 = E(X2 + 4X + 4) = E(X2) + 4E(X) + 4 = 11 + 12+4=27. D(2X-1)=4D(X)=8, DX-1= DX= 2.
高考数学(浙江专用)总复习教师用书:第10章 第8讲 离散型随机变量的均值与方差 Word版含解析
第8讲 离散型随机变量的均值与方差最新考纲 1.理解取有限个值的离散型随机变量的均值、方差的概念;2.能计算简单离散型随机变量的均值、方差,并能解决一些简单实际问题.知 识 梳 理1.离散型随机变量的均值与方差 若离散型随机变量X 的分布列为(1)均值称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平. (2)方差称D (X )=∑ni =1__(x i -E (X ))2p i 为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根D (X )为随机变量X 的标准差. 2.均值与方差的性质 (1)E (aX +b )=aE (X )+b .(2)D (aX +b )=a 2D (X )(a ,b 为常数). 3.两点分布与二项分布的均值、方差(1)若X 服从两点分布,则E (X )=p ,D (X )=p (1-p ). (2)若X ~B (n ,p ),则E (X )=np ,D (X )=np (1-p ).诊 断 自 测1.判断正误(在括号内打“√”或“×”) (1)期望值就是算术平均数,与概率无关.( )(2)随机变量的均值是常数,样本的平均值是随机变量.( )(3)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离变量平均程度越小.( )(4)均值与方差都是从整体上刻画离散型随机变量的情况,因此它们是一回事.( )解析 均值即期望值刻画了离散型随机变量取值的平均水平,而方差刻画了离散型随机变量的取值偏离期望值的平均程度,因此它们不是一回事,故(1)(4)均不正确.答案 (1)× (2)√ (3)√ (4)×2.(选修2-3P68T1改编)已知X 的分布列为设Y =2X +3,则E (Y )A.73B.4 C.-1 D.1解析 E (X )=-12+16=-13,E (Y )=E (2X +3)=2E (X )+3=-23+3=73. 答案 A3.已知某离散型随机变量X 的分布列如下表,则随机变量X 的方差D (X )等于( )A.19B.29C.13D.23解析 由已知得m +2m =1得m =13,由于X 服从两点分布,所以D (X )=m ·2m =29. 答案B4.设随机变量X 的分布列为P (X =k )=15(k =2,4,6,8,10),则D (X )等于________. 解析∵E (X )=15(2+4+6+8+10)=6,∴D (X )=15[(-4)2+(-2)2+02+22+42]=8. 答案 85.(2015·广东卷)已知随机变量X 服从二项分布B (n ,p ),若E (X )=30,D (X )=20,则p =________.解析 由于X ~B (n ,p ),且E (X )=30,D (X )=20. 所以⎩⎪⎨⎪⎧np =30,np (1-p )=20.解之得p =13.答案 136.某学校要从5名男生和2名女生中选出2人作为社区志愿者,若用随机变量X 表示选出的志愿者中女生的人数,则随机变量X 的数学期望E (X )=________(结果用最简分数表示).解析 随机变量X 只能取0,1,2三个数,因为P (X =0)=C 25C 27=1021,P (X =1)=C 15C 12C 27=1021,P (X =2)=C 22C 27=121,故E (X )=1×1021+2×121=47.答案 47考点一 一般分布列的均值与方差【例1】(2017·台州调研)为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为14,16;1小时以上且不超过2小时离开的概率分别为12,23;两人滑雪时间都不会超过3小时.(1)求甲、乙两人所付滑雪费用相同的概率;(2)设甲、乙两人所付的滑雪费用之和为随机变量ξ,求ξ的分布列与数学期望E (ξ),方差D (ξ).解 (1)两人所付费用相同,相同的费用可能为0,40,80元, 两人都付0元的概率为P 1=14×16=124, 两人都付40元的概率为P 2=12×23=13, 两人都付80元的概率为P 3=⎝ ⎛⎭⎪⎫1-14-12×⎝ ⎛⎭⎪⎫1-16-23=14×16=124,则两人所付费用相同的概率为P =P 1+P 2+P 3=124+13+124=512.(2)设甲、乙所付费用之和为ξ,ξ可能取值为0,40,80,120,160,则: P (ξ=0)=14×16=124; P (ξ=40)=14×23+12×16=14; P (ξ=80)=14×16+12×23+14×16=512; P (ξ=120)=12×16+14×23=14; P (ξ=160)=14×16=124. ξ的分布列为E (ξ)=0×124+40×14+80×512+120×14+160×124=80. D (ξ)=(0-80)2×124+(40-80)2×14+(80-80)2×512+(120-80)2×14+(160-80)2×124=4 0003.规律方法 (1)求离散型随机变量的均值与方差关键是确定随机变量的所有可能值,写出随机变量的分布列,正确运用均值、方差公式进行计算.(2)注意E(aX+b)=aE(X)+b,D(aX+b)=a2D(X)的应用.【训练1】根据以往的经验,某工程施工期间的降水量X(单位:mm)对工期的影响如下表:为0.3,0.7,0.9,求:(1)工程延误天数Y的均值与方差;(2)在降水量X至少是300 mm的条件下,工期延误不超过6天的概率.解(1)由条件和概率的加法公式有:P(X<300)=0.3,P(300≤X<700)=P(X<700)-P(X<300)=0.7-0.3=0.4,P(700≤X<900)=P(X<900)-P(X<700)=0.9-0.7=0.2,P(X≥900)=1-P(X<900)=1-0.9=0.1.所以Y的分布列为:于是,E(Y)=0×0.3+2D(Y)=(0-3)2×0.3+(2-3)2×0.4+(6-3)2×0.2+(10-3)2×0.1=9.8.故工期延误天数Y的均值为3,方差为9.8.(2)由概率加法公式,得P(X≥300)=1-P(X<300)=0.7,又P(300≤X<900)=P(X<900)-P(X<300)=0.9-0.3=0.6.由条件概率,得P(Y≤6|X≥300)=P(X<900|X≥300)=P(300≤X<900)P(X≥300)=0.60.7=67.故在降水量X至少是300 mm的条件下,工期延误不超过6天的概率是6 7.考点二与二项分布有关的均值、方差【例2】(2017·北京海淀区模拟)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为23,中奖可以获得2分;方案乙的中奖率为25,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X ,求X ≤3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?解 (1)由已知得,小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响.记“这2人的累计得分X ≤3”的事件为A , 则事件A 的对立事件为“X =5”, 因为P (X =5)=23×25=415, 所以P (A )=1-P (X =5)=1115, 即这2人的累计得分X ≤3的概率为1115.(2)法一 设小明、小红都选择方案甲抽奖中奖次数为X 1,都选择方案乙抽奖中奖次数为X 2,则这两人选择方案甲抽奖累计得分的数学期望为E (2X 1),选择方案乙抽奖累计得分的数学期望为E (3X 2). 由已知可得,X 1~B ⎝ ⎛⎭⎪⎫2,23,X 2~B ⎝ ⎛⎭⎪⎫2,25,所以E (X 1)=2×23=43,E (X 2)=2×25=45, 因此E (2X 1)=2E (X 1)=83, E (3X 2)=3E (X 2)=125. 因为E (2X 1)>E (3X 2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.法二 设小明、小红都选择方案甲所获得的累计得分为Y 1,都选择方案乙所获得的累计得分为Y 2,则Y 1,Y 2的分布列为:∴E (Y 1)=0×19+2×49+4×49=83, E (Y 2)=0×925+3×1225+6×425=125, 因为E (Y 1)>E (Y 2),所以二人都选择方案甲抽奖,累计得分的数学期望较大. 规律方法 二项分布的期望与方差.(1)如果ξ~B (n ,p ),则用公式E (ξ)=np ;D (ξ)=np (1-p )求解,可大大减少计算量.(2)有些随机变量虽不服从二项分布,但与之具有线性关系的另一随机变量服从二项分布,这时,可以综合应用E (aξ+b )=aE (ξ)+b 以及E (ξ)=np 求出E (aξ+b ),同样还可求出D (aξ+b ).【训练2】(2017·诸暨模拟)甲、乙、丙三人准备报考某大学,假设甲考上的概率为25,甲、丙都考不上的概率为625,乙、丙都考上的概率为310,且三人能否考上相互独立.(1)求乙、丙两人各自考上的概率;(2)设X 表示甲、乙、丙三人中考上的人数与没考上的人数之差的绝对值,求X 的分布列与数学期望.解 (1)设A 表示“甲考上”,B 表示“乙考上”,C 表示“丙考上”, 则P (A )=25,且⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫1-25[1-P (C )]=625,P (B )P (C )=310,解得P(C)=35,P(B)=12.∴乙考上的概率为12,丙考上的概率为35.(2)由题意X的可能取值为1,3,P(X=1)=25×12×25+35×12×25+35×12×35+25×12×25+25×12×35+35×12×35=1925,P(X=3)=25×12×35+35×12×25=625,∴X的分布列为:EX=1×1925+3×625=3725.考点三均值与方差在决策中的应用【例3】计划在某水库建一座至多安装3台发电机的水电站.过去50年的水文资料显示,水库年入流量X(年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.(1)求未来4年中,至多有1年的年入流量超过120的概率;(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X限制,并有如下关系:年亏损800万元.欲使水电站年总利润的均值达到最大,应安装发电机多少台?解(1)依题意,p1=P(40<X<80)=1050=0.2,p2=P(80≤x≤120)=3550=0.7,p 3=P (X >120)=550=0.1.由二项分布,在未来4年中至多有1年的年入流量超过120的概率为 p =C 04(1-p 3)4+C 14(1-p 3)3p 3=⎝ ⎛⎭⎪⎫9104+4×⎝ ⎛⎭⎪⎫9103×⎝ ⎛⎭⎪⎫110=0.947 7. (2)记水电站年总利润为Y (单位:万元). ①安装1台发电机的情形.由于水库年入流量总大于40,故一台发电机运行的概率为1, 对应的年利润Y =5 000,E (Y )=5 000×1=5 000. ②安装2台发电机的情形.依题意,当40<X <80时,一台发电机运行,此时Y =5 000-800=4 200,因此P (Y =4 200)=P (40<X <80)=p 1=0.2;当X ≥80时,两台发电机运行,此时Y =5 000×2=10 000,因此P (Y =10 000)=P (X ≥80)=p 2+p 3=0.8.由此得Y 的分布列如下:所以,E (Y )=4 200×0.2+③安装3台发电机的情形.依题意,当40<X <80时,一台发电机运行,此时Y =5 000-1 600=3 400,因此P (Y =3 400)=P (40<X <80)=p 1=0.2;当80≤X ≤120时,两台发电机运行,此时Y =5 000×2-800=9 200,因此P (Y =9 200)=P (80≤X ≤120)=p 2=0.7;当X >120时,三台发电机运行,此时Y =5 000×3=15 000,因此P (Y =15 000)=P (X >120)=p 3=0.1.因此得Y 的分布列如下:所以,E (Y )=3 400×综上,欲使水电站年总利润的均值达到最大,应安装发电机2台.规律方法 随机变量的均值反映了随机变量取值的平均水平,方差反映了随机变量稳定于均值的程度,它们从整体和全局上刻画了随机变量,是生产实际中用于方案取舍的重要理论依据.一般先比较均值,若均值相同,再用方差来决定. 【训练3】(2017·贵州调研)某投资公司在2018年年初准备将1 000万元投资到“低碳”项目上,现有两个项目供选择:项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利30%,也可能亏损15%,且这两种情况发生的概率分别为79和29;项目二:通信设备.据市场调研,投资到该项目上,到年底可能获利50%,可能损失30%,也可能不赔不赚,且这三种情况发生的概率分别为35,13和115.针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由. 解若按“项目一”投资,设获利为X1万元.则X1的分布列为∴E(X1)=300×79+(-150)×29=200(万元).若按“项目二”投资,设获利X2万元,则X2的分布列为:∴E(X2)=500×35+(-300)×13+0×115=200(万元).D(X1)=(300-200)2×79+(-150-200)2×29=35 000,D(X2)=(500-200)2×35+(-300-200)2×13+(0-200)2×115=140 000.所以E(X1)=E(X2),D(X1)<D(X2),这说明虽然项目一、项目二获利相等,但项目一更稳妥. 综上所述,建议该投资公司选择项目一投资.[思想方法]1.掌握下述均值与方差有关性质,会给解题带来方便:(1)E(aX+b)=aE(X)+b,E(X+Y)=E(X)+E(Y),D(aX+b)=a2D(X);(2)若X~B(n,p),则E(X)=np,D(X)=np(1-p).2.基本方法(1)已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解;(2)已知随机变量X的均值、方差,求X的线性函数Y=aX+b的均值、方差和标准差,可直接用均值、方差的性质求解;(3)如能分析所给随机变量服从常用的分布(如二项分布),可直接利用它们的均值、方差公式求解.[易错防范]1.在没有准确判断分布列模型之前不能乱套公式.2.对于应用问题,必须对实际问题进行具体分析,一般要将问题中的随机变量设出来,再进行分析,求出随机变量的分布列,然后按定义计算出随机变量的均值、方差.基础巩固题组(建议用时:40分钟)一、选择题1.已知离散型随机变量X的概率分布列为则其方差D(X)=()A.1B.0.6C.2.44D.2.4解析由0.5+m+0.2=1得m=0.3,∴E(X)=1×0.5+3×0.3+5×0.2=2.4,∴D(X)=(1-2.4)2×0.5+(3-2.4)2×0.3+(5-2.4)2×0.2=2.44.答案C2.(2017·西安调研)某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为()A.100B.200C.300D.400解析设没有发芽的种子有ξ粒,则ξ~B(1 000,0.1),且X=2ξ,∴E(X)=E(2ξ)=2E(ξ)=2×1 000×0.1=200.答案B3.已知随机变量X服从二项分布,且E(X)=2.4,D(X)=1.44,则二项分布的参数n,p的值为()A.n=4,p=0.6B.n=6,p=0.4C.n=8,p=0.3D.n=24,p=0.1解析由二项分布X~B(n,p)及E(X)=np,D(X)=np·(1-p)得2.4=np,且1.44=np(1-p),解得n=6,p=0.4.故选B.答案 B4.已知随机变量X+η=8,若X~B(10,0.6),则E(η),D(η)分别是()A.6,2.4B.2,2.4C.2,5.6D.6,5.6解析由已知随机变量X+η=8,所以有η=8-X.因此,求得E(η)=8-E(X)=8-10×0.6=2,D(η)=(-1)2D(X)=10×0.6×0.4=2.4.答案B5.口袋中有5只球,编号分别为1,2,3,4,5,从中任取3只球,以X表示取出的球的最大号码,则X的数学期望E(X)的值是()A.4B.4.5C.4.75D.5解析由题意知,X可以取3,4,5,P(X=3)=1C35=110,P(X=4)=C23C35=310,P(X=5)=C24C35=610=35,所以E(X)=3×110+4×310+5×35=4.5.答案 B 二、填空题6.设X 为随机变量,X ~B ⎝ ⎛⎭⎪⎫n ,13,若随机变量X 的数学期望E (X )=2,则P (X =2)=________;D (X )=________.解析 由X ~B ⎝ ⎛⎭⎪⎫n ,13,E (X )=2,得np =13n =2,∴n =6,则P (X =2)=C 26⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫1-134=80243,D (X )=np (1-p )=6×13×23=43.答案 80243437.随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,则D (ξ)=________. 解析设P (ξ=1)=a ,P (ξ=2)=b , 则⎩⎨⎧15+a +b =1,a +2b =1,解得⎩⎪⎨⎪⎧a =35,b =15,所以D (ξ)=(0-1)2×15+(1-1)2×35+(2-1)2×15=25. 答案258.(2017·合肥模拟)某科技创新大赛设有一、二、三等奖(参与活动的都有奖)且相应奖项获奖的概率是以a 为首项,2为公比的等比数列,相应的奖金分别是7 000元、5 600元、4 200元,则参加此次大赛获得奖金的期望是________元. 解析 由题意知a +2a +4a =1,∴a =17,∴获得一、二、三等奖的概率分别为17,27,47,∴所获奖金的期望是E (X )=17×7 000+27×5 600+47×4 200=5 000(元). 答案 5 000 三、解答题9.已知从某批产品中随机抽取1件是二等品的概率为0.2.(1)若从该产品中有放回地抽取产品2次,每次抽取1件,设事件A :“取出的2件产品中至多有1件是二等品”,求P (A );(2)若该批产品共有20件,从中任意抽取2件,X 表示取出的2件产品中二等品的件数,求随机变量X的分布列和数学期望.解(1)记A0表示事件“取出的2件产品中没有二等品”,A1表示事件“取出的2件产品中恰有1件二等品”,则A1与A0互斥,且A=A0+A1,∴P(A)=P(A0)+P(A1)=(1-0.2)2+C12×0.2×(1-0.2)=0.96.(2)随机变量X的所有可能取值为0,1,2,该产品共有二等品20×0.2=4(件),P(X=0)=C216C220=1219,P(X=1)=C116C14C220=3290,P(X=2)=C24C220=395,∴X的分布列为:E(X)=0×1219+1×3295+2×395=25.10.(2017·郑州一模)在“出彩中国人”的一期比赛中,有6位歌手(1~6)登台演出,由现场百家大众媒体投票选出最受欢迎的出彩之星,各家媒体独立地在投票器上选出3位出彩候选人,其中媒体甲是1号歌手的歌迷,他必选1号,另在2号至6号中随机的选2名;媒体乙不欣赏2号歌手,他必不选2号;媒体丙对6位歌手的演唱没有偏爱,因此在1至6号歌手中随机的选出3名.(1)求媒体甲选中3号且媒体乙未选中3号歌手的概率;(2)X表示3号歌手得到媒体甲、乙、丙的票数之和,求X的分布列及数学期望. 解(1)设A表示事件:“媒体甲选中3号歌手”,B表示事件:“媒体乙选中3号歌手”,C表示事件:“媒体丙选中3号歌手”,则P(A)=C14C25=25,P(B)=C24C35=35,∴媒体甲选中3号且媒体乙未选中3号歌手的概率为P(AB)=25×⎝⎛⎭⎪⎫1-35=425.(2)P (C )=C 25C 36=12,由已知得X 的可能取值为0,1,2,3, P (X =0)=P (A B C )=⎝ ⎛⎭⎪⎫1-25×⎝ ⎛⎭⎪⎫1-35×⎝ ⎛⎭⎪⎫1-12=325. P (X =1)=P (A B C )+P (A B C )+P (A B C )=25×⎝ ⎛⎭⎪⎫1-35×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-25×35×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-25×⎝ ⎛⎭⎪⎫1-35×12=1950,P (X =2)=P (AB C )+P (A B C )+P (A BC )=25×35×⎝ ⎛⎭⎪⎫1-12+25×⎝ ⎛⎭⎪⎫1-35×12+⎝ ⎛⎭⎪⎫1-25×35×12=1950,P (X =3)=P (ABC )=25×35×12=325, ∴X 的分布列为∴E (X )=0×325+1×1950+2×1950+3×325=32.能力提升题组 (建议用时:25分钟)11.从装有除颜色外完全相同的3个白球和m 个黑球的布袋中随机摸取一球,有放回地摸取5次,设摸得白球数为X ,已知E (X )=3,则D (X )=( ) A.85B.65 C.45D.25解析 由题意,X ~B ⎝⎛⎭⎪⎫5,3m +3, 又E (X )=5×3m +3=3,∴m =2,则X ~B ⎝ ⎛⎭⎪⎫5,35,故D (X )=5×35×⎝ ⎛⎭⎪⎫1-35=65. 答案 B12.袋中装有大小完全相同,标号分别为1,2,3,…,9的九个球.现从袋中随机取出3个球.设ξ为这3个球的标号相邻的组数(例如:若取出球的标号为3,4,5,则有两组相邻的标号3,4和4,5,此时ξ的值是2),则随机变量ξ的均值E (ξ)为( ) A.16 B.13C.12D.23解析 依题意得,ξ的所有可能取值是0,1,2.且P (ξ=0)=C 37C 39=512,P (ξ=1)=C 27·A 22C 39=12,P (ξ=2)=C 17C 39=112,因此E (ξ)=0×512+1×12+2×112=23. 答案 D13.马老师从课本上抄录一个随机变量ξ的分布列如下表:请小牛同学计算ξ糊,但能断定这两个“?”处的数值相同.据此,小牛给出了正确答案E (ξ)=________.解析 设“?”处的数值为x ,则“!”处的数值为1-2x ,则E (ξ)=1×x +2×(1-2x )+3x =x +2-4x +3x =2. 答案 214.甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望).解 用A 表示“甲在4局以内(含4局)赢得比赛”,A k 表示“第k 局甲获胜”,B k 表示“第k 局乙获胜”,则P (A k )=23,P (B k )=13,k =1,2,3,4,5. (1)P (A )=P (A 1A 2)+P (B 1A 2A 3)+P (A 1B 2A 3A 4) =P (A 1)P (A 2)+P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)· P (A 3)P (A 4)=⎝ ⎛⎭⎪⎫232+13×⎝ ⎛⎭⎪⎫232+23×13×⎝ ⎛⎭⎪⎫232=5681. (2)X 的可能取值为2,3,4,5.P (X =2)=P (A 1A 2)+P (B 1B 2)=P (A 1)P (A 2)+P (B 1)·P (B 2)=59, P (X =3)=P (B 1A 2A 3)+P (A 1B 2B 3)=P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)P (B 3)=29, P (X =4)=P (A 1B 2A 3A 4)+P (B 1A 2B 3B 4)=P (A 1)P (B 2)P (A 3)P (A 4)+P (B 1)P (A 2)P (B 3)P (B 4)=1081, P (X =5)=1-P (X =2)-P (X =3)-P (X =4)=881. 故X 的分布列为E (X )=2×59+3×29+4×1081+5×881=22481.15.(2017·绍兴调研)为回馈顾客,某商场拟通过摸球兑奖的方式对1 000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元.求: ①顾客所获的奖励额为60元的概率; ②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由. 解(1)设顾客所获的奖励额为X.①依题意,得P(X=60)=C11C13C24=12,即顾客所获的奖励额为60元的概率为1 2.②依题意,得X的所有可能取值为20,60.P(X=60)=12,P(X=20)=C23C24=12,即X的分布列为所以顾客所获的奖励额的数学期望为E(X)=20×12+60×12=40(元).(2)根据商场的预算,每个顾客的平均奖励额为60元.所以,先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.对于面值由20元和40元组成的情况,同理,可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2.以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X1,则X1的分布列为X1的数学期望为E(X1)=20×16+60×23+100×16=60(元),X1的方差为D(X1)=(20-60)2×16+(60-60)2×23+(100-60)2×16=1 6003.对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X2,则X2的分布列为X2的数学期望为E(X2)=40×16+60×23+80×16=60(元),X2的方差为D(X2)=(40-60)2×16+(60-60)2×23+(80-60)2×16=4003.由于两种方案的奖励额的数学期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.。
离散型随机变量的均值与方差
返回
(1)P(A)=0.5,P(B)=0.3,C=A+B, P(C)=P(A+B)=P(A)+P(B)=0.8. (2)D=-,P(D)=1-P(C)=1-0.8=0.2, C X~B(100,0.2),即X服从二项分布, 所以期望E(X)=100×0.2=20.
返回
[做一题] [例2] (2011· 福建高考)某产品按行业生产标准分成8个等级,
离散型随机变量均值、方差
考纲点击
1.理解取有限个值的离散型随机变量均值、方差的概念.
2.能计算简单离散型随机变量的均值、方差,并能解决一 些实际问题.
返回
1.离散型随机变量的均值与方差
若离散型随机变量X的分布列为:
X P (1)均值 称E(X)= x1p1+x2p2+…+xipi+…+xnpn 为随机变 x1 p1 x2 p2 „ „ xi Pi „ „ xn pn
6a+7b=3.2, 由 a+b=0.5, a=0.3, 解得 b=0.2.
返回
(2)由已知得,样本的频率分布表如下: X2 3 4 5 6 7 8
f
0.3
0.2
0.2
0.1
0.1
0.1
返回
用这个样本的频率分布估计总体分布,将频率视为概率,
可得等级系数X2的概率分布列如下: X2 3 4 5 6 7 8
3 1 1 2 2 D(ξ2)=(500-200) × 5 +(-300-200) × 3 +(0-200) × 15 =
2
140 000, 所以E(ξ1)=E(ξ2),D(ξ1)<D(ξ2), 这说明虽然项目一、项目二获利相等,但项目一更稳妥. 综上所述,建议该投资公司选择项目一投资.
返回
[热点分析]
离散型随机变量的均值和方差
a( x1 p1 x2 p2 xn pn ) b( p1 p2 pn )
aE b
即 E(a b) aE b
离散型随机变量的均值的理解
(1) 均 值 是 算 术 平 均 值 概 念 的 推 广 , 是 概 率 意 义 下 的 平 均.
(2)E(X)是一个实数,是由X的概率分布唯一确定的,它 描述X取值的平均状态.
8.两封信随机投入A、B、C三个空邮箱,则A邮箱的信
2
件数ξ的数数学期望Eξ=_____3___.
若ξ~B(n,p),则Eξ= np
ξ01
…k
…n
P Cn0p0qn Cn1p1qn-1 … Cnkpkqn-k … Cnnpnq0
证明:∵P(ξ=k)= Cnkpkqn-k
(∵ k Cnk =n Cn-1k-1)
第二课时:随机变量取值的方差和标准差
前面,我们认识了数学期望. 数学期望: 一般地,若离散型随机变量 ξ 的概率分布 列为
ξ x1 x2 … xk … xn P p1 p2 … pk … pn
则称 E x1 p1 x2 p2 … xk pk … xn pn 为 ξ 的数 学期望,简称期望.数学期望是离散型随机变量的一个特征 数,它反映了离散型随机变量取值的平均水平,表示了随机 变量在随机实验中取值的平均值,所以又常称为随机变量的 平均数、均值.但有时两个随机变量只用这一个特征量是无 法区别他们的。还需要对随机变量取值的稳定与波动、集中 与离散的程度进行刻画.
探究
已知甲、乙两名射手在同一条件下射击,所得环数1、 2的分布列如下:
x1 8 9 10 P 0.2 0.6 0.2
x2 8 9 10 P 0.4 0.2 0.4
试比较两名射手的射击水平.如果其他对手的射击成 绩都在8环左右,应派哪一名选手参赛?如果其他对手的 射击成绩都在9环左右,应派哪一名选手参赛?
离散型随机变量的均值和方差
离散型随机变量的均值和方差
离散型随机变量的的期望也就是离散型随机变量的均值的是为了表达一个随机变量取值的中间水平,随机变量的方差刻画了随机变量取值的离散程度。
由于它们反映了随机变量取值的平均水平及稳定性,所以随机变量的均值和方差在市场预测等其他方面有着重要的应用。
离散型随机变量的期望公式:离散型随机变量X的取值为X1、X2、X3……Xn,p(X1)、p(X2)、p(X3)……p(Xn)、为X对应取值的概率,可理解为数据X1、X2、X3……Xn出现的频率高f(Xi)。
则E(X)=X1*p(X1)+X2**p(X2)+……+Xn**p(Xn)= X1*f1(X1)+X2*f2(X2)+……+Xn*fn(Xn)。
离散型随机变量的方差公式:D(X)=E{[X-E(X)]^2}=E(X^2)-(EX)^2。
常见的分布的方差和期望:
1、均匀分布:期望是(a+b)/2,方差是(b-a)的平方/12。
2、二项分布:期望是np,方差是npq。
3、泊松分布:期望是p,方差是p。
4、指数分布:期望是1/p,方差是1/(p的平方)。
5、正态分布:期望是u,方差是&的平方。
6、X服从参数为p的0-1分布,则E(X)=p,d(X)=p(1-p)。
离散型随机变量的均值与方差
解 (1)甲、乙、丙三名学生每人选择五个社团的方
法数是5种,故共有5×5×5=125(种).
(2)三名学生选择三个不同社团的概率是
A
3 5
53
12 . 25
∴三名学生中至少有两人选择同一个社团的概率为
1 12 13 . 25 25
解 (1)ξ的所有可能取值有6,2,1,-2.
P( 6) 126 0.63, P( 2) 50 0.25,
200
200
P( 1) 20 0.1, P( 2) 4 0.02.
200
200
故ξ的分布列为
6
2
1
-2
P 0.63 0.25 0.1 0.02
(2)E(ξ)=6×0.63+2×0.25+1×0.1+(-2)×0.02
125 125 125 125 5
题型二 均值与方差性质的应用
【例2】设随机变量ξ具有分布P(ξ=k)= 1 , k=1,2,3,
5
4,5,求E(ξ+2)2,D(2ξ-1), D( 1).
思维启迪 利用性质E(aξ+b)=aE(ξ)+b,
D(aξ+b)=a2D(ξ).
解 ∵ E( ) 1 1 2 1 3 1 4 1 5 1 15 3.
9 16
X ~ B(3, 1), D(X ) 3 1 3 9 .
4
4 4 16
题型分类 深度剖析
题型一 离散型随机变量的均值与方差的求法 【例1】 (2009·湖南理,17)为拉动经济增长,某市决
定新建一批重点工程,分为基础设施工程、民生工程 和产业建设工程三类,这三类工程所含项目的个数分 别占总数的 1 , 1 , 1 , 现有3名工人独立地从中任选一
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
23
(2)(2020·台州市书生中学高三期中)若 X 是离散型随机变量,P(X=a)=23,P(X=b)=13,
且 a<b,又已知 E(X)=43,D(X)=29,则 a+b 的值为
()
A.1
B.2
C.3
D.4
上一页
返回Байду номын сангаас航
下一页
第十章 计数原理与古典概率
24
【解析】 (1)X 的可能取值为 1,2,3,因为 P(X=1)=m,P(X=2)=(1-m)m,P(X=
上一页
返回导航
下一页
第十章 计数原理与古典概率
11
离散型随机变量的均值、方差的求解(高频考点) 离散型随机变量的均值、方差的求解,比较大小,求实际问题中的均值、方差是浙 江新高考的热点.主要命题角度有: (1)直接求均值、方差; (2)两个随机变量的均值、方差大小比较; (3)实际问题中的均值、方差的求解.
大.故选 D.
(2)设 P(ξ=1)=a,P(ξ=2)=b,
则15a+ +a2+ b=b= 1,1,解得ba==1535,,
所以 D(ξ)=15+35×0+15×1=25.
【答案】
(1)D
2 (2)5
上一页
返回导航
下一页
第十章 计数原理与古典概率
14
角度二 两个随机变量的均值、方差大小比较
已知随机变量 ξi 满足 P(ξi=1)=pi,P(ξi=0)=1-pi,i=1,2.若 0<p1<p2<12,则
上一页
返回导航
下一页
第十章 计数原理与古典概率
17
【解】 (1)①设“在一次游戏中摸出 i 个白球”为事件 Ai(i=0,1,2,3),则 P(A3)=CC2325·CC1223 =15. ②设“在 1 次游戏中获奖”为事件 B,则 B=A2∪A3. 又 P(A2)=CC2325·CC2223+CC13C52 12·CC1223=12,且 A2,A3 互斥, 所以 P(B)=P(A2)+P(A3)=12+15=170.
X1
5%
P
0.8
10% 0.2
X2
2%
8%
12%
P
0.2
0.5
0.3
①在 A、B 两个项目上各投资 100 万元,Y1 和 Y2 分别表示投资项目 A 和 B 所获得的利润,
求方差 D(Y1),D(Y2);
②将 x(0≤x≤100)万元投资项目 A,100-x 万元投资项目 B,f(x)表示投资项目 A 所得利
上一页
返回导航
下一页
第十章 计数原理与古典概率
12
角度一 直接求均值、方差
(1)(2019·高考浙江卷)设 0<a<1,随机变量 X 的分布列是
X
0
a
1
P
1 3
1 3
1 3
则当 a 在(0,1)内增大时,
()
A.D(X)增大
B.D(X)减小
C.D(X)先增大后减小
D.D(X)先减小后增大
(2)随机变量 ξ 的取值为 0,1,2.若 P(ξ=0)=15,E(ξ)=1,则 D(ξ)=____________.
某种种子每粒发芽的概率都为 0.9,现播种了 1 000 粒,对于没有发芽的 种子,每粒需再补种 2 粒,补种的种子数记为 X,则 X 的数学期望为________. 解析:记不发芽的种子数为 Y,则 Y~B(1 000,0.1), 所以 E(Y)=1 000×0.1=100.又 X=2Y,所以 E(X)=E(2Y)=2E(Y)=200. 答案:200
n
(2)D(X)=∑ (xi-E(X))2pi 为随机变量 X 的方差,它刻画了随机变量 X 与其均值 E(X)的 i=1
平均_偏__离____程度,其算术平方根 D(X)为随机变量 X 的标准差.
上一页
返回导航
下一页
第十章 计数原理与古典概率
4
2.均值与方差的性质 (1)E(aX+b)=__a_E_(__X__)__+__b__ (2)D(aX+b)=___a_2_D_(__X_)_____(a,b 为常数).
解方程组可得 a+b=3. 【答案】 (1)C (2)C
上一页
返回导航
下一页
第十章 计数原理与古典概率
25
角度二 已知均值、方差求最值问题
(1)一个射箭运动员在练习时只记射中 9 环和 10 环的成绩,未射中 9 环或 10 环就
以 0 环记,该运动员在练习时射中 10 环的概率为 a,射中 9 环的概率为 b,即未射中 9
3.两点分布与二项分布的均值、方差
X
X 服从两点分布
E(X) D(X)
p(p 为成功概率) __p_(_1_-__p_)__
X~B(n,p) __n_p____
__n_p_(_1_-__p_)__
上一页
返回导航
下一页
第十章 计数原理与古典概率
5
[疑误辨析] 判断正误(正确的打“√”,错误的打“×”) (1)随机变量的均值是常数,样本的平均数是随机变量,它不确定.( √ ) (2)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差 越小,则偏离变量的平均程度越小.( √ ) (3)均值是算术平均数概念的推广,与概率无关.( × )
上一页
返回导航
下一页
6
1 1 6
第十章 计数原理与古典概率
7
2.(选修 2-3P68A 组 T5 改编)甲、乙两工人在一天生产中出现的废品数分别是两个随机
变量 X,Y,其分布列分别为:
X
0
1
2
3
P
0.4
0.3
0.2
0.1
Y
0
1
2
P
0.3
0.5
0.2
若甲、乙两人的日产量相等,则甲、乙两人中技术较好的是________.
上一页
返回导航
下一页
第十章 计数原理与古典概率
8
解析:E(X)=0×0.4+1×0.3+2×0.2+3×0.1=1. E(Y)=0×0.3+1×0.5+2×0.2=0.9, 因为 E(Y)<E(X). 所以乙技术好.
答案:乙
上一页
返回导航
下一页
第十章 计数原理与古典概率
9
[易错纠偏] (1)期望、方差的性质不熟导致错误; (2)二项分布的数学期望公式用法不当. 1.已知两个随机变量 X,Y 满足 X+2Y=4,且 X~N(1,22),则 E(Y),D(Y)依次是________. 解析:由 X~N(1,22)得 E(X)=1,D(X)=4.又 X+2Y=4,所以 Y=2-X2,所以 E(Y)=2 -12E(X)=32,D(Y)=14D(X)=1. 答案:32,1
上一页
返回导航
下一页
第十章 计数原理与古典概率
10
2.在一次招聘中,主考官要求应聘者从 6 道备选题中一次性随机抽取 3 道题,并独立完 成所抽取的 3 道题.乙能正确完成每道题的概率为23,且每道题完成与否互不影响.记乙 能答对的题数为 Y,则 Y 的数学期望为________.
解析:由题意知 Y 的可能取值为 0,1,2,3,且 Y~B3,23,则 E(Y)=3×23=2. 答案:2
上一页
返回导航
下一页
上一页
返回导航
下一页
18
2 49 100
第十章 计数原理与古典概率
19
求方差和标准差的关键是求分布列,只要有了分布列,就可以依据定义求数学期望,进 而求出方差、标准差,同时还要注意随机变量 aX+b 的方差可用 D(aX+b)=a2D(X)求解.
上一页
返回导航
下一页
第十章 计数原理与古典概率
20
上一页
返回导航
下一页
第十章 计数原理与古典概率
16
角度三 实际问题中的均值、方差的求解 (2020·台州市书生中学高三质检)公园游园活动有这样一个游戏项目:甲箱子里装
有 3 个白球、2 个黑球,乙箱子里装有 1 个白球、2 个黑球,这些球除颜色之外完全相同, 每次游戏从这两个箱子里各随机摸出 2 个球,若摸出的白球不少于 2 个,则获奖(每次游 戏结束后将球放回原箱). (1)求在 1 次游戏中,①摸出 3 个白球的概率,②获奖的概率; (2)求在 2 次游戏中获奖次数 X 的分布列及数学期望 E(X).
A.E(ξ1)<E(ξ2),D(ξ1)<D(ξ2) B.E(ξ1)<E(ξ2),D(ξ1)>D(ξ2) C.E(ξ1)>E(ξ2),D(ξ1)<D(ξ2) D.E(ξ1)>E(ξ2),D(ξ1)>D(ξ2)
()
上一页
返回导航
下一页
第十章 计数原理与古典概率
15
【解析】 根据题意得,E(ξi)=pi,D(ξi)=pi(1-pi),i=1,2,因为 0<p1<p2<12,所以 E(ξ1)<E(ξ2).令 f(x)=x(1-x),则 f(x)在0,12上单调递增,所以 f(p1)<f(p2),即 D(ξ1)<D(ξ2), 故选 A. 【答案】 A
x2
…
xi
…
xn
P
p1
p2
…
pi
…
pn
上一页
返回导航
下一页
第十章 计数原理与古典概率
3
(1)均值:称 E(X)=__x_1_p_1+__x_2_p_2_+__…__+__x_ip_i_+__…__+__x_np_n__为随机变量 X 的均值或数学期望, 它反映了离散型随机变量取值的___平__均__水__平_____.
环也未射中 10 环的概率为 c(a,b,c∈[0,1)),如果已知该运动员一次射箭射中环数的