一次函数代数几何综合问题

合集下载

中考数学 一次函数综合类问题四大类

中考数学 一次函数综合类问题四大类

大类一、一次函数与几何综合班级:__________ 姓名:__________【知识点睛】1.一次函数表达式:y=kx+b(k,b为常数,k≠0)①k是斜率,表示倾斜程度,可以用几何中的坡度(或坡比)来解释.坡面的竖直高度与水平宽度的比叫坡度或坡比,如图所示,AM即为竖直高度,uj7BM即为水平宽度,则=AMkBM,②b是截距,表示直线与y轴交点的纵坐标.2.设直线l1:y1=k1x+b1,直线l2:y2=k2x+b2,其中k1,k2≠0.①若k1=k2,且b1≠b2,则直线l1∥l2;②若k1·k2=-1,则直线l1⊥l2.3.一次函数与几何综合解题思路从关键点出发,关键点是信息汇聚点,通常是函数图象与几何图形的交点.通过点的坐标和横平竖直的线段长的互相转化将函数特征与几何特征结合起来进行研究,最后利用函数特征或几何特征解决问题.【精讲精练】1.如图,点B,C分别在直线y=2x和y=kx上,点A,D是x轴上的两点,已知四边形ABCD是正方形,则k的值为______.MA B第1题图 第2题图 第3题图2. 如图,直线l 1交x 轴、y 轴于A ,B 两点,OA =m ,OB =n ,将△AOB 绕点O 逆时针旋转90°得到△COD .CD 所在直线l 2与直线l 1交于点E ,则l 1____l 2;若直线l 1,l 2的斜率分别为k 1,k 2,则k 1·k 2=_________.3. 如图,直线483y x =-+交x 轴、y 轴于A ,B 两点,线段AB 的垂直平分线交x 轴于点C ,交AB 于点D ,则点C 的坐标为4. 如图,在平面直角坐标系中,函数y =x 的图象l 是第一、三象限的角平分线.探索:若点A 的坐标为(3,1),则它关于直线l 的对称点A'的坐标为____________;猜想:若坐标平面内任一点P 的坐标为(m ,n ),则它关于直线l 的对称点P ′的坐标为____________;应用:已知两点B (-2,-5),C (-1,-3),试在直线l 上确定一点Q ,使点Q 到B ,C 两点的距离之和最小,则此时点Q 的坐标为____________. 5. 如图,已知直线l :y x =+与x 轴交于点A ,与y 轴交于点B ,将△AOB 沿直线l 折叠,点O 落在点C 处,则直线CA 的表达式为__________________.第5题图 第6题图 第7题图6. 如图,四边形ABCD 是一张矩形纸片,E 是AB 上的一点,且BE :EA =5:3,EC=BCE 沿折痕EC 向上翻折,点B 恰好落在AD 边上的点F 处.若以点A 为原点,以直线AD 为x 轴,以直线BA 为y 轴建立平面直角坐标系,则直线FC 的表达式为__________________.7. 如图,矩形ABCD 的边AB 在x 轴上,AB 的中点与原点O 重合,AB =2,AD =1,过定点Q (0,2)和动点P (a ,0)的直线与矩形ABCD 的边有公共点.(1)a 的取值范围是________________;(2)若设直线PQ 为y =kx +2(k ≠0),则此时k 的取值范围是____________8. 如图,已知正方形ABCD 的顶点A (1,1),B (3,1),直线y =2x +b 交边AB 于点E ,交边CD 于点F ,则直线y =2x +b 在y 轴上的截距b 的变化范围是____________.第9题图9. 如图,已知直线l 1:2833y x =+与直线l 2:y =-2x +16相交于点C ,直线l 1,l 2分别交x 轴于A ,B 两点,矩形DEFG 的顶点D ,E 分别在l 1,l 2上,顶点F ,G 都在x 轴上,且点G 与点B 重合,那么S 矩形DEFG :S △ABC =_________. 10. 如图,在平面直角坐标系中,点A ,B 的坐标分别为A (4,0),B (0,-4),P 为y 轴上B点下方一点,PB=m(m>0),以点P为直角顶点,AP为腰在第四象限内作等腰Rt△APM.(1)求直线AB的解析式;(2)用含m的代数式表示点M的坐标;(3)若直线MB与x轴交于点Q,求点Q的坐标.大类二、一次函数之存在性问题班级:__________ 姓名:__________【知识点睛】存在性问题:通常是在变化的过程中,根据已知条件,探索某种状态是否存在的题目,主要考查运动的结果.一次函数背景下解决存在性问题的思考方向: 1. 把函数信息(坐标或表达式)转化为几何信息; 2. 分析特殊状态的形成因素,画出符合题意的图形;3. 结合图形(基本图形和特殊状态下的图形相结合)的几何特征建立等式来解决问题. 【精讲精练】 1.如图,直线y =+x 轴、y 轴分别交于点A ,点B ,已知点P 是第一象限内的点,由点P ,O ,B 组成了一个含60°角的直角三角形,则点P 的坐标为_____________.2. 如图,直线y =kx -4与x 轴、y 轴分别交于B ,C 两点,且43OC OB =. (1)求点B 的坐标和k 的值. (2)若点A 是第一象限内直线y =kx -4上的一个动点,则当点A 运动到什么位置时,△AOB 的面积是6?(3)在(2)成立的情况下,x 轴上是否存在一点P ,使△POA 是等腰三角形?若存在,求出点P 的坐标;若不存在,请说明理由.3.如图,在平面直角坐标系中,直角梯形OABC的边OC,OA分别与x轴、y轴重合,AB∥OC,∠AOC=90°,∠BCO=45°,BC=点C的坐标为(-9,0).(1)求点B的坐标.(2)若直线BD交y轴于点D,且OD=3,求直线BD的表达式.(3)若点P是(2)中直线BD上的一个动点,是否存在点P,使以O,D,P为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.4.点C 是直线y =kx +3上与A ,B 不重合的动点.过点C 的另一直线CD 与y 轴相交于点D ,是否存在点C 使△BCD 与△AOB 全等?若存在,请求出点C 的坐标;若不存在,请说明理由.5. 如图,直线122y x =+与x 轴、y 轴分别交于A ,B 两点,点C 的坐标为(-3,0),P (x ,y )是直线122y x=+上的一个动点(点P不与点A重合).(1)在点P的运动过程中,试写出△OPC的面积S与x之间的函数关系式.?求出此时(2)当点P运动到什么位置时,△OPC的面积为278点P的坐标.(3)过P作AB的垂线与x轴、y轴分别交于E,F两点,是否存在这样的点P,使△EOF≌△BOA?若Array存在,求出点P的坐标;若不存在,请说明理由.大类三、一次函数之动点问题班级:__________ 姓名:__________【知识点睛】动点问题的特征是速度已知,主要考查运动的过程.1.一次函数背景下研究动点问题的思考方向:①把函数信息(坐标或表达式)转化为基本图形的信息;②分析运动过程,注意状态转折,确定对应的时间范围;③画出符合题意的图形,研究几何特征,设计解决方案.2.解决具体问题时会涉及线段长的表达,需要注意两点:①路程即线段长,可根据s=vt直接表达已走路程或未走路程;②根据研究几何特征需求进行表达,既要利用动点的运动情况,又要结合基本图形信息.【精讲精练】1. 如图,在平面直角坐标系中,O 为坐标原点,直线334y x =-+与x 轴、y 轴分别交于A ,B 两点.点P 从点A 出发,以每秒1个单位的速度沿射线AO 匀速运动,设点P 的运动时间为t 秒. (1)求OA ,OB 的长.(2)过点P 与直线AB 垂直的直线与y 轴交于点E ,在点P 的运动过程中,是否存在这样的点P ,使△EOP ≌△AOB ?若存在,请求出t 的值;若不存在,请说明理由.3.如图,在直角梯形COAB中,OC∥AB,以O为原点建立平面直角坐标系,A,B,C三点的坐标分别为A(8,0),B(8,11),C(0,5),点D为线段BC的中点.动点P从点O出发,以每秒1个单位的速度,沿折线OA—AB—BD的路线运动,至点D停止,设运动时间为t秒.(1)求直线BC的解析式.(2)若动点P在线段OA上运动,当t为何值时,四边形OPDC的面积是梯形COAB面积的14?(3)在动点P的运动过程中,设△OPD的面积为S,求S与t4.如图,直线y =+与x 轴交于点A,与直线y =交于点P .(1)求点P 的坐标. (2)求△OP A 的面积.(3)动点E 从原点O 出发,以每秒1个单位的速度沿OA 方向向终点A 运动,过点E 作EF ⊥x 轴交线段OP 或线段P A 于点F ,FB ⊥y 轴于点B .设运动时间为t 秒,矩形OEFB 与△OP A 重叠部分的面积为S ,求S 与t 之间的函数关系式.5.如图,直线l的解析式为y=-x+4,它与x轴、y轴分别交于A,B两点,平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别交于M,N两点,设运动时间为t秒(0< t <4).(1)求A,B两点的坐标;(2)用含t的代数式表示△MON的面积S1;(3)以MN为对角线作矩形OMPN,记△MPN和△OAB重叠部分的面积为S2,试探究S2与t之间的函数关系式.大类四、一次函数之面积问题 班级:_________ 姓名:__________【知识点睛】1. 坐标系中处理面积问题,要寻找并利用横平竖直的线, 通常有以下三种思路: ①公式法(规则图形);②割补法(分割求和、补形作差); ③转化法(例:同底等高). 2. 坐标系中面积问题的处理方法举例 ① 割补求面积(铅垂法):12△APB S ah = 12△APB S ah= ②转化求面积:l 1l 2如图,满足S △ABP =S △ABC 的点P 都在直线l 1,l 2上.二、 精讲精练1. 如右图,在平面直角坐标系中,已知A (-1,3),B (3,-2),则△AOB 的面积为___________.2. 如图,直线y =-x +4与x 轴、y 轴分别交于点A ,点B ,点P 的坐标为(-2,2),则S △PAB =___________.第2题图 第3题图3. 如图,直线AB :y =x +1与x 轴、y 轴分别交于点A ,点B ,直线CD :y =kx -2与x 轴、y 轴分别交于点C ,点D ,直线AB 与直线CD 交于点P .若S △APD =4.5,则k =__________.4. 如图,直线112y x =+经过点A (1,m ),B (4,n ),点C 的坐标为(2,5),求△ABC 的面积.5. 如图,在平面直角坐标系中,已知A (2,4),B (6,6),C (8,2),求四边形OABC 的面积.6. 如图,直线112y x =-+与x 轴、y 轴分别交于A ,B 两点,C (1,2),坐标轴上是否存在点P ,使S △ABP =S △ABC ?若存在,求出点P 的坐标;若不存在,请说明理由.7. 如图,已知直线m 的解析式为112y x =-+,与x 轴、y 轴分别交于A ,B 两点,以线段AB 为直角边在第一象限内作等腰Rt △ABC ,且∠BAC =90°,点P 为直线x =1上的动点,且△ABP的面积与△ABC的面积相等.(1)求△ABC的面积;(2)求点P的坐标.8.如图,直线P A:y=x+2与x轴、y轴分别交于A,Q两点,直线PB:y=-2x+8与x轴交于点B.(1)求四边形PQOB的面积.(2)直线P A上是否存在点M,使得△PBM的面积等于四边形PQOB的面积?若存在,求出点M的坐标;若不存在,请说明理由.【分类一参考答案】 二、精讲精练1.232.⊥,-1 3.7(0)3-, 4.(1,3);(n ,m );1313()55--, 5.y =+ 6.4163y x =-+ 7.(1)-2≤a ≤2;(2)k ≥1或k ≤-1 8.-3≤b ≤-1 9.8:9 10.(1)y =x -4;(2)M (m +4,-m -8);(3)Q (-4,0)【分类二参考答案】 二、精讲精练1.333(4444或(或,或(,) 2.(1)B (3,0),43k =(2)A (6,4) (3)123413(120)03P P P P 或(-)或,或(,)3.(1)B (-3,6) (2)y =-x +3(3)123433(30)(22P P P P +,或或或(,) 4.1261224()(46)5555--,或(,)或,5.(1)33(4)433(4)4x x S x x ⎧--<-⎪⎪=⎨⎪+>-⎪⎩(2)1217919()2424P P --,或(,) (3)12412124()5555P P ,或(-,) 【分类三参考答案】1.(1)OA =4,OB =3; (2)t =1或t =7 2.(1)y =+(2)22(04)(48)t S t <=⎨⎪+<<⎪⎩≤(3)123(08)(08)(0M M M -或或,4(0M 或3.(1)354y x =+(2)32t =(3)4(08)248(819)248(1924)t t S t t t t <⎧⎪=-+<⎨⎪-+<<⎩≤≤4.(1)(3P (2) (3)22(03)(34)t S t <=⎨⎪+-<<⎪⎩≤第21页/共21页 5.(1)(40)(04)A B ,,, (2)2112S t =.(3)2221(02)2388(24)2t tS t t t ⎧<⎪⎪=⎨⎪-+-<<⎪⎩≤ 【分类四参考答案】二、精讲精练1.72 2.8 3.52 4.925.24 6.123451(0)(50)(0)(10)22P P P P --,或,或,或,7.(1)52;(2)12(13)(12)P P -,或,8.(1)10;(2)12162242()()3333M M -,或,。

一次函数和几何综合题含答案

一次函数和几何综合题含答案

一次函数和几何综合题含答案1.(2013•天水)如图1,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD.(1)求直线AB的解析式;(2)当点P运动到点(,0)时,求此时DP的长及点D的坐标;(3)是否存在点P,使△OPD的面积等于?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.2.(2013•济宁)如图,直线y=﹣x+4与坐标轴分别交于点A、B,与直线y=x交于点C.在线段OA上,动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,同时动点P从点A出发向点O做匀速运动,当点P、Q其中一点停止运动时,另一点也停止运动.分别过点P、Q作x轴的垂线,交直线AB、OC于点E、F,连接EF.若运动时间为t秒,在运动过程中四边形PEFQ总为矩形(点P、Q重合除外).(1)求点P运动的速度是多少?(2)当t为多少秒时,矩形PEFQ为正方形?(3)当t为多少秒时,矩形PEFQ的面积S最大?并求出最大值.3.(2013•绥化)如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B 点,且OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.(1)求C点坐标;(2)求直线MN的解析式;(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.4.(2013•齐齐哈尔)如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(OA<OB)且OA、OB的长分别是一元二次方程x2﹣(+1)x+=0的两个根,点C在x轴负半轴上,且AB:AC=1:2(1)求A、C两点的坐标;(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.5.(2013春•屯留县期末)如图,四边形OABC是菱形,点C在x轴上,AB交y轴于点H,AC交y轴于点M.已知点A(﹣3,4).(1)求AO的长;(2)求直线AC的解析式和点M的坐标;(3)点P从点A出发,以每秒2个单位的速度沿折线A﹣B﹣C运动,到达点C终止.设点P的运动时间为t秒,△PMB 的面积为S.①求S与t的函数关系式;②求S的最大值.6.(2012•鞍山)如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标(3,3),将正方形ABCO绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC于点G,ED的延长线交线段BC于点P,连AP、AG.(1)求证:△AOG≌△ADG;(2)求∠PAG的度数;并判断线段OG、PG、BP之间的数量关系,说明理由;(3)当∠1=∠2时,求直线PE的解析式.7.(2012•桃源县校级自主招生)如图,点A在y轴上,点B在x轴上,且OA=OB=1,经过原点O的直线l交线段AB于点C,过C作OC的垂线,与直线x=1相交于点P,现将直线L绕O点旋转,使交点C从A向B运动,但C点必须在第一象限内,并记AC的长为t,分析此图后,对下列问题作出探究:(1)当△AOC和△BCP全等时,求出t的值;(2)通过动手测量线段OC和CP的长来判断它们之间的大小关系并证明你得到的结论;(3)①设点P的坐标为(1,b),试写出b关于t的函数关系式和变量t的取值范围.②求出当△PBC为等腰三角形时点P的坐标.8.(2012秋•海陵区期末)如图1,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC交于点C.(1)若直线AB解析式为y=﹣2x+12,直线OC解析式为y=x,①求点C的坐标;②求△OAC的面积.(2)如图2,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为6,且OA=4,P、Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.9.(2012秋•成都校级期末)如图,在平面直角坐标系xOy中,已知直线PA是一次函数y=x+m(m>0)的图象,直线PB是一次函数y=﹣3x+n(n>m)的图象,点P是两直线的交点,点A、B、C、Q分别是两条直线与坐标轴的交点.(1)用m、n分别表示点A、B、P的坐标及∠PAB的度数;(2)若四边形PQOB的面积是,且CQ:AO=1:2,试求点P的坐标,并求出直线PA与PB的函数表达式;(3)在(2)的条件下,是否存在一点D,使以A、B、P、D为顶点的四边形是平行四边形?若存在,求出点D的坐标;若不存在,请说明理由.10.(2012秋•綦江县校级期末)如图,一次函数的函数图象与x轴、y轴分别交于点A、B,以线段AB 为直角边在第一象限内作Rt△ABC,且使∠ABC=30°.(1)求△ABC的面积;(2)如果在第二象限内有一点P(m,),试用含m的代数式表示△APB的面积,并求当△APB与△ABC面积相等时m的值;(3)是否存在使△QAB是等腰三角形并且在坐标轴上的点Q?若存在,请写出点Q所有可能的坐标;若不存在,请说明理由.参考答案与试题解析一.解答题(共10小题)1.(2013•天水)如图1,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD.(1)求直线AB的解析式;(2)当点P运动到点(,0)时,求此时DP的长及点D的坐标;(3)是否存在点P,使△OPD的面积等于?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.考点:一次函数综合题.专题:压轴题.分析:(1)过点B作BE⊥y轴于点E,作BF⊥x轴于点F.依题意得BF=OE=2,利用勾股定理求出OF,然后可得点B的坐标.设直线AB的解析式是y=kx+b,把已知坐标代入可求解.(2)由△ABD由△AOP旋转得到,证明△ABD≌△AOP.AP=AD,∠DAB=∠PAO,∠DAP=∠BAO=60°,△ADP是等边三角形.利用勾股定理求出DP.在Rt△BDG中,∠BGD=90°,∠DBG=60°.利用三角函数求出BG=BD•cos60°,DG=BD•sin60°.然后求出OH,DH,然后求出点D的坐标.(3)本题分三种情况进行讨论,设点P的坐标为(t,0):①当P在x轴正半轴上时,即t>0时,关键是求出D点的纵坐标,方法同(2),在直角三角形DBG中,可根据BD即OP的长和∠DBG的正弦函数求出DG的表达式,即可求出DH的长,根据已知的△OPD的面积可列出一个关于t的方程,即可求出t的值.②当P在x轴负半轴,但D在x轴上方时.即<t≤0时,方法同①类似,也是在直角三角形DBG用BD的长表示出DG,进而求出GF的长,然后同①.③当P在x轴负半轴,D在x轴下方时,即t≤时,方法同②.综合上面三种情况即可求出符合条件的t的值.解答:解:(1)如图1,过点B作BE⊥y轴于点E,作BF⊥x轴于点F.由已知得:BF=OE=2,OF==,∴点B的坐标是(,2)设直线AB的解析式是y=kx+b(k≠0),则有.解得.∴直线AB的解析式是y=x+4;(2)如图2,∵△ABD由△AOP旋转得到,∴△ABD≌△AOP,∴AP=AD,∠DAB=∠PAO,∴∠DAP=∠BAO=60°,∴△ADP是等边三角形,∴DP=AP=.如图2,过点D作DH⊥x轴于点H,延长EB交DH于点G,则BG⊥DH.方法(一)在Rt△BDG中,∠BGD=90°,∠DBG=60°.∴BG=BD•cos60°=×=.DG=BD•sin60°=×=.∴OH=EG=,DH=∴点D的坐标为(,)方法(二)易得∠AEB=∠BGD=90°,∠ABE=∠BDG,∴△ABE∽△BDG,∴;而AE=2,BD=OP=,BE=2,AB=4,则有,解得BG=,DG=;∴OH=,DH=;∴点D的坐标为(,).(3)假设存在点P,在它的运动过程中,使△OPD的面积等于.设点P为(t,0),下面分三种情况讨论:①当t>0时,如图,BD=OP=t,DG=t,∴DH=2+t.∵△OPD的面积等于,∴,解得,(舍去)∴点P1的坐标为(,0).②∵当D在y轴上时,根据勾股定理求出BD==OP,∴当<t≤0时,如图,BD=OP=﹣t,DG=﹣t,∴GH=BF=2﹣(﹣t)=2+t.∵△OPD的面积等于,∴,解得,,∴点P2的坐标为(,0),点P3的坐标为(,0).③当t≤时,如图3,BD=OP=﹣t,DG=﹣t,∴DH=﹣t﹣2.∵△OPD的面积等于,∴(﹣t)[﹣(2+t)]=,解得(舍去),∴点P4的坐标为(,0),综上所述,点P的坐标分别为P1(,0)、P2(,0)、P3(,0)、P4(,0).点评:本题综合考查的是一次函数的应用,包括待定系数法求解析式、旋转的性质、相似三角形的判定和性质、三角形面积公式的应用等,难度较大.2.(2013•济宁)如图,直线y=﹣x+4与坐标轴分别交于点A、B,与直线y=x交于点C.在线段OA上,动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,同时动点P从点A出发向点O做匀速运动,当点P、Q其中一点停止运动时,另一点也停止运动.分别过点P、Q作x轴的垂线,交直线AB、OC于点E、F,连接EF.若运动时间为t秒,在运动过程中四边形PEFQ总为矩形(点P、Q重合除外).(1)求点P运动的速度是多少?(2)当t为多少秒时,矩形PEFQ为正方形?(3)当t为多少秒时,矩形PEFQ的面积S最大?并求出最大值.考点:一次函数综合题.专题:压轴题.分析:(1)根据直线y=﹣x+4与坐标轴分别交于点A、B,得出A,B点的坐标,再利用EP∥BO,得出==,据此可以求得点P的运动速度;(2)当PQ=PE时,以及当PQ=PE时,矩形PEFQ为正方形,分别求出即可;(3)根据(2)中所求得出s与t的函数关系式,进而利用二次函数性质求出即可.解答:解:(1)∵直线y=﹣x+4与坐标轴分别交于点A、B,∴x=0时,y=4,y=0时,x=8,∴==,当t秒时,QO=FQ=t,则EP=t,∵EP∥BO,∴==,∴AP=2t,∵动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,∴点P运动的速度是每秒2个单位长度;(2)如图1,当PQ=PE时,矩形PEFQ为正方形,则∵OQ=FQ=t,PA=2t,∴QP=8﹣t﹣2t=8﹣3t,∴8﹣3t=t,解得:t=2;如图2,当PQ=PE时,矩形PEFQ为正方形,∵OQ=t,PA=2t,∴OP=8﹣2t,∴QP=t﹣(8﹣2t)=3t﹣8,∴t=3t﹣8,解得:t=4;(3)如图1,当Q在P点的左边时,∵OQ=t,PA=2t,∴QP=8﹣t﹣2t=8﹣3t,∴S矩形PEFQ=QP•QF=(8﹣3t)•t=8t﹣3t2,当t=﹣=时,S矩形PEFQ的最大值为:=,如图2,当Q在P点的右边时,∵OQ=t,PA=2t,∴2t>8﹣t,∴t,∴QP=t﹣(8﹣2t)=3t﹣8,∴S矩形PEFQ=QP•QF=(3t﹣8)•t=3t2﹣8t,∵当点P、Q其中一点停止运动时,另一点也停止运动,∴<t≤4,当t=﹣=时,S矩形PEFQ的最大,∴t=4时,S矩形PEFQ的最大值为:3×42﹣8×4=16,点评:此题主要考查了二次函数与一次函数的综合应用,得出P,Q不同的位置进行分类讨论得出是解题关键.3.(2013•绥化)如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B 点,且OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.(1)求C点坐标;(2)求直线MN的解析式;(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.考点:一次函数综合题.专题:压轴题.分析:(1)通过解方程x2﹣14x+48=0可以求得OC=6,OA=8.则C(0,6);(2)设直线MN的解析式是y=kx+b(k≠0).把点A、C的坐标分别代入解析式,列出关于系数k、b的方程组,通过解方程组即可求得它们的值;(3)需要分类讨论:PB为腰,PB为底两种情况下的点P的坐标.根据等腰三角形的性质、两点间的距离公式以及一次函数图象上点的坐标特征进行解答.解答:解:(1)解方程x2﹣14x+48=0得x1=6,x2=8.∵OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根,∴OC=6,OA=8.∴C(0,6);(2)设直线MN的解析式是y=kx+b(k≠0).由(1)知,OA=8,则A(8,0).∵点A、C都在直线MN上,∴,解得,,∴直线MN的解析式为y=﹣x+6;(3)∵A(8,0),C(0,6),∴根据题意知B(8,6).∵点P在直线MNy=﹣x+6上,∴设P(a,﹣a+6)当以点P,B,C三点为顶点的三角形是等腰三角形时,需要分类讨论:①当PC=PB时,点P是线段BC的中垂线与直线MN的交点,则P1(4,3);②当PC=BC时,a2+(﹣a+6﹣6)2=64,解得,a=,则P2(﹣,),P3(,);③当PB=BC时,(a﹣8)2+(a﹣6+6)2=64,解得,a=,则﹣a+6=﹣,∴P4(,﹣).综上所述,符合条件的点P有:P1(4,3),P2(﹣,)P3(,),P4(,﹣).点评:本题考查了一次函数综合题.其中涉及到的知识点有:待定系数法求一次函数解析式,一次函数图象上点的坐标特征,等腰三角形的性质.解答(3)题时,要分类讨论,防止漏解.另外,解答(3)题时,还利用了“数形结合”的数学思想.4.(2013•齐齐哈尔)如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(OA<OB)且OA、OB的长分别是一元二次方程x2﹣(+1)x+=0的两个根,点C在x轴负半轴上,且AB:AC=1:2(1)求A、C两点的坐标;(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.考点:一次函数综合题.专题:压轴题.分析:(1)通过解一元二次方程x2﹣(+1)x+=0,求得方程的两个根,从而得到A、B两点的坐标,再根据两点之间的距离公式可求AB的长,根据AB:AC=1:2,可求AC的长,从而得到C点的坐标;(2)分①当点M在CB边上时;②当点M在CB边的延长线上时;两种情况讨论可求S关于t的函数关系式;(3)分AQ=AB,BQ=BA,BQ=QA三种情况讨论可求Q点的坐标.解答:解:(1)x2﹣(+1)x+=0,(x﹣)(x﹣1)=0,解得x1=,x2=1,∵OA<OB,∴OA=1,OB=,∴A(1,0),B(0,),∴AB=2,又∵AB:AC=1:2,∴AC=4,∴C(﹣3,0);(2)∵AB=2,AC=4,BC=2,∴AB2+BC2=AC2,即∠ABC=90°,由题意得:CM=t,CB=2.①当点M在CB边上时,S=2﹣t(0≤t);②当点M在CB边的延长线上时,S=t﹣2(t>2);(3)存在.①当AB是菱形的边时,如图所示,在菱形AP1Q1B中,Q1O=AO=1,所以Q1点的坐标为(﹣1,0),在菱形ABP2Q2中,AQ2=AB=2,所以Q2点的坐标为(1,2),在菱形ABP3Q3中,AQ3=AB=2,所以Q3点的坐标为(1,﹣2),②当AB为菱形的对角线时,如图所示的菱形AP4BQ4,设菱形的边长为x,则在Rt△AP4O中,AP42=AO2+P4O2,即x2=12+(﹣x)2,解得x=,所以Q4(1,).综上可得,平面内满足条件的Q点的坐标为:Q1(﹣1,0),Q2(1,﹣2),Q3(1,2),Q4(1,).点评:考查了一次函数综合题,涉及的知识点有:解一元二次方程,两点之间的距离公式,三角形面积的计算,函数思想,分类思想的运用,菱形的性质,综合性较强,有一定的难度.5.(2013春•屯留县期末)如图,四边形OABC是菱形,点C在x轴上,AB交y轴于点H,AC交y轴于点M.已知点A(﹣3,4).(1)求AO的长;(2)求直线AC的解析式和点M的坐标;(3)点P从点A出发,以每秒2个单位的速度沿折线A﹣B﹣C运动,到达点C终止.设点P的运动时间为t秒,△PMB 的面积为S.①求S与t的函数关系式;②求S的最大值.考点:一次函数综合题;解二元一次方程组;待定系数法求一次函数解析式;三角形的面积;角平分线的性质;勾股定理;菱形的性质.专题:计算题.分析:(1)根据A的坐标求出AH、OH,根据勾股定理求出即可;(2)根据菱形性质求出B、C的坐标,设直线AC的解析式是y=kx+b,把A(﹣3,4),C(5,0)代入得到方程组,求出即可;(3)①过M作MN⊥BC于N,根据角平分线性质求出MN,P在AB上,根据三角形面积公式求出即可;P 在BC上,根据三角形面积公式求出即可;②求出P在AB的最大值和P在BC上的最大值比较即可得到答案.解答:(1)解:∵A(﹣3,4),∴AH=3,OH=4,由勾股定理得:AO==5,答:OA的长是5.(2)解:∵菱形OABC,∴OA=OC=BC=AB=5,5﹣3=2,∴B(2,4),C(5,0),设直线AC的解析式是y=kx+b,把A(﹣3,4),C(5,0)代入得:,解得:,∴直线AC的解析式为,当x=0时,y=2.5∴M(0,2.5),答:直线AC的解析式是,点M的坐标是(0,2.5).(3)①解:过M作MN⊥BC于N,∵菱形OABC,∴∠BAC=∠OCA,∵MO⊥CO,MN⊥BC,∴OM=MN,当0≤t<2.5时,P在AB上,MH=4﹣2.5=,S=×BP×MH=×(5﹣2t)×=﹣t+,∴,当t=2.5时,P与B重合,△PMB不存在;当2.5<t≤5时,P在BC上,S=×PB×MN=×(2t﹣5)×=t﹣,∴,答:S与t的函数关系式是(0≤t<2.5)或(2.5<t≤5).②解:当P在AB上时,高MH一定,只有BP取最大值即可,即P与A重合,S最大是×5×=,同理在BC上时,P与C重合时,S最大是×5×=,∴S的最大值是,答:S的最大值是.点评:本题主要考查对勾股定理,三角形的面积,菱形的性质,角平分线性质,解二元一次方程组,用待定系数法求一次函数的解析式等知识点的理解和掌握,综合运用这些性质进行计算是解此题的关键.6.(2012•鞍山)如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标(3,3),将正方形ABCO绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC于点G,ED的延长线交线段BC于点P,连AP、AG.(1)求证:△AOG≌△ADG;(2)求∠PAG的度数;并判断线段OG、PG、BP之间的数量关系,说明理由;(3)当∠1=∠2时,求直线PE的解析式.考点:一次函数综合题.专题:压轴题.分析:(1)由AO=AD,AG=AG,利用“HL”可证△AOG≌△ADG;(2)利用(1)的方法,同理可证△ADP≌△ABP,得出∠1=∠DAG,∠DAP=∠BAP,而∠1+∠DAG+∠DAP+∠BAP=90°,由此可求∠PAG的度数;根据两对全等三角形的性质,可得出线段OG、PG、BP之间的数量关系;(3)由△AOG≌△ADG可知,∠AGO=∠AGD,而∠1+∠AGO=90°,∠2+∠PGC=90°,当∠1=∠2时,可证∠AGO=∠AGD=∠PGC,而∠AGO+∠AGD+∠PGC=180°,得出∠AGO=∠AGD=∠PGC=60°,即∠1=∠2=30°,解直角三角形求OG,PC,确定P、G两点坐标,得出直线PE的解析式.解答:(1)证明:∵∠AOG=∠ADG=90°,∴在Rt△AOG和Rt△ADG中,∵,∴△AOG≌△ADG(HL);(2)解:PG=OG+BP.由(1)同理可证△ADP≌△ABP,则∠DAP=∠BAP,由(1)可知,∠1=∠DAG,又∠1+∠DAG+∠DAP+∠BAP=90°,所以,2∠DAG+2∠DAP=90°,即∠DAG+∠DAP=45°,故∠PAG=∠DAG+∠DAP=45°,∵△AOG≌△ADG,△ADP≌△ABP,∴DG=OG,DP=BP,∴PG=DG+DP=OG+BP;(3)解:∵△AOG≌△ADG,∴∠AGO=∠AGD,又∵∠1+∠AGO=90°,∠2+∠PGC=90°,∠1=∠2,∴∠AGO=∠AGD=∠PGC,又∵∠AGO+∠AGD+∠PGC=180°,∴∠AGO=∠AGD=∠PGC=60°,∴∠1=∠2=30°,在Rt△AOG中,AO=3,AG=2OG,AG2=AO2+OG2,∴OG=,则G点坐标为:(,0),CG=3﹣,在Rt△PCG中,PG=2CG=2(3﹣),PC==3﹣3,则P点坐标为:(3,3﹣3),设直线PE的解析式为y=kx+b,则,解得,所以,直线PE的解析式为y=x﹣3.点评:本题考查了一次函数的综合运用.关键是根据正方形的性质证明三角形全等,根据三角形全等的性质求角、边的关系,利用特殊角解直角三角形,求P、G两点坐标,确定直线解析式.7.(2012•桃源县校级自主招生)如图,点A在y轴上,点B在x轴上,且OA=OB=1,经过原点O的直线l交线段AB于点C,过C作OC的垂线,与直线x=1相交于点P,现将直线L绕O点旋转,使交点C从A向B运动,但C点必须在第一象限内,并记AC的长为t,分析此图后,对下列问题作出探究:(1)当△AOC和△BCP全等时,求出t的值;(2)通过动手测量线段OC和CP的长来判断它们之间的大小关系并证明你得到的结论;(3)①设点P的坐标为(1,b),试写出b关于t的函数关系式和变量t的取值范围.②求出当△PBC为等腰三角形时点P的坐标.考点:一次函数综合题.专题:压轴题;探究型.分析:(1)△AOC和△BCP全等,则AO=BC=1,又∵AB=,t=AB﹣BC=﹣1;(2)过点C作x轴的平行线,交OA与直线BP于点T、H,证△OTC≌△CHP即可;(3)根据题意可直接得出b=1﹣t;当t=0或1时,△PBC为等腰三角形,即P(1,1),P(1,1﹣),但t=0时,点C不在第一象限,所以不符合题意.解答:解:(1)△AOC和△BCP全等,则AO=BC=1,又AB=,所以t=AB﹣BC=﹣1;(2)OC=CP.证明:过点C作x轴的平行线,交OA与直线BP于点T、H.∵PC⊥OC,∴∠OCP=90°,∵OA=OB=1,∴∠OBA=45°,∵TH∥OB,∴∠BCH=45°,又∠CHB=90°,∴△CHB为等腰直角三角形,∴CH=BH,∵∠AOB=∠OBH=∠BHT=90°,∴四边形OBHT为矩形,∴OT=BH,∴OT=CH,∵∠TCO+∠PCH=90°,∠CPH+∠PCH=90°,∴∠TCO=∠CPH,∵HB⊥x轴,TH∥OB,∴∠CTO=∠THB=90°,TO=HC,∠TCO=∠CPH,∴△OTC≌△CHP,∴OC=CP;(3)①∵△OTC≌△CHP,∴CT=PH,∴PH=CT=AT=AC•cos45°=t,∴BH=OT=OA﹣AT=1﹣t,∴BP=BH﹣PH=1﹣t,∴;(0<t<)②t=0时,△PBC是等腰直角三角形,但点C与点A重合,不在第一象限,所以不符合,PB=BC,则﹣t=|1﹣t|,解得t=1或t=﹣1(舍去),∴当t=1时,△PBC为等腰三角形,即P点坐标为:P(1,1﹣).点评:主要考查了函数和几何图形的综合运用.解题的关键是会灵活的运用函数的性质和点的意义表示出相应的线段的长度,再结合三角形全等和等腰三角形的性质求解.试题中贯穿了方程思想和数形结合的思想,请注意体会.8.(2012秋•海陵区期末)如图1,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC交于点C.(1)若直线AB解析式为y=﹣2x+12,直线OC解析式为y=x,①求点C的坐标;②求△OAC的面积.(2)如图2,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为6,且OA=4,P、Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.考点:一次函数综合题.专题:综合题;数形结合.分析:(1)①联立两个函数式,求解即可得出交点坐标,即为点C的坐标.②欲求△OAC的面积,结合图形,可知,只要得出点A和点C的坐标即可,点C的坐标已知,利用函数关系式即可求得点A的坐标,代入面积公式即可.(2)在OC上取点M,使OM=OP,连接MQ,易证△POQ≌△MOQ,可推出AQ+PQ=AQ+MQ;若想使得AQ+PQ存在最小值,即使得A、Q、M三点共线,又AB⊥OP,可得∠AEO=∠CEO,即证△AEO≌△CEO(ASA),又OC=OA=4,利用△OAC的面积为6,即可得出AM=3,AQ+PQ存在最小值,最小值为3.解答:解:(1)①由题意,(2分)解得所以C(4,4)(3分)②把y=0代入y=﹣2x+12得,x=6,所以A点坐标为(6,0),(4分)所以.(6分)(2)存在;由题意,在OC上截取OM=OP,连接MQ,∵OQ平分∠AOC,∴∠AOQ=∠COQ,又OQ=OQ,∴△POQ≌△MOQ(SAS),(7分)∴PQ=MQ,∴AQ+PQ=AQ+MQ,当A、Q、M在同一直线上,且AM⊥OC时,AQ+MQ最小.即AQ+PQ存在最小值.∵AB⊥ON,所以∠AEO=∠CEO,∴△AEO≌△CEO(ASA),∴OC=OA=4,∵△OAC的面积为6,所以AM=12÷4=3,∴AQ+PQ存在最小值,最小值为3.(9分)点评:本题主要考查一次函数的综合应用,具有一定的综合性,要求学生具备一定的数学解题能力,有一定难度.9.(2012秋•成都校级期末)如图,在平面直角坐标系xOy中,已知直线PA是一次函数y=x+m(m>0)的图象,直线PB是一次函数y=﹣3x+n(n>m)的图象,点P是两直线的交点,点A、B、C、Q分别是两条直线与坐标轴的交点.(1)用m、n分别表示点A、B、P的坐标及∠PAB的度数;(2)若四边形PQOB的面积是,且CQ:AO=1:2,试求点P的坐标,并求出直线PA与PB的函数表达式;(3)在(2)的条件下,是否存在一点D,使以A、B、P、D为顶点的四边形是平行四边形?若存在,求出点D的坐标;若不存在,请说明理由.考点:一次函数综合题.专题:开放型.分析:(1)已知直线解析式,令y=0,求出x的值,可求出点A,B的坐标.联立方程组求出点P的坐标.推出AO=QO,可得出∠PAB=45°.(2)先根据CQ:AO=1:2得到m、n的关系,然后求出S△AOQ,S△PAB并都用字母m表示,根据S四边形PQOB=S△PAB ﹣S△AOQ积列式求解即可求出m的值,从而也可求出n的值,继而可推出点P的坐标以及直线PA与PB的函数表达式.(3)本题要依靠辅助线的帮助.求证相关图形为平行四边形,继而求出D1,D2,D3的坐标.解答:解:(1)在直线y=x+m中,令y=0,得x=﹣m.∴点A(﹣m,0).在直线y=﹣3x+n中,令y=0,得.∴点B(,0).由,得,∴点P(,).在直线y=x+m中,令x=0,得y=m,∴|﹣m|=|m|,即有AO=QO.又∵∠AOQ=90°,∴△AOQ是等腰直角三角形,∴∠PAB=45°.(2)∵CQ:AO=1:2,∴(n﹣m):m=1:2,整理得3m=2n,∴n=m,∴==m,而S四边形PQOB=S△PAB﹣S△AOQ=(+m)×(m)﹣×m×m=m2=,解得m=±4,∵m>0,∴m=4,∴n=m=6,∴P().∴PA的函数表达式为y=x+4,PB的函数表达式为y=﹣3x+6.(3)存在.过点P作直线PM平行于x轴,过点B作AP的平行线交PM于点D1,过点A作BP的平行线交PM于点D2,过点A、B分别作BP、AP的平行线交于点D3.①∵PD1∥AB且BD1∥AP,∴PABD1是平行四边形.此时PD1=AB,易得;②∵PD2∥AB且AD2∥BP,∴PBAD2是平行四边形.此时PD2=AB,易得;③∵BD3∥AP且AD3∥BP,此时BPAD3是平行四边形.∵BD3∥AP且B(2,O),∴y BD3=x﹣2.同理可得y AD3=﹣3x﹣12,得,∴.点评:本题的综合性强,主要考查的知识点为一次函数的应用,平行四边形的判定以及面积的灵活计算.难度较大.10.(2012秋•綦江县校级期末)如图,一次函数的函数图象与x轴、y轴分别交于点A、B,以线段AB 为直角边在第一象限内作Rt△ABC,且使∠ABC=30°.(1)求△ABC的面积;(2)如果在第二象限内有一点P(m,),试用含m的代数式表示△APB的面积,并求当△APB与△ABC面积相等时m的值;(3)是否存在使△QAB是等腰三角形并且在坐标轴上的点Q?若存在,请写出点Q所有可能的坐标;若不存在,请说明理由.考点:一次函数综合题.专题:综合题.分析:(1)先求出A、B两点的坐标,再由一个角等于30°,求出AC的长,从而计算出面积;(2)过P作PD⊥x轴,垂足为D,先求出梯形ODPB的面积和△AOB的面积之和,再减去△APD的面积,即是△APB的面积;根据△APB与△ABC面积相等,求得m的值;(3)假设存在点Q,使△QAB是等腰三角形,求出Q点的坐标即可.解答:解:(1)∵一次函数的解析式为函数图象与x轴、y轴分别交于点A、B,∴A(1,0),B(0,),∴AB=2,设AC=x,则BC=2x,由勾股定理得,4x2﹣x2=4,解得x=,S△ABC==;(2)过P作PD⊥x轴,垂足为D,S△APB=S梯形ODPB+S△AOB﹣S△APD==,﹣=,解得m=;(3)∵AB==2,∴当AQ=AB时,点Q1(3,0),Q2(﹣1,0),Q3(0,﹣);当AB=BQ时,点Q4(0,+2),Q2(0,﹣2),Q2(﹣1,0);当AQ=BQ时,点Q6(0,),Q2(﹣1,0),综上可得:(0,),(0,),(﹣1,0)(3,0),(0,),(0,)点评:此题主要考查平面直角坐标系中图形的面积的求法.解答此题的关键是根据一次函数的特点,分别求出各点的坐标再计算.。

一次函数与几何图形综合题(含答案)

一次函数与几何图形综合题(含答案)

一次函数与几何图形综合专题讲座思想方法小结 : (1)函数方法.函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题.(2)数形结合法.数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用.知识规律小结 :(1)常数k ,b 对直线y =kx +b (k ≠0)位置的影响. ①当b >0时,直线与y 轴的正半轴相交; 当b =0时,直线经过原点;当b ﹤0时,直线与y 轴的负半轴相交. ②当k ,b 异号时,即-kb>0时,直线与x 轴正半轴相交; 当b =0时,即-kb=0时,直线经过原点; 当k ,b 同号时,即-kb﹤0时,直线与x 轴负半轴相交.③当k >O ,b >O 时,图象经过第一、二、三象限; 当k >0,b =0时,图象经过第一、三象限; 当b >O ,b <O 时,图象经过第一、三、四象限; 当k ﹤O ,b >0时,图象经过第一、二、四象限; 当k ﹤O ,b =0时,图象经过第二、四象限; 当b <O ,b <O 时,图象经过第二、三、四象限. (2)直线y =kx +b (k ≠0)与直线y =kx (k ≠0)的位置关系. 直线y =kx +b (k ≠0)平行于直线y =kx (k ≠0)当b >0时,把直线y =kx 向上平移b 个单位,可得直线y =kx +b ; 当b ﹤O 时,把直线y =kx 向下平移|b |个单位,可得直线y =kx +b . (3)直线b 1=k 1x +b 1与直线y 2=k 2x +b 2(k 1≠0 ,k 2≠0)的位置关系.①k 1≠k 2⇔y 1与y 2相交; ②⎩⎨⎧=≠2121b b k k ⇔y 1与y 2相交于y 轴上同一点(0,b 1)或(0,b 2); ③⎩⎨⎧≠=2121,b b k k ⇔y 1与y 2平行;④⎩⎨⎧==2121,b b k k ⇔y 1与y 2重合.例题精讲:1、直线y =-2x +2与x 轴、y 轴交于A 、B 两点,C 在y 轴的负半轴上,且OC =OB(1) 求AC 的解析式;(2) 在OA 的延长线上任取一点P ,作PQ ⊥BP ,交直线AC 于Q ,试探究BP 与PQ 的数量关系,并证明你的结论。

一次函数几何综合题解题技巧

一次函数几何综合题解题技巧

一次函数几何综合题解题技巧一次函数是初中数学的重点知识之一,同时也是中考的热点。

它与几何知识的综合应用在中考中主要体现在:利用一次函数求待定系数、一次函数图象与几何图形相结合、一次函数图象的应用等几个方面。

本文将结合实例谈谈一次函数与几何图形综合题的解题技巧。

一、利用一次函数求待定系数解决这类问题的关键是利用已知条件建立方程组,求出待定系数。

具体来说,一般先设出一次函数解析式,利用已知条件得到解析式中的系数,再得到一次函数解析式。

【例1】已知:如图1,在平面直角坐标系中,直线AB与两坐标轴分别交于A、B两点,且与反比例函数的图象在第一象限交于点C。

(1)求该反比例函数的解析式;(2)求直线AB的解析式;(3)根据图像,当C的横坐标在哪个取值范围内时,线段AB不经过第四象限?分析:(1)由点C在反比例函数图象上,可直接求得解析式;(2)由于点C在直线AB上,可设直线AB的解析式为,将点C 的坐标分别代入解析式,可求得A、B两点的坐标,进而可求得直线AB 的解析式;(3)由图象可知,当C点的横坐标小于时,线段AB不经过第四象限。

解:(1)设反比例函数的解析式为,将点C(3,4)代入得,所以该反比例函数的解析式为;(2)设直线AB的解析式为,因为点C(3,4)在直线AB上,所以,解得,所以直线AB与轴交于点D(6,0),又因为点A(-3,-4),所以直线AB的解析式为;(3)由图象可知,当C点的横坐标小于时,线段AB不经过第四象限。

二、一次函数图象与几何图形相结合此类问题主要利用了待定系数法、数形结合的思想以及分类讨论的思想。

解题时要注意数形结合,根据已知条件建立方程或不等式,结合图形加以分析。

【例2】如图2,在平面直角坐标系中,四边形OABC为矩形,点A、C的坐标分别为(4,0)、(0,2),点D是边BC上的一个动点(点D与B、C不重合),过点D的抛物线经过点A、C、E。

(1)求该抛物线的解析式;(2)当AC为何值时,四边形DEOB为平行四边形?请说明理由;(3)设点D的坐标为(x,y),①试求该抛物线的对称轴及点D 到直线AC的距离;②试探究在抛物线上是否存在点M,使四边形AMDE 的面积最大?若存在,请求出点M的坐标;若不存在,请说明理由。

一次函数与几何综合

一次函数与几何综合

一次函数与几何综合例1:如图,在平面直角坐标系xOy 中,已知矩形纸片ABCO 的顶点AC 分别在x 轴、y 轴的正半轴上,且BC =15.将纸片沿过点C 的直线折叠后,点B 恰好落在x 轴上的点B ′处,折痕交AB 于点D .若34OC OB'=则直线CD 的表达式为____________. 【思路分析】1. 由折叠性质得,△BCD ≌△B′CD ,则B′C =BC =OA =15,=2. 设AD =t ,则B′D =BD =9-t ,在Rt △B′AD 中利用勾股定理可求出t =4,故D (15,4);3. 由C (0,9),D (15,4),可通过k ,b 的几何意义得到直线CD 的表达式:193y x =-+.例2:如图,点A 的坐标为(-2,0),点B 在直线122y x =-+上运动,则当线段AB 最短时,点B 的坐标为_____________.【思路分析】1. 如图,当AB ⊥l 时,线段AB 最短;2. 因为AB ⊥l ,所以1()12AB k ⋅-=-,故k AB =2,设l AB :y =2x +b ,把A (-2,0)代入,得b =4; 3. 联立可求得点B 的坐标为(-一、知识点睛1. 一次函数表达式:y =kx +b (k ,b 为常数,k ≠0)①k 是斜率,表示倾斜程度,可以用几何中的坡度(或坡比)来解释.坡面的竖直高度与水平宽度的比叫坡度或坡比,如图所示,AM即为____________,BM 即为____________,则=AM k BM.②b 是截距,表示直线与y 轴交点的纵坐标.MAB2. 设直线l 1:y 1=k 1x +b 1,直线l 2:y 2=k 2x +b 2,其中k 1,k 2≠0.①若k 1=k 2,且b 1≠b 2,则直线l 1_____l 2; ②若k 1·k 2=_________,则直线l 1_____l 2.3. 一次函数与几何综合解题思路①要求坐标,______________________________________; ②要求函数表达式,________________________________; ③要研究几何图形,________________________________.二、精讲精练1. 如图,点B ,C 分别在直线y =2x 和y =kx 上,A ,D 是x轴上的两点,若四边形ABCD 是正方形,则k 的值为________.第1题图 第2题图 第3题图2. 如图,已知直线l:y x =x 轴交于点A ,与y 轴交于点B ,将△AOB 沿直线l 折叠,点O 落在点C 处,则直线AC 的表达式为__________________.3. 如图,在平面直角坐标系xOy 中放入一张长方形纸片ABCO ,点D 在AB 边上,将纸片沿CD4. 如图,直线l 1交x 轴、y 轴于A ,B 两点,OA =m ,OB =n ,将△AOB 绕点O 逆时针旋转90°得到△COD .CD 所在直线l 2与直线l 1交于点E ,则l 1____l 2;若直线l 1,l 2的斜率分别为k 1,k 2,则k 1·k 2=_______.5. 如图,直线483y x =-+分别交x 轴、y 轴于A ,B 两点,线段AB的垂直平分线交x 轴于点C ,交AB 于点D ,则点C 的坐标为____________.坐标几何图形一次函数6. 如图,在平面直角坐标系中,函数y =x 的图象l 是第一、三象限的角平分线.探索:若点A 的坐标为(3,1),则它关于直线l 的对称点A'的坐标为____________;猜想:若坐标平面内任一点P 的坐标为(m ,n ),则它关于直线l 的对称点P ′的坐标为____________;应用:若已知两点B (-2,-5),C (-1,-3),试在直线l 上确定一点Q ,使点Q 到B ,C 两点的距离之和最小,则此时点Q 的坐标为____________.7. 如图,已知直线l 1:2833y x =+与直线l 2:y =-2x +16相交于点C ,直线l 1,l 2分别交x 轴于A ,B 两点,矩形DEFG 的顶点DE 分别在l 1,l 2上,顶点F ,G 都在x 轴上,且点G 与点B 重合,那么S 矩形DEFG :S △ABC =_________.8. 如图,已知点A 的坐标为(2,0),点B 在直线y =-x 上运动,当线段AB 最短时,点B 的坐标为( ) A .(-1,1)B . ,C .(1,-1)D .( 9. 如图,在平面直角坐标系中,点A ,B 的坐标分别为A (4,0)B (0,-4),P 为y 轴上B 点下方的一点,且PB =m (m >0),以点P 为直角顶点,AP 为腰在第四象限内作等腰Rt △APM . (1)求直线AB 的解析式;(2)用含m 的代数式表示点M 的坐标;(3)若直线MB 与x 轴交于点Q ,求点Q 的坐标.1. 点B ,C 分别在直线y =2x 和直线y =kx 上,A ,D 是x 轴上的两点.若四边形ABCD 是长方形,且AB :AD =1:2,则k 的值为____________.2. 如图,一次函数y =-2x +4的图象与坐标轴分别交于A ,B 两点,把线段AB绕着点A 沿逆时针方向旋转90°,点B 落在点B ′处,则直线AB ′的表达式为______________________.3. 如图,在平面直角坐标系xOy 中,四边形OABC 是正方形,点A 的坐标是(4,0),P 为AB 边上一点,沿CP 折叠正方形,折叠后的点B 落在平面_____________,直线CP 的表达式为___________________.第3题图 第4题图4. 如图,点A 的坐标是(-2,0),点B 的坐标是(6,0),点C 在第一象限内,且△OBC 为等边三角形,直线BC 交y 轴于点D ,过点A 作直线AE ⊥BD ,垂足为点E ,交OC 于点F ,则点C 的坐标为_______,直线AE 的表达式为______________.5. 如图,在平面直角坐标系中,函数y =-x 的图象l 是第二、四象限的角平分线.实验与探究:由图观察易知A (0,2)关于直线l 的对称点A ′的坐标为(-2,0),请在图中分别标出B (-5,-3),C (-2,5)关于直线l 的对称点B ′,C ′的位置,并写出它们的坐标:B ′_________,C ′_________. 归纳与发现:结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P (m ,n )关于第二、四象限的角平分线l 的对称点P ′的坐标为______________. 运用与拓广:已知两点D (0,-3),E (1,-4),试在直线l 上确定一点Q ,使点Q 到D ,E 两点的距离之和最小,并求出点Q 的坐标.。

一次函数与几何图形综合题(含答案)

一次函数与几何图形综合题(含答案)

一次函数与几何图形综合题(含答案)近日,举行了一次关于一次函数与几何图形综合的专题讲座。

在思想方法方面,介绍了函数方法和数形结合法。

函数方法是通过观察运动和变化来分析数量关系,并将其抽象升华为函数模型,从而解决问题的方法。

数形结合法则是将数与形结合起来,分析研究并解决问题的一种思想方法,对于与函数有关的问题,使用数形结合法能够事半功倍。

在知识规律方面,讲座介绍了常数k和b对直线y=kx+b(k≠0)位置的影响。

当b大于0时,直线与y轴的正半轴相交;当b等于0时,直线经过原点;当b小于0时,直线与y轴的负半轴相交。

当k和b异号时,即b大于0时,直线与x轴正半轴相交;当k和b同号时,即k和b的乘积小于0时,直线与x轴负半轴相交。

当k大于0且b大于0时,图象经过第一、二、三象限;当k大于0且b等于0时,图象经过第一、三象限;当b大于0且b小于0时,图象经过第一、三、四象限;当k小于0且b大于0时,图象经过第一、二、四象限;当k小于0且b等于0时,图象经过第二、四象限;当b小于0且b小于0时,图象经过第二、三、四象限。

讲座还介绍了直线y=kx+b(k≠0)与直线y=kx(k≠0)的位置关系。

当b大于0时,将直线y=kx向上平移b个单位,即可得到直线y=kx+b;当b小于0时,将直线y=kx向下平移|b|个单位,即可得到直线y=kx+b。

另外,当k1不等于k2时,y1与y2相交;当k1等于k2且b1不等于b2时,y1与y2平行但不重合;当k1等于k2且b1等于b2时,y1与y2重合。

最后,讲座还通过一个例题对知识规律进行了精讲。

题目是直线y=-2x+2与x轴、y轴交于A、B两点,C在y轴的负半轴上,且OC=OB。

要求求出AC的解析式。

的性质,需要灵活运用几何知识和代数知识。

在解答过程中,要注意清晰的逻辑思路和准确的计算,避免出现错误。

2) 在OA的延长线上任取一点P,作PQ⊥BP,交直线AC于Q。

我们来探究一下BP与PQ的数量关系,并证明结论。

例讲初中数学一次函数与几何综合问题

例讲初中数学一次函数与几何综合问题

(下转第 57 页)
学习指导
2023 年 12 月下半月
这些错误都是解题 教 学 的 宝 贵 资 源 .
教师应指导学困
题能力 .
生从思想 上 重 视 错 题,并 明 确 错 题 是 宝 贵 的 知 识 财
富;在解题教 学 中,聚 焦 错 题,引 领 学 生 分 析、反 思 错
误产生的原因,并找到正确的解题方法 .
°,点 P 是
∠AOB 内 的 定 点 且 OP = 3,若 M ,N 分 别 是 射 线
OA ,
OB 上 异 于 点 O 的 动 点,求 △PMN 周 长 的 最
小值 .
(
1)平行四边形的 存 在 性 口 诀:平 行 四 边 存 在 性,
对边平行且相等,等量关系里面有 .
常通过平行四 边 形
性质得到对边的位置关系与数量关系 .
1)
借助表达式设出点的坐标,将 点 的 坐 标 转 化 为 横 平 竖
点O,
B 重合),作 CD 平 行 于y 轴 交 直 线l2 于 点 D ,
究几何特征,考 虑 线 段 间 关 系,通 过 设 线 段 长 进 而 表
解:(
1)在 y=-x+24 中,令 x=0,则 y=24,所
以 A(
0,
24).
以在解决一次函数与几何 综 合 问 题 时,可 以 从 如 下 解
故 S△ABO =
题技巧来破解:数形结 合 记 心 头,大 题 小 做 来 转 化,潜
在条件不能忘,化动为 静 多 画 图,分 类 讨 论 要 严 密,方
程函数是工具,计算 推 理 要 严 谨,创 新 品 质 得 提 高 .

不出,找相似,有 相 似,用 相 似;构 造 定 理 所 需 的 图 形

一次函数综合练习(全等三角形,勾股定理)问题详解

一次函数综合练习(全等三角形,勾股定理)问题详解

1.如图1,直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC〔1〕求点C的坐标,并求出直线AC的关系式.〔2〕如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,假如AD=AC,求证:BE=DE.〔3〕如图3,在〔1〕的条件下,直线AC交x轴于M,P〔,k〕是线段BC上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?假如存在,请求出点N的坐标;假如不存在,请说明理由.考点:一次函数综合题。

分析:〔1〕如图1,作CQ⊥x轴,垂足为Q,利用等腰直角三角形的性质证明△ABO≌△BCQ,根据全等三角形的性质求OQ,CQ的长,确定C点坐标;〔2〕同〔1〕的方法证明△BCH≌△BDF,再根据线段的相等关系证明△BOE≌△DGE,得出结论;〔3〕依题意确定P点坐标,可知△BPN中BN变上的高,再由S△PBN=S△BCM,求BN,进而得出ON.解答:解:〔1〕如图1,作CQ⊥x轴,垂足为Q,∵∠OBA+∠OAB=90°,∠OBA+∠QBC=90°,∴∠OAB=∠QBC,又∵AB=BC,∠AOB=∠Q=90°,∴△ABO≌△BCQ,∴BQ=AO=2,OQ=BQ+BO=3,CQ=OB=1,∴C〔﹣3,1〕,由A〔0,2〕,C〔﹣3,1〕可知,直线AC:y=x+2;〔2〕如图2,作CH⊥x轴于H,DF⊥x轴于F,DG⊥y轴于G,∵AC=AD,AB⊥CB,∴BC=BD,∴△BCH≌△BDF,∴BF=BH=2,∴OF=OB=1,∴DG=OB,∴△BOE≌△DGE,∴BE=DE;〔3〕如图3,直线BC:y=﹣x﹣,P〔,k〕是线段BC上一点,∴P〔﹣,〕,由y=x+2知M〔﹣6,0〕,∴BM=5,如此S△BCM=.假设存在点N使直线PN平分△BCM的面积,如此BN•=×,∴BN=,ON=,∵BN<BM,∴点N在线段BM上,∴N〔﹣,0〕.点评:此题考查了一次函数的综合运用.关键是根据等腰直角三角形的特殊性证明全等三角形,利用全等三角形的性质求解.2.如图直线ℓ:y=kx+6与x轴、y轴分别交于点B、C,点B的坐标是〔﹣8,0〕,点A的坐标为〔﹣6,0〕〔1〕求k的值.〔2〕假如P〔x,y〕是直线ℓ在第二象限内一个动点,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值X围.〔3〕当点P运动到什么位置时,△OPA的面积为9,并说明理由.考点:一次函数综合题;待定系数法求一次函数解析式;三角形的面积。

一次函数与几何综合(一)(K,b的几何意义)(北师版)(含答案)

一次函数与几何综合(一)(K,b的几何意义)(北师版)(含答案)

学生做题前请先回答以下问题问题1:若一次函数表达式为y=kx+b(k,b为常数,k≠0),k是______,表示___________,可以用几何中的坡度来解释.坡面的____________与____________的比叫坡度或坡比.问题2:b表示____________________________.问题3:一次函数与几何综合解题思路中,求直线表达式的思路有哪些?一次函数与几何综合(一)(K,b的几何意义)(北师版)一、单选题(共8道,每道12分)1.如图,点B,C分别在直线y=3x和直线y=kx上,A,D是x轴上两点,若四边形ABCD是长方形,且,则k的值是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:k的几何意义2.如图,已知点A的坐标为(5,0),直线y=x+b(b>0)与x轴、y轴分别交于点B,C,连接AC,,则点B的坐标为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:k的几何意义3.如图,直线AP的解析式为,且点P的坐标为(4,2),PA=PB,则点B的坐标是( )A.(5,0)B.(6,0)C.(7,0)D.(8,0)答案:C解题思路:试题难度:三颗星知识点:k的几何意义4.如图,已知一条直线经过A(0,2),B(1,0)两点,将这条直线向左平移,与x轴、y 轴分别交于点C,点D.若DB=DC,则直线CD的函数解析式为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:一次函数、坐标、几何三角通道互转5.已知点,B(0,0),,AE平分∠BAC,交BC于点E,则直线AE的函数表达式是( )A. B.y=x-2C. D.答案:D解题思路:试题难度:三颗星知识点:一次函数、坐标、几何三角通道互转6.如图,在平面直角坐标系中,直线交x轴于点A,交y轴于点B,点C 是线段AB的中点,连接OC,然后将直线OC绕点C逆时针旋转30°交x轴于点D,则直线CD的表达式为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:一次函数、坐标、几何三角通道互转7.如图,已知长方形纸片OABC,D是OA上的一点,且OD:AD=5:3,CD=,把△OCD 沿折痕CD向上翻折,若点O恰好与AB边上的点E重合,则CD所在直线的表达式为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:一次函数、坐标、几何三角通道互转8.如图,在平面直角坐标系中放入一张长方形纸片ABCO,OC=9,将纸片翻折后,点B恰好落在x轴上,记为B′,折痕为CE,已知,则折痕B′E所在直线的解析式为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:一次函数与几何综合学生做题后建议通过以下问题总结反思问题1:做完本套试题,在求解一次函数表达式的时候你有什么感触?简单列举一下!。

中考数学专题《一次函数与几何综合》高分必刷含答案解析

中考数学专题《一次函数与几何综合》高分必刷含答案解析

(培优特训)专项19.3 一一次函数与几何综合高分必刷1.(2023春•普兰店区期中)已知△ABC中,∠C=90°,AC=3,CD=4,BD=AD.点F从点A出发,沿AC﹣CD运动,速度为1cm/s,同时点E从点B出发,沿BD﹣DA运动,运动速度为1cm/s,一个点到达终点,另一点也停止运动.(1)求BD的长;(2)设△AEF的面积为S,点P、Q运动时间为t,求S与的函数关系式,并写出的取值范围.【答案】(1)5cm;(2)S=.【解答】解:(1)在Rt△ACD中,∠C=90°,AC=3cm,CD=4cm,∴AD===5(cm),又∵BD=AD,∴BD=5cm;(2)3÷1=3(s),5÷1=5(s),(3+4)÷1=7(s),(5+5)÷1=10(s).当0≤t≤3时,如图1所示,AF=tcm,BE=tcm,∴CE=BC﹣BE=4+5﹣t=(9﹣t)cm,∴S=AF•CE=t(9﹣t)=(﹣t2+t)cm2;当3<t≤5时,如图2所示,CF=(t﹣3)cm,BE=tcm,∴EF=BC﹣CF﹣BE=4+5﹣(t﹣3)﹣t=(12﹣2t)cm,∴S=AC•EF=×3(12﹣2t)=(﹣3t+18)cm2;当5<t<7时,如图3所示,过点E作EM⊥BC于点M,则△DEM∽△DAC.∵CQ=(t﹣3)cm,BD=5cm,DP=(t﹣5)cm,=,∴DQ=BC﹣CQ﹣BD=4+5﹣(t﹣3)﹣5=(7﹣t)cm,PM==cm,∴S=DQ•AC﹣DQ•PM=×3(7﹣t)﹣(7﹣t)=(t2﹣t+21)cm2.综上所述,S与t的函数关系式为S=.2.(2023春•鼓楼区期中)如图1,已知直线l1:y=ax﹣6a交x轴于点A,交轴y于点B,直线l2:y=bx﹣18a交x轴于点C,交y轴于点D,交直线l1于点E.(1)求点A的坐标;(2)若点B为线段AE的中点,求证:EC=EA;(3)如图2,已知P(0,m),将线段PA绕点P逆时针方向旋转90°至PF,连接OF,求证:点F在某条直线上运动,并求OF的最小值.【答案】(1)点A(6,0);(2)证明见解答;(3)证明见解答,OF的最小值为:3.【解答】(1)解:令y=ax﹣6a=0,解得:x=6,则点A(6,0);(2)证明:对于y=ax﹣6a,令x=0,则y=﹣6a,则点B(0,﹣6a),∵点B为线段AE的中点,则点E(﹣6,﹣12a),将点E的坐标代入y=bx﹣18a得:﹣12a=﹣6b﹣18a,解得:b=﹣a,则直线l2:y=﹣ax﹣18a,则点C(0,﹣18),由点A、C的坐标知,其中点坐标为(﹣6,0),改点和点E的横坐标相同,即点E在AC的中垂线上,∴EC=EA;(3)证明:过点F作FT⊥y轴于点T,∵线段PA绕点P逆时针方向旋转90°至PF,则PA=PF,∠FPA=90°,∴∠TPF+∠TFP=90°,∠TPF+∠APO=90°,∴∠TFP=∠APO,∵∠AOP=∠PTF=90°,PA=PF,∴△AOP≌△PTF(AAS),∴PT=OA=6,FT=OP=m,则点F的坐标为:(m,m+6),则点F在直线y=x+6上,则OF2=m2+(m+6)2=2(m+3)2+18≥18,∴OF的最小值为:3.3.(2023春•苍南县期中)如图,在平面直角坐标系中,▱OABC的顶点A落在x轴上,点B的坐标为(7,4),AB=2,点D是OC的中点,点E是线段AD 上一动点,EF⊥BC于点F,连结DF.(1)求点A、C的坐标.(2)求直线AD的函数表达式.(3)若△DEF是等腰三角形,求CF的长.【答案】(1)点A、C的坐标分别为:(5,0)、(2,4);(2)y=﹣x+;(3)CF=或或3.【解答】解:(1)过点B作BT⊥x轴于点T,则BT=4,则AT===2,则OA=OT﹣AT=7﹣2=5=BC,则点A的坐标为:(5,0),则x C=x B﹣BC=7﹣5=2,点C的坐标为:(2,4),即点A、C的坐标分别为:(5,0)、(2,4);(2)直线AD的表达式为:y=kx+b,则,解得:,故直线AD的表达式为:y=﹣x+;(3)当DE=DF时,则点E在A处,则CF=5﹣2=3;当DE=EF时,延长FE交x轴于点H,过点D作DM⊥x轴于点M,作EN⊥DM于点N,设点E(a,﹣a+),则N(1,﹣a+),则DN=a﹣,NE=a﹣1,EF=a+,则(a﹣1)2+(a﹣)2=(a+)2,解得:a=2+(负值已舍去);则CF=;当DF=EF时,过点D作DK⊥EF于点K,则FK=2,DF2=(a﹣1)2+22,则(a﹣1)2+(a﹣)2=(a﹣1)2+22,解得:a=1(舍去)或,则CF=﹣2=,综上,CF=或或3.4.(2023•佳木斯一模)如图,将矩形纸片OABC放在平面直角坐标系中,O为坐标原点.点A在y轴上,点C在x轴上,OA,OB的长是x2﹣16x+60=0的两个根,P是边AB上的一点,将△OAP沿OP折叠,使点A落在OB上的点Q处.(1)求点B的坐标;(2)求直线PQ的解析式;(3)点M在直线OP上,点N在直线PQ上,是否存在点M,N,使以A,C.M,N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.【答案】(1)B(8,6);(2)直线PQ解析式为y=﹣x+10;(3)存在点M,N,使以A,C.M,N为顶点的四边形是平行四边形,N的坐标为(6,2)或(﹣,)或(,﹣).【解答】解:(1)由x2﹣16x+60=0得x=6或x=10,∵OA<OB,∵四边形OABC是矩形,∴∠OAB=90°,在Rt△AOB中,AB===8,∴B(8,6);(2)过Q作QG⊥AB于G,交OC于H,如图:∵将△OAP沿OP折叠,使点A落在OB上的点Q处,∴∠OQP=∠OAP=90°=∠BQP,AP=QP,OQ=OA=6,∴BQ=OB﹣OQ=10﹣6=4,设AP=QP=x,则BP=AB﹣AP=8﹣x,在Rt△BPQ中,PQ2+BQ2=BP2,∴x2+42=(8﹣x)2,解得x=3,∴AP=PQ=3,BP=8﹣x=5,∴P(3,6),∵2S△BPQ=BP•QG=PQ•BQ,∴QG===,∴PG===,∴AG=AP+PG=,∵∠HGB=∠ABC=∠BCO=90°,∴四边形GBCH是矩形,∴GH=BC=OA=6,∠GHC=90°,∴QH=GH﹣QG=6﹣=,设直线PQ解析式为y=kx+b,把P(3,6),Q(,)代入得:,解得,∴直线PQ解析式为y=﹣x+10;(3)存在点M,N,使以A,C.M,N为顶点的四边形是平行四边形,理由如下:由(2)得P(3,6),直线PQ解析式为y=﹣x+10,∴直线OP解析式为y=2x,设M(m,2m),N(n,﹣n+10),又A(0,6),C(8,0),①若MN,AC为对角线,则MN,AC的中点重合,∴,解得,∴N(6,2);②若MA,NC为对角线,则MA,NC的中点重合,∴,解得;∴N(﹣,);③若MC,NA为对角线,则MC,NA的中点重合,∴,解得,∴N(,﹣);综上所述,N的坐标为(6,2)或(﹣,)或(,﹣).5.(2023春•顺德区校级月考)如图,请根据图象所提供的信息解答下列问题:(1)当x 时,kx+b≥mx﹣n;(2)不等式kx+b<0的解集是 ;(3)求两个一次函数表达式;(4)若直线l1分别交x轴、y轴于点M、A,直线l2分别交x轴、y轴于点B、N,求点M的坐标和四边形OMPN的面积.【答案】(1)x≤1;(2)x>3;(3)直线l1的解析式为y=2x﹣1,直线l2的解析式为;(4)M点的坐标为;四边形OMPN的面积=1.【解答】解:(1)当x≤1时,kx﹣b≥mx﹣n;故填:x≤1;(2)由图象可知:不等式kx+b<0的解集为x>3;故填:x>3;(3)把A(0,﹣1),P(1,1)分别代入y=mx﹣n,得,解得,所以直线l1的解析式为y=2x﹣1,把P(1,1)、B(3,0)分别代入y=kx+b,得,解得,所以直线l2的解析式为,(4)当y=2x﹣1=0时,解得,所以M点的坐标为;当x=0时,,则N点坐标为,所以四边形OMPN的面积=S△ONB﹣S△PMB==1.6.(2023春•北碚区校级期中)如图,在平面直角坐标系中,直线y=2x﹣2与x 轴、y轴分别交于点A、点B,与直线CD:y=kx+b(k≠0)交于点P,OC=OD=4OA.(1)求直线CD的解析式;(2)连接OP、BC,若直线AB上存在一点Q,使得S△PQC=S四边形OBCP,求点Q的坐标;(3)将直线CD向下平移1个单位长度得到直线,直线l与x轴交于点E,点N为直线l上的一点,在平面直角坐标系中,是否存在点M,使以点O,E,N,M为顶点的四边形是矩形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【答案】(1)y=﹣x+4;(2)或;(3)(3,3)或.【解答】解:(1)∵直线y=2x﹣2与x轴、y轴分别交于点A、点B,∴令y=0,则x=1,∴点A为(1,0),∴OA=1,∵OC=OD=4OA=4,∴点C为(4,0),点D为(0,4),设直线CD的解析式为y=kx+b;∴,∴,∴直线CD的解析式为y=﹣x+4;(2)解:在y=2x﹣2中,令x=0,则y=﹣2,∴点B为(0,﹣2),∵,解得,∴点P的坐标为(2,2);∴;∵点Q在直线AB上,则设点Q为(x,2x﹣2),则当点Q在点B的下方时,如图:∵AC=3,点P的坐标为(2,2),∴,∵S△PQC=S四边形OBCP,∴,∴,解得:,∴,∴点Q的坐标为;当点Q在点P的上方时,如图:,∴,∴解得:,∴,∴点Q的坐标为;综合上述,点Q的坐标为或;(3)解:∵直线CD向下平移1个单位长度得到直线l,∴直线l为y=﹣x+3,令y=0,则x=3,∴点E的坐标为(3,0),即OE=3;当OE=3作为矩形OEMN的边时,如图:∴点N的坐标为(0,3),∴点M的坐标为(3,3);当OE=3作为矩形OEMN的对角线时,如图:∴点F的坐标为,∵tan∠OEN=|﹣1|=1,∴∠OEN=45°,∵ON⊥NE,∴△ONE是等腰直角三角形,∴ON=NE,∴四边形ONEM是正方形,∴MN⊥OE,MN=OE,∴,∴点M的坐标为;综合上述,则点M的坐标为(3,3)或;7.(2023春•宜兴市期中)如图,在平面直角坐标系中,已知A(0,4),点B、C都在x轴上,BC=12,AD∥BC,CD所在直线的函数表达式为y=﹣x+9,E是BC的中点,点P是BC边上一个动点.(1)当PB= 时,以点P、A、D、E为顶点的四边形为平行四边形;(2)点P在BC边上运动过程中,以点P、A、D、E为顶点的四边形能否构成菱形?试说明理由.【答案】(1)1或11;(2)以点P、A、D、E为顶点的四边形能构成菱形,理由见解析.【解答】解:(1)∵AD∥BC,点A坐标是(0,4),CD所在直线的函数关系式为y=﹣x+9,∴D点的纵坐标为4,y=4时,4=﹣x+9,x=5,∴D点的横坐标为5,∴D(5,4),∵CD所在直线的函数关系式为y=﹣x+9,y=0时,0=﹣x+9,x=9,∴C(9,0),∴OC=9,作DN⊥BC交于N,如图1所示,则四边形OADN为矩形,∴CN=OC﹣ON=OC﹣AD=9﹣5=4,DN=4,∴△DNC为等腰直角三角形,∴CD==4,若以点P、A、D、E为顶点的四边形为平行四边形,则AD=PE=5,有两种情况:①当P在E的左边,∵E是BC的中点,∴BE=6,∴PB=BE﹣PE=6﹣5=1;②当P在E的右边,PB=BE+PE=6+5=11;故当PB=1或11时,以点P、A、D、E为顶点的四边形为平行四边形,故答案为:1或11;(2)点P在BC边上运动过程中,以点P、A、D、E为顶点的四边形能构成菱形,理由如下:①当BP=1时,此时CN=DN=4,NE=6﹣4=2,∴DE===2≠AD,故不能构成菱形.②当BP=11时,以点P、A、D、E为顶点的四边形是平行四边形,∴EP=AD=5,过D作DN⊥BC于N,如图2所示:由(1)得:DN=CN=4,∴NP=BP﹣BN=BP﹣(BC﹣CN)=11﹣(12﹣4)=3.∴DP===5,∴EP=DP=AD=5,故此时平行四边形PDAE是菱形,即以点P、A、D、E为顶点的四边形能构成菱形.8.(2023春•工业园区校级期中)如图,在平面直角坐标系中,点A、点B分别在x轴与y轴上,直线AB的解析式为,以线段AB、BC为边作平行四边形ABCD.(1)如图1,若点C的坐标为(3,7),判断四边形ABCD的形状,并说明理由;(2)如图2,在(1)的条件下,P为CD边上的动点,点C关于直线BP的对称点是Q,连接PQ,BQ.①当∠CBP= °时,点Q位于线段AD的垂直平分线上;②连接AQ,DQ,设CP=x,设PQ的延长线交AD边于点E,当∠AQD=90°时,求证:QE=DE,并求出此时x的值.【答案】(1)四边形ABCD是正方形,理由见解答过程;(2)①30;②证明QE=DE见解答过程,x的值是.【解答】解:(1)四边形ABCD是正方形,理由如下:过C作CH⊥y轴于H,如图:在y=﹣x+3中,令x=0得y=3,令y=0得x=4,∴A(4,0),B(0,3),∴OA=4,OB=3,AB==5,。

一次函数与几何及动点综合题(含解析)

一次函数与几何及动点综合题(含解析)

一、选择题(题型注释)1.如图反映的过程是:矩形ABCD 中,动点P 从点A 出发,依次沿对角线AC 、边CD 、边DA 运动至点A 停止,设点P 的运动路程为x , ABP S y △.则矩形ABCD 的周长是(P )D A BC61295Oy xA .6B .12C .14D .15 【答案】C 【解析】试题分析:结合图象可知,当P 点在AC 上,△ABP 的面积y 逐渐增大,当点P 在CD 上,△ABP 的面积不变,由此可得AC=5,CD=4,则由勾股定理可知AD=3,所以矩形ABCD 的周长为:2×(3+4)=14.考点:动点问题的函数图象;矩形的性质.点评:本题考查的是动点问题的函数图象,解答本题的关键是根据矩形中三角形ABP 的面积和函数图象,求出AC 和CD 的长.2.小芳步行上学,最初以某一速度匀速前进,中途遇红灯,稍作停留后加快速度跑步去上学,到校后,她请同学们画出她行进路程s (米)与行进时间t (分钟)的函数图象的示意图.你认为正确的是( )【答案】C 【解析】试题分析:运用排除法解答本题,中间的停留路程不变,可排除BD 两项,最后的加速图象应为比最初的路程增加直线增速更快的图象,C 对3.如图,已知A 1、A 2、A 3、…、A n 、A n+1是x 轴上的点,且OA 1=A 1A 2=A 2A 3=…=A n A n+1=1,分别过点A 1、A 2、A 3、…、A n 、A n+1作x 轴的垂线交直线y=2x 于点B 1、B 2、B 3、…、B n 、B n+1,连接A 1B 2、B 1A 2、B 2A 3、…、A n B n+1、B n A n+1,依次相交于点P 1、P 2、P 3、…、P n .△A 1B 1P 1、△A 2B 2P 2、△A n B n P n 的面积依次记为S 1、S 2、S 3、…、S n ,则S n 为( )A.121nn++B.31nn-C.221nn-D.221nn+【答案】D.【解析】试题分析:∵A1、A2、A3、…、A n、A n+1是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,∴A1(1,0),A2(2,0),A3(3,0),…A n(n,0),A n+1(n+1,0),∵分别过点A1、A2、A3、…、A n、A n+1,作x轴的垂线交直线y=2x于点B1、B2、B3、…、B n、B n+1,∴B1的横坐标为:1,纵坐标为:2,则B1(1,2),同理可得:B2的横坐标为:2,纵坐标为:4,则B2(2,4),B3(2,6),…B n(n,2n),B n+1(n+1,2n+2),根据题意知:P n是A n B n+1与 B n A n+1的交点,设:直线A n B n+1的解析式为:y=k1x+b1,直线B n A n+1的解析式为:y=k2x+b2,∵A n(n,0),A n+1(n+1,0),B n(n,2n),B n+1(n+1,2n+2),∴直线A n B n+1的解析式为:y=(2n+2)x﹣2n2﹣2n,直线B n A n+1的解析式为:y=﹣2n x+2n2+2n,∴P n(22221n nn++,24421n nn++)∴△A n B n P n的A n B n边上的高为:22221n nnn+-+=21nn+,△A n B n P n的面积S n为:21222121n nnn n⨯⋅=++.故选D .考点:一次函数图象上点的坐标特征. 4.如图,已知直线l :x y 33,过点A (0,1)作y 轴的垂线 交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过 点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;…;按此作法继续下去,则点A 4的坐标为 A.(0,64) B.(0,128) C.(0,256) D.(0,512)【答案】C. 【解析】试题分析:∵直线l 的解析式为;3, ∴l 与x 轴的夹角为30°, ∵AB ∥x 轴, ∴∠ABO=30°, ∵OA=1, ∴OB=2, ∴3,∵A 1B ⊥l ,∴∠ABA 1=60°, ∴A 1O=4, ∴A 1(0,4),同理可得A 2(0,16), …∴A 4纵坐标为44=256, ∴A 4(0,256). 故选C .考点:一次函数综合题.5.如图,在矩形ABCD 中,O 是对角线AC 的中点,动点P ,Q 分别从点C ,D 出发,沿线段CB ,DC 方向匀速运动,已知P ,Q 两点同时出发,并同时到达终点B ,C .连接OP ,OQ .设运动时间为t ,四边形OPCQ 的面积为S ,那么下列图象能大致刻画S 与t 之间的关系的是【答案】A . 【解析】试题分析:作OE ⊥BC 于E 点,OF ⊥CD 于F 点,如图,设BC=a ,AB=b ,点P 的速度为x ,点F 的速度为y , 则CP=xt ,DQ=yt ,所以CQ=b-yt , ∵O 是对角线AC 的中点,∴OE 、OF 分别是△ACB 、△ACD 的中位线, ∴OE=12b ,OF=12a , ∵P ,Q 两点同时出发,并同时到达终点, ∴a bx y=,即ay=bx , ∴S=S △OCQ +S △OCP =12•12a•(b-yt )+12•12b•xt=14ab-14ayt+14bxt=14ab (0<t <a x), ∴S 与t 的函数图象为常函数,且自变量的范围为0<t <ax).故选A .考点:动点问题的函数图象.6.函数321+=x y 的图象与x 、y 轴分别交于点A 、B ,点P )(y x ,为直线AB 上的一动点(0>x )过P 作PC ⊥y 轴于点C ,若使PBC ∆的面积大于AOB ∆的面积,则P的横坐标x 的取值范围是( )A 、30<<xB 、3>xC 、63<<xD 、6>x【解析】试题分析:由题意知:PC=x ,OC=132x + ∴BC=12x ∵PBC ∆的面积大于AOB ∆的面积∴x >6. 故选D.考点: 一次函数综合题.7.如图1,在直角梯形ABCD 中,动点P 从点B 出发,沿BC ,CD 运动至点D 停止.设点P 运动的路程为 ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△BCD 的面积是( )A .3B .4C .5D .6 【答案】A 【解析】 试题分析:动点P 从直角梯形ABCD 的直角顶点B 出发,沿BC ,CD 的顺序运动,则△ABP 面积y 在BC 段随x 的增大而增大;在CD 段,△ABP 的底边不变,高不变,因而面积y 不变化.由图2可以得到:BC=2,CD=3,△BCD 的面积是12×2×3=3. 故选A .考点:动点问题的函数图象.8.如图,正方形ABCD 的边长为4,P 为正方形边上一动点,沿A →D →C →B →A 的路径匀速移动,设P 点经过的路径长为x ,△APD 的面积是y ,则下列图象能大致反映y 与x 的函数关系的是A .B .C .D .【解析】当点P 由点A 向点D 运动时,y 的值为0; 当点p 在DC 上运动时,y 随着x 的增大而增大; 当点p 在CB 上运动时,y 不变;当点P 在BA 上运动时,y 随x 的增大而减小。

一次函数与几何综合(通用版)(含答案)

一次函数与几何综合(通用版)(含答案)

一次函数与几何综合(通用版)试卷简介:一次函数与几何综合一、单选题(共10道,每道10分)1.如图,已知一条直线经过A(0,2),B(1,0)两点,将这条直线向左平移与x轴,y轴分别交于点C,点D.若DB=DC,则直线CD的函数解析式为( )A. B.C. D.答案:C解题思路:由题意可求得直线AB的解析式为y=-2x+2,AB∥CD.由DB=DC,DO⊥BC可得,OC=OB=1,∴C(-1,0).由AB∥CD可设直线CD的解析式为y=-2x+b,把C点坐标代入可得,b=-2,∴直线CD的函数解析式为y=-2x-2.试题难度:三颗星知识点:一次函数图象与几何变换2.如图,一束光线从点A(3,3)出发,经过y轴上的点C反射后经过点B(1,0),则光线从点A到点B 经过的路径长为( )A. B.C. D.5答案:D解题思路:如图,延长AC交x轴于点B′.则点B,B′关于y轴对称,CB=CB′.作AD⊥x轴于点D,则AD=3,DB′=3+1=4,AB′=5.∴AC+CB=AC+CB′=AB′=5.即光线从点A到点B经过的路径长为5.试题难度:三颗星知识点:坐标与图形性质3.如图,△ABC的内心在y轴上,点C的坐标为(2,0),点B的坐标为(0,2),直线AC的解析式为,则tanA的值是( )A. B.C. D.答案:B解题思路:根据三角形内心的定义可知∠ABO=∠CBO,∵C(2,0),B(0,2),∴OB=OC,∠CBO=∠ABO=45°,,∴∠ABC=90°即AB⊥BC,可求得直线AB的表达式为:,由得,,即A(-6,-4),∴,在Rt△ABC中,.试题难度:三颗星知识点:一次函数综合题4.如图,直线⊥x轴于点(1,0),直线⊥x轴于点(2,0),直线⊥x轴于点(3,0)…,直线⊥x轴于点(n,0).函数y=x的图象与直线,,,…,分别交于点,…,;函数y=2x的图象与直线,,,…,分别交于点,…,.如果△的面积为,四边形的面积为,四边形的面积为,…,四边形的面积为,那么=( )A.4025B.4023C. D.答案:C解题思路:∵函数y=x的图象与直线,,,…,分别交于点,∴∵函数y=2x的图象与直线,,,…,分别交于点∴,,…….当n=2013时,.试题难度:三颗星知识点:一次函数综合题5.如图,在平面直角坐标系中,直线经过原点O,且与x轴正半轴的夹角为30°.点M在x轴上,⊙M的半径为2,⊙M与直线相交于A,B两点.若△ABM为等腰直角三角形,则点M的坐标为( )A. B.C. D.答案:B解题思路:如图,当点M在原点右边时,过点M作MN⊥AB,垂足为N,则,∵△ABM为等腰直角三角形,∴AN=MN,∴,∵AM=2,∴,∴,∵直线与x轴正半轴的夹角为30°,∴,∴点M的坐标为,由对称性可知,点M′的坐标为.试题难度:三颗星知识点:一次函数之存在性6.已知在直角坐标系中有两条直线,直线所对应的函数解析式为y=x-2,如果将坐标纸折叠,使与重合,则点(-1,0)与点(0,-1)也重合,那么直线所对应的函数解析式为( )A.y=x-2B.y=x+2C.y=-x-2D.y=-x+2答案:B解题思路:∵折叠坐标纸可以使点(-1,0)与点(0,-1)重合,∴是沿直线y=x折叠的(也就是对称轴为直线y=x).∵y=x-2过点(0,-2),(2,0),折叠后的对应点为(-2,0),(0,2),即直线过两点(-2,0),(0,2).可以求得:y=x+2.试题难度:三颗星知识点:一次函数图象与几何变换7.如图,有一种动画程序,屏幕上正方形ABCD是黑色区域(含正方形边界),其中A(1,1),B(2,1),C(2,2),D(1,2),用信号枪沿直线发射信号,当信号遇到黑色区域时,区域便由黑变白,则能够使黑色区域变白的b的取值范围是( )A.3<b<6B.2<b<6C.3≦b≦6D.2<b<5答案:C解题思路:题干意思是指直线与小正方形有交点时,求b的取值范围.我们知道直线是由直线向上平移b个单位得到的,若直线与小正方形有交点,可知当直线经过A(1,1)时b的值最小,此时b=3;当直线经过C(2,2)时,b最大,此时b=6.∴能够使黑色区域变白的b的取值范围为3≦b≦6.试题难度:三颗星知识点:一次函数综合题8.已知矩形ABCD中,AB=9,AD=3,将此矩形置于平面直角坐标系中,使AB在x轴正半轴上,若经过点C的直线与x轴交于点E,则四边形AECD的面积为( )A.9B.18C.6D.21答案:B解题思路:在矩形ABCD中,要求四边形AECD的面积,只需求出△EBC的面积即可,即求BE的长.∵点C的纵坐标是3,代入直线解析式可得点C(10,3),∴OB=10,∵直线与x轴交于点E,∴点E(4,0),∴OE=4,BE=6,则△EBC的面积为9,∴四边形AECD的面积为18.试题难度:三颗星知识点:一次函数综合题9.如图,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A,B,C三点为顶点的三角形是等腰三角形,则满足条件的点C的个数为( )A.2B.3C.4D.5答案:B解题思路:由于点A,B是固定点,要使△ABC是等腰三角形,只需根据一线两圆,判断与直线的交点即可.①作线段AB的垂直平分线,交直线于点,则是以AB为底的等腰三角形;②以点A为圆心,AB长为半径作圆,交直线于两点,,则,分别是以为底的等腰三角形;③以点B为圆心,AB长为半径作圆,我们发现该圆与直线无交点,原因在于:过点B作直线的垂线BM,垂足为M,.试题难度:三颗星知识点:一次函数之存在性10.如图,在以点O为原点的平面直角坐标系中,一次函数的图象与x轴交于点A,与y轴交于点B,点C在直线AB上,且,反比例函数的图象经过点C,则所有可能的k值为( )A. B.C. D.答案:C解题思路:由题意得,A(2,0),B(0,1),.显然当点为线段AB的中点时,有,此时点的坐标为,.如图,以点O为圆心,的长为半径作圆,交直线AB于另一点,则点也符合条件.过点O作OE⊥AB于点E,过点作⊥x轴于点F,则,.在中,,,则;在中,,且,则,∴点,综上:,试题难度:三颗星知识点:一次函数综合题。

一次函数与几何综合(题型齐全)

一次函数与几何综合(题型齐全)

一次函数与几何图形综合考点一、面积问题一次函数求面积的常用方法:(1)直接法(公式法)适用于规则图形,三角形中至少有一边与坐标轴重合或平行时,常用直接法求面积;(2)割补法(分割求和、补形作差)适用于不规则四边形,将四边形分割成两个三角形,分别计算两个三角形的面积再求和。

或者将四边形放在一个规则图形中(需要时做辅助线),此时四边形的面积可以看作一个规则图形面积减去补充的规则图形面积;(3)铅锤法(底相同,高运算)适用于三边均不与坐标轴平行的三角形(不规则三角形);(4)平行线面积转化适用于存在平行线的情况下,利用平行线的性质,平行线间的距离处处相等做高;题型一:直接求图形面积1、正比例函数()110y k x k =≠与一次函数()220y k x b k =+≠的图象的交点坐标为()43A ,,一次函数的图象与y 轴的交点坐标为()03B -,.(1)求正比例函数和一次函数的解析式;(2)求AOB 的面积.2、如图,一次函数5y x =-+和1y kx =-的图象与x 轴分别交于A 、C 两点,与y 轴分别交于B 、D 两点,两个函数图象的交点为点E ,且E 点的横坐标为2.(1)求k 的值;(2)不解方程组,请直接写出方程组51x y kx y +=⎧⎨-=⎩的解;(3)求两函数图象与x 轴所围成的ACE △的面积.3、如图,直线443y x =-+与y 轴交于点A ,与直线4455y x =+交于点B ,且直线4455y x =+与x 轴交于点C ,求ABC 的面积.4、如图,在平面直角坐标系中,直线132x m l y =+:与直线2l 交于点()23A -,,直线2l 与x 轴交于点()40C ,,与y 轴交于点B ,将直线l 2向下平移8个单位长度得到直线3l ,3l 与y 轴交于点D ,与1l 交于点E ,连接AD .(1)求直线2l 的解析式;(2)求△ADE V 的面积;5、如图,直线l 1:y =x +m 与y 轴交于点B ,与x 轴相交于点F .直线l 2:y =kx ﹣9与x 轴交于点A ,与y 轴交于点C ,两条直线相交于点D ,连接AB ,且OA :OC :AB =1:3:.(1)求直线l 1、l 2的解析式;(2)过点C 作l 3∥l 1交x 轴于点E ,连接BE 、DE .求△BDE 的面积.5、如图,一次函数()0y kx b k =+≠的图象与正比例函数2y x =-的图象交于点A ,与x 轴交于点C ,与y 轴交于点B ,5OB =,点A 的纵坐标为4.(1)求一次函数的解析式;(2)点D 和点B 关于x 轴对称,将直线2y x =-沿y 轴向上平移8个单位后分别交x 轴,y 轴于点,M N ,与直线()0y kx b k =+≠交于点E ,连接DE ,DC ,求ECD 的面积.题型二:已知面积求点的坐标1、如图,一次函数y kx b =+与反比例函数a y x=的图象在第一象限交于点()4,3A ,与y 轴的负半轴交于点B ,且OA OB =.(1)求一次函数y kx b =+与反比例函数a y x =的表达式;(2)已知点C 在x 轴上,且ABC 的面积是8,求此时点C 的坐标;2、如图,在平面直角坐标系中直线13:2l x m +与直线2l 交于点()2,3A -,直线2l 与x 轴交于点()4,0C ,与y 轴交于点B ,过BD 中点E 作直线3l y ⊥轴.(1)求直线2l 的解析式和m 的值;(2)点P 在直线1l 上,当6PBC S = 时,求点P 坐标;。

一次函数与几何图形综合题10及答案

一次函数与几何图形综合题10及答案

一次函数与几何图形综合题10及答案1、1) AC的解析式为y=-x-2;2) 设BP与PQ的交点为R,由相似三角形可得BP/PQ=OB/OQ,即BP/PQ=1/2,故BP=2PQ。

证明如下:设BP=x,PQ=y,则由OC=OB可得AC=-x-2,又由直线AC和BP的垂线PQ相似可得y/x=(x+2)/(y+2),解得y=2x,代入AC 的解析式可得BP=2PQ,结论得证。

3) 正确结论为①(MQ+AC)/PM的值不变。

证明如下:由(2)可得BP=2PQ,又由相似三角形可得MQ/PM=OB/OQ,即MQ/PM=1/3,代入AC的解析式可得(MQ+AC)/PM=-2/3,为定值。

而(MQ-AC)/PM=(MQ+AC)/PM-2AC/PM=-2/3-2x/(x+2),不是定值。

故正确结论为①。

2、1) 直线L的解析式为y=-x+5;2) 由相似三角形可得MN/BN=AM/AB=4/(4+3),即MN=12/7;3) 猜想PB的长为定值,其值为2.证明如下:设点B在y轴上的坐标为h,则BP=h,由△OBF和△ABE相似可得BE=BF=h/2,EF=AB-BE=5-h/2,由相似三角形可得FP/EF=BP/BE=h/(5-h/2),所以FP=5h/(5-h/2),由于P在y轴上,故FP=2h,解得h=2,即PB=2,结论得证。

3、1) 直线l2的解析式为y=-x+1;2) 画图如下,由相似三角形可得BE/BC=AB/AC,即BE/(BE+CF)=(AB+BC+AC)/AC,代入AB=1,BC=3,AC=4可得BE/(BE+CF)=5/4,即BE=5CF/3,代入△BEC的勾股定理可得CF=3/2,BE=5/2,故BE+CF=8/2=4=EF,结论得证。

3) 正确结论为①OM为定值,其值为1/2.证明如下:设△ABC沿y轴向下平移的距离为h,则BP=CQ=h,由相似三角形可得OM/AB=OC/AC,即OM/1=(h+2)/(h+4),解得OM=(2h+4)/(h+4),为定值。

一次函数性质的综合问题

一次函数性质的综合问题

一次函数性质的综合问题一次函数是指具有如下形式的函数:y = ax + b其中,a 和 b 是常数。

一次函数具有以下性质:1.一次函数图像是一条直线,且斜率等于a。

2.一次函数在数轴上有且仅有一个零点。

3.如果a>0,则一次函数在x 轴上的截距b 为正,在y 轴上的截距为负。

如果a<0,则一次函数在x 轴上的截距 b 为负,在y 轴上的截距为正。

4.如果a>0,则一次函数在x 轴上单调递增。

如果a<0,则一次函数在x 轴上单调递减。

5.一次函数的图像总是经过函数的一个零点。

6.一次函数的图像总是在一个零点上的导数等于0。

7.一次函数的图像总是在一个零点上的二阶导数等于0。

8.一次函数的图像总是在一个零点上的三阶导数等于0。

9.一次函数的图像总是在一个零点上的四阶导数等于0。

10.一次函数的图像总是在一个零点上的五阶导数等于0。

11.一次函数的图像总是在一个零点上的六阶导数等于0。

12.一次函数的图像总是在一个零点上的七阶导数等于0。

13.一次函数的图像总是在一个零点上的八阶导数等于0。

14.一次函数的图像总是在一个零点上的九阶导数等于0。

15.一次函数的图像总是在一个零点上的十阶导数等于0。

16.对于任意的一次函数,它的导函数都是常函数。

17.一次函数是无限级函数,即它的n 阶导数在任意点处均存在。

18.一次函数是连续函数,即在它的图像上任意两点间没有断点。

19.一次函数是单调函数,即它在图像上任意两点间都是单调的。

20.一次函数是可导函数,即它在图像上任意一点处都存在导数。

希望以上内容能够对您有帮助。

2024年中考数学复习重难点题型训练—一次函数与几何图形综合题一(含答案解析)

2024年中考数学复习重难点题型训练—一次函数与几何图形综合题一(含答案解析)

2024年中考数学复习重难点题型训练—一次函数与几何图形综合题二(含答案解析)类型一与三角形有关1.(2022·天津)如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB⊥x 轴,若AB=6,OA=OB=5,则点A的坐标是()A.(5,4)B.(3,4)C.(5,3)D.(4,3)【答案】D【分析】利用HL证明△ACO≌△BCO,利用勾股定理得到OC=4,即可求解.【详解】解:∵AB⊥x轴,∴∠ACO=∠BCO=90°,∵OA=OB,OC=OC,∴△ACO≌△BCO(HL),∴AC=BC=12AB=3,∵OA=5,∴=4,∴点A的坐标是(4,3),故选:D.【点睛】本题考查了坐标与图形,全等三角形的判定和性质,勾股定理,解题的关键是灵活运用所学知识解决问题.2.(2020·宁夏中考真题)如图,直线542y x =+与x 轴、y 轴分别交于A 、B 两点,把AOB 绕点B 逆时针旋转90°后得到11AO B ,则点1A的坐标是_____.【答案】(4,125)【解析】【分析】首先根据直线AB 来求出点A 和点B 的坐标,A 1的横坐标等于OB ,而纵坐标等于OB-OA ,即可得出答案.【详解】解:在542y x =+中,令x=0得,y=4,令y=0,得5042x =+,解得x=8-5,∴A (8-5,0),B (0,4),由旋转可得△AOB ≌△A 1O 1B ,∠ABA 1=90°,∴∠ABO=∠A 1BO 1,∠BO 1A 1=∠AOB=90°,OA=O 1A 1=85,OB=O 1B=4,∴∠OBO 1=90°,∴O 1B ∥x 轴,∴点A 1的纵坐标为OB-OA 的长,即为48-5=125;横坐标为O 1B=OB=4,故点A 1的坐标是(4,125),故答案为:(4,125).【点睛】本题主要考查了旋转的性质以及一次函数与坐标轴的交点问题,利用基本性质结合图形进行推理是解题的关键.3.(2021·广西贺州市·中考真题)如图,一次函数4y x =+与坐标轴分别交于A ,B 两点,点P ,C 分别是线段AB ,OB 上的点,且45OPC ∠=︒,PC PO =,则点P 的标为________.【答案】(--【分析】过P 作PD ⊥OC 于D ,先求出A ,B 的坐标,得∠ABO=∠OAB=45°,再证明△PCB ≌△OPA ,从而求出BD =,OD =,进而即可求解.【详解】如图所示,过P 作PD ⊥OC 于D ,∵一次函数4y x =+与坐标轴分别交于A ,B 两点,∴A(-4,0),B(0,4),即:OA=OB ,∴∠ABO=∠OAB=45°,∴△BDP 是等腰直角三角形,∵∠PBC=∠CPO=∠OAP=45°,∴∠PCB+∠BPC=135°=∠OPA+∠BPC,∴∠PCB=∠OPA,又∵PC=OP,∴△PCB≌△OPA(AAS),∴AO=BP=4,∴Rt△BDP中,BD=PD=2=2,∴OD=OB−BD=2,∴P(2,2).故答案是:P(2,2).【点睛】本题主要考查了一次函数图象上点的坐标特征以及等腰三角形的性质,结合等腰三角形的性质,判定全等三角形是解决问题的关键.4.(2022·湖北黄冈)如图1,在△ABC中,∠B=36°,动点P从点A出发,沿折线A→B→C 匀速运动至点C停止.若点P的运动速度为1cm/s,设点P的运动时间为t(s),AP的长度为y(cm),y与t的函数图象如图2所示.当AP恰好平分∠BAC时,t的值为________.【答案】252+##2+25【分析】根据函数图像可得AB=4=BC ,作∠BAC 的平分线AD ,∠B =36°可得∠B =∠DAC =36°,进而得到ADC BAC △△,由相似求出BD 的长即可.【详解】根据函数图像可得AB=4,AB+BC=8,∴BC=AB=4,∵∠B =36°,∴72BCA BAC ∠∠︒==,作∠BAC 的平分线AD ,∴∠BAD =∠DAC =36°=∠B ,∴AD=BD ,72BCA DAC ∠∠︒==,∴AD=BD=CD ,设AD BD CD x ===,∵∠DAC =∠B =36°,∴ADC BAC △△,∴AC DC BC AC =,∴x 4x 4x-=,解得:1225x =-+,225x =--,∴252AD BD CD ===,此时521AB BD t +==(s),故答案为:52.【点睛】此题考查了图形与函数图象间关系、相似三角形的判定与性质、解一元二次方程,关键是证明ADC BAC △△.5.(2020·四川内江?中考真题)如图,在平面直角坐标系中,点A (-2,0),直线33:33l y x =+与x 轴交于点B ,以AB 为边作等边1ABA ∆,过点1A 作11//A B x 轴,交直线l 于点1B ,以11A B 为边作等边112A B A ∆,过点2A 作22//A B x 轴,交直线l 于点2B ,以22A B 为边作等边223A B A ∆,以此类推……,则点2020A 的纵坐标是______________【答案】20203(21)2-【解析】【分析】如图,过A 1作A 1C ⊥AB 与C ,过A 2作A 2C 1⊥A 1B 1于C 1,过A 3作A 3C 2⊥A 2B 2于C 2,先根据直线方程与x 轴交于点B (-1,0),且与x 轴夹角为30º,则有AB=1,然后根据平行线的性质、等边三角形的性质、含30º的直角三角形的性质,分别求的A 1、A 2、A 3、的纵坐标,进而得到A n 的纵坐标,据此可得A 2020的纵坐标,即可解答.【详解】如图,过A 1作A 1C ⊥AB 与C ,过A 2作A 2C 1⊥A 1B 1于C 1,过A 3作A 3C 2⊥A 2B 2于C 2,先根据直线方程与x 轴交于点B (-1,0),与y 轴交于点D (0,33),∴OB=1,OD=33,∴∠DBO=30º由题意可得:∠A 1B 1B=∠A 2B 2B 1=30º,∠B 1A 1B=∠B 2A 2B 1=60º∴∠A 1BB 1=∠A 2B 1B 2=90º,∴AB=1,A 1B 1=2A 1B=21,A 2B 2=2A 2B 1=22,A 3B 3=2A 3B 2=23,…A n B n =2n∴A 1C=2AB=2×1,A 1纵坐标为32×1=13(21)2-;A 2C 1=32A 1B 1=1322⨯,A2的纵坐标为32×1+1322⨯=013(22)2+=332⨯=23(21)2-;A 3C 2=32A 2B 2=2322⨯,A 3的纵坐标为32×1+1322⨯+2322⨯=0123(222)2++=372⨯=33(21)2-;…由此规律可得:A n C n-1=1322n -⨯,A n 的纵坐标为01213(2222)2n -++++ =3(21)2n -,∴A 2020=20203(21)2-,故答案为:20203(21)2-【点睛】本题是一道点的坐标变化规律探究,涉及一次函数的图象、等边三角形的性质、含30º角的直角三角形的性质,数字型规律等知识,解答的关键是认真审题,观察图象,结合基本图形的有关性质,找到坐标变化规律.6.(2022·陕西)如图,ABC 的顶点坐标分别为(23)(30)(11)A B C ----,,,,,.将ABC 平移后得到A B C '''V ,且点A 的对应点是(23)A ',,点B 、C 的对应点分别是B C '',.(1)点A 、A '之间的距离是__________;(2)请在图中画出A B C '''V .【答案】(1)4(2)见解析【分析】(1)由(23)A -,,(23)A ',得,A 、A '之间的距离是2-(-2)=4;(2)根据题意找出平移规律,求出103-1B C ''(,),(,),进而画图即可.(1)解:由(23)A -,,(23)A ',得,A 、A '之间的距离是2-(-2)=4.故答案为:4.(2)解:由题意,得103-1B C ''(,),(,),如图,A B C '''V 即为所求.【点睛】本题考查了坐标系中两点之间的距离求解以及平移求点坐标画图,题目相对较简单,掌握平移规律是解决问题的关键.7.(2021·贵州毕节市·中考真题)如图,在平面直角坐标系中,点()11,1N 在直线:l y x =上,过点1N 作11N M l ⊥,交x 轴于点1M ;过点1M 作12M N x ⊥轴,交直线l 于点2N ;过点2N 作22N M l ⊥,交x 轴于点2M ;过点2M 作23M N x ⊥轴,交直线l 于点3N ;…;按此作法进行下去,则点2021M 的坐标为_____________.【答案】(20212,0).【分析】根据题目所给的解析式,求出对应的1M 坐标,然后根据规律求出n M 的坐标,最后根据题目要求求出最后答案即可.【详解】解:如图,过点N 作NM ⊥x 轴于M将1x =代入直线解析式y x =中得1y =∴1OM MN ==,MON ∠=45°∵1ONM =∠90°∴1ON NM =∵1ON NM ⊥∴11OM MM ==∴1M 的坐标为(2,0)同理可以求出2M 的坐标为(4,0)同理可以求出3M 的坐标为(8,0)同理可以求出n M 的坐标为(2n ,0)∴2021M 的坐标为(20212,0)故答案为:(20212,0).【点睛】本题主要考查了直线与坐标轴之间的关系,解题的关键在于能够发现规律.8.(2020·湖南湘西?中考真题)在平面直角坐标系中,O 为原点,点(6,0)A ,点B 在y 轴的正半轴上,30ABO ∠=︒.矩形CODE 的顶点D ,E ,C 分别在,,OA AB OB 上,2OD =.将矩形CODE 沿x 轴向右平移,当矩形CODE 与ABO 重叠部分的面积为时,则矩形CODE 向右平移的距离为___________.【答案】2【解析】【分析】先求出点B 的坐标(0,3),得到直线AB 的解析式为:33y =+,根据点D 的坐标求出OC 的长度,利用矩形CODE 与ABO 重叠部分的面积为63列出关系式求出3D G '=,再利用一次函数关系式求出OD '=4,即可得到平移的距离.【详解】∵(6,0)A ,∴OA=6,在Rt △AOB 中,30ABO ∠=︒,∴63tan 30OA OB ==∴B (0,63),∴直线AB 的解析式为:33y =+,当x=2时,y=43∴E (2,3,即DE=3∵四边形CODE 是矩形,∴OC=DE=43设矩形CODE 沿x 轴向右平移后得到矩形C O D E '''',D E ''交AB 于点G ,∴D E ''∥OB ,∴△AD G '∽△AOB ,∴∠AGD '=∠AOB=30°,∴∠EGE '=∠AGD '=30°,∴GE ''=,∵平移后的矩形CODE 与ABO 重叠部分的面积为,∴五边形C O D GE '''的面积为∴12O D O C EE GE ''''''⋅-⋅=,∴122EE ''⨯-⨯=,∴2EE '=,∴矩形CODE 向右平移的距离DD '=2EE '=,故答案为:2.【点睛】此题考查了锐角三角函数,求一次函数的解析式,矩形的性质,图形平移的性质,是一道综合多个知识点的综合题型,且较为基础的题型.9.(2021·浙江金华市·中考真题)在平面直角坐标系中,点A 的坐标为(,点B 在直线8:3l y x =上,过点B 作AB 的垂线,过原点O 作直线l 的垂线,两垂线相交于点C .(1)如图,点B ,C 分别在第三、二象限内,BC 与AO 相交于点D .①若BA BO =,求证:CD CO =.②若45CBO ∠=︒,求四边形ABOC 的面积.(2)是否存在点B ,使得以,,A B C 为顶点的三角形与BCO 相似?若存在,求OB 的长;若不存在,请说明理由.【答案】(1)①见解析;②552;(2)存在,44+-4,9,1【分析】(1)①等腰三角形等角对等边,则BAD AOB ∠=∠,根据等角的余角相等和对顶角相等,得到CDO COD ∠=∠,根据等角对等边,即可证明CD CO =;②添加辅助线,过点A 作AH OB ⊥于点H ,根据直线l 的解析式和角的关系,分别求出线段AB 、BC 、OB 、OC 的长,则11+22ABC CBO ABOC S S S AB BC OB OC =+=⨯⨯ 四边形;(2)分多钟情况进行讨论:①当点C 在第二象限内,ACB CBO ∠=∠时;②当点C 在第二象限内,ACB BCO ∠=∠时;③当点C 在第四象限内,ACB CBO ∠=∠时.【详解】解:(1)①证明:如图1,∵BA BO =,∴12∠=∠.∴BA BC ⊥,∴2590∠+∠=︒.而45∠=∠,∴2490∠+∠=︒.∵OB OC ⊥,∴1390∠+∠=︒.∴34∠=∠,∴CD CO =.②如图1,过点A 作AH OB ⊥于点H .由题意可知3tan 18∠=,在Rt AHO 中,3tan 18AH OH ∠==.设3m AH =,8m OH =.∵222AH OH OA +=,∴()()22238m m +=,解得1m =.∴38AH OH ==,.∵4590CBO ABC ∠=︒∠=︒,,∴45ABH ∠=︒,∴3,tan 45sin 45AH AH BH AB ====︒︒∴5OB OH BH =-=.∵45OB OC CBO ⊥∠=︒,,∴tan 455,cos 45OB OC OB BC =⨯︒===︒,∴111522ABC S AB BC =⨯=⨯= ,112555222CBO S OB OC =⨯=⨯⨯= :∴552ABC CBO ABOC S S S =+= 四边形.(2)过点A 作AH OB ⊥于点H ,则有38AH OH ==,.①如图2,当点C 在第二象限内,ACB CBO ∠=∠时,设OB t=∵ACB CBO ∠=∠,∴//AC OB .又∵AH OB OC OB ⊥⊥,,∴3AH OC ==.∵AH OB AB BC ⊥⊥,,∴12902390∠+∠=︒∠+∠=︒,,∴13∠=∠,∴AHB BOC ∽,∴AH HB BO OC=,∴383t t -=,整理得2890t t -+=,解得4t =±∴4OB =±②如图3,当点C 在第二象限内,ACB BCO ∠=∠时,延长AB CO ,交于点G ,则ACB GCB ≌,∴AB GB =.又∵AH OB OC OB ⊥⊥,,∴90AHB GOB ∠=∠=︒,而ABH GBO ∠=∠,∴ABH GBO ≌,∴142OB HB OH ===③当点C 在第四象限内,ACB CBO ∠=∠时,AC 与OB 相交于点E ,则有BE CE =.(a)如图4,点B 在第三象限内.在Rt ABC 中,1290,90ACB CAB ∠+∠=︒∠+∠=︒,∴2CAB∠=∠∴AE BE CE ==,又∵,AH OB OC OB ⊥⊥,∴90AHE COE ∠=∠=︒,而AEH CEO∠=∠∴AHE COE ≌,∴142HE OE OH ===∴225AE AH HE =+=,∴5BE =,∴9OB BE OE =+=(b)如图5,点B 在第一象限内.在Rt ABC 中90,90ACB CAB CBO ABE ∠+∠=︒∠+∠=︒∴CAB ABE ∠=∠,∴AE BE CE ==.又∵,AH OB OC OB ⊥⊥,∴90AHE COE ∠=∠=︒而AEH CEO ∠=∠,∴AHE COE≌∴142HE OE OH ===∴5AE ==,∴5BE =,∴1OB BE OE =-=综上所述,OB 的长为44+4,9,1.【点睛】本题涉及到等腰三角形、等角的余角相等、利用切割法求四边形的面积和相似三角形等知识,综合性较强.在题中已知两个三角形相似时,要分情况考虑.10.(2020·河南中考真题)小亮在学习中遇到这样一个问题:如图,点D 是弧BC 上一动点,线段8,BC cm =点A 是线段BC 的中点,过点C 作//CF BD ,交DA 的延长线于点F .当DCF ∆为等腰三角形时,求线段BD 的长度.小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题,请将下面的探究过程补充完整:()1根据点D 在弧BC 上的不同位置,画出相应的图形,测量线段,,BD CD FD 的长度,得到下表的几组对应值.操作中发现:①"当点D 为弧BC 的中点时, 5.0BD cm =".则上中a 的值是②"线段CF 的长度无需测量即可得到".请简要说明理由;()2将线段BD 的长度作为自变量x CD ,和FD 的长度都是x 的函数,分别记为CD y 和FD y ,并在平面直角坐标系xOy 中画出了函数FD y 的图象,如图所示.请在同一坐标系中画出函数CD y 的图象;()3继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当DCF ∆为等腰三角形时,线段BD 长度的近似值.(结果保留一位小数).【答案】(1)①5.0;②见解析;(2)图象见解析;(3)图象见解析;3.5cm 或5.0cm 或6.3cm ;【解析】【分析】(1)①点D 为弧BC 的中点时,△ABD ≌△ACD ,即可得到CD=BD ;②由题意得△ACF ≌△ABD ,即可得到CF=BD ;(2)根据表格数据运用描点法即可画出函数图象;(3)画出CF y 的图象,当DCF ∆为等腰三角形时,分情况讨论,任意两边分别相等时,即任意两个函数图象相交时的交点横坐标即为BD 的近似值.【详解】解:(1)①点D 为弧BC 的中点时,由圆的性质可得:AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACD ,∴CD=BD=5.0,∴ 5.0a =;②∵//CF BD ,∴BDA CFA ∠=∠,∵BDA CFA BAD CAF AD AF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACF ≌△ABD ,∴CF=BD ,∴线段CF 的长度无需测量即可得到;(2)函数CD y的图象如图所示:(3)由(1)知=CF BD x =,画出CF y 的图象,如上图所示,当DCF ∆为等腰三角形时,①CF CD =,BD 为CF y 与CD y 函数图象的交点横坐标,即BD=5.0cm ;②CF DF =,BD 为CF y 与DF y 函数图象的交点横坐标,即BD=6.3cm ;③CD DF =,BD 为CD y 与DF y 函数图象的交点横坐标,即BD=3.5cm ;综上:当DCF ∆为等腰三角形时,线段BD 长度的近似值为3.5cm 或5.0cm 或6.3cm .【点睛】本题考查一次函数结合几何的应用,学会用描点法画出函数图象,熟练掌握一次函数的性质以及三角形全等的判定及性质是解题的关键.11.(2020·河北中考真题)如图1和图2,在ABC ∆中,AB AC =,8BC =,3tan 4C =.点K 在AC 边上,点M ,N 分别在AB ,BC 上,且2AM CN ==.点P 从点M 出发沿折线MB BN-匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持APQ B∠=∠.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将ABC∆的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当03x≤≤及39x≤≤时,分别求点P到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角APQ∠扫描APQ∆区域(含边界),扫描器随点P从M到B再到N共用时36秒.若94AK=,请直接..写出点K被扫描到的总时长.【答案】(1)3;(2)43MP=;(3)当03x≤≤时,24482525d x=+;当39x≤≤时,33355d x=-+;(4)23t s=【解析】【分析】(1)根据当点P在BC上时,PA⊥BC时PA最小,即可求出答案;(2)过A点向BC边作垂线,交BC于点E,证明△APQ∽△ABC,可得2APQABCS APS AB∆∆⎛⎫= ⎪⎝⎭,根据SS上下=45可得24=9APQABCS APS AB∆∆⎛⎫= ⎪⎝⎭,可得23APAB=,求出AB=5,即可解出MP;(3)先讨论当0≤x≤3时,P在BM上运动,P到AC的距离:d=PQ·sinC,求解即可,再讨论当3≤x≤9时,P在BN上运动,BP=x-3,CP=8-(x-3)=11-x,根据d=CP·sinC即可得出答案;(4)先求出移动的速度=936=14,然后先求出从Q 平移到K 耗时,再求出不能被扫描的时间段即可求出时间.【详解】(1)当点P 在BC 上时,PA ⊥BC 时PA 最小,∵AB=AC ,△ABC 为等腰三角形,∴PA min =tanC·2BC =34×4=3;(2)过A 点向BC 边作垂线,交BC 于点E,S 上=S △APQ ,S 下=S 四边形BPQC ,∵APQ B ∠=∠,∴PQ ∥BC ,∴△APQ ∽△ABC ,∴AP AD PQ AB AC BC==,∴2APQABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭,当S S 上下=45时,24=9APQ ABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭,∴23AP AB =,AE=2BC ·tan 3C =,根据勾股定理可得AB=5,∴2253AP MP AB +==,解得MP=43;(3)当0≤x≤3时,P 在BM 上运动,P 到AC 的距离:d=PQ·sinC ,由(2)可知sinC=35,∴d=35PQ ,∵AP=x+2,∴25AP x PQ AB BC+==,∴PQ=285x +⨯,∴d=23855x +⨯⨯=24482525x +,当3≤x≤9时,P 在BN 上运动,BP=x-3,CP=8-(x-3)=11-x ,d=CP·sinC=35(11-x )=-35x+335,综上()()24480325253333955x x d x x ⎧+≤≤⎪⎪=⎨⎪-+≤≤⎪⎩;(4)AM=2<AQ=94,移动的速度=936=14,①从Q 平移到K ,耗时:92414-=1秒,②P 在BC 上时,K 与Q 重合时CQ=CK=5-94=114,∵∠APQ+∠QPC=∠B+∠BAP ,APQ B∠=∠∴∠QPC=∠BAP ,又∵∠B=∠C ,∴△ABP ∽△PCQ ,设BP=y ,CP=8-y ,AB BP PC CQ =,即51184y y =-,整理得y 2-8y=554-,(y-4)2=94,解得y 1=52,y 2=112,52÷14=10秒,112÷14=22秒,∴点K 被扫描到的总时长36-(22-10)-1=23秒.【点睛】本题考查了相似三角形的判定和性质,锐角三角函数,一次函数的应用,结合知识点灵活运用是解题关键.12.(2020·湖南衡阳?中考真题)如图1,平面直角坐标系xOy 中,等腰ABC ∆的底边BC 在x 轴上,8BC =,顶点A 在y 的正半轴上,2OA =,一动点E 从(3,0)出发,以每秒1个单位的速度沿CB 向左运动,到达OB 的中点停止.另一动点F 从点C 出发,以相同的速度沿CB 向左运动,到达点O 停止.已知点E 、F 同时出发,以EF 为边作正方形EFGH ,使正方形EFGH 和ABC ∆在BC 的同侧.设运动的时间为t 秒(0t ≥).(1)当点H 落在AC 边上时,求t 的值;(2)设正方形EFGH 与ABC ∆重叠面积为S ,请问是存在t 值,使得9136S =若存在,求出t 值;若不存在,请说明理由;(3)如图2,取AC 的中点D ,连结OD ,当点E 、F 开始运动时,点M 从点O 出发,以每秒OD DC CD DO ---运动,到达点O 停止运动.请问在点E 的整个运动过程中,点M 可能在正方形EFGH 内(含边界)吗?如果可能,求出点M 在正方形EFGH 内(含边界)的时长;若不可能,请说明理由.【答案】(1)t=1;(2)存在,143t =,理由见解析;(3)可能,3455t ≤≤或4533t ≤≤或35t ≤≤理由见解析【解析】【分析】(1)用待定系数法求出直线AC 的解析式,根据题意用t 表示出点H 的坐标,代入求解即可;(2)根据已知,当点F 运动到点O 停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t ,使重叠面积为9136S =,故t ﹥4,用待定系数法求出直线AB 的解析式,求出点H 落在BC 边上时的t 值,求出此时重叠面积为169﹤9136,进一步求出重叠面积关于t 的表达式,代入解t 的方程即可解得t 值;(3)由已知求得点D (2,1),AC=,结合图形分情况讨论即可得出符合条件的时长.【详解】(1)由题意,A(0,2),B(-4,0),C(4,0),设直线AC 的函数解析式为y=kx+b ,将点A 、C 坐标代入,得:402k b b +=⎧⎨=⎩,解得:122k b ⎧=-⎪⎨⎪=⎩,∴直线AC 的函数解析式为122y x =-+,当点H 落在AC 边上时,点E(3-t ,0),点H (3-t ,1),将点H 代入122y x =-+,得:11(3)22t =--+,解得:t=1;(2)存在,143t =,使得9136S =.根据已知,当点F 运动到点O 停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t ,使重叠面积为9136S =,故t ﹥4,设直线AB 的函数解析式为y=mx+n ,将点A 、B 坐标代入,得:402m n n -+=⎧⎨=⎩,解得:122m n ⎧=⎪⎨⎪=⎩,∴直线AC 的函数解析式为122y x =+,当t ﹥4时,点E (3-t ,0)点H (3-t ,t-3),G(0,t-3),当点H 落在AB 边上时,将点H 代入122y x =+,得:13(3)22t t -=-+,解得:133t =;此时重叠的面积为221316(3)(3)39t -=-=,∵169﹤9136,∴133﹤t ﹤5,如图1,设GH 交AB 于S ,EH 交AB 于T,将y=t-3代入122y x =+得:1322t x -=+,解得:x=2t-10,∴点S(2t-10,t-3),将x=3-t 代入122y x =+得:11(3)2(7)22y t t =-+=-,∴点T 1(3,(7))2t t --,∴AG=5-t ,SG=10-2t ,BE=7-t ,ET=1(7)2t -,211(7)24BET S BE ET t ∆==- ,21(5)2ASG S AG SG t ∆==- 所以重叠面积S=AOB BET ASG S S S ∆∆∆--=4-21(7)4t --2(5)t -=2527133424t t -+-,由2527133424t t -+-=9136得:1143t =,29215t =﹥5(舍去),∴143t =;(3)可能,35≤t≤1或t=4.∵点D 为AC 的中点,且OA=2,OC=4,∴点D (2,1),AC=,易知M 点在水平方向以每秒是4个单位的速度运动;当0﹤t ﹤12时,M 在线段OD 上,H 未到达D 点,所以M 与正方形不相遇;当12﹤t ﹤1时,12+12÷(1+4)=35秒,∴t =35时M 与正方形相遇,经过1÷(1+4)=15秒后,M 点不在正方行内部,则3455t ≤≤;当t=1时,由(1)知,点F 运动到原E 点处,M 点到达C 处;当1≤t≤2时,当t=1+1÷(4-1)=43秒时,点M 追上G 点,经过1÷(4-1)=13秒,点M 都在正方形EFGH 内(含边界),4533t ≤≤当t=2时,点M 运动返回到点O 处停止运动,当t=3时,点E 运动返回到点O 处,当t=4时,点F 运动返回到点O 处,当35t ≤≤时,点M 都在正方形EFGH 内(含边界),综上,当3455t ≤≤或4533t ≤≤或35t ≤≤时,点M 可能在正方形EFGH 内(含边界).【点睛】本题考查了一次函数与几何图形的综合,涉及求一次函数的解析式、正方形的性质、直角三角形的性质、不规则图形的面积、解一元二次方程等知识,解答的关键是认真审题,提取相关信息,利用待定系数法、数形结合法等解题方法确定解题思路,进而推理、探究、发现和计算.13.(2020·黑龙江哈尔滨?中考真题)已知,在平面直角坐标系中,点O 为坐标原点,直线AB 与x 轴的正半轴交于点A ,与y 轴的负半轴交于点B ,OA OB =,过点A 作x 轴的垂线与过点O 的直线相交于点C ,直线OC 的解析式为34y x =,过点C 作CM y ⊥轴,垂足为,9M OM =.(1)如图1,求直线AB 的解析式;(2)如图2,点N 在线段MC 上,连接ON ,点P 在线段ON 上,过P 点作PD x ⊥轴,垂足为D ,交OC 于点E ,若NC OM =,求PE OD的值;(3)如图3,在(2)的条件下,点F 为线段AB 上一点,连接OF ,过点F 作OF 的垂线交线段AC 于点Q ,连接BQ ,过点F 作x 轴的平行线交BQ 于点G ,连接PF 交x 轴于点H ,连接EH ,若,DHE DPH GQ FG ∠=∠-=,求点P 的坐标.【答案】(1)12y x =-;(2)94;(3)1236(,)55P .【解析】【分析】(1)根据题意求出A ,B 的坐标即可求出直线AB 的解析式;(2)求出N (3,9),以及ON 的解析式为y=3x ,设P (a ,3a ),表达出PE 及OD 即可解答;(3)如图,设直线GF 交CA 延长线于点R ,交y 轴于点S ,过点F 作FT ⊥x 轴于点T ,先证明四边形OSRA 为矩形,再通过边角关系证明△OFS ≌△FQR ,得到SF=QR ,进而证明△BSG ≌△QRG ,得到SG=RG=6,设FR=m ,根据GQ FG -=,以及在Rt △GQR 中利用勾股定理求出m 的值,得到FS=8,AR=4,证明四边形OSFT 为矩形,得到OT=FS=8,根据∠DHE=∠DPH ,利用正切函数的定义得到DE DH DH PD=,从而得到DH=32a ,根据∠PHD=∠FHT ,得到HT=2,再根据OT=OD+DH+HT ,列出关于a 的方程即可求出a 的值,从而得到点P 的坐标.【详解】解:(1)∵CM ⊥y 轴,OM=9,∴当y=9时,394x =,解得:x=12,∴C (12,9),∵CA ⊥x 轴,则A (12,0),∴OB=OA=12,则B (0,-12),设直线AB 的解析式为y=kx+b ,∴12012k b b +=⎧⎨=-⎩,解得:112k b =⎧⎨=-⎩,∴12y x =-;(2)由题意可得,∠CMO=∠OAC=∠MOA=90°,∴四边形MOAC 为矩形,∴MC=OA=12,∵NC=OM ,∴NC=9,则MN=MC-NC=3,∴N (3,9)设直线ON 的解析式为1y k x =,将N (3,9)代入得:193k =,解得:13k =,∴y=3x ,设P (a ,3a )∵PD ⊥x 轴交OC 于点E ,交x 轴于点D ,∴3(,)4E a a ,(a,0)D ,∴PE=39344a a a -=,OD=a ,∴9944a PE OD a ==;(3)如图,设直线GF 交CA 延长线于点R ,交y 轴于点S ,过点F 作FT ⊥x 轴于点T ,∵GF ∥x 轴,∴∠OSR=∠MOA=90°,∠CAO=∠R=90°,∠BOA=∠BSG=90°,∠OAB=∠AFR ,∴∠OSR=∠R=∠AOS=∠BSG=90°,则四边形OSRA为矩形,∴OS=AR,SR=OA=12,∵OA=OB,∴∠OBA=∠OAB=45°,∴∠FAR=90°-∠AFR=45°,∴∠FAR=∠AFR,∴FR=AR=OS,∵QF⊥OF,∴∠OFQ=90°,∴∠OFS+∠QFR=90°,∵∠SOF+∠OFS=90°,∴∠SOF=∠QFR,∴△OFS≌△FQR,∴SF=QR,∵∠SFB=∠AFR=45°,∴∠SBF=∠SFB,∴BS=SF=QR,∵∠SGB=∠RGQ,∴△BSG≌△QRG,∴SG=RG=6,设FR=m,则AR=m,∴QR=SF=12-m,∴=,-=,∵GQ FG∴66m m +-=+,∵QG 2=GR 2+QR 2,即222(6)6(12)m m +=+-,解得:m=4,∴FS=8,AR=4,∵∠OAB=∠FAR ,FT ⊥OA ,FR ⊥AR ,∴FT=FR=AR=4,∠OTF=90°,∴四边形OSFT 为矩形,∴OT=FS=8,∵∠DHE=∠DPH ,∴tan ∠DHE=tan ∠DPH ,∴DE DH DH PD=,由(2)可知,DE=34a ,PD=3a ,∴343a DH DH a=,解得:DH=32a ,∴tan ∠PHD=3232PD a DH a ==,∵∠PHD=∠FHT ,∴tan ∠FHT=2TF HT =,∴HT=2,∵OT=OD+DH+HT ,∴3282a a ++=,∴a=125,∴1236(,)55P 【点睛】本题考查了一次函数与几何综合问题,涉及了一次函数解析式的求法,矩形的判定与性质,全等三角形的判定与性质以及锐角三角函数的定义等知识点,第(3)问难度较大,解题的关键是正确做出辅助线,熟悉几何的基本知识,综合运用全等三角形以及锐角三角函数的概念进行解答.类型二与平行四边形有关14.(2022·山东泰安)如图,四边形ABCD 为平行四边形,则点B 的坐标为________.【答案】()2,1--【分析】根据平行四边形的性质以及点的平移即可得出结论.【详解】解: 四边形ABCD 为平行四边形,∴DA CB ∥,即将D 点平移到A 的过程与将C 点平移到B 的过程保持一致,将D 点平移到A 的过程是::134x --=-(向左平移4各单位长度);:220y -=(上下无平移);∴将C 点平移到B 的过程按照上述一致过程进行得到()24,1B --,即()2,1B --,故答案为:()2,1--.【点睛】本题考查平行四边形的性质及点的平移,掌握点的平移的代数表示是解决问题的关键.15.(2022·甘肃武威)如图1,在菱形ABCD 中,60A ∠=︒,动点P 从点A 出发,沿折线AD DC CB →→方向匀速运动,运动到点B 停止.设点P 的运动路程为x ,APB △的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为()AB .C .D .【答案】B【分析】根据图1和图2判定三角形ABD 为等边三角形,它的面积为【详解】解:在菱形ABCD 中,∠A=60°,∴△ABD 为等边三角形,设AB=a ,由图2可知,△ABD 的面积为∴△ABD 的面积24a ==解得:a=故选B【点睛】本题考查了动点问题的函数图象,根据菱形的性质和函数图象,能根据图形得出正确信息是解此题的关键.16.(2020·黑龙江牡丹江?中考真题)如图,已知直线AB 与x 轴交于点A ,与y 轴交于点B ,线段OA 的长是方程27180x x --=的一个根,12OB OA =.请解答下列问题:(1)求点A ,B 的坐标;(2)直线EF 交x 轴负半轴于点E ,交y 轴正半轴于点F ,交直线AB 于点C .若C 是EF 的中点,6OE =,反比例函数k y x=图象的一支经过点C ,求k 的值;(3)在(2)的条件下,过点C 作CD OE ⊥,垂足为D ,点M 在直线AB 上,点N 在直线CD 上.坐标平面内是否存在点P ,使以D ,M ,N ,P 为顶点的四边形是正方形?若存在,请写出点P 的个数,并直接写出其中两个点P 的坐标;若不存在,请说明理由.【答案】(1)A (9,0),B (0,92);(2)-18;(3)存在5个,(9,12)或(9,-12)或(1,0)或(-7,4)或(-15,0).【解析】【分析】(1)解一元二次方程,得到点A 的坐标,再根据12OB OA =可得点B 坐标;(2)利用待定系数法求出直线AB 的表达式,根据点C 是EF 的中点,得到点C 横坐标,代入可得点C 坐标,根据点C 在反比例函数图像上求出k 值;(3)画出图形,可得点P 共有5个位置,分别求解即可.【详解】解:(1)∵线段OA 的长是方程27180x x --=的一个根,解得:x=9或-2(舍),而点A 在x 轴正半轴,∴A (9,0),∵12OB OA =,∴B (0,92);(2)∵6OE =,∴E (-6,0),设直线AB 的表达式为y=kx+b ,将A 和B 代入,得:0992k b b =+⎧⎪⎨=⎪⎩,解得:1292k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴AB 的表达式为:1922y x =-+,∵点C 是EF 的中点,∴点C 的横坐标为-3,代入AB 中,y=6,则C (-3,6),∵反比例函数k y x=经过点C ,则k=-3×6=-18;(3)存在点P ,使以D ,M ,N ,P 为顶点的四边形是正方形,如图,共有5种情况,在四边形DM 1P 1N 1中,M 1和点A 重合,∴M 1(9,0),此时P 1(9,12);在四边形DP 3BN 3中,点B 和M 重合,可知M 在直线y=x+3上,联立:31922y x y x =+⎧⎪⎨=-+⎪⎩,解得:14x y =⎧⎨=⎩,∴M (1,4),∴P 3(1,0),同理可得:P 2(9,-12),P 4(-7,4),P 5(-15,0).故存在点P 使以D ,M ,N ,P 为顶点的四边形是正方形,点P 的坐标为P 1(9,12),P 2(9,-12),P 3(1,0),P 4(-7,4),P 5(-15,0).【点睛】本题考查了解一元二次方程,一次函数表达式,正方形的性质,反比例函数表达式,难度较大,解题的关键是根据图像画出符合条件的正方形.类型三最值问题17.(2020·江苏宿迁?中考真题)如图,在平面直角坐标系中,Q是直线y=﹣12x+2上的一个动点,将Q绕点P(1,0)顺时针旋转90°,得到点Q',连接OQ',则OQ'的最小值为()A.455B C.523D.655【答案】B【解析】【分析】利用等腰直角三角形构造全等三角形,求出旋转后Q′的坐标,然后根据勾股定理并利用二次函数的性质即可解决问题.【详解】解:作QM⊥x轴于点M,Q′N⊥x轴于N,设Q(m,122m-+),则PM=1m﹣,QM=122m-+,∵∠PMQ=∠PNQ′=∠QPQ′=90°,∴∠QPM+∠NPQ′=∠PQ′N+∠NPQ′,∴∠QPM=∠PQ′N ,在△PQM 和△Q′PN 中,'90''PMQ PNQ QPM PQ N PQ Q P ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△PQM ≌△Q′PN(AAS),∴PN=QM=122m -+,Q′N=PM=1m ﹣,∴ON=1+PN=132m -,∴Q′(132m -,1m ﹣),∴OQ′2=(132m -)2+(1m ﹣)2=54m 2﹣5m+10=54(m ﹣2)2+5,当m=2时,OQ′2有最小值为5,∴OQ′故选:B .【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的性质,三角形全等的判定和性质,坐标与图形的变换-旋转,二次函数的性质,勾股定理,表示出点的坐标是解题的关键18.(2020·湖南永州?中考真题)已知点()00,P x y 和直线y kx b =+,求点P 到直线y kx b =+的距离d可用公式d =C 的圆心C 的坐标为()1,1,半径为1,直线l 的表达式为26y x =-+,P 是直线l 上的动点,Q 是C 上的动点,则PQ 的最小值是()A .355B .3515-C .6515-D .2【答案】B 【解析】【分析】过点C 作直线l 的垂线,交C 于点Q ,交直线l 于点P ,此时PQ 的值最小,利用公式计算即可.【详解】过点C 作直线l 的垂线,交C 于点Q ,交直线l 于点P ,此时PQ 的值最小,如图,∵点C 到直线l 的距离()00222116355112kx y b d k -+-⨯-+==++-,C 半径为1,∴PQ 的最小值是3515-,故选:B.【点睛】此题考查公式的运用,垂线段最短的性质,正确理解公式中的各字母的含义,确定点P与点Q最小时的位置是解题的关键.A B-,在x19.(2020·辽宁鞍山?中考真题)如图,在平面直角坐标系中,已知(3,6),(2,2)CD=,线段CD在x轴上平移,当轴上取两点C,D(点C在点D左侧),且始终保持1+的值最小时,点C的坐标为________.AD BC【答案】(-1,0)【解析】【分析】作点B关于x轴的对称点B′,将B′向右平移1个单位得到B″,连接AB″,与x轴交于点D,过点B′作AB″的平行线,与x轴交于点C,得到此时AD+BC的值最小,求出直线AB″,得到点D坐标,从而可得点C坐标.【详解】解:如图,作点B关于x轴的对称点B′,将B′向右平移1个单位得到B″,连接AB″,与x轴交于点D,过点B′作AB″的平行线,与x轴交于点C,可知四边形B′B″DC为平行四边形,则B′C=B″D,由对称性质可得:BC=B′C,∴AD+BC=AD+B′C=AD+B″D=AB″,则此时AB″最小,即AD+BC最小,∵A(3,6),B(-2,2),∴B′(-2,-2),∴B″(-1,-2),设直线AB″的表达式为:y=kx+b,则632k bk b=+⎧⎨-=-+⎩,解得:2kb=⎧⎨=⎩,∴直线AB″的表达式为:y=2x,令y=0,解得:x=0,即点D坐标为(0,0),∴点C坐标为(-1,0),故答案为:(-1,0).【点睛】本题考查了轴对称的性质,最短路径问题,一次函数表达式,解题的关键是找到AD+BC最小时的情形20.(2020•连云港)如图,在平面直角坐标系xOy中,半径为2的⊙O与x轴的正半轴交于点A,点B是⊙O上一动点,点C为弦AB的中点,直线y=34x﹣3与x轴、y轴分别交于点D、E,则△CDE面积的最小值为.【分析】如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.首先证明点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.求出MN,当点C与C′重合时,△C′DE的面积最小.【解析】如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.∵AC=CB,AM=OM,∴MC=12OB=1,∴点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.∵直线y=34x﹣3与x轴、y轴分别交于点D、E,∴D(4,0),E(0,﹣3),∴OD =4,OE =3,∴DE =32+42=5,∵∠MDN =∠ODE ,∠MND =∠DOE ,∴△DNM ∽△DOE ,∴MN OE=DM DE,∴MN 3=35,∴MN =95,当点C 与C′重合时,△C′DE 的面积最小,最小值=12×5×(95−1)=2,故答案为2.21.(2020·江苏连云港?中考真题)如图,在平面直角坐标系xOy 中,半径为2的O 与x 轴的正半轴交于点A ,点B 是O 上一动点,点C 为弦AB 的中点,直线334y x =-与x 轴、y 轴分别交于点D 、E ,则CDE △面积的最小值为________.【答案】2【解析】【分析】如图,连接OB ,取OA 的中点M ,连接CM ,过点M 作MN ⊥DE 于N .首先证明点C 的运动轨迹是以M 为圆心,1为半径的⊙M ,设⊙M 交MN 于C′.求出MN ,当点C 与C′重合时,△C′DE的面积最小.【详解】解:如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.∵AC=CB,AM=OM,∴MC=12OB=1,∴点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.∵直线y=34x-3与x轴、y轴分别交于点D、E,∴D(4,0),E(0,-3),∴OD=4,OE=3,∴5 DE===,∵∠MDN=∠ODE,∠MND=∠DOE,∴△DNM∽△DOE,∴MN DM OE DE=,∴3 35 MN=,∴95 MN=,当点C 与C′重合时,△C′DE 的面积最小,△C′DE 的面积最小值1951225⎛⎫=⨯⨯-= ⎪⎝⎭,故答案为2.【点睛】本题考查三角形的中位线定理,三角形的面积,一次函数的性质等知识,解题的关键是学会添加常用辅助线,构造三角形的中位线解决问题,属于中考常考题型.22.(2020·北京中考真题)在平面直角坐标系xOy 中,⊙O 的半径为1,A ,B 为⊙O 外两点,AB=1.给出如下定义:平移线段AB ,得到⊙O 的弦A B ''(,A B ''分别为点A ,B 的对应点),线段AA '长度的最小值称为线段AB 到⊙O 的“平移距离”.(1)如图,平移线段AB 到⊙O 的长度为1的弦12PP 和34P P ,则这两条弦的位置关系是;在点1234,,,P P P P 中,连接点A 与点的线段的长度等于线段AB 到⊙O 的“平移距离”;(2)若点A ,B 都在直线y =+上,记线段AB 到⊙O 的“平移距离”为1d ,求1d 的最小值;(3)若点A 的坐标为32,2⎛⎫ ⎪⎝⎭,记线段AB 到⊙O 的“平移距离”为2d ,直接写出2d 的取值范围.【答案】(1)平行,P 3;(2)32;(3)233922d ≤≤。

(精选)八年级上册一次函数几何代数综合题

(精选)八年级上册一次函数几何代数综合题

一次函数综合题2、直线y=kx+b与两坐标轴分别相交于A(-1,0)、B(0,2)两点.(1)求直线AB的函数解析式;(2)过点C(3,0)的直线l与直线AB相交于点P,若△APC的面积等于6,求点P的坐标.3、如图,直线y=2x+3和直线y=-2x-1分别交y轴于点A、B,两直线交于点C.(1)求两直线交点C的坐标;(2)求△ABC的面积;(3)在直线y=-2x-1上能否找到点P,使得S△APC=6,若能,请求出点P的坐标,若不能请说明理由.4、(2006•台州如图,)直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边△AOB,点C为x正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边△CBD,直线DA交y轴于点E.(1)△OBC与△ABD全等吗?判断并证明你的结论;(2)随着点C位置的变化,点E的位置是否会发生变化?若没有变化,求出点E的坐标;若有变化,请说明理由.5、P(x,y)在第二象限内,且点P在直线y=2x+12上,已知A(-8,0),设△OPA的面积为S.(1)求S与x的函数关系式,并求x的取值范围;(2)当S=12时,求点P的坐标;(3)P运动到什么位置时(P的坐标),△OPA是以AO为底的等腰三角形.6、已知:如图,平面直角坐标系xOy中,点A、B的坐标分别为A(4,0),B(0,-4),P为y轴上B点下方一点,PB=m(m>0),以AP为边作等腰直角三角形APM,其中PM=PA,点M落在第四象限.(1)求直线AB的解析式;(2)用m的代数式表示点M的坐标;(3)若直线MB与x轴交于点Q,判断点Q的坐标是否随m的变化而变化,写出你的结论并说明理由.7、如图,在正方形ABCD中,A(1,1)、B(3,1),点E是DC的中点.(1)求直线AE的解析式;(2)设直线l与y轴交点的坐标为(0,b),当直线l∥AE且与边AB、CD同时有交点时,直接写出b的取值范围.8、如图,已知点C(4,0)是正方形AOCB的一个顶点,直线PC交AB于点E,若E是AB的中点.(1)求点E的坐标;(2)求直线PC的解析式;(3)若点P是直线PC在第一象限的一个动点,当点P运动到什么位置时,图中存在与△AOP全等的三角形.请画出所有符合条件的图形,说明全等的理由,并求出点P的坐标.9、已知A (4,0)、B (0,4)(1)求直线AB 的解析式;(2)点P 从A 点出发沿x 轴向O 点运动,点Q 从O 点出发沿y 轴向B 点运动,两点同时出发且运动速度相同.设AP=t ﹙0<t <4﹚,求直线PQ 的解析式;(3)M 是线段AB 的中点,在(2)的条件下,试判断△MPQ 的形状,并说明理由.10、如图,将边长为4的正方形置于平面直角坐标系第一象限,使AB 边落在x 轴正半轴上,且A 点的坐标是(1,0).(1)直线 y=34x-38经过点C ,且与x 轴交于点E ,求四边形AECD 的面积; (2)若直线l 经过点E ,且将正方形ABCD 分成面积相等的两部分,求直线l 的解析式; (3)若直线l 1经过点F ( -23,0)且与直线y=3x 平行.将(2)中直线l 沿着y 轴向上平移1个单位,交x 轴于点M ,交直线l 1于点N ,求△NMF 的面积.12、如图①,直线AB 与x 轴负半轴、y 轴正半轴分别交于A 、B 两点.OA 、OB 的长度分别为a 和b ,且满足a 2-2ab+b 2=0.(1)判断△AOB 的形状.(2)如图②,正比例函数y=kx (k <0)的图象与直线AB 交于点Q ,过A 、B 两点分别作AM ⊥OQ 于M ,BN ⊥OQ 于N ,若AM=9,BN=4,求MN 的长.(3)如图③,E 为AB 上一动点,以AE 为斜边作等腰直角△ADE ,P 为BE 的中点,连接PD 、PO ,试问:线段PD 、PO 是否存在某种确定的数量关系和位置关系?写出你的结论并证明.。

一次函数与几何图形综合题及答案

一次函数与几何图形综合题及答案

专题训练:一次函数与几何图形综合1、直线 y=-x+2 与 x 轴、 y 轴交于 A、 B 两点, C在 y 轴的负半轴上,且OC=OByQBoxAPC(1)求 AC的分析式;(2)在 OA的延伸线上任取一点 P, 作 PQ⊥ BP,交直线 AC于 Q,尝试究 BP与 PQ的数目关系,并证明你的结论。

(3) 在( 2)的前提下,作 PM⊥ AC于 M,BP交 AC于 N, 下边两个结论:① (MQ+AC)/PM的值不变;② (MQ-AC)/PM 的值不变,期中只有一个正确结论,请选择并加以证明。

yQBMoxA PC2. ( 本题满分 12 分 ) 如图①所示,直线L:y mx 5m 与 x 轴负半轴、y 轴正半轴分别交于 A、 B两点。

(1) 当 OA=OB时,试确立直线L 的分析式;第2题图①(2) 在 (1) 的条件下,如图②所示,设别作 AM⊥ OQ于 M, BN⊥ OQ于 N,若Q 为 AB延伸线上一点,作直线AM=4,BN=3,求 MN的长。

OQ,过A、 B 两点分第2题图②(3) 当m取不一样的值时,点B 在y轴正半轴上运动,分别以OB、AB为边,点 B 为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ ABE,连 EF 交y轴于 P 点,如图③。

问:当点 B 在 y 轴正半轴上运动时,试猜想PB的长能否为定值,假如,恳求出其值,若不是,说明原因。

第2题图③3、如图,直线l1与 x 轴、 y 轴分别交于 A、B 两点,直线l2 与直线 l1对于x轴对称,已知直线 l1的分析式为 y x 3 ,yl 1 B(1)求直线l2的分析式;( 3 分)A 0 xCl 2(2)过 A点在△ ABC的外面作一条直线l ,过点 B 作 BE⊥l 于 E,过点 C3 3 y作 CF⊥l3于 F 分别,请画出图形并求证:BE+ CF= EF BA 0 xC(3)△ ABC沿 y 轴向下平移, AB 边交 x 轴于点 P,过 P 点的直线与 AC边的延伸线订交于点Q,与 y 轴订交与点 M,且 BP=CQ,在△ ABC平移的过程中,① OM为定值;② MC为定值。

一次函数综合类问题四大类-关于一次函数的都在这里了,还不赶紧

一次函数综合类问题四大类-关于一次函数的都在这里了,还不赶紧
2. 坐标系中面积问题的处理方法举例
①割补求面积(铅垂法):
②转化求面积:
如图,满足S△ABP=S△ABC的点P都在直线l1,l2上.
(2)b是截距,表示直线与y轴交点的纵坐标.
2. 设直线l1:y1=k1x+b1,直线l2:y2=k2x+b2,其中k1,k2≠0.
①若k1=k2,且b1≠b2,则直线l1∥l2;
②若k1·k2=-1,则直线l1⊥l2.
3. 一次函数与几何综合解题思路
从关键点出发,关键点是信息汇聚点,通常是函数图象与几何图形的交点.通过点的坐标和横平竖直的线段长的互相转化将函数特征与几何特征结合起来进行研究,最后利用函数特征或几何特征解决问题.
①路程即线段长,可根据s=vt直接表达已走路程或未走路程;
②根据研究几何特征需求进行表达,既要利用动点的运动情况,又要结合基本图形信息.
四、一次函数之面积问题
1. 坐标系中处理面积问题,要寻找并利用横平竖直的线,
通常有以下三种思路:
①公式法(规则图形);
②割补法(分割求和、补形作差);
③转化法(例:同底等高).
二、一次函数之存在性问题
存在性问题:通常是在变化的过程中,根据已知条件,探索某种状态次函数背景下解决存在性问题的思考方向:
1. 把函数信息(坐标或表达式)转化为几何信息;
2. 分析特殊状态的形成因素,画出符合题意的图形;
3. 结合图形(基本图形和特殊状态下的图形相结合)的几何特征建立等式来解决问题.
三、一次函数之动点问题
动点问题的特征是速度已知,主要考查运动的过程.
1. 一次函数背景下研究动点问题的思考方向:
①把函数信息(坐标或表达式)转化为基本图形的信息;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数代几综合问题一.填空题(共6小题)1.如图,直线和x轴、y轴分别交于点A、B.若以线段AB为边作等边三角形ABC,则点C的坐标是.2.一次函数y=x+4分别交x轴、y轴于A、B两点,在x轴上取一点,使△ABC为等腰三角形,则这样的点C的坐标为.3.如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,且BD=2AD,连接CD,直线CD与直线y=x交于点Q,则点Q的坐标为.4.如图,已知直线l:y=x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;…;按此作法继续下去,则点A4的坐标为.5.在直角坐标系中,正方形A1B1C1O1、A2B2C2C1、…、A n B n C n C n﹣1按如图所示的方式放置,其中点A1、A2、A3、…、A n均在一次函数y=kx+b的图象上,点C1、C2、C3、…、C n均在x轴上.若点B1的坐标为(1,1),点B2的坐标为(3,2),则点A n的坐标为.6.如图,直线1:与x轴、y轴分别相交于点A、B,△AOB与△ACB关于直线l对称,则点C的坐标为.二.解答题(共24小题)7.已知一次函数y=2x﹣4的图象与x轴、y轴分别相交于点A、B,点P在该函数的图象上,P到x轴、y 轴的距离分别为d1、d2.(1)当P为线段AB的中点时,求d1+d2的值;(2)直接写出d1+d2的范围,并求当d1+d2=3时点P的坐标;(3)若在线段AB上存在无数个P点,使d1+ad2=4(a为常数),求a的值.8.在平面直角坐标系xOy中,边长为6的正方形OABC的顶点A,C分别在x轴和y轴的正半轴上,直线y=mx+2与OC,BC两边分别相交于点D,G,以DG为边作菱形DEFG,顶点E在OA边上.(1)如图1,当CG=OD时,直接写出点D和点G的坐标,并求直线DG的函数表达式;(2)如图2,连接BF,设CG=a,△FBG的面积为S.①求S与a的函数关系式;②判断S的值能否等于等于1?若能,求此时m的值,若不能,请说明理由;(3)如图3,连接GE,当GD平分∠CGE时,m的值为.9.认真阅读材料,然后回答问题:我们知道,在数轴上,x=1表示一个点.而在平面直角坐标系中,x=1表示一条直线;我们还知道,以二元一次方方程2x﹣y+1=0的所有解为坐标的点组成的图形就是一次函数y=2x+1的图象,它也是一条直线,如图1可以得出:直线x=1与直线y=2x+1的交点P的坐标(1,3)就是方程组在直角坐标系中,x≤1表示一个平面区域,即直线x=1以及它左侧的部分,如图2;y≧2x+1也表示一个平面区域,即直线y=2x+1以及它上方的部分,如图3.回答下列问题:请你自己作一个直角坐标系,并在直角坐标系中(1)用作图象的方法求出方程组的解.(2)用阴影表示,所围成的区域.10.如图,直线l1的解析表达式为:y=3x﹣3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求△ADC的面积;(2)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,则点P的坐标为;(3)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A、D、C、H为顶点的四边形是平行四边形?若存在,请直接写出点H的坐标;若不存在,请说明理由.11.如图,在平面直角坐标系中,已知直线l1和l2相交于点A,它们的解析式分别为l1:y=x,l2:y=﹣x+.直线l2与两坐标轴分别相交于点B和点C,点P在线段OB上从点O出发.以每秒1个单位的速度向点B运动,同时点Q从点B出发以每秒4个单位的速度沿B→O→C→B的方向向点B运动,过点P作直线PM⊥OB分别交l1,l2于点M,N.连接MQ.设点P,Q运动的时间是t秒(t>0)(1)求点A的坐标;(2)点Q在OC上运动时,试求t为何值时,四边形MNCQ为平行四边形;(3)试探究是否存在某一时刻t,使MQ∥OB?若存在,求出t的值;若不存在,请说明理由.12.已知,将边长为5的正方形ABCO放置在如图所示的直角坐标系中,使点A在x轴上,点C在y轴上.点M(t,0)在x轴上运动,过A作直线MC的垂线交y轴于点N.(1)当t=1时,求直线MC的解析式;(2)设△AMN的面积为S,求S关于t的函数解析式并写出相应t的取值范围;(3)在该平面直角坐标系中,第一象限内取点P(2,y),是否存在以M、N、C、P为顶点的四边形是直角梯形?若存在,直接写出点P的坐标;若不存在,请说明理由.13.如图①,以四边形AOCD的顶点O为原点建立直角坐标系,点A、C、D的坐标分别为(0,2)、(2,0)、(2,2),点P(m,0)是x轴上一动点,m是大于0的常数,以AP为一边作正方形APQR(QR落在第一象限),连接CQ.(1)请判断四边形AOCD的形状,并说明理由:(2)连接RD,请判断△ARD的形状,并说明理由:(3)如图②,随着点P(m,0)的运动,正方形APQR的大小会发生改变,若设CQ所在直线的表达式为y=kx+b(k≠0),求k的值.14.如图,将边长为4的正方形纸片,置于平面直角坐标系内,顶点A在坐标原点,AB在x轴正方向上,E、F分别是AD、BC的中点,M在DC上,将△ADM沿折痕AM折叠,使点D折叠后恰好落在EF上的P点处.(1)求点M、P的坐标;(2)求折痕AM所在直线的解析式;(3)设点H为直线AM上的点,是否存在这样的点H,使得以H、A、P为顶点的三角形为等腰三角形?若存在,请直接写出点H的坐标;若不存在,请说明理由.15.如图①,在平面直角坐标系中,A点坐标为(3,0),B点坐标为(0,4).动点M从点O出发,沿OA方向以每秒1个单位长度的速度向终点A运动;同时,动点N从点A出发沿AB方向以每秒个单位长度的速度向终点B运动.设运动了x秒.(1)点N的坐标为(,);(用含x的代数式表示)(2)当x为何值时,△AMN为等腰三角形;(3)如图②,连接ON得△OMN,△OMN可能为正三角形吗?若不能,点M的运动速度不变,试改变点N的运动速度,使△OMN为正三角形,并求出点N的运动速度.16.已知直线y=﹣x+4与x轴和y轴分别交与B、A两点,另一直线经过点B和点D(11,6).(1)求AB、BD的长度,并证明△ABD是直角三角形;(2)在x轴上找点C,使△ACD是以AD为底边的等腰三角形,求出C点坐标;(3)一动点P速度为1个单位/秒,沿A﹣﹣B﹣﹣D运动到D点停止,另有一动点Q从D点出发,以相同的速度沿D﹣﹣B﹣﹣A运动到A点停止,两点同时出发,PQ的长度为y(单位长),运动时间为t(秒),求y关于t的函数关系式.17.如图:直线y=kx+3与x轴、y轴分别交于A、B两点,,点C(x,y)是直线y=kx+3上与A、B不重合的动点.(1)求直线y=kx+3的解析式;(2)当点C运动到什么位置时△AOC的面积是6;(3)过点C的另一直线CD与y轴相交于D点,是否存在点C使△BCD与△AOB全等?若存在,请求出点C的坐标;若不存在,请说明理由.18.如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形,A、B、C的坐标分别是A(﹣5,1),B(﹣2,4),C(5,4),点D在第一象限.(1)写出D点的坐标;(2)求经过B、D两点的直线的解析式,并求线段BD的长;(3)将平行四边形ABCD先向右平移1个单位长度,再向下平移1个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少?并求出平行四边形ABCD与四边形A1B1C1D1重叠部分的面积.19.如图1,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD.(1)求直线AB的解析式;(2)当点P运动到点(,0)时,求此时DP的长及点D的坐标;(3)是否存在点P,使△OPD的面积等于?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.20.已知,直线y=﹣x+1与x轴,y轴分别交于点A、B,以线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90度.且点P(1,a)为坐标系中的一个动点.(1)求三角形ABC的面积S△ABC;(2)证明不论a取任何实数,三角形BOP的面积是一个常数;(3)要使得△ABC和△ABP的面积相等,求实数a的值.21.如图,在直角坐标系xoy中,一次函数的图象与x轴交于点A,与y轴交于点B.(1)已知OC⊥AB于C,求C点坐标;(2)在x轴上是否存在点P,使△PAB为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.22.如图1,在正方形ABOC中,BD平分∠OBC,交OA于点D.(1)若正方形ABOC的边长为2,对角线BC与OA相交于点E.则:①BC的长为;②DE的长为;③根据已知及求得的线段OB、BC、DE的长,请找出它们的数量关系?(2)如图2,当直角∠BAC绕着其顶点A顺时针旋转时,角的两边分别与x轴正半轴、y轴正半轴交于点C1和B1,连接B1C1交OA于P.B1D平分∠OB1C1,交OA于点D,过点D作DE⊥B1C1,垂足为E,请猜想线段OB、B1C1、DE三者之间的数量关系,并证明你的猜想;(3)在(2)的条件下,当B1E=6,C1E=4时,求直线B1D的解析式.23.如图,一次函数的函数图象与x轴、y轴分别交于点A、B,以线段AB为直角边在第一象限内作Rt△ABC,且使∠ABC=30°;(1)如果点P(m,)在第二象限内,试用含m的代数式表示四边形AOPB的面积,并求当△APB与△ABC面积相等时m的值;(2)如果△QAB是等腰三角形并且点Q在坐标轴上,请求出点Q所有可能的坐标;(3)是否存在实数a,b使一次函数和y=ax+b的图象关于直线y=x对称?若存在,求出的值;若不存在,请说明理由.24.一次函数的图象与x轴、y轴分别交于点A(8,0)和点B(0,6).(1)确定此一次函数的解析式.(2)求坐标原点O到直线AB的距离.(3)点P是线段AB上的一个动点,过点P作PM垂直于x轴于M,作PN垂直于y轴于N,记L=PM+PN,问L是否存在最大值和最小值?若存在,求出此时P点到原点O的距离,若不存在请说明理由.25.已知直线y=2x+4与x轴交于点A,与y轴交于点B,点P在坐标轴上,且PO=2AO.求△ABP的面积.26.已知A(1,5),B(3,﹣1)两点,在x轴上取一点M,使AM﹣BM取得最大值时,则M的坐标为.27.如图,在平面直角坐标系中,直线分别交于x轴,y轴于B、A两点,D、E分别是OA、OB的中点,点P从点D出沿DE方向运动,过点P作PQ⊥AB于Q,过点Q作QR∥OA交OB于R,当点Q与B点重合时,点P停止运动.(1)求A、B两点的坐标;(2)求PQ的长度;(3)是否存在点P,使△PQR为等腰三角形?若存在,请求出所有满足要求的点R的坐标;若不存在,请说明理由.28.如图,直线y=﹣2x+2与x轴、y轴分别交于A、B两点,将△OAB绕点O逆时针方向旋转90°后得到△OCD.(1)填空:点C的坐标是(,),点D的坐标是(,);(2)设直线CD与AB交于点M,求线段BM的长;(3)在y轴上是否存在点P,使得△BMP是等腰三角形?若存在,请求出所有满足条件的点P的坐标;若不存在,请说明理由.29.已知△ABC,∠BAC=90°,AB=AC=4,BD是AC边上的中线,分别以AC,AB所在直线为x轴,y 轴建立直角坐标系(如图).(1)在BD所在直线上找出一点P,使四边形ABCP为平行四边形,画出这个平行四边形,并简要叙述其过程;(2)求直线BD的函数关系式;(3)直线BD上是否存在点M,使△AMC为等腰三角形?若存在,求点M的坐标;若不存在,说明理由.30.如图,一次函数的图象与x轴、y轴交于点A、B,以线段AB为边在第一象限内作等边△ABC,(1)求△ABC的面积;(2)如果在第二象限内有一点P(a,);试用含有a的代数式表示四边形ABPO的面积,并求出当△ABP的面积与△ABC的面积相等时a的值;(3)在x轴上,是否存在点M,使△MAB为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.。

相关文档
最新文档