数学必修5_作业本参考答案[1]

合集下载

数学作业本必修五答案

数学作业本必修五答案

数学作业本必修五答案【篇一:高中数学课时作业必修5】形1.1正弦定理和余弦定理............................................................1 课时1 正弦定理(1)..................................................................1 课时2 正弦定理(2)..................................................................3 课时3 余弦定理(1)..................................................................5 课时4 余弦定理(2) (7)1.2应用举例…………………………………………………………………9 课时5 正弦定理、余弦定理的综合运用…………………………………9 课时6 正弦定理、余弦定理的应用(测量距离、高度问题)…………11 课时7 正弦定理、余弦定理的应用(测量角度问题)…………………13 第二章数列2.1 数列的概念与简单表示法...................................................15 课时1 数列的概念与简单表示法................................................15 2.2等差数列...........................................................................17 课时2 等差数列的概念与通项公式(1) (17)课时3 等差数列的概念与通项公式(2)……………………………………19 2. 3 等差数列的前n项和…………………………………………………21 课时4 等差数列的前n项和………………………………………………21 课时5 习题课(1)……………………………………………………………23 2.4等比数列 (25)课时6 等比数列的概念与通项公式(1)……………………………………25 课时7 等比数列的概念与通项公式(2)……………………………………27 2. 5 等比数列的前n项和…………………………………………………29 课时8 等比数列的前n项和………………………………………………29 课时9 一般数列求通项……………………………………………………31 课时10 一般数列求和……………………………………………………33 课时11 习题课(2) (35)第三章不等式3.1 不等关系与不等式……………………………………………………37 课时1 不等关系与不等式…………………………………………………37 3.2 一元二次不等式及其解法……………………………………………39 课时2 一元二次不等式及其解法(1) (39)课时3 一元二次不等式及其解法(2)………………………………………41 3.3二元一次不等式(组)与简单的线性规划问题……………………43 课时4二元一次不等式(组)表示的平面区域…………………………43 课时5 简单的线性规划问题………………………………………………45 课时6 习题课(1)…………………………………………………………47 3. 4a?b…………………………………………49 2课时7 基本不等式的证明………………………………………………49 课时8 基本不等式的应用………………………………………………51 课时9 习题课(2)…………………………………………………………53 附:第一章检测卷第二章检测卷第三章检测卷模块检测卷(1) 模块检测卷(2) 参考答案与点拨第一章三角形1.1正弦定理和余弦定理课时1 正弦定理(1)a.2.在△abc中,∠a、∠b、∠c的对边为a、b、c,若...323a.2 b..6.已知△abc中,若a=2,则∠c=.则a=10.△abc中,,求a+b的值; (2)若,求a、b、c的值.12.在△abc中,tana=1,tanb=3. (1)求∠c的大小. (2)若abbc边的长.4513.在△abc中,∠a、∠b、∠c的对边分别为a、b、c,若m=(b,3a),n=(c,b),且m∥n,∠c-∠a=求∠b.2,54,cosc=135. (1)求sina的值. (2)设△abc的面积s△abc=33,2课时2 正弦定理(2)1.若sinacosbcosc==,则△abc是 ( )abca.x2 b.x2 c.2x.2xcosb= ( )a.5.在△abc中,6.(2009.湖南)在锐角△abc中,bc=1, ∠b=2∠a,则ac的值等于____,ac的取值范围为____.cosa7.在△abc中,已知atanb=btana,则△abc为____三角形.22,∠a=2∠b.则cosc=1,s△abcb=____.38.有一道解三角形的题目,因纸张破损有一条件模糊不清,具体如下:“在△abc中,角∠a、∠b、∠c所对的边分别为a、b、c.已知”经推断,破损处的条件为三角b=?,____,求∠a.4形一边的长度,且答案提示∠a=?,试在横线上将条件补充完整. 69.在△abc中,已知22ac=2,求△abc的面积.212.在△abc中,2∠a=∠b+∠c,b=ac,求bsinb的值.c13.已知△abc中,∠a、∠b、∠c对应的边是a、b、c,∠a=2∠若∠a的内角平分线ad的长为2,求b的值.14.在锐角△abc中,若∠b=2∠a,求b的取值范围,a(1)求sinc的值. (2)课时3 余弦定理(1)2221.在△abc中,∠a、∠b、∠c的对边分别为a、b、c,若c?a?b0,则△abc ( )2aba.一定是锐角三角形 b.一定是直角三角形 c.一定是钝角三角形 d.是锐角或直角三角形2.在△abc中,a:b:c=12,则∠a:∠b:∠c的值为 ( )a. 1: 2:3 b.2:3:1 c.1:3:2 d.3:1:2a.? b.? c.?或5? d.?或2?6363634.在△abc中,若a=2bcosc,则△abc的形状为 ( ) a.直角三角形 b.等腰三角形 c.等边三角形 d.等腰或直角三角形c222,则∠b的值为6.在△abc中,sina:sinb:sinc=3:5:7,则最大角等于____. 7.在△abc中,∠a、∠b、∠c所对的边分别为a、b、c.若a=1, 8.在△abc中,10.设锐角三角形abc的内角∠a、∠b、∠c的对边a、b、c,a=2bsina. (1)求∠b的大小. (2)若c=5,求b。

数学人教A版必修5新课标(RJA)作业本高考数学练习测评卷及参考答案

数学人教A版必修5新课标(RJA)作业本高考数学练习测评卷及参考答案

高中数学必修5 新课标(RJA)单元测评(一)第一章本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在△ABC中,内角A,B,C的对边分别是a,b,c,已知a=3,c=2,B=150°,则=()S△ABCA.2B.C.D.2.已知圆的半径R=4,a,b,c为该圆的内接三角形的三边,若abc=16,则三角形的面积为()A.2B.8C.D.3.在△ABC中,内角A,B,C的对边分别是a,b,c,若c=2a,b sin B-a sin A=a sin C,则sin B=()A. B.C. D.4.在直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=2BC=2CD,则cos∠DAC=()A.B.C. D.5.已知△ABC的周长为9,内角A,B,C的对边分别是a,b,c,且sin A∶sin B∶sin C=3∶2∶4,则cos C的值为()A.-B.C.-D.6.在△ABC中,a,b,c分别是内角A,B,C的对边,已知a=2c·cos B,那么△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形7.在△ABC中,内角A,B,C的对边分别为a,b,c,若a=k(k>0),b=k,A=45°,则满足条件的三角形有 ()A.0个B.1个C.2个D.无数个8.在△ABC中,内角A,B,C所对的边分别是a,b,c.已知b2+c2-a2=bc,sin2A+sin2B=sin2C,则角B的大小为()A.30°B.45°C.60°D.90°9.在△ABC中,已知A=60°,AC=16,面积为220,则BC的长度为()A.25B.51C.49D.4910.已知锐角三角形的三边长分别为1,3,a,则a的取值范围是()A.(8,10)B.(2,)C.(2,10)D.(,8)11.在△ABC中,内角A,B,C的对边分别为a,b,c,若a2+b2=2c2,则C的最大值为()A. B.C. D.12.在△ABC中,A=60°,BC=,D是AB边上的一点,CD=,△BCD的面积为1,则AC的长为 ()A.2B.C. D.第卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知△ABC的面积S=,A=,则·=.14.已知△ABC的三边长分别为3,5,7,则该三角形的外接圆半径等于.15.在△ABC中,a,b,c分别是内角A,B,C的对边,已知a2+c2=ac+b2,b=,且a ≥c,则2a-c的最小值是.16.如图D1-1,△ABC中,∠BAC=,且BC=1,若E为BC的中点,则AE的最大值是.图D1-1三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)在△ABC中,内角A,B,C的对边分别为a,b,c,已知a=2b=6,A=30°,求B及S△ABC.18.(12分)在△ABC中,内角A,B,C的对边分别为a,b,c,a+b=2,ab=2,且2cos A cos B-2sin A sin B=1.求:(1)角C的大小;(2)△ABC的周长.19.(12分)如图D1-2,某海岛上一观察哨A在上午11时测得一轮船在海岛北偏东60°的C处,12时20分测得轮船在海岛北偏西60°的B处,12时40分轮船到达位于海岛正西方且距海岛5 km的E港口,如果轮船始终匀速直线前进,求船速.图D1-220.(12分)已知△ABC的内角A,B,C所对的边分别为a,b,c,且a+2c=2b cos A.(1)求角B的大小;(2)若b=2,a+c=4,求△ABC的面积.21.(12分)已知△ABC的内角Α,Β,C所对的边分别为a,b,c,若向量m=cosB,2cos2-1与n=(2a-b,c)共线.(1)求角C的大小;(2)若c=2,S△ABC=2,求a,b的值.22.(12分)在锐角三角形ABC中,内角A,B,C所对的边分别为a,b,c,且sin2A=sin2B+sin2C-sin B sin C.(1)求角A的大小;(2)若a=2,求b+c的取值范围.单元测评(二)第二章本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.数列-,,-,…的一个通项公式是()A.a n=(-1)n-B.a n=(-1)n++C.a n=(-1)n+D.a n=(-1)n-2.已知a,b,c,d依次成等比数列,且曲线y=x2-4x+7的顶点坐标是(b,c),则ad 等于()A.5B.6C.7D.123.设{a n}是等比数列,若a2=3,a7=1,则数列{a n}前8项的积为()A.56B.80C.81D.1284.《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题目:把100个面包分给五个人,使每人所得成等差数列,且使较大的三份之和的等于较小的两份之和,则最小的一份为()A.B.C.D.5.已知数列{a n}中,a1=2,a n+1=a n+2n(n∈N*),则a100的值是()A.9900B.9902C.9904D.11 0006.在等差数列{a n}中,若a1008+a1009+a1010+a1011=18,则该数列的前2018项的和为()A.18 126B.9072C.9081D.12 0847.等差数列{a n}中,已知a1=-12,S13=0,则使得a n>0的最小正整数n为()A.7B.8C.9D.108.已知等差数列{a n}的前n项和为S n,S17>0,S18<0,则当S n取得最大值时,n为()A.7B.8C.9D.109.已知数列{a n}中,a1=3,a n+1=a n+2(n∈N*),则此数列的前10项和S10=()A.140B.120C.80D.6010.在等比数列{a n}中,a1+a2=1,a3+a4=2,则a5+a6+a7+a8=()A.10B.11C.12D.1411.已知等比数列{a n}的前n项和为S n,且S n=2n-c(c∈R),若log2a1+log2a2+…+log2an=10,则n=()A.2B.3C.4D.512.对于正项数列{a n},定义G n=+++…+为数列{a n}的“匀称”值.已知正项数列{a n}的“匀称”值为G n=n+2,则该数列中的a10等于()A.2B.C.1D.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.设等比数列{a n}的前n项和为S n,若S10∶S5=1∶2,则S15∶S5=.14.已知数列{a n}中,a1=1,前n项和为S n,且点P(a n,a n+1)(n∈N*)在直线x-y+1=0上,则+++…+=.15.已知数列{a n}满足2a1+22a2+23a3+…+2n a n=n(n∈N*),则数列{a n}的前n项和S n=.16.若一个实数数列{a n}满足条件+-an=d(d为常数,n∈N*),则称这一数列为“伪等差数列”,d称为“伪公差”.给出下列关于“伪等差数列”{a n}的说法:①对于任意的首项a1,若d<0,则这一数列必为有穷数列;②当d>0,a1>0时,这一数列必为递增数列;③若这一数列的首项为1,“伪公差”为3,则-可以是这一数列中的一项;④若这一数列的首项为0,第三项为-1,则这一数列的“伪公差”可以是-.其中说法正确的是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知等差数列{a n}中,公差d≠0,a1=2,且a1,a3,a9成等比数列.(1)求数列{a n}的通项公式;(2)求数列{-1}的前n项和S n.18.(12分) 设{a n}是公比大于1的等比数列,S n为数列{a n}的前n项和,已知S3=7,且a1+3,3a2,a3+4依次构成等差数列.(1)求数列{a n}的通项公式;(2)令b n=ln a3n+1,求数列{b n}的前n项和T n.19.(12分) 已知数列和满足a1=2,b1=1,a n+1=2a n,b1+b2+b3+…+b n =bn+1-1.(1)求a n与b n;(2)记数列的前n项和为T n,求T n.20.(12分)等差数列{a n}中,a1=3,其前n项和为S n.等比数列{b n}的各项均为正数,b1=1,且b2+S2=12,a3=b3.(1)求数列{a n}与{b n}的通项公式;(2)证明:数列的前n项和T n<.21.(12分) 已知数列为等差数列,且a2+a3=8,a5=3a2.(1)求数列的通项公式;(2)记b n=+,设的前n项和为S n,求最小的正整数n,使得S n>.22.(12分)已知数列{a n}的前n项和为S n,且S n=2a n-2.(1)求数列{a n}的通项公式;(2)设函数f(x)=,数列{b n}满足条件b1=2,f(b n+1)=--,若c n=,求数列{c n}的前n项和T n.单元测评(三)第三章本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.不等式-3x2+7x-2<0的解集为()A.<<B.<或>C.-<<-D.{x|x>2}2.已知a,b为非零实数,且a<b,则下列不等式成立的是()A.a2<b2B.a2b<a3C.<D.->-3.直线3x+2y+5=0把平面分成两个区域,下列各点与原点位于同一区域的是()A.(-3,4)B.(-3,-4)C.(0,-3)D.(-3,1)4.设x,y满足约束条件+,,-,则z=3x+y的最大值为()A.5B.3C.7D.-85.不等式<的解集是()A.(-∞,2)B.(2,+∞)C.(0,2)D.(-∞,0)∪(2,+∞)6.若x>0,y>0,且+=1,则x+y的最小值是()A.3B.6C.9D.127.当k>0时,直线kx-y=0,2x+ky-2=0与x轴围成的三角形的面积的最大值为()A.B.C.D.8.已知关于x的方程x2+(a2-1)x+a-2=0的一根比1大且另一根比1小,则实数a的取值范围为()A.-1<a<1B.a<-1或a>1C.-2<a<1D.a<-2或a>19.若关于x的不等式x2-4x-2-a>0在区间(1,4)内有解,则实数a的取值范围是()A.a<-2B.a>-2C.a>-6D.a<-610.已知x,y满足约束条件--,--,若目标函数z=ax+by(a>0,b>0)在该约束条件下取到的最小值为2,则a2+b2的最小值为()A.5B.4C.D.211.在△ABC中,C=90°,BC=2,AC=4,AB边上的点P到边AC,BC的距离的乘积的取值范围是()A.[0,2]B.[0,3]C.[0,4]D.0,12.已知实数x,y满足xy-3=x+y,且x>1,则y(x+8)的最小值为 ()A.33B.26C.25D.21第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.若f(x)=ax2+ax-1在R上满足f(x)<0恒成立,则实数a的取值范围是.14.若变量x,y满足约束条件-+,+-,,则z=3x+y的最小值为.15.函数y=log a(x+4)-2(a>0,且a≠1)的图像恒过定点A,若点A在直线mx+ny+1=0上,其中mn>0,则+的最小值为.16.若不等式x2-(a+1)x+a≤0的解集是[-4,3]的子集,则实数a的取值范围是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知不等式ax2-3x+2>0.(1)若a=-2,求不等式的解集;(2)若不等式的解集为{x|x<1或x>b},求a,b的值.18.(12分)解关于x的不等式:x2-(m+m2)x+m3<0.19.(12分)如图D3-1,某房地产开发公司计划在一栋楼区内建造一个矩形公园ABCD,公园由矩形的休闲区(阴影部分)A1B1C1D1和环公园人行道组成.已知休闲区A 1B1C1D1的面积为4000平方米,人行道的宽分别为4米和10米,设休闲区的长为x米.(1)求矩形ABCD所占面积S(单位:平方米)关于x的函数解析式.(2)要使公园所占面积最小,问休闲区A1B1C1D1的长和宽应分别为多少米?图D3-120.(12分)某企业生产甲、乙两种产品,已知生产1吨甲产品要用A原料3吨,B 原料2吨;生产1吨乙产品要用A原料1吨,B原料3吨.销售1吨甲产品可获得利润5万元,销售1吨乙产品可获得利润3万元.如果该企业在一个生产周期内消耗A原料不超过13吨,B原料不超过18吨,那么该企业可获得的最大利润是多少?21.(12分)设函数f(x)=x2+2ax+3.(1)解关于x的不等式f(x)<1;(2)若函数f(x)在区间[-1,]上有零点,求实数a的取值范围.22.(12分)第二届世界互联网大会在浙江省乌镇开幕后,某科技企业为抓住互联网带来的机遇,决定开发生产一款大型电子设备.生产这种设备的年固定成本为500万元,每生产x(x>0)台,需另投入成本C(x)万元.若年产量不足80台,则C(x)=x2+40x;若年产量不小于80台,则C(x)=101x+-2180.每台设备售价为100万元,通过市场分析,该企业生产的电子设备能全部售完.(1)求年利润y(万元)关于年产量x(台)的函数关系式.(2)年产量为多少台时,该企业在这一电子设备的生产中所获利润最大?模块终结测评(一)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在等差数列{a n}中,若a5=10,且a1+a2+a3=3,则有()A.a1=-2,d=3B.a1=2,d=-3C.a1=-3,d=2D.a1=3,d=-22.在△ABC中,a=2,b=,c=1,则最小角的大小为()A.B.C.D.3.设a,b,c∈R,且a>b,则()A.<B.a2>b2C.a-c>b-cD.ac>bc4.△ABC的内角A,B,C的对边分别为a,b,c,已知a=3,A=60°,b=,则B=()A.45°B.30°C.60°D.135°5.若数列{a n}满足a n+1=1+,a8=,则a5=()A.B.C.D.6.某公司要测量一水塔CD的高度,测量人员在该水塔所在的东西方向水平直线上选择A,B两个观测点,在A处测得该水塔顶端D的仰角为α,在B处测得该水塔顶端D的仰角为β.已知A,B在水塔的同一侧,AB=a,0<β<α<,则水塔CD 的高度为()A.-B.-C.-D.-7.不等式x2-ax-12a2<0(其中a<0)的解集为 ()A.(-3a,4a)B.(4a,-3a)C.(-3,4)D.(-4,3)8.已知等差数列{a n}的公差为3,若a1,a3,a4成等比数列,则a2等于()A.-18B.-15C.-12D.-99.设变量x,y满足约束条件-,-,+-,则目标函数z=3x+y的最大值为()A.7B.8C.9D.1410.已知函数y=a x+2-2(a>0且a≠1)的图像恒过定点A,若点A在直线mx+ny +1=0上,其中mn>0,则+的最小值为()A.3B.3+2C.4D.811.数列{2n-(-1)n}的前10项和为()A.210-3B.210-2C.211-3D.211-212.在△ABC中,内角A,B,C所对的边分别是a,b,c,若b2+c2-a2=bc,且b=a,则下列关系式一定不成立的是 ()A.a=cB.b=cC.2a=cD.a2+b2=c2第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.若x,y满足,--,+-,则z=x+y的最小值为.14.△ABC的内角A,B,C的对边分别为a,b,c,若A,B,C成等差数列,a,b,c成等比数列,则sin A·sin C=.15.某人从A处出发,沿北偏东60°方向行走3km到达B处,再沿正东方向行走2 km到达C处,则A,C两地间的距离为.图M1-116.在数列{a n}中,若a1=2,a n+1=a n+ln1+,则a n=.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知△ABC的内角A,B,C所对的边分别为a,b,c,且a=2,cos B=.(1)若b=4,求sin A的值;(2)若△ABC的面积S△ABC=4,求b,c的值.18.(12分)已知等差数列{a n}的前n项和为S n,a2+a4=14,S7=70.(1)求数列{a n}的通项公式.(2)设nb n=2S n+48,则数列{b n}的最小项是第几项?求出最小项的值.19.(12分)为保护环境,绿色出行,某高校今年年初成立自行车租赁公司,初期投入36万元,建成后每年收入25万元,该公司第n年需要付出的维修费用记作a n 万元,已知{a n}为等差数列,相关信息如图M1-2所示.(1)设该公司前n年总盈利为y万元,试把y表示成关于n的函数,并求出y的最大值.(总盈利即n年总收入减去成本及总维修费用)(2)该公司经过几年经营后,年平均盈利最大?并求出最大值.图M1-220.(12分)如图M1-3,某货轮在A处看灯塔B在货轮的北偏东75°方向上,距离为12 n mile,在A处看灯塔C在货轮的北偏西30°方向上,距离为8 n mile,货轮由A处向正北方向航行到D处时,再看灯塔B在南偏东60°方向上,求:(1)A处与D处的距离;(2)灯塔C与D处的距离.图M1-321.(12分)已知等差数列{a n}满足a1+a2+a3=a5=9,等比数列{b n}满足0<b n+1<b,b1+b2+b3=,b1b2b3=.n(1)求数列{a n}和{b n}的通项公式;(2)设c n=a n·b n,试求数列{c n}的前n项和S n.22.(12分)已知函数f(x)=ax2-4x+c(a,c∈R),满足f(2)=9,f(c)<a,且函数f(x)的值域为[0,+∞).(1)求函数f(x)的解析式;(2)设函数g(x)= +-(k∈R),若对任意x∈[1,2],存在x0∈[-1,1],使得g(x)<f(x),求k的取值范围.模块终结测评(二)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.不等式4x2-4x+1>0的解集是()A.>B.C.RD.⌀2.一个等差数列共有10项,其中偶数项的和为15,则这个数列的第6项是()A.3B.4C.5D.63.在△ABC中,内角A,B,C的对边分别是a,b,c,若B=45°,C=60°,c=1,则最短边的长为()A.B.C.D.4.下列说法中正确的是 ()A.若a>b,c>d,则ac>bdB.若ac>bc,则a>bC.若a>b,则<D.若a>b,c<d,则a-c>b-d5.在△ABC中,内角A,B,C的对边分别是a,b,c,若a=80,b=100,A=45°,则此三角形的解的情况是()A.一解B.两解C.解的个数不确定D.无解6.已知等比数列{a n}的前n项和为S n,a4-a1=78,S3=39,设b n=log3a n,则数列{b n}的前10项和为()A.log371B.C.50D.557.若点M(a,b)在由不等式组,,+确定的平面区域内,则点N(a+b,a-b)所在平面区域的面积是()A.1B.2C.4D.88.海中有一小岛,周围a n mile内有暗礁.一艘海轮由西向东航行,望见该岛在北偏东75°方向上,航行b n mile以后,望见该岛在北偏东60°方向上.若这艘海轮不改变航向继续前进且没有触礁,则a,b所满足的不等关系是 ()A.a<bB.a>bC.a<bD.a>b9.将正奇数按下表排列:则199在()A.第10列B.第11列C.第11行D.第12行10.在△ABC中,a,b,c分别是内角A,B,C的对边,已知sin A,sin B,sin C成等比数列,且a2=c(a+c-b),则角A的大小为()A.B.C.D.11.已知a>b>0,则a+++-的最小值为()A.B.4 C.2D.312.设u(n)表示正整数n的个位数,例如u(23)=3.若a n=u(n2)-u(n),则数列{a n}的前2015项的和等于()A.0B.2C.8D.10第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.在△ABC中,内角A,B,C的对边分别为a,b,c.若b=2,c=3,△ABC的面积为2,则sin A=.14.在数列{a n}中,a1=2,a n+1-2a n=0,b n是a n和a n+1的等差中项,设S n为数列{b n}的前n项和,则S6=.15.不等式(m+1)x2+(m2-2m-3)x-m+3>0恒成立,则m的取值范围是.16.定义:若数列{a n}对一切正整数n均满足++>an+1,则称数列{a n}为“凸数列”.有以下关于凸数列的说法: ①等差数列{an}一定是凸数列;②首项a1>0,公比q>0且q≠1的等比数列{an}一定是凸数列;③若数列{an}为凸数列,则数列{a n+1-a n}是递增数列;④若数列{an}为凸数列,则下标成等差数列的项构成的子数列也为凸数列.其中正确说法的序号是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知关于x的不等式ax2+(a-2)x-2≥0(a∈R)的解集为(-∞,-1]∪[2,+∞).(1)求a的值;(2)设关于x的不等式x2-(3c+a)x+2c(c+a)<0的解集是集合A,不等式(2-x)(x+1)>0的解集是集合B,若A⊆B,求实数c的取值范围.18.(12分)已知等差数列{a n}中,a7=4,a19=2a9.(1)求{a n}的通项公式;(2)设b n=,求{b n}的前n项和S n.19.(12分)在△ABC中,内角A,B,C的对边分别为a,b,c,且(sin C-sin A+sinB)(sin C+sin A-sin B)=sin A sin B.(1)求角C的大小;(2)若c=,求a+b的最大值.20.(12分)某公司因业务发展需要,准备印制如图M2-1所示的宣传彩页,宣传彩页由三幅大小相同的画组成,每幅画的面积都是200 cm2,这三幅画中都要绘制半径为5 cm的圆形图案,为了美观,每两幅画之间要留1 cm的空白,三幅画周围要留2 cm的页边距.设每幅画的一边长为x cm,所选用的彩页纸张面积为S cm2.(1)试写出所选用彩页纸张的面积S关于x的函数解析式及其定义域.(2)为节约纸张,即使所选用的纸张面积最小,应选用长、宽分别为多少的纸张?图M2-121.(12分)如图M2-2,半圆O的直径为2,A为直径延长线上的一点,OA=2,B为半圆上任意一点,以AB为一边作等边三角形ABC.当点B在什么位置时,四边形OACB的面积最大?图M2-222.(12分)设数列的前n项和为S n,且S n+a n=1,数列为等差数列,且b1+b2=b3=3.(1)求S n;(2)求数列的前n项和T n.模块终结测评(三)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知{a n}为等差数列,若a3+a4+a8=9,则a5=()A.3B.4C.5D.62.若a<0,b>0,则下列不等式中恒成立的是()A.<B.-<C.a2<b2D.|a|>|b|3.在△ABC中,内角A,B,C的对边分别是a,b,c,若cos B=,b=2,sin C=2sin A,则△ABC的面积为 ()A. B.C. D.4.设等比数列{a n}的公比q=2,前n项和为S n,则=()A.2B.4C.7D.85.若关于x的二次不等式x2+mx+1≥0的解集为实数集R,则实数m的取值范围是()A.m≤-2或m≥2B.-2≤m≤2C.m<-2或m>2D.-2<m<26.在△ABC中,若sin2A-sin2B>sin2C,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形7.已知S n表示数列{a n}的前n项和,若对任意n∈N*都有a n+1=a n+a2,且a3=2,则=()S2018A.1008×2017B.1008×2018C.1009×2017D.1009×2018(x>-1),当x=a时,y取得最小值b,则a+b=8.已知函数y=x-4++()A.-3B.2C.3D.89.在△ABC中,已知||=4,||=1,△ABC的面积为,则·=()A.±2B.±4C.2D.410.若实数x,y满足-+,+,,则z=3x+2y的最小值是()A.0B.1C.D.911.设圆x2+y2=4的一条切线与x轴、y轴分别交于点A,B,则|AB|的最小值为()A.4B.4C.6D.812.定义+++…+为n个正数p1,p2,p3,…,p n的“均倒数”.已知各项均为正数的数列{a n}的前n项的“均倒数”为+,且b n=+,则++…+=()A.B.C.D.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知等差数列{a n}的公差d为整数,首项为13,若从第5项开始每一项均为负数,则d等于.14.已知A船在灯塔C北偏东80°方向上,且A到C的距离为2 km,B船在灯塔C 北偏西40°方向上,若A,B两船间的距离为3 km,则B到C的距离为km.15.已知变量x,y满足约束条件+,,-,若z=kx+y的最大值为5,且k为负整数,则k=.16.已知各项均为正数的等比数列{a n}中,a4与a14的等比中项为2,则2a7+a11的最小值为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知△ABC的内角A,B,C的对边分别为a,b,c,且a cos C+(c-2b)cos A=0.(1)求角A的大小;(2)若△ABC的面积为2,且a=2,求b+c的值.18.(12分)已知等差数列{a n}的前n项和为S n,a4=-5,a8=3.(1)求数列{a n}的通项公式;(2)求S n的最小值及此时n的值.19.(12分)如图M3-1,我国南海某处的一个圆形海域上有四个小岛,小岛B与小岛A、小岛C都相距5 n mile,与小岛D相距3 n mile,在小岛A测得∠BAD 为钝角,且sin∠BAD=.(1)求小岛A与小岛D之间的距离;(2)记∠CDB=α,∠DBC=β,求sin(2α+β)的值.图M3-120.(12分)已知不等式-+>0(a∈R).(1)解这个关于x的不等式;(2)若当x=-a时不等式成立,求a的取值范围.21.(12分)某工厂生产某种产品,每日的成本C(单位:万元)与日产量x(单位:吨)满足函数关系式C=3+x,每日的销售额S(单位:万元)与日产量x的函数关系式为S=+-+,<<,,.已知每日的利润L=S-C,且当x=2时,L=.(1)求k的值.(2)当日产量为多少吨时,每日的利润可以达到最大?并求出最大值. 22.(12分)已知数列{a n}的首项为1,前n项和为S n,a n+1=2S n+1,n∈N*.(1)求数列{a n}的通项公式;(2)设b n=log3a n+1,求数列的前n项和T n,并证明:1≤T n<.|高中数学必修5 新课标(RJA)单元测评(一)1.B【试题解析】由三角形面积公式得S△ABC=ac sin B=×3×2×=,故选B.2.C【试题解析】∵===2R=8,∴sin C=,∴S△ABC=ab sin C ===.3.A【试题解析】∵b sin B-a sin A=a sin C,∴由正弦定理可得b2-a2=ac.又∵c=2a,∴a2+c2-b2=4a2-ac=3a2,∴利用余弦定理可得cos B=+-==,由0<B<π,得sin B=-=-=,故选·A.4.B【试题解析】如图所示,设CD=a,则在△ACD中,CD2=AD2+AC2-2AD·AC·cos ∠DAC,∴a2=(a)2+(a)2-2×a·a·cos∠DAC,∴cos∠DAC=. 5.A【试题解析】由正弦定理可得a∶b∶c=sin A∶sin B∶sin C=3∶2∶4.设a=3k(k>0),则b=2k,c=4k,周长为9k=9,解得k=1,所以a=3,b=2,c=4,所以cos C=+-=-,故选A.6.A【试题解析】由正弦定理得=,代入a=2c·cos B,得sin A=2sin C cos B①.又∵sin A=sin(B+C)=sin B cos C+cos B sin C②,∴联立①②,得sin B cos C-cos B sin C=0,即sin(B-C)=0,即B=C,故选A.7.A【试题解析】由正弦定理得=,∴sin B==>1,即sin B>1,这是不成立的,∴没有满足题设条件的三角形.8.A【试题解析】b2+c2-a2=bc⇒cos A=+-=,所以A=60°.又sin2A +sin2B=sin2C⇒a2+b2=c2,所以C=90°,所以B=30°.9.D【试题解析】S△ABC=AC×AB×sin 60°=×16×AB×=220,∴AB=55,∴BC2=AB2+AC2-2AB×AC cos 60°=552+162-2×55×16×=2401,即BC=49,故选D.10.B【试题解析】设1,3,a所对的内角分别为C,B,A,则由余弦定理知a2=12+32-2×3cos A<12+32=10,且32=12+a2-2×a cos B<12+a2,∴2<a<.11.C【试题解析】∵a2+b2=2c2,∴cos C=+-≥+-+=-=,又C是三角形的内角,∴C的最大值为.12.D【试题解析】∵BC=,CD=,△BCD的面积为1,∴××sin ∠DCB=1,∴sin∠DCB=,∴cos∠DCB=,∴BD2=CB2+CD2-2CD·CB cos∠DCB =4,解得BD=2.在△BDC中,由余弦定理可得cos∠BDC==-,∴∠BDC =135°,∴∠ADC=45°.在△ADC中,∠ADC=45°,A=60°,DC=,由正弦定理可得,°=°,∴AC=.13.2【试题解析】S△ABC=·AB·AC·sin A,即=·AB·AC·,所以AB·AC =4,于是·=··cos A=4×=2.14.【试题解析】设内角A,B,C所对的边分别为a,b,c,且a=3,b=5,c=7,∴cos C=+-=-,∴sin C=,∴外接圆的半径R==.15.【试题解析】因为a2+c2-b2=2ac cos B=ac,所以cos B=,则B=60°,又a≥c,则A≥C=120°-A,所以60°≤A<120°.由正弦定理得====2,则2a-c=4sin A-2sin C=4sin A-2sin 120°-A)=2sin(A-30° ,所以当A=60°时,2a-c取得最小值.16.1+【试题解析】设C=α,则B=π--α=-α,在△ABC中,由正弦定理得====2,则AB=2sin α,AC=2sin-α.在△ABE中,AE2=AB2+BE2-2AB·BE cos-α=(2sin α)2+2-2×2sin α××cos-α=4sin2α-2sin α-cos α+sin α+=3sin2α+sin αcos α+=-+sin 2α+=-cos 2α+sin 2α+=sin2α-+,当sin2α-=1时,AE2有最大值+=1+2,即AE的最大值是1+.17.解:在△ABC中,由正弦定理得sin B=sin A=×=.又A=30°,且a<b,∴B=60°或B=120°.①当B=60°时,C=90°,△ABC为直角三角形,故S△ABC=ab=6.②当B=120°时,C=30°,△ABC为等腰三角形,故S△ABC=ab sin C=×2×6sin 30°=3.18.解:(1)∵2cos A cos B-2sin A sin B=1,∴cos(A+B)=,∴cos C=cos[180°-(A+B)]=-cos(A+B)=-.又∵C∈ 0°,180° ,∴C=120°.(2)由题知a+b=2,ab=2,∴c2=a2+b2-2ab cos 120°=a2+b2+ab=(a+b)2-ab=(2)2-2=10,∴c=.从而△ABC的周长为2+.19.解:设∠ABE=θ,船的速度为v km/h,则BC=v,BE=v.在△ABE中,=°,∴sin θ=.在△ABC中,°-=°,∴AC=··.在△ACE中,=25+-2×5×·cos 150°,即v2=25++100=,∴v2=93,∴船的速度为 km/h.20.解:(1)因为a+2c=2b cos A,所以由正弦定理,得sin A+2sin C=2sin B cos A,又C=π-(A+B),所以sin A+2sin(A+B)=2sin B cos A,即sin A+2sin A cos B+2cos A sin B=2sin B cos A,所以sin A(1+2cos B)=0,因为sin A≠0,所以cos B=-,又0<B<π,所以B=.(2)由余弦定理得a2+c2-2ac cos B=b2,即a2+c2+ac=12,即(a+c)2-ac=12, 因为a+c=4,所以ac=4,所以S△ABC=ac sin B=×4×=.21.解:(1)∵m=(cos B,cos C),m∥n,∴c cos B=(2a-b)cos C, 由正弦定理得sin C cos B=(2sin A-sin B)cos C,∴sin C cos B+sin B cos C=2sin A cos C,∴sin A=2sin A cos C.∵sin A>0,∴cos C=.∵C∈ 0,π ,∴C=.(2)由余弦定理得(2)2=a2+b2-2ab cos ,∴a2+b2-ab=12①.∵S△ABC =ab sin C=2,∴ab=8②.由①②得=,=或=,=.22.解:(1)由正弦定理及sin2A=sin2B+sin2C-sin B sin C,知a2=b2+c2-bc, 所以cos A=+-=.又0<A<,所以A=.(2)由(1)知A=,所以B+C=,所以B=-C.因为a=2,所以==,所以b=4sin B,c=4sin C,所以b+c=4sin B+4sin C=4sin-+4sin C=2(cos C+sin C)=4+.因为△ABC是锐角三角形,所以0<B=-C<,0<C<,所以<C<,所以<C +<,所以<sin+≤1,所以6<4sin+≤4.故b+c的取值范围为(6,4].单元测评(二)1.C【试题解析】观察数列各项知符号可用(-1)n表示.各项绝对值的分母依次为3,5,7,…,故可表示为2n+1;各项绝对值的分子依次为1,4,9,…,故可表示为n2.所以a n=(-1)n+,故选C.2.B【试题解析】由y=x2-4x+7,得y=(x-2)2+3,所以顶点坐标为(2,3),即b=2,c=3.由a,b,c,d依次成等比数列,得ad=bc=6,故选B.3.C【试题解析】由等比数列的性质,得a1a8=a2a7=a3a6=a4a5,则数列{a n}前8项的积为a1a2a3a4a5a6a7a8=(a2a7)4=34=81,故选C.4.A【试题解析】设五个人所分得的面包个数为a-2d,a-d,a,a+d,a+2d,其中d>0,则(a-2d)+(a-d)+a+(a+d)+(a+2d)=5a=100,∴a=20.由(a+a+d+a+2d)=a-2d+a-d,得3a+3d=7(2a-3d),∴24d=11a,∴d=,∴最小的一份为a-2d=20-=.故选A.5.B【试题解析】∵a1=2,a n+1=a n+2n,∴a n+1-a n=2n,∴a n=(a n-a n-1)+(a n-1-an-2)+…+(a2-a1)+a1=2(n-1)+2(n-2)+…+2×1+2=2×-+2=n2-n+2,∴a100=1002-100+2=9902.6.C【试题解析】∵a1+a2018=a1008+a1011=a1009+a1010,而a1008+a1009+a1010+a1011=18,∴a1+a2018=9,∴S2018=(a1+a2018)×2018=9081,故选C.7.B【试题解析】由S13=+=0,得a13=12,则a1+12d=12,得d=2,∴数列{a n}的通项公式为a n=-12+(n-1)×2=2n-14,由2n-14>0,得n>7,即使得a n>0的最小正整数n为8,故选B.8.C【试题解析】∵等差数列{a n}中,S17>0,S18<0,∴a9>0,a9+a10<0,∴a10<0,∴数列的前9项和最大.9.B【试题解析】∵a n+1=a n+2,∴a n+1-a n=2,∴{a n}是首项为3,公差为2的等差数列,∴S10=10×3+×2=120,故选B.10.C【试题解析】由题意知,a1+a2,a3+a4,a5+a6,a7+a8成等比数列,所以a5+a6=2×2=4,a7+a8=4×2=8,所以a5+a6+a7+a8=4+8=12.选C.11.D【试题解析】当n≥2时,a n=S n-S n-1=2n-c-(2n-1-c)=2n-1.∵{a n}是等比数列,∴当n=1时,a1=S1=2-c也满足上式,∴2-c=20=1,∴c=1,∴a n=2n-1.∴log2a1+log2a2+…+log2an=log2(a1a2…a n)=log2(20×21×…×2n-1)=log220+1+2+…+n-1=-=10,解得n=5.12.D【试题解析】由正项数列{a n}的“匀称”值的定义,得G1=a1=3;G2=+=4,即a2=;G3=++=5,即a3=;…….故数列{an}的通项公式为a n=+,所以a10=,故选D.13.3∶4【试题解析】显然等比数列{a n}的公比q≠1,则由=--=1+q5=⇒q5=-,故=--=--=----=.故S15∶S5=3∶4.14.+【试题解析】由题意,a n-a n+1+1=0,∴a n+1-a n=1,∴{a n}为等差数列,且a1=1,d=1,∴an =1+(n-1)×1=n,∴Sn=+,∴=+=2-+,∴++…+=21-+-+…+-+=+.15.1-【试题解析】由2a1+22a2+23a3+…+2n a n=n(n∈N*),可得2a1+22a2+23a3+…+2n an+2n+1an+1=n+1,两式相减得2n+1an+1=1,∴an+1=+.∵当n=1时,2a1=1,∴a1=,∴{an}是首项a1=,公比q=的等比数列,则数列{a n}的前n项和S n=--=1-.16.③【试题解析】①当a1=,d=-,a n>0时,依题意,a n=,这一数列不是有穷数列,故不正确;②当d>0,a1>0时,∵an+1=±+,∴这一数列不一定是递增数列,故不正确;③∵a1=1,d=3,∴a2=±+=±2,当a2=2时,a3=±+=±,故正确;④∵a1=0,∴=a1+d=d,∴d≥0,而-<0,故不正确.综上所述,③正确.17.解:(1)由题意知=a1a9,即(2+2d)2=2×(2+8d),即d2-2d=0,∴d=2或d =0(舍),∴an=2n.(2)-1=22n-1=4n-1,∴S n=41+42+43+…+4n-n=(4n-1)-n.18.解:(1)由已知得a1+a2+a3=7,a1+3+a3+4=2×3a2,可得a2=2.设数列{a n}的公比为q,由a2=2,可得a1=,a3=2q,∵S3=7,∴+2+2q=7,即2q2-5q+2=0,解得q=2或q=.由题意知q>1,∴q=2,∴a1=1,故数列{an}的通项公式为an=2n-1.(2)∵b n=ln a3n+1,a3n+1=23n,∴b n=ln 23n=3n ln 2,∴b n+1-b n=3ln 2,故数列{b n}为等差数列,∴T n=b1+b2+…+b n=+=+=+ln 2,故T n =+ln 2.19.解:(1)由a1=2,a n+1=2a n,得a n=2n.由题意知,当n=1时,b1=b2-1,故b2=2.易知当n≥2时,b n=b n+1-b n,整理得+=+(n≥2),所以b n=n(n≥2).又b1=1也满足上式,所以bn=n.(2)由(1)知,a n b n=n·2n,所以T n=2+2×22+3×23+…+n×2n,2T n=22+2×23+3×24+…+(n-1)×2n+n×2n+1,所以T n-2T n=-T n=2+22+23+…+2n-n×2n+1=(1-n)2n+1-2,所以T n=(n-1)2n+1+2.20.解:(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q,由a1=3,b1=1,b2+S2=12,a3=b3,得+++=,=+,又q>0,∴=,=,∴数列{an}的通项公式为a n=3+3(n-1)=3n,数列{b n}的通项公式为b n=3n-1.(2)证明:由(1)知a n=3n,则S n=+,∴=+=-+,∴Tn =×1-+×-+×-+…+×-+=1-+<.21.解:(1)设等差数列的公差为d,则依题意有+=,+=+,解得=,=,所以数列的通项公式为a n=2n-1.(2)因为b n=+=--+,所以S n=-+-+…+--+=1-+.令1-+>,解得n>1009,所以满足条件的最小正整数n为1010.22.解:(1)当n≥2时,a n=S n-S n-1=2a n-2a n-1,得a n=2a n-1;当n=1时,a1=S1=2a1-2,得a1=2.因此数列{a n}为等比数列,且首项为2,公比为2,∴通项公式为an=2n.(2)∵f(x)=,f(b n+1)=--,∴+=--,∴+=+.∴bn+1=bn+3,即bn+1-bn=3.又∵b1=2,∴{bn}是以2为首项,3为公差的等差数列,∴bn =3n-1.∴cn==-,T n =+++…+--+-①,T n =+++…+-+-+②,①-②得Tn =1++++…+--+,即T n=1+3×-----+,即T n=1+----+,∴Tn =2+3----=2+3----=5-+.单元测评(三)1.B【试题解析】不等式-3x2+7x-2<0可化为3x2-7x+2>0,方程3x2-7x+2=0的两根为x1=,x2=2,则不等式3x2-7x+2>0的解集是<或>,故选B.2.D【试题解析】取a=-2,b=1,可排除选项A,B,C;由a<b,得a-b<0,不等式a<b两边都乘-,得->-,故D正确.故选D.3.A【试题解析】当x=y=0时,3x+2y+5=5>0,则原点一侧对应的不等式是3x+2y+5>0,可以验证仅有点(-3,4)满足3x+2y+5>0,故选A.4.C【试题解析】如图,画出约束条件表示的可行域,由+-=,=-,得=,=-,即C(3,-2),由图可知,当直线3x+y-z=0过点C(3,-2)时,z取得最大值,z max=3×3-2=7.5.D【试题解析】不等式<可化为->0,即2x(x-2)>0,方程2x(x-2)=0的两根为x1=0,x2=2,则不等式2x(x-2)>0的解集是{x|x<0或x>2},故选D.6.C【试题解析】因为x>0,y>0,所以x+y=(x+y)+=5++≥5+2·=9,当且仅当=,即x=3,y=6时,等号成立,故选C.7.B【试题解析】由直线kx-y=0,2x+ky-2=0与x轴围成的三角形区域如图,易知A的坐标为(1,0).联立-=,+-=,解得B+,+,则S△OAB=×1×+=+=+≤·=,当且仅当k=,即k=时上式取等号,故选B.8.C【试题解析】构造函数f(x)=x2+(a2-1)x+a-2,因为方程x2+(a2-1)x +a-2=0的一根比1大且另一根比1小,所以f(1)<0,即a2+a-2<0,解得-2<a<1,故选C.9.A【试题解析】不等式x2-4x-2-a>0在区间(1,4)内有解等价于当x∈(1,4)时a<(x2-4x-2)max,令g(x)=x2-4x-2,x∈(1,4),则g(x)<g(4)=-2,所以a<-2.10.B【试题解析】画出约束条件表示的可行域(如图所示).显然,当直线z=ax+by过点A(2,1)时,z取得最小值,即2=2a+b,所以2-2a=b,所以a2+b2=a2+(2-2a)2=5a2-8a+20.构造函数m(a)=5a2-8a+20(>a >0),利用二次函数求最值,显然函数m(a)=5a2-8a+20的最小值是- =4,即a2+b2的最小值为4.故选B.11.A【试题解析】以C为坐标原点建立直角坐标系(如图),则直线AB的方程为+=1,设点P的坐标为(m,n),则0≤m≤4,0≤n≤2,+=1,由+≥2·=,得mn≤2,故AB边上的点P到边AC,BC的距离的乘积的取值范围是[0,2],故选A.12.C【试题解析】由实数x,y满足xy-3=x+y,且x>1,可得y=+-,则y(x+8)=++-,令t=x-1(t>0),则有x=t+1,则y(x+8)=++=t ++13≥2·+13=12+13=25,当且仅当t=6,即x=7时取等号,此时y(x+8)取得最小值25.13.(-4,0]【试题解析】当a=0时,f(x)=-1<0恒成立,故a=0符合题意;当a≠0时,由题意得<,=+<⇒<,-<<⇒-4<a<0.综上所述,a的取值范围是-4<a≤0.14.1【试题解析】作出不等式组表示的平面区域(如图所示),把z=3x+y变形为y=-3x+z,则当直线y=-3x+z经过点(0,1)时,z最小,将(0,1)代入z=3x+y,得z min=1,即z=3x+y的最小值为1.15.5+2【试题解析】∵y=log a x的图像恒过定点(1,0),∴函数y=log a(x +4)-2的图像恒过定点A(-3,-2),把点A的坐标代入直线方程得m×(-3)+n×(-2)+1=0,即3m+2n=1,又mn>0,∴m>0,n>0,∴+=(3m+2n)+=5++≥5+2·=5+2,当且仅当=时,等号成立,故+的最小值为5+2.16.[-4,3]【试题解析】原不等式可化为(x-a)(x-1)≤0,当a<1时,不等式的解集为[a,1],此时只要a≥-4即可,即-4≤a<1;当a=1时,不等式的解为x=1,此时符合要求;当a>1时,不等式的解集为[1,a],此时只要a≤3即可,即1<a≤3.综上可得,-4≤a≤3.17.解:(1)当a=-2时,不等式为-2x2-3x+2>0,即2x2+3x-2<0,方程2x2+3x-2=0的两根为x1=-2,x2=,∴不等式2x2+3x-2<0的解集为-<<.(2)由题意知1,b是方程ax2-3x+2=0的两根,∴a-3+2=0,即a=1,又1×b =,∴b=2.18.解:方程x2-(m+m2)x+m3=0的解为x1=m和x2=m2.二次函数y=x2-(m+m2)x+m3的图像开口向上,所以①当m=0或1时,原不等式的解集为⌀;②当0<m<1时,原不等式的解集为{x|m2<x<m};③当m<0或m>1时,原不等式的解集为{x|m<x<m2}.19.解:(1)S=(x+20)×+=8x++4160,x>0.(2)∵x>0,∴S≥2+4160=1600+4160=5760,当且仅当8x=,即x=100时取等号.故要使公园所占面积最小,则休闲区A1B1C1D1的长应为100米,宽为40米.20.解:设生产甲产品x吨,生产乙产品y吨,在一个生产周期内该企业获得的利润为z万元,。

2020年高中数学 人教A版 必修5 课后作业本《等差数列的前n项和公式的性质及应用》(含答案解析)

2020年高中数学 人教A版 必修5 课后作业本《等差数列的前n项和公式的性质及应用》(含答案解析)

2020年高中数学 人教A 版 必修5 课后作业本《等差数列的前n 项和公式的性质及应用》一、选择题1.设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( )A .5B .7C .9D .112.数列{a n }为等差数列,若a 1=1,d=2,S k +2-S k =24,则k=( )A .8B .7C .6D .53.记等差数列{a n }的前n 项和为S n ,若a 1=12,S 4=20,则S 6=( ) A .16 B .24 C .36 D . 484.设{a n }是等差数列,若a 2=3,a 7=13,则数列{a n }的前8项和为( )A .128B .80C .64D .565.数列{a n }是等差数列,a 1+a 2+a 3=-24,a 18+a 19+a 20=78,则此数列的前20项和等于( )A .160B .180C .200D .2206.若一个等差数列的前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )A .13项B .12项C .11项D .10项7.等差数列{a n }的前n 项和为S n ,已知a m-1+a m +1-a 2m =0,S 2m-1=38,则m=( )A .38B .20C .10D .9二、填空题8.有两个等差数列{a n },{b n },它们的前n 项和分别为S n 和T n .若S n T n =2n +1n +2,则a 8b 7等于________.9.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,以S n 表示{a n }的前n 项和,则使得S n 达到最大值的n 是________.10.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为________.11.已知等差数列{a n },{b n }的前n 项和分别为A n ,B n ,且满足A n B n =2n n +3,则a 1+a 2+a 12b 2+b 4+b 9=________.12.数列{a n }的通项公式a n =ncos nπ2,其前n 项和为S n ,则S 2 016等于________.三、解答题13.设正项数列{a n }的前n 项和为S n ,并且对于任意n ∈N *,a n 与1的等差中项等于S n ,求数列{a n }的通项公式.14.已知等差数列{a n }中,a 1=1,a 3=-3.(1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值.15.某电站沿一条公路竖立电线杆,相邻两根电线杆的距离都是50 m ,最远一根电线杆距离电站1 550 m ,一汽车每次从电站运出3根电线杆供应施工.若该汽车往返运输总行程为17 500 m ,共竖立多少根电线杆?第一根电线杆距离电站多少米?16.已知数列{a n },a n ∈N *,S n 是其前n 项和,S n =18(a n +2)2. (1)求证{a n }是等差数列;(2)设b n =12a n -30,求数列{b n }的前n 项和的最小值.答案解析1.答案为:A ;解析:a 1+a 3+a 5=3a 3=3⇒a 3=1,S 5=5a 1+a 52=5a 3=5.2.答案为:D ;解析:∵S k +2-S k =a k +1+a k +2=a 1+kd +a 1+(k +1)d =2a 1+(2k +1)d=2×1+(2k +1)×2=4k+4=24,∴k=5.3.答案为:D ;解析:设数列{a n }的公差为d ,则S n =n 2+n n -12d , ∴S 4=2+6d=20,∴d=3,∴S 6=3+15d=48.4.答案为:C ;解析:设数列{a n }的前n 项和为S n ,则S 8=8a 1+a 82=8a 2+a 72=8×3+132=64.5.答案为:B ;解析:∵{a n }是等差数列,∴a 1+a 20=a 2+a 19=a 3+a 18.又a 1+a 2+a 3=-24,a 18+a 19+a 20=78,∴a 1+a 20+a 2+a 19+a 3+a 18=54.∴3(a 1+a 20)=54.∴a 1+a 20=18.∴S 20=20a 1+a 202=180.6.答案为:A ;解析:∵a 1+a 2+a 3=34,① a n +a n-1+a n-2=146,②又∵a 1+a n =a 2+a n-1=a 3+a n-2,∴①+②得3(a 1+a n )=180,∴a 1+a n =60.③ S n =a 1+a n ·n 2=390.④ 将③代入④中得n=13.7.答案为:C ;解析:由等差数列的性质,得a m-1+a m +1=2a m ,∴2a m =a 2m .由题意得a m ≠0,∴a m =2.又S 2m-1=2m -1a 1+a 2m -12=2a m 2m -12=2(2m-1)=38,∴m=10.8.答案为:3115; 解析:由{a n },{b n }是等差数列,S n T n =2n +1n +2,不妨设S n =kn(2n +1),T n =kn(n +2)(k≠0), 则a n =3k +4k(n-1)=4kn-k ,b n =3k +2k(n-1)=2kn +k.所以a 8b 7=32k -k 14k +k =3115.9.答案为:20;解析:由已知得3a 3=105,3a 4=99,∴a 3=35,a 4=33,∴d=-2,a n =a 4+(n-4)(-2)=41-2n ,由⎩⎪⎨⎪⎧a n ≥0a n +1<0,得n=20.10.答案为:3;解析:S 奇=a 1+a 3+a 5+a 7+a 9=15,S 偶=a 2+a 4+a 6+a 8+a 10=30,∴S 偶-S 奇=5d=15,∴d=3.11.答案为:32; 解析:a 1+a 2+a 12b 2+b 4+b 9=3a 1+12d 13b 1+12d 2=a 5b 5=a 1+a 92b 1+b 92=9×a 1+a 929×b 1+b 92=A 9B 9=2×99+3=32.12.答案为:1 008;解析:由题意知,a 1+a 2+a 3+a 4=2,a 5+a 6+a 7+a 8=2,…,a 4k +1+a 4k +2+a 4k +3+a 4k +4=2,k ∈N ,故S 2 016=504×2=1 008.13.解:由题意知,S n =a n +12,得:S n =a n +124, ∴a 1=S 1=1,又∵a n +1=S n +1-S n =14[(a n +1+1)2-(a n +1)2], ∴(a n +1-1)2-(a n +1)2=0.即(a n +1+a n )(a n +1-a n -2)=0,∵a n >0,∴a n +1-a n =2,∴{a n }是以1为首项,2为公差的等差数列.∴a n =2n-1.14.解:(1)设等差数列{}a n 的公差为d ,则a n =a 1+(n-1)d.由a 1=1,a 3=-3可得1+2d=-3,解得d=-2.从而a n =1+(n-1)×(-2)=3-2n.(2)由(1)可知a n =3-2n.所以S n =n[1+3-2n ]2=2n-n 2. 进而由S k =-35可得2k-k 2=-35,即k 2-2k-35=0.解得k=7或k=-5.又k ∈N *,故k=7为所求结果.15.解:由题意知汽车逐趟(由近及远)往返运输行程组成一个等差数列,记为{a n },则a n =1 550×2=3 100,d=50×3×2=300,S n =17 500.由等差数列的通项公式及前n 项和公式,得⎩⎪⎨⎪⎧ a 1+n -1×300=3 100, ①na 1+n n -12×300=17 500. ②由①得a 1=3 400-300n.代入②得n(3 400-300n)+150n(n-1)-17 500=0,整理得3n 2-65n +350=0,解得n=10或n=353(舍去), 所以a 1=3 400-300×10=400.故汽车拉了10趟,共拉电线杆3×10=30(根),最近的一趟往返行程400 m ,第一根电线杆距离电站12×400-100=100(m). 所以共竖立了30根电线杆,第一根电线杆距离电站100 m.16.解:(1)证明:当n=1时,a 1=S 1=18(a 1+2)2,解得a 1=2. 当n≥2时,a n =S n -S n-1=18(a n +2)2-18(a n-1+2)2, 即8a n =(a n +2)2-(a n-1+2)2,整理得,(a n -2)2-(a n-1+2)2=0,即(a n +a n-1)(a n -a n-1-4)=0.∵a n ∈N *,∴a n +a n-1>0,∴a n -a n-1-4=0,即a n -a n-1=4(n≥2).故{a n }是以2为首项,4为公差的等差数列.(2)设{b n }的前n 项和为T n ,∵b n =12a n -30,且由(1)知a n =2+(n-1)×4=4n -2, ∴b n =12(4n-2)-30=2n-31, 故数列{b n }是单调递增的等差数列.令2n-31=0,得n=1512, ∵n ∈N *,∴当n≤15时,b n <0;当n≥16时,b n >0,即b 1<b 2<…<b 15<0<b 16<b 17<…,当n=15时,T n 取得最小值,最小值为T 15=-29-12×15=-225.。

高中数学人教版必修5课后习题答案[电子档]之欧阳语创编

高中数学人教版必修5课后习题答案[电子档]之欧阳语创编

欧阳语创编高中数学必修5课后习题答案欧阳语创编第二章数列2.1数列的概念与简单表示法练习(P31)2、前5项分别是:1,0,1,0,1--.3、例1(1)1(2,)1(21,)n n m m N na n m m N n⎧-=∈⎪⎪=⎨⎪=-∈⎪⎩**; (2)2(2,)0(21,)n n m m N a n m m N ⎧=∈⎪=⎨=-∈⎪⎩**说明:此题是通项公式不唯一的题目,鼓励学生说出各种可能的表达形式,并举出其他可能的通项公式表达形式不唯一的例子.4、(1)1()21n a n Z n +=∈-; (2)(1)()2n n a n Z n +-=∈; (3)121()2n n a n Z +-=∈习题2.1 A 组(P33)1、(1)2,3,5,7,11,13,17,19;(2) (3)1,1.7,1.73,1.732,…1.732050; 2,1.8,1.74,1.733,…,1.732051.2、(1)11111,,,,491625; (2)2,5,10,17,26--.3、(1)(1),4-,9,(16-),25,(36-),49; 12(1)n n a n +=-; (2)1),2; n a =.4、(1)1,3,13,53,2132; (2)141,5,,,5454--.5、对应的答案分别是:(1)16,21;54n a n =-;(2)10,13;32n a n =-;(3)24,35;22n a n n =+.6、15,21,28; 1n n a a n -=+.习题2.1 B 组(P34)1、前5项是1,9,73,585,4681.该数列的递推公式是:1118,1n n a a a +=+=.通项公式是:817n n a -=.2、110(10.72)10.072a =⨯+=﹪; 2210(10.72)10.144518a =⨯+=﹪; 3310(10.72)10.217559a =⨯+=﹪; 10(10.72)n n a =⨯+﹪.3、(1)1,2,3,5,8; (2)358132,,,,2358.2.2等差数列练习(P39)1、表格第一行依次应填:0.5,15.5,3.75;表格第二行依次应填:15,11-,24-.2、152(1)213n a n n =+-=+,1033a =.3、4n c n =4、(1)是,首项是11m a a md +=+,公差不变,仍为d ;(2)是,首项是1a ,公差2d ;(3)仍然是等差数列;首项是716a a d =+;公差为7d .5、(1)因为5375a a a a -=-,所以5372a a a =+. 同理有5192a a a =+也成立;(2)112(1)n n n a a a n -+=+>成立;2(0)n n k n k a a a n k -+=+>>也成立.习题2.2 A 组(P40)1、(1)29n a =; (2)10n =; (3)3d =; (4)110a =.2、略.3、60︒.4、2℃;11-℃;37-℃.5、(1)9.8s t =; (2)588 cm ,5 s.习题2.2 B 组(P40)1、(1)从表中的数据看,基本上是一个等差数列,公差约为2000,52010200280.2610a a d =+=⨯再加上原有的沙化面积5910⨯,答案为59.2610⨯; (2)2021年底,沙化面积开始小于52810 hm ⨯. 2、略.2.3等差数列的前n 项和练习(P45)1、(1)88-; (2)604.5.2、59,11265,112n n a n n ⎧=⎪⎪=⎨+⎪>⎪⎩3、元素个数是30,元素和为900.习题2.3 A 组(P46)1、(1)(1)n n +; (2)2n ; (3)180个,和为98550; (4)900个,和为494550.2、(1)将120,54,999n n a a S ===代入1()2n n n a a S +=,并解得27n =; 将120,54,27n a a n ===代入1(1)n a a n d =+-,并解得1713d =.(2)将1,37,6293n d n S ===代入1(1)n a a n d =+-,1()2n n n a a S +=,得111237()6292n n a a a a =+⎧⎪⎨+=⎪⎩;解这个方程组,得111,23n a a ==.(3)将151,,566n a d S ==-=-代入1(1)2n n n S na d -=+,并解得15n =;将151,,1566a d n ==-=代入1(1)n a a n d =+-,得32n a =-.(4)将2,15,10n d n a ===-代入1(1)n a a n d =+-,并解得138a =-;将138,10,15n a a n =-=-=代入1()2n n n a a S +=,得360n S =-. 3、44.5510⨯m. 4、4.5、这些数的通项公式:7(1)2n -+,项数是14,和为665.6、1472.习题2.3 B 组(P46)1、每个月的维修费实际上是呈等差数列的. 代入等差数列前n 项和公式,求出5年内的总共的维修费,即再加上购买费,除以天数即可. 答案:292元.2、本题的解法有很多,可以直接代入公式化简,但是这种比较繁琐. 现提供2个证明方法供参考. (1)由 61615S a d =+,1211266S a d =+,18118153S a d =+ 可得61812126()2()S S S S S +-=-. (2)1261212126()()S S a a a a a a -=+++-+++7812a a a =+++126(6)(6)(6)a d a d a d =++++++126()36a a a d =++++636S d =+同样可得:1812672S S S d -=+,因此61812126()2()S S S S S +-=-.3、(1)首先求出最后一辆车出发的时间4时20分;所以到下午6时,最后一辆车行驶了1小时40分.(2)先求出15辆车总共的行驶时间,第一辆车共行驶4小时,以后车辆行驶时间依次递减,最后一辆行驶1小时40分. 各辆车的行驶时间呈等差数列分布,代入前n 项和公式,这个车队所有车的行驶时间为2418531522S +=⨯= h. 乘以车速60 km/h ,得行驶总路程为2550 km. 4、数列1(1)n n ⎧⎫⎨⎬+⎩⎭的通项公式为111(1)1n a n n n n ==-++ 所以111111111()()()()1122334111n nS n n n n =-+-+-++-=-=+++ 类似地,我们可以求出通项公式为1111()()n a n n k k n n k==-++的数列的前n 项和.2.4等比数列练习(P52)1、 2、由题意可知,每一轮被感染的计算机台数构成一个首项为180a =,公比为20q =的等比数列,则第5轮被感染的计算机台数5a 为 447518020 1.2810a a q ==⨯=⨯.3、(1)将数列{}n a 中的前k 项去掉,剩余的数列为12,,k k a a ++. 令,1,2,k i b a i +==,则数列12,,k k a a ++可视为12,,b b .因为11(1)i k i i k ib a q i b a ++++==≥,所以,{}n b 是等比数列,即12,,k k a a ++是等比数列.(2){}n a 中的所有奇数列是135,,,a a a ,则235211321(1)k k a a a q k a a a +-=====≥.所以,数列135,,,a a a 是以1a 为首项,2q 为公比的等比数列.(3){}n a 中每隔10项取出一项组成的数列是11223,,,a a a ,则1112231111121110(1)k k a a a q k a a a +-=====≥所以,数列11223,,,a a a 是以1a 为首项,11q 为公比的等比数列.猜想:在数列{}n a 中每隔m (m 是一个正整数)取出一项,组成一个新的数列,这个数列是以1a 为首项,1m q +为公比的等比数列. 4、(1)设{}n a 的公比为q ,则24228511()a a q a q ==,而262837111a a a q a q a q ⋅=⋅=所以2537a a a =⋅,同理2519a a a =⋅ (2)用上面的方法不难证明211(1)nn n a a a n -+=⋅>. 由此得出,n a 是1n a -和1n a +的等比中项.同理:可证明,2(0)nn k n k a a a n k -+=⋅>>. 由此得出,n a 是n k a -和n k a +的等比中项(0)n k >>.5、(1)设n 年后这辆车的价值为n a ,则13.5(110)n n a =-﹪. (2)4413.5(110)88573a =-≈﹪(元). 用满4年后卖掉这辆车,能得到约88573元.习题2.4 A 组(P53)1、(1)可由341a a q =,得11a =-,6671(1)(3)729a a q ==-⨯-=-. 也可由671a a q =,341a a q =,得337427(3)729a a q ==⨯-=-(2)由131188a q a q =⎧⎪⎨=⎪⎩,解得12723a q =⎧⎪⎨=⎪⎩,或12723a q =-⎧⎪⎨=-⎪⎩(3)由416146a q a q ⎧=⎪⎨=⎪⎩,解得232q =,862291173692a a q a q q a q ==⋅==⨯=还可由579,,a a a 也成等比数列,即2759a a a =,得22795694a a a ===.(4)由411311156a q a a q a q ⎧-=⎪⎨-=⎪⎩①②①的两边分别除以②的两边,得2152q q +=,由此解得12q =或2q =. 当12q =时,116a =-. 此时2314a a q ==-. 当2q =时,11a =. 此时2314a a q ==.2、设n 年后,需退耕n a ,则{}n a 是一个等比数列,其中18(110),0.1a q =+=﹪.那么2005年需退耕5551(1)8(110)13a a q =+=+≈﹪(万公顷) 3、若{}n a 是各项均为正数的等比数列,则首项1a 和公比q 都是正数. 由11n n a a q-=11(1)22)n n qq --===.那么数列{}n a为首项,12q 为公比的等比数列.4、这张报纸的厚度为0.05 mm ,对折一次后厚度为0.05×2 mm ,再对折后厚度为0.05×22 mm ,再对折后厚度为0.05×32 mm. 设00.05a =,对折n 次后报纸的厚度为n a ,则{}n a 是一个等比数列,公比2q =. 对折50次后,报纸的厚度为505050131000.052 5.6310 mm 5.6310 m a a q ==⨯≈⨯=⨯这时报纸的厚度已经超出了地球和月球的平均距离(约83.8410 m ⨯),所以能够在地球和月球之间建一座桥.5、设年平均增长率为1,105q a =,n 年后空气质量为良的天数为n a ,则{}n a 是一个等比数列.由3240a =,得2231(1)105(1)240a a q q =+=+=,解得10.51q =≈ 6、由已知条件知,,2a bA G +==,且02a b A G +-===所以有A G ≥,等号成立的条件是a b =. 而,a b 是互异正数,所以一定有A G >.7、(1)2±; (2)22()ab a b ±+. 8、(1)27,81; (2)80,40,20,10.习题2.4 B 组(P54)1、证明:由等比数列通项公式,得11m m a a q -=,11n n a a q -=,其中1,0a q ≠所以 1111m m nm n n a a q q a a q ---== 2、(1)设生物体死亡时,体内每克组织中的碳14的原子核数为1个单位,年衰变率为q ,n 年后的残留量为n a ,则{}n a 是一个等比数列. 由碳14的半衰期为5730则 57305730112n a a qq===,解得157301()0.9998792q =≈ (2)设动物约在距今n 年前死亡,由0.6n a =,得10.9998790.6n n a a q ===. 解得 4221n ≈,所以动物约在距今4221年前死亡.3、在等差数列1,2,3,…中,有7108917a a a a +==+,1040203050a a a a +==+ 由此可以猜想,在等差数列{}n a 中若*(,,,)k s p q k s p q N +=+∈,则k s p q a a a a +=+. 从等差数列与函数之间的联系的角度来分析这个 问题:由等差数列{}n a 的图象,可以看出k p a k a p =,s q a s a q= 根据等式的性质,有k s p q a a k sa a p q++=++,所以k s p q a a a a +=+. 猜想对于等比数列{}n a ,类似的性质为:若*(,,,)k s p q k s p q N +=+∈,则k s p q a a a a ⋅=⋅.2.5等比数列的前n 项和练习(P58) 1、(1)6616(1)3(12)189112a q S q --===--. (2)1112.7()9190311451()3n n a a qS q----===----. 2、设这个等比数列的公比为q 所以 101256710()()S a a a a a a =+++++++555S q S =+55(1)q S =+50=同理 1015105S S q S =+.因为 510S =,所以由①得 5101051416S q q S =-=⇒=代入②,得1015105501610210S S q S =+=+⨯=.3、该市近10年每年的国内生产总值构成一个等比数列,首项12000a =,公比 1.1q =设近10年的国内生产总值是10S ,则10102000(1 1.1)31874.81 1.1S -=≈-(亿元)习题2.5 A 组(P61)1、(1)由34164641a q a ===--,解得4q =-,所以144164(4)5111(4)a a q S q ---⨯-===---. (2)因为2131233(1)S a a a a q q --=++=++,所以2113q q --++=,即2210q q --=解这个方程,得1q =或12q =-. 当1q =时,132a =;当12q =-时,16a =.2、这5年的产值是一个以1138 1.1151.8a =⨯=为首项, 1.1q =为公比的等比数列所以5515(1)151.8(1 1.1)926.75411 1.1a q S q -⨯-==≈--(万元) 3、(1)第1个正方形的面积为42cm ,第2个正方形的面积为22cm ,…,这是一个以14a =为首项,12q =为公比的等比数列所以第10个正方形的面积为99710114()22a a q -==⨯=(2cm )(2)这10个正方形的面积和为77110101422821112a a qS q---⨯-===---(2cm )4、(1)当1a =时,2(1)(1)(2)()12(1)2n n na a a n n --+-++-=-----=- 当1a ≠时,22(1)(2)()()(12)n n a a a n a a a n -+-++-=+++-+++(1)(1)12n a a n n a -+=-- (2)1212(235)(435)(35)2(12)3(555)n n n n -------⨯+-⨯+-⨯=+++-+++11(1)5(15)323(1)(15)2154n n n n n n ----+-⨯-⨯=+--- (3)设21123n n S x x nx -=++++……①则 212(1)n n n xS x x n x nx -=+++-+……②①-②得,21(1)1n n n x S x x x nx --=++++-……③当1x =时,(1)1232n n n S n +=++++=;当1x ≠时,由③得,21(1)1n nn x nx S x x-=---5、(1)第10次着地时,经过的路程为91002(50251002)-++++⨯1291911002100(222)2(12)100200299.61 (m)12------=+⨯+++-=+⨯≈- (2)设第n 次着地时,经过的路程为293.75 m ,则1(1)12(1)12(12)1002100(222)100200293.7512n n ---------+⨯+++=+⨯=-所以130********.75n --⨯=,解得120.03125n -=,所以15n -=-,则6n =6、证明:因为396,,S S S 成等差数列,所以公比1q ≠,且9362S S S =+即,936111(1)(1)(1)2111a q a q a q q q q---⨯=+--- 于是,9362q q q =+,即6321q q =+ 上式两边同乘以1a q ,得741112a q a q a q =+ 即,8252a a a =+,故285,,a a a 成等差数列习题2.5 B 组(P62)1、证明:11111()(1())1n n n n n n n n n b b b a b a a a b b a a b aa ab a+++---+++=+++==--2、证明:因为7714789141277()S S a a a q a a a q S -=+++=+++=141421141516211277()S S a a a q a a a q S -=+++=+++=所以71472114,,S S S --成等比数列3、(1)环保部门每年对废旧物资的回收量构成一个等比数列,首项为1100a =,公比为 1.2q =.所以,2010年能回收的废旧物资为89100 1.2430a =⨯≈(t )(2)从2002年到2010年底,能回收的废旧物资为9919(1)100(1 1.2)208011 1.2a q S q --==≈--(t )可节约的土地为165048320⨯=(2m )4、(1)依教育储蓄的方式,应按照整存争取定期储蓄存款利率计息,免征利息税,且若每月固定存入a 元,连续存n 个月,计算利息的公式为()2a na n+⨯月利率. 因为整存整取定期储蓄存款年利率为2.52﹪,月利率为0.21﹪故到期3年时一次可支取本息共(505036)360.2118001869.932+⨯⨯⨯+=﹪(元)若连续存6年,应按五年期整存整取定期储蓄存款利率计息,具体计算略. (2)略.(3)每月存50元,连续存3年按照“零存整取”的方式,年利率为1.89﹪,且需支付20﹪的利息税 所以到期3年时一次可支取本息共1841.96元,比教育储蓄的方式少收益27.97元.(4)设每月应存入x 元,由教育储蓄的计算公式得36(36)0.2136100002x x x +⨯+=﹪ 解得267.39x ≈(元),即每月应存入267.39(元) (5)(6)(7)(8)略5、设每年应存入x 万元,则2004年初存入的钱到2010年底利和为7(12)x +﹪,2005年初存入的钱到2010年底利和为6(12)x +﹪,……,2010年初存入的钱到2010年底利和为(12)x +﹪.根据题意,76(12)(12)(12)40x x x ++++++=﹪﹪﹪根据等比数列前n 项和公式,得7(12)(1 1.02)401 1.02x +-=-﹪,解得52498x ≈(元)故,每年大约应存入52498元第二章 复习参考题A 组(P67)1、(1)B ; (2)B ; (3)B ; (4)A .2、(1)212n n n a -=; (2)12(1)(21)1(2)n n n a n +--=+; (3)7(101)9n n a =-; (4)1(1)n n a =+-或1cos n a n π=+.3、4、如果,,a b c 成等差数列,则5b =;如果,,a b c 成等比数列,则1b =,或1-.5、n a 按顺序输出的值为:12,36,108,324,972. 86093436sum =.6、81381.9(10.13)1396.3⨯+≈﹪(万) 7、从12月20日到次年的1月1日,共13天. 每天领取的奖品价值呈等差数列分布.110,100d a ==. 由1(1)2n n n S a n d-=+得:1313121001310208020002S ⨯=⨯+⨯=>.所以第二种领奖方式获奖者受益更多. 8、因为28374652a a a a a a a +=+=+=所以34567285450()2a a a a a a a +++++==+,则28180a a +=.9、容易得到101010,1012002n n na n S +==⨯=,得15n =.10、212212()()()n n n n S a a a a nd a nd a nd ++=+++=++++++2121()n a a a n nd S n d =++++⨯=+32122312(2)(2)(2)n n n n S a a a a nd a nd a nd ++=+++=++++++2121()22n a a a n nd S n d =++++⨯=+容易验证2132S S S =+. 所以,123,,S S S 也是等差数列,公差为2n d .11、221(1)(1)4(1)221a f x x x x x =+=+-++=--223(1)(1)4(1)267a f x x x x x =-=---+=-+因为{}n a 是等差数列,所以123,,a a a 也是等差数列. 所以,2132a a a =+. 即,20286x x =-+. 解得1x =或3x =. 当1x =时,1232,0,2a a a =-==. 由此可求出24n a n =-. 当3x =时,1232,0,2a a a ===-. 由此可求出42n a n =-.第二章 复习参考题B 组(P68)1、(1)B ; (2)D .2、(1)不成等差数列. 可以从图象上解释. ,,a b c 成等差,则通项公式为y pn q =+的形式,且,,a b c 位于同一直线上,而111,,a b c的通项公式却是1y pn q =+的形式,111,,a b c 不可能在同一直线上,因此肯定不是等差数列.(2)成等比数列. 因为,,a b c 成等比,有2b ac =. 又由于,,a b c 非零,两边同时取倒数,则有21111b ac a c==⨯. 所以,111,,a b c也成等比数列.3、体积分数:60.033(125)0.126⨯+≈﹪,质量分数:60.05(125)0.191⨯+≈﹪. 4、设工作时间为n ,三种付费方式的前n 项和分别为,,n n n A B C . 第一种付费方式为常数列;第二种付费方式为首项是4,公差也为4的等差数列;第三种付费方式为首项是0.4,公比为2的等比数列. 则38n A n =,2(1)44222n n n B n n n -=+⨯=+, 0.4(12)0.4(21)12n n n C -==--. 下面考察,,n n n A B C 看出10n <时,380.4(21)n n >-. 因此,当工作时间小于10天时,选用第一种付费方式.10n ≥时,,n n n n A C B C ≤≤因此,当工作时间大于10天时,选用第三种付费方式.5、第一星期选择A 种菜的人数为n ,即1a n =,选择B 种菜的人数为500a -.所以有以下关系式:2118030a a b =⨯+⨯﹪﹪3228030a a b =⨯+⨯﹪﹪……118030n n b a a b --=⨯+⨯﹪﹪500n n a b +=所以111502n n a a -=+,115003502n n n b a a -=-=-如果1300a =,则2300a =,3300a =,…,10300a = 6、解:由1223n n n a a a --=+得 1123()n n n n a a a a ---+=+以及1123(3)n n n n a a a a ----=-- 所以221213()37n n n n a a a a ---+=+=⨯,221213(1)(3)(1)13n n n n a a a a ----=--=-⨯.由以上两式得,11437(1)13n n n a --=⨯+-⨯所以,数列的通项公式是11137(1)134n n n a --⎡⎤=⨯+-⨯⎣⎦ 7、设这家牛奶厂每年应扣除x 万元消费基金2002年底剩余资金是1000(150)x +-﹪ 2003年底剩余资金是2[1000(150)](150)1000(150)(150)x x x x +-+-=+-+-﹪﹪﹪﹪ (5)年后达到资金54321000(150)(150)(150)(150)(150)2000x x x x +-+-+-+-+=﹪﹪﹪﹪﹪解得 459x ≈(万元)第三章不等式3.1不等关系与不等式练习(P74)1、(1)0a b +≥;(2)4h ≤;(3)(10)(10)3504L W L W ++=⎧⎨>⎩.2、这给两位数是57.3、(1)>;(2)<;(3)>;(4)<;习题3.1 A 组(P75)1、略.2、(1)24<;(2>3、证明:因为20,04x x >>,所以21104x x x ++>+>因为22(1)02x +>>,所以12x+>4、设A 型号帐篷有x 个,则B 型号帐篷有(5)x +个,050448054853(5)484(4)48x x x x x x >⎧⎪+>⎪⎪<⎪⎨<-<⎪⎪+<⎪+⎪⎩≥5、设方案的期限为n 年时,方案B 的投入不少于方案A 的投入.所以,(1)5105002n n n -+⨯≥即,2100n ≥.习题3.1 B 组(P75)1、(1)因为222259(56)30x x x x x ++-++=+>,所以2225956x x x x ++>++(2)因为222(3)(2)(4)(69)(68)10x x x x x x x ----=-+--+=>所以2(3)(2)(4)x x x ->--(3)因为322(1)(1)(1)0x x x x x --+=-+>,所以321x x x >-+ (4)因为22222212(1)1222(1)(1)10x y x y x y x y x y ++-+-=++-+-=-+-+>所以2212(1)x y x y ++>+-2、证明:因为0,0a b c d >>>>,所以0ac bd >>又因为0cd >,所以10cd >于是0a bd c>>>3、设安排甲种货箱x 节,乙种货箱y 节,总运费为z .所以352515301535115050x y x y x y +⎧⎪+⎨⎪+=⎩≥≥所以28x ≥,且30x ≤所以2822x y =⎧⎨=⎩,或2921x y =⎧⎨=⎩,或3020x y =⎧⎨=⎩ 所以共有三种方案,方案一安排甲种货箱28节,乙种货箱22节;方案二安排甲种货箱29节,乙种货箱21节;方案三安排甲种货箱30节,乙种货箱20节. 当3020x y =⎧⎨=⎩时,总运费0.5300.82031z =⨯+⨯=(万元),此时运费较少. 3.2一元二次不等式及其解法练习(P80) 1、(1)1013x x ⎧⎫-⎨⎬⎩⎭≤≤;(2)R ;(3){}2x x ≠;(4)12x x ⎧⎫≠⎨⎬⎩⎭; (5)31,2x x x ⎧⎫<->⎨⎬⎩⎭或;(6)54,43x x x ⎧⎫<>⎨⎬⎩⎭或;(7)503x x ⎧⎫-<<⎨⎬⎩⎭.2、(1)使2362y x x =-+的值等于0的x的集合是1⎧⎪⎨⎪⎪⎩⎭;使2362y x x =-+的值大于0的x的集合为11x x x ⎧⎪<>⎨⎪⎪⎩⎭或; 使2362y x x =-+的值小于0的x的集合是11x x ⎧⎪<<+⎨⎪⎪⎩⎭. (2)使225y x =-的值等于0的x 的集合{}5,5-;使225y x =-的值大于0的x 的集合为{}55x x -<<; 使225y x =-的值小于0的x 的集合是{}5,5x x x <->或.(3)因为抛物线2+610y x x =+的开口方向向上,且与x 轴无交点 所以使2+610y x x =+的等于0的集合为∅; 使2+610y x x =+的小于0的集合为∅; 使2+610y x x =+的大于0的集合为R.(4)使231212y x x =-+-的值等于0的x 的集合为{}2; 使231212y x x =-+-的值大于0的x 的集合为∅; 使231212y x x =-+-的值小于0的x 的集合为{}2x x ≠.习题3.2 A 组(P80)1、(1)35,22x x x ⎧⎫<->⎨⎬⎩⎭或;(2)x x ⎧⎪<<⎨⎪⎪⎩⎭; (3){}2,5x x x <->或;(4){}09x x <<.2、(1)解2490x x -+≥,因为200∆=-<,方程2490x x -+=无实数根所以不等式的解集是R ,所以y =R. (2)解2212180x x -+-≥,即2(3)0x -≤,所以3x =所以y ={}3x x =3、{33m m m <-->-+或;4、R.5、设能够在抛出点2 m 以上的位置最多停留t 秒.依题意,20122v t gt ->,即212 4.92t t ->. 这里0t >. 所以t 最大为2(精确到秒)答:能够在抛出点2 m 以上的位置最多停留2秒. 6、设每盏台灯售价x 元,则15[302(15)]400x x x ⎧⎨-->⎩≥. 即1520x <≤.所以售价{}1520x x x ∈<≤习题3.2 B 组(P81)1、(1)52x ⎧+⎪<<⎨⎪⎪⎩⎭;(2){}37x x <<;(3)∅;(4)113x x ⎧⎫<<⎨⎬⎩⎭. 2、由22(1)40m m ∆=--<,整理,得23210m m +->,因为方程23210m m +-=有两个实数根1-和13,所以11m <-,或213m >,m 的取值范围是11,3m m m ⎧⎫<->⎨⎬⎩⎭或.3、使函数213()324f x x x =--的值大于0的解集为3322x x x ⎧⎪<-<+⎨⎪⎪⎩⎭或.4、设风暴中心坐标为(,)a b ,则a =,所以22450b +<,即150150b -<<151)13.72=≈(h ),3001520=. 所以,经过约13.7小时码头将受到风暴的影响,影响时间为15小时.3.3二元一次不等式(组)与简单的线性规划问题练习(P86)1、B .2、D .3、B .4解:设家具厂每天生产A 类桌子x 张,B 类桌子y 张.对于A 类桌子,x 张桌子需要打磨10x min ,着色6x min ,上漆6x min 对于B 类桌子,y 张桌子需要打磨5y min ,着色12y min ,上漆9y min 而打磨工人每天最长工作时间是450min ,所以有105450x y +≤.类似地,612480x y +≤,69450x y +≤ 在实际问题中,0,0x y ≥≥;所以,题目中包含的限制条件为1054506124806945000x y x y x y x y +⎧⎪+⎪⎪+⎨⎪⎪⎪⎩≤≤≤≥≥练习(P91)1、(1)目标函数为2z x y =+,可行域如图所示,作出直线2y x z =-+,可知z 要取最大值,即直线经过点C 时,解方程组11x y y +=⎧⎨=-⎩得(2,1)C -,所以,max 222(1)3z x y =+=⨯+-=.(2)目标函数为35z x y =+,可行域如图所示,作出直线35z x y =+ 可知,直线经过点B 时,Z 取得最大值. 直线经过点A 时,Z 取得最小值. 解方程组153y x x y =+⎧⎨-=⎩,和15315y x x y =+⎧⎨+=⎩可得点(2,1)A --和点(1.5,2.5)B .所以max 3 1.55 2.517z =⨯+⨯=,min 3(2)5(1)11z =⨯-+⨯-=-2、设每月生产甲产品x 件,生产乙产品y 件,每月收入为z 元,目标函数为30002000z x y =+,需要满足的条件是2400250000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥,作直线30002000z x y =+,当直线经过点A 时,z 取得最大值. 解方程组24002500x y x y +=⎧⎨+=⎩可得点(200,100)A ,z 的最大值为800000元.习题3.3 A 组(P93)1、画图求解二元一次不等式:(1)2x y +≤;(2)22x y ->;(3)2y -≤;(4)3x ≥ 2、3解:设每周播放连续剧甲x 次,播放连续剧乙y 次,收视率为z . 目标函数为6020z x y =+,所以,题目中包含的限制条件为8040320600x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≥≥≥可行域如图. 解方程组80403206x y x y +⎧⎨+⎩==得点M 的坐标为(2,4),所以max 6020200z x y =+=(万)答:电视台每周应播放连续剧甲2次,播放连续剧乙4次,才能获得最高的收视率.4、设每周生产空调器x 台,彩电y 台,则生产冰箱120x y --台,产值为z . 则,目标函数为432(120)2240z x y x y x y =++--=++ 所以,题目中包含的限制条件为111(120)402341202000x y x y x y x y ⎧++--⎪⎪⎪--⎨⎪⎪⎪⎩≤≥≥≥即,312010000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥ 可行域如图,解方程组3120100x y x y +⎧⎨+⎩==得点M 的坐标为(10,90),所以max 2240350z x y =++=(千元)答:每周应生产空调器10台,彩电90台,冰箱20台,才能使产值最高,最高产值是350千元.习题3.3 B组(P93)1、画出二元一次不等式组2312 236x yx yxy+⎧⎪+>-⎪⎨⎪⎪⎩≤≥≥,所表示的区域如右图2、画出(21)(3)0x y x y+--+>表示的区域.3、设甲粮库要向A镇运送大米x吨、向B镇运送大米y吨,总运费为z. 则乙粮库要向A镇运送大米(70)x-吨、向B镇运送大米(110)y-吨,目标函数(总运费)为122025101512(70)208(110)609030200 z x y x y x y=⨯⨯+⨯⨯+⨯⨯-+⨯⨯-=++.所以,题目中包含的限制条件为100(70)(110)80 070x yx yxy+⎧⎪-+-⎪⎨⎪⎪⎩≤≤≤≤≥.所以当70,30x y==时,总运费最省min 37100z=(元)所以当0,100x y==时,总运费最不合理max 39200z=(元)使国家造成不该有的损失2100元.答:甲粮库要向A镇运送大米70吨,向B镇运送大米30吨,乙粮库要向A镇运送大米0吨,向B镇运送大米80吨,此时总运费最省,为37100元. 最不合理的调运方案是要向A镇运送大米0吨,向B镇运送大米100吨,乙粮库要向A镇运送大米70吨,向B镇运送大米10吨,此时总运费为39200元,使国家造成损失2100元.3.42 a b+≤练习(P100)1、因为0x>,所以12xx+=≥当且仅当1xx=时,即1x=时取等号,所以当1x=时,即1xx+的值最小,最小值是2.2、设两条直角边的长分别为,a b ,0,a >且0b >,因为直角三角形的面积等于50.即1502ab =,所以20a b +=≥,当且仅当10a b ==时取等号. 答:当两条直角边的长均为10时,两条直角边的和最小,最小值是20. 3、设矩形的长与宽分别为a cm ,b cm. 0a >,0b > 因为周长等于20,所以10a b +=所以2210()()2522a b S ab +===≤,当且仅当5a b ==时取等号.答:当矩形的长与宽均为5时,面积最大.4、设底面的长与宽分别为a m ,b m. 0a >,0b >因为体积等于323m ,高2m ,所以底面积为162m ,即16ab =所以用纸面积是222324()32323264S ab bc ac a b =++=++++=≥ 当且仅当4a b ==时取等号答:当底面的长与宽均为4米时,用纸最少.习题3.4 A 组(P100)1、(1)设两个正数为,a b ,则0,0a b >>,且36ab =所以12a b +==≥,当且仅当6a b ==时取等号. 答:当这两个正数均为6时,它们的和最小.(2)设两个正数为,a b ,依题意0,0a b >>,且18a b +=所以2218()()8122a b ab +==≤,当且仅当9a b ==时取等号.答:当这两个正数均为9时,它们的积最大. 2、设矩形的长为x m ,宽为y m ,菜园的面积为S 2m . 则230x y +=,S x y =⨯由基本不等式与不等式的性质,可得211219002252()222242x y S x y +=⨯⨯=⨯=≤. 当2x y =,即1515,2x y ==时,菜园的面积最大,最大面积是22522m .3、设矩形的长和宽分别为x 和y ,圆柱的侧面积为z ,因为2()36x y +=,即18x y +=.所以222()1622x y z x y πππ+=⨯⨯⨯=≤, 当x y =时,即长和宽均为9时,圆柱的侧面积最大.4、设房屋底面长为x m ,宽为y m ,总造价为z 元,则12xy =,12y x=123600312006800580048005800580034600z y x x x⨯=⨯+⨯+=++=≥当且仅当1236004800x x⨯=时,即3x =时,z 有最小值,最低总造价为34600元.习题3.4 B 组(P101)1、设矩形的长AB 为x ,由矩形()ABCD AB AD >的周长为24,可知,宽12AB x =-.设PC a =,则DP x a =-所以222(12)()x x a a -+-=,可得21272x x a x -+=,1272x DP x a x-=-=.所以ADP ∆的面积211272187272(12)66[()18]2x x x S x x x x x--+-=-=⨯=⨯-++由基本不等式与不等式的性质6[18]6(18108S ⨯-=⨯-=-≤当72x x=,即x =m 时,ADP ∆的面积最大,最大面积是(108-2m .2、过点C 作CD AB ⊥,交AB 延长线于点D . 设BCD α∠=,ACB β∠=,CD x =.在BCD ∆中,tan b c x α-=. 在ACD ∆中,tan()a cxαβ-+= 则tan()tan tan tan[()]1tan()tan αβαβαβααβα+-=+-=++⋅()()1a c b ca b x x a c b c a c b c x x x x----==----+⋅+=当且仅当()()a cbc x x --=,即x =时,tan β取得最大,从而视角也最大.第三章复习参考题A 组(P103)12、化简得{}23A x x =-<<,{}4,2B x x x =<->或,所以{}23A B x x =<<3、当0k <时,一元二次不等式23208kx kx +-<对一切实数x 都成立,即二次函数2328y kx kx =+-在x 轴下方,234(2)()08k k ∆=--<,解之得:30k -<<.当0k >时,二次函数2328y kx kx =+-开口朝上一元二次不等式23208kx kx +-<不可能对一切实数x 都成立,所以,30k -<<. 4、不等式组438000x y x y ++>⎧⎪<⎨⎪<⎩表示的平面区域的整点坐标是(1,1)--.5、设每天派出A 型车x 辆,B 型车y 辆,成本为z .所以070494860360x y x y x y ⎧⎪⎪⎨+⎪⎪+⎩≤≤≤≤≤≥,目标函数为160252z x y =+把160252z x y =+变形为40163252y x z =-+,得到斜率为4063-,在y 轴上的截距为1252z ,随z 变化的一族平行直线. 在可行域的整点中,点(5,2)M 使得z 取得最小值. 所以每天派出A 型车5辆,B 型车2辆,成本最小,最低成本为1304元.6、设扇形的半径是x ,扇形的弧长为y ,因为12S xy =扇形的周长为2Z x y =+=≥当2x y =,即x =y =Z 可以取得最小值,最小值为. 7、设扇形的半径是x ,扇形的弧长为y ,因为2P x y =+扇形的面积为221112(2)()244216x y P Z xy x y +===≤ 当2x y =,即4P x =,2P y =时,Z 可以取得最大值,半径为4P时扇形面积最大值为216P .8、设汽车的运输成本为y ,2()s say bv a sbv v v=+⨯=+当sasbv v=时,即v =c 时,y 有最小值. 2sa y sbv v =+≥2.当c >时,由函数say sbv v=+的单调性可知,v c =时y 有最小值,最小值为sasbc c+. 第三章复习参考题B 组(P103)1、D2、(1)32264x x x x ⎧⎫<--<<>⎨⎬⎩⎭或或(2)231334x x x x ⎧⎫-<>⎨⎬⎩⎭或或≤≤3、1m =4、设生产裤子x 条,裙子y 条,收益为z .则目标函数为2040z x y =+,所以约束条件为10210600x y x y x y x y +⎧⎪+⎪⎪+⎨⎪⎪⎪⎩≤≤≤≥≥5、因为22x y +是区域内的点到原点的距离的平方 所以,当240330x y x y -+=⎧⎨--=⎩即2,3A A x y ==时,22x y +的最大值为13.当4525x y ⎧=⎪⎪⎨⎪=⎪⎩时,22x y +最小,最小值是45. 6、按第一种策略购物,设第一次购物时的价格为1p ,购n kg ,第二次购物时的价格为2p ,仍购n kg ,按这种策略购物时两次购物的平均价格为121222p n p n p p n ++=. 若按第二种策略购物,第一次花m 元钱,能购1mp kg 物品,第二次仍花m 元钱,能购2m p kg 物品,两次购物的平均价格为12122211m m m p p p p =++ 比较两次购物的平均价格:221212121212121212121222()4()011222()2()p p p p p p p p p p p p p p p p p p p p +++---=-==++++≥所以,第一种策略的平均价格高于第二种策略的平均价格,因而,用第二种策略比较经济.一般地,如果是n 次购买同一种物品,用第二种策略购买比较经济.。

2020年高中数学 人教A版 必修5 课后作业本《余弦定理》(含答案解析)

2020年高中数学 人教A版 必修5 课后作业本《余弦定理》(含答案解析)

2020年高中数学 人教A 版 必修5 课后作业本《余弦定理》一、选择题1.△ABC 中,a 2=bc ,则角A 是( )A .锐角B .钝角C .直角D .60°2.在△ABC 中,若sin 2A +sin 2B<sin 2C ,则△ABC 的形状是( )A .钝角三角形B .直角三角形C .锐角三角形D .不能确定3.若△ABC 的内角A ,B ,C 满足6sin A=4sin B=3sin C ,则cos B=( )A.154B.34C.31516D.11164.在△ABC 中,B=π4,AB=2,BC=3,则sin A=( )A.1010 B.103 C.31010 D.555.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为( )A.518B.34C.32D.786.边长为5,7,8的三角形中,最大角与最小角之和为( )A .90°B .120°C .135°D .150°7.如果将直角三角形三边增加同样的长度,则新三角形形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .由增加长度决定 8.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.若a=2,c=23,cos A=32,且b<c ,则b=( ) A. 3 B .2 C .2 2 D .3二、填空题9.在△ABC 中,若a=2,b +c=7,cos B=-14,则b=________.10.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a ,b ,c 满足b 2=ac ,且c=2a ,则cos B=________.11.在△ABC 中,若(a -c)(a +c)=b(b +c),则A=________.12.若2a +1,a,2a -1为钝角三角形的三边长,则实数a 的取值范围是________.三、解答题13.在△ABC 中,A +C=2B ,a +c=8,ac=15,求b.14.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a=3,b=4,c=6,求bccos A +accos B +abcos C 的值.15.如图所示,△ABC 中,AB=2,cos C=277,D 是AC 上一点,且cos ∠DBC=5714.求∠BDA 的大小.16.已知A ,B ,C 为△ABC 的三个内角,其所对的边分别为a ,b ,c ,且2cos 2A2+cos A=0.(1)求内角A 的大小;(2)若a=23,b=2,求c 的值.答案解析1.答案为:A ;解析:由余弦定理:cos A=b 2+c 2-a 22bc =b 2+c 2-bc 2bc =b -c 2+bc2bc>0,∴A<90°.2.答案为:A ;解析:由正弦定理,a 2+b 2<c 2,∴a 2+b 2-c 22ab<0,即cos C<0,∴C>90°.3.答案为:D ;解析:由正弦定理:6a=4b=3c ,∴b=32a ,c=2a ,由余弦定理cos B=a 2+c 2-b22ac =a 2+4a 2-94a 22a 2=1116.4.答案为:C ;解析:在△ABC 中,由余弦定理AC 2=AB 2+BC 2-2AB·BC·cos B =2+9-6=5,∴AC=5,由正弦定理BC sin A =AC sin B ,解得sin A=31010.5.答案为:D ;解析:设三角形的底边长为a ,则周长为5a ,∴等腰三角形腰的长为2a.设顶角为α,由余弦定理,得cos α=2a 2+2a 2-a 22×2a×2a =78.6.答案为:B ;解析:设边长为5,7,8的对角分别为A ,B ,C ,则A<B<C.∴cos B=52+82-722×5×8=12.∴cos(A +C)=-cos B=-12,∴A +C=120°.7.答案为:A ;解析:设直角三角形的三条边分别为a ,b ,c ,c 为直角边,设同时增加长度k , 则三边长变为a +k ,b +k ,c +k(k>0),最大角仍为角C ,由余弦定理cos C=a +k 2+b +k 2-c +k 22a +k b +k =a 2+2ak +k 2+b 2+2bk +k 2-c 2-2ck -k22a +k b +k=2k a +b -c +k 22a +k b +k >0,∴新三角形为锐角三角形.8.答案为:B ;解析:由余弦定理a 2=b 2+c 2-2bccos A ,所以22=b 2+()232-2×b×23×32,即b 2-6b +8=0,解得:b=2或b=4,因为b<c ,所以b=2,故选B.9.答案为:4;解析:∵b +c=7,∴c=7-b.由余弦定理得b 2=a 2+c 2-2accos B ,即b 2=4+(7-b)2-2×2×(7-b)×⎝ ⎛⎭⎪⎫-14,解得b=4.10.答案为:34;解析:因为b 2=ac ,且c=2a ,所以cos B=a 2+c 2-b 22ac =a 2+4a 2-2a 22a·2a =34.11.答案为:120°;解析:由已知:a 2-c 2=b 2+bc ,∴b 2+c 2-a 2=-bc , ∴b 2+c 2-a 22bc =-12,由余弦定理:cos A=-12,∴A=120°.12.答案为:(2,8);解析:因为2a +1,a,2a -1是三角形的三边长,所以{ 2a +1>0a>02a -1>0,解得a>12,此时2a +1最大,要使2a +1,a,2a -1是三角形的三边长,还需a +2a -1>2a+1,解得a>2.设最长边2a +1所对的角为θ,则θ>90°,所以cos θ=a 2+2a -12-2a +122a 2a -1=a a -82a 2a -1<0,解得12<a<8.综上可知实数a 的取值范围是(2,8).13.解:在△ABC 中,由A +C=2B ,A +B +C=180°,知B=60°.a +c=8,ac=15,则a ,c 是方程x 2-8x +15=0的两根. 解得a=5,c=3或a=3,c=5.由余弦定理,得b 2=a 2+c 2-2accos B=9+25-2×3×5×12=19.∴b=19.14.解:∵cos A=b 2+c 2-a 22bc ,∴bccos A=12(b 2+c 2-a 2).同理accos B=12(a 2+c 2-b 2),abcos C=12(a 2+b 2-c 2).∴bccos A +accos B +abcos C=12(a 2+b 2+c 2)=612.15.解:由已知得cos ∠DBC=5714,cos C=277,从而sin ∠DBC=2114,sin C=217, ∴cos ∠BDA=cos(∠DBC +C)=5714·277-2114·217=12,∴∠BDA=60°. 16.解:(1)∵cos A=2cos 2A2-1,又2cos 2A2+cos A=0,∴2cos A +1=0,∴cos A=-12,∴A=120°.(2)由余弦定理知a 2=b 2+c 2-2bccos A ,又a=23,b=2,cos A=-12.∴(23)2=22+c 2-2×2×c×(-12),化简,得c 2+2c -8=0,解得c=2或c=-4(舍去).。

高中数学人教版必修5课后习题答案[电子档]之欧阳歌谷创编

高中数学人教版必修5课后习题答案[电子档]之欧阳歌谷创编

欧阳歌谷创编 2021年2月1高中数学必修5课后习题答案欧阳歌谷创编 2021年2月1第二章数列2.1数列的概念与简单表示法练习(P31)1、2、前5项分别是:1,0,1,0,1--.3、例1(1)1(2,)1(21,)n n m m N na n m m N n⎧-=∈⎪⎪=⎨⎪=-∈⎪⎩**; (2)2(2,)0(21,)n n m m N a n m m N ⎧=∈⎪=⎨=-∈⎪⎩**说明:此题是通项公式不唯一的题目,鼓励学生说出各种可能的表达形式,并举出其他可能的通项公式表达形式不唯一的例子.4、(1)1()21n a n Z n +=∈-; (2)(1)()2n n a n Z n +-=∈; (3)121()2n n a n Z +-=∈ 习题2.1 A 组(P33)1、(1)2,3,5,7,11,13,17,19;(2) (3)1,1.7,1.73,1.732,…1.732050; 2,1.8,1.74,1.733,…,1.732051.2、(1)11111,,,,491625; (2)2,5,10,17,26--.3、(1)(1),4-,9,(16-),25,(36-),49; 12(1)n n a n +=-; (2)1),2;n a =.4、(1)1,3,13,53,2132; (2)141,5,,,5454--.5、对应的答案分别是:(1)16,21;54n a n =-;(2)10,13;32n a n =-;(3)24,35;22n a n n =+.6、15,21,28; 1n n a a n -=+.习题2.1 B 组(P34)1、前5项是1,9,73,585,4681.该数列的递推公式是:1118,1n n a a a +=+=.通项公式是:817n n a -=.2、110(10.72)10.072a =⨯+=﹪; 2210(10.72)10.144518a =⨯+=﹪; 3310(10.72)10.217559a =⨯+=﹪; 10(10.72)n n a =⨯+﹪.3、(1)1,2,3,5,8; (2)358132,,,,2358.2.2等差数列练习(P39)1、表格第一行依次应填:0.5,15.5,3.75;表格第二行依次应填:15,11-,24-.2、152(1)213n a n n =+-=+,1033a =.3、4n c n =4、(1)是,首项是11m a a md +=+,公差不变,仍为d ;(2)是,首项是1a ,公差2d ;(3)仍然是等差数列;首项是716a a d =+;公差为7d .5、(1)因为5375a a a a -=-,所以5372a a a =+. 同理有5192a a a =+也成立; (2)112(1)n n n a a a n -+=+>成立;2(0)n n k n k a a a n k -+=+>>也成立.习题2.2 A 组(P40)1、(1)29n a =; (2)10n =; (3)3d =; (4)110a =.2、略.3、60︒.4、2℃;11-℃;37-℃.5、(1)9.8s t =; (2)588 cm ,5 s.习题2.2 B 组(P40)1、(1)从表中的数据看,基本上是一个等差数列,公差约为2000,52010200280.2610a a d =+=⨯再加上原有的沙化面积5910⨯,答案为59.2610⨯; (2)2021年底,沙化面积开始小于52810 hm ⨯. 2、略.2.3等差数列的前n 项和练习(P45)1、(1)88-; (2)604.5.2、59,11265,112n n a n n ⎧=⎪⎪=⎨+⎪>⎪⎩3、元素个数是30,元素和为900.习题2.3 A 组(P46)1、(1)(1)n n +; (2)2n ; (3)180个,和为98550; (4)900个,和为494550.2、(1)将120,54,999n n a a S ===代入1()2n n n a a S +=,并解得27n =; 将120,54,27n a a n ===代入1(1)n a a n d =+-,并解得1713d =.(2)将1,37,6293n d n S ===代入1(1)n a a n d =+-,1()2n n n a a S +=,得111237()6292n n a a a a =+⎧⎪⎨+=⎪⎩;解这个方程组,得111,23n a a ==.(3)将151,,566n a d S ==-=-代入1(1)2n n n S na d -=+,并解得15n =;将151,,1566a d n ==-=代入1(1)n a a n d =+-,得32n a =-.(4)将2,15,10n d n a ===-代入1(1)n a a n d =+-,并解得138a =-;将138,10,15n a a n =-=-=代入1()2n n n a a S +=,得360n S =-. 3、44.5510⨯m. 4、4.5、这些数的通项公式:7(1)2n -+,项数是14,和为665.6、1472.习题2.3 B 组(P46)1、每个月的维修费实际上是呈等差数列的. 代入等差数列前n 项和公式,求出5年内的总共的维修费,即再加上购买费,除以天数即可. 答案:292元.2、本题的解法有很多,可以直接代入公式化简,但是这种比较繁琐. 现提供2个证明方法供参考. (1)由 61615S a d =+,1211266S a d =+,18118153S a d =+ 可得61812126()2()S S S S S +-=-. (2)1261212126()()S S a a a a a a -=+++-+++7812a a a =+++126(6)(6)(6)a d a d a d =++++++126()36a a a d =++++636S d =+同样可得:1812672S S S d -=+,因此61812126()2()S S S S S +-=-.3、(1)首先求出最后一辆车出发的时间4时20分;所以到下午6时,最后一辆车行驶了1小时40分.(2)先求出15辆车总共的行驶时间,第一辆车共行驶4小时,以后车辆行驶时间依次递减,最后一辆行驶1小时40分. 各辆车的行驶时间呈等差数列分布,代入前n 项和公式,这个车队所有车的行驶时间为2418531522S +=⨯= h. 乘以车速60 km/h ,得行驶总路程为2550 km. 4、数列1(1)n n ⎧⎫⎨⎬+⎩⎭的通项公式为111(1)1n a n n n n ==-++ 所以111111111()()()()1122334111n nS n n n n =-+-+-++-=-=+++ 类似地,我们可以求出通项公式为1111()()n a n n k k n n k==-++的数列的前n 项和.2.4等比数列练习(P52)1、2、由题意可知,每一轮被感染的计算机台数构成一个首项为180a =,公比为20q =的等比数列,则第5轮被感染的计算机台数5a 为447518020 1.2810a a q ==⨯=⨯.3、(1)将数列{}n a 中的前k 项去掉,剩余的数列为12,,k k a a ++. 令,1,2,k i b a i +==,则数列12,,k k a a ++可视为12,,b b .因为11(1)i k i i k ib a q i b a ++++==≥,所以,{}n b 是等比数列,即12,,k k a a ++是等比数列.(2){}n a 中的所有奇数列是135,,,a a a ,则235211321(1)k k a a a q k a a a +-=====≥.所以,数列135,,,a a a 是以1a 为首项,2q 为公比的等比数列.(3){}n a 中每隔10项取出一项组成的数列是11223,,,a a a ,则1112231111121110(1)k k a a a q k a a a +-=====≥所以,数列11223,,,a a a 是以1a 为首项,11q 为公比的等比数列.猜想:在数列{}n a 中每隔m (m 是一个正整数)取出一项,组成一个新的数列,这个数列是以1a 为首项,1m q +为公比的等比数列.4、(1)设{}n a 的公比为q ,则24228511()a a q a q ==,而262837111a a a q a q a q ⋅=⋅= 所以2537a a a =⋅,同理2519a a a =⋅ (2)用上面的方法不难证明211(1)nn n a a a n -+=⋅>. 由此得出,n a 是1n a -和1n a +的等比中项.同理:可证明,2(0)nn k n k a a a n k -+=⋅>>. 由此得出,n a 是n k a -和n k a +的等比中项(0)n k >>.5、(1)设n 年后这辆车的价值为n a ,则13.5(110)n n a =-﹪. (2)4413.5(110)88573a =-≈﹪(元). 用满4年后卖掉这辆车,能得到约88573元.习题2.4 A 组(P53)1、(1)可由341a a q =,得11a =-,6671(1)(3)729a a q ==-⨯-=-. 也可由671a a q =,341a a q =,得337427(3)729a a q ==⨯-=-(2)由131188a q a q =⎧⎪⎨=⎪⎩,解得12723a q =⎧⎪⎨=⎪⎩,或12723a q =-⎧⎪⎨=-⎪⎩(3)由416146a q a q ⎧=⎪⎨=⎪⎩,解得232q =,862291173692a a q a q q a q ==⋅==⨯= 还可由579,,a a a 也成等比数列,即2759a a a =,得22795694a a a ===.(4)由411311156a q a a q a q ⎧-=⎪⎨-=⎪⎩①②①的两边分别除以②的两边,得2152q q +=,由此解得12q =或2q =. 当12q =时,116a =-. 此时2314a a q ==-. 当2q =时,11a =. 此时2314a a q ==. 2、设n 年后,需退耕n a ,则{}n a 是一个等比数列,其中18(110),0.1a q =+=﹪.那么2005年需退耕5551(1)8(110)13a a q =+=+≈﹪(万公顷) 3、若{}n a 是各项均为正数的等比数列,则首项1a 和公比q 都是正数. 由11n n a a q-=11(1)22)n n qq --===.那么数列{}n a12q 为公比的等比数列.4、这张报纸的厚度为0.05 mm ,对折一次后厚度为0.05×2 mm ,再对折后厚度为0.05×22 mm ,再对折后厚度为0.05×32 mm. 设00.05a =,对折n 次后报纸的厚度为n a ,则{}n a 是一个等比数列,公比2q =. 对折50次后,报纸的厚度为505050131000.052 5.6310 mm 5.6310 m a a q ==⨯≈⨯=⨯这时报纸的厚度已经超出了地球和月球的平均距离(约83.8410 m ⨯),所以能够在地球和月球之间建一座桥.5、设年平均增长率为1,105q a =,n 年后空气质量为良的天数为n a ,则{}n a 是一个等比数列.由3240a =,得2231(1)105(1)240a a q q =+=+=,解得10.51q =≈ 6、由已知条件知,,2a bA G +==,且02a b A G +-===所以有A G ≥,等号成立的条件是a b =. 而,a b 是互异正数,所以一定有A G >. 7、(1)2±; (2)22()ab a b ±+. 8、(1)27,81; (2)80,40,20,10.习题2.4 B 组(P54)1、证明:由等比数列通项公式,得11m m a a q -=,11n n a a q -=,其中1,0a q ≠所以 1111m m nm n n a a q q a a q---== 2、(1)设生物体死亡时,体内每克组织中的碳14的原子核数为1个单位,年衰变率为q ,n 年后的残留量为n a ,则{}n a 是一个等比数列. 由碳14的半衰期为5730则 57305730112n a a qq===,解得157301()0.9998792q =≈ (2)设动物约在距今n 年前死亡,由0.6n a =,得10.9998790.6n n a a q ===. 解得 4221n ≈,所以动物约在距今4221年前死亡.3、在等差数列1,2,3,…中,有7108917a a a a +==+,1040203050a a a a +==+ 由此可以猜想,在等差数列{}n a 中若*(,,,)k s p q k s p q N +=+∈,则k s p q a a a a +=+. 从等差数列与函数之间的联系的角度来分析这个 问题:由等差数列{}n a 的图象,可以看出k p a k a p =,s q a s a q= 根据等式的性质,有k s p q a a k sa a p q++=++,所以k s p q a a a a +=+. 猜想对于等比数列{}n a ,类似的性质为:若*(,,,)k s p q k s p q N +=+∈,则k s p q a a a a ⋅=⋅.2.5等比数列的前n 项和练习(P58)1、(1)6616(1)3(12)189112a q S q --===--. (2)1112.7()9190311451()3n n a a q S q----===----. 2、设这个等比数列的公比为q 所以 101256710()()S a a a a a a =+++++++555S q S =+55(1)q S =+50=同理 1015105S S q S =+.因为 510S =,所以由①得 5101051416S q q S =-=⇒= 代入②,得1015105501610210S S q S =+=+⨯=.3、该市近10年每年的国内生产总值构成一个等比数列,首项12000a =,公比1.1q =设近10年的国内生产总值是10S ,则10102000(1 1.1)31874.81 1.1S -=≈-(亿元)习题2.5 A 组(P61)1、(1)由34164641a q a ===--,解得4q =-,所以144164(4)5111(4)a a q S q ---⨯-===---. (2)因为2131233(1)S a a a a q q --=++=++,所以2113q q --++=,即2210q q --=解这个方程,得1q =或12q =-. 当1q =时,132a =;当12q =-时,16a =.2、这5年的产值是一个以1138 1.1151.8a =⨯=为首项, 1.1q =为公比的等比数列所以5515(1)151.8(1 1.1)926.75411 1.1a q S q -⨯-==≈--(万元) 3、(1)第1个正方形的面积为42cm ,第2个正方形的面积为22cm ,…,这是一个以14a =为首项,12q =为公比的等比数列所以第10个正方形的面积为99710114()22a a q -==⨯=(2cm )(2)这10个正方形的面积和为77110101422821112a a qS q---⨯-===---(2cm )4、(1)当1a =时,2(1)(1)(2)()12(1)2n n na a a n n --+-++-=-----=-当1a ≠时,22(1)(2)()()(12)n n a a a n a a a n -+-++-=+++-+++(1)(1)12n a a n n a -+=-- (2)1212(235)(435)(35)2(12)3(555)n n n n -------⨯+-⨯+-⨯=+++-+++11(1)5(15)323(1)(15)2154n n n n n n ----+-⨯-⨯=+--- (3)设21123n n S x x nx -=++++……①则 212(1)n n n xS x x n x nx -=+++-+……②①-②得,21(1)1n n n x S x x x nx --=++++-……③当1x =时,(1)1232n n n S n +=++++=;当1x ≠时,由③得,21(1)1n nn x nx S x x-=---5、(1)第10次着地时,经过的路程为91002(50251002)-++++⨯1291911002100(222)2(12)100200299.61 (m)12------=+⨯+++-=+⨯≈- (2)设第n 次着地时,经过的路程为293.75 m ,则1(1)12(1)12(12)1002100(222)100200293.7512n n ---------+⨯+++=+⨯=- 所以130********.75n --⨯=,解得120.03125n -=,所以15n -=-,则6n =6、证明:因为396,,S S S 成等差数列,所以公比1q ≠,且9362S S S =+即,936111(1)(1)(1)2111a q a q a q q q q---⨯=+--- 于是,9362q q q =+,即6321q q =+ 上式两边同乘以1a q ,得741112a q a q a q =+ 即,8252a a a =+,故285,,a a a 成等差数列习题2.5 B 组(P62)1、证明:11111()(1())1n n n n n n n n n b b b a b a a a b b a a b aa ab a+++---+++=+++==--2、证明:因为7714789141277()S S a a a q a a a q S -=+++=+++=141421141516211277()S S a a a q a a a q S -=+++=+++=所以71472114,,S S S --成等比数列3、(1)环保部门每年对废旧物资的回收量构成一个等比数列,首项为1100a =,公比为 1.2q =.所以,2010年能回收的废旧物资为89100 1.2430a =⨯≈(t ) (2)从2002年到2010年底,能回收的废旧物资为9919(1)100(1 1.2)208011 1.2a q S q --==≈--(t )可节约的土地为165048320⨯=(2m )4、(1)依教育储蓄的方式,应按照整存争取定期储蓄存款利率计息,免征利息税,且若每月固定存入a 元,连续存n 个月,计算利息的公式为()2a na n+⨯月利率.因为整存整取定期储蓄存款年利率为2.52﹪,月利率为0.21﹪故到期3年时一次可支取本息共(505036)360.2118001869.932+⨯⨯⨯+=﹪(元)若连续存6年,应按五年期整存整取定期储蓄存款利率计息,具体计算略. (2)略.(3)每月存50元,连续存3年按照“零存整取”的方式,年利率为1.89﹪,且需支付20﹪的利息税所以到期3年时一次可支取本息共1841.96元,比教育储蓄的方式少收益27.97元.(4)设每月应存入x 元,由教育储蓄的计算公式得36(36)0.2136100002x x x +⨯+=﹪ 解得267.39x ≈(元),即每月应存入267.39(元) (5)(6)(7)(8)略5、设每年应存入x 万元,则2004年初存入的钱到2010年底利和为7(12)x +﹪,2005年初存入的钱到2010年底利和为6(12)x +﹪,……,2010年初存入的钱到2010年底利和为(12)x +﹪.根据题意,76(12)(12)(12)40x x x ++++++=﹪﹪﹪根据等比数列前n 项和公式,得7(12)(1 1.02)401 1.02x +-=-﹪,解得52498x ≈(元)故,每年大约应存入52498元第二章 复习参考题A 组(P67)1、(1)B ; (2)B ; (3)B ; (4)A .2、(1)212n n n a -=; (2)12(1)(21)1(2)n n n a n +--=+; (3)7(101)9n n a =-; (4)1(1)n n a =+-或1cos n a n π=+.3、4、如果,,a b c 成等差数列,则5b =;如果,,a b c 成等比数列,则1b =,或1-.5、n a 按顺序输出的值为:12,36,108,324,972. 86093436sum =.6、81381.9(10.13)1396.3⨯+≈﹪(万) 7、从12月20日到次年的1月1日,共13天. 每天领取的奖品价值呈等差数列分布.110,100d a ==. 由1(1)2n n n S a n d -=+得:1313121001310208020002S ⨯=⨯+⨯=>.所以第二种领奖方式获奖者受益更多. 8、因为28374652a a a a a a a +=+=+=所以34567285450()2a a a a a a a +++++==+,则28180a a +=.9、容易得到101010,1012002n n na n S +==⨯=,得15n =.10、212212()()()n n n n S a a a a nd a nd a nd ++=+++=++++++2121()n a a a n nd S n d =++++⨯=+32122312(2)(2)(2)n n n n S a a a a nd a nd a nd ++=+++=++++++2121()22n a a a n nd S n d =++++⨯=+容易验证2132S S S =+. 所以,123,,S S S 也是等差数列,公差为2n d . 11、221(1)(1)4(1)221a f x x x x x =+=+-++=--223(1)(1)4(1)267a f x x x x x =-=---+=-+因为{}n a 是等差数列,所以123,,a a a 也是等差数列. 所以,2132a a a =+. 即,20286x x =-+. 解得1x =或3x =. 当1x =时,1232,0,2a a a =-==. 由此可求出24n a n =-. 当3x =时,1232,0,2a a a ===-. 由此可求出42n a n =-.第二章 复习参考题B 组(P68)1、(1)B ; (2)D .2、(1)不成等差数列. 可以从图象上解释. ,,a b c 成等差,则通项公式为y pn q =+的形式,且,,a b c 位于同一直线上,而111,,a b c的通项公式却是1y pn q =+的形式,111,,a b c 不可能在同一直线上,因此肯定不是等差数列.(2)成等比数列. 因为,,a b c 成等比,有2b ac =. 又由于,,a b c 非零,两边同时取倒数,则有21111b ac a c==⨯. 所以,111,,a b c也成等比数列.3、体积分数:60.033(125)0.126⨯+≈﹪,质量分数:60.05(125)0.191⨯+≈﹪. 4、设工作时间为n ,三种付费方式的前n 项和分别为,,n n n A B C . 第一种付费方式为常数列;第二种付费方式为首项是4,公差也为4的等差数列;第三种付费方式为首项是0.4,公比为2的等比数列. 则38n A n =,2(1)44222n n n B n n n -=+⨯=+,0.4(12)0.4(21)12n n n C -==--.下面考察,,n n n A B C 看出10n <时,380.4(21)n n >-. 因此,当工作时间小于10天时,选用第一种付费方式.10n ≥时,,n n n n A C B C ≤≤因此,当工作时间大于10天时,选用第三种付费方式.5、第一星期选择A 种菜的人数为n ,即1a n =,选择B 种菜的人数为500a -.所以有以下关系式:2118030a a b =⨯+⨯﹪﹪3228030a a b =⨯+⨯﹪﹪……118030n n b a a b --=⨯+⨯﹪﹪500n n a b +=所以111502n n a a -=+,115003502n n n b a a -=-=-如果1300a =,则2300a =,3300a =,…,10300a = 6、解:由1223n n n a a a --=+得 1123()n n n n a a a a ---+=+以及1123(3)n n n n a a a a ----=-- 所以221213()37n n n n a a a a ---+=+=⨯,221213(1)(3)(1)13n n n n a a a a ----=--=-⨯.由以上两式得,11437(1)13n n n a --=⨯+-⨯所以,数列的通项公式是11137(1)134n n n a --⎡⎤=⨯+-⨯⎣⎦ 7、设这家牛奶厂每年应扣除x 万元消费基金2002年底剩余资金是1000(150)x +-﹪2003年底剩余资金是2[1000(150)](150)1000(150)(150)x x x x +-+-=+-+-﹪﹪﹪﹪ (5)年后达到资金54321000(150)(150)(150)(150)(150)2000x x x x +-+-+-+-+=﹪﹪﹪﹪﹪解得 459x ≈(万元)第三章不等式3.1不等关系与不等式练习(P74)1、(1)0a b +≥;(2)4h ≤;(3)(10)(10)3504L W L W ++=⎧⎨>⎩.2、这给两位数是57.3、(1)>;(2)<;(3)>;(4)<;习题3.1 A 组(P75)1、略.2、(1)24<;(2>3、证明:因为20,04x x >>,所以21104x x x ++>+>因为22(1)02x +>>,所以12x+>4、设A 型号帐篷有x 个,则B 型号帐篷有(5)x +个,050448054853(5)484(4)48x x x x x x >⎧⎪+>⎪⎪<⎪⎨<-<⎪⎪+<⎪+⎪⎩≥5、设方案的期限为n 年时,方案B 的投入不少于方案A 的投入.所以,(1)5105002n n n -+⨯≥即,2100n ≥.习题3.1 B 组(P75)1、(1)因为222259(56)30x x x x x ++-++=+>,所以2225956x x x x ++>++ (2)因为222(3)(2)(4)(69)(68)10x x x x x x x ----=-+--+=>所以2(3)(2)(4)x x x ->--(3)因为322(1)(1)(1)0x x x x x --+=-+>,所以321x x x >-+(4)因为22222212(1)1222(1)(1)10x y x y x y x y x y ++-+-=++-+-=-+-+> 所以2212(1)x y x y ++>+-2、证明:因为0,0a b c d >>>>,所以0ac bd >>又因为0cd >,所以10cd> 于是0a bd c>>>3、设安排甲种货箱x 节,乙种货箱y 节,总运费为z .所以352515301535115050x y x y x y +⎧⎪+⎨⎪+=⎩≥≥所以28x ≥,且30x ≤所以2822x y =⎧⎨=⎩,或2921x y =⎧⎨=⎩,或3020x y =⎧⎨=⎩ 所以共有三种方案,方案一安排甲种货箱28节,乙种货箱22节;方案二安排甲种货箱29节,乙种货箱21节;方案三安排甲种货箱30节,乙种货箱20节. 当3020x y =⎧⎨=⎩时,总运费0.5300.82031z =⨯+⨯=(万元),此时运费较少. 3.2一元二次不等式及其解法练习(P80) 1、(1)1013x x ⎧⎫-⎨⎬⎩⎭≤≤;(2)R ;(3){}2x x ≠;(4)12x x ⎧⎫≠⎨⎬⎩⎭; (5)31,2x x x ⎧⎫<->⎨⎬⎩⎭或;(6)54,43x x x ⎧⎫<>⎨⎬⎩⎭或;(7)503x x ⎧⎫-<<⎨⎬⎩⎭.2、(1)使2362y x x =-+的值等于0的x的集合是1⎧⎪⎨⎪⎪⎩⎭;使2362y x x =-+的值大于0的x的集合为11x x x ⎧⎪<>⎨⎪⎪⎩⎭或; 使2362y x x =-+的值小于0的x的集合是11x x ⎧⎪<<+⎨⎪⎪⎩⎭. (2)使225y x =-的值等于0的x 的集合{}5,5-; 使225y x =-的值大于0的x 的集合为{}55x x -<<; 使225y x =-的值小于0的x 的集合是{}5,5x x x <->或.(3)因为抛物线2+610y x x =+的开口方向向上,且与x 轴无交点所以使2+610y x x =+的等于0的集合为∅; 使2+610y x x =+的小于0的集合为∅; 使2+610y x x =+的大于0的集合为R.(4)使231212y x x =-+-的值等于0的x 的集合为{}2; 使231212y x x =-+-的值大于0的x 的集合为∅; 使231212y x x =-+-的值小于0的x 的集合为{}2x x ≠.习题3.2 A 组(P80)1、(1)35,22x x x ⎧⎫<->⎨⎬⎩⎭或;(2)x x ⎧⎪<<⎨⎪⎪⎩⎭; (3){}2,5x x x <->或;(4){}09x x <<.2、(1)解2490x x -+≥,因为200∆=-<,方程2490x x -+=无实数根所以不等式的解集是R ,所以y =R. (2)解2212180x x -+-≥,即2(3)0x -≤,所以3x =所以y ={}3x x =3、{33m m m <-->-+或;4、R.5、设能够在抛出点2 m 以上的位置最多停留t 秒.依题意,20122v t gt ->,即212 4.92t t ->. 这里0t >. 所以t 最大为2(精确到秒)答:能够在抛出点2 m 以上的位置最多停留2秒. 6、设每盏台灯售价x 元,则15[302(15)]400x x x ⎧⎨-->⎩≥. 即1520x <≤.所以售价{}1520x x x ∈<≤习题3.2 B 组(P81)1、(1)x ⎧⎪<<⎨⎪⎪⎩⎭;(2){}37x x <<;(3)∅;(4)113x x ⎧⎫<<⎨⎬⎩⎭. 2、由22(1)40m m ∆=--<,整理,得23210m m +->,因为方程23210m m +-=有两个实数根1-和13,所以11m <-,或213m >,m 的取值范围是11,3m m m ⎧⎫<->⎨⎬⎩⎭或.3、使函数213()324f x x x =--的值大于0的解集为3322x x x ⎧⎪<-<+⎨⎪⎪⎩⎭或.4、设风暴中心坐标为(,)a b ,则a =,所以22450b +<,即150150b -<<151)13.72=≈(h ),3001520=. 所以,经过约13.7小时码头将受到风暴的影响,影响时间为15小时.3.3二元一次不等式(组)与简单的线性规划问题练习(P86)1、B .2、D .3、B .4解:设家具厂每天生产A 类桌子x 张,B 类桌子y 张.对于A 类桌子,x 张桌子需要打磨10x min ,着色6x min ,上漆6x min 对于B 类桌子,y 张桌子需要打磨5y min ,着色12y min ,上漆9y min 而打磨工人每天最长工作时间是450min ,所以有105450x y +≤. 类似地,612480x y +≤,69450x y +≤ 在实际问题中,0,0x y ≥≥;所以,题目中包含的限制条件为1054506124806945000x y x y x y x y +⎧⎪+⎪⎪+⎨⎪⎪⎪⎩≤≤≤≥≥练习(P91)1、(1)目标函数为2z x y =+,可行域如图所示,作出直线2y x z =-+,可知z 要取最大值,即直线经过点C 时,解方程组11x y y +=⎧⎨=-⎩得(2,1)C -,所以,max 222(1)3z x y =+=⨯+-=.(2)目标函数为35z x y =+,可行域如图所示,作出直线35z x y =+ 可知,直线经过点B 时,Z 取得最大值. 直线经过点A 时,Z 取得最小值. 解方程组153y x x y =+⎧⎨-=⎩,和15315y x x y =+⎧⎨+=⎩可得点(2,1)A --和点(1.5,2.5)B .所以max 3 1.55 2.517z =⨯+⨯=,min 3(2)5(1)11z =⨯-+⨯-=-2、设每月生产甲产品x 件,生产乙产品y 件,每月收入为z 元,目标函数为30002000z x y =+,需要满足的条件是2400250000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥,作直线30002000z x y =+, 当直线经过点A 时,z 取得最大值. 解方程组24002500x y x y +=⎧⎨+=⎩可得点(200,100)A ,z 的最大值为800000元.习题3.3 A 组(P93)1、画图求解二元一次不等式:(1)2x y +≤;(2)22x y ->;(3)2y -≤;(4)3x ≥2、3解:设每周播放连续剧甲x 次,播放连续剧乙y 次,收视率为z . 目标函数为6020z x y =+,所以,题目中包含的限制条件为8040320600x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≥≥≥可行域如图. 解方程组80403206x y x y +⎧⎨+⎩==得点M 的坐标为(2,4),所以max 6020200z x y =+=(万)答:电视台每周应播放连续剧甲2次,播放连续剧乙4次,才能获得最高的收视率.4、设每周生产空调器x 台,彩电y 台,则生产冰箱120x y --台,产值为z . 则,目标函数为432(120)2240z x y x y x y =++--=++ 所以,题目中包含的限制条件为111(120)402341202000x y x y x y x y ⎧++--⎪⎪⎪--⎨⎪⎪⎪⎩≤≥≥≥即,312010000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥ 可行域如图,解方程组3120100x y x y +⎧⎨+⎩==得点M 的坐标为(10,90),所以max 2240350z x y =++=(千元)答:每周应生产空调器10台,彩电90台,冰箱20台,才能使产值最高,最高产值是350千元.习题3.3 B 组(P93)1、画出二元一次不等式组2312 236x yx yxy+⎧⎪+>-⎪⎨⎪⎪⎩≤≥≥,所表示的区域如右图2、画出(21)(3)0x y x y+--+>表示的区域.3、设甲粮库要向A镇运送大米x吨、向B镇运送大米y吨,总运费为z. 则乙粮库要向A镇运送大米(70)x-吨、向B镇运送大米(110)y-吨,目标函数(总运费)为122025101512(70)208(110)609030200 z x y x y x y=⨯⨯+⨯⨯+⨯⨯-+⨯⨯-=++.所以,题目中包含的限制条件为100(70)(110)80 070x yx yxy+⎧⎪-+-⎪⎨⎪⎪⎩≤≤≤≤≥.所以当70,30x y==时,总运费最省min 37100z=(元)所以当0,100x y==时,总运费最不合理max 39200z=(元)使国家造成不该有的损失2100元.答:甲粮库要向A镇运送大米70吨,向B镇运送大米30吨,乙粮库要向A镇运送大米0吨,向B镇运送大米80吨,此时总运费最省,为37100元. 最不合理的调运方案是要向A镇运送大米0吨,向B镇运送大米100吨,乙粮库要向A镇运送大米70吨,向B镇运送大米10吨,此时总运费为39200元,使国家造成损失2100元.3.42 a b+≤练习(P100)1、因为0x>,所以12xx+=≥当且仅当1xx=时,即1x=时取等号,所以当1x=时,即1xx+的值最小,最小值是2.2、设两条直角边的长分别为,a b,0,a>且0b>,因为直角三角形的面积等于50.即1502ab=,所以20a b+=≥,当且仅当10a b==时取等号.答:当两条直角边的长均为10时,两条直角边的和最小,最小值是20.3、设矩形的长与宽分别为a cm ,b cm. 0a >,0b > 因为周长等于20,所以10a b +=所以2210()()2522a b S ab +===≤,当且仅当5a b ==时取等号.答:当矩形的长与宽均为5时,面积最大.4、设底面的长与宽分别为a m ,b m. 0a >,0b >因为体积等于323m ,高2m ,所以底面积为162m ,即16ab =所以用纸面积是222324()32323264S ab bc ac a b =++=++++=≥ 当且仅当4a b ==时取等号答:当底面的长与宽均为4米时,用纸最少.习题3.4 A 组(P100)1、(1)设两个正数为,a b ,则0,0a b >>,且36ab =所以12a b +=≥,当且仅当6a b ==时取等号. 答:当这两个正数均为6时,它们的和最小.(2)设两个正数为,a b ,依题意0,0a b >>,且18a b +=所以2218()()8122a b ab +==≤,当且仅当9a b ==时取等号.答:当这两个正数均为9时,它们的积最大. 2、设矩形的长为x m ,宽为y m ,菜园的面积为S 2m . 则230x y +=,S x y =⨯由基本不等式与不等式的性质,可得211219002252()222242x y S x y +=⨯⨯=⨯=≤. 当2x y =,即1515,2x y ==时,菜园的面积最大,最大面积是22522m .3、设矩形的长和宽分别为x 和y ,圆柱的侧面积为z ,因为2()36x y +=,即18x y +=.所以222()1622x y z x y πππ+=⨯⨯⨯=≤, 当x y =时,即长和宽均为9时,圆柱的侧面积最大.4、设房屋底面长为x m ,宽为y m ,总造价为z 元,则12xy =,12y x=123600312006800580048005800580034600z y x x x⨯=⨯+⨯+=++=≥当且仅当1236004800x x⨯=时,即3x =时,z 有最小值,最低总造价为34600元.习题3.4 B 组(P101)1、设矩形的长AB 为x ,由矩形()ABCD AB AD >的周长为24,可知,宽12AB x =-.设PC a =,则DP x a =-所以222(12)()x x a a -+-=,可得21272x x a x -+=,1272x DP x a x-=-=.所以ADP ∆的面积211272187272(12)66[()18]2x x x S x x x x x--+-=-=⨯=⨯-++由基本不等式与不等式的性质6[18]6(18108S ⨯-=⨯-=-≤当72x x=,即x =时,ADP ∆的面积最大,最大面积是(108-2m . 2、过点C 作CD AB ⊥,交AB 延长线于点D .设BCD α∠=,ACB β∠=,CD x =.在BCD ∆中,tan b c x α-=. 在ACD ∆中,tan()a cxαβ-+= 则tan()tan tan tan[()]1tan()tan αβαβαβααβα+-=+-=++⋅()()1a c b ca b x x a c b c a c b c x x x x----==----+⋅+=当且仅当()()a cbc x x --=,即x =时,tan β取得最大,从而视角也最大.第三章复习参考题A 组(P103)12、化简得{}23A x x =-<<,{}4,2B x x x =<->或,所以{}23A B x x =<<3、当0k <时,一元二次不等式23208kx kx +-<对一切实数x 都成立,即二次函数2328y kx kx =+-在x 轴下方,234(2)()08k k ∆=--<,解之得:30k -<<.当0k >时,二次函数2328y kx kx =+-开口朝上一元二次不等式23208kx kx +-<不可能对一切实数x 都成立,所以,30k -<<.4、不等式组438000x y x y ++>⎧⎪<⎨⎪<⎩表示的平面区域的整点坐标是(1,1)--.5、设每天派出A 型车x 辆,B 型车y 辆,成本为z .所以070494860360x y x y x y ⎧⎪⎪⎨+⎪⎪+⎩≤≤≤≤≤≥,目标函数为160252z x y =+把160252z x y =+变形为40163252y x z =-+,得到斜率为4063-,在y 轴上的截距为1252z ,随z 变化的一族平行直线. 在可行域的整点中,点(5,2)M 使得z 取得最小值. 所以每天派出A 型车5辆,B 型车2辆,成本最小,最低成本为1304元.6、设扇形的半径是x ,扇形的弧长为y ,因为12S xy =扇形的周长为2Z x y =+=≥当2x y =,即x =y =Z可以取得最小值,最小值为. 7、设扇形的半径是x ,扇形的弧长为y ,因为2P x y =+扇形的面积为221112(2)()244216x y P Z xy x y +===≤ 当2x y =,即4P x =,2P y =时,Z 可以取得最大值,半径为4P时扇形面积最大值为216P .8、设汽车的运输成本为y ,2()s say bv a sbv v v=+⨯=+当sasbv v=时,即v =c 时,y 有最小值. 2sa y sbv v =+≥2.当c >时,由函数say sbv v=+的单调性可知,v c =时y 有最小值,最小值为sa sbc c+.第三章复习参考题B 组(P103)1、D2、(1)32264x x x x ⎧⎫<--<<>⎨⎬⎩⎭或或(2)231334x x x x ⎧⎫-<>⎨⎬⎩⎭或或≤≤3、1m =4、设生产裤子x 条,裙子y 条,收益为z .则目标函数为2040z x y =+,所以约束条件为10210600x y x y x y x y +⎧⎪+⎪⎪+⎨⎪⎪⎪⎩≤≤≤≥≥5、因为22x y +是区域内的点到原点的距离的平方 所以,当240330x y x y -+=⎧⎨--=⎩即2,3A A x y ==时,22x y +的最大值为13.当4525x y ⎧=⎪⎪⎨⎪=⎪⎩时,22x y +最小,最小值是45.6、按第一种策略购物,设第一次购物时的价格为1p ,购n kg ,第二次购物时的价格为2p ,仍购n kg ,按这种策略购物时两次购物的平均价格为121222p n p n p p n ++=. 若按第二种策略购物,第一次花m 元钱,能购1mp kg 物品,第二次仍花m 元钱,能购2m p kg 物品,两次购物的平均价格为12122211m m m p p p p =++ 比较两次购物的平均价格:221212121212121212121222()4()011222()2()p p p p p p p p p p p p p p p p p p p p +++---=-==++++≥ 所以,第一种策略的平均价格高于第二种策略的平均价格,因而,用第二种策略比较经济.一般地,如果是n 次购买同一种物品,用第二种策略购买比较经济.。

数学必修5习题答案

数学必修5习题答案

数学必修5习题答案数学是一门抽象而又具有逻辑性的学科,对于很多学生来说,数学课堂上的习题是一道难以逾越的障碍。

然而,通过认真思考和练习,我们可以找到数学必修5习题的答案。

本文将探讨一些常见的数学必修5习题,并给出相应的解答。

第一部分:代数1. 已知方程2x + 3 = 7,求解x的值。

解答:将方程两边减去3,得到2x = 4。

再除以2,得到x = 2。

所以x的值为2。

2. 求解方程3x - 4 = 10。

解答:将方程两边加上4,得到3x = 14。

再除以3,得到x = 4.67。

所以x的值为4.67。

第二部分:几何1. 已知一个三角形的两边长分别为3cm和4cm,夹角为60度,求解第三边的长度。

解答:根据余弦定理,第三边的平方等于两边平方之和减去两倍的两边的乘积与夹角的余弦的乘积。

即c² = a² + b² - 2abcosC。

代入已知值,得到c² = 3² +4² - 2×3×4×cos60° = 9 + 16 - 24×0.5 = 1。

所以第三边的长度为1cm。

2. 已知一个正方形的边长为5cm,求解其对角线的长度。

解答:根据勾股定理,正方形的对角线的长度等于边长的平方根的两倍。

即d= 5√2。

所以对角线的长度为5√2 cm。

第三部分:概率1. 一个骰子投掷一次,求解出现奇数的概率。

解答:骰子有6个面,其中3个是奇数(1、3、5)。

所以出现奇数的概率为3/6 = 1/2。

2. 一个扑克牌从一副标准牌中随机抽取一张,求解抽到红心的概率。

解答:一副标准牌中有52张牌,其中有13张红心。

所以抽到红心的概率为13/52 = 1/4。

通过以上例题,我们可以看到数学必修5习题的答案并不难找到,只需要运用正确的方法和公式进行计算即可。

当然,在解题过程中,我们也要注意细节和计算的准确性。

数学是一门需要反复练习和思考的学科,通过不断的实践和探索,我们可以更好地理解和应用数学知识。

2020年高中数学 人教A版 必修5 课后作业本《数列的概念与简单表示》(含答案解析)

2020年高中数学 人教A版 必修5 课后作业本《数列的概念与简单表示》(含答案解析)

2020年高中数学 人教A 版 必修5 课后作业本《数列的概念与简单表示》一、选择题1.下列数列中,既是递增数列又是无穷数列的是( )A .1,12,13,14,… B .-1,-2,-3,-4,…C .-1,-12,-14,-18,… D.2,6,12,…,1002.数列13,24,35,46,…的一个通项公式是( ) A .a n =1n -1 B .a n =n 2n -1 C .a n =n n +2 D .a n =n 2n +13.已知a n =n(n +1),以下四个数中,是数列{a n }中的一项的是( )A .18B .21C .25D .304.递减数列{a n }中,a n =kn(k 为常数),则实数k 的取值范围是( )A .RB .(0,+∞)C .(-∞,0)D .(-∞,0]5.设a n =-n 2+10n +11,则数列{a n }的最大项的值为( )A .5B .11C .10或11D .366.已知数列{a n }满足a 1>0,且a n +1=n n +1a n ,则数列{a n }的最大项是( ) A .a 1 B .a 9 C .a 10 D .不存在二、填空题7.若数列{a n }的通项公式是a n =3-2n ,则a 2n =________,a 2a 3=________.8.数列{a n }的通项公式a n =cn +d n ,又知a 2=32,a 4=154,则a 10=________.9.已知数列{a n }的通项公式为a n =2n 2+n ,那么110是它的第________项.10.已知数列{a n}的通项公式a n=19-2n,则使a n>0成立的最大正整数n的值为________.11.用火柴棒按如图所示的方法搭三角形:按图示的规律搭下去,则所用火柴棒的根数a n与所搭三角形的个数n之间的关系式可以是________.三、解答题12.下面数列,哪些是递增数列、递减数列、常数列、摆动数列?(1)全体自然数构成的数列:0,1,2,3,4,…;(2)堆放7层的钢管,自上而下各层的钢管数排列成一列数:4,5,6,7,8,9,10;(3)无穷多个3构成的数列:3,3,3,3,…;(4)-1,1,-1,1,…;(5)2精确到1,0.1,0.01,0.001,…的不足近似值构成的数列:1,1.4,1.41,1.414,….13.已知数列{a n}中,a n=nn+1,判断数列{a n}的单调性.14.数列{a n}的通项公式为a n=30+n-n2.(1)问-60是否是{a n}中的一项?(2)当n分别取何值时,a n=0,a n>0,a n<0?15.已知函数f(x)=x -1x,设a n =f(n)(n ∈N *). (1)求证:a n <1;(2){a n }是递增数列还是递减数列?为什么?答案解析1.答案为:C ;解析:对于A ,它是无穷递减数列;对于B ,它也是无穷递减数列;D 是有穷数列;对于C ,既是递增数列又是无穷数列,故C 符合题意.2.答案为:C ;解析:观察前4项的特点易知a n =n n +2.3.答案为:D ;解析:依次令n(n +1)=18,21,25和30检验,有正整数解的为数列{a n }中的一项,知选D.4.答案为:C ;解析:∵数列{a n }是递减数列,∴a n +1-a n =k(n +1)-kn=k<0,∴实数k 的取值范围是(-∞,0).5.答案为:D ;解析:∵a n =-n 2+10n +11=-(n -5)2+36,∴当n=5时,a n 取得最大值36.6.答案为:A ;解析:∵a 1>0且a n +1=n n +1a n ,∴a n >0,a n +1a n =n n +1<1,∴a n +1<a n , ∴此数列为递减数列,故最大项为a 1.7.答案为:3-4n ,15; 解析:∵a n =3-2n ,∴a 2n =3-22n =3-4n ,a 2a 3=3-223-23=15.8.答案为:9910; 解析:由a 2=2c +d 2=32,a 4=4c +d 4=154,解之得:c=1,d=-1,∴a n =n -1n ,∴a 10=9910.9.答案为:4;解析:令2n 2+n =110,解得n=4(n=-5舍去),所以110是第4项.10.答案为:9;解析:由a n =19-2n>0,得n<192,∵n ∈N *,∴n≤9.11.答案为:a n =2n +1;解析:搭1个三角形需要3根火柴,以后每增加一个三角形只需要增加2根火柴.12.解:(1)(2)(5)中的数列是递增数列;(3)中的数列是常数列;(4)中的数列是摆动数列.13.解:∵a n =n n +1,∴a n +1=n +1n +2, 则a n +1-a n =n +1n +2-n n +1=n +12-n n +2n +2n +1=1n +2n +1. ∵n ∈N *,∴n +2>0,n +1>0,∴1n +2n +1>0,∴a n +1>a n . ∴数列{a n }是递增数列.14.解:(1)假设-60是{a n }中的一项,则-60=30+n -n 2.解得n=10或n=-9(舍去).∴-60是{a n }的第10项.(2)分别令30+n -n 2=0;30+n -n 2>0;30+n -n 2<0,解得n=6;0<n<6;n>6,即n=6时,a n =0;0<n<6时,a n >0;n>6时,a n <0.15.解:(1)证明:∵f(x)=x -1x ,∴a n =f(n)=n -1n =1-1n<1. (2){a n }是递增数列.理由如下:∵a n +1-a n =n +1-1n +1-n -1n =⎝⎛⎭⎪⎫1-1n +1-⎝ ⎛⎭⎪⎫1-1n =1n n +1>0, ∴a n +1>a n ,∴{a n }是递增数列.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档