高中数学 第二章《函数的单调性》说课稿 北师大版必修1
函数的单调性(说课稿)
《函数的单调性》说课稿大家好,我是来自吉林油田高中的xxx,今天我为大家说课的题目是《函数的单调性》!一、教材分析函数的单调性是在研究函数的概念之后的第一个函数的性质,既是函数概念的延续和拓展,又为后续研究指数函数、对数函数、三角函数的单调性等内容奠定了基础,同时为初高中知识的衔接起着承上启下的作用。
函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用。
根据函数单调性在教材中的地位和作用及课程标准的要求,本节课教学目标如下:知识与技能使学生理解函数单调性的概念,初步掌握判定函数单调性的方法;过程与方法通过探究活动渗透“数形结合”思想,使学生明白考虑问题要细致缜密,说理要严密明确。
情感态度与价值观感受数形结合的数学之美,使学生认识到事物在一定条件下可以相互转化的辨证观点根据上述教学目标,本节课的教学重点是函数单调性的概念形成和初步运用.虽然高一学生对函数单调性有一定的感性认识,但抽象思维能力还有待加强.因此,本节课的学习难点是函数单调性的概念形成与应用.二、教法学法借助信息技术辅助教学,提供直观感性材料,他不仅可以激发学生的学习兴趣,提高课堂效率,促进师生交流,提高课堂的交互性。
三、教学过程下面我们来重点探讨本节课的教学设计和整合点分析。
以课前学案的形式,布置个学习小组利用几何画板作出下列函数的图象。
意在健全学生的基础认知结构,熟练几何画板的操作,同时可以感受函数图象变化趋势,为教学做好准备。
教学情境引入,采用天气预报声音文件和幻灯片同步播放的方式。
在传统教学模式中,恰当地创设情境往往受很多条件的限制,而幻灯片展示图片资料方便快捷,天气预报声音文件的使用激发学生的学习兴趣。
教师趁势展开定义生成的探究活动。
要生成定义就要由描述性语言过渡到数学语言,这是认知过程中一个质的飞跃。
也是本节教学的一个难点。
我借助几何画板的同步直观演示,帮助学生探究增函数的一大重大特征:因变量随着自变量的增大而增大。
函数单调性说课稿
《函数单调性》说课稿各位评委、各位老师,大家好!我叫袁艳辉,来自上高二中。
我说课的内容是《函数的单调性》。
下面我将从教材、目的、教法学法、教学过程以及评价分析这五个方面来谈谈我对这部份内容的理解以及我对这堂课的设想。
一、教材分析1、本节课是北师大版必修1第二章《函数》第三节《函数的单调性》的第一节课。
主要学习増、减函数的定义以及用定义来证明函数的单调性。
函数的单调性是学生在了解函数概念后学习的函数的第一个性质,是函数学习中第一个用数学符号语言刻画的概念,它既是学生学过的函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性的基础。
函数单调性概念的建立过程中蕴涵着许多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用。
2、鉴于函数单调性在整个教材内容中的地位与作用,我把本节课的教学目标定为以下三个方面:①知识目标:使学生理解函数单调性的概念,掌握判别函数单调性的方法;②能力目标:引导学生通过观察、归纳、抽象、概括,自主建构函数单调性的概念,应用图象和单调性的定义解决函数单调性问题,让学生领会数形结合的数学思想方法。
③情感目标:培养学生善于观察、勇于探索的良好思维习惯和科学态度,让学生经历从具体到抽象、从特殊到一般、从感性到理性的认知过程。
3、从教学目标出发我把本课时的教学重点定为函数单调性的概念的形成和初步运用。
虽然高一学生已经有一定的抽象思维能力,但函数单调性的概念对他们来说还是比较抽象的,因此,我把本节课的教学难点定为引导学生归纳并抽象出函数单调性的定义以及根据定义证明函数的单调性。
本节课的关键点是强调函数单调性是对定义域内某个区间而言的。
二、教学教法分析新课标指出,教师是学习的组织者、合作者,学生是学习的主体。
作为高一的学生,他们的积极性、主动性较强,具有参与意识,而且好奇心强也是他们的心理特征之一,而且,函数的单调性是由函数图像所得到的代数特征,因此,本课采取问题教学法,并借助数形结合及类比的数学思想进行教学。
高一数学北师大版必修1教学教案第二章3函数的单调性
函数的单调性教学设计与反思一.教材分析函数的单调性是函数的重要性质.从知识的网络结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用.函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用.根据函数单调性在整个教材内容中的地位与作用,本节课教学应实现如下教学目标【教学目标】1.知识与技能理解函数单调性概念;掌握用定义判断和证明一些简单函数单调性的方法;了解函数单调区间。
2.过程与方法培养从概念出发,进一步研究其性质的意识及能力;体会感悟数形结合、分类讨论的思想.3.情感态度价值观由合适的例子引发学生探求数学知识的欲望,突出学生的主观能动性,激发学生学习数学的兴趣.【教学重难点】重点:函数单调性的概念,判断和证明一些简单函数单调性的方法.难点:关于函数单调性概念的符号语言的认知,应用定义证明单调性的代数推理论证【教学过程】一.导课要研究函数的单调性,我们先从熟知的函数入手,下面请同学们作出函数y=x+1 和y=x+1 的图像.1.思考: 从左到右看,图像的变化趋势如何?随着自变量的变化,函数值如何变化?2.观察动画回答:(1)由函数y=x2图像,观察图像的变化趋势。
(2)函数y=x2中y随x如何变化?那么,我们怎样用符号语言表达函数值的增减变化呢?〖设计意图〗从图像直观感知函数单调性在学生已有认知结构的基础上提出新问题,使学生明了,过去所研究的函数的相关特征,就是现在所学的函数的单调性,从而加深对函数单调性概念的理解.二.新知探究1.请同学们阅读课本37页(3分钟)2.老师强调相关概念:函数递增时,图像是_________函数递减时, 图像是________在函数y=f(x)的定义域内的一个区间内A上,如果对于任意两个数x1,x2∈A,当x1<x2时,都有f(x1)<f(x2),那么就称函数在区间A上是增加的,有时也称函数在区间A上是递增的。
《函数的单调性》说课稿(附教案)
《函数的单调性》说课稿一、教学内容分析:函数的单调性是学生在掌握了函数概念等基础知识后,学习函数的第一个性质,主要刻画了函数在某区间上图象的变化趋势(上升或下降),为进一步学习函数其它性质提供了方法依据,如在研究函数的值域、定义域、最大值、最小值等性质中有重要应用。
同时它又是后续研究指数函数、对数函数以及三角函数性质的基础。
而且在解决解不等式、证明不等式、数列的性质等数学问题时也有重要的应用。
所以函数的单调性在高中数学中具有核心知识地位和承上启下的重要作用。
二、教学目标的确定:根据本课教材内容的特点、学生现有知识基础、认知能力以及所任教班级学生的特点,本节课从三个不同的方面确定了教学目标,重视单调性概念的形成过程和对概念本质的理解;强调判断、证明函数单调性的方法的落实;突出逻辑思维能力、类比化归、数形结合能力的培养。
三、教学诊断分析:在函数单调性这节课中,对于函数的单调性,学生在认知过程中主要存在两个方面的困难:(1)“图象是上升的,函数是单调递增的;图象是下降的,函数是单调递减的”仅就图象角度直观描述函数单调性的特征学生并不感到困难。
困难在于,把具体的、直观形象的函数单调性的特征抽象出来,用数学的符号语言描述。
即把某区间上“随着x 的增大,y 也增大”(单调增)这一特征用该区间上“任意的21x x <,有)()(21x f x f <”(单调增)进行刻画.其中最难理解的是为什么要在区间上“任意”取两个大小不等的12x x 、。
(2)利用定义证明函数的单调性过程中,对学生在代数方面严格推理能力的要求对高一的学生同样比较困难。
针对这两方面学生存在的困难,在教学中我所采用的教师启发引导,学生探究学习的教学方法,以及多媒体直观教学和反例的恰当应用,较好的解决了学生在这两方面的困惑。
此外,在教学过程中,单调性定义还需要注意以下易错点和疑点:(1)单调性是函数的一个区间上的性质,函数在不同的区间上可以有不同的单调性。
北师大版数学必修一《函数的单调性》说课稿
北师大版数学必修一《函数的单调性》说课稿函数的单调性是函数的一个重要性质。
它不仅是函数概念的延续和拓展,还是后续研究指数函数、对数函数、三角函数的单调性等内容的基础。
在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用。
函数单调性的概念建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用。
本节课的教学目标是让学生理解函数单调性的概念,初步掌握判别函数单调性的方法,能运用函数单调性概念解决简单的问题,以及领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。
为了实现这些目标,本节课的教学重点是函数单调性的概念形成和初步运用。
在教法上,采取了通过学生熟悉的实际生活问题引入课题,为概念研究创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性。
在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念。
同时,不忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达。
在学法上,重视让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃。
让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。
本节课的教学过程分为四个环节。
首先,通过创设情境,提出问题,让学生观察气温变化图,并回答问题。
其次,引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念。
然后,让学生运用函数单调性概念解决简单的问题。
最后,让学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。
学生活动:对于第一部分,学生可以轻易地看出气温图中有两个单调减区间和一个单调增区间。
对于第二部分,学生可以举出具体函数,并画出函数的草图,根据图象说出函数的单调区间。
教师活动:利用实物投影仪,投影出学生画出的草图和标出的单调区间,并指出学生回答问题时可能出现的错误,例如在叙述函数单调区间时写成并集。
高中数学必修1《函数的单调性》说课稿-7页word资料
说课教案课题:函数的单调性教材:全日制普通高级中学教科书(必修1)人民教育出版社一、教材内容与地位从单调性知识本身来讲.学生对于函数单调性的学习共分为三个阶段,第一阶段是在初中学习了一次函数、二次函数、反比例函数图象的基础上对增减性有一个初步的感性认识;第二阶段是在高一进一步学习函数单调性的严格定义,从数和形两个方面理解单调性的概念;第三阶段则是在高三利用导数为工具研究函数的单调性.高一单调性的学习,既是初中学习的延续和深化,又为高三的学习奠定基础。
《必修一》函数的单调性是函数的重要性质.作为学生学习函数概念后学习的第一个函数性质,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用.函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用.二、教学目标根据本课教材的特点、教学大纲对本节课的教学要求以及学生的认知水平,本节课教学应实现如下教学目标:(一)知识与技能1、理解增函数、减函数的概念及函数单调性的定义。
2、会根据函数的图像判断函数的单调性。
3、能根据单调性的定义证明函数在某一区间上是增函数还是减函数。
(二)过程与方法1、培养学生利用数学语言对概念进行概括的能力2、通过利用定义证明单调性,进一步加强逻辑推理能力及判断推理能力的培养(三)情感态度与价值观1、通过本节课的教学,启发学生养成细心观察,分析归纳,严谨论证的良好习惯2、通过问题链的引入,激发学生学习数学的兴趣,学生通过积极参与教学活动,获得成功的体验,锻炼克服困难的意志,建立学习数学的自信心。
三、教学重、难点根据以上的教学目标,本节课的重点是函数单调性的概念,判断、证明函数的单调性;难点是引导学生归纳并抽象出函数单调性的定义以及根据定义证明函数的单调性。
四、教法本节课是函数单调性的起始课,根据教学内容、教学目标和学生的认知水平,在教法上我采取了:利用图形演示比较与教师引领启发学生,充分调动学生的积极性和主动性;教师讲述与师生互动突出教学重点,进而突破难点;例题讲解与巩固练习进一步强化基础知识;讨论与思考拓宽学生思维,提升学生推理论证能力。
学高中数学第二章函数函数的单调性教案北师大版必修第一册
第二章函数第2.3节函数的单调性教学设计本小节是函数性质之一单调性,揭示了函数图像的趋势,表示了自变量和因变量之间的关系,是数形结合数学思想的基础,与函数的奇偶性呈并列的关系,他俩从不同侧面研究函数性质。
在函数性质中具有举足轻重的地位。
本节利用图像观察推导单调性判断方法,该方法再次体现了数形结合的主要思想。
一.教学目标1、理解函数单调性的概念,会根据函数的图像判断函数的单调性;2、能够根据函数单调性的定义证明函数在某一区间上的单调性。
二. 核心素养1.数学抽象:函数在区间上单调性概念的概述2.逻辑推理:本节课的教学,使学生能理性的描述生活中的增长、递减的现象;通过生活实例感受函数单调性的意义,培养学生的识图能力和数形语言转化的能力。
3.数学运算:判断函数的单调性及证明4.直观想象:通过对函数单调性定义的探究,渗透数形结合的数学思想方法,培养学生的观察、归纳、抽象思维能力。
5.数学建模:本节课的教学,启发学生养成细心观察,认真分析,严谨论证的良好习惯;通过问题链的引入,激发学生学习数学的兴趣,学生通过积极参与教学活动,获得成功的体验,锻炼克服困难的意志,建立学习数学的自信心。
教学重点函数单调性的概念、判断及证明教学难点归纳抽象函数单调性的定义以及根据定义证明函数的单调性PPT1.知识引入函数是刻画变量关系的.研究函数y=f (x )时最关心的问题是:当自变量x 变化时,函数值f (x )随之怎样变化.我们知道,一次函数y = kx+b,当k<0时,在R 上y 值随x 值的增大而减小;当k>0时,在R 上y 值随x 值的增大而增大.一元二次函数和反比例函数也有类似的性质.可见,用增大或减小来刻画函数在一个区间的变化是非常重要的.如下图分析:图2—9是函数f (x )([6,9])x ∈-的图象,直观上可以看出,对于区间[—6, —5],[—2,1],[3,4.5],[7,8],每个区间上函数值f (x )都随x 值的增大而增大;对于区间 [—5 , —2] , [1,3] , [ 4.5,7] , [ 8,9],每个区间上函数值f (x )都随x 值的增大而减小.一般地,在函数y=f (x )定义域内的一个区间A 上,如果对于任意的12,x x A ∈,当x 1<x 2时, 都有f (x 1)<f (x 2),那么就称函数y=f (x )在区间A 上是增函数或递增的;如果对于任意的12,x x A ∈,当x 1思考: 图2-9中,怎样用数学的符号语言表达函数值f(x)在区间[-6, -5]上隨x 值的增大而增大呢?<x 2时,都有f (x 1)>f (x 2),那么就称函数y=f (x )在区间A 上是减函数或递减的.如果函数y=f (x )在区间A 上是增函数或减函数,那么就称函数y=f (x )在区间A 上是单调函数,或称函数y=f (x )在区间A 上具有单调性.此时,区间A 为函数y=f (x )的单调区间.备注:1.概念中应该注意问题:任意的12,x x A ∈(不能写成“存在12,x x A ∈”)2.在单调区间上,增函数的图象是上升的,减函数的图象是下降的.知识扩充:例1设1()(0)f x x x=<,画出f (x+3)(x<—3)的图像,并通过图像直观判断 它的单调性。
高中数学《函数单调性》说课稿
《函数的单调性》说课稿一、教学分析本节课是在学生学习了函数概念的基础上所研究的函数的一个重要性质,常伴随着函数的其它性质出现。
它既是在学生学过函数概念图象、表示方法等知识后的延续和拓展,又是后面研究指数函数、对数函数、幂函数等各类函数的单调性的基础,在整个高中数学中起着承上启下的作用。
研究函数单调性的过程体现了数学的“数形结合”和“从一般到特殊”的思想方法,这对培养学生的创新意识、发展学生的思维能力,掌握数学的思想方法具有重大意义。
函数的单调性是函数的一个重要性质,是研究函数时经常要注意的一个性质.并且在比较几个数的大小、对函数作定性分析、以及与其他知识的综合应用上都有广泛的应用二、教学目标1、知识目标:(1)建立增(减)函数的概念通过观察一些函数图象的特征,形成增(减)函数的直观认识. 再通过具函数值的大小比较,认识函数值随自变量的增大(减小)的规律,由此得出增(减)函数单调性的定义 . 掌握用定义证明函数单调性的步骤。
(2)函数单调性的研究经历了从直观到抽象,以图识数的过程,在这个过程中,让学生通过自主探究活动,体验数学概念的形成过程的真谛。
2、能力目标(1)通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;(2)学会运用函数图象理解和研究函数的性质;(3)能够熟练应用定义判断与证明函数在某区间上的单调性.3、情感目标,使学生感到学习函数单调性的必要性与重要性,增强学习函数的紧迫感. 三、教学重点与难点重点:函数的单调性及其几何意义.难点:利用函数的单调性定义判断、证明函数的单调性.四、教学方法1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性。
2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念。
3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达。
“函数的单调性”说课稿
“函数的单调性”说课稿1. 教材分析1.1 本节内容在教材中的地位和作用。
“函数的单调性”是北师大数学必修1的第二章函数第三节的内容。
函数是中学数学中最重要的内容。
函数思想是研究问题的重要思想,通过具体实例,讨论一般函数的性质,初步体会函数思想的作用,将为高中后续课程的学习打下坚实的基础。
而函数的单调性又是本章的重点。
在函数的性质中,它对函数的变化趋势影响较强,更具本质性。
因此能否学好本节内容,对于能否学好函数全章知识起着重要的作用。
1.2 教学目标。
(1)知识目标:理解函数的单调性和单调函数的意义;会判断和证明简单函数的单调性。
(2)能力目标:培养从概念出发,进一步研究其性质的意识及能力;培养学生自学阅读能力和发现问题、解决问题的能力。
(3)情感目标:向学生渗透先观察后归纳,先猜想后论证的数学思想;让学生体会数形结合的数学思想。
1.3 重难点。
重点:函数的单调性有关概念。
难点:利用函数的单调性概念,证明或判断函数的单调性。
2. 教法和学法2.1 教法:从实际引入,通过实例及函数图像把抽象问题具体化,帮助学生准确理解和掌握函数单调性的有关概念。
这节课可采用讲授、讨论的教学方法。
教学中加强师生间的双向活动,启发引导学生积极思维。
2.2 学法:学生是课堂教学的主体,现代教育更重视在教学过程中对学生的学法指导。
初中所学函数都有单调性问题,在教学过程中应有意识地复习和利用。
要引导学生注意单调性是在某一区间上的局部性质,可以采用变化非本质特征,突出本质特征的变式方法,加以提醒和纠正。
例如,可以巧用提问:函数y= 是减函数,对吗?评价激活学生的积极性,搞活课堂气氛,让学生在轻松、自主、讨论的学习环境下完成学习任务。
最后让学生自主发言,举出生活中有关函数单调性的实际例子,做到从实践到理论,再从理论到实践。
要引导学生注意数形结合。
从图形中观察函数的增减情况,但还要增强理性思维,特别是对抽象式子的推导。
所以,对于单调性的证明,应让所有学生掌握一般函数单调性的证明和有关证明格式。
高一上学期数学函数的单调性说课稿范文(必修一)
高一上学期数学函数的单调性说课稿范文(必修一)
数学是学习其他学科的基础。
以下是为大家整理的高一上学期数学函数的单调性说课稿范文,希望可以解决您所遇到的相关问题,加油,一直陪伴您。
1.教材内容
本节课选自《普通高中课程标准实验教科书数学必修1》B 版第二章第一节函数第三小节函数的单调性,本节课内容教材主要学习函数的单调性的概念,判断函数的单调性和应用定义证明函数的单调性,共2 课时,本节课为第一课时。
2.教材的地位和作用
从单调性本身看,学生的学习分为三个层面,首先是在初中学习了一次函数、二次函数、反比例函数图象的基础上对函数的增减性有一个初步的感性认识,其次在高一对单调性进行严格定义,最后在高三从导数的角度再次研究单调性。
本节课的学习处于对单调性学习的第二层面,通过图象归纳、抽象出单调性的准确定义,并在高中首次经历代数的严格证明,是对初中学习的一次升华。
从本节的教学看,在此学习单调性是对函数概念的延续和拓展,对进一步探索、研究函数的其他性质有着示范性的作用,从本章的教学看,本节课的。
高中数学必修1《函数的单调 性》说课稿
高中数学必修1《函数的单调性》说课稿各位评委老师下午好:我是青岛十七中的满启浩,我今天说课的题目是函数的单调性。
现在我从教材分析,教法,学法,教学程序,板书设计这五个方面来说这一节课。
一、教材分析1、本节内容在全书及章节的地位:《函数的单调性》是必修1第一章第 3 节。
是高考的重点考查内容之一,是函数的一个重要性质,在比较几个数的大小、求函数值域、对函数的定性分析以及与其他知识的综合上都有广泛的应用。
通过对这一节课的学习,可以让学生加深对函数的本质认识。
也为今后研究具体函数的性质作了充分准备,起到承上启下的作用。
2、教学目标:根据上述教材结构与内容分析,考虑到学生已有的认知水平我制定如下教学目标:基础知识目标:了解能用文字语言和符号语言正确表述增函数、减函数、单调性、单调区间的概念;明确掌握利用函数单调性定义证明函数单调性的方法与步骤;并能用定义证明某些简单函数的单调性;能力训练目标:培养学生严密的逻辑思维能力、用运动变化、数形结合、分类讨论的方法去分析和处理问题,情感目标:让学生在民主、和谐的共同活动中感受学习的乐趣。
重点:形成增(减)函数的形式化定义。
难点。
形成增减函数概念的过程中,如何从图像升降的直观认识过渡到函数增减数学符号语言表述;用定义证明函数的单调性。
为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:二、教法在教学中我使用启发式教学,在教师的引导下,创设情景,通过开放性问题的设置来启发学生思考,在思考中体会数学概念形成过程中所蕴涵的数学方法。
三、学法倡导学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息的能力、获取新知识的能力、分析和解决问题的能力以及交流与合作的能力”。
数学作为基础教育的核心课程之一,转变学生数学学习方式,不仅有利于提高学生的数学素养,而且有利于促进学生整体学习方式的转变。
我以建构主义理论为指导,辅以多媒体手段,采用着重于学生探索研究的启发式教学方法,结合师生共同讨论、归纳。
南京市2019年高一数学 第二章《函数的单调性》说课稿
2014高中数学第二章《函数的单调性》说课稿北师大版必修1一、教材分析函数的单调性是函数的重要性质.从知识的网络结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用.函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用.根据函数单调性在整个教材内容中的地位与作用,本节课教学应实现如下教学目标:知识与技能使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;过程与方法引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.情感态度与价值观在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度.根据上述教学目标,本节课的教学重点是函数单调性的概念形成和初步运用.虽然高一学生已经有一定的抽象思维能力,但函数单调性概念对他们来说还是比较抽象的.因此,本节课的学习难点是函数单调性的概念形成.二、教法学法为了实现本节课的教学目标,在教法上我采取了:1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性.2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念.3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达.在学法上我重视了:1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃.2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力.三、教学过程函数单调性的概念产生和形成是本节课的难点,为了突破这一难点,在教学设计上采用了下列四个环节.(一)创设情境,提出问题(问题情境)(播放中央电视台天气预报的音乐).如图为某地区2006年元旦这一天24小时内的气温变化图,观察这张气温变化图:[教师活动]引导学生观察图象,提出问题:问题1:说出气温在哪些时段内是逐步升高的或下降的?问题2:怎样用数学语言刻画上述时段内“随着时间的增大气温逐渐升高”这一特征?[设计意图]问题是数学的心脏,问题是学生思维的开始,问题是学生兴趣的开始.这里,通过两个问题,引发学生的进一步学习的好奇心.(二)探究发现建构概念[学生活动]对于问题1,学生容易给出答案.问题2对学生来说较为抽象,不易回答.[教师活动]为了引导学生解决问题2,先让学生观察图象,通过具体情形,例如,“t1=8时,f(t1)=1,t2=10时,f(t2)= 4”这一情形进行描述.引导学生回答:对于自变量8<10,对应的函数值有1<4.举几个例子表述一下.然后给出一个铺垫性的问题:结合图象,请你用自己的语言,描述“在区间[4,14]上,气温随时间增大而升高”这一特征.在学生对于单调增函数的特征有一定直观认识时,进一步提出:问题3:对于任意的t1、t2∈[4,16]时,当t1< t2时,是否都有f(t1)<f(t2)呢?[学生活动]通过观察图象、进行实验(计算机)、正反对比,发现数量关系,由具体到抽象,由模糊到清晰逐步归纳、概括、抽象出单调增函数概念的本质属性,并尝试用符号语言进行初步的表述.[教师活动]为了获得单调增函数概念,对于不同学生的表述进行分析、归类,引导学生得出关键词“区间内”、“任意”、“当时,都有”.告诉他们“把满足这些条件的函数称之为单调增函数”,之后由他们集体给出单调增函数概念的数学表述.提出:问题4:类比单调增函数概念,你能给出单调减函数的概念吗?最后完成单调性和单调区间概念的整体表述.[设计意图]数学概念的形成来自解决实际问题和数学自身发展的需要.但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的经验和已有的知识基础出发,经历“数学化”、“再创造”的活动过程.刚升入高一的学生已经具备了一定的几何形象思维能力,但抽象思维能力不强.从日常的描述性语言概念升华到用数学符号语言精确刻画概念是本节课的难点.(三)自我尝试运用概念1.为了理解函数单调性的概念,及时地进行运用是十分必要的.[教师活动]问题5:(1)你能找出气温图中的单调区间吗?(2)你能说出你学过的函数的单调区间吗?请举例说明.[学生活动]对于(1),学生容易看出:气温图中分别有两个单调减区间和一个单调增区间.对于(2),学生容易举出具体函数如:,,,并画出函数的草图,根据函数的图象说出函数的单调区间.[教师活动]利用实物投影仪,投影出学生画出的草图和标出的单调区间,并指出学生回答问题时可能出现的错误,如:在叙述函数的单调区间时写成并集.[设计意图]在学生已有认知结构的基础上提出新问题,使学生明了,过去所研究的函数的相关特征,就是现在所学的函数的单调性,从而加深对函数单调性概念的理解.2.对于给定图象的函数,借助于图象,我们可以直观地判定函数的单调性,也能找到单调区间.而对于一般的函数,我们怎样去判定函数的单调性呢?[教师活动]问题6:证明在区间(0,+ ∞)上是单调减函数.[学生活动]学生相互讨论,尝试自主进行函数单调性的证明,可能会出现不知如何比较与的大小、不会正确表述、变形不到位或根本不会变形等困难.[教师活动]教师深入学生中,与学生交流,了解学生思考问题的进展过程,投影学生的证明过程,纠正出现的错误,规范书写的格式.[学生活动]学生自我归纳证明函数单调性的一般方法和操作流程:取值作差变形定号判断.[设计意图]有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此.利用学生自己提出的问题,让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究.(四)回顾反思深化概念[教师活动]给出一组题:1、定义在R上的单调函数满足,那么函数是R上的单调增函数还是单调减函数?2、若定义在R上的单调减函数满足,你能确定实数的取值范围吗?[学生活动]学生互相讨论,探求问题的解答和问题的解决过程,并通过问题,归纳总结本节课的内容和方法.[设计意图]通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对函数单调性认识的再次深化.[教师活动]作业布置:(1)阅读课本P37例2(2)书面作业:必做:教材 P38-39 1、3、5选做:二次函数在[0,+∞)是增函数,满足条件的实数的值唯一吗?探究:函数在定义域内是增函数,函数有两个单调减区间,由这两个基本函数构成的函数的单调性如何?请证明你得到的结论.[设计意图]通过两方面的作业,使学生养成先看书,后做作业的习惯.基于函数单调性内容的特点及学生实际,对课后书面作业实施分层设置,安排基本练习题、巩固理解题和深化探究题三层.学生完成作业的形式为必做、选做和探究三种,使学生在完成必修教材基本学习任务的同时,拓展自主发展的空间,让每一个学生都得到符合自身实践的感悟,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成.四、教学评价学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价.教师应当高度重视学生学习过程中的参与度、自信心、团队精神、合作意识、独立思考习惯的养成、数学发现的能力,以及学习的兴趣和成就感.学生熟悉的问题情境可以激发学生的学习兴趣,问题串的设计可以让更多的学生主动参与,师生对话可以实现师生合作,适度的研讨可以促进生生交流以及团队精神,知识的生成和问题的解决可以让学生感受到成功的喜悦,缜密的思考可以培养学生独立思考的习惯.让学生在教师评价、学生评价以及自我评价的过程中体验知识的积累、探索能力的长进和思维品质的提高,为学生的可持续发展打下基础.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014高中数学第二章《函数的单调性》说课稿北师大版必修1一、教材分析函数的单调性是函数的重要性质.从知识的网络结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用.函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用.根据函数单调性在整个教材内容中的地位与作用,本节课教学应实现如下教学目标:知识与技能使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;过程与方法引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.情感态度与价值观在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度.根据上述教学目标,本节课的教学重点是函数单调性的概念形成和初步运用.虽然高一学生已经有一定的抽象思维能力,但函数单调性概念对他们来说还是比较抽象的.因此,本节课的学习难点是函数单调性的概念形成.二、教法学法为了实现本节课的教学目标,在教法上我采取了:1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性.2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念.3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达.在学法上我重视了:1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃.2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力.三、教学过程函数单调性的概念产生和形成是本节课的难点,为了突破这一难点,在教学设计上采用了下列四个环节.(一)创设情境,提出问题(问题情境)(播放中央电视台天气预报的音乐).如图为某地区2006年元旦这一天24小时内的气温变化图,观察这张气温变化图:[教师活动]引导学生观察图象,提出问题:问题1:说出气温在哪些时段内是逐步升高的或下降的?问题2:怎样用数学语言刻画上述时段内“随着时间的增大气温逐渐升高”这一特征?[设计意图]问题是数学的心脏,问题是学生思维的开始,问题是学生兴趣的开始.这里,通过两个问题,引发学生的进一步学习的好奇心.(二)探究发现建构概念[学生活动]对于问题1,学生容易给出答案.问题2对学生来说较为抽象,不易回答.[教师活动]为了引导学生解决问题2,先让学生观察图象,通过具体情形,例如,“t1=8时,f(t1)=1,t2=10时,f(t2)= 4”这一情形进行描述.引导学生回答:对于自变量8<10,对应的函数值有1<4.举几个例子表述一下.然后给出一个铺垫性的问题:结合图象,请你用自己的语言,描述“在区间[4,14]上,气温随时间增大而升高”这一特征.在学生对于单调增函数的特征有一定直观认识时,进一步提出:问题3:对于任意的t1、t2∈[4,16]时,当t1< t2时,是否都有f(t1)<f(t2)呢?[学生活动]通过观察图象、进行实验(计算机)、正反对比,发现数量关系,由具体到抽象,由模糊到清晰逐步归纳、概括、抽象出单调增函数概念的本质属性,并尝试用符号语言进行初步的表述.[教师活动]为了获得单调增函数概念,对于不同学生的表述进行分析、归类,引导学生得出关键词“区间内”、“任意”、“当时,都有”.告诉他们“把满足这些条件的函数称之为单调增函数”,之后由他们集体给出单调增函数概念的数学表述.提出:问题4:类比单调增函数概念,你能给出单调减函数的概念吗?最后完成单调性和单调区间概念的整体表述.[设计意图]数学概念的形成来自解决实际问题和数学自身发展的需要.但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的经验和已有的知识基础出发,经历“数学化”、“再创造”的活动过程.刚升入高一的学生已经具备了一定的几何形象思维能力,但抽象思维能力不强.从日常的描述性语言概念升华到用数学符号语言精确刻画概念是本节课的难点.(三)自我尝试运用概念1.为了理解函数单调性的概念,及时地进行运用是十分必要的.[教师活动]问题5:(1)你能找出气温图中的单调区间吗?(2)你能说出你学过的函数的单调区间吗?请举例说明.[学生活动]对于(1),学生容易看出:气温图中分别有两个单调减区间和一个单调增区间.对于(2),学生容易举出具体函数如:,,,并画出函数的草图,根据函数的图象说出函数的单调区间.[教师活动]利用实物投影仪,投影出学生画出的草图和标出的单调区间,并指出学生回答问题时可能出现的错误,如:在叙述函数的单调区间时写成并集.[设计意图]在学生已有认知结构的基础上提出新问题,使学生明了,过去所研究的函数的相关特征,就是现在所学的函数的单调性,从而加深对函数单调性概念的理解.2.对于给定图象的函数,借助于图象,我们可以直观地判定函数的单调性,也能找到单调区间.而对于一般的函数,我们怎样去判定函数的单调性呢?[教师活动]问题6:证明在区间(0,+ ∞)上是单调减函数.[学生活动]学生相互讨论,尝试自主进行函数单调性的证明,可能会出现不知如何比较与的大小、不会正确表述、变形不到位或根本不会变形等困难.[教师活动]教师深入学生中,与学生交流,了解学生思考问题的进展过程,投影学生的证明过程,纠正出现的错误,规范书写的格式.[学生活动]学生自我归纳证明函数单调性的一般方法和操作流程:取值作差变形定号判断.[设计意图]有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此.利用学生自己提出的问题,让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究.(四)回顾反思深化概念[教师活动]给出一组题:1、定义在R上的单调函数满足,那么函数是R上的单调增函数还是单调减函数?2、若定义在R上的单调减函数满足,你能确定实数的取值范围吗?[学生活动]学生互相讨论,探求问题的解答和问题的解决过程,并通过问题,归纳总结本节课的内容和方法.[设计意图]通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对函数单调性认识的再次深化.[教师活动]作业布置:(1)阅读课本P37例2(2)书面作业:必做:教材 P38-39 1、3、5选做:二次函数在[0,+∞)是增函数,满足条件的实数的值唯一吗?探究:函数在定义域内是增函数,函数有两个单调减区间,由这两个基本函数构成的函数的单调性如何?请证明你得到的结论.[设计意图]通过两方面的作业,使学生养成先看书,后做作业的习惯.基于函数单调性内容的特点及学生实际,对课后书面作业实施分层设置,安排基本练习题、巩固理解题和深化探究题三层.学生完成作业的形式为必做、选做和探究三种,使学生在完成必修教材基本学习任务的同时,拓展自主发展的空间,让每一个学生都得到符合自身实践的感悟,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成.四、教学评价学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价.教师应当高度重视学生学习过程中的参与度、自信心、团队精神、合作意识、独立思考习惯的养成、数学发现的能力,以及学习的兴趣和成就感.学生熟悉的问题情境可以激发学生的学习兴趣,问题串的设计可以让更多的学生主动参与,师生对话可以实现师生合作,适度的研讨可以促进生生交流以及团队精神,知识的生成和问题的解决可以让学生感受到成功的喜悦,缜密的思考可以培养学生独立思考的习惯.让学生在教师评价、学生评价以及自我评价的过程中体验知识的积累、探索能力的长进和思维品质的提高,为学生的可持续发展打下基础.第(1)课时课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。
2、了解我国书法发展的历史。
3、掌握基本笔画的书写特点。
重点:基本笔画的书写。
难点:运笔的技法。
教学过程:一、了解书法的发展史及字体的分类:1、介绍我国书法的发展的历史。
2、介绍基本书体:颜、柳、赵、欧体,分类出示范本,边欣赏边讲解。
二、讲解书写的基本知识和要求:1、书写姿势:做到“三个一”:一拳、一尺、一寸(师及时指正)2、了解钢笔的性能:笔头富有弹性;选择出水顺畅的钢笔;及时地清洗钢笔;选择易溶解的钢笔墨水,一般要固定使用,不能参合使用。
换用墨水时,要清洗干净;不能将钢笔摔到地上,以免笔头折断。
三、基本笔画书写1、基本笔画包括:横、撇、竖、捺、点等。
2、教师边书写边讲解。
3、学生练习,教师指导。
(姿势正确)4、运笔的技法:起笔按,后稍提笔,在运笔的过程中要求做到平稳、流畅,末尾处回锋收笔或轻轻提笔,一个笔画的书写要求一气呵成。
在运笔中靠指力的轻重达到笔画粗细变化的效果,以求字的美观、大气。
5、学生练习,教师指导。
(发现问题及时指正)四、作业:完成一张基本笔画的练习。
板书设计:写字基本知识、一拳、一尺、一寸我的思考:通过导入让学生了解我国悠久的历史文化,激发学生学习兴趣。
这是书写的起步,让学生了解书写工具及保养的基本常识。
基本笔画书写是整个字书写的基础,必须认真书写。
课后反思:学生书写的姿势还有待进一步提高,要加强训练,基本笔画也要加强训练。
总第(2)课时课题:书写练习1课型:新授课教学目标:1、教会学生正确书写“杏花春雨江南”6个字。
2、使学生理解“杏花春雨江南”的意思,并用钢笔写出符合要求的的字。
重点:正确书写6个字。
难点:注意字的结构和笔画的书写。
教学过程:一、小结课堂内容,评价上次作业。
二、讲解新课:1、检查学生书写姿势和执笔动作(要求做到“三个一”)。
2、书写方法是:写一个字看一眼黑板。
(老师读,学生读,加深理解。
)3、书写教学“杏花春雨江南”6个字。
杏:上大下小,上面要写得大,大在哪里?(大在撇捺)写的时候撇捺要舒展,象燕子张开的翅膀;下面的“口”要写得小,左右两竖要内斜,稍扁;“木”的竖写在竖中线上。
花:也是上下结构,草字头两竖要内斜;下面单人旁起笔对准上面的左竖,竖弯钩起笔对准上面的右竖;竖弯钩要舒展,(用红笔描竖弯钩,并在旁边书写一个大的竖弯钩)要求弯处圆转,不能僵硬(书写僵硬的竖弯钩,并在旁边打×)。
春:上部三横都是短横,收笔处不要顿;撇画最长,捺画从哪里起笔?从第三横下面起笔,不能碰到撇;下面“日”的两竖要竖直,不能斜。