2018年九年级数学教学质量检测试卷及答案 (浙教版)
2017-2018学年九年级数学期末试卷及答案
2017-2018学年第二学期初三年级质量检测数学(2018年2月)本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,第I 卷为1-12题,共36分,第Ⅱ卷为13-23题,共64分。
全卷共计100分。
考试时间为90分钟。
第I 卷(本卷共计36分)一、单项选择题(本部分共12小题,每小题3分,共36分)1.方程3x 2-8x-10=0的二次项系数和一次项系数分别为( )A.3和8B.3和10C.3和-10D.3和-82.如图所示的工件,其俯视图是( )3.若点A(a,b)在双曲线y=x 3上,则代数式ab-4的值为 A.-12 B.-7 C.-1 D.14.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.15和0.45,则口袋中白色球的个数可能是( )A.28B.24C.16D.65.如图,四边形ABCD 是平行四边形,下列说法不正确的是( )第5题 第6题 第7题A.当AC=BD 时,四边形ABCD 是矩形B.当AB=BC 时,四边形ABCD 是菱形C.当AC ⊥BD 时,四边形ABCD 是菱形D.当∠DAB=90°时,四边形ABCD 是正方形6.如图,△ABC 是△ABC 以点O 为位似中心经过位似变换得到的,若△A ′B ′C ′的面积与△ABC 的面积比是4:9,则0B ′:OB 为( )A.2:3B.3:2C.4:5D.4:97.如图,在平行四边形ABCD 中,EF ∥AB,DE:EA=2:3,EF=4,则CD 的长为( )A.6B.8C.10D.128.某小区2014年屋顶绿化面积为2000平方米,计划2016年屋顶绿化面积要达到2880平方米,若设屋顶绿化面积的年平均增长率为x,则依题意所列方程正确的是( )A.2000(1+x)2=2880B.200(1-x)2=2880C.2000(1+2x)=2880D.2000x 2=28809.二次函数y=x 2-3x+2的图像不经过( )A.第一象限B.第二象限C.第三象限D.第四象限10.如图,从点A 看一山坡上的电线杆PQ,观测点P 的仰角是45°,向前走6m 到达B 点,测得顶端点P 和杆底端点Q 的仰角分别是60°和30°,则该电线杆PQ 的高度( )A.326+B.36+C.310-D.38+11.如图,抛物线的顶点为P(-2,2),与y 轴交于点A(0,3).若平移该抛物线使其顶点P 沿直线移动到点P ′(2,-2),点A 的对应点为A ′,则抛物线上PA 段扫过的区域(阴影部分)的面积为( )第11题 第12题A.10B.12C.24D.1612.如图,正方形ABCD 中,O 为BD 中点,以BC 为边向正方方形内作等边△BCE,连接并延长AE 交CD 于F,连接BD 分别交CE 、AF 于G 、H,下列结论:①∠CEH=45°;②GF ∥DE ;③2OH+DH=BD ;④BG=2DG ;⑤213+=BGC BEC S S △△:。
2018至2018学年九年级质量检测数学试卷及答案
剑川县2018至2018学年上学期九年级质量检测数学试卷一、选择题(本大题共9小题,每小题3分,满分27分)1、下列计算中正确的是()A、2+3=5B、x2+x3=x5C、(-2)2 =-4D、6x3y2÷2xy2=3x22、我剑川县双河水坝工程是我县防洪效益最为显著的水利工程,它有效地控制洪水,增强抗洪能力。
据相关报道双河水库的防洪库容为22 150 0 m3,用科学记数法可记作()A、221.5×103 m3B、22.15×104 m3C、2.215×105 m3D、2215×102 m33、下图是空心圆柱体在指定方向上的视图,正确的是()4、学校开展为贫困地区捐书活动,以下是八名学生捐书的册数:2,3,2,6,5,6,2,7,则这组数据的众数和中位数分别是()A、2 和2.5B、2和4C、6和4D、6和2.55、一辆客车从剑川出发开往下关,设客车出发t小时后与下关的距离......为s千米,下列图象能大致反映s与t之间的函数关系的是()A、B、C、D、ODCB A)6、下列各组图形,可由一个图形平移得到另一个图形的是( )7、大理啤酒厂搞有奖促销活动,在一箱啤酒(共24瓶)中有4瓶的瓶盖内印有“中奖”字样,小明的爸爸买了一箱这种品牌的啤酒,但是连续打开4瓶均末中奖,小明这时在剩下的啤酒中任意拿出了一瓶,那么他拿出的这瓶中奖的概率是( )A 、201B 、51C 、61D 、 218、下列命题中,逆命题是真命题的是( )A 、对顶角相等B 、如果两个实数相等,那么它们的平方数相等C 、等腰三角形两底角相等D 、两个全等三角形的对应角相等9、已知正比例函数y kx =(0k ≠)的函数值y 随x 的增大而减小,则一次函数y kx k =+的图象大致是( )二、填空题(本大题共6小题,每小题3分,满分18分)10、一元二次方程x 2+2x =3的根是 。
初2018届成都市郫都区中考数学九年级一诊数学试卷(含答案)
初2018届成都市郫都区中考数学九年级一诊试卷(考试时间:120分钟满分150分)A卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.如图摆放的圆锥、圆柱、三棱柱、球,其主视图、左视图、俯视图都相同的是()A.B.C.D.2.一元二次方程5x2﹣4x﹣3=0的二次项系数与一次项系数分别为()A.5,﹣1 B.5,4 C.5x2,﹣4x D.5,﹣43.已知=,则的值是()A.B.C.﹣D.﹣4.如图,在平面直角坐标系中,点A的坐标为(4,3),那么cosα的值是()A.B.C.D.5.若m是一元二次方程x2﹣5x﹣2=0的一个实数根,则2018﹣m2+5m的值为()A.2015 B.2016 C.2017 D.20186.下列哪种光线形成的投影不是中心投影()A.探照灯B.太阳C.手电筒D.路灯7.如图所示,阳光中学教学楼前喷水池喷出的抛物线形水柱,其解析式为y=﹣(x﹣2)2+6,则水柱的最大高度是()A.2 B.4 C.6 D.2+8.函数y=中,自变量x的取值范围是()A.x>5 B.x<5 C.x≥5 D.x≤59.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.10.在同一坐标系中,一次函数y=ax+b与二次函数y=ax2+b的大致图象为()A.B.C.D.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.若反比例函数y=的图象在第一、三象限内,则k的取值范围为.12.抛物线y=x2+2x﹣2向右平移2个单位长度,所得抛物线的对称轴为直线.13.如图,河两岸分别有A、B两村,测得A、B、D在一直线上,A、C、E在一条直线上,BC∥DE,DE=100m,BC=70m,BD=30m,则A、B两村间的距离为.14.在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有个.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:||+﹣2tan45°﹣2sin60°(2)解方程:x2﹣6x+5=016.(6分)如图是由6个小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,请按要求画出该几何体的主视图与左视图.17.(8分)如图,一艘核潜艇在海面下500米A点处测得俯角为31°正前方的海底C点处有黑匣子信号发出,继续在同一深度直线航行3000米后再次在B点处测得俯角为62°正前方的海底C点处有黑匣子信号发出,求海底黑匣子C点处距离海面的深度CH.(参考数据:sin62°≈0.88,cos62°≈0.47,tan62°≈1.88)18.(8分)端午节那天,小贤回家看到桌上有一盘粽子,其中有豆沙粽、肉粽各1个,蜜枣粽2个,这些粽子除馅外无其他差别.(1)小贤随机地从盘中取出一个粽子,取出的是肉粽的概率是多少?(2)小贤随机地从盘中取出两个粽子,试用画树状图或列表的方法表示所有可能的结果,并求出小贤取出的两个都是蜜枣粽的概率.19.(10分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=图象交于点A (1,5)和点B(n,1).(1)求m,n的值;(2)设直线AB与x轴交于点C,求△AOC的面积;(3)若图中一次函数的函数值小于反比例函数的函数值,直接写出x的取值范围.20.(10分)如图,已知矩形ABCD中,过对角线AC的中点O作AC的垂线,分别交射线AD和CB于点E、F,交DC于点G,交AB于点H,连接AF,CE.(1)求证:四边形AFCE是菱形;(2)若=,△DGE的面积是2,求△CGF的面积;(3)如果OF=2GO,求证:GO2=DG•GC.B卷(共50分)一、填空题(本大题共5分,每小题4分,共20分,答案写在答题卡上)21.已知三角形的3条中位线分别为3cm、4cm、6cm,则这个三角形的周长是.22.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=﹣2,则b a的值为.23.已知函数y=(k﹣3)x2+2x+1的图象与x轴有两个交点,则k的取值范围是.24.从﹣2、﹣1、0、1这四个数中随机抽取一个记为a,则使关于x的不等式组有解,且使关于x的一次函数y=的图象与反比例函数y=的图象有1个交点的概率是.25.如图,正方形ABCD的边长为2,E,F分别是AB,BC的中点,AF与DE,DB分别交于点M、N,则S △MND:S△AFD的值为.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2015年利润为2亿元,2017年利润为2.88亿元.(1)求该企业从2015年到2017年利润的年平均增长率;(2)若保持年平均增长率不变,该企业2018年的利润能否超过3.4亿元?27.(10分)如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)当线段BE为何值时,线段AM最短,最短是多少?28.(12分)如图,在平面直角坐标系中,抛物线F1:y=ax2+bx﹣4(a≠0)与x轴交于点A(﹣1,0)和点B(3,0),将抛物线F1沿x轴翻折得到抛物线F2,抛物线F2与y轴交于点C.(1)求抛物线F1和抛物线F2的解析式;(2)若点P是抛物线F2在第一象限的图象上的一个动点,过点P作PE平行于y轴交直线BC于点E,求PE 的最大长度及△PCB的最大面积;(3)若点Q在抛物线F1上,且到∠OCB的两边的距离相等,求点Q的坐标.参考答案与试题解析1.【解答】解:球的三视图是大小相同的圆,而圆锥、圆柱、三棱柱的三视图都不完全相同.所以主视图、左视图、俯视图都完全相同的是球.故选:D.2.【解答】解:一元二次方程5x2﹣4x﹣3=0的二次项系数和一次项系数分别为5,﹣4,故选:D.3.【解答】解:∵=,∴a=5k,b=13k,∴=,故选:A.4.【解答】解:由点A的坐标为(4,3),那么OA==5,∴cosα的值为A的横坐标:OA=4:5,故选:B.5.【解答】解:∵m是一元二次方程x2﹣5x﹣2=0的一个实数根,∴m2﹣5m﹣2=0,即m2﹣5m=2,∴2018﹣m2+5m=2018﹣(m2﹣5m)=2018﹣2=2016.故选:B.6.【解答】解:中心投影的光源为灯光,平行投影的光源为阳光与月光,在各选项中只有B选项得到的投影为平行投影,故选B.7.【解答】解:∵抛物线形水柱,其解析式为y=﹣(x﹣2)2+6,∴水柱的最大高度是:6.故选:C.8.【解答】解:根据题意得:x﹣5≥0解得:x≥5故选:C.9.【解答】解:共4种情况,有1种情况每个路口都是绿灯,所以概率为.故选:A.10.【解答】解:A、由一次函数y=ax+b的图象可得:a>0,此时二次函数y=ax2+b的图象应该开口向上,故A错误;B、由一次函数y=ax+b的图象可得:a<0,b>0,此时二次函数y=ax2+b的图象应该开口向下,顶点的纵坐标大于零,故B正确;C、由一次函数y=ax+b的图象可得:a<0,b<0,此时二次函数y=ax2+b的图象应该开口向下,故C错误;D、由一次函数y=ax+b的图象可得:a<0,b>0,此时二次函数y=ax2+b的图象应该开口向下,故D错误;故选:B.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.【解答】解:∵反比例函数y=的图象在第一、三象限内,∴k﹣5>0,解得 k>5.故答案为:k>5.12.【解答】解:∵y=x2+2x﹣2=(x+1)2﹣3,∴向右平移2个单位长度后抛物线解析式为y=(x﹣1)2+3,∴所得抛物线的对称轴为直线 x=1.故答案是:x=1.13.【解答】解:∵BC∥DE,∴△ABC∽△AED,∴=,即=,解得,AB=70,故答案为:70.14.【解答】解:设白球个数为:x个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴=,解得:x=12,故白球的个数为12个.故答案为:12.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.【解答】解:(1)原式=2﹣+3﹣2×1﹣2×=;(2)(x﹣5)(x+1)=0,x﹣5=0或x+1=0,所以x1=5,x2=1.16.【解答】解:如图所示:17.【解答】解:在△ABC中∠CAG=31°,∠CBG=62°,∴BC=AB=3000m,在Rt△BCG中,∠BCD=62°,∴sin∠CBG=,∴CG=0.88×3000≈2640 (m),∴CH=CG﹣GH=2640+500=3140(m),∴海底黑匣子C点处距离海面的深度CH为3140m.18.【解答】解:(1)∵有豆沙粽、肉粽各1个,蜜枣粽2个,∴随机地从盘中取出一个粽子,取出的是肉粽的概率是:;(2)如图所示:,一共有12种可能,取出的两个都是蜜枣粽的有2种,故取出的两个都是蜜枣粽的概率为:=.19.【解答】解:(1)∵点A(1,5)在反比例函数y=图象上,∴m=1×5=5,∴反比例函数的解析式为y=,∵点B(n,1)在反比例函数y=的图象上,∴n=5.(2)∵点A(1,5)和点B(5,1)在直线y=kx+b上∴,解得,∴直线AB的解析式为y=﹣x+6,∴点C的坐标为(6,0),OC=6,∴△AOC的面积=×6×5=15,(3)观察图象可知:当图中一次函数的函数值小于反比例函数的函数值,x的取值范围为:0<x<1或x >5.20.【解答】证明:(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠EAC=∠ACF,在△EOA和△FOC中,,∴△EOA≌△FOC(ASA).∴AE=CF,OE=OF.∴四边形AFCE是平行四边形.∵AC⊥EF,∴四边形AFCE是菱形;(2)∵四边形AFCE是菱形∴AE∥CF,AE=CF.∴△DGE∽△CGF.∴=()2.∵=,△DGE的面积是2,∴=()2.∴S△CGF=18;(3)∵∠EDG=∠COG=90°,∠EGD=∠CGO,∴△EGD∽△CGO.∴EG:DG=CG:GO.∵OF=2GO,∴EG=GO.∴GO2=DG•GC.一、填空题(本大题共5分,每小题4分,共20分,答案写在答题卡上)21.【解答】解:∵三角形的3条中位线分别为3cm、4cm、6cm,根据三角形的中位线定理,得三角形的三边分别是6cm、8cm、12cm,则三角形的周长是26cm.故答案为26cm.22.【解答】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=﹣2,解得a=2,b=1,∴b a=12=1.故答案为:1.23.【解答】解:∵函数y=(k﹣3)x2+2x+1的图象与x轴有两个交点,∴令y=0,则(k﹣3)x2+2x+1=0,则△=4﹣4(k﹣3)>0,且k﹣3≠0,解得,k<4且k≠3.故答案是:k<4且k≠3.24.【解答】解:由题意:当a=﹣1时,关于x的不等式组有解,关于x的一次函数y=的图象与反比例函数y=的图象有1个交点,当a=0或1时,关于x的不等式组有解,关于x的一次函数y=的图象与反比例函数y =的图象有2个交点,∴使关于x的不等式组有解,且使关于x的一次函数y=的图象与反比例函数y=的图象有1个交点的概率是.故答案.25.【解答】解:连接DF,如图,∵E,F分别是AB,BC的中点,∴AE=BF=,∵四边形ABCD是正方形,∴AD∥BC,AB=BC=,∴DE=AF==5,在△ADE和△BAF中,∴△ADE≌△BAF(SAS),∴∠ADE=∠BAF,∵∠BAF+∠FAD=90°,∴∠FAD+∠ADE=90°,∴∠AMD=90°,∴AM⊥DE,∵AM•DE=AE•AD,∴AM==2,在Rt△AMD中,DM==4,又∵AD∥BF,∴△AND∽△FNB,∴,∴AN=2NF==×5=,∴MN=﹣2=,∴S△DMN=DM•MN=×4×=8,∵S△ADF=×2×2=30,∴S△MND:S△AFD=8:30=4:15.故答案为4:15.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.【解答】解:(1)设这两年该企业年利润平均增长率为x,根据题意得:2(1+x)2=2.88,解答:x1=0.2=20%,x2=﹣2.2(不合题意,舍去),则设这两年该企业年利润平均增长率为20%;(2)如果2018年仍保持相同的年平均增长率,那么2018年该企业年利润为:2.88(1+20%)=3.456,且3.456>3.4,则该企业2018年的利润能超过3.4亿元.27.【解答】解:(1)∵AB=AC,∴∠B=∠C,∵△ABC≌△DEF,∴∠AEF=∠B,又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,∴∠CEM=∠BAE,∴△ABE∽△ECM;(2)能.∵∠AEF=∠B=∠C,且∠AME>∠C,∴∠AME>∠AEF∴AE≠AM;当AE=EM时,则△ABE≌△ECM,∴CE=AB=5,∴BE=BC﹣EC=6﹣5=1,当AM=EM时,则∠MAE=∠MEA,∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,∵∠C=∠C,∴△CAE∽△CBA,∴,∴CE=,∴BE=6﹣=;∴BE=1或.(3)设BE=x,又∵△ABE∽△ECM,∴,即:,∴CM=﹣+x=﹣(x﹣3)2+,∴AM=5﹣CM=(x﹣3)2+,∴当x=3时,AM最短为.28.【解答】解:(1)F1的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即﹣3a=﹣4,解得:a=,故函数F1的表达式为:y=x2﹣x﹣4,将抛物线F1沿x轴翻折得到抛物线F2,抛物线的表达式为:y=﹣x2+x+4;(2)点B、C的坐标分别为(3,0)、(0,4),将点B、C坐标代入一次函数表达式:y=kx+b并解得:直线C的表达式为:y=﹣x+4,设点P(x,﹣x2+x+4),则点E(x,﹣x+4),PE=﹣x2+x+4﹣(﹣x+4)=﹣(x﹣)2+3,∵<0,∴当x=时,PE的最大值为3;(3)如图,在y轴上截取CB=CD=5,则点D(0,﹣1),设BD的中点为H(,﹣),同理过点C、H的直线表达式为:y=﹣3x+4,∵CH平分∠OCB,则CH与抛物线F1的交点Q到∠PCB两边的距离相等,,解得:x=,故点Q(,)或(,)。
浙教版2018-2019学年九年级数学竞赛试卷(一)及答案
浙教版2018-2019学年九年级数学竞赛试卷(一)一.选择题(共5小题,满分30分,每小题6分)1.已知x为实数,且﹣(x2+3x)=2,则x2+3x的值为()A.1 B.1或﹣3 C.﹣3 D.﹣1或32.已知下列命题:①对顶角相等;②若a>b>0,则<;③对角线相等且互相垂直的四边形是正方形;④抛物线y=x2﹣2x与坐标轴有3个不同交点;⑤边长相等的多边形内角都相等.从中任选一个命题是真命题的概率为()A.B.C.D.3.如图,已知∠POQ=30°,点A、B在射线OQ上(点A在点O、B之间),半径长为2的⊙A与直线OP相切,半径长为3的⊙B与⊙A相交,那么OB的取值范围是()A.5<OB<9 B.4<OB<9 C.3<OB<7 D.2<OB<74.如图,AB是圆O的直径,弦AD,BC相交于点P,∠DPB=60°,D是的中点,则的值是()A.B.2 C.D.5.If a is odd number,the there must exist an integer n such that a2﹣1=()A.3n B.5n C.8n D.16n二.填空题(共5小题,满分30分,每小题6分)6.对于实数m、n,定义一种运算“*”为:m*n=mn+n.如果关于x的方程x*(a*x)=有两个相等的实数根,那么满足条件的实数a的值是.7.一个班共有44人,全部报名参加了学校组织的兴趣活动小组,参加数学兴趣活动小组的有38人,参加物理兴趣活动小组的有35人,则既参加数学兴趣活动小组又参加物理活动兴趣小组的有人.8.如图,四边形ABCD的对角线AC,BD相交于点F,M,N分别为AB,CD的中点,连接MN分别交BD,AC于点P,Q,且∠FPQ=∠FQP,若BD=9,则AC=.9.如图,AB为半圆的直径,C是半圆弧上任一点,正方形DEFG的一边DG在直线AB上,另一边DE过△ABC的内切圆圆心I,且点E在半圆弧上,已知DE=9,则△ABC的面积为.10.方程组的所有正整数解是.三.解答题(共4小题,满分60分,每小题15分)11.(15分)如图,△ABC中,BC=6,AC=4,∠C=45°,P为BC边上的动点,过P作PD∥AB 交AC于点D,连接AP,△ABP,△APD,△CDP的面积分别记为S1,S2,S3,设BP=x.(1)试用x的代数式分别表示S1,S2,S3;(2)当P点在什么位置时,△APD的面积最大,并求最大值.12.(15分)已知a,b,c是三个两两不同的奇质数,方程有两个相等的实数根.(1)求a的最小值;(2)当a达到最小时,解这个方程.13.(15分)(1)若a、b、c为一个三角形的三边,且满足(a﹣b)2+(b﹣c)2+(c﹣a)2=0.探索这个三角形的形状,并说明理由;(2)若x、y、z为一个三角形的三个内角的度数,且满足36x2+9y2+4z2﹣18xy﹣6yz﹣12zx=0.探索这个三角形的形状,并说明理由.14.(15分)41名运动员所穿运动衣号码是1,2,…,40,41这41个自然数,问:(1)能否使这41名运动员站成一排,使得任意两个相邻运动员的号码之和是质数?(2)能否让这41名运动员站成一圈,使得任意两个相邻运动员的号码之和都是质数?若能办到,请举一例;若不能办到,请说明理由.参考答案1.解:设x2+3x=y,则原方程变为:﹣y=2,方程两边都乘y得:3﹣y2=2y,整理得:y2+2y﹣3=0,(y﹣1)(y+3)=0,∴y=1或y=﹣3,当x2+3x=1时,△>0,x存在.当x2+3x=﹣3时,△<0,x不存在.∴x2+3x=1,故选:A.2.解:①对顶角相等,故此选项正确;②若a>b>0,则<,故此选项正确;③对角线相等且互相垂直平分的四边形是正方形,故此选项错误;④抛物线y=x2﹣2x与坐标轴有2个不同交点,故此选项错误;⑤边长相等的多边形内角不一定都相等,故此选项错误;从中任选一个命题是真命题的概率为:.故选:B.3.解:设⊙A与直线OP相切时切点为D,连接AD,∴AD⊥OP,∵∠O=30°,AD=2,∴OA=4,当⊙B与⊙A相内切时,设切点为C,如图1,∵BC=3,∴OB=OA+AB=4+3﹣2=5;当⊙A与⊙B相外切时,设切点为E,如图2,∴OB=OA+AB=4+2+3=9,∴半径长为3的⊙B与⊙A相交,那么OB的取值范围是:5<OB<9,故选:A.4.解:∵AB是圆O的直径,∴∠ACB=90°.而∠DPB=60°,∴∠APC=60°.∴∠CAD=30°.又∵D是的中点,∴∠CAD=∠BAD=30°.∴∠ABC=180°﹣30°﹣30°﹣90°=30°.∴=.故选:A.5.解:∵a是奇数,∴设a=2n﹣1(n≥2),∴a2﹣1=(2n﹣1)2﹣1=[(2n﹣1)+1]×[(2n﹣1)﹣1]=2n(2n﹣2)=4n(n﹣1)如果n是偶数,则必然有﹣x使n=2x,原式=8x(n﹣1);如果n是奇数,则(n﹣1)为偶数,必然有﹣y使(n﹣1)=2y,原式=8yn.综上,任意奇数的平方减去1后都是8的倍数.故选:C.6.解:由x*(a*x)=﹣,得(a+1)x2+(a+1)x+=0,依题意有a+1≠0,△=(a+1)2﹣(a+1)=0,解得,a=0,或a=﹣1(舍去).故答案为:0.7.解:∵没有参加数学小组的人:44﹣38=6人,没有参加物理小组的人:44﹣35=9人,∴两者都参加的有:44﹣(6+9)=29人.8.解:取线段BC的中点E,连接EM、EN,如图所示.∵M、N,E分别为AB,CD,BC的中点,∴ME∥AC,ME=AC,NE∥BD,NE=BD=,∴∠EMN=∠FQP,∠ENM=∠FPQ.又∵∠FPQ=∠FQP,∴∠EMN=∠ENM.∴ME=NE=.∴AC=2ME=9.故答案为:9.9.解:设⊙I切AC与M,切BC于N,半径为r,则AD=AM,CM=CN=r,BD=BN,r=(AC+BC﹣AB),∵AB为半圆的直径,∴∠ACB=90°,∴AB2=AC2+BC2,∴AD•DB=AM•BN=(AC﹣r)(BC﹣r)=[AC﹣(AC+BC﹣AB)][BC﹣(AC+BC﹣AB)] =(AC﹣BC+AB)(AB+BC﹣AC)=(AB2﹣AC2﹣BC2+2AC•BC)=AC•BC,由射影定理得AD•DB=DE2=81,∴S△ABC=AC•BC=81,故答案为:81.10.解:∵⇒∵(y﹣z)2≥0⇒2yz≤y2+z2⇒2yz+y2+z2=2(y2+z2)⇒(y+z)2≤2(y2+z2)∴(y+z)2=(6x﹣20)2≤2(y2+z2)=2(1979﹣x2)于是(6x﹣20)2≤2(1979﹣x2)≤2×1978<632注解到不等式(y+z)2≤2(y2+z2)有(y+z)2=(6x﹣20)2≤2(y2+z2)=2(1979﹣x2),于是(6x﹣20)2≤2(1979﹣x2)≤2×1978<632,即﹣63<6x﹣20<63又∵y+z=6x﹣20是正整数∴0<6x﹣20<63,即,从而4≤x≤13.再由y+z为偶数,从而y2+z2为偶数,x2为奇数,进而x为奇数.∴x=5,7,9,11,13①当x=5时,,显然y、z正整数解不存在.②当x=7时,,显然y、z正整数解不存在.③当x=9时,,显然y、z正整数解不存在.④当x=11时,解得或;⑤当x=13时,解得或.故答案为11.解:(1)过A作AE⊥BC,则AE为BC边上的高,由Rt△AEC中,AC=4,∠C=45°,得到此三角形为等腰直角三角形,∴sin45°=,即AE=ACsin45°=4×=4,则△ABC中BC边上的高为4,设△CDP中PC边上的高为h,则;这样S1=2x,S3=,S2=12﹣2x﹣=;(2)S2===,所以当x=3时,y有最大值3;此时BP=3,即P是BC的中点.12.解:(1)∵方程有两个相等的实数根,∴△=5(a+1)2﹣900(b+c)=0,∴(a+1)2=22×32×5(b+c),∴5(b+c)应为完全平方数,最小值为52×22,∴a+1的最小值为60,∴a的最小值为59;(2)∵a=59时,b+c=20,则原方程为:20x2+60x+225=0,解得:x=﹣.13.解:(1)∵(a﹣b)2+(b﹣c)2+(c﹣a)2=0,又∵(a﹣b)2≥0,(b﹣c)2≥0,(c﹣a)2≥0,∴a﹣b=0,b﹣c=0,c﹣a=0,∴a=b=c∴这是一个等边三角形;(2)∵36x2+9y2+4z2﹣18xy﹣6yz﹣12zx=0①,①×2得:72x2+18y2+8z2﹣36xy﹣12yz﹣24zx=0,∴(36x2﹣36xy+9y2)+(36x2﹣24xz+4z2)+(9y2﹣12yz+4z2)=0,∴(6x﹣2z)2+(6x﹣3y)2+(3y﹣2z)2=0∴3x=z,2x=y,∵x+y+z=180°,∴x+3x+2x=180°,∴x=30°,y=60°,z=90°,∴该三角形是直角三角形.14.解:(1)能办到.注意到41与43都是质数,据题意,要使相邻两数的和都是质数,显然,它们不能都是奇数,因此,在这排数中只能一奇一偶相间排列,不妨先将奇数排成一排:1,3,5,7,41,在每两数间留有空档,然后将所有的偶数依次反序插在各空档中,得1,40,3,38,5,36,7,34,8,35,6,37,4,39,2,41,这样任何相邻两数之和都是41或43,满足题目要求.(2)不能办到.若把1,2,3,40,41排成一圈,要使相邻两数的和为质数,这些质数都是奇数,故圆圈上任何相邻两数必为一奇一偶,但现有20个偶数,21个奇数,总共有41个号码,由此引出矛盾,故不能办到.(注站成一排和站成一圈虽只一字之差,但却有着质的不同,因为一圈形成了首尾相接的情形.)。
静安区2018年初三数学一模试卷及答案
静安区2017学年第一学期期末学习质量调研九年级数学 2018.1(考试时间:100分钟 总分:150分)考生注意:1. 本试卷含三个大题,共25题,答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效。
2. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤。
3. 答题时可用函数型计算器。
一、 选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上】 1. 化简()52a a ⋅-所得的结果是( )(A )7a ; (B )7a -; (C )10a ; (D )10a -. 2. 下列方程中,有实数跟的是 ( ) (A )011=+-x ; (B )11=+x x ; (C )0324=+x ; (D )112-=-x . 3. 如图,比例规是一种画图工具,它由长度相等的两脚AC 和BD 交叉构成,利用它可以把线段按一定的比例伸长或缩短,如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OC OA 3=,OD OB 3=),然后张开两脚,使A ,B 两个尖端分别在线段a 的两个端点上,当cm CD 8.1=时,AB 的长是 ( )(A )cm 2.7;(B )cm 4.5; (C )cm 6.3; (D )cm 6.0.4. 下列判断错误的是 ( )(A )如果0=k 或0 =a ,那么0=a k ; (B )设m 为实数,则()b m a m b a m+=+;(C )如果e a //,那么e a a=;(D )在平行四边形ABCD 中,=-. 5. 在ABC Rt ∆中,︒=∠90C ,如果31sin =A ,那么B sin 的值是 ( ) (A )322; (B )22; (C )42; (D )3.第3题图学校 班级 准考证号 姓名…………………密○……………………………………封○……………………………………○线……………………………C ABD C B A 6. 将抛物线3221--=x x y 先向左平移1个单位,再向上平移4个单位后,与抛物线c bx ax y ++=22重合,现有一直线323+=x y 与抛物线c bx ax y ++=22相交,当32y y ≤时,利用图像写出此时x 的取值范围是 ( )(A )1-≤x ; (B )3≥x ; (C )31≤≤-x ; (D )0≥x .二、填空题 7. 已知31==d c b a ,那么db c a ++的值是 . 8. 已知线段AB 长是2厘米,p 是线段AB 上的一点,且满足BP AB AP ⋅=2,那么AP 长为____厘米. 9. 已知ABC △的三边长是262、、,DEF △的两边长分别是1和3,如果ABC △与DEF △相似,那么DEF △的第三边长应该是 .10. 如果一个反比例函数图像与正比例函数x y 2=图像有一个公共点),1(a A ,那么这个反比例函数的解析式是 .11. 如果抛物线c bx ax y ++=2(其中c b a 、、是常数,且0≠a )在对称轴左侧的部分是上升的,那么a 0.(填“<”或“>”)12. 将抛物线2)(m x y +=向右平移2个单位后,对称轴是y 轴,那么m 的值是 .13. 如图,斜坡AB 的坡度是4:1,如果从点B 测得离地面的铅垂线高度BC 是6米,那么斜坡`AB 的长度是 米.(第15题图) (第13题图)14. 在等腰ABC Δ中,已知5==AC AB ,8=BC ,点G 是重心,联结BG ,那么CBG ∠的余切值是__________. 15. 如图,ABC Δ中,点D 在边AC 上,C ABD ∠=∠,9=AD ,7=DC ,那么=AB _______. 16. 已知梯形ABCD ,BC AD //,点E 和点F 分别在两腰AB 和DC 上,且EF 是梯形的中位线,3=AD ,4=BC 。
2018-2019学年杭州市九年级数学上册第一次月考试卷(有答案)AlHUUn
浙江省杭州市2018-2019学年度第一学期浙教版九年级数学上册第一次月考试卷(九月第一二章)考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.若y=(m2+3m+2)x m2+m为二次函数,则m的值为()A.−2或1B.−2C.−1D.12.袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是()A.3个B.不足3个C.4个D.5个或5个以上3.一辆新汽车原价20万元,如果每年折旧率为x,两年后这辆汽车的价钱为y元,则y关于x的函数关系式为()A.y=20(1+x)2B.y=20(1−x)2C.y=20(1+x)D.y=20+x24.已知二次函数y=ax2+bx+c的图象如下图所示,则四个代数式abc,b2−4ac,2a+b,a−b+c中,值为正数的有()A.4个B.3个C.2个D.1个5.某网店销售一款李宁牌运动服,每件进价100元,若按每件128元出售,每天可卖出100件,根据市场调查结果,若每件降价1元,则每天可多卖出5件,要使每天获得的利润最大,则每件需要降价的钱数为()A.3元B.4元C.5元D.8元6.如图所示,二次函数y=ax2+bx+c(a≠0)的图象经过点(−1, 2),且与x轴交点的横坐标分别为x1,x2,其中−2<x1<−1,0<x2<1,下列结论:①abc>0;②4a−2b+c<0;③2a−b<0;④b2+8a>4ac.其中正确的有()A.1个B.2个C.3个D.4个7.若点P1(−1, y1),P2(−2, y2),P3(1, y3),都在函数y=x2−2x+3的图象上,则()A.y2<y1<y3B.y1<y2<y3C.y2>y1>y3D.y1>y2>y38.在一个不透明的布袋中装有红色,白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有()A.4个B.6个C.34个D.36个9.下列二次函数的图象,不能通过函数y=3x2的图象平移得到的是()A.y=3x2+2B.y=3(x−1)2C.y=3(x−1)2+2D.y=2x210.小宏和小倩抛硬币游戏,规定:将一枚硬币连抛三次,若三次国徽都朝上则小宏胜,若三次中只有一次国徽朝上则小倩胜,你认为这种游戏公平吗()A.公平B.小倩胜的可能大C.小宏胜的可能大D.以上答案都错二、填空题(共 10 小题,每小题 3 分,共 30 分)11.抛物线y=x2+2x+7的开口向________,对称轴是________,顶点是________.12.在一次翻牌子游戏中,组织者制作了20个牌子,其中有5个牌子的背面注明有奖,其余牌子的背面注明无奖,参与者有三次翻牌的机会,且翻过的牌不能再翻,有一位参与者已翻牌,一次获奖,一次不获奖,那么他第三次翻牌获奖的概率是________.13.已知抛物线y=ax2+bx+c开口向上且经过点(1, 1),双曲线y=1经过点(a, bc),给出2x=0下列结论:①bc>0;②b+c>0;③b,c是关于x的一元二次方程x2+(a−1)x+12a的两个实数根;④a−b−c≥3.其中正确结论是________(填写序号)14.请选择一组你喜欢的a、ℎ、k的值,使二次函数y=a(x−ℎ)2+k(a≠0)的图象同时满足下列条件:①开口向下,②对称轴是直线x=2;③顶点在x轴下方,这样的二次函数的解析式可以是________.15.将抛物线y=2(x−1)2+4,绕着它的顶点旋转180∘,旋转后的抛物线表达式是________.16.连掷五次骰子都没有得到6点,第六次得到6点的概率是________.17.抛物线y=ax2+bx+c(a>0)与x轴有两个交点A(2, 0)、B(−1, 0),则不等式ax2+bx+ c<0的解集为________.18.二次函数y=ax2+bx+c用配方法可化成y=a(x−ℎ)2+k的形式,其中ℎ=________,k=________.19.二次函数y=a(x−4)2−4(a≠0)的图象在1<x<2这一段位于x轴的下方,在7<x<8这一段位于x轴的上方,则a的值为________.20.若抛物线y=x2+bx+c的最低点为(1, 2),则b=________,c=________.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.已知二次函数y=x2−2x+c的部分图象如图所示.(1)求c的取值范围;(2)若抛物线经过点(0, −1),试确定抛物线y=x2−2x+c的函数表达式.22.某公园有一个抛物线形状的观景拱桥ABC,其横截面如图所示,在图中建立的直角坐标系中,抛物线的解析式为y=−120x2+c且过顶点C(0, 5)(长度单位:m)(1)直接写出c的值;(2)现因搞庆典活动,计划沿拱桥的台阶表面铺设一条宽度为1.5m的地毯,地毯的价格为20元/m2,求购买地毯需多少元?23.已知二次函数y=x2−6x+8.(1)将解析式化成顶点式;(2)写出它的开口方向、对称轴和顶点坐标;(3)x取什么值时,y随x的增大而增大;x取什么值时,y随x增大而减小.24.如图可以自由转动的转盘被3等分,指针落在每个扇形内的机会均等.(1)现随机转动转盘一次,停止后,指针指向数字1的概率为________;(2)小明和小华利用这个转盘做游戏,若采用下列游戏规则,你认为对双方公平吗?请用列表或画树状图的方法说明理由.25.某水果商场经销一种高档水果,如果每千克盈利10元,每天可售出40千克.经市场调查发现,出售价格每降低1元,日销售量将增加10千克.那么每千克应降价多少元,销售该水果每天可获得最大利润?最大利润是多少元?26.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象回答:(1)当y=0时,写出自变量x的值.(2)当y>0时,写出自变量x的取值范围.(3)写出y随x的增大而减小的自变量x的取值范围.(4)若方程ax2+bx+c−k=0有两个不相等的实数根,求k的取值范围(用含a、b、c的代数式表示).答案1.D2.D3.B4.A5.B6.D7.C8.B9.D10.B11.上x=−1(−1, 6)12.2913.①③④14.y=−(x−2)2−3(不唯一)15.y=−2(x−1)2+416.1617.−1<x<218.−b2a 4ac−b24a19.4920.−2321.解:(1)∵抛物线与y轴的交点在x轴下方,∴c<0;(2)∵抛物线经过点(0, −1),∴c=−1,∴抛物线解析式为y=x2−2x−1.22.购买地毯需要900元.23.解:(1)y=x2−6x+8=x2−6x+9−1=(x−3)2−1;(2)开口向上,对称轴是x=3,顶点坐标是(3, −1);(3)x>3时,y随x的增大而增大;x<3时,y随x增大而减小.24.1(2)列表得:∴P (小明获胜)=59,P (小华获胜)=49,∵59>49,∴该游戏不公平.25.每千克应降价3元钱,销售该水果每天可获得最大利润,最大利润是490元. 26.解:(1)当y =0时,x =1或x =3;(2)当y >0时,1<x <3;(3)∵抛物线的开口向下,对称轴为x =2.∴当x >2时,y 随x 的增大而减小;(4)方程ax 2+bx +c −k =0变形为ax 2+bx +c =k ,所以方程ax 2+bx +c −k =0有两个不相等的实数根可看作二次函数y =ax 2+bx +c 与直线y =k 有两个交点,如图,所以k <2,即k <4ac−b 24a .。
2018—2019学年度第一学期期中测试初三数学试卷(含答案)
2018~2019学年度初三年级数学第一学期期中检测(考试时间:120分钟 分值:150分)一、选择题(本大题共8小题.每小题3分,共24分.在每小题给出的四个选项中,只有一个是符合题目要求的,请将答案序号填在答题卡相应的位置上.................) 1. 方程x 2+x= 的解是 ( ) A .x=0 B .x=1 C . x 1=0,x 2=1 D . x 1=0,x 2=﹣1 2. 关于x 的一元二次方程(a −1)x 2−2x +3=0有实数根,则整数a 的最大值是( )A.2B.1C.0D.−1 3. 已知关于x 的方程x 2+mx +n =0有一个根是-n(n ≠0),则下列代数式的值恒为常数的是 ( ) A .n +m B .n / m C .n -m D .nm 4. 对甲、乙两同学100米短跑进行5次测试,他们的成绩通过计算得:甲x =乙x ,2甲S =0.026, 2乙S =0.025,下列说法正确的是 ( )A.甲短跑成绩比乙好B.乙短跑成绩比甲好C.甲比乙短跑成绩稳定D.乙比甲短跑成绩稳定 5.圆锥的底面半径为4cm ,高为3cm ,则它的表面积为 ( )A .24πcm 2B .36πcm 2C .48πcm 2D .72πcm 26. 如图,一个直角三角形ABC 的斜边AB 与量角器的零刻度线重合,点D 对应56°,则∠BCD 的度数为 ( )A .28°B .56°C .62°D .64°7. 如图,AB 是⊙O 的直径,⊙O 交BC 的中点于D,DE ⊥AC 于E,连接AD,则下列结论正确的个数是 ( )①AD ⊥BC ②∠EDA=∠B ③2OA=AC ④DE 是⊙O 的切线 A .1 个 B .2个 C .3 个 D .4个8. 如图,矩形ABCD 中,AB=2,BC=3,分别以A 、D 为圆心,1为半径画圆,E 、F 分别是⊙A 、⊙D 上的一动点,P 是BC 上的一动点,则PE+PF 的最小值是( )A .2B .3C .4D .5第6题图 第7题图 第8题图二、填空题(本大题共10小题.每小题4分,共40分.请将答案填在答题卡相应的位.............置上..)9. 如果一组数据-2,0,1,3,x的极差是7,那么x的值是.10. 已知关于x的方程x2−kx−6=0的一个根为x=3,则实数k的值为.11.设a、b是方程x2+x-2018=0的两个不等的实根,则a2+2a+b的值为.12.若⊙O的直径是4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是.13.如图,C是以AB为直径的⊙O上一点,已知AB=5,BC=3,则圆心O到弦BC的距离是.14.如图,⊙O的半径为1cm,弦AB、CD cm,1cm,则弦AC、BD所夹的锐角α=.15.如图所示,小华从一个圆形场地的A点出发,沿着与半径OA夹角为α的方向行走,走到场地边缘B后,再沿着与半径OB夹角为α的方向折向行走.按照这种方式,小华第五次走到场地边缘时处于弧AB上,此时∠AOE=56°,则α=.第13题图第14题图第15题图16.如图,△ABC的内切圆O与边BC切于点D,若∠BOC=135°,BD=3,CD=2,则△ABC的面积为=.17.如图正方形ABCD的边长为3,点E是AB上的一点,将△BCE沿CE折叠至△FCE,若CF,CE恰好与以正方形ABCD的中心为圆心的⊙O相切,则折痕CE第16题图第17题图第18题图三、解答题(本大题共9大题,共86分.请将答案..........,解答时应....写在答题卡相应的位置上写出必要的计算过程,推演步骤或文字说明.作图时用铅笔)19. (本题满分8分) 解下列方程:(1)(x+1)2= 9 (2)x2﹣2x﹣2=020.(本题满分9分)某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为多少?求出图①中m的值;(2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.21.(本题满分9分)已知□ ABCD两邻边是关于x的方程x2﹣mx+m﹣1=0的两个实数根.(1)当m为何值时,四边形ABCD为菱形?求出这时菱形的边长.(2)若AB的长为2,那么□ ABCD的周长是多少?22.(本题满分9分)某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.调查表明:这种台灯的售价每上涨1元,其销售量就将减少10个,但售价不能超过70元.为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少元?23.(本题满分9分)在半径为17dm 的圆柱形油罐内装进一些油后,横截面如图. ①若油面宽AB=16dm ,求油的最大深度.②在①的条件下,若油面宽变为CD=30dm ,求油的最大深度上升了多少dm ?24.(本题满分9分) 如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧. (1)画出圆弧所在圆的圆心P ; (2)过点B 画一条直线,使它与该圆弧相切;(3)连结AC ,求线段AC 和弧AC 围成的图形的面积.25.(本题满分10分)如图,已知⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,点D 是AB 延长线上的一点,AE ⊥DC 交DC 的延长线于点E ,AC 平分∠DAE .(1)DE 与⊙O 有何位置关系?请说明理由. (2)若AB=6,CD=4,求CE 的长.26.(本题满分10分)在一节数学实践活动课上,老师拿出三个边长都为2cm 的正方形硬纸板,他向同学们提出了这样一个问题:若将三个正方形纸板不重叠地放在桌面上,用一个圆形硬纸板将其盖住,这样的圆形硬纸板的最小直径应有多大?问题提出后,同学们经过讨论,大家觉得本题实际上就是求将三个正方形硬纸板无重叠地适当放置,圆形硬纸板能盖住时的最小直径.老师将同学们讨论过程中探索出的三种不同摆放类型的图形画在黑板上,如下图所示:(1)通过计算(结果保留根号与π).(Ⅰ)图①能盖住三个正方形所需的圆形硬纸板最小直径应为cm;(Ⅱ)图②能盖住三个正方形所需的圆形硬纸板最小直径为cm;(Ⅲ)图③能盖住三个正方形所需的圆形硬纸板最小直径为cm;(2)其实上面三种放置方法所需的圆形硬纸板的直径都不是最小的,请你画出用圆形硬纸板盖住三个正方形时直径最小的放置方法,(只要画出示意图,不要求说明理由),并求出此时圆形硬纸板的直径.27.(本题满分13分)如图,菱形OABC的顶点O在坐标原点,顶点B在x轴的正半轴上,OA 边在直线x y 33=上,AB 边在直线233+-=x y 上. (1)直接写出:线段OA= ,∠AOC= ;(2)在对角线OB 上有一动点P ,以O 为圆心,OP 为半径画弧MN ,分别交菱形的边OA 、OC 于点 M 、N ,作⊙Q 与边AB 、BC 、弧MN 都相切,⊙Q 分别与边AB 、BC 相切于点D 、E ,设⊙Q 的半径为r ,OP 的长为y ,求y 与r 之间的函数关系式,并写出自变量r 的取值范围;(3)若以O 为圆心、OA 长为半径作扇形OAC ,请问在菱形OABC 中,在除去扇形OAC 后的剩余部分内,是否可以截下一个圆,使得它与扇形OAC 刚好围成一个圆锥,若可以,求出这个圆的半径,若不可以,说明理由.2018-2019学年度第一学期第二次质量调研测试初三数学参考答案(考试时间:120分钟分值:150分)二、填空题(本大题共10题,每小题4分,共计40分).9. 5或-4, 10. 1, 11. 2017 12. 相离, 13. 2,14. 75°, 15. 52°, 16. 6, 17. 23, 18. 43π三、解答题(本大题共9大题,共86分.请将答案..........,解答时应....写在答题卡相应的位置上写出必要的计算过程,推演步骤或文字说明.作图时用铅笔)19.(1)x1=2,x2=﹣4 (4分)(2)x1=1+,x2=1﹣;(4分)20.(1)4÷10%=40(人),…………………2分m=100-27.5-25-7.5-10=30;答为40人,m=30.…………………4分(2)平均数=(13×4+14×10+15×11+16×12+17×3)÷40=15,…………………6分16出现12次,次数最多,众数为16;…………………7分按大小顺序排列,中间两个数都为15,(15+15)÷2=15,中位数为15.…………………9分21.(1)若四边形为菱形,则方程两实根相等.∴△=m2﹣4(m﹣1)=0 …………………1分∴m2﹣4m+4=0∴m1=m2=2 …………………3分∴方程化为x2﹣2x+1=0解得:x1=x2=1∴菱形边长为1.…………………5分(2)由AB=2知方程的一根为2,将x=2代入得,4﹣2m﹣1=0,解得:m=3 …………………6分此时方程化为:x2﹣3x+2=0,解得(x﹣1)(x﹣2)=0解得:x1=1,x2=2 …………………8分∴平行四边形ABCD的周长=2×(1+2)=6.…………………9分22.(本题满分9分)设售价定为x元[600−10(x−40)](x−30)=10000 ……………………3分整理,得x2−130x+4000=0解得:x1=50,x2=80…………………………7分∵x≤70∴x=50 ………………………… 8分答:台灯的售价应定为50元。
2018年厦门九年级数学质检试题及答案
2018年厦门市初中总复习教学质量检测数 学(试卷满分:150分 考试时间:120分钟)准考证号 姓名 座位号注意事项:1.全卷三大题,25小题,试卷共4页,另有答题卡. 2.答案必须写在答题卡上,否则不能得分. 3.可以直接使用2B 铅笔作图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.计算-1+2,结果正确的是A . 1B . -1C . -2D . -3 2.抛物线y =ax 2+2x +c 的对称轴是A . x =-1aB . x =-2aC . x =1aD . x =2a3.如图1,已知四边形ABCD ,延长BC 到点E ,则∠DCE 的同位角是A . ∠AB . ∠BC . ∠DCBD .∠D4.某初中校学生会为了解2017年本校学生人均课外阅读量,计划开展抽样调查.下列抽样调查方案中最合适的是A .到学校图书馆调查学生借阅量B .对全校学生暑假课外阅读量进行调查C .对初三年学生的课外阅读量进行调查D .在三个年级的学生中分别随机抽取一半学生进行课外阅读量的调查 、 5.若967×85=p ,则967×84的值可表示为A . p -1B . p -85C . p -967D .8584p 6. 如图2,在Rt△ACB 中,∠C =90°,∠A =37°,AC =4,则BC 的长约为(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) A . 2.4 B . 3.0 C . 3.2 D . 5.07. 在同一条直线上依次有A ,B ,C ,D 四个点,若CD -BC =AB ,则下列结论正确的是 A . B 是线段AC 的中点 B . B 是线段AD 的中点 C . C 是线段BD 的中点 D . C 是线段AD 的中点8. 把一些书分给几名同学,若 ;若每人分11本则不够. 依题意,设有x 名同学, 可列不等式9x +7<11x ,则横线上的信息可以是 A .每人分7本,则可多分9个人 B. 每人分7本,则剩余9本图1E DC B A图2 ABCC .每人分9本,则剩余7本D. 其中一个人分7本,则其他同学每人可分9本9. 已知a ,b ,c 都是实数,则关于三个不等式:a >b ,a >b +c ,c <0的逻辑关系的表述,下列正确的是A . 因为a >b +c ,所以a >b ,c <0B . 因为a >b +c ,c <0,所以a >bC . 因为a >b ,a >b +c ,所以c <0D . 因为a >b ,c <0,所以a >b +c 10. 据资料,我国古代数学家刘徽发展了测量不可到达的物体的高度的“重差术”,如:通过下列步骤可测量山的高度PQ (如图3):(1)测量者在水平线上的A 处竖立一根竹竿,沿射线QA 方向走到M 处,测得山顶P 、竹竿顶点B 及M 在一条直线上;(2)将该竹竿竖立在射线QA 上的C 处,沿原方向继续走到N 处,测得山顶P ,竹竿顶点D 及N 在一条直线上;(3)设竹竿与AM ,CN 的长分别为l ,a 1,a 2,可得公式: PQ =d ·la 2-a 1+l .则上述公式中,d 表示的是A .QA 的长B . AC 的长 C .MN 的长D .QC 的长 二、填空题(本大题有6小题,每小题4分,共24分)11.分解因式: m 2-2m = .12.投掷一枚质地均匀的正六面体骰子,向上一面的点数为奇数的 概率是 .13.如图4,已知AB 是⊙O 的直径,C ,D 是圆上两点,∠CDB =45°,AC =1,则AB 的长为 .14. A ,B 两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运30kg ,A 型机器人搬运900kg 所用时间与B 型机器人搬运600kg 所用时间相等.设B 型机器人每小时 搬运x kg 化工原料,根据题意,可列方程__________________________. 15.已知a +1=20002+20012,计算:2a +1= .16.在△ABC 中,AB =AC .将△ABC 沿∠B 的平分线折叠,使点A 落在BC 边上的点D 处, 设折痕交AC 边于点E ,继续沿直线DE 折叠,若折叠后,BE 与线段DC 相交,且交点不 与点C 重合,则∠BAC 的度数应满足的条件是 .三、解答题(本大题有9小题,共86分)17.(本题满分8分)解方程:2(x -1)+1=x .18.(本题满分8分)如图5,直线EF 分别与AB ,CD 交于点A ,C ,若AB ∥CD ,CB 平分∠ACD ,∠EAB =72°,求∠ABC 的度数.FE ABC D图4B图3如图6,平面直角坐标系中,直线l经过第一、二、四象限,点A(0,m)在l上.(1)在图中标出点A;(2)若m=2,且l过点(-3,4),求直线l的表达式.20.(本题满分8分)如图7,在□ABCD中,E是BC延长线上的一点,且DE=AB,连接AE,BD,证明AE=BD.21.(本题满分8分)某市的居民交通消费可分为交通工具、交通工具使用燃料、交通工具维修、市内公共交通、城市间交通等五项.该市统计局根据当年各项的权重及各项价格的涨幅计算当年居民交通消费价格的平均涨幅. 2017年该市的有关数据如下表所示.(1)求p的值;(2)若2017年该市的居民交通消费相对上一年价格的平均涨幅为1.25%,求m的值.22.(本题满分10分)如图8,在矩形ABCD中,对角线AC,BD交于点O,(1)AB=2,AO=5,求BC的长;(2)∠DBC=30°,CE=CD,∠DCE<90°,若OE=22BD,求∠DCE的度数.l图6图7E AB CD图8OAB CDE已知点A ,B 在反比例函数y =6x (x >0)的图象上,且横坐标分别为m ,n ,过点A ,B 分别向y 轴、x 轴作垂线段,两条垂线段交于点C ,过点A ,B 分别作AD ⊥x 轴于D ,作BE ⊥y 轴于E.(1)若m =6,n =1,求点C 的坐标;(2)若3)2(=-n m ,当点C 在直线DE 上时,求n 的值.24.(本题满分11分)已知AB =8,直线l 与AB 平行,且距离为4,P 是l 上的动点,过点P 作PC ⊥AB 交线段AB 于点C ,点C 不与A ,B 重合,过A ,C ,P 三点的圆与直线PB 交于点D . (1)如图9,当D 为PB 的中点时,求AP 的长;(2)如图10,圆的一条直径垂直AB 于点E ,且与AD 交于点M .当ME 的长度最大时,判断直线PB 是否与该圆相切?并说明理由.25.(本题满分14分)已知二次函数y =ax 2+bx +t -1,t <0, (1)当t =-2时,① 若函数图象经过点(1,-4),(-1,0),求a ,b 的值;② 若2a -b =1,对于任意不为零的实数a ,是否存在一条直线y =kx +p (k ≠0),始终与函数图象交于不同的两点?若存在,求出该直线的表达式;若不存在,请说明理由.(2)若点A (-1,t ),B (m ,t -n )(m >0,n >0)是函数图象上的两点,且S △AOB =12n -2 t ,当-1≤x ≤m 时,点A 是该函数图象的最高点,求a 的取值范围.图9 A l C B DP 图10 l A M E C B D P2018年厦门市九科教学质量检测数学参考答案说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分.一、选择题(本大题共10小题,每小题4分,共40分)11. m (m -2). 12. 12. 13. 2. 14. 900x +30=600x .15. 4001. 16.100°<∠BAC <180°. 三、解答题(本大题有9小题,共86分)17.(本题满分8分)解:2x -2+1=x .…………………………4分 2x -x =2-1.…………………………6分 x =1.…………………………8分18.(本题满分8分)解法一:如图1∵ AB ∥CD ,∴ ∠ACD =∠EAB =72°.…………………………3分 ∵ CB 平分∠ACD , ∴ ∠BCD =12∠ACD =36°. …………………………5分∵ AB ∥CD ,∴ ∠ABC =∠BCD =36°. …………………………8分 解法二:如图1∵ AB ∥CD ,∴ ∠ABC =∠BCD . …………………………3分 ∵ CB 平分∠ACD ,∴ ∠ACB =∠BCD . …………………………5分 ∴ ∠ABC =∠ACB .∵ ∠ABC +∠ACB =∠EAB , ∴ ∠ABC =12∠EAB =36°. …………………………8分图1FE ABC D19.(本题满分8分)(1)(本小题满分3分)如图2;…………………………3分(2)(本小题满分5分)解:设直线l 的表达式为y =kx +b (k ≠0),…………………………4分 由m =2得点A (0,2), 把(0,2),(-3,4)分别代入表达式,得⎩⎨⎧b =2,-3k +b =4.可得⎩⎪⎨⎪⎧b =2,k =-23 .…………………………7分所以直线l 的表达式为y =-23x +2. …………………………8分20.(本题满分8分)证明:如图3∵ 四边形ABCD 是平行四边形,∴ AB ∥DC ,AB =DC .………………………… 2分 ∵ DE =AB , ∴ DE =DC .∴ ∠DCE =∠DEC .…………………………4分 ∵ AB ∥DC ,∴ ∠ABC =∠DCE . …………………………5分∴ ∠ABC =∠DEC . …………………………6分 又∵ AB =DE ,BE =EB ,∴ △ABE ≌△DEB . …………………………7分 ∴ AE =BD . …………………………8分21.(本题满分8分)(1)(本小题满分3分)解:p =1-(22%+13%+5%+26%)…………………………2分=34%. …………………………3分 (2)(本小题满分5分) 解:由题意得图3EA B C D22%×1.5%+13%×m %+5%×2%+34%×0.5%+26%×1%22%+13%+5%+34%+26%=1.25%. …………………7分解得m =3. …………………………8分22.(本题满分10分)(1)(本小题满分4分)解:如图4∵四边形ABCD 是矩形,∴ ∠ABC =90°,AC =2AO =25.………………………2分 ∵ 在Rt △ACB 中,∴ BC =AC 2-AB 2 ………………………3分=4.………………………4分 (2)(本小题满分6分)解:如图4∵ 四边形ABCD 是矩形,∴ ∠DCB =90°,BD =2OD ,AC =2OC ,AC =BD . ∴ OD =OC =12BD .∵ ∠DBC =30°,∴ 在Rt △BCD 中,∠BDC =90°-30°=60°, CD =12BD .∵ CE =CD ,∴ CE =12BD .………………………6分∵ OE =22BD , ∴ 在△OCE 中,OE 2=12BD 2.又∵ OC 2+CE 2=14BD 2+14BD 2=12BD 2,∴ OC 2+CE 2=OE 2.∴ ∠OCE =90°.…………………8分 ∵ OD =OC ,图4OABCDE∴ ∠OCD =∠∴ ∠DCE =∠23.(本题满分11分)(1)(本小题满分解:因为当m =6又因为n =1, 所以C (1,1)(2)(本小题满分解:如图5所以A (m ,6m ),B 所以D (m ,0),E 设直线DE 把D (m ,0),E (.………………………7分因为点C 在直线所以把C (n ,6m )代入把m =2n 代入m (n -2)=3,得2n (n -2)=3.,………………………9分 解得n =2±102.………………………10分因为n >0,所以n =2+102.………………………11分24.(本题满分11分)(1)(本小题满分5分)解法一:如图6,∵ PC ⊥AB , ∴ ∠ACP =90°.∴ AP 是直径.…………………2分∴ ∠ADP =90°. …………………3分即AD ⊥PB .又∵ D 为PB 的中点,∴ AP =AB =8.…………………5分解法二:如图7,设圆心为O ,PC 与AD 交于点N ,连接OC ,OD .图6A lC BD PB C A DE图5lP∵ ︵CD =︵CD ,∴ ∠CAD =12∠COD ,∠CPD =12∠COD .∴ ∠CAD =∠CPD .…………………1分∵ ∠ANC =∠PND ,又∵ 在△ANC 和△PND 中,∠NCA =180°-∠CAN -∠ANC , ∠NDP =180°-∠CPN -∠PND ,∴ ∠NCA =∠NDP . …………………2分 ∵ PC ⊥AB ,∴ ∠NCA =90°.∴ ∠NDP =90°. …………………3分 即AD ⊥PB .又∵ D 为PB 的中点,∴ AP =AB =8.…………………5分(2)(本小题满分6分)解法一:当ME 的长度最大时,直线PB 与该圆相切. 理由如下:如图8,设圆心为O ,连接OC ,OD . ∵ ︵CD =︵CD ,∴ ∠CAD =12∠COD ,∠CPD =12∠COD .∴ ∠CAD =∠CPD .又∵ PC ⊥AB ,OE ⊥AB , ∴ ∠PCB =∠MEA =90°.∴ △MEA ∽△BCP . …………………7分 ∴ ME BC =AE PC.∵ OE ⊥AB , 又∵ OA =OC , ∴ AE =EC .设AE =x ,则BC =8-2x .图8l AM EC BD PO ·由ME BC =AE PC ,可得ME =-12(x -2)2+2.…………………8分 ∵ x >0,8-2x >0, ∴ 0<x <4. 又∵ -12<0,∴ 当x =2时,ME 的长度最大为2.…………………9分 连接AP ,∵ ∠PCA =90°, ∴ AP 为直径.∵ AO =OP ,AE =EC , ∴ OE 为△ACP 的中位线. ∴ OE =12PC .∵ l ∥AB ,PC ⊥AB , ∴ PC =4. ∴ OE =2.∴ 当ME =2时,点M 与圆心O 重合.…………………10分 即AD 为直径.也即点D 与点P 重合.也即此时圆与直线PB 有唯一交点.所以此时直线PB 与该圆相切.…………………11分解法二:当ME 的长度最大时,直线PB 与该圆相切. 理由如下:如图8,设圆心为O ,连接OC ,OD . ∵ OE ⊥AB , 又∵ OA =OC , ∴ AE =EC .设AE =x ,则CB =8-2x . ∵ ︵CD =︵CD ,∴ ∠CAD =12∠COD ,∠CPD =12∠COD .∴ ∠CAD =∠CPD .又∵ PC ⊥AB ,OE ⊥AB ,图8l AMEC BD PO ·∴ ∠PCB =∠MEA =90°.∴ △MEA ∽△BCP . …………………7分∴ ME BC =AE PC. 可得ME =-12(x -2)2+2.…………………8分 ∵ x >0,8-2x >0,∴ 0<x <4.又∵ -12<0, ∴ 当x =2时,ME 的长度最大为2.…………………9分连接AP ,∵ AE =x =2,∴ AC =BC =PC =4.∵ PC ⊥AB ,∴ ∠PCA =90°,∴ 在Rt △ACP 中,∠P AC =∠APC =45°.同理可得∠CPB =45°.∴ ∠APB =90°.即AP ⊥PB . …………………10分又∵ ∠PCA =90°,∴ AP 为直径.∴ 直线PB 与该圆相切.…………………11分25.(本题满分14分)(1)(本小题满分7分)①(本小题满分3分)解:当t =-2时,二次函数为y =ax 2+bx -3.把(1,-4),(-1,0)分别代入y =ax 2+bx -3,得⎩⎨⎧a +b -3=-4,a -b -3=0.…………………………1分 解得⎩⎨⎧a =1,b =-2.所以a =1,b =-2.…………………………3分②(本小题满分4分)解法一:因为2a -b =1,所以二次函数为y =ax 2+(2a -1)x -3.所以,当x =-2时,y =-1;当x =0时,y =-3.所以二次函数图象一定经过(-2,-1),(0,-3).…………………………6分设经过这两点的直线的表达式为y =kx +p (k ≠0),把(-2,-1),(0,-3)分别代入,可求得该直线表达式为y =-x -3.…………7分 即直线y =-x -3始终与二次函数图象交于(-2,-1),(0,-3)两点.解法二:当直线与二次函数图象相交时,有kx +p =ax 2+(2a -1)x -3.整理可得ax 2+(2a -k -1)x -3-p =0.可得△=(2a -k -1)2+4a (3+p ).…………4分若直线与二次函数图象始终有两个不同的交点,则△>0.化简可得4a 2-4a (k -p -2)+(1+k )2>0.因为无论a 取任意不为零的实数,总有4a 2>0,(1+k )2≥0所以当k -p -2=0时,总有△>0.………………………6分可取p =1,k =3.对于任意不为零的实数a ,存在直线y =3x +1始终与函数图象交于不同的两点.…………7分(2)(本小题满分7分)解:把A (-1,t )代入y =ax 2+bx +t -1,可得b =a -1.………………………8分 因为A (-1,t ),B (m ,t -n )(m >0,n >0),又因为S △AOB =12n -2t , 所以12[(-t )+(n -t )](m +1)-12×1×(-t )-12×(n -t )m =12n -2t . 解得m =3.………………………10分所以A (-1,t ),B (3,t -n ).因为n >0,所以t >t -n .当a >0时,【二次函数图象的顶点为最低点,当-1≤x ≤3时,若点A 为该函数图象最高点,则y A ≥y B 】,分别把A (-1,t ),B (3,t -n )代入y =ax 2+bx +t -1,得t =a -b +t -1,t -n =9a +3b +t -1.因为t >t -n ,所以a -b +t -1>9a +3b +t -1.可得2a +b <0.即2a +(a -1)<0.解得a <13. 所以0<a <13. 当a <0时,由t >t -n ,可知:【若A ,B 在对称轴的异侧,当-1≤x ≤3时,图象的最高点是抛物线的顶点而不是点A ;若A ,B 在对称轴的左侧,因为当x ≤-b 2a时,y 随x 的增大而增大,所以当-1≤x ≤3时,点A 为该函数图象最低点;若A ,B 在对称轴的右侧,因为当x ≥-b 2a时,y 随x 的增大而减小,所以当-1≤x ≤3时,若点A 为该函数图象最高点,则】-b 2a≤-1. 即-a -12a≤-1. 解得a ≥-1.所以-1≤a <0.………………………13分综上,0<a <13或-1≤a <0.………………………14分。
2018年秋(浙教版)九年级数学下册:第二次质量评估试卷含答案
第二次质量评估试卷[考查范围:上册+下册第1~2章]一、选择题(每小题3分,共30分)1.已知圆的直径为10 cm,圆心到直线l的距离为5 cm,那么直线l和这个圆的公共点有(B)A.0个B.1个C.2个D.1个或2个2.⊙O的半径r=10 cm,圆心到直线l的距离OM=8 cm,在直线l上有一点P,PM =6 cm,则点P(C)A.在⊙O内B.在⊙O 外C.在⊙O 上 D. 不能确定3.在平面直角坐标系xOy中,以点(-3,4)为圆心、4为半径的圆(C)A.与x轴相交,与y轴相切B.与x轴相离,与y轴相交C.与x轴相切,与y轴相交D.与x轴相切,与y轴相离4.如图所示,CD切⊙O于点C,直线DBA过圆心,若∠D的度数为20°,则∠CAD=(A)A.35°B.70° D. 30°第4题图5题图5.如图所示,已知⊙I是△ABC的内切圆,点I是内心,若∠A=35°,则∠BIC等于(D)A.35°B.70°C.145°D.107.5°6.对于抛物线y=(x-1)2+2,下列说法中正确的是(B)A.开口向下B.顶点坐标是(1,2)C.与y轴交点坐标为(0,2) D.与x轴有两个交点7A.80 B.100 C.150 D.200第8题图8.如图所示,在平面直角坐标系中,⊙O的半径为1,点P在经过点A(-3,0),B(0,4)的直线上,PQ切⊙O于点Q,则切线长PQ的最小值为(B)A. B. C.2.4 D.39.在等腰△ABC中,AB=CB=5,AC=8,P为AC边上一动点,PQ⊥AC,PQ与△ABC的腰交于点Q,连结CQ,设AP为x,△CPQ的面积为y,则y关于x的函数关系图象大致是(C)A.B.C. D.10.如图所示,连结正五边形的各条对角线AD,AC,BE,BD,CE,给出下列结论:①∠AME=108°;②五边形PFQNM∽五边形ABCDE;③AN2=AM·AD.其中正确的是(D)A.①②B.①③C.②③D.①②③二、填空题(每小题4分,共24分)11.如图所示,过⊙O上一点C作⊙O的切线,交⊙O直径AB的延长线于点D.若∠D=40°,则∠A的度数为题图第12题图13题图12.如图所示,点G是△ABC的重心,过G作GE∥AB,交BC于点E,GF∥AC,交BC于点F,则S△GEF∶S△ABC=__1∶9__.13.如图所示,正方形OABC的边长为4,OA与x轴负半轴的夹角为15°,点B在抛物线y=ax2(a<0)的图象上,则a的值为__-__.14.二次函数y=ax2-3ax+2(a<0)的图象如图所示,若y<2,则x的取值范围为__x<0或x>3__.15.如图所示,O是正方形ABCD的对角线BD上一点,⊙O与边AB,BC都相切,点E,F分别在AD,DC上,现将△DEF沿着EF对折,折痕EF与⊙O相切,此时点D恰好落在圆心O处.若DE=2,则正方形ABCD的边长是__2+__.第14题图15题图16题图16.如图所示,已知点A的坐标为(,3),AB⊥x轴,垂足为B,连结OA,反比例函数y=(k>0)的图象与线段OA,AB分别交于点C,D.若AB=3BD,以点C为圆心、CA 的倍的长为半径作圆,则该圆与x轴的位置关系是__相交__(填“相离”“相切”或“相交”).三、解答题(共66分)17.(6分)某运动会期间,甲、乙、丙三位同学参加乒乓球单打比赛,用抽签的方式确定第一场比赛的人选.(1)若已确定甲参加第一场比赛,求另一位选手恰好是乙同学的概率;(2)用画树状图或列表的方法,写出参加第一场比赛选手的所有可能,并求选中乙、丙两位同学参加第一场比赛的概率.解:(1)根据题意,甲参加第一场比赛时,有(甲,乙)、(甲,丙)两种可能,∴另一位选手恰好是乙同学的概率是.(2)画树状图如下:第17题答图所有可能出现的情况有6种,其中乙、丙两位同学参加第一场比赛的情况有2种,∴选中乙、丙两位同学参加第一场比赛的概率为=.第18题图18.(8分)如图所示,已知在△ABC中,∠A=90°.(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明);(2)若∠B=60°,AB=3,求⊙P的面积.第18题答图解:(1)如图所示,则⊙P为所求作的圆.(2)∵∠B=60°,BP平分∠ABC,∴∠ABP=30°,∵AB=3tan∠ABP=,∴AP=,∴S⊙P=3π.第19题图19.(8分)一个矩形ABCD 的较短边长为2.(1)如图1,若沿长边对折后得到的矩形与原矩形相似,求它的另一边长;(2)如图2,已知矩形ABCD 的另一边长为4,剪去一个矩形ABEF 后,余下的矩形EFDC 与原矩形相似,求余下矩形EFDC 的面积.解:(1)由已知得MN =AB =2,MD =AD =BC ,∵沿长边对折后得到的矩形与原矩形相似,∴矩形DMNC 与矩形ABCD 相似,=,∴DM ·BC =AB·MN ,即BC 2=4,∴BC =2,即它的另一边长为2.(2)∵矩形EFDC 与原矩形ABCD 相似,∴=,∵AB =CD =2,BC =4,∴DF ==1, ∴矩形EFDC 的面积=CD·DF =2×1=2.20.(8分)如图所示,在△ABC 中,以BC 为直径的圆交AB 于点D ,∠ACD =∠ABC.(1)求证:CA 是圆的切线.(2)若点E 是BC 上一点,已知BE =6,tan ∠ABC =,tan ∠AEC =,求圆的直径. 解:(1)证明:∵BC 是圆的直径,∴∠BDC =90°,∴∠ABC +∠DCB =90°. ∵∠ACD =∠ABC ,∴∠ACD +∠DCB =90°,∴BC ⊥CA ,∴CA 是圆的切线.(2)在Rt △AEC 中,tan ∠AEC =,∴=,EC =AC.在Rt △ABC 中,tan ∠ABC =, ∴=,BC =AC.∵BC -EC =BE ,BE =6,∴AC -AC =6,解得AC =,∴BC =×=10,即圆的直径为10.第21题图21.(8分)杭州跨海大桥海天一洲观景平台景色优美,如图1.现测量人员在船上测量观光塔高PQ ,在海上的D 处测得塔顶P 的顶角∠PDF 为80°,又测得塔底座边沿一处C 的仰角∠CDH 为30°,C 处的海拔高度CB =12米,到中轴线PQ 的距离CE 为10米,测量仪的海拔高度AD =2米,DF ⊥CB 于点H ,交PQ 于点F ,求观光塔的海拔高度PQ.(精确到0.1米,tan 80°≈5.7,sin 80°≈0.98,cos 80°≈0.17,≈1.732)解:由题意可得AD =BH =2 m ,CH =BC -BH =10 m ,则EC =CH ,故四边形CHFE 是正方形,∵∠CDH =30°,∴tan 30°===,解得DH =10,故DF =(10+10)m ,则tan 80°===5.7,解得PF ≈155.7,故PQ =PF +2=157.7(m).即观光塔的海拔高度PQ为157.7 m.第22题图22.(8分)如图所示,在平面直角坐标系中,点O′的坐标为(-2,0),⊙O′与x轴相交于原点O和点A,B,C两点的坐标分别为(0,b),(1,0).(1)当b=3时,求经过B,C两点的直线的表达式;(2)当B点在y轴上运动时,直线BC与⊙O′有哪几种位置关系?请求出每种位置关系时b的取值范围.解:(1)当b=3时,点B(0,3),C(1,0).设经过B,C两点的直线的表达式为y=kx +b,则有解得∴y=-3x+3.(2)点B在y轴上运动时,直线BC与⊙O′的位置关系有相离、相切、相交三种,当点B在y轴上运动到点E时,恰好使直线BC切⊙O′于点M,连结O′M,则O′M⊥MC,在Rt△CMO′中,CO′=3,O′M=2,∴CM=,由Rt△CMO′∽Rt△COE,可得=,∴OE=.由圆的对称性可知,当b=±时,直线BC与圆相切;当b>或b<-时,直线BC与圆相离;当-<b<时,直线BC与圆相交.第23题图23.(10分)如图所示,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点D,DE⊥AD且与AC的延长线交于点E.(1)求证:DC=DE.(2)若tan∠CAB=,AB=3,求第23题答图解:(1)证明:如图,连结OC,∵CD是⊙O的切线,∴∠OCD=90°,∴∠ACO+∠DCE=90°.又∵DE⊥AD,∴∠EDA=90°,∴∠A+∠E=90°.∵OC=OA,∴∠ACO=∠A,∴∠DCE=∠E,∴DC=DE.(2)设BD=x,则AD=AB+BD=3+x,OD=OB+BD=1.5+x.在Rt△EAD中,∵tan∠CAB=,∴ED=AD=(3+x),由(1)知,DC=(3+x).在Rt△OCD中,OC2+CD2=DO2,则1.52+=,解得x1=-3(舍去),x2=1,故BD=1.24.(10分)如图所示,二次函数y=-x2+x+4与x轴交于A,B两点,与y轴交于点C.(1)求点A,B,C的坐标;(2)M为线段AB上一动点,过点M作MD∥BC交线段AC于点D,连结CM.①当点M的坐标为(1,0)时,求点D的坐标;②求△CMD面积的最大值.解:(1)当y=0时,-x2+x+4=0,解得x1=-2,x2=4,则A(-2,0),B(4,0),当x=0时,y=-x2+x+4=4,则C(0,4).(2)①设直线BC的解析式为y=kx+b,把B(4,0),C(0,4)代入,得解得所以直线BC的解析式为y=-x+4,设直线AC的解析式为y=px+q,把A(-2,0),C(0,4)代入得解得所以直线AC的解析式为y=2x+4,因为直线MD∥BC,所以直线MD的解析式可设为y=-x+n,把M(1,0)代入得-1+n=0,解得n=1,所以直线MD的解析式为y=-x+1,解方程组得,则点D的坐标为(-1,2).②设M(t,0),直线MD的解析式为y=-x+t,解方程组得则D,S△CDM=S△CAB-S△ADM-S△CMB=·4·(4+2)-·(t+2)·-·(4-t)·4=-t2+t+=-(t-1)2+3,当t=1时,△CMD面积有最大值,最大值为3.。
浙教版2018-2019学年九年级数学竞赛试卷(五)及答案
浙教版2018-2019学年初三数学竞赛试卷(五)一.选择题(共6小题,6*5=30分)1.下列方程中,有实数根且实数根的和是2的方程是()A.x2+2x+4=0 B.x2﹣2x+4=0 C.x2﹣2x﹣4=0 D.x2+2x﹣4=0 2.已知a、b、c中有两个奇数、一个偶数,n是整数,如果S=(a+2n+1)(b+2n+2)(c+2n+3),那么()A.S是偶数B.S是奇数C.S的奇偶性与n的奇偶性相同D.S的奇偶性不能确定3.已知抛物线y=ax2﹣k是由抛物线y=﹣x2向下平移2个单位得到的,则a、k的值分别是()A.﹣1,2 B.﹣1,﹣2 C.1,2 D.1,﹣24.在直角三角形中,有两边分别为3和4,则第三边是()A.1 B.5 C.D.5或5.如图,在Rt△ABC中,AC⊥BC,过C作CD⊥AB,垂足为D,若AD=3,BC=2,则△ABC的内切圆的面积为()A.πB.(4﹣2)πC.()πD.2π6.关于x的一元二次方程x2﹣(k+3)x+k=0的根的情况是()A.有两不相等实数根B.有两相等实数根C.无实数根D.不能确定二.填空题(共6小题,6*5=30分)7.已知关于x是方程x2+3x﹣1=0的解,那么代数式的值为.8.若a,c,d都是整数,b是正整数,且a+b=c,b+c=d,c+d=a,则a+b+c+d的最大值是.9.一个多边形,除了一个内角外,其余各角的和为2750°,则这一内角为度.10.如图,在直角坐标系xOy中,直线y=2x+4与x轴相交于点A,与y轴相交于点B,过B点作直线BP与x轴相交于P,若OP=2OA时,则△ABP的面积为.11.如图,⊙O的半径为1,A、P、B、C是⊙O上的四个点.∠APC=∠CPB=60°.则四边形APBC 的最大面积是.12.若不等式|2x+1|﹣|2x﹣1|<a对任意实数x恒成立,则a的取值范围是.三.解答题(共4小题,4*10=40分)13.如图,AC为⊙O的弦,CE⊥AC交⊙O于E,B为AC上的一点,BC=CE,EF⊥BE交⊙O于F,⊙O的直径为13,BE=5.(1)求证:BE∥AF;(2)求AB的长;(3)求BF的长.14.已知a+b=1,a2+b2=2,求a5+b5的值.15.如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A、B、C和D、E、F.若=,AC=14,(1)求AB的长.(2)如果AD=7,CF=14,求BE的长.16.已知关于x的方程x2﹣(2k+1)x+4(k﹣)=0.(1)求证:无论k取什么实数值,这个方程总有实数根;(2)能否找到一个实数k,使方程的两实数根互为相反数?若能找到,求出k的值;若不能,请说明理由.(3)当等腰三角形ABC的边长a=4,另两边的长b、c恰好是这个方程的两根时,求△ABC的周长.参考答案1.解:A、△=4﹣16=﹣12<0,该方程没有实数根;故本选项错误;B、△=4﹣16=﹣12<0,该方程没有实数根;故本选项错误;C、△=4+16=20>0,该方程有实数根;x1+x2=2,符合条件;故本选项正确;D、△=4+16=20>0,该方程有实数根;x1+x2=﹣2,不符合条件;故本选项错误.故选:C.2.解:(a+2n+1)+(b+2n+2)+(c+2n+3)=a+b+c+6(n+1).∵a+b+c为偶数,6(n+1)为偶数,∴a+b+c+6(n+1)为偶数∴a+2n+1,b+2n+2,c+2n+3中至少有一个为偶数,∴S是偶数.故选A.3.解:∵抛物线y=﹣x2的顶点坐标是(0,0),则向上平移2个单位后的坐标为:(0,2),∴平移后抛物线的解析式为y=﹣x2+2.即a=﹣1,k=2.故选:A.4.解:①当3,4分别是直角边时,则第三边==5;②当3为直角边,4为斜边时,则第三边==.故选:D.5.解:∵在Rt△ABC中,AC⊥BC,过C作CD⊥AB∴△ADC∽△CDB∴CD2=AD•DB∴CD2=3DBRt△CDB中,CB2=CD2+DB2∴4=3DB+DB2解得DB=1或DB=﹣4(舍去)∴CB=2∴AC=2设△ABC内切圆半径为r,内心为O,连OA、OB、OC由面积法可知S△ABC=S△AOC+S△BOC+S△AOB∴∴r==∴内切圆半径为π()2=(4﹣2)π故选:B.6.解:△=(k+3)2﹣4×k=k2+2k+9=(k+1)2+8,∵(k+1)2≥0,∴(k+1)2+8>0,即△>0,所以方程有两个不相等的实数根.故选:A.7.解:原式=÷=×=,∵x2+3x﹣1=0,∴x2+3x=1,∴原式==.故答案是.8.解:∵a+b=c,①b+c=d,②c+d=a,③由①+③,得(a+b)+(c+d)=a+c,∴b+d=0,④b+c=d;⑤由④+⑤,得∴2b+c=b+d=0,∴c=﹣2b;⑥由①⑥,得∴a=c﹣b=﹣3b,⑦由④⑥⑦,得∴a+b+c+d=(a+c)+(b+d)=a+c=﹣5b;∵b是正整数,∴b≥1,∴﹣b≤﹣1,∴a+b+c+d≤﹣5,∴a+b+c+d的最大值是﹣5.故答案为:﹣5.9.解:设(x﹣2)•180=2750,解得x=17,因而多边形的边数是18,则这一内角为(18﹣2)×180﹣2750=130度.故答案为:130.10.解:∵A、B两点分别在x、y轴上,∴令y=0,则x=﹣2;再令x=0,y=4,∴A(﹣2,0),B(0,4);∴OA=2,OB=4,∵OP=2OA,∴OP=4,∴S△ABP=S△AOB+S△BOP=OA•OB+OP•OB=×4×2+×4×4=12.S△ABP=S△BOP﹣S△AOB=OP•OB+OA•OB=×4×4+×2×4=4.∴△ABP的面积为12或4,故答案为:12或4.11.解:过C作直径CP′,连接P′A、P′B,如图,∵∠ABC=∠APC=60°,∠BAC=∠CPB=60°,∴△ABC为等边三角形,∵CP′为直径,∴∠CAP′=∠CBP′=90°,而∠AP′C=∠APC=60°,∠BP′C=∠BPC=60°,∴P′A=P′B=CP′=1,AC=BC=,∴四边形AP′BC的面积为2××1×=,当点P运动到点P′的位置时,四边形APBC的最大面积,即四边形APBC的最大面积为.故答案为.12.解:当①x<﹣时,原不等式可化为:﹣1﹣2x﹣(1﹣2x)<a,即﹣2<a,解得:a>﹣2;②当﹣≤x<时,原不等式可化为:2x+1﹣(1﹣2x)<a,即4x<a;此时可解得a>﹣2;③当x≥时,原不等式可化为:2x+1﹣(2x﹣1)<a,即2<a,解得:a>2;综合以上a的三个范围可得a>2;故答案为:a>2.方法二:用绝对值差的几何意义来做比较方便:左边表示2x与数轴上的两点﹣1,1距离的差,显然最大值是2,所以a>2.13.(1)证明:∵⊙O是四边形ABCD的外接圆,∴∠AFE+∠ACE=180°,∵CE⊥AC,∴∠ACE=90°,∴∠AFE=90°,即AF⊥EF.又∵EF⊥BE,∴BE∥AF;(2)解:如图,连接AE,如图,∵∠C=90°,∴AE是⊙O的直径,∴AE=13,在Rt△BEC中,∵BC=CE,∴△BCE为等腰直角三角形,∴BE=BC,∵BE=5,∴BC=EC=5,在Rt△AEC中,AC===12,∴AB=AC﹣BC=12﹣5=7;(3)解:作BH⊥AF于H,如图,则四边形BEFH为矩形,∴BH=EF,∵△BCE为等腰直角三角形,∴∠CBE=45°,∵BE∥AF,∴∠BAH=∠CBE=45°,∴△ABH为等腰直角三角形,∴BH=AB=,∴EF=,在Rt△BEF中,BF===.14.解:,,a3+b3=(a+b)(a2+b2)﹣ab2﹣a2b=(a+b)(a2+b2)﹣ab(a+b)=,a5+b5=(a+b)(a4+b4)﹣ab(a3+b3)=.15.解:(1)∵AD∥BE∥CF,∴,∴,∵AC=14,∴AB=4,(2)过点A作AG∥DF交BE于点H,交CF于点G,如图所示:又∵AD∥BE∥CF,AD=7,∴AD=HE=GF=7,∵CF=14,∴CG=14﹣7=7,∵BE∥CF,∴,∴BH=2,∴BE=2+7=9.16.证明:(1)∵△=(2k+1)2﹣16(k﹣)=(2k﹣3)2≥0,∴方程总有实根;解:(2)∵两实数根互为相反数,∴x1+x2=2k+1=0,解得k=﹣0.5;(3)①当b=c时,则△=0,即(2k﹣3)2=0,∴k=,方程可化为x2﹣4x+4=0,∴x1=x2=2,而b=c=2,∴b+c=4=a不适合题意舍去;②当b=a=4,则42﹣4(2k+1)+4(k﹣)=0,∴k=,方程化为x2﹣6x+8=0,解得x1=4,x2=2,∴c=2,C△ABC=10,当c=a=4时,同理得b=2,∴C△ABC=10,综上所述,△ABC的周长为10.。
2018年浙教版九年级数学上册第二次质量检测试卷(含答案)
第二次质量评估试卷[考查范围:1~2章]一、选择题(每小题3分,共30分)1.抛物线y =-(x +2)2-3的顶点坐标是( )A .(2,-3)B .(-2,3)C .(2,3)D .(-2,-3) 2.一个不透明的袋子中有3个白球、2个黄球和1个红球,这些球除颜色不同外,其他都相同.从袋子中随机摸出一个球是黄球的概率为( )A.14B.13C.16D.193.以下说法中正确的是( )A .在同一年出生的400人中至少有两个人的生日相同B .一个游戏的中奖率是1%,买100张奖券,一定会中奖C .一副扑克牌中,随意抽取一张是红桃K ,这是必然事件D .“实数a <0,则2a <0”是随机事件4.设A(-2,y 1),B(1,y 2),C(2,y 3)是抛物线y =-(x +1)2+3上的三点,则y 1,y 2,y 3的大小关系为( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 3>y 1>y 25.若二次函数y =ax 2+bx +c(a ≠0)中x 与y 的对应值如下表.当x =1时,y 的值为( )A.4B .6C.7D .126.某小组做绿豆在相同条件下的发芽试验,结果如下表所示:则绿豆发芽概率的估计值是( ) A .0.96B .0.95C .0.94D .0.907.抛物线y =(x +3)2-4可以由抛物线y =x 2平移得到,则下列平移过程正确的是( )A .先向左平移3个单位,再向上平移4个单位B .先向左平移3个单位,再向下平移4个单位C .先向右平移3个单位,再向下平移4个单位D .先向右平移3个单位,再向上平移4个单位8.小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面的数字为x ,乙立方体朝上一面的数字为y ,这样就确定点P 的一个坐标(x ,y),那么点P 落在双曲线y =6x上的概率为( )A.118B.112C.19D.169.已知抛物线y =ax 2+bx 和直线y =ax +b 在同一坐标系内的图象如图,其中正确的是( )A .B .C . D.第10题图10.给出下列命题及函数y =x ,y =x 2和y =1x 的图象,其中判断正确的是( )①如果1a >a >a 2,那么0<a <1; ②如果a 2>a >1a ,那么a >1;③如果1a >a 2>a ,那么-1<a <0;④如果a 2>1a>a ,那么a <-1.A .正确的命题是①②B .错误的命题是②③④C .正确的命题是①④D .错误的命题只有③二、填空题(每小题4分,共24分)11.某同学遇到一道不会做的选择题,在四个选项中有且只有一个是正确的,则他选对的概率是_ _.12.已知抛物线y=x2-(k+1)x+4的顶点在y轴上,则k的值是__ __.13.已知a,b可以取-2,-1,1,2中任意一个值(a≠b),则直线y=ax+b的图象不经过第四象限的概率是__ _.14.如图所示,一名男生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是y=-112x2+23x+53.则他将铅球推出的距离是__ __m.14题图第15题图16题图15.小颖与两位同学进行象棋比赛时,决定用“手心、手背”游戏确定出场顺序.设每人每次出手心、手背的可能性相同.若其中一人与另外两个人不同,则此人最后出场.三人同时出手一次,小颖最后出场比赛的概率为__ __.16.如图所示,在平面直角坐标系中,点A(43,0)是x轴上一点,以OA为对角线作菱形OBAC,使得∠BOC=60°,现将抛物线y=x2沿直线OC平移到y=a(x-m)2+h,那么h关于m的关系式是__ _,当抛物线与菱形的AB边有公共点时,则m的取值范围是__ __.三、解答题(共66分)17.(6分)小龙和晓丽用“红桃3”“红桃4”“梅花5”“红桃6”这四张扑克牌玩游戏.(1)将这四张扑克牌洗牌后反扣在桌面上,翻开记下花色,再反扣洗牌,第二次再翻开一张记下花色.若两次都是红桃,小龙赢;若是一次红桃、一次梅花,则晓丽赢.小龙和晓丽谁赢的可能性大?说明理由.(2)利用这四张扑克牌设计一个对于双方都公平的游戏方案.第18题图18.(8分)如图所示,直线y=-x+3与x轴,y轴分别交于B,C两点,抛物线y=-x2+bx+c经过B,C两点,点A是抛物线与x轴的另一个交点.(1)求出点B和点C的坐标;(2)求此抛物线的函数解析式;(3)在抛物线x轴上方存在一点P(不与点C重合),使S△PAB=S△CAB,请求出点P的坐标.第19题图19.(8分)如图所示,三张卡片上分别写有一个代数式,把它们背面朝上洗匀,小明闭上眼睛进行抽卡片活动.(1)若从中随机抽取一张卡片,则卡片上为x的代数式的概率是多少?(2)若从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张.第一次抽取的卡片上的整式做分子,第二次抽取的卡片上的整式做分母,用列表法或画树状图法求能组成分式的概率.第19题答图20.(8分)在3×3的方格纸中,点A,B,C,D,E,F分别位于如图所示的小正方形的顶点上.(1)从A,D,E,F四点中任意取一点,以所取的这一点及B,C为顶点画三角形,则所画三角形是等腰三角形的概率是多少?(2)从A,D,E,F四点中先后任意取两个不同的点,以所取的这两点及B,C为顶点画四边形,求所画四边形是平行四边形的概率(用画树状图或列表法求解).第20题图第20题答图21.(8分)二次函数y=x2的图象如图所示,请将此图象向右平移1个单位,再向下平移2个单位.(1)画出经过两次平移后所得到的图象,并写出函数的解析式;(2)求经过两次平移后的图象与x轴的交点坐标,并指出当x满足什么条件时,函数值大于0.第21题图第21题答图22.(8分)某校举行以“助人为乐,乐在其中”为主题的演讲比赛,比赛设一个第一名,一个第二名,两个并列第三名.前四名中七、八年级各有一名同学,九年级有两名同学,小蒙同学认为前两名是九年级同学的概率是12,你赞成他的观点吗?请用列表法或画树状图法分析说明.23.(10分)在平面直角坐标系中,抛物线y =-x 2+bx +c 经过点(2,3),对称轴为直线x =1.(1)求抛物线的表达式;(2)如果垂直于y 轴的直线l 与抛物线交于两点A(x 1,y 1),B(x 2,y 2),其中x 1<0,x 2>0,与y 轴交于点C ,求BC -AC 的值;(3)将抛物线向上或向下平移,使新抛物线的顶点落在x轴上,原抛物线上一点P平移后对应点为点Q,如果OP=OQ,直接写出点Q的坐标.第23题答图24.(10分)已知如图,矩形OABC的长OA=3,宽OC=1,将△AOC沿AC翻折得△APC.(1)求∠PCB的度数;(2)若P,A两点在抛物线y=-43x2+bx+c上,求b,c的值,并说明点C在此抛物线上;(3)(2)中的抛物线与矩形OABC边CB相交于点D,与x轴相交于另外一点E,若点M 是x轴上的点,N是y轴上的点,以点E,M,D,N为顶点的四边形是平行四边形,试求点M,N的坐标.第24题图第24题答图第二次质量评估试卷[考查范围:1~2章]一、选择题(每小题3分,共30分)1.抛物线y =-(x +2)2-3的顶点坐标是( D )A .(2,-3)B .(-2,3)C .(2,3)D .(-2,-3) 2.一个不透明的袋子中有3个白球、2个黄球和1个红球,这些球除颜色不同外,其他都相同.从袋子中随机摸出一个球是黄球的概率为( B )A.14B.13C.16D.193.以下说法中正确的是( A )A .在同一年出生的400人中至少有两个人的生日相同B .一个游戏的中奖率是1%,买100张奖券,一定会中奖C .一副扑克牌中,随意抽取一张是红桃K ,这是必然事件D .“实数a <0,则2a <0”是随机事件4.设A(-2,y 1),B(1,y 2),C(2,y 3)是抛物线y =-(x +1)2+3上的三点,则y 1,y 2,y 3的大小关系为( A )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 3>y 1>y 25.若二次函数y =ax 2+bx +c(a ≠0)中x 与y 的对应值如下表.当x =1时,y 的值为( B )A.4B .6C.7D .126.某小组做绿豆在相同条件下的发芽试验,结果如下表所示:则绿豆发芽概率的估计值是( B ) A .0.96B .0.95C .0.94D .0.907.抛物线y =(x +3)2-4可以由抛物线y =x 2平移得到,则下列平移过程正确的是( B )A .先向左平移3个单位,再向上平移4个单位B .先向左平移3个单位,再向下平移4个单位C .先向右平移3个单位,再向下平移4个单位D .先向右平移3个单位,再向上平移4个单位8.小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面的数字为x ,乙立方体朝上一面的数字为y ,这样就确定点P 的一个坐标(x ,y),那么点P 落在双曲线y =6x上的概率为( C )A.118B.112C.19D.169.已知抛物线y =ax 2+bx 和直线y =ax +b 在同一坐标系内的图象如图,其中正确的是( D )A .B .C . D.第10题图10.给出下列命题及函数y =x ,y =x 2和y =1x 的图象,其中判断正确的是( C )①如果1a >a >a 2,那么0<a <1; ②如果a 2>a >1a ,那么a >1;③如果1a >a 2>a ,那么-1<a <0;④如果a 2>1a>a ,那么a <-1.A .正确的命题是①②B .错误的命题是②③④C .正确的命题是①④D .错误的命题只有③二、填空题(每小题4分,共24分)11.某同学遇到一道不会做的选择题,在四个选项中有且只有一个是正确的,则他选对的概率是__14__.12.已知抛物线y =x 2-(k +1)x +4的顶点在y 轴上,则k 的值是__-1__.13.已知a ,b 可以取-2,-1,1,2中任意一个值(a ≠b),则直线y =ax +b 的图象不经过第四象限的概率是__16__.14.如图所示,一名男生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是y =-112x 2+23x +53.则他将铅球推出的距离是__10__m.14题图第15题图16题图15.小颖与两位同学进行象棋比赛时,决定用“手心、手背”游戏确定出场顺序.设每人每次出手心、手背的可能性相同.若其中一人与另外两个人不同,则此人最后出场.三人同时出手一次,小颖最后出场比赛的概率为__14__.16.如图所示,在平面直角坐标系中,点A(43,0)是x 轴上一点,以OA 为对角线作菱形OBAC ,使得∠BOC =60°,现将抛物线y =x 2沿直线OC 平移到y =a(x -m)2+h ,那么h 关于m 的关系式是__h 3m__,当抛物线与菱形的AB 边有公共点时,则m 的取值范围是3. 三、解答题(共66分)17.(6分)小龙和晓丽用“红桃3”“红桃4”“梅花5”“红桃6”这四张扑克牌玩游戏.(1)将这四张扑克牌洗牌后反扣在桌面上,翻开记下花色,再反扣洗牌,第二次再翻开一张记下花色.若两次都是红桃,小龙赢;若是一次红桃、一次梅花,则晓丽赢.小龙和晓丽谁赢的可能性大?说明理由.(2)利用这四张扑克牌设计一个对于双方都公平的游戏方案.解:(1)小龙赢的可能性大,理由:由题意可得,出现的所有可能性是:(红桃3,红桃3)、(红桃3,红桃4)、(红桃3,梅花5)、(红桃3,红桃6),(红桃4,红桃3)、(红桃4,红桃4)、(红桃4,梅花5)、(红桃4,红桃6),(梅花5,红桃3)、(梅花5,红桃4)、(梅花5,梅花5)、(梅花5,红桃6),(红桃6,红桃3)、(红桃6,红桃4)、(红桃6,梅花5)、(红桃6,红桃6),∴小龙赢的概率为916,晓丽赢的概率为616,∵916>616,∴小龙赢的可能性大.(2)例如(答案不唯一):两次抽取的数的和为偶数是小龙赢,两次抽取的数的和为奇数时,晓丽赢.第18题图18.(8分)如图所示,直线y=-x+3与x轴,y轴分别交于B,C两点,抛物线y=-x2+bx+c经过B,C两点,点A是抛物线与x轴的另一个交点.(1)求出点B和点C的坐标;(2)求此抛物线的函数解析式;(3)在抛物线x轴上方存在一点P(不与点C重合),使S△PAB=S△CAB,请求出点P的坐标.解:(1)B(3,0),C(0,3)(2)B(3,0),C(0,3)代入y =-x 2+bx +c ,解得b =2,c =3,∴抛物线解析式为y =-x 2+2x +3.(3)设P(x ,y),∵A(-1,0),B(3,0),∴AB =4,S △CAB =6 S △PAB =12×4×y =6,解得y =3.当y =3时,-x 2+2x +3=3,解得x =0,x =2,∴P(2,3)或P(0,3).第19题图19.(8分)如图所示,三张卡片上分别写有一个代数式,把它们背面朝上洗匀,小明闭上眼睛进行抽卡片活动.(1)若从中随机抽取一张卡片,则卡片上为x 的代数式的概率是多少?(2)若从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张.第一次抽取的卡片上的整式做分子,第二次抽取的卡片上的整式做分母,用列表法或画树状图法求能组成分式的概率.第19题答图解:(1)13(2)画树状图如图.∵共有6种等可能的结果,能组成分式的有xx -1,x -1x ,2x ,2x -1,∴能组成分式的概率是46=23.20.(8分)在3×3的方格纸中,点A ,B ,C ,D ,E ,F 分别位于如图所示的小正方形的顶点上.(1)从A ,D ,E ,F 四点中任意取一点,以所取的这一点及B ,C 为顶点画三角形,则所画三角形是等腰三角形的概率是多少?(2)从A ,D ,E ,F 四点中先后任意取两个不同的点,以所取的这两点及B ,C 为顶点画四边形,求所画四边形是平行四边形的概率(用画树状图或列表法求解).第20题图第20题答图解:(1)14(2)画树状图如图:∵从A ,D ,E ,F 四点中先后任意取两个不同的点,以所取的这两点及B ,C 为顶点画四边形共有12种等可能结果,以点A ,E ,B ,C 为顶点及以D ,F ,B ,C 为顶点所画的四边形是平行四边形,有4种结果,∴所画的四边形是平行四边形的概率P =412=13.21.(8分)二次函数y =x 2的图象如图所示,请将此图象向右平移1个单位,再向下平移2个单位.(1)画出经过两次平移后所得到的图象,并写出函数的解析式;(2)求经过两次平移后的图象与x 轴的交点坐标,并指出当x 满足什么条件时,函数值大于0.第21题图第21题答图解:(1)画图如图所示:依题意,得y =(x -1)2-2=x 2-2x +1-2=x 2-2x -1 ∴平移后图象的解析式为y =x 2-2x -1.(2)当y =0时,x 2-2x -1=0,即(x -1)2=2,∴x -1=±2,即x 1=1-2,x 2=1+ 2. ∴平移后的图象与x 轴交于两点,坐标分别为(1-2,0)和(1+2,0).由图可知,当x <1-2或x >1+2时,二次函数y =(x -1)2-2的函数值大于0. 22.(8分)某校举行以“助人为乐,乐在其中”为主题的演讲比赛,比赛设一个第一名,一个第二名,两个并列第三名.前四名中七、八年级各有一名同学,九年级有两名同学,小蒙同学认为前两名是九年级同学的概率是12,你赞成他的观点吗?请用列表法或画树状图法分析说明.解:不赞成小蒙同学的观点.理由如下:记七、八年级两名同学为A ,B ,九年级两名同学为C ,D.画树状图分析如下:第22题答图由上图可知所有的结果有12种,它们出现的可能性相等,满足前两名是九年级同学的结果有2种,所以前两名是九年级同学的概率为212=16.23.(10分)在平面直角坐标系中,抛物线y =-x 2+bx +c 经过点(2,3),对称轴为直线x =1.(1)求抛物线的表达式;(2)如果垂直于y 轴的直线l 与抛物线交于两点A(x 1,y 1),B(x 2,y 2),其中x 1<0,x 2>0,与y 轴交于点C ,求BC -AC 的值;(3)将抛物线向上或向下平移,使新抛物线的顶点落在x 轴上,原抛物线上一点P 平移后对应点为点Q ,如果OP =OQ ,直接写出点Q 的坐标.第23题答图解:(1)∵抛物线y =-x 2+bx +c 经过点(2,3),对称轴为直线x =1,∴⎩⎪⎨⎪⎧-4+2b +c =3,b 2=1,解得⎩⎪⎨⎪⎧b =2,c =3.∴抛物线的表达式为y =-x 2+2x +3.(2)如图,设直线l 与对称轴交于点M ,则BM =AM. ∴BC -AC =BM +MC -AC =AM +MC -AC =2MC =2. (3)∵y =-x 2+2x +3=-(x -1)2+4,∴顶点为(1,4),∵将抛物线向上或向下平移,使新抛物线的顶点落在x 轴上,∴新抛物线的顶点为(1,0),∴将原抛物线向下平移4个单位即可.设点P的坐标为(x,y),则y=-x2+2x+3,点Q的坐标为(x,y-4),则y>y-4.∵OP=OQ,∴x2+y2=x2+(y-4)2,∴y2=(y-4)2,∵y>y-4,∴y=-(y-4),∴y=2,∴y-4=-2,当y=2时,-x2+2x+3=2,解得x=1±2,∴点Q的坐标为(1+2,-2)或(1-2,-2).24.(10分)已知如图,矩形OABC的长OA=3,宽OC=1,将△AOC沿AC翻折得△APC.(1)求∠PCB的度数;(2)若P,A两点在抛物线y=-43x2+bx+c上,求b,c的值,并说明点C在此抛物线上;(3)(2)中的抛物线与矩形OABC边CB相交于点D,与x轴相交于另外一点E,若点M 是x轴上的点,N是y轴上的点,以点E,M,D,N为顶点的四边形是平行四边形,试求点M,N的坐标.第24题图第24题答图解:(1)在Rt △OAC 中,OA =3,OC =1,则∠OAC =30°,∠OCA =60°;根据折叠的性质知OA =AP =3,∠ACO =∠ACP =60°;∵∠BCA =∠OAC =30°,且∠ACP =60°,∴∠PCB =30°.(2)如图1,过P 作PQ ⊥OA 于点Q ,Rt △PAQ 中,∠PAQ =60°,AP =3,∴OQ =AQ =32,PQ =32,所以P ⎝⎛⎫32,32;将P ,A 代入抛物线的解析式中,得⎩⎪⎨⎪⎧-1+32b +c =32,-4+3b +c =0,解得⎩⎪⎨⎪⎧b =3,c =1,即y =-43x 2+3x +1;当x =0时,y =1,故C(0,1)在抛物线的图象上.(3)①如图2,若DE 是平行四边形的对角线,点C 在y 轴上,CD 平行x 轴,∴过点D 作DM ∥CE 交x 轴于点M ,则四边形EMDC 为平行四边形,把y =1代入抛物线解析式得点D 的坐标为⎝⎛⎭⎫334,1把y =0代入抛物线解析式得点E 的坐标为⎝⎛⎭⎫-34,0第24题答图∴M ⎝⎛⎭⎫32,0,N 点即为C 点,坐标是(0,1);②如图3,若DE 是平行四边形的边,过点A 作AN ∥DE 交y 轴于点N ,四边形DANE 是平行四边形,∴DE =AN =OA 2+ON 2=3+1=2,∵tan ∠EAN =ON OA =33,∴∠EAN =30°,∵∠DEA =∠EAN ,∴∠DEA =30°,∴M(3,0),N(0,-1);同理,过点C作CM∥DE交y轴于N,四边形CMDE是平行四边形,∴M(-3,0),N(0,1).。
2018年九年级数学教学质量检测试卷及答案(浙教版)
2018年九年级数学教学质量检测试卷及答案(浙教版)九年级数学教学质量检测 2018、11.本试卷分试题卷和答题卷两部分。
满分120分,考试时间90分钟。
2.所有答案都必须做在答题卷指定位置上,请务必注意试题序号和答题序号相对应。
一、单项选择题(本大题共10个小题,每小题3分,满分30分) 1、37000用科学记数法表示为()A 、37×103B 、3.7×104C 、3.7×105D 、0.37×1052.不等式组24010x x -<??+?≥的正整数解的个数是().A .1个B .2个C .3个D .4个 3. 下列各图中有可能是函数y=ax 2+c,(0,0)ay a c x=≠>的图象是()4. 下列说法错误的有几个()(1)不相交的两直线一定是平行线;(2)点到直线的垂线段就是点到直线的距离;(3)两点之间直线最短;(4)过一点有且只有一条直线与已知直线垂直 A.1个 B.2个 C.3个 D.4个5.下列各式从左到右的变形正确的是()A .(4x+1+4x2 )÷(4x 2-1)=2x -1 B.(4x 2-9)÷(3+2x)=2x -3C . D.6、用若干个大小相同,棱长为1的小正方体搭成一个几何体模型,其三视图如图所示,则搭成这个几何体模型所用的小正方体的个数是()个 A 、4 B 、5C 、6D 、77、某县教育部门对该县参加奥运知识竞赛的7500名初中学生的初试成绩(为整数)进行一次抽样调查,所得数据如上表,抽取样本的容量为()A 、7500B 、7500名初中学生的初试成绩C 、500D 、500名初中学生的初试成绩8、如图,在Rt △ABC 中,AB=AC ,D 、E 是斜边BC 上两点,且∠DAE=45°,将△ADC 绕点A 顺时针旋转90 后,得到△AFB ,连接EF ,下列结论:①∠EAF=450;②△ADE ≌△AFE ;③EF=ED ;④BE 2+DC 2=DE 2其中正确的个数是() A 、1个 B 、2个 C 、3个 D 、4个9、如图:在△ABC 中,AB =10,AC =8,BC =6,经过点C 且与边AB 相切的动圆与CB 、CA 分别相交于点E 、F ,则线段EF 长度的最小值是() A 、24B 、4.75C 、5D 、4.810.下列图中阴影部分的面积与算式2115()224--++- 的结果相同的是()二、填空题(每小题4分,共24分)11、请你根据H 市快餐公司个数统计图和各快餐公司盒饭年销售量的平均数统计图所提供的信息,计算这三年中该地区每年平均销售盒饭多少万盒?12、在△ABC 中,若│tanA-1│+-cosB 2)=0,则∠C=_______ 13、|x+1|+|x-2|+|x-3|的最小值为。
2018-2019学年九年级上学期期中考试数学试题(含答案)
2018~2019学年度第一学期期中质量调研九年级数学一、选择题(每小题3分,共30分)1.一元二次方程x 2-2x -1=0的根的情况为( )A .只有一个实数根B .有两个不相等的实数根C .有两个相等的实数根D .没有实数根2.一个长方形的面积为210 cm 2,宽比长少7 cm.设它的宽为x cm ,则可得方程( )A .2(x +7)+2x =210B .x +(x +7)=210C .x (x -7)=210D .x (x +7)=2103.有两个一元二次方程:①02=++c bx ax ,②02=++a bx cx ,其中a +c =0, 以下四个结论中,错误的是( ) A .如果方程①有两个相等的实数根,那么方程②也有两个相等的实数根; B .如果方程①和方程②有一个相同的实数根,那么这个根必定是x=1;C .如果4是方程①的一个根,那么14是方程②的一个根;D .方程①的两个根的符号相异,方程②的两个根的符号也相异;4.若二次函数c bx ax y ++=2的x 与y 的部分对应值如下表: x-7 -6 -5 -4 -3 -2 y-27-13-3353则当0=x 时,y 的值为( )A .5B .-3C .-13D .-275.二次函数c bx ax y ++=2的图象如图所示,反比例函数x ay =与正比例函数x c b y )(+=在同一坐标系中的大致图象可能是A B C D 6.如果将抛物线2y x =向左平移4个单位,再向下平移2个单位后,那么此时抛物线的表达式是( ). A .2(4)2y x =--B .2(4)2y x =-+C .2(4)2y x =+-D .2(4)2y x =++xxxxxyyyyy2018.107.若1(4,)A y -,1(3,)B y -,1(1,)C y 为二次函数242y x x =+-的图象上的三点,则1y ,2y ,3y 的大小关系是( ).A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y <<8.如图,Rt OAB △的顶点(2,4)A -在抛物线2y ax =上,将Rt OAB △绕点O 顺时针旋转90︒,得到OCD △,边CD 与该抛物线交于点P ,则点P 的坐标为( ). A .(2,2)B .(2,2)C .(2,2)D .(2,2)(第8题) (第9题) (第10题)9.如图,在Rt ABC △中,90C =︒∠,6cm AC =,2cm BC =,点P 在边AC 上,从点A 向点C 移动,点Q 在边CB 上,从点C 向点B 移动,若点P ,Q 均以1cm/s 的速度同时出发,且当一点移动终点时,另一点也随之停止,连接PQ ,则线段PQ 的最小值是( ). A .20cmB .18cmC .25cmD .32cm10.如图,正方形OABC 的边长为2,OA 与x 轴负半轴的夹角为15︒,点B 在抛物线2(0)y ax a =<的图象上,则a 的值为( ). A .12-B .26-C .2-D .23-二、填空题(每小题3分,共24分)11.将一元二次方程(2)(1)3x x -+=化成一般形式,且使得二次项系数为正数,则化成一般形式后的一元二次方程是 .12.已知关于x 的方程x 2+3x +a =0的一个根为-4,则另一个根为 .13.某药品原价每盒64元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒36元,则该药品平均每次降价的百分率是 . 14.若抛物线y =x 2-k x +k -1的顶点在x 轴上,则k = .15.若抛物线2(2)3y x m x =-+-+的顶点在y 轴上,则m =__________.16.若抛物线的顶点坐标为(2,9),且它在x 轴截得的线段长为6,则该抛物线的表达式为________.17.二次函数22y x ax a =-+在 03x ≤≤的最小值是-2,则a =__________18.如图,在平面直角坐标系中,抛物线y =x 2+mx 交x 轴的负半轴于点A .点B 是y 轴正半轴上一点,点A 关于点B 的对称点A ′恰好落在抛物线上.过点A ′作x 轴的平行线交抛物线于另一点C .若点A ′的横坐标为1,则A ′C 的长为 .三、解答题(共76分)19.⑴ 2(3)5x -= ⑵ 01422=+-x x⑶ 03322=--x x⑷03)32=+--x x ( 20.(6分)已知关于x 的方程x 2+8x +12-a =0有两个不相等的实数根.⑴ 求a 的取值范围;⑵ 当a 取满足条件的最小整数时,求出方程的解.21.(6分)如图,△ABC 中,∠C =90°,BC =6,AC =4.点P 、Q 分别从点A 、出发,点P 沿A →C 的方向以每秒1个单位长的速度向点C 运动,点Q 沿B →向以每秒2个单位长的速度向点C 运动.当其中一个点先到达点C 时,点P 、运动.当四边形ABQP 的面积是△ABC 面积的一半时,求点P 运动的时间.Q BP22.(8分)某工厂设计了一款工艺品,每件成本40元,为了合理定价,现投放市场进行试销.据市场调查,销售单价是80元时,每天的销售量是50件,若销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于65元.如果降价后销售这款工艺品每天能盈利3000元,那么此时销售单价为多少元?我市某汽车零部件生产企业的利润逐年提高.据统计,2014年利润为2亿元,2016年利润为2.88亿元.(1)求该企业从2014年到2016年利润的年平均增长率.(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?24.(本题满分10分)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元,市场调查发现,这种双肩包每天的销售量y (单位:个)与销售单价x (单位:元)有如下关系:60(3060)y x x =-+≤≤.设这种双肩包每天的销售利润为w 元. (1)求w 与x 之间的函数解析式.(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元? (3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?25.(本题满分10分)如图1,在平面直角坐标系中,二次函数2(0)y ax bx c a =++>的图象的顶点为D 点,与y 轴交于C 点,与x 轴交于A 、B 两点,A 点在原点的左侧,B 点的坐标为(3,0),OB OC =,13OA OC =. (1)求这个二次函数的表达式.(2)经过C 、D 两点的直线,与x 轴交于点E ,在该抛物线上是否存在这样的点F ,使以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请求出点F 的坐标;若不存在,请说明理由.(3)如图2,若点(2,)G y 是该抛物线上一点,点P 是直线AG 下方的抛物线上一动点,当点P 运动到什么位置时,APG △的面积最大?求出此时P 点的坐标和APG △的最大面积.26.已知关于x 的一元二次方程x2﹣(m+1)x+(m2+1)=0有实数根. (1)求m 的值;(2)先作y=x2﹣(m+1)x+(m2+1)的图象关于x 轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;(3)在(2)的条件下,当直线y=2x+n (n≥m )与变化后的图象有公共点时,求n2﹣4n 的最大值和最小值.27.(本题满分10分)已知二次函数22y ax bx =+-的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点A 的坐标为(4,0),且当2x =-和5x =时二次函数的函数值y 相等. (1)求实数a 、b 的值.(2)如图1,动点E 、F 同时从A 点出发,其中点E 以每秒2个单位长度的速度沿AB 边向终点B 运动,点F 以每秒5个单位长度的速度沿射线AC 方向运动,当点E 停止运动时,点F 随之停止运动.设运动时间为t 秒.连接EF ,将AEF △沿EF 翻折,使点A 落在点D处,得到DEF △.①是否存在某一时刻t ,使得DCF △为直角三角形?若存在,求出t 的值;若不存在,请说明理由.②设DEF △与ABC △重叠部分的面积为S ,求S 关于t 的函数关系式.参考答案及评分意见一、选择题 1-5 BDBCB ;6.【答案】C ;【解析】22242(4)(4)2y x y x y x =−−−−→=+−−−−→=+-向左平移向下平移个单位个单位. 故选C . 7.【答案】B ;【解析】二次函数2242(2)6y x x x =+-=+-,∴对称轴2x =-, ∴当14x =-,23x =-,31x =时,213y y y <<.故选B .8.【答案】C ;【解析】将(2,4)A -代入2y ax =中得:1a =,∴2y x =, 由题意知,2OB =,4BA =,∴2OD =,将2y =代入2y x =得,2x =±, ∴(2,2)P .故选C .9.【答案】C ;【解析】由题意知,AP t =,CQ t =,6CP t =-,222222(6)21236PQ PC CQ t t t t =+=-+=-+22(3)18t =-+,又∵02t ≤≤,故2t =时,220PQ =最小, 此时25PQ =.故选C .10.【答案】B ;【解析】∵正方形OABC 的边长为2,∴22OB =,由题意知,15AOB =︒∠,∴30COB =︒∠,∴2BC =,6OC =,故(6,2)B --, 代入2y ax =中得:26a -=,26a =-.故选B .二、填空题11.012=+-x x ; 12.1; 13.25%; 14.K=2;15.【答案】2;【解析】由题意知:对称轴202m x -==,解得2m =. 16.【答案】2(2)9y x =--+;【解析】∵抛物线在x 轴上截得的线段长为6,且对称轴为2x =, ∴抛物线与x 轴的两交点为(1,0)-,(5,0),设2(2)9y a x =-+,将(5,0)代入得:1a =-, ∴2(2)9y x =--+.分分分分 分20. ⑴ 根据题意得:0)12482>--a (解得:4->a⑵ ∵ 4->a ∴ 最小的整数为﹣3 ------------------------------------------------------------ ∴ x 2+8x +12﹣(﹣3)=0 即:x 2+8x +15=0解得:x 1=-3,x 2=-521.设点P 运动了x 秒,则AP =x ,BQ =2x由AC =4,BC =6得:PC =4-x ,QC =6-2xP根据题意得:ABC ABQP S S △四边形21= ∴ ABC PQC S S △△21= ∵ ∠C =90 ∴642121)26)4(21⨯⨯⨯=⋅-⋅x x -( 解得:11=x ,62=x 经检验,x =6舍去答:点P 运动的时间是1秒.22.解:设降价x 元后销售这款工艺品每天能盈利3000元. 根据题意可得:3000)550)(4080(=+--x x解这个方程得:201021==x x ,(不合题意,舍去) 当x =10时,80-x =70>65;当x =20时,80-x =60<65(不符合题意,舍去)答:此时销售单价应定为75元.23.【解析】(1)设这两年该企业年利润平均增长率为x ,则:22(1) 2.88x +=, 解得10.220%x ==,2 2.2x =-(不合题意,舍去) 故这两年该企业年利润平均增长率为20%.(2)如果2017年仍保持相同的年平均增长率,那么2017年该企业的年利润为 2.88(120%) 3.456+=,3.456 3.4>,故该企业2017年的利润能超过3.4亿元. 24.【解析】(1)(30)w x y =-⋅(60)(30)x x =-+-2901800x x =-+-,w 与x 之间的函数解析式:2901800w x x =-+-.(2)根据题意得:22901800(45)225w x x x =-+-=--+, ∵10-<,当45x =时,w 有最大值,最大值是225.(3)当200w =时,2901800200x x -+-=,解得140x =,250x =, ∵5048<,250x =不符题意,舍去,故销售单价应定为40元. 25.【解析】(1)由已知得:(0,3)C -,(1,0)A -,将A ,B ,C 三点的坐标代入,得09303a b c a b c C -+=⎧⎪++=⎨⎪=-⎩,∴223y x x =--.(2)存在.∵(1,4)D -,∴直线CD 的解析式为:3y x =--,∴E 点的坐标为(3,0)-, 由A 、C 、E 、F 四点的坐标得:2AE CF ==,AE CF ∥,∴以A 、C 、E 、F 为顶点,的四边形为平移四边形,∴存在点F ,坐标为(2,3)-. (3)过点P 作y 轴的平行线与AG 交于点Q ,易得(2,3)G -,直线AG 为1y x =--, 设2(,23)P x x x --,则(,1)Q x x -,22PQ x x =-++,21(22)32APG APQ GPQ S S S x x =+=-++⨯△△△,当12x=时,APGS△最大,此时115,24P⎛⎫-⎪⎝⎭,APGS△最大为278.26.解:(1)对于一元二次方程x2﹣(m+1)x+(m2+1)=0,△=(m+1)2﹣2(m2+1)=﹣m2+2m﹣1=﹣(m﹣1)2,∵方程有实数根,∴﹣(m﹣1)2≥0,∴m=1.(2)由(1)可知y=x2﹣2x+1=(x﹣1)2,图象如图所示:平移后的解析式为y=﹣(x+2)2+2=﹣x2﹣4x﹣2.(3)由消去y得到x2+6x+n+2=0,由题意△≥0,∴36﹣4n﹣8≥0,∴n≤7,∵n ≤m ,m =1, ∴1≤n ≤7,令y ′=n 2﹣4n =(n ﹣2)2﹣4,∴n =2时,y ′的值最小,最小值为﹣4, n =7时,y ′的值最大,最大值为21, ∴n 2﹣4n 的最大值为21,最小值为﹣4.27.【解析】(1)由题意得:164204222552a b a b a b +-=⎧⎨--=+-⎩,解得:12a =,32b =-.(2)①由(1)知213222y x x =--,∵(4,0)A ,∴(1,0)B -,(0,2)C ,∴4OA =,1OB =,2OC =,∴5AB =,25AC =,5BC =, ∴22225AC BC AB +==,∴ABC △为Rt △,且90ACB =︒∠,∵2AE t =,5AF t =,52AF AB AE AC ==,又∵EAF CAB =∠∠,∴AEF ACB △∽△, ∴90AEF ACB ==︒∠∠,∴翻折后,A 落在D 处,∴DE AE =,∴24AD AE t ==,12EF AE t ==, 若DCF △为Rt △,点F 在AC 上时,i )∴若C 为直角顶点,则D 与B 重合,∴1522AE AB ==,55224t =÷=,如图2 ii )若D 为直角顶点,∵90CDF =︒∠,∴90ODC EDF +=︒∠∠,∵EDF EAF =∠∠,∴90OBC EAF +=︒∠∠,∴ODC OBC =∠∠,∴BC DC =, ∵OC BD ⊥,∴1OD OB ==,∴3AD =,∴34AE =,∴34t =,如图3 当点F 在AC 延长线上时,90DFC >︒∠,DCF △为钝角三角形,综上所述,34t =或54.②i )当504t <≤时,重叠部分为DEF △,∴2122S t t t =⨯⨯=.ii )当524t <≤时,设DF 与BC 相交于点G ,则重叠部分为四边形BEFG ,如图4,过点G 作GH BE ⊥于H ,设GH x =,则2x BH =,2DH x =,∴32xDB =,∵45DB AD AB t =-=-,∴3452x t =-,∴2(45)3x t =-,∴1122(45)(45)223DEF DBG S S S t t t t ===⨯⨯--⨯-△△2134025533t t =-+-.iii )当522t <≤时,重叠部分为BEG △,如图5,∵2(45)52BE DE DB t t t =-=--=-,22(52)GE BE t ==-,∴21(52)2(52)420252S t t t t =⨯-⨯-=-+.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学教学质量检测 2018、11.本试卷分试题卷和答题卷两部分。
满分120分,考试时间90分钟。
2.所有答案都必须做在答题卷指定位置上,请务必注意试题序号和答题序号相对应。
一、单项选择题(本大题共10个小题,每小题3分,满分30分) 1、37000用科学记数法表示为( )A 、37×103B 、3.7×104C 、3.7×105D 、0.37×1052.不等式组24010x x -<⎧⎨+⎩≥的正整数解的个数是( ).A .1个B .2个C .3个D .4个 3. 下列各图中有可能是函数y=ax 2+c,(0,0)ay a c x=≠>的图象是( )4. 下列说法错误的有几个( )(1) 不相交的两直线一定是平行线;(2)点到直线的垂线段就是点到直线的距离;(3)两点之间直线最短;(4)过一点有且只有一条直线与已知直线垂直 A.1个 B.2个 C.3个 D.4个5.下列各式从左到右的变形正确的是( )A .(4x+1+4x² )÷(4x ²-1)=2x -1 B.(4x ²-9)÷(3+2x)=2x -3C . D.6、用若干个大小相同,棱长为1的小正方体搭成一个几何体模型,其三视图如图所示,则搭成这个几何体模型所用的小正方体的个数是( )个 A 、4 B 、5C 、6D 、77、某县教育部门对该县参加奥运知识竞赛的7500名初中学生的初试成绩(为整数)进行一次抽样调查,所得数据如上表,抽取样本的容量为( )A 、7500B 、7500名初中学生的初试成绩C 、500D 、500名初中学生的初试成绩 8、如图,在Rt △ABC 中,AB=AC ,D 、E 是斜边BC 上两点,且∠DAE=45°,将△ADC 绕点A 顺时针旋转90 后,得到△AFB ,连接EF ,下列结论: ①∠EAF=450;②△ADE ≌△AFE ;③EF=ED ;④BE 2+DC 2=DE 2其中正确的个数是( ) A 、1个 B 、2个 C 、3个 D 、4个9、如图:在△ABC 中,AB =10,AC =8,BC =6,经过点C 且与边AB 相切的动圆与CB 、CA 分别相交于点E 、F ,则线段EF 长度的最小值是( ) A 、24B 、4.75C 、5D 、4.810.下列图中阴影部分的面积与算式2115()224--++- 的结果相同的是( )二、填空题(每小题4分,共24分)11、 请你根据H 市快餐公司个数统计图和各快餐公司盒饭年销售量的平均数统计图 所提供的信息,计算这三年中该地区每年平均销售盒饭多少 万盒?12、在△ABC 中,若│tanA-1│+-cosB 2)=0,则∠C=_______ 13、|x+1|+|x-2|+|x-3|的最小值为 。
14. 从 —1,0.5,1.6,2四个数中任取一个,作为一次函数y=kx —3的k 值, 则所得一次函数中y 随x 的增大而增大的概率是 .15、如图所示,直角坐标系中一条圆弧经过网格点A 、B 、C , 其中B 点的坐标是(4,4),则该圆弧所在圆的圆心 坐标为 .16.四个半径为r 的圆如右图放置,相邻两个圆交点之间的距离也为r ,不相邻两个圆的圆周上两点间的最短距离等于2, 则r 的值是 .三、解答题(本题有8个小题,共66分) 17. (共6分)(1)化简:s in 230°+cos 245°sin60°·tan45°; (2)解一元二次方程:04)23(5)23(2=+---x x(3)解不等式组27163(1)5x x x x +-⎧⎨-->⎩≥, ①,②18. 已知二次函数y=-2x 2,怎样平移这个函数图象,才能使它经过(0,0)和(1,6 )两点?(本题6分)19. (本题6分)以O 为位似中心,作四边形ABCD 的位似图形,使新图形与原图形的相似比为2:1.20. (本小题满分8分)已知:如图,梯形ABCD 中,A D ∥BC ,点E 是CD 的中点,BE 的延长线与AD 的延长线相交于点F 。
(1) 求证:⊿BC E ≌⊿FDE 。
(2) 连接BD, CF, 判断四边形BCFD 的形状,并证明你的结论。
21.(本小题满分8分)为保护环境,节约资源,从去年6月1日起国家禁止超市、商场、药店为顾客提供免费塑料袋,为解决顾客购物包装问题,心连心超市提供了A. 自带购物袋;B. 租借购物篮;C. 购买环保袋;D. 徒手携带,四种方式供顾客选择。
该超市把6月1日、2日两天的统计结果绘成如下的条形统计图和6月1日的扇形统计图,请你根据图形解答下列问题: (1) 请将6月1日的扇形统计图补充完整。
(2) 根据统计图,求6月1日在该超市购物总人次和6月1日自带购物袋的人次。
(3) 比较两日的条形图,你有什么发现?请用一句话表述你的发现。
50100150200250300350400450ABCD人次22. (本小题满分10分)如图,足球场上守门员在O 处开出一高球,球从离地面1米的A 处飞出(A 在y 轴上),运动员乙在距O 点6米的B 处发现球在自己头的正上方达到最高点M ,距地面约4米高,球落地后又一次弹起。
据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半。
(1) 求足球开始飞出到第一次落地时,该抛物线的表达式; (2) 足球第一次落地点C距守门员多少米?(取7=)(3) 运动员乙要抢到第二个落点D,他应再向前跑多少米?(取5=)23.(本小题满分10分)如图,以矩形OCPD 的顶点O 为原点,它的两条边所在的直线分别为x 轴和y 轴建立直角坐标系. 以点P 为圆心, PC 为半径的⊙P 与x 轴的正半轴交于A 、B 两点, 若抛物线y=ax 2+bx +4经过A , B , C 三点, 且AB =6. ⑴求⊙P 的半径R 的长;⑵求该抛物线的解析式并直接写出该抛物线与⊙P 的第四个交点E 的坐标;⑶若以AB 为直径的圆与直线AC 的交点为F , 求AF 的长。
24、(本小题满分12分)如图1,在Rt △ABC 中,∠C =90°,BC =8厘米,点D 在AC 上,CD =3厘米.点P 、Q 分别由A 、C 两点同时出发,点P 沿AC 方向向点C 匀速移动,速度为每秒k 厘米,行完AC 全程用时8秒;点Q 沿CB 方向向点B 匀速移动,速度为每秒1厘米.设运动 的时间为x 秒()80<x<,△DCQ 的面积为y 1平方厘米,△PCQ 的面积为y 2平方厘米.⑴求y 1与x 的函数关系,并在图2中画出y 1的图象;⑵如图2,y 2的图象是抛物线的一部分,其顶点坐标是(4,12),求点P 的速度及AC 的长;⑶在图2中,点G 是x 轴正半轴上一点(0<OG <6),过G 作EF 垂直于x 轴,分别交y 1、y 2于点E 、F .①说出线段EF 的长在图1中所表示的实际意义; ②当0<x <6时,求线段EF 长的最大值.图1P C九年级数学质量检测答题卷一、仔细选一选(本题有10个小题,每小题3分,共30分)二、认真填一填(本题有6个小题,每小题4分,共24分) 11、 12、13、 14、 15、 16 、 三. 全面答一答 (本题有8个小题, 共66分) 17、计算:(每小题3分,共6分)(1)化简:s in 230°+cos 245°sin60°·tan45°;(2)解一元二次方程:04)23(5)23(2=+---x x(3)解不等式组27163(1)5x x x x +-⎧⎨-->⎩≥, ①,②18、(本小题6分)19、(本小题满分6分)20、(本题8分)22、(本题10分)23、(本小题满分10分)24、(本小题满分12分)图1九年级数学教学质量检测参考答案一、单项选择题(本大题共10个小题,每小题3分,满分30分)11、 99.5 ; 12、 1050;13、 4 ;14、43; 15、 (2,0) ; 16、PC26+17、(共6分,每题2分,过程1分,答案1分)(1)34 +62 错误!未定义书签。
(2)x=1,x=2 (3)-2≤x <3218.(本题6分)y=-2x 2+8x ----------------3分原图像先向右平移2个单位,再向上平移8个单位----------------------3分19.(本题6分) 图略20.(本题8分)(1)证明:∵点E 是DC 中点,∴DE=CE又∵A D ∥BC, F 在AD 延长线上,∴∠DFE=∠EBC, ∠FDE=∠ECB,--------------------2分 在⊿BCE 与⊿FDE 中 ,∵ ∠EBC=∠DFE ,∠ECB=∠FDE ,CE=DE∴⊿BCE ≌⊿FDE(AAS)---------------------3分(2)四边形BCFD 是平行四边形。
理由如下:--------------------3分 ∵⊿BCE ≌⊿FDE,∴DE=CE,FE=BE, ∴四边形BCFD 是平行四边形21、(本题8分)(1)在扇形统计图的空白处填上“D 22%”--------------------2分(2)6月1日在该超市购物的总人次为:350÷28%=1250(人次)--------------2分 6月1日自带购物袋的有:1250×18%=225人次 ---------------2分 (3)答案不唯一,如“自带购物袋的人增多”-----------------------2分“租借购物篮的人减少”等22、(本题10分) (1)设第一次落地时,抛物线的表达式为2(6)4y a x =-+ 由已知:当0x =时,y=1。
即1=36a+4,∴ 112a =- ∴ 表达式为21(6)412y x =--+. (或21112y x x =-++)----------3分(2)令y=0, 21(6)4012x --+=.∴2(6)48x -=. 16x =≈13, 26x =-<0(舍去)。
∴足球第一次落地距守门员约13米。
-------------3分 (3)解:第二次足球弹出后的距离为CD根据题意得:相当于将抛物线AMC 向下平移了2个单位∴212(6)412x =--+,解得 16x =-26x =+。
∴CD=∣12x x -∣= ≈10 ∴BD=13-6+10=17(米)------------4分23.(本题10分)解:(1)由题意,可知C (0,4),则PD=CO=4.∵AB=6 ∴AD=3 ∴R=PA=5 ---------------------------------2分 (2) 由题意得A(2,0) B(8,0)把x=2,y=0;x=8,y=0代入y=ax 2+bx+4,解方程组,得 a= 0.25 ,b= -2.5∴y=0.25x 2-2.5x+4 --------------------------------------------------3分 该抛物线与⊙P 的第四个交点E 的坐标为(10,4)-----------------1分 (3)过点B 作直线AC 的垂线段BF,∵△COA ∽△BFA ------------1分AO=2,AC=25,AB=6∴25/6=2/AF -------------------1分AF=65/5 ------------------------------1分∴AF=65/5 ------------------------------1分24.(本题12分)解:⑴∵CD CQ S DCQ ⋅⋅=∆21,CD =3,CQ =x , ∴x y 231=.------------------------2分 图象如图所示---------------------1分⑵方法一:CP CQ S PCQ ⋅⋅=∆21,CP =8k -xk ,CQ =x , ∴()kx kx x kx k y 42182122+-=⋅-⨯=.∵抛物线顶点坐标是(4,12),∴12444212=⋅+⋅-k k . 解得23=k .则点P 的速度每秒23厘米,AC =12厘米.方法二:观察图象知,当x=4时,△PCQ 面积为12.此时PC =AC -AP =8k -4k =4k ,CQ =4.∴由CP CQ S PCQ ⋅⋅=∆21,得 12244=⨯k .解得23=k . 则点P 的速度每秒23厘米,AC =12厘米.⑶ ①观察图象,知线段的长EF =y 2-y 1,表示△PCQ 与△DCQ 的面积差(或△PDQ 面积).-------------2分②由⑵得 x x y 64322+-=.(方法二,x x x x y 643232382122+-=⋅⎪⎭⎫ ⎝⎛-⨯⨯=)∵EF =y 2-y 1, ∴EF =x x x x x 29432364322+-=-+-, ∵二次项系数小于0,∴在60<x<范围,当3=x 时,427=EF 最大.------------------------------3分。