2011年修改版小学数学新课程标准
(完整版)小学数学新课程标准2011版
小学数学新课程标准第一部分前言数学是人们对客观世界定性掌握和定量刻画、逐渐抽象概括、形成方法和理论,并进行宽泛应用的过程。
20 世纪中叶以来,数学自己发生了巨大的变化,特别是与计算机的结合,使得数学在研究领域、研究方式和应用范围等方面获取了空前的拓展。
数学能够帮助人们更好地研究客观世界的规律,并对现代社会中大量纷繁复杂的信息作出合适的选择与判断,同时为人们交流信息供应了一种有效、简捷的手段。
数学作为一种宽泛适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创立价值。
义务教育阶段的数学课程,其基本出发点是促进学生全面、连续、友善地发展。
它不但要考虑数学自己的特点,更应依照学生学习数学的心理规律,重申从学生已有的生活经验出发,让学生亲身经历将实责问题抽象成数学模型并进行讲解与应用的过程,进而使学生获取对数学理解的同时,在思想能力、感神态度与价值观等多方面获取进步和发展。
一、基本理念1.义务教育阶段的数学课程应突出表现基础性、普及性和发展性,使数学教育面向全体学生,实现:--人人学有价值的数学;--人人都能获取必要的数学;--不同样的人在数学上获取不同样的发展。
2.数学是人们生活、劳动和学习必不能少的工具, 能够帮助人们办理数据、进行计算、推理和证明,数学模型能够有效地描述自然现象和社会现象;数学为其他科学供应了语言、思想和方法,是所有重要技术发展的基础;数学在提高人的推理能力、抽象能力、想像力和创立力等方面有着独到的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。
3.学生的数学学习内容应该是现实的、有意义的、富饶挑战性的,这些内容要有利于学生主动地进行观察、实验、猜想、考据、推理与交流等数学活动。
内容的表现应采用不同样的表达方式,以满足多样化的学习需求。
有效的数学学习活动不能够单纯地依赖模拟与记忆,着手实践、自主研究与合作交流是学生学习数学的重要方式。
《义务教育数学课程标准》(2011版)解读
与2001年版相比,数学课程标准从基 本理念、课程目标、课程内容到实施建议 都更加准确、规范、明了和全面。 下面我们就2011修订版与2001版课标 相比较所体现出的变化具体的进行解读。
一、总体框架结构的变化 2001年版分四个部分:前言、课程目标、 内容标准和课程实施建议。 2011年版:前言、课程目标、课程内容 和实施建议,并有附录。把其中的“内容标 准”改为“课程内容”。前言部分由原来的 基本理念和设计思路,改为课程基本性质、 课程基本理念和课程设计思路三部分。
《义务教育数学课程标准》(2011年版) 解读——小学数学
关于修订工作的几点说明
2001年,在国务院的直接领导下,教育部 启动了基础教育课程改革,颁布了义务教 育20个学科课程标准(实验稿)。 按照改革工作的总体部署,2003年开始组 织课程标准修订工作,2011年3月,基本 完成了修订任务。 2011年12月28日教育部正式颁布《全日制 义务教育数学课程标准(修改稿)》。
1.提纲挈领,领悟课标。 (1)理解课标理念 (2)明确“四基”要求 (3)正确处理“四个关系” (4)掌握四个领域内容调整 (5)提高“四个问题”能力( (6)领悟10个核心关键词的内涵和外延
2.依据课标,找出差距。 (1)改变教学中的“十多十少“现象 ●课程理念知道多,理解落实比较少; ●关注教学情景多,创设有效情景少; ●关注教学形式多,关注教学实效少; ●操作实践活动多,有效探究活动少; ●师生互动废话多,启发引导语言少; ●课堂无效活动多,学生必要练习少; ●教学设计拼凑多,个性创新设计少; ●现代媒体运用多,优化整合运用少; ●关注表面知识多,领悟思想方法少; ●学生参与活动多,积累活动经验少。 (2)克服课堂教学中的“四个满堂” ●满堂问●满堂动●满堂放●满堂夸 (3)避免教学中的“四个虚假“ ●虚假地自主学习 ●虚假地合作交流 ●虚假地自主探究 ●虚假地情感、态度、价值观的渗透
小学数学新课程标准解读
决”“情感态度”四个方面阐述。 • ——学段目标的表述方式有所改变
18
解析数学课程目标
目 问题解决 标
情感与态度
学
课程 段 目标 目
标
第一学段 第二学段
第三学段
19
关于知识技能目标
能从具体事例中,知道或能举例说明
了解(知道、 初步认识)
对象的有关特征(或意义);能根据
对象的特征,从具体情境中辨认出这
小学数学新课程 标准解读
与2001年版相比,数学课程标 准从基本理念、课程目标、内容标 准到实施建议都更加准确、规范、 明了和全面。
2
2011年版小学数学课程标准 充分体现了德育为先,能力为重, 创新方法,力求减负等特点。
3
新修订课标主要呈现以下九大变化: 1. 基本理念“三句”变“两句”
• 原来的“三句话” • ● 人人学有价值的数学 • ● 人人都能获得必需的数学 • ● 不同的人在数学上得到不同的发展
→几何推理→创造活动
32
• 英国数学教育家利贝克1984年提出了小 学生学习数学的基本认知序列:
• 经验—语言—图像—符号
• 新课程背景下的小学数学教材的编写也 体现着这样的序列。在教学和学习活动
中,教师还应把握:学习速度,学习情 绪体验,理解能力。克服强记苦练,不
注重理解。
33
谢谢大家!
请提出宝贵建议!
• 强调社会责任,忽视了教师的个人生命 价值与需要;
22
• 强调教师的权利角色,忽视了教师与学 生的合作关系;
• 强调教师的业务能力,忽视了培养人的 作用;
• 强调了教师劳动的传递性,忽视了教与 学的创造性。
23
• 呼唤小学教师: 1、成为学生学习的组织者
小学数学课程标准(2011年版)解读
二、第一部分,前言内容作了较大调整
在“前言”部分除修改了对数学的意义与 价值、数学教育的功能、数学课程的基本 理念以及数学课程设计思路的表述外,还 增加了“数学课程的性质”。
1.修改了 “数学”的定义
实验稿: 数学是人们对客观世界定性把握和定量刻
画、逐渐抽象概括、形成方法和理论,并 进行广泛应用的过程。 修订稿(标准P1): 数学是研究数量关系和空间形式的科学
(8)注意信息技术与课程内容的整合。
注意信息技术与课程内容的整合,注重实效。(标 准P3)
7.重新修订了课程设计思路:
(1)学段划分保持不变;(标准P4) 将九年的学习时间划分为三个学段: 第一学段(1-3年级) 第二学段(4-6年级) 第三学段(7-9年级)
(2)关于课程目标的调整(标准P4)
对课程目标动词及水平要求的设计基本保 持不变,增加了目标动词的同义词;
义务教育阶段数学课程目标分为总目标和 学段目标,从知识技能、数学思考、问题 解决、情感态度等四个方面加以阐述。
数学课程目标包括结果目标和过程目标。 结果目标使用“了解、理解、掌握、运用” 等行为动词表述,过程目标使用“经历、 体验、探索”等行为动词表。
2.修改了数学观
实验稿: 数学是人们生活、劳动和学习必不可少的工具。 数学为其他科学提供了语言、思想和方法; 数学是人类的一种文化,它的内容、思想、方法
和语言是现代文明的重要组成部分。 数学在提高人的推理能力、抽象能力、想象力和
创造力等方面有着独特的作用;
修订稿(标准P1): 数学更加广泛应用于社会生产和日常生活
实验稿:
“符号感”主要表现在:能从具体情境中抽象出 数量关系和变化规律,并用符号来表示;理解符 号所代表的数量关系和变化规律;会进行符号间 的转换;能选择适当的程序和方法解决用符号所 表达的问题。”
小学数学新课程标准
6、能解决小数、分数和百分数的简单实际问题。 7、在具体情境中,了解常见的数量关系:总价= 单价×数量、路程=速度×时间,并能解决简单 的实际问题。 8、经历与他人交流各自算法的过程,并能表达自 己的想法。 9、在解决问题的过程中,能选择合适的方法进行 估算。 10、能借助计算器进行运算,解决简单的实际问 题,探索简单的规律。
数与代数的主要内容: 数的认识,数的表示,数的大小,数的运算,数 量的估计; 字母表示数,代数式及其运算; 方程、方程组、不等式、函数等。
(第一学段1-3年级)数与代数-数的认识 1、在现实情境中理解万以内数的意义,能认、读、写万以 内的数,能用数表示物体的个数或事物的顺序和位置。 2、能说出各数位的名称,理解各数位上的数字表示的意义 ;知道用算盘可以表示多位数。 3、理解符号<,=,>的含义,能用符号和词语描述万以内数 的大小。 4、再生活情境中感受大数的意义,并能进行估计。 5、能结合具体情境初步认识小数和分数,能读、写小数和 分数。 6、能结合具体情境比较两个一位小数的大小,能比较两个 同分母分数的大小。 7、能运用数表示日常生活中的一些事物,并能进行交流。
6、了解自然数、整数、奇数、偶数、质(素)数 和合数。 7、结合具体情境,理解小数和分数的意义,理解 百分数的意义;会进行小数、分数和百分数的转 化(不包括将循环小数化为分数)。 8、能比较小数的大小和分数的大小。 9、在熟悉的生活情境中,了解负数的意义,会用 负数表示日常生活中的一些量。
第一学段(1-3年级)数与代数-数的运算
探索简单情境下的变化规律。
第二学段(4-6年级)数与代数-探索规律
探索给定情境中隐含的规律或变化趋势。
1、在实际情境中理解比及按比例分配的含义, 并能解决简单的问题。 2、通过具体情境,认识成正比例的量和成反比 例的量。 3、会根据给出的有正比例关系的数据在方格纸 上画图,并会根据其中一个量的值估计另一个 量的值。 4、能找出生活中成正比例和成反比例关系量的 实例,并进行交流。
《义务教育数学课程标准》(2011年版)解读——小学数学
《义务教育数学课程标准》(2011年版)解读——小学数学与2001年版相比,数学课程标准从基本理念、课程目标、内容标准到实施建议都更加准确、规范、明了和全面。
具体变化如下:一、总体框架结构的变化2001年版分四个部分:前言、课程目标、内容标准和课程实施建议。
2011年版把其中的“内容标准”改为“课程内容”。
前言部分由原来的基本理念和设计思路,改为课程基本性质、课程基本理念和课程设计思路三部分。
二、关于数学观的变化2001年版:数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。
数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。
2011年版:数学是研究数量关系和空间形式的科学。
数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具。
数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。
三、基本理念“三句”变“两句”,“6条”改“5条”2001年版“三句话”:人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。
2011年版“两句话”:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。
(修订后与过去的提法相比:有更深的意义和更广的内涵,落脚点是数学教育而不是数学内容,有更强的时代精神和要求(公平的、优质的、均衡的、和谐的教育。
)“6条”改“5条”:在结构上由原来的6条改为5条,将2001年版的第2条关于对数学的认识整合到理念之前的文字之中,新增了对课程内容的认识,此外,将“数学教学”与“数学学习”合并为数学“教学活动”。
2001年版:数学课程——数学——数学学习——数学教学活动——评价——现代信息技术2011年版:数学课程——课程内容——教学活动——学习评价——信息技术四、(1).理念中新增加了一些提法要处理好四个关系数学课程基本理念(两句话)数学教学活动的本质要求培养良好的数学学习习惯注重启发式正确看待教师的主导作用处理好评价中的关系注意信息技术与课程内容的整合(2)关于数学观的修改:原课标:●数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。
《义务教育数学课程标准》(2011年版)
《义务教育数学课程标准》(2011年版)解读——小学数学2011年12月28日,教育部正式公布了《义务教育阶段数学课程标准(2011年版)》(以下简称《标准》),并于2012年秋季开始执行。
这意味着2001年公布的义务教育阶段数学课程标准(实验稿)将完成它的历史使命,随之而来的,就是教材的改革,数学课程改革也必将进入一个新的发展阶段。
对修订版数学课程标准的学习和研究也将成为数学教育工作者们当前的头等大事。
经过几年来对数学课程标准修订情况的跟踪研究以及对数学课程标准(2011年版)的深入研读,我认为修订版是对实验稿的继承和发扬,改进与完善,但又不乏创新之举,让人读来眼前一亮,对数学与数学教育的意义与价值的定位更准确,对学生思维能力和创新能力的培养目标的要求更明晰,对学习方式、教学方式等教学策略与手段的指导更明确,对课程内容的调整更合理。
与2001年版相比,数学课程标准从基本理念、课程目标、内容标准到实施建议都更加准确、规范、明了和全面。
具体变化为如下几个方面:一、总体框架结构的变化2001年版分四个部分:前言、课程目标、内容标准和课程实施建议。
2011年版把其中的“内容标准”改为“课程内容”。
前言部分由原来的基本理念和设计思路,改为课程基本性质、课程基本理念和课程设计思路三部分。
二、关于数学观的变化2001年版:数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。
数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。
2011年版:数学是研究数量关系和空间形式的科学。
数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具。
数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。
三、基本理念“三句”变“两句”,“6 条”改“5条”2001年版“三句话”:“人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。
2011版小学数学新课程标准
2011版小学数学新课程标准
二、学段目标
第一学段(1~3年级)
知识技能
1.经历从日常生活中抽象出数的过程,理解万以内数的意义,初步认识分数和小数;理解常见的量;体会四则运算的意义,掌握必要的运算技能;在具体情境中,能进行简单的估算。
2.经历从实际物体中抽象出简单几何体和平面图形的过程,了解一些简单几何体和常见的平面图形;感受平移、旋转、轴对称现象;认识物体的相对位置。
掌握初步的测量、识图和画图的技能。
3.经历简单的数据收集、整理、分析的过程,了解简单的数据处理方法。
数学思考
1.在运用数及适当的度量单位描述现实生活中的简单现象,以及对运算结果进行估计的过程中,发展数感;在从物体中抽象出几何图形、想象图形的运动和位置的过程中,发展空间观念。
2.能对调查过程中获得的简单数据进行归类,体验数据中蕴涵着信息。
3. 在观察、操作等活动中,能提出一些简单的猜想。
4.会独立思考问题,表达自己的想法。
问题解决
1.能在教师的指导下,从日常生活中发现和提出简单的数学问题,并尝试解决。
2.了解分析问题和解决问题的一些基本方法,知道同一个问题可以有不同的解决方法。
3.体验与他人合作交流解决问题的过程。
4.尝试回顾解决问题的过程。
情感态度
1.对身边与数学有关的事物有好奇心,能参与数学活动。
2.在他人帮助下,感受数学活动中的成功,能尝试克服困难。
3.了解数学可以描述生活中的一些现象,感受数学与生活有密切联系。
4.能倾听别人的意见,尝试对别人的想法提出建议,知道应该尊重客观事实。
2011年版义务教育小学数学课程标准解读
八、实施建议的变化 不再分学段阐述,而是分教学建议、 评价建议、教材编写建议、课程资源 利用和开发建议。在强调学生主体作 用的同时,明确提出教师的组织和引 导作用。
具体变化
数与代数 数与代数现行大纲这部分内容主要侧重有 关数、代数式、方程、函数的运算,《标准》 对此作了较大地改革: 1.重视数与符号意义以及对数的感受,体 会数字用来表示和交流的作用。通过探索丰富 的问题情景发展运算的含义,在保持基本笔算 训练的前提下,强调能够根据题目条件寻求合 理、简捷的运算途径和运算方法,加强估算, 引进计算器,鼓励算法多样化。
《标准》中还指出,逻辑证明的要求并不局限于几 何内容,而应该体现在数学学习各个领域,包括代数 和统计与概率等;对于几何证明的教学来说,它的目 的不应当是追求证明的技巧、证明的速度和题目的难 度,而应服从于使学生养成“说明有据”的态度、尊 重客观事实的精神和质疑的习惯,形成证明的意识, 理解证明的必要性和意义,体会证明的思想,掌握证 明的基本方法等等。因此,《标准》中在强调探索图 形性质的基础之上,要求证明基本图形(三角形、四 边形)的基本性质,降低了对论证过程形式化和证明 技巧的要求,删节去了繁难的几何证明题,旨在通过 这些让学生体验逻辑证明的意义、过程,掌握基本的 证明方法,同时,向学生介绍欧几里得和《几何原 本》,使学生体会它们对于人类历史和思想发展中的 重要作用。综上所述,《标准》大大地加强和改善了 目前的几何教学。
⑵ 加强分析图表的能力里的培养。提升 “读图能力”的培养。 ⑶加强调查等活动的体验。(主要是小调 查) 在收集数据方法方面,考虑到学生年龄 特征,要求学生了解测量、调查等的简单方 法,不要求学生从报刊、杂志、电视等去收 集资料。 ⑷第二学段与《标准》相比,在统计方面, 只要求学生体会平均数的意义,不要求学生 学习中位数、众数(这些内容放在第三学段) 平均数易受极端数的影响(最大数与最小数 的影响)。 ⑸另外,删去“体会数据可能产生的误导” 这一要求。
新课程标准
2011版小学数学新课标解读与2001年版相比,数学课程标准从基本理念、课程目标、内容标准到实施建议都更加准确、规范、明了和全面。
具体变化如下:一、总体框架结构的变化2001年版分四个局部:前言、课程目标、内容标准和课程实施建议。
2011年版把其中的“内容标准”改为“课程内容”。
前言局部由原来的基本理念和设计思路,改为课程基本性质、课程基本理念和课程设计思路三局部。
二、关于数学观的变化2001年版:数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并实行广泛应用的过程。
数学作为一种普遍适用的技术,有助于人们收集、整理、描绘信息,建立数学模型,进而解决问题,直接为社会创造价值。
2011年版:数学是研究数量关系和空间形式的科学。
数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具。
数学是人类文化的重要组成局部,数学素养是现代社会每一个公民应该具备的基本素养。
三、基本理念“三句”变“两句”,“6条”改“5条”2001年版“三句话”:人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。
2011年版“两句话”:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。
“6条”改“5条”:在结构上由原来的6条改为5条,将2001年版的第2条关于对数学的理解整合到理念之前的文字之中,新增了对课程内容的理解,此外,将“数学教学”与“数学学习”合并为数学“教学活动”。
四、理念中新增加了一些提法要处理好四个关系,数学课程基本理念(两句话),数学教学活动的本质要求,培养良好的数学学习习惯,注重启发式,准确对待教师的主导作用,处理好评价中的关系,注意信息技术与课程内容的整合。
五、“双基”变“四基”2001年版:“双基”:基础知识、基本技能;2011年版“四基”:基础知识、基本技能、基本思想、基本活动经验。
六、四个领域名称的变化2001年版:数与代数、空间与图形、统计与概率、实践与综合应用。
课程标准(2011年版)的主要变化
《义务教务阶段数学课程标准(2011年版)》解读2001年,在国务院的直接领导下,教育部启动了基础教育课程改革,颁布了义务教育20个学科课程标准(实验稿)。
于2001年秋开始在各实验区实施,逐年推广。
经过几年的实施取得了明显成效,也发现了一些问题。
2005年教育部成立修订组,开展了对课程标准(实验稿)的修订工作。
2011年3月,基本完成了修订任务。
2011年5月通过审议,2011年12月正式颁布。
据我所知,现在有的县区已经拿到了《义务教育数学课程标准(2011年版)》(以下简称《标准》)。
下面我们就一起来看一看新的《标准》和实验稿相比有哪些变化。
标准修订的主要内容《标准》从体例结构、文本表述、具体内容和实施建议等方面都做了的修订,主要包括以下几个方·面。
(一)完善标准的体例与结构本次修订,在保持《标准(实验稿)》基本体例不变的基础上,经充分讨论,在结构上有以下调整。
1.重新撰写“前言”在“前言”部分除了修改了对数学的意义与价值、数学教育的功能、数学课程的基本理念以及数学课程设计思路的表述外,增加了“数学课程的性质”。
《标准》重新阐述了数学的意义与性质,进一步明确了数学教育的作用和义务教育阶段数学课程的特征。
2.整合三个学段的“实施建议”为了避免行文的重复、进一步突出义务教育阶段数学教育的完整性,《标准》将原来分三个学段撰写的实施建议进行了整合,三个学段统一撰写了教学建议、评价建议和教材编写建议,并增加了课程资源开发与利用建议。
3.将“行为动词”和“案例”等统一放入附录《标准》增加课程目标中的有关“行为动词”的解释,这些行为动词分为两类:一类是描述结果目标的行为动词,包括“了解、理解、掌握、运用”等术语;另一类是描述过程目标的行为动词,包括“经历、体验、探索”等术语。
将这些行为动词和相关的同义词的解释统一列入附录。
同时课程内容和实施建议中的“案例”也统一列入附录中,分别成为附录1和附录2。
新、旧版小学数学课程标准对比
《小学数学课程标准》学习心得——新、老版《小学数学课程标准》对比叶娟2011版《小学数学课程标准》内容与2001年版相比,数学课程标准从基本理念、课程目标、内容标准到实施建议都更加准确、规范、明了和全面。
与2001年版相比,数学课程标准从基本理念、课程目标、内容标准到实施建议都更加准确、规范、明了和全面。
具体变化如下:一、总体框架结构的变化2001年版分四个部分:前言、课程目标、内容标准和课程实施建议。
2011年版把其中的“内容标准”改为“课程内容”。
前言部分由原来的基本理念和设计思路,改为课程基本性质、课程基本理念和课程设计思路三部分。
二、关于数学观的变化2001年版:数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。
数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。
2011年版:数学是研究数量关系和空间形式的科学。
数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具,数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。
三、基本理念“三句”变“两句”,“6条”改“5条”2001年版“三句话”:人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。
2011年版“两句话”:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。
“6条”改“5条”:在结构上由原来的6条改为5条,将2001年版的第2条关于对数学的认识整合到理念之前的文字之中,新增了对课程内容的认识,此外,将“数学教学”与“数学学习”合并为数学“教学活动”。
2001年版:数学课程——数学——数学学习——数学教学活动——评价——现代信息技术2011年版:数学课程——课程内容——教学活动——学习评价——信息技术四、理念中新增加了一些提法要处理好四个关系数学课程基本理念(两句话)数学教学活动的本质要求培养良好的数学学习习惯注重启发式正确看待教师的主导作用处理好评价中的关系注意信息技术与课程内容的整合五、“双基”变“四基”2001年版:“双基”:基础知识、基本技能;2011年版“四基”:基础知识、基本技能、基本思想、基本活动经验。
小学数学课程标准新旧对照
小学数学课程标准新旧对照Jenny was compiled in January 2021小学数学课程标准新旧对照与2001年版相比,《数学课程标准(2011年版)》从基本理念、课程目标、内容标准到实施建议都更加准确、规范、明了和全面。
具体变化如下:一、总体框架结构的变化2001年版分四个部分:前言、课程目标、内容标准和课程实施建议。
2011年版把其中的“内容标准”改为“课程内容”。
前言部分由原来的基本理念和设计思路,改为课程基本性质、课程基本理念和课程设计思路三部分。
二、关于数学观的变化2001年版:数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。
数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。
2011年版:数学是研究数量关系和空间形式的科学。
数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具。
数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。
三、基本理念的变化:“三句”变“两句”、“6条”改“5条”2001年版“三句话”:人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。
2011年版“两句话”:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。
“6条”改“5条”:在结构上由原来的6条改为5条,将2001年版的第2条关于对数学的认识整合到理念之前的文字之中,新增了对课程内容的认识,此外,将“数学教学”与“数学学习”合并为数学“教学活动”。
2001年版:数学课程——数学——数学学习——数学教学活动——评价——现代信息技术2011年版:数学课程——课程内容——教学活动——学习评价——信息技术四、课程理念中新增加了一些提法要处理好四个关系;数学课程基本理念(两句话);数学教学活动的本质要求;培养良好的数学学习习惯;注重启发式;正确看待教师的主导作用;处理好评价中的几个关系;注意信息技术与课程内容的整合。
《义务教育数学课程标准(2011年版)-》解读
《义务教育数学课程标准(2011年版)》解读主讲内容一、修订课程标准的基本过程二、修订课程标准的基本原则三、修订课程标准的主要内容四、几点建议一、修订课程标准的基本过程(1)•2002年推出义务教育数学课程标准2001实验版(蓝皮本)•2005年开始修改数学课程标准•2007年推出义务教育数学课程标准2007修改稿(已经有很好的修订过程的内容变化批注)•2011年完善数学课程标准修改•2011年九月推出数学课程标准解读•2011年十月开始课程标准培训•2012年实施义务教育数学课程标准2011版(黄皮本)一、修订课程标准的基本过程(2)1.进行广泛深入的实施状况调查研究(12个省,问卷3768份)2. 组织全面认真的修改研讨(12次修改研讨会3. 采用多种形式广泛征求各方面意见2006年6月,向全国30多位专家、学者和第一线教师征求意见。
2007年7月,教育部基础教育司将征求意见稿发放全国10个省教研室、10个国家级和省级实验区,以及40名专家征求意见。
此外,还通过不同形式,向项武义教授、张奠宙教授,以及部分数学家、数学教育专家和中小学教育工作者征求意见。
二、修订课程标准的基本原则坚持体现国家利益,坚持基础教育课程改革的大方向,以课程改革的实践和调查研究的结果为基础,针对实施过程中出现的问题和各方面提出的建议进行修改,力求《标准》更加完善:使《标准》表述更加准确、规范、明了、全面;使《标准》结构更加合理、思路更加清晰;进一步增加《标准》的可操作性,更适合教材编写、教师教学和学习评价。
处理好四个关系:一是关注过程和结果的关系;二是学生自主学习和教师讲授的关系;三是合情推理和演绎推理的关系;四是关注生活情境和知识系统性的关系。
“空间与图形”改为“图形与几何”:正如“数与代数”一样,“图形与几何”代表了第一、二学段和第三学段的侧重点:在第一、二学段中主要是通过观察、操作等直观、整体认识图形及其某些特征,并通过操作等加以确认;第三学段,则主要是从数学上细致刻画基本图形的基本性质,并通过逻辑推理加以证明,也就是“几何”,过去提的“空间与图形”的名称没有体现这一点。
2011版小学数学新课程标准全部
2011版小学数学新课程标准目录第一部分前言. 1一、课程性质. 1二、课程基本理念. 2三、课程设计思路. 4第二部分课程目标. 9一、总目标. 9二、学段目标. 10第三部分内容标准. 16第一学段(1~3年级). 16一、数与代数. 16二、图形与几何. 18三、统计与概率. 19四、综合与实践. 20第二学段(4~6年级). 20一、数与代数. 20二、图形与几何. 23三、统计与概率. 25四、综合与实践. 26第三学段(7~9年级). 26一、数与代数. 26二、图形与几何. 31三、统计与概率. 40四、综合与实践. 42第四部分实施建议. 43一、教学建议. 43二、评价建议. 54三、教材编写建议. 62四、课程资源开发与利用建议. 70附录. 75附录1 有关行为动词的分类. 75附录2 内容标准及实施建议中的实例. 78第一部分前言数学是研究数量关系和空间形式的科学。
数学与人类发展和社会进步息息相关,随着现代信息技术的飞速发展,数学更加广泛应用于社会生产和日常生活的各个方面。
数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具,不仅是自然科学和技术科学的基础,而且在人文科学与社会科学中发挥着越来越大的作用。
特别是20世纪中叶以来,数学与计算机技术的结合在许多方面直接为社会创造价值,推动着社会生产力的发展。
数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。
作为促进学生全面发展教育的重要组成部分,数学教育既要使学生掌握现代生活和学习中所需要的数学知识与技能,更要发挥数学在培养人的理性思维和创新能力方面的不可替代的作用。
一、课程性质义务教育阶段的数学课程是培养公民素质的基础课程,具有基础性、普及性和发展性。
数学课程能使学生掌握必备的基础知识和基本技能;培养学生的抽象思维和推理能力;培养学生的创新意识和实践能力;促进学生在情感、态度与价值观等方面的发展。
(完整版)小学数学新课程标准(2011)
小学数学课程标准《2011》第一部分前言数学是研究数量关系和空间形式的科学。
数学与人类发展和社会进步息息相关,特别是随着现代信息技术的飞速发展,数学更加广泛应用于社会生产和日常生活的各个方面。
数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具,不仅是自然科学和技术科学的基础,而且在人文科学与社会科学中发挥着越来越大的作用。
数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。
作为促进学生全面发展教育的重要组成部分,数学教育既要使学生掌握现代生活和学习中所需要的数学知识与技能,更要发挥数学在培养人的理性思维和创新能力方面的不可替代的作用。
一、课程性质义务教育阶段的数学课程是培养公民素质的基础课程,具有基础性、普及性和发展性。
数学的抽象性、严谨性和应用广泛性,决定了数学课程在义务教育阶段的独特作用。
义务教育的数学课程是学生未来生活、工作和学习的重要基础。
数学课程有助于学生掌握必备的基础知识和基本技能;有助于培养学生的抽象思维和推理能力;有助于培养学生的创新意识和实践能力;有助于学生在情感、态度与价值观等方面得到发展。
二、课程基本理念1.数学课程应致力于实现义务教育阶段的培养目标,要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。
2.课程内容既要反映社会的需要、数学的特点,也要符合学生的认知规律。
它不仅包括数学的结果,也包括数学结果的形成过程和数学思想方法。
课程内容的选择要贴近学生的实际,有利于学生体验与理解、思考与探索。
课程内容的组织要处理好过程与结果的关系,直观与抽象的关系,直接经验与间接经验的关系。
课程内容的呈现应注意层次性和多样性。
3.教学活动是师生积极参与、交往互动、共同发展的过程。
有效的教学活动是学生学与教师教的统一,学生是学习的主体,教师是学习的组织者、引导者与合作者。
数学教学活动应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维;要注重培养学生良好的数学学习习惯,使学生掌握恰当的数学学习方法。
2011小学数学新课程标准
2011小学数学新课程标准2011年,我国对小学数学课程进行了全面的改革,制定了新的数学课程标准。
这一标准的出台,对于小学数学教育的发展具有重要的意义。
新课程标准旨在培养学生的数学素养,提高他们的数学能力,促进他们全面发展。
下面我们就来详细了解一下2011小学数学新课程标准的主要内容和特点。
首先,新课程标准强调数学教育的目标是培养学生的数学素养。
这就要求教师在教学过程中注重培养学生的数学思维能力、创新能力和解决问题的能力。
教师要引导学生主动探究、积极合作,培养他们的数学兴趣和学习动力。
同时,新课程标准还要求教师注重培养学生的数学情感,使他们在学习数学的过程中体验到成功的喜悦,克服困难的成就感,形成积极的数学学习态度。
其次,新课程标准强调数学教育的内容要贴近学生的生活实际,注重数学的应用。
教师要结合学生的生活经验和实际情境,设计丰富多彩的数学教学活动,使学生能够将数学知识和技能应用到实际生活中去,培养他们的数学实际应用能力。
这样既能增加学生对数学的兴趣,又能提高他们的数学学习效果。
再次,新课程标准强调数学教育的方法要多样化,注重培养学生的数学思维能力。
教师在教学中要采用启发式教学法,引导学生通过实际操作和探究,发现问题、解决问题,培养他们的逻辑思维、创造思维和批判性思维。
同时,教师还要注重培养学生的合作精神,让他们通过合作学习,相互交流、合作解决问题,培养他们的团队合作能力。
最后,新课程标准强调数学教育的评价要多元化,注重发展学生的全面素质。
评价不仅要注重学生数学知识和技能的掌握情况,还要注重学生的数学思维能力、创新能力和解决问题的能力的发展情况。
评价方式要多样化,注重考察学生的综合能力,鼓励学生通过多种途径展示自己的数学学习成果。
综上所述,2011小学数学新课程标准的出台,对于小学数学教育的发展具有重要的意义。
新课程标准的实施,将有助于培养学生的数学素养,提高他们的数学能力,促进他们全面发展。
教师要深入学习新课程标准,积极探索符合新课程标准要求的教学方法,努力提高教学质量,为学生的数学学习创造更好的条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《小学数学新课程标准》(修改稿)2011年前言《全日制义务教育数学课程标准(修改稿)》(以下简称《标准》)是针对我国义务教育阶段的数学教育制定的。
根据《义务教育法》、《基础教育课程改革纲要(试行)》的要求,《标准》以全面推进素质教育,培养学生的创新精神和实践能力为宗旨,明确数学课程的性质和地位,阐述数学课程的基本理念和设计思路,提出数学课程目标与内容标准,并对课程实施(教学、评价、教材编写)提出建议。
《标准》提出的数学课程理念和目标对义务教育阶段的数学课程与教学具有指导作用,教学内容的选择和教学活动的组织应当遵循这些基本理念和目标。
《标准》规定的课程目标和内容标准是义务教育阶段的每一个学生应当达到的基本要求。
《标准》是教材编写、教学、评估、和考试命题的依据。
在实施过程中,应当遵照《标准》的要求,充分考虑学生发展和在学习过程中表现出的个性差异,因材施教。
为使教师更好地理解和把握有关的目标和内容,以利于教学活动的设计和组织,《标准》提供了一些有针对性的案例,供教师在实施过程中参考。
设计理念数学是研究数量关系和空间形式的科学。
数学与人类的活动息息相关,特别是随着计算机技术的飞速发展,数学更加广泛应用于社会生产和日常生活的各个方面。
数学作为对客观现象抽象概括而逐渐形成的科学语言与工具,不仅是自然科学和技术科学的基础,而且在社会科学与人文科学中发挥着越来越大的作用。
数学是人类文化的重要组成部分,数学素养是现代社会每一个公民所必备的基本素养。
数学教育作为促进学生全面发展教育的重要组成部分,一方面要使学生掌握现代生活和学习中所需要的数学知识与技能,一方面要充分发挥数学在培养人的科学推理和创新思维方面的功能。
义务教育阶段的数学课程具有公共基础的地位,要着眼于学生的整体素质的提高,促进学生全面、持续、和谐发展。
课程设计要满足学生未来生活、工作和学习的需要,使学生掌握必需的数学基础知识和基本技能,发展学生抽象思维和推理能力,培养应用意识和创新意识,在情感、态度与价值观等方面都要得到发展;要符合数学科学本身的特点、体现数学科学的精神实质;要符合学生的认知规律和心理特征、有利于激发学生的学习兴趣;要在呈现作为知识与技能的数学结果的同时,重视学生已有的经验,让学生体验从实际背景中抽象出数学问题、构建数学模型、得到结果、解决问题的过程。
为此,制定了《标准》的基本理念与设计思路。
基本理念数学课程应致力于实现义务教育阶段的培养目标,体现基础性、普及性和发展性。
义务教育阶段的数学课程要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。
课程内容既要反映社会的需要、数学学科的特征,也要符合学生的认知规律。
它不仅包括数学的结论,也应包括数学结论的形成过程和数学思想方法。
课程内容要贴近学生的生活,有利于学生经验、思考与探索。
内容的组织要处理好过程与结果的关系,直观与抽象的关系,生活化、情境化与知识系统性的关系。
课程内容的呈现应注意层次化和多样化,以满足学生的不同学习需求。
数学活动是师生共同参与、交往互动的过程。
有效的数学教学活动是教师教与学生学的统一,学生是数学学习的主体,教师是数学学习的组织者与引导者。
数学教学活动必须激发学生兴趣,调动学生积极性,引发学生思考;要注重培养学生良好的学习习惯、掌握有效的学习方法。
学生学习应当是一个生动活泼的、主动地和富有个性的过程,除接受学习外,动手实践、自主探索与合作交流也是数学学习的重要方式,学生应当有足够的时间和空间经历观察、实验、猜测、验证、推理、计算、证明等活动过程。
教师教学应该以学生的认知发展水平和益友的经验为基础,面向全体学生,注重启发式和因材施教,为学生提供充分的数学活动的机会。
要处理好教师讲授和学生自主学习的关系,通过有效的措施,启发学生思考,引导学生自主探索,鼓励学生合作交流,使学生真正理解和掌握基本的数学知识与技能、数学思想和方法,得到必要的数学思维训练,获得广泛的数学活动经验。
学习评价的主要目的是为了全面了解学生数学学习的过程和结果,激励学生的学习和改进教师的教学。
应建立评价目标多元、评价方法多样的评价体系。
评价要关注学生学习的结果,也要关注学习的过程;要关注学生数学学习的水平,也要关注学生在数学活动中所表现出来的情感与态度,帮助学生认识自我,尽力信心。
信息技术的发展对数学教育的价值、目标、内容以及教学方式产生了很大的影响。
数学课程的设计与实施应根据实际情况合理地运用现代信息技术,要注意信息技术与课程内容的有机结合。
要充分考虑计算器、计算机对数学学习内容和方式的影响以及所具有的优势,大力开发并向学生提供丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐意并有更多的精力投入到现实的、探索性的数学活动中去。
设计思路---关于学段为了体现义务教育数学课程的整体性,《标准》统筹考虑了九年的课程内容。
同时,根据儿童发展的生理和心理特征,将九年的学习时间具体划分为三个学段:第一学段(1-3年级)、第二学段(4-6年级)、第三学段(7-9年级)。
设计思路---关于目标《标准》提出义务教育阶段数学课程的总体目标和分学段目标,并从知识技能、数学思考、问题解决、情感态度等四个方面具体阐述。
《标准》用了“了解(认识)、理解、掌握、运用”等认知目标动词表述知识技能目标的不同水平。
一句“基本理念”,数学学习必须注重过程,《标准》使用“经历(感受)、体验(体会)、探索”等认知过程动词表述学习活动的不同程度。
使用这些动词进行表述是为了更准确地刻画上述四个方面的具体目标。
在《标准》中,这些动词的具体含义如下。
了解(认识):从具体事例中知道或举例说明对象的有关特征;根据对象的特征,从具体情景中辨认或者举例说明对象。
理解:描述对象的特征和由来,阐述此对象与相关对象之间的区别和联系。
掌握:在理解的基础上,把对象用于新的情境。
运用:用已掌握的对象,选择或创造适当的方法。
经历(感受):在特定的数学活动中,获得一些感性认识。
体验(体会):参与特定的数学活动,认识或验证对象的特征,获得经验。
探索:独立或与他人合作参与特定的数学活动,发现对象的特征及其与相关对象的区别和联系,获得理性认识。
设计思路---关于学习内容之一:数与代数在各个教学段中,《标准》安排了四个方面的内容:“数与代数”,“图形与几何”,“统计与概率”,“综合与实践”。
数与代数“数与代数”的主要内容有:数的认识,数的表示,数的大小,数的运算,数量的估计;字母表示数,代数式及其运算;方程、方程组、不等式、函数等。
在“数与代数”的教学中,应帮助学生建立数感和符号意识,发展运算能力,树立模型思想。
数感主要是指关于数与数量表示、数量大小比较、数量和运算结果的估计等方面的直观感觉。
建立“数感”有助于学生理解现实生活中数的意义,理解或表述具体情景中的数量关系。
符号意识主要是指能够理解并且运用符号表示数、数量关系和变化规律;知道使用符号可以进行一般性的运算和推理。
建立“符号意识”有助于学生理解符号的使用是数学表达和进行数学思考的重要形式。
运算是“数与代数”的重要内容,运算是基于法则进行的,通常运算满足一定的运算律。
学习这些内容有助于理解运算律,培养运算能力。
模型也是“数与代数”的重要内容,方程、方程组、不等式、函数等都是基本的数学模型。
从现实生活或者具体情境中抽象出数学问题,是建立模型的出发点;用符号表示数量关系和变化规律,是建立模型的过程;求出模型的结果并讨论结果的意义,是求解模型的过程。
这些内容有助于培养学生的学习兴趣和应用意识,体会数学建模的过程,树立模型思想。
设计思路---关于学习内容之二:图形与几何图形与几何“图形与几何”主要内容有:空间和平面的基本徒刑,图形的性质和分类;平面图形基本性质的证明;图形的平移、旋转、轴对称、相似和投影;运用坐标描述图形的位置和图形的运动。
在“图形与几何”的学习中,应帮助学生建立空间观念。
空间观念是指根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体;能够想象出空间物体的方位和相互之间的位置关系;根据语言描述或通过想象画出图形等。
直观与推理是“图形与几何”学习中的两个重要方面。
几何直观是指利用图形描述几何或者其他数学问题、探索解决问题的思路、预测结果。
在许多情况下,借助几何直观可以把复杂的数学问题变得简明、形象。
几何直观不仅在“图形与几何”的学习中发挥着不可替代的作用,并且贯穿在整个数学学习中。
推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式,因此,与直观一样,推理也贯穿在整个数学学习中。
推力一般包括合情推理和演绎推理。
合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比等推测某些结果,是由特殊到一般的过程。
演绎推理是从已有的事实(包括定义、公理、定理等)出发,按照规定的法则(包括逻辑和运算)验证结论,是由一般到特殊的过程。
在解决问题的过程中,合情推力有助于探索解决问题的思路、发现结论;演绎推理用于验证结论的正确性。
设计思路---关于学习内容之三:统计与概率统计与概率“统计与概率”主要内容有:收集、整理和描述数据,包括简单抽样、记录调查数据、描绘统计图表等;处理数据,包括计算平均数、中位数、众数、极差、方差等;从数据中提取信息并进行简单的判断。
简单随机事件及其发生的概率。
在“统计与概率”中,帮助学生逐渐建立起数据分析的观念是重要的。
数据分析包括:了解在现实生活中有许多问题应当先做调查研究、收集数据,通过分析作出判断,体会数据中是蕴涵着信息的;体验数据是随机的和有规律的,一方面对于同样的事情每次收集到的数据可能会是不同的,另一方面只要有足够的数据就可能从中发现规律;了解对于同样的数据可以有多种分析的方法,需要根据问题的背景选择合适的方法。
在概率的学习中,所涉及的随机现象都基于简单事件:所有可能发生的结果是有限的、每个结果发生的可能性是相同的。
“统计与概率”的内容与现实生活联系密切,必须结合具体案例组织教学。
设计思路---关于学习内容之四:综合与实践综合与实践“综合与实践”是以一类问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验的重要途径。
针对问题情景,学生借助所学的知识和生活经验,独立思考或与他人合作,经历发现问题和提出问题、分析问题和解决问题的全过程,感悟数学各部分内容之间、数学与生活实际之间及其他学科的联系,激发学生学习数学的兴趣,加深学生对所学数学内容的理解。
这种类型的课程对于培养学生的抽象能力和逻辑思维能力、对于培养学生的创新意识和应用能力是有益处的,还有利于培养学生的合作精神。
合理地设计课程内容以及教学方法是达到教学目标的关键,既要考虑学生的直接经验、能够启发学生思考,也要考虑问题的数学实质、培养学生的数学素养。