第三章不饱和烃烯烃和炔烃
第三章不饱和烃
到含氢较多的双键C原子上,而带负电荷的部分加到含
氢较少或不含氢的双键碳原子上,这一规则简称为马氏
规则。★★★★★
利用马氏规则,可以预测反应的主产物。
⑷ 过氧化物效应——在利用马氏规则时要注意,当反
应条件改变时,例如在ROOR存在下,烯烃和HBr加成 的取向正好和马尔科夫尼科夫规律相反,叫做烯烃与 HBr加成的过氧化物效应。 ★★★★★
⑵ SP2杂化轨道的形状:和SP3杂化轨道 相似,也是不对称的葫芦形,一头大一 头小,只是大的一头比SP3 杂化轨道更 大,小的一头比 SP3杂化轨道更小。
⑶ SP2杂化轨道的空间取向:三个SP2杂 化轨道的对称轴分布在同一平面上,并以 C原子为中心分别指向正三角形的三个顶 。 点,夹角互成120 ;未参加杂化的 2P轨道, 仍然保持原来的形状,其对称轴垂直于三 个SP2 轨道对称轴所在的平面。
只有HBr有过氧化物效应
4、加硫酸 ⑴ 与浓硫酸反应,生成烷基硫酸(或叫酸性硫酸酯) CH2=CH2 + HO-SO2-OH ⑵ 符合马尔科夫尼科夫规则 CH3-CH2-OSO3H
2-甲基丙烯
叔丁基硫酸
⑶ 烷基硫酸的水解(烯烃的间接水合)--制醇 CH3-CH2-OSO3H + H2O
H2SO4
3、顺反异构
条件:—任何一个双键碳原子上所连接的两个原子或原 子团都要不同。 注意: 只要任何一个双键碳原子所连接的两个取代基 是相同的,就没有顺反异构。
二、烯烃的命名 (一)系统命名法原则与烷烃相似 1、选主链:选择含有双键在内的最长碳链为主链, 支链作为取代基,按主链碳原子数称为某烯或某碳烯。 碳原子数在十以下的,用天干表示,在十个以上的用中 文数字表示十一、十二……表示,称为某碳烯。
有机化学第3章 不饱和烃
Cl
Br
CC
H
Cl
(Z)-1,2-二氯-1-溴乙烯 (反-1,2-二氯-1-溴乙烯)
Cl C
H
Cl C
Br
(E)-1,2-二氯-1-溴乙烯 (顺-1,2-二氯-1-溴乙烯)
28
6. 烯炔的命名
第三章 烯烃和炔烃 (三、烯烃和炔烃的命名)
• 编号时尽可能使重键的位次之和最低。 • 当双键和三键处于两头相同的位次时,
反式:两个取代基在环异侧 顺式:两个取代基在环同侧
15
第三章 烯烃和炔烃 (二、烯烃和炔烃的同分异构)
问题:下列化合物是否存在顺反异构?
CH3
C2H5 D
C=C
H
Cl H
H C=C
CH3
CH2-CH-CH3 CH-CH3
16
第三章 烯烃和炔烃 (三、烯烃和炔烃的命名)
三、烯烃和炔烃的命名
1. 简单的烯烃常用普通命名法
98
7
CH3
CH2CH3
10,10-二甲基-3-乙基-9-异丙基-4-十一碳烯
例3
4 CH3 3 CH2CH3
4 –甲基–3–乙基环庚烯
12
例4 CH3CC CCH2CH3 2 –甲基–3–己炔
CH3
19
4. 烯基与炔基
第三章 烯烃和炔烃 (三、烯烃和炔烃的命名)
CH2 CH
乙烯基 (vinyl)
3. 烯烃的比重都小于1,都是无色物质,溶于有机溶剂,不溶于水。
CH3 C C CH3
H
H
沸点(bp): 3.7℃ 熔点(mp): -138.9℃
CH3
H
CC
H
CH3
0.88℃
有机化学 第三章 不饱和烃
(2) 炔烃的结构
以乙炔为例。 仪器测得:C2H2中,四个原子共直线:
0.106nm 0.120nm
H CC H
量子化学的计算结果表明,在乙炔分子中的碳原 子是sp杂化:
激发 杂化
杂化
2个sp p轨道
二个sp杂化轨道取最大键角为180°,直线构型:
C
乙炔分子的σ骨架:
HC
CH
每个碳上还有两个剩余的p轨道,相互肩并肩形成2个π键:
第三章 不饱和烃
(一) 烯烃和炔烃的结构 (二) 烯烃和炔烃的同分异构 (三) 烯烃和炔烃的命名 (四) 烯烃的物理性质 (五) 烯烃和炔烃的化学性质 (六) 烯烃和炔烃的工业来源和制法
第三章 不饱和烃
含有碳碳重键(C=C或C≡C)的开链烃称为不饱和烃。 例如:
(一) 烯烃和炔烃的结构
(1) 烯烃的结构 (2) 炔烃的结构
CH=CH2
5-乙烯基-2-辛烯-6-炔
(3) 烯烃的顺反异构体的命名
(甲) 顺反命名法
两个双键碳上相同的原子或原子团在双键的同一侧者, 称为顺式,反之称为反式。例:
2-丁烯: H3C
CH3
C=C
H
H
( I):m.p
。
-132 C
顺-2-丁烯
H3C
H
C=C
H
CH3
(II):m.p -105。C
反-2-丁烯
H C
H
CH3 C
H
丙烯的结构
H C
H
C2H5 C
H
丁烯的结构
小结
π键的特性:
①π键不能自由旋转。 ②π键键能小,不如σ键牢固。
碳 碳 双 键 键 能 为 611KJ/mol, 碳 碳 单 键 键 能 为 347JK/mol,
第三章不饱和烃(UnsaturatedHydrocarbons剖析
顺-2-丁烯
CH3 H
H C H3C
反-2-丁烯
CH3 C H
当双键碳原子上各连有两个不相同的原子或基 团时,由于双键不能自由旋转,在空间就会形成不 同的排列方式,形成顺反异构(也叫几何异构)。
烯烃顺反异构体的命名 顺/反标记法
H3C CH2 C C H H
顺-2-戊烯
CH3
(Z)-1-氯-2-溴丙烯
(Z)-3-甲基-4-异丙基-3-庚烯
H3C C CH3CH2CH2
CH3 CH2 CH2 (CH3)2 CH
CH2CH2CH3 C CH(CH3)2
> CH3 > CH3 CH2 CH2
(Z)-4-甲基-5-异丙基-4-辛烯
(反-4-甲基-5-异丙基-4-辛烯)
3.1.3 烯烃的物理性质
D
顺式加成,定量完成;从位阻小的一面进行。
亲电加成反应
亲电加成反应:
由亲电试剂的作用而引起加 成反应。 亲电试剂: 在反应中,具有亲电性能的 试剂。亲电试剂通常为带正电 的离子(如H+、X+等)或为在 反应中易被极化带正电荷的分 子(如X2)。
加 卤 素 加卤化氢 加 硫 酸 加 水
加次卤酸
C
C
C
C
键能为: 610.9-347.3 =263.6KJ/mol
键能为: 347.3 KJ/mol
π 键只有对称面没有对称轴。所以,双键碳原子之 间不能以两碳核间联线为轴自由旋转
C
C
σ键可绕键轴自由旋转
Байду номын сангаас
π键
σ键
π 键电子云比较分散,有较大的流动性,容易极化 变形,化学反应性较强
第三章-烯烃、炔烃、二烯烃
以反式加成产物为主
Br
Br
CH2 CH2 + Br2 NaCl水溶液 CH2 CH2 + CH2 CH2
Br
Cl
亲电试剂:试剂带有正电荷,或者电子云密度较低,在
反应中进攻反应物上带部分负电荷的位置,这种试剂叫
做亲电试剂,例如X+(卤素)、R+、H +等。详见课本 P54-56。
亲电加成反应:由亲电试剂进攻而引起的加成反应。
1埃 = 0.1纳米(nm) = 10-10米(m)
1
键的特点: 1.成键原子不能绕两核连线自由旋转。
2.键比键易断裂。
3.电子云易极化。
PS:极化(polarization),指事物在一定条件下发生两极 分化,使其性质相对于原来状态有所偏离的现象
烯烃的同分异构
构造异构:碳链异构;官能团位置异构 构型异构:顺反异构 (几何异构or立体异构)
链终止 CH3CH· CH2Br +Br· CH3CHBrCH2Br
注:过氧化物只对HBr有影响,不影响HCl和HI。
诱导效应:受分子中电负性不同的原子或基团的影响,整个分 子中成键的电子云向着一个方向偏移,分子发生极化的效应。
δ+ δ- δ+ δH3C CH CH2 + HBr
CH3CHCH2 Br
电负性差别:O:3.5 Cl:3.1 O> Cl
由于次氯酸不稳定,反应中常用氯气和水代替次氯酸
Cl2 + H2O HOCl + HCl
H2C CH2 + Cl2 + H2O
CH2 CH2 OH Cl
(2) 臭氧化反应
O
CH3CH CH2 O3 CH3HC O
2019最新第3章不饱和烃物理
H
H
C
H
H
H
H
CC
H
H
图3.5 乙烯分子的π键
构成π 键的P轨道上的电子裸露于分子平 面,碳原子对P轨道上的电子束缚力少,因 此π 键上的电子有较大流动性,可极化性 大,受外界试剂影响容易极化,所以烯烃有 较大的化学活性。
H
H
CC
H
H
3.1.2 炔烃碳碳三键的组成
基态
激发态
sp 杂化态
2p
2p
2p
H CO
H,O,O
HO
C O
H
H
CC
H
H,C,C
HC C CH2
CH3 C
CH3CH2
C
CHO CH3
E 2,3 二甲基 2
戊烯醛
3.3.4 烯炔的命名
• 编号时尽可能使重键的位次之和最低。 • 当双键和三键处于两头相同的位次时,
优先给予双键较低的位次。
CH3CH CH C CH
3–戊烯–1–炔
HC CCH2CH
CH3 CH CH
丙烯基 (propenyl)
CH2 C
异丙烯基 (isopropenyl)
CH3
HC C
乙炔基
(ethynyl)
HC CCH2 CH3C C
炔丙基
丙炔基
3.3.2 烯烃和炔烃的命
(1) 衍生命名法
• 以乙烯和乙炔为母体 • 将其它烯烃分别看作乙烯和乙炔的烷基衍
生物
• 取代基名称按“次序规则”,放在母体名
氢化热越高,不饱和烃的稳定性则越低。
例如: CH3 C C CH3
H
H
氢化热/
(kJ·mol-1)
第六讲 第三章 不饱和烃:烯烃和炔烃(2)
C C
+
H-X
-X -
C=C H
+
+X快
C=C X H
乙烯基碳正离子
由于卤素的吸电子作用, 阶段。 几 1 由于卤素的吸电子作用,反应能控制在加一分子 HX 阶段。 加成, 加成 常用汞盐和铜盐做催化剂。 点 2 与HCl加成,常用汞盐和铜盐做催化剂。 讨 3 与卤化氢的加成,在相应卤离子(如:(CH3 )4N+Cl-)存在下, 与卤化氢的加成,在相应卤离子( 存在下, 论 通常进行反式加成。例如: 通常进行反式加成。例如:
*1. Markovnikov规则 不对称烯烃与氯化氢等极性试剂进行加成反应时, 规则 不对称烯烃与氯化氢等极性试剂进行加成反应时, 氢原子总是加到含氢较多的双键碳原子上, 氢原子总是加到含氢较多的双键碳原子上,氯原子或其它原子或基团则加 到含氢较少的或不含氢的双键碳原子上。这条经验规则简称马氏规则。 到含氢较少的或不含氢的双键碳原子上。这条经验规则简称马氏规则。 例如
CH3CH2CH=CH2 + HBr HAc 80% (CH3)2C=CH2 + HCl CH3CH2CH2CH2Br
~100%
(CH3)2C CH3 Cl
第 六 讲 (6)
*2. 不对称炔烃与卤化氢等极性试剂进行加成反应时,也符合马氏规则。 不对称炔烃与卤化氢等极性试剂进行加成反应时,也符合马氏规则。 Br 例如 (CH3)2CHC CH HBr (CH3)2CHC=CH2 HBr (CH3)2CH C CH3
NaCl CH2=CH2 + Br2 水溶液
Br H2C CH2 Br 1,2-二溴乙烷 二溴乙烷
Cl H2C CH2 Br 1-氯-2-溴乙烷 氯 溴乙烷
第3章 不饱和脂肪烃
1.4.1.4 加硫酸
烯烃和浓硫酸很容易加成,加成符合马氏规则: CH2=CH2 + HO-SO2-OH → CH3-CH2-O-SO2-OH 硫酸氢乙酯 CH3-CH=CH2+ HO-SO2-OH → (CH3) 2-CH-O-SO2-OH 硫酸氢异丙酯 这个反应可以用来鉴别烯烃和分离烯烃,因为 烯烃与浓硫酸加成后就溶解了.
反应过程中产生了正碳离子Br-CH2-CH2⊕可 以用实验的方法来证明:当在溴水中加入 NaCl时,如果有正碳离子形成的话,那么下 面的三个反应都是可能的: B r B r C H 2 - C H 2 B r
B r C H 2 - C H 2 +
C l O H
B r C H 2 - C H 2 C l B r C H 2 - C H 2 O H
(Ⅲ)
(Ⅰ)和(Ⅲ),(Ⅱ)和(Ⅲ)的碳链结构不同,是碳链 异构(与丁烷的情况类似),我们在烷烃中已经接 触过了.但是(Ⅰ)和(Ⅱ)的碳链是相同的,它们的 不同仅在于碳碳双键的位置不同,即碳碳双键这一 官能团的位置不同,象这种异构现象叫官能团位置 官能团位置 异构.(Ⅰ)和(Ⅱ)之间互称为位置异构体. 异构
三烷基硼
H2O2 (RCH2CH2O)3B H2O RCH2CH2OH + B(OH)3 OH-
简化: RCH=CH2 + BH3 → (RCH2CH2)3B
H2O2/OHH2O
RCH2CH2OH
1.4.1.8 聚合反应
烯烃在催化剂作用下,可以发生分子之间的相 互加成,生成很大的分子——高分子化合物: n CH2=CH2 → [-CH2-CH2-]n n CH3-CH=CH2 → [-CH(CH3)-CH2-]n 生成的产物聚乙烯,聚丙烯都是工业和日常生 活的重要塑料.因此烯烃的聚合反应是有重要 的工业意义. 返回
有机化学-第三章不饱和烃:烯烃和炔烃
a
18
分子的结构包括分子的构造、构型和构象。
同分异构
构造异构
碳架异构 官能团位次异构 官能团异构
互变异构
立体异构
构型异构
顺反异构 对映异构
构象异构
a
19
当两个双键碳原子均连接不同的原子或基团时,即产 生顺反异构现象。如下列三种形式的烯烃都有顺反异构 体,而其它形式的烯烃则没有顺反异构体。
a
20
3.3 烯烃和炔烃的命名
构 型 异 构 体 : ( I) 和 ( Ⅱ ) 是 由 于 构 型 不 同 而 产 生 的 异 构 体 , 称 为 构 型 异 构 体 (configurational isomers)。构型异构体具有不同的物理性质。
a
17
顺反异构体:像(I)和(Ⅱ)这种构型异构体通常用顺、反 来区别,称为顺反异构体(cis and trans ismers),也称几 何异构体(geometric ismers)。
对于碳原子数相同的烯烃顺反异构体,顺式异构 体的沸点比反式异构体略高,而熔点则是反式异构体 比顺式异构体略高。
a
44
与烷烃相似,折射率也可用于液态烯烃和炔烃的鉴 定和纯度的检验。在分子体系中,由于电子越容易极化, 折射率越高,因此,烯烃和炔烃的折射率一般比烷烃大。
a
45
3.5 烯烃和炔烃的化学性质
不饱和链烃分子中同时含有碳碳双键和三键的化合物 称为烯炔。在系统命名法中,选择含有双键和三键在内的 最长碳链作为主链,一般称为“某烯炔”(“烯”在前、 “炔”在后),碳链的编号遵循“最低系列”原则,使双 键、三键具有尽可能低的位次号,其它与烯烃和炔烃命名 法相似。
a
37
但主链编号若双键、三键处于相同的位次供选择时,优 先给双键以最低编号。例如:
有机化学第03章 烯炔烃
~
。
具有下列构型的烯烃均有顺反异构: 具有下列构型的烯烃均有顺反异构:
a b
C
a C b
a b
C
C
a d
a b
C
C
d e
注意:任何一个双键C上有相同基团,则无顺反异构。 注意:任何一个双键C上有相同基团,则无顺反异构。
⑵ 命名 顺反命名: ①顺反命名:
若取代基的第一个原子相同,则要外推比较。 ③若取代基的第一个原子相同,则要外推比较。 例: 比较大小: —CH2OH , —CH2CH3 原子序数: ﹥ 原子序数:O﹥C ∴前者为较优基团 比较大小: 比较大小: —C(CH3)3 ; C(C,C,C) ) —CH(CH3)2 ; C(C,C,H) —CH2CH3 ; C(C,H,H)化轨道 sp杂化的C原子, 杂化的 杂化轨道的电负性。 的电负性大于sp2杂化轨道的电负性。 从而使叁键比双键键短;叁键中π 从而使叁键比双键键短;叁键中π键P 轨道之间重叠程度及核对π 轨道之间重叠程度及核对π电子的束缚 力均大于烯烃。 力均大于烯烃。 炔烃π键的断裂和极化较烯烃困难。 ∴炔烃π键的断裂和极化较烯烃困难。
a
b
例题1 例题1
C
C
CH3 H
d
e
C
若 a >b , 若 a >b ,
C CH3 H
d>e d> d< d <e
C
则:(Z)(Z)(E)则:(E)C H CH3
CH3 H
(Z)-2-丁烯 ) 丁烯
(E)-2-丁烯 ) 丁烯
例题2 例题2
CH3 C2H5
C
CH3 C H
CH3 C2H5
《有机化学》第三章 不饱和烃
吸电子基团: +NR3>NO2>CN>COOH>F>Cl>Br>I>COOR>OR>
COR>SH>OH> C CR>C6H5>CH=CH2>H
诱导效应的特点:
(1)诱导效应的强弱取决于原了或基团的电负性的大小
的两原子可相对的自由旋转。 能相对自由旋转。Βιβλιοθήκη c.键的可极化度:较小。 较大
1.2 单烯烃的异构现象
1.2.1 结构异构
CH3 CH2 CH CH2 CH3 CH CH CH3
1-丁 烯
2-丁 烯
官能团碳碳双键 位置异构
CH3 C CH2 2-甲 基 丁 烯 CH3
碳链异构
结构异构是由于分子中各原子的结合顺序不同而引起的, 位置异构和碳链异构均属于结构异构。
(2) 与卤化氢的加成
CH3CH CHCH3 + HCl CH3CH2CHCH3
2–丁烯
HBr CH3CH2CH CH2
Markovnikov规则
Cl
2–氯丁烷
Br
CH3CHCH CH3
80 %
CH3CHCH2 CH2Br 20 %
当不对称的烯烃与卤化氢等极性试剂加成时,氢原总
是加到含氢较多的双键碳原子上,卤原子(或其子或
上相互重叠。
从侧面重叠。
电子云的分布情况 a. 电子云集中于两原子 电子云分布在 键所
核的连线上,呈圆柱形分布。 在平面的上下两方,呈块
状分布。
第三章 不饱和烃:烯烃和炔烃(7学时)
CH3CH CH C CH
CH C CH2CH CH2
3 –戊烯–1–炔
1–戊烯–4–炔
CH3C C CH CH2CH CH2 CH2CH3
4 –乙基–1–庚烯–5–炔
CH C CH CH2 1–丁烯–3–炔
CH3C C CH CH2CH CHCH3 CH CH2
5 –乙烯基–2–辛烯–6–炔
37
3.5 烯烃和炔烃的化学性质
44
nickel borides
②. P-2(硼化镍)催化剂
CH3CH2C
P2
CCH2CH3 H2
CH3CH2
CH2CH3
CC
H
H
98%
cis-addition
特点:使反应停留在烯烃阶段,得顺式加成产物。
45
炔烃的化学还原
chemical reduction
①. 在液氨中用碱金属(Li、Na、K)还原生成反式烯烃
-杂化-
sp 杂化轨道形成过程示意图
13
14
15
π bond
3.1.3 π 键特性
1)π 键是较弱的共价键,键能比σ键低,易断裂;
2)不能自由旋转。 3)π键的极化度大,具有较大的流动性及反应活性。
一个 sp3 杂化轨道 ¼ s 轨道 ¾ p 轨道
16
3.2 烯烃和炔烃的同分异构
isomerism
不饱和度 ∆
number of double bonds ring numbers
number of triple bond
∆=双键数+环数+2×三键数
∆=C+1-H/2-X/2+N/2
双键数+环数+2×三键数=C+1-H/2-X/2+N/2
有机化学 第三章 不饱和烃
同分异构现象
1.碳链异构:和烷烃一样,
2.官能团位置异构:由于双键或三键位置不同所产生的异构,如:
3. 立体异构:由于双键不能绕σ键键轴旋转,导致相连基团在空间的不同排列方式 产生的异构现象。
顺反异构—— 相同基团在双键同侧为顺式,不同侧为反式
CH3
CH3
CC
H
H
顺式(cis)
本章学习内容
1.烯烃、炔烃等不饱和烃的命名(掌握) 2.烯烃、炔烃及共轭二烯烃的结构特征(理解) 3.烯烃、炔烃、共轭二烯烃的物理、化学性质(重点难点掌握)
3.1 分类
烯烃(alkene):C=C 不饱和烃
单烯烃:含一个双键
多烯烃 :含两个及以上个双键, 含两个双键叫二烯烃
炔烃(alkyne):
H3C CH3CH2
CH2CH2CH3 CH2CH3
Br Cl
Cl
H
顺-3-甲基-4-乙基-3-庚烯 (E)-3-甲基-4-乙基-3-庚烯
反-1,2-二氯-1-溴乙烯 (Z) -1,2-二氯-1-溴乙烯
课堂练习:命名下列化合物
CH3CH2 H
Cl CH3
H3C CH3CH2
CH3 CHCH3 CH2CH2CH3
氯加在含氢多的碳原子上,合成卤代醇的方法。
+ H2C CH2 H O Cl
H2C Cl
CH2 OH
+ H3C CH CH2
H O Cl
H3C
CH OH
CH2 Cl
4. 与卤化氢加成(亲电加成)——碳正离子中间体机理 反应历程:H+首先与双键中的p电子对结合使另一碳原子形成 碳正离子,碳正离子再与X- 结合成卤代烷。
《有机化学》第三章 不饱和烃
第三章 不饱和烃不饱和烃是指分子结构中含有碳碳双键或三键的烃。
不饱和烃中含有碳碳双键的叫烯烃,含有碳碳三键的称为炔烃。
含有两个或多个碳碳双键的不饱和烃称为二烯烃和多烯烃。
一个不饱和烃分子结构中同时含有碳碳双键和三键则称为烯炔。
不饱和烃的双键和三键不太牢固,容易发生亲电加成反应、取代反应及氧化反应。
烯烃是指含有碳碳双键的不饱和烃,包括链状烯烃和环状烯烃,其官能团为碳碳双键。
链状烯烃的通式为C n H 2n (n ≥2)。
相对于饱和烷烃,烯烃分子结构中每增加1个双键则减少2个氢原子。
一、烯烃的结构和异构现象 (一)烯烃的结构烯烃的结构中主要特征部分为碳碳双键,以最简单的烯烃-乙烯为例来了解双键的结构,乙烯的分子式为C 2H 4,乙烯的两个C 原子和四个氢原子均在同一个平面上,每个碳原子只和3个原子相连,为平面型分子。
碳碳双键由1个σ键和1个π键构成,而不是两个单键构成。
乙烯的平面构型如图3-1(a )所示,分子模型见图3-1(b )和3-1(c )。
CCH HH H121.7°117°0.108nm(a)乙烯的平面构型 (b)球棍模型 (c)比例模型图3-1 乙烯分子的结构拓展阅读碳原子的sp 2杂化和π键杂化轨道理论认为,乙烯分子中的碳原子在成键过程中,处于激发态的1个2s 轨道和2个2p 轨道进行杂化,形成3个能量相同的sp 2杂化轨道,称为sp 2杂化,其杂化过程可表示为:2s 2p激发sp 2杂化sp 2杂化轨道2p2s 2p基态激发态杂化态形成的3个sp 2杂化轨道中每个含有1/3的s 轨道成分和2/3的p 轨道成分,形状是一头大一头小;3个sp 2杂化轨道的对称轴分布在同一平面上,夹角为120°,呈平面三角形,每个碳原子还有一个2p z 轨道未参与杂化,其对称轴垂直于3个sp 2杂化轨道的对称轴所形成的平面,见图3-2。
由此可见,乙烯分子中碳碳双键是由1个σ键和1个π键组成的,π键是由2个p 轨道侧面重叠形成的,电子云分布于键轴上下,键能较小,同时由于π键电子云离核较远,受原子核束缚力较弱,容易被外电场极化,所以π键不稳定,比σ键容易断裂。
不饱和烃:烯烃和炔烃
a b C C
(Ⅰ)
a b
a b C
(Ⅱ)
C
d b
a b C
(Ⅲ)
C
d e
(Ⅰ)和(Ⅱ)构型异构体通常用顺、反来区别,成为 顺反异构体。(Ⅲ)用Z,E标记构型。
12
环烯烃,碳原子数少于七个时,由于组成环的碳原子 跨越双键具有很大张力,没有反式异构体。
H
H H
顺-环辛烷
H H H (CH2)6
反-环辛烷
乙
烯
10
3.2 烯烃和炔烃的同分异构
碳架异构 CH2
CHCH2CH3
CH3 CH3 C CH2
烯烃的异构
官能团位次位置异构
H3C
CH3CH
CHCH3
CH2
H
CHCH2CH3
顺反异构
H C H 3
C
C
CH3 H
(Ⅰ)
H
H C H3C C
(Ⅱ)
11
CH3
顺反异构是构型异构,属立体异构现象 当两个双键原子均连接不同的原子或基团时,即产生 顺反异构现象。
第三章 不饱和烃:烯烃和炔烃
3.1 3.2 3.3 3.4 3.5 3.6 烯烃和炔烃的结构 烯烃和炔烃的同分异构 烯烃和炔烃的命名 烯烃和炔烃的物理性质 烯烃和炔烃的化学性质 烯烃和炔烃的工业来源和制法
1
概述
不饱和烯烃:含有碳碳双键或碳碳叁键的烃
烯烃:含有碳碳双键的烃
炔烃:含有碳碳叁键的烃 烯炔:同时含有碳碳双键和碳碳叁键的烃 烯烃的通式:CnH2n 炔烃的通式:CnH2n-2
ΔH= -173kJ· mol-1
Cl
Cl
加成反应往往为放热反应
碳碳三键的化学性质
第三章不饱和烃烯烃和炔烃
同理,B 氧化后生成丙酮和 CO2, (CH3)2C 和 CH2 ,把二者连接起来,即得到 B 的构
造异构式为 (CH3)2C=CH2 。C 氧化后仅生成乙酸,说明它未氧化前具有 CH3CH ,而它和
化合物 A、B 为同分异构体,都是含四个碳原子的烯烃说明它具有对称结构,把两个
CH3CH 连接起来,即得到 C 的构造式CH3CH=CHCH3 。
CH3
CH CH3
H3C CH C CH CH3
4,4-二甲基-2-戊烯
3-甲基-1-丁炔
通常将碳碳双键处于端位的烯烃,统称α-烯烃。碳碳三键处于端位的炔烃,一般称为端
位炔烃。
2、烯烃顺反异构体的命名
顺反命名法:
两个相同原子或基团处于双键碳原子同一侧的称为顺式,反之称为反式。但当两个双键
碳原子所连接的四个原子或基团都不相同时,则难用顺反命名法命名。
2)在满足最低系列原则下,优先考虑双键,使其具有较小编号;
3)书写:称某碳“烯”某“炔”;
4)若双键和三键处于相同的位次供选择时,优先给双键较低编号。
HC C CH2 CH2 CH CH2
1-己烯-5-炔
二、结构与性质
1、结构: 烯烃为 sp2 杂化,余下一个未参与杂化的 p 轨道,垂直与三个杂化轨道对称轴所在的平
臭氧化: 生成醛和/或酮。根据生成醛和酮的结构,就可推断烯烃的结构。炔烃与臭氧反应生成羧 酸。 臭氧除和碳碳三键以及双键外,其他官能团很少反应,分子的碳架也很少发生重排,故 此反应可根据产物的结构测定重键的位置和原化合物的结构。 环氧化反应: 烯烃与过氧酸(简称过酸)反应生成 1,2-环氧化物,常用的过氧酸有过氧甲酸、过氧 乙酸、过氧苯甲酸、过氧间氯苯甲酸、过氧三氟乙酸等。 3)α-氢原子的反应
第三章不饱和烃
CH 3CH
CH2 HBr
or
RO O R
CH 3CH 2CH 2Br
但对HCl、HI无影响。
3.催化氢化
CH3— CH CH3 CH2 H2 Ni CH3CH2CH3
H
CH3 H
C C
C
CH3 H
H2 Ni
H2 Ni
CH3CH2CH2CH3 119.7kJ· mol-1
H C CH3
例:δδδ+
δδ+
δ+
δ-
δ+
δ-
CH3
CH2
CH2
Cl
CH3
CH
CH2
诱导效应的特点:(A)诱导效应的强弱,取决于原 子或基团的电负性,与H原子的电负性相差越大,诱 导效应就越强。 顺序:F>Cl>Br>I>CH3O->HO- >C6H5->H 吸电子能力越大 H<CH3-<C2H5-<(CH3)2CH-<(CH3)3C-
烷烃:CH3—CH3 CnH2n+2 氢饱和,键用完 氢稀少,
烯烃:H2C=CH2 CnH2n
炔烃:HC≡CH CnH2n-2
氢缺少。
3.1.1 烯烃和炔烃的结构 代表物:H2C=CH2 乙烯
H—C≡C—H 乙炔 1.乙烯的结构
H C H C H H
平面型. H-C-H键角117°,H-C-C键角121°
CH3CH
CH2 + HOSO3H
CH3CH—OSO3H CH3
(4)与H2O加成
H2 O CH3CHOH △ CH3
CH 3CH
CH2 H2O
H3 PO4 硅藻土 195oC 2MPa
CH 3CHCH 3 OH
第三章烯烃和炔烃
(2)编号:从最靠近双键的一端开始,将主链 碳原子依次编号 (使双键具有最低位次,使取 代基具有较低位次)。
1 23 4 5 6
H CH3 C CH CH2 C
CH3
CH3
2,5-二甲基-2-己烯
CH3
2,5-dimethyl-2-hexene
(3)命名:将双键的位次标明在烯烃名称的前
面(只写出双键碳原子中位次较小的一个),
棕色褪去。
Br
作为烯烃的鉴别
CCl4 0℃
CHCH3
Br
加成活性:氟﹥氯﹥溴﹥碘
立体选择性:主要得到反式加成产物
2.加氢卤酸
C C + HX
(1)对称烯烃的亲电加成反应
CC HX
CH3CH2 C
H
CH2CH3 C
H
+ HBr
CH3Cl -30℃
CH3CH2CH2CHCH2CH3
Br
(2)不对称烯烃的亲电加成
R CH CH2 + HBr
R CHCH3
Br 主要产物
RCH2CH2Br
马氏规则(Markovnikov)
马氏规则(Markovnikov)
当不对称烯烃与不对称试剂(卤化氢等) 加成时,不对称试剂中带正电荷的部分总是加 到碳碳双键中含氢较多的碳原子上,带负电荷 的部分则是加到碳碳双键中含氢较少的碳原子 上,这一规则称为马氏规则。
低”。 若分子中同时含有双键和三键,应从最先 遇到双键和三键的一端开始;若在主链两 端等距离处遇到双键和三键,应从最靠近 双键的一端开始。
3.命名: 标出三键位次(含有双键时,应标出
双键位次;命名时写成 “ 几烯几炔”)。 取代基的位次及排列顺序同烷烃命名法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章不饱和烃烯烃和炔烃第三章不饱和烃:烯烃和炔烃本章重点内容一、命名1、烯烃和炔烃构造异构体的命名1)选择含双键或三键在内的最长碳链为主链。
2)靠近双键或三键一端编号,重键的位次用数字标明(标号较小的碳原子)。
3)书写:与烷烃书写格式相同(当主链碳原子数大于十时,命名时汉字数字与烯或炔字之间应加一个“碳”字)。
3H3CCH3CH3H3CCCH34,4-二甲基-2-戊烯 3-甲基-1-丁炔通常将碳碳双键处于端位的烯烃,统称α-烯烃。
碳碳三键处于端位的炔烃,一般称为端位炔烃。
2、烯烃顺反异构体的命名顺反命名法:两个相同原子或基团处于双键碳原子同一侧的称为顺式,反之称为反式。
但当两个双键碳原子所连接的四个原子或基团都不相同时,则难用顺反命名法命名。
Z,E—命名法:依据次序规则比较出两个双键碳原子所连接取代基优先次序。
当较优基团处于双键的同侧时,称Z式;处于异侧时,称E式。
BrClCCClHH3CCH3CH2CCH2CH2CH3CH(CH3)2反-1,2-二氯溴乙烯(Z)-3-甲基-4-异丙基-3-庚烯3、烯炔的命名1)选择含有双键和叁键在内的最长碳链为主链;2)在满足最低系列原则下,优先考虑双键,使其具有较小编号; 3)书写:称某碳“烯”某“炔”;4)若双键和三键处于相同的位次供选择时,优先给双键较低编号。
HCCCH2CH2CH21-己烯-5-炔二、结构与性质1、结构:烯烃为sp2杂化,余下一个未参与杂化的p轨道,垂直与三个杂化轨道对称轴所在的平面。
炔烃为sp杂化,未参与杂化的两个p轨道的对称轴互相垂直且都垂直于sp杂化轨道对称轴所在直线。
2、性质物理性质电负性:三键碳原子>双键碳原子>饱和碳原子;沸点:烯烃顺式异构体>反式异构体。
顺式异构体具有弱极性,分子间作用力增大,故沸点较高。
熔点:反式异构体>顺式异构体。
反式异构体对称性教好,晶格紧密,故熔点较高。
化学性质 1)加成反应加氢:炔烃比烯烃更容易进行催化氢化(与分子形状有关,炔烃为线型结构,易吸附)。
用喹啉或醋酸铅部分毒化的Pd-CaCO3一般称为Lindlar催化剂。
Lindlar催化剂、P-2化剂生成顺式烯烃;使用Na和液NH3则生成反式烯烃。
与卤素加成:现象是溴的红棕色消失。
用于检验烯烃、炔烃及其他含有碳碳重键的化合物。
卤素加成的活性顺序:氟>氯>溴>碘同时含双键、三键时,双键先加成。
原因是三键中S轨道成分多,电子更靠近原子核,难于给出电子。
亲电加成反应机理:烯烃活次序:(CH3)2C=C(CH3)2 > (CH3)2C=CHCH3 > (CH3)2C=CH2> CH3CH=CH2 > CH2=CH2与卤化氢加成:Markovnikov规则:不对称烯烃与卤化氢等极性试剂进行加成反应时,氢原子总是加到含氢较多的碳原子上,氯原子(或其它原子或基团)则加到含氢较少或不含氢原子的碳上。
利用马氏规则可以预测反应的产物。
碳正离子的活性次序:(CH3)(CH3)2323 卤化氢的活性次序:HI > HBr > HCl加HBr时的过氧化物效应 CH3CH=CH2CH3CH2CH2Br由于反应机理不同,有过氧化物存在时按自由基反应机理进行。
在自由基反应机理中,首先进攻的不是氢原子,而是溴原子。
自由基的稳定性为:叔碳自由基>仲碳自由基>伯碳自由基对HX而言,过氧化物效应只限于HBr。
HCl键较强不易生成自由基;HI活性低。
炔烃加HBr也有过氧化物效应,机理与烯烃加成类似。
与硫酸的加成:不对称烯烃加硫酸,也符合Markovnikov规则,烯烃间接水合制备醇。
除乙烯得到伯醇,其它烯烃得到仲醇或叔醇。
此法称间接水合法或硫酸法。
与次卤酸的加成:不对称烯烃和次卤酸(Cl2+H2O)的加成,反应生成β-卤代醇。
符合Markovnikov规则。
与水的加成:烯烃与水加成称直接水合法,是醇的工业制法。
除乙烯外得不到伯醇。
炔烃水合(库切罗夫水合法):炔在HgSO4-H2SO4催化下水合生成醛或酮的反应。
硼氢化-氧化反应:α-烯烃经硼氢化-氧化反应得到伯醇。
硼氢化-氧化反应是反马氏规则的,因为氢的电负性大于硼的电负性。
进行顺式加成。
由末端炔经硼氢化-氧化反应可以制备醛。
2)氧化反应高锰酸钾的氧化:用等量稀的碱性高锰酸钾水溶液,在较低温度下与烯烃或其衍生物反应,生成顺式α-二醇。
此反应使高锰酸钾的紫色消失,故可用来鉴别含有碳碳双键的化合物;收率低,一般不用于合成。
在较强烈的条件下(如加热或在酸性条件下),碳碳键完全断裂,烯烃被氧化成酮或羧酸。
烯烃结构不同,氧化产物也不同,此反应可用于推测原烯烃的结构。
与烯烃相似,炔烃也可以被高锰酸钾溶液氧化。
较温和条件下氧化时,非端位炔烃生成a-二酮。
在强烈条件下氧化时,非端位炔烃生成羧酸(盐),端位炔烃生成羧酸(盐)、二氧化碳和水。
炔烃用高锰酸钾氧化,同样即可用于炔烃的定性分析,也可用于推测三键的位置。
臭氧化:生成醛和/或酮。
根据生成醛和酮的结构,就可推断烯烃的结构。
炔烃与臭氧反应生成羧酸。
臭氧除和碳碳三键以及双键外,其他官能团很少反应,分子的碳架也很少发生重排,故此反应可根据产物的结构测定重键的位置和原化合物的结构。
环氧化反应:烯烃与过氧酸(简称过酸)反应生成1,2-环氧化物,常用的过氧酸有过氧甲酸、过氧乙酸、过氧苯甲酸、过氧间氯苯甲酸、过氧三氟乙酸等。
3)α-氢原子的反应CH3CH=CH22ClCH2CH=CH2Cl反应历程为自由基取代反应。
在N-溴代丁二酰亚胺为溴化剂时,α-氢可以在较低温度下反应。
4)炔烃的活泼氢反应金属炔化物的生成及其应用:金属炔化物既是强碱又是强亲核试剂,它能与伯氯代烷(仲卤代烷产率低,叔卤代烷发生消除反应)发生亲核取代反应,使乙炔和端位炔进行烷基化反应,将低级炔烃转变为较高级的炔烃。
炔烃的鉴定:将乙炔或端位炔分别加到硝酸银的氨溶液或氯化亚铜的氨溶液中,则生成炔银或炔亚铜沉淀。
三、制法1、烯烃的制法1)醇脱水用强酸作为脱水剂。
2)卤代烷脱卤化氢在强碱作用下发生反应。
2、炔烃的制备1)二卤代烷脱卤化氢 2)炔烃的烷基化HCCHHCCNaHCCCH2CH2CH2CH3例题解析例1 命名下列化合物。
ClCH2CH3CH3(1)BrCCCl(2)CHCH32CCCH3F[解析] 当两个双键碳原子均连接不同的原子或基团时,即产生顺反异构现象,但当两个双键碳原子所连接的四个原子或基团都不相同时,难用顺—反标记法来命名,而Z,E-标记法适用于所有烯烃的顺反异构体,因此我们采用Z,E-标记法。
与该标记法密切相关的是次序规则,其要点是:将与双键碳原子直接相连的原子按原子序数大小排列,大者为“较优”基团;如果与双键碳原子直接相连的原子的原子序数相同,则需要再比较由该原子外推至相邻的第二个原子的原子序数,如仍相同,再依次外推,直至比较出较优的基团为止。
第(1)题中,乙基优于甲基,溴原子优于氯原子。
因为当两个双键碳原子上的“较优”原子或基团都处于双键的同侧时,称为Z式;两个双键碳原子上的“较优”原子或基团处于双键两侧时,称为E式,所以该分子为E式,命名为(E)-2-甲基-1-氯-1-溴丁烯;同理,第(2)题中氯原子优于乙基,氟原子优于甲基,命名为(E)-2-氟-3-氯-2-戊烯。
例2 完成下列反应方程式。
(1)H3C3CHCH3HCl(2)(CH3)2CCH2(3)H3[解析]CHCHCH(1)本题是烯烃的亲电加成反应,符合马氏规则,H加在含氢较多的碳上,卤原子加3在含氢较少的碳上,所以反应的结果为H3CCH2CH3。
(2)本题是烯烃的臭氧化、还原、水解反应,得到的是双键断裂的两个醛(或酮),本H3C题结果为HC3HCHO。
(3)本题是烯烃的催化加氢,镍做催化剂,得到完全氢化的烷烃CH3CH2CH2CH3。
例3 用化学方法鉴别下列化合物。
A、CH3(CH2)5CHCH2B、CH3(CH2)5CCHC、CH3(CH2)4CCCH3[解析] 从三个化合物来看,A是烯烃,且为α-烯烃,B、C是炔烃,其中B为端炔,考虑到α-烯烃和端炔都有其特殊的化学性质,我们就通过这些特性来进行鉴别。
其中端炔的特性是使硝酸银的氨溶液形成白色沉淀,α-烯烃的特性是在强烈氧化条件下生成气体(二氧化碳),端炔也具有该性质,所以我们应先鉴别出端炔再进行A和C的鉴别。
因此正确的答案应该是加入硝酸银的氨溶液有白色沉淀生成的是B;加入高锰酸钾的酸性溶液加热有二氧化碳气体放出的是A,剩余的为C。
例4 有A、B、C三种异构体,它们有相同的分子组成,分别用高锰酸钾溶液氧化时,A生成丙酸和CO2;B生成丙酮和CO2;C仅生成乙酸。
试推测它们的构造式。
[解析] A用高锰酸钾氧化时,生成丙酸和CO2,说明为氧化前,分子中原来具有CH3CH2CH和CH2,把二者通过双键连接起来,即为A的构造异构体CH3CH2CH=CH2。
同理,B氧化后生成丙酮和CO2,(CH3)2C和CH2,把二者连接起来,即得到B的构造异构式为(CH3)2C=CH2。
C氧化后仅生成乙酸,说明它未氧化前具有CH3CH,而它和化合物A、B为同分异构体,都是含四个碳原子的烯烃说明它具有对称结构,把两个CH3CH连接起来,即得到C的构造式CH3CH=CHCH3。
例5 用指定的有机原料和不超过3个碳的化合物及必要的试剂合成下列化合物。
CH3CH2CH2CH3CC H[解析] 从要合成的化合物与所给原料来看,发生了碳链的增长,并且叁键部分加氢形成双键,从这两部分来看,碳链增长是端炔的性质,所以判断出应先进行碳链增长的反应,之后再部分加氢。
碳增长了4个,对于叁键来说是对称结构,所以选择卤乙烷即可。
部分加氢过程对于试剂的选择应从产物的立体结构来推断,因为得到顺式结构,所以可选择Lindlar催化剂或P-2催化剂,所以可通过以下的反应来进行合成:CH2NaCCH2CNaCH3CH2ClCH3CH2CCCH2CH3CH3CH2CCCH2CH3CH3CHCCCH2CH3H单元练习题一、选择题1、下列烯烃发生亲电加成反应最活泼的是 ()。
A、H3CCH2B、H3CCH3CH3C、H3CCH3D、H3CCH35、下列化合物中氢原子最易离解的为 ()。
A、丙烯B、1-丁炔C、2-丁炔D、乙烯 7、下列物质能与CuCl的氨溶液反应生成红色沉淀的是 (A、丙烯B、乙烯C、2-丁炔D、1-丁炔 8、丙烯与氯在500℃反应产物为( )。
A、CH3CHClCH2ClC、CH3CHClCH3B、CH2ClCHCH2)。
D、CH3CH2CH2Cl9、将3-己炔转化成顺式3-己烯的反应条件是( )。
A、H2/NiB、H2/Lindlar 催化剂C、Na/NH3D、H2/Pd 10、鉴别1-丁炔与2-丁炔的化学试剂为( )。