人教新课标A版高中选修2-2数学1.5定积分的概念同步练习(I)卷
【原创】人教A版选修2-2:第一章 1.5定积分的概念
第一章导数及其应用
其中 a 与 b 分别叫做_积__分__下__限__与_积__分__上__限__,区间[a,
b] 叫做 __积__分__区__间___ , 函数 f(x) 叫做 __被__积__函__数__ ,x 叫 做
__积__分__变__量___,f(x)dx 叫做_被__积___式___.
讲一讲
2.汽车做变速直线运动,在时刻 t 的速度(单位:km/h) 为 v(t)=t2+2,那么它在 1≤t≤2(单位:h)这段时间行驶的 路程为多少?
[尝试解答] 将区间[1,2]等分成 n 个小区间,第 i 个小区间 为1+i-n 1,1+ni (i=1,2,…,n).
第 i 个时间区间的路程的近似值为 Δξi≈Δξi′=v(t)·n1=v1+i-n 1·n1=n3+2in-2 1+i-n312,
数学 ·人教A版选修2-2
第一章导数及其应用
练一练
2.已知作自由落体运动的物体的运动速度 v=gt,求在 时间区间[0,t]内物体下落的距离.
解:①分割. 将时间区间[0,t]等分成 n 个小区间,其中第 i 个区间 为i-n 1t,int(i=1,2,…,n),每个小区间所表示的时间段 Δt =int-i-n 1t=nt ,在各小区间内物体下落的距离,记作 ΔSi.
b
故 f(ξi)·Δxi<0,从而定积分af(x)dx<0,这时它等于图中 所示曲边梯形面积的相反数,
b
b
即af(x)dx<0=-S 或 S=-af(x)dx<0.
数学 ·人教A版选修2-2
第一章导数及其应用
2
(7)
0
4-x2dx 的几何意义是什么?
提示:是由直线 x=0,x=2,y=0 和曲线 y= 4-x2所
新高二数学人教A版选修2-2试题:第1章1.5.3 定积分的概念
一、选择题1.关于定积分m =⎠⎛02⎝⎛⎭⎫-13d x ,下列说法正确的是( ) A .被积函数为y =-13xB .被积函数为y =-13C .被积函数为y =-13x +CD .被积函数为y =-13x 3【解析】 被积函数为y =-13.【答案】 B2.已知定积分⎠⎛06f (x )d x =8,且f (x )为偶函数,则⎠⎛-66f (x )d x )=( )A .0B .16C .12D .8【解析】 偶函数图象关于y 轴对称,故⎠⎛-66f (x )d x =2⎠⎛06f (x )d x =16.故选B.【答案】 B3.设f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,2x ,x <0,则⎠⎛-11f (x )d x 的值是( )A. ⎠⎛-11x 2d xB. ⎠⎛-112x d xC. ⎠⎛-10x 2d x +⎠⎛012x d xD. ⎠⎛-102x d x +⎠⎛01x 2d x【解析】 被积函数f (x )是分段函数,故将积分区间[-1,1]分为两个区间[-1,0]和[0,1],由定积分的性质知选D.【答案】 D4.变速直线运动的物体的速度为v (t )≥0,初始t =0时所在位置为s 0,则当t 1秒末它所在的位置为( )A .⎠⎛0t 1∫t 10v (t )d tB .s 0+⎠⎛0t 1v (t )d tC .⎠⎛0t 1v (t )d t -s 0D .s 0-⎠⎛0t 1v (t )d t【解析】 由位移是速度的定积分,同时不可忽视t =0时物体所在的位置,故当t 1秒末它所在的位置为s 0+⎠⎛0t 1v (t )d t .【答案】 B5.定积分⎠⎛ab f (x )d x 的大小( )A .与f (x )和积分区间[a ,b ]有关,与ξi 的取法无关B .与f (x )有关,与区间[a ,b ]以及ξi 的取法无关C .与f (x )以及ξi 的取法有关,与区间[a ,b ]无关D .与f (x ),积分区间[a ,b ]和ξi 的取法都有关【解析】 定积分的大小与被积函数以及区间有关,与ξi 的取法无关. 【答案】 A 二、填空题6.定积分⎠⎛13(-3)d x =__________.【解析】 由定积分的几何意义知,定积分 ⎠⎛13(-3)d x 表示由x =1,x =3与y =-3,y =0 所围成图形面积的相反数.所以⎠⎛13(-3)d x =-(2×3)=-6.【答案】 -67.定积分⎠⎛-12|x |d x =__________.【解析】 如图,⎠⎛-12|x |d x =12+2=52.【答案】 528.曲线y =1x 与直线y =x ,x =2所围成的图形面积用定积分可表示为________.【解析】 如图所示,阴影部分的面积可表示为⎠⎛12x d x -⎠⎛121x d x =⎠⎛12⎝⎛⎭⎫x -1x d x .【答案】 ⎠⎛12⎝⎛⎭⎫x -1x d x 三、解答题9.已知⎠⎛01x 3d x =14,⎠⎛12x 3d x =154,⎠⎛12x 2d x =73,⎠⎛24x 2d x =563,求:(1)⎠⎛023x 3d x ;(2)⎠⎛146x 2d x ;(3)⎠⎛12(3x 2-2x 3)d x .【解】 (1)⎠⎛023x 3d x =3⎠⎛02x 3d x=3⎝⎛⎭⎫⎠⎛01x 3d x +⎠⎛12x 3d x =3⎝⎛⎭⎫14+154=12. (2)⎠⎛146x 2d x =6⎠⎛14x 2d x=6⎝⎛⎭⎫⎠⎛12x 2d x +⎠⎛24x 2d x =6⎝⎛⎭⎫73+563=126. (3)⎠⎛12 (3x 2-2x 3)d x =3⎠⎛12x 2d x -2⎠⎛12x 3d x =3×73-2×154=-12.10.利用定积分的几何意义,求⎠⎛-111-x 2d x 的值.【解】 y =1-x 2(-1≤x ≤1)表示圆x 2+y 2=1在x 轴上方的半圆(含圆与x 轴的交点).根据定积分的几何意义,知⎠⎛-111-x 2d x 表示由曲线y =1-x 2与直线x =-1,x =1,y =0所围成的平面图形的面积,所以⎠⎛-111-x 2d x =S 半圆=12π.[能力提升]1.设曲线y =x 2与直线y =x 所围成的封闭区域的面积为S ,则下列等式成立的是( ) A .S =⎠⎛01(x 2-x )d xB .S =⎠⎛01(x -x 2)d xC .S =⎠⎛01(y 2-y )d yD .S =⎠⎛01(y -y )d y【解析】 作出图形如图,由定积分的几何意义知,S =⎠⎛01(x -x 2)d x ,选B.【答案】 B2.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v 甲和v 乙(如图1-5-4所示).那么对于图中给定的t 0和t 1,下列判断中一定正确的是( )图1-5-4A .在t 1时刻,甲车在乙车前面B .t 1时刻后,甲车在乙车后面C .在t 0时刻,两车的位置相同D .t 0时刻后,乙车在甲车前面【解析】 根据定积分的概念以及几何意义等有关知识可知,由题图可知,曲线v 甲比v 乙在0~t 0,0~t 1与x 轴所围成图形面积大,则在t 0,t 1时刻,甲车均在乙车前面,故选A.【答案】 A3.定积分⎠⎛2 0162 0172 017 d x =________________.【解析】 由定积分的几何意义知,定积分表示由直线x =2 016,x =2 017与y =2 017,y =0所围成矩形的面积,所以⎠⎛2 0162 0172 017d x =(2 017-2 016)×2 017=2 017.【答案】 2 0174.已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ∈[-2,2),2x ,[2,π),cos x ,[π,2π],求f (x )在区间[-2,2π]上的积分.【解】 由定积分的几何意义知⎠⎛-22x 3d x =0,⎠⎛2π2x d x =(2π+4)(π-2)2=π2-4, ⎠⎛π2π∫2ππcos x d x =0. 由定积分的性质得⎠⎛-22πf (x )d x =⎠⎛-22x 3d x +⎠⎛2π2x d x +⎠⎛π2πcos x d x =π2-4.。
人教a版高中数学选修21全册同步练习及单元检测含答案
答案: 一元二次方程 ax2+ bx+ c=0( a≠0) 此方程有两个不相等的实数根
假
三、解答题 ( 每小题 10 分,共 20 分 )
7.指出下列命题的条件 p 和结论 q: (1) 若 x+ y 是有理数,则 x, y 都是有理数;
(2) 如果一个函数的图象是一条直线,那么这个函数为一次函数.
1
1
∴ a+1≥1且 a≤ 2,即 0≤ a≤ 2.
1 ∴满足条件的 a 的取值范围为 0, 2 .
4 8.求证: 0≤ a< 是不等式
ax2- ax+1- a>0 对一切实数
x 都成立的充要条件.
5
4 证明: 充分性:∵ 0<a< ,
5 ∴ Δ=a2- 4a(1 -a) = 5a2- 4a= a(5 a-4)<0 , 则 ax2- ax+ 1- a>0 对一切实数 x 都成立. 而当 a= 0 时,不等式 ax2-ax+ 1- a>0 可变成 1>0.
x 都成立的充要条件.
尖子生题库 ☆☆☆ 9. (10 分 ) 已知条件 p: A= { x|2 a≤ x≤ a2+ 1} ,条件 q: B={ x| x2- 3( a+ 1) x+2(3 a+ 1) ≤0} .若 p 是 q 的充分条件,求实数 a 的取值范围. 解析: 先化简 B, B= { x|( x- 2)[ x- (3 a+1)] ≤0} ,
答案: (1)(2)(3)
x 6.设集合 A= x| x-1<0 ,B= { x|0< x<3} ,那么“ m∈ A”是“ m∈ B”的 ________条件.
x
解析:
A=
x|
<0 x- 1
2017-2018学年高中数学人教A版选修2-2学案:第一章 1.5 1.5.3 定积分的概念
1.5.3 定积分的概念预习课本P45~47,思考并完成下列问题 (1)定积分的概念是什么?几何意义又是什么?(2)定积分的计算有哪些性质?[新知初探]1.定积分的概念与几何意义(1)定积分的概念:一般地,设函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式∑i =1nf (ξ i )Δx =∑i =1nb -an f (ξ i ),当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作⎠⎛a bf (x )d x ,即⎠⎛a bf (x )d x =li m n →∞∑i =1n b -anf (ξ i ), 这里,a 与b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式.(2)定积分的几何意义:如果在区间[a ,b ]上函数连续且恒有f (x )≥0,那么定积分⎠⎛a bf (x )d x 表示由直线x =a ,x =b (a <b ),y =0和曲线y =f (x )所围成的曲边梯形的面积(如图中的阴影部分的面积).[点睛] 利用定积分的几何意义求定积分的关注点(1)当f (x )≥0时,⎠⎛a bf (x )d x 等于由直线x =a ,x =b ,y =0与曲线y =f (x )围成曲边梯形的面积,这是定积分的几何意义.(2)计算⎠⎛a bf (x )d x 时,先明确积分区间[a ,b ],从而确定曲边梯形的三条直边x =a ,x =b ,y =0,再明确被积函数f (x ),从而确定曲边梯形的曲边,这样就可以通过求曲边梯形的面积S 而得到定积分的值:当f (x )≥0时,⎠⎛a bf (x )d x =S ;当f (x )<0时,⎠⎛a bf (x )d x =-S .2.定积分的性质(1)⎠⎛a bkf (x )d x =k ⎠⎛a bf (x )d x (k 为常数).(2)⎠⎛a b [f 1(x )±f 2(x )]d x =⎠⎛a b f 1(x )d x ±⎠⎛a bf 2(x )d x .(3)⎠⎛a bf (x )d x =⎠⎛a cf (x )d x +⎠⎛c bf (x )d x (其中a <c <b ).[小试身手]1.判断(正确的打“√”,错误的打“×”) (1)⎠⎛02x 2d x =1.( )(2)⎠⎛a b f (x )d x 的值一定是一个正数.( ) (3)⎠⎛a b(x 2+2x )d x =⎠⎛a bx 2d x +⎠⎛a b2x d x . ( ) 答案:(1)√ (2)× (3)√ 2.⎠⎛02x d x 的值为( )A .1 B.12 C .2 D .-2答案:C3.已知⎠⎛02f (x )d x =8,则( ) A.⎠⎛01f (x )d x =4 B.⎠⎛02f (x )d x =4C.⎠⎛01f (x )d x +⎠⎛12f (x )d x =8 D .以上答案都不对 答案:C4.已知⎠⎛0tx d x =2,则⎠⎛-t 0x d x =________. 答案:-2[典例] 利用定义求定积分⎠⎛03x 2d x . [解] 令f (x )=x 2,(1)分割:在区间[0,3]上等间隔地插入n -1个点,把区间[0,3]分成n 等份,其分点为x i=3i n (i =1,2,…,n -1),这样每个小区间[x i -1,x i ]的长度Δx =3n(i =1,2,…,n ). (2)近似代替、求和:令ξi =x i =3in (i =1,2,…,n ),于是有和式:∑i =1n f (ξi )Δx =∑i =1n ⎝⎛⎭⎫3i n 2·3n =27n 3∑i =1n i 2=27n 3·16n (n +1)(2n +1)=92⎝⎛⎭⎫1+1n ⎝⎛⎭⎫2+1n . (3)取极限:根据定积分的定义,有⎠⎛03x 2d x =∑i =1nf (ξi )Δx=⎣⎡⎦⎤92⎝⎛⎭⎫1+1n ⎝⎛⎭⎫2+1n =9.用定义求定积分的一般步骤(1)分割:n 等分区间[a ,b ];(2)近似代替:取点ξi ∈[x i -1,x i ],可取ξi =x i -1或ξi =x i ;(3)求和:∑i =1n f (ξi )·b -an;(4)取极限:⎠⎛a bf (x )=li m n →∞∑i =1nf (ξi )·b -an . [活学活用]利用定积分的定义计算⎠⎛12(-x 2+2x )d x 的值. 解:令f (x )=-x 2+2x . (1)分割在区间[1,2]上等间隔地插入n -1个分点,把区间[1,2]等分为n 个小区间⎣⎢⎡⎦⎥⎤1+i -1n ,1+i n (i =1,2,…,n ),每个小区间的长度为Δx =1n .(2)近似代替、求和取ξi =1+in (i =1,2,…,n ),则 S n =∑i =1n f ⎝⎛⎭⎫1+in ·Δx =∑i =1n ⎣⎡⎦⎤-⎝⎛⎭⎫1+i n 2+2⎝⎛⎭⎫1+i n ·1n =-1n 3[(n +1)2+(n +2)2+(n +3)2+…+(2n )2]+2n 2[(n +1)+(n +2)+(n +3)+…+2n ]=-1n 3⎣⎢⎡⎦⎥⎤2n (2n +1)(4n +1)6-n (n +1)(2n +1)6+2n 2·n (n +1+2n )2 =-13⎝⎛⎭⎫2+1n ⎝⎛⎭⎫4+1n +16⎝⎛⎭⎫1+1n ⎝⎛⎭⎫2+1n +3+1n . (3)取极限⎠⎛12(-x 2+2x )d x =S n =-13⎝⎛⎭⎫2+1n ⎝⎛⎭⎫4+1n +16⎝⎛⎭⎫1+1n ⎝⎛⎭⎫2+1n +3+1n =23.[典例] (1)f (x )=⎩⎪⎨⎪⎧x +1,0≤x <1,2x 2,1≤x ≤2.则⎠⎛02f (x )d x =( )A.⎠⎛02(x +1)d x B.⎠⎛022x 2d xC.⎠⎛01(x +1)d x +⎠⎛122x 2d x D.⎠⎛012x d x +⎠⎛12(x +1)d x(2)已知⎠⎛0ex d x =e 22,⎠⎛0ex 2d x =e33,求下列定积分的值: ①⎠⎛0e(2x +x 2)d x ; ②⎠⎛0e (2x 2-x +1)d x .[解析] (1)由定积分的几何性质得:⎠⎛02f (x )d x =⎠⎛01(x +1)d x +⎠⎛122x 2d x .答案:C(2)解:①⎠⎛0e(2x +x 2)d x =2⎠⎛0ex d x +⎠⎛0ex 2d x =2×e 22+e 33=e 2+e 33.②⎠⎛0e(2x 2-x +1)d x =⎠⎛0e2x 2d x -⎠⎛0ex d x +⎠⎛0e1d x , 因为已知⎠⎛0ex d x =e 22,⎠⎛0ex 2d x =e 33, 又由定积分的几何意义知:⎠⎛0e 1d x 等于直线x =0,x =e ,y =0,y =1所围成的图形的面积,所以⎠⎛0e1d x =1×e =e ,故⎠⎛0e(2x 2-x +1)d x =2×e 33-e 22+e =23e 3-12e 2+e.利用定积分的性质计算定积分的步骤(1)如果被积函数是几个简单函数的和的形式,利用定积分的线性性质进行计算,可以简化计算.(2)如果被积函数含有绝对值或被积函数为分段函数,一般利用积分区间的连续可加性计算.[活学活用]若f (x )=⎩⎪⎨⎪⎧2x -1,-1≤x <0,e -x ,0≤x ≤1.且⎠⎛0-1(2x -1)d x =-2,⎠⎛01e -x d x =1-e -1,求⎠⎛1-1f (x )d x .解:对于分段函数的定积分,通常利用积分区间可加性来计算,即⎠⎛1-1f (x )d x =⎠⎛0-1f (x )d x +⎠⎛01f (x )d x=⎠⎛0-1(2x -1)d x +⎠⎛01e -x d x =-2+1-e -1=-(e -1+1).[典例] 求定积分:⎠⎛02(4-(x -2)2-x )d x .[解] ⎠⎛024-(x -2)2d x 表示圆心在(2,0),半径等于2的圆的面积的14,即⎠⎛024-(x -2)2d x =14×π×22=π.⎠⎛02x d x 表示底和高都为2的直角三角形的面积,即⎠⎛02x d x =12×22=2.∴原式=⎠⎛024-(x -2)2d x -⎠⎛02x d x =π-2.当被积函数的几何意义明显时,可利用定积分的几何意义求定积分,但要注意定积分的符号.[活学活用]计算⎠⎛3-3(9-x 2-x 3)d x 的值. 解:如图所示,由定积分的几何意义得⎠⎛3-39-x 2d x =π×322=9π2,⎠⎛3-3x 3d x =0,由定积分性质得 ⎠⎛3-3(9-x 2-x 3)d x =⎠⎛3-39-x 2d x -⎠⎛3-3x 3d x =9π2.层级一 学业水平达标1.定积分⎠⎛2-2f (x )d x (f (x )>0)的积分区间是( ) A .[-2,2] B .[0,2] C .[-2,0]D .不确定解析:选A 由定积分的概念得定积分⎠⎛2-2f (x )d x 的积分区间是[-2,2].2.定积分⎠⎛13(-3)d x 等于( ) A .-6 B .6 C .-3D .3解析:选A 由定积分的几何意义知,⎠⎛13(-3)d x 表示由x =1,x =3,y =0及y =-3所围成的矩形面积的相反数,故⎠⎛13(-3)d x =-6.3.下列命题不正确的是( )A .若f (x )是连续的奇函数,则⎠⎛a -a f (x )d x =0 B .若f (x )是连续的偶函数,则⎠⎛a -af (x )d x =2⎠⎛0af (x )d xC .若f (x )在[a ,b ]上连续且恒正,则⎠⎛a bf (x )d x >0D .若f (x )在[a ,b ]上连续且⎠⎛a bf (x )d x >0,则f (x )在[a ,b ]上恒正解析:选D A 项,因为f (x )是奇函数,图象关于原点对称,所以x 轴上方的面积和x 轴下方的面积相等,故积分是0,所以A 项正确;B 项,因为f (x )是偶函数,图象关于y 轴对称,故y 轴两侧的图象都在x 轴上方或下方且面积相等,故B 项正确;由定积分的几何意义知,C 项显然正确;D 项,f (x )也可以小于0,但必须有大于0的部分,且f (x )>0的曲线围成的面积比f (x )<0的曲线围成的面积大.4.设f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,2x ,x <0,则⎠⎛1-1f (x )d x 的值是( ) A.⎠⎛1-1 x 2d x B.⎠⎛1-12xd x C.⎠⎛1-1x 2d x +⎠⎛1-12xd x D.⎠⎛0-12xd x +⎠⎛10x 2d x 解析:选D 由定积分性质(3)求f (x )在区间[-1,1]上的定积分,可以通过求f (x )在区间[-1,0]与[0,1]上的定积分来实现,显然D 正确,故应选D.5.下列各阴影部分的面积S 不可以用S =⎠⎛a b[f (x )-g (x )]d x 求出的是( )解析:选D 定积分S =⎠⎛a b[f (x )-g (x )]d x 的几何意义是求函数f (x )与g (x )之间的阴影部分的面积,必须注意f (x )的图象要在g (x )的图象上方.对照各选项可知,D 项中f (x )的图象不全在g (x )的图象上方.故选D.6.若⎠⎛a b f (x )d x =3,⎠⎛a b g (x )d x =2,则⎠⎛a b[f (x )+g (x )]d x =__________. 解析:⎠⎛a b [f (x )+g (x )]d x =⎠⎛a b f (x )d x +⎠⎛a bg (x )d x =3+2=5. 答案:57.若⎠⎛a b f (x )d x =1,⎠⎛a b g (x )d x =-3,则⎠⎛a b[2f (x )+g (x )]d x =_______. 解析:⎠⎛a b [2f (x )+g (x )]d x =2⎠⎛a b f (x )d x +⎠⎛a bg (x )d x =2×1-3=-1. 答案:-18.计算:⎠⎛0416-x 2d x =____________.解析:⎠⎛0416-x 2d x 表示以原点为圆心,半径为4的14圆的面积,∴⎠⎛0416-x 2d x =14π·42=4π.答案:4π9.化简下列各式,并画出各题所表示的图形的面积. (1)⎠⎛-3-2x 2d x +⎠⎛1-2x 2d x ; (2)⎠⎛01(1-x )d x +⎠⎛12(x -1)d x .解:(1)原式=⎠⎛1-3x 2d x ,如图(1)所示. (2)⎠⎛01(1-x )d x +⎠⎛12(x -1)d x =⎠⎛02|1-x |d x ,如图(2)所示.10.已知函数f (x )=⎩⎪⎨⎪⎧x 5,x ∈[-1,1],x ,x ∈[1,π),sin x ,x ∈[π,3π],求f (x )在区间[-1,3π]上的定积分. 解:由定积分的几何意义知:∵f (x )=x 5是奇函数,故⎠⎛1-1x 5d x =0; ⎠⎛π3πsin x d x =0(如图(1)所示);⎠⎛1πx d x =12(1+π)(π-1)=12(π2-1)(如图(2)所示).∴⎠⎛-13πf (x )d x =⎠⎛-11x 5d x +⎠⎛1πx d x +⎠⎛-π3πsin x d x =⎠⎛1πx d x =12(π2-1).层级二 应试能力达标1.设f (x )是[a ,b ]上的连续函数,则⎠⎛a bf (x )d x -⎠⎛a bf (t )d t 的值( ) A .小于零 B .等于零 C .大于零D .不能确定解析:选B ⎠⎛a bf (x )d x 和⎠⎛a bf (t )d t 都表示曲线y =f (x )与x =a ,x =b 及y =0围成的曲边梯形面积,不因曲线中变量字母不同而改变曲线的形状和位置.所以其值为0.2.(陕西高考)如图所示,图中曲线方程为y =x 2-1,用定积分表示围成封闭图形(阴影部分)的面积是( )A.⎠⎛02(x 2-1)d x B.⎠⎛01(x 2-1)d x C.⎠⎛02|x 2-1|d xD.⎠⎛01(x 2-1)d x +⎠⎛12(x 2-1)d x解析:选C 由定积分的几何意义和性质可得:图中围成封闭图形(阴影部分)的面积S =⎠⎛01(1-x 2)d x +⎠⎛12(x 2-1)d x =⎠⎛02|x 2-1|d x ,故选C.3.设a =⎠⎛01x 13d x ,b =⎠⎛01x 2d x ,c =⎠⎛01x 3d x ,则a ,b ,c 的大小关系是( ) A .c >a >b B .a >b >c C .a =b >cD .a >c >b解析:选B 根据定积分的几何意义,易知⎠⎛01x 3d x <⎠⎛01x 2d x <⎠⎛01x 13d x ,即a >b >c ,故选B.4.已知t >0,若⎠⎛0t(2x -2)d x =8,则t =( ) A .1 B .-2 C .-2或4D .4解析:选D 作出函数f (x )=2x -2的图象与x 轴交于点A (1,0),与y 轴交于点B (0,-2),易求得S △OAB =1,∵⎠⎛0t (2x -2)d x =8,且⎠⎛01(2x -2)d x =-1,∴t >1,∴S △AEF =12|AE ||EF |=12×(t -1)(2t -2)=(t -1)2=9,∴t =4,故选D. 5.定积分⎠⎛01(2+1-x 2)d x =________.解析:原式=⎠⎛012d x +⎠⎛011-x 2d x .因为⎠⎛012d x =2,⎠⎛011-x 2d x =π4,所以⎠⎛01(2+1-x 2)d x =2+π4.答案:2+π46.已知f (x )是一次函数,其图象过点(3,4)且⎠⎛01f (x )d x =1,则f (x )的解析式为______.解析:设f (x )=ax +b (a ≠0),∵f (x )图象过(3,4)点,∴3a +b =4.又⎠⎛01f (x )d x =⎠⎛01(ax +b )d x =a ⎠⎛01x d x +⎠⎛01b d x =12a +b =1. 解方程组⎩⎪⎨⎪⎧ 3a +b =4,12a +b =1,得⎩⎨⎧ a =65,b =25.∴f (x )=65x +25. 答案:f (x )=65x +25 7.一辆汽车的速度—时间曲线如图所示,用定积分法求汽车在这一分钟内行驶的路程. 解:依题意,汽车的速度v 与时间t 的函数关系式为v (t )=⎩⎪⎨⎪⎧ 32t ,0≤t <20,50-t ,20≤t <40,10,40≤t ≤60.所以该汽车在这一分钟内所行驶的路程为 s =∫600v (t )d t =∫20032t d t +⎠⎛2040(50-t )d t +⎠⎛406010d t =300+400+200=900(米).8.求证:12<⎠⎛01x d x <1.证明:如图,⎠⎛01x d x 表示阴影部分面积,△OAB 的面积是12,正方形OABC 的面积是1,显然,△OAB 的面积<阴影部分面积<正方形OABC 的面积,即12<⎠⎛01x d x <1.。
(典型题)高中数学高中数学选修2-2第四章《定积分》测试题(包含答案解析)(1)
一、选择题1.如图所示的阴影部分是由x 轴,直线1x =及曲线1x y e =-围成,现向矩形区域OABC 内随机投掷一点,则该点落在阴影部分的概率是( )A .1eB .11e - C .11e-D .21e e -- 2.曲线3y x =在点()1,1处的切线与x 轴、直线2x =所围成的三角形的面积为( ) A .83B .73C .53D .433.曲线x y e =,x y e -=和直线1x =围成的图形面积是( ) A .1e e --B .1e e -+C .12e e ---D .12e e -+-4.已知1(1)1x f x x e ++=-+,则函数()f x 在点(0,(0))f 处的切线l 与坐标轴围成的三角形的面积为 A .14 B .12C .1D .2 5.图中阴影部分的面积用定积分表示为( )A .12d xx ⎰B .()1021d xx -⎰C .()1021d xx +⎰D .()1012d xx -⎰6.使函数()322912f x x x x a =-+-图象与x 轴恰有两个不同的交点,则实数a 可能的取值为( ) A .8B .6C .4D .27.由直线,1y x y x ==-+,及x轴所围成平面图形的面积为 ( ) A .()101y y dy ⎡⎤--⎣⎦⎰B .()1201x x dx ⎡⎤-+-⎣⎦⎰C .()121y y dy ⎡⎤--⎣⎦⎰D .()101x x dx ⎡⎤--+⎣⎦⎰8.设函数2e ,10()1,01xx f x x x ⎧-≤≤⎪=⎨-<≤⎪⎩,计算11()d f x x -⎰的值为( ) A .1e πe 4-+ B .e 1πe 4-+ C .e 12πe -+D .e 1πe 2-+ 9.曲线2y x 与直线y x =所围成的封闭图形的面积为( )A .16 B .13C .12D .5610.已知函数20()cos 0x f x x x ≥⎧=⎨<⎩,则12()f x dx π-⎰的值等于( )A .1B .2C .3D .411.20sin xdx π=⎰( )A .4B .2C .-2D .012.某几何体的三视图如图所示,则该几何体的体积为( )A .4B .2C .43D .23二、填空题13.直线x =0、直线y =e +1与曲线y =e x +1围成的图形的面积为_____. 14.曲线2yx x 和2y x x 所围成的封闭图形的面积是_______.15.如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为_________.16.已知函数()()()22ln 1,0ln 1,0x x x x f x x x x x ⎧++≥⎪=⎨--+<⎪⎩,若()()()21f a f a f -+≤,则实数a 的取值范围是___________.17.计算()32sin x x dx π+⎰=_________________.18.2222(sin 4)x x x dx -+-⎰=______.19.定积分2sin cos t tdt π=⎰________.20.如图,两曲线2y x =,2y x 围成图面积__________.三、解答题21.设点P 在曲线y =x 2上,从原点向A (2,4)移动,如果直线OP ,曲线y =x 2及直线x =2所围成的面积分别记为S 1、S 2.(1)当S 1=S 2时,求点P 的坐标;(2)当S 1+S 2有最小值时,求点P 的坐标和最小值. 22.已知函数1()ln ()f x x b x b R x=--∈,且曲线()y f x =在点(1,(1))f 处的切线与y 轴垂直. (Ⅰ)求b 的值;(Ⅱ)设2()g x x =,求证()()2ln 2g x f x >-. 23.(2015秋•钦州校级期末)求曲线y=sinx 与直线,,y=0所围成的平面图形的面积. 24.计算下列定积分.(1)1211e dx x +-⎰; (2)342x dx -+⎰.25.如图,函数()sin()f x x ωϕ=+(其中π0,2ωϕ>≤)的图象与坐标轴的三个交点为,,P Q R ,且π(,0)6P ,2π(,0)3Q ,M 为QR 的中点,且M 的纵坐标为34-.(1)求()f x 的解析式;(2)求线段QR 与函数()f x 图象围成的图中阴影部分的面积. 26.(1)已知0a >,求22aaa x dx --⎰;(2)求证:椭圆22221(0)x y a b a b+=>>的面积为ab π.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】试题分析:由几何概型可知,所求概率为.考点:几何概型、定积分.2.A解析:A 【解析】 试题分析:()'323x x=,所以切线方程为13(1),32y x y x -=-=-,所以切线与x 轴、直线2x=所围成的三角形的面积()2238 323S x dx=-=⎰.考点:1、切线方程;2、定积分.【易错点晴】本题易错点有三个,一个是切线方程,错解为看成过()1,1的切线方程;第二个错误是看成与y轴围成的面积,()()2232328103232333S x dx x dx=--+-=+=⎰⎰;第三个是没有将切线与x轴的交点求出来,导致没有办法解决题目.切线的常见问题有两种,一种是已知切点求切线方程;另一种是已知切线过一点求切线方程,两种题目都需要我们认真掌握. 3.D解析:D【解析】试题分析:根据题意画出区域,作图如下,由{xxy ey e-==解得交点为(0,1),∴所求面积为:()()111|2x x x xS e e dx e e ee--=-=+=+-⎰考点:定积分及其应用4.A解析:A【解析】试题分析:由1(1)1xf x x e++=-+知()2xf x x e=-+,则()1(0)2xf x e f''=+⇒=,而(0)1f=-,即切点坐标为()0,1-,切线斜率(0=2k f'=),则切线()():12021l y x y x--=-⇒=-,切线l与坐标轴的交点分别为1,02⎛⎫⎪⎝⎭和()0,1-,则切线l与坐标轴围成的三角形的面积为1111224S=⋅⋅-=考点:函数在某点处的切线5.B解析:B 【解析】根据定积分的几何意义,阴影部分的面积为12xdx ⎰-()11121x dx dx -=⎰⎰.故选B.6.C解析:C 【解析】f ′(x )=6x 2−18x +12,令f ′(x )=0得x 2−3x +2=0,解得x =1,或x =2. ∴当x <1或x >2时,f ′(x )>0,当1<x <2时,f ′(x )<0,∴f (x )在(−∞,1)上单调递增,在(1,2)上单调递减,在(2,+∞)上单调递增, ∴当x =1时,f (x )取得极大值f (1)=5−a , 当x =2时,f (x )取得极小值f (2)=4−a ,∵f (x )只有两个零点,∴5−a =0或4−a =0,即a =5或a =4. 本题选择C 选项.7.C解析:C 【解析】如图,由直线y=x ,y=−x+1,及x 轴围成平面图形是红色的部分,它和图中蓝色部分的面积相同,∵蓝色部分的面积()121S x x dx ⎡⎤=--⎣⎦⎰,即()121y y dy ⎡⎤--⎣⎦⎰.本题选择C 选项.8.B解析:B 【解析】因为函数e ,10()1x x f x x ⎧-≤≤⎪=<≤,所以10110()d e d x f x x x x --=+⎰⎰,其中01101e 1e d e e e 11e e xxx ---==-=-=-⎰,0x 表示圆221x y +=在第一象限的面积,即π4x =,所以11e 1π()d e 4f x x --=+⎰,故选B .9.A解析:A 【解析】曲线2y x =与直线y x =的交点坐标为()()0,0,1,1 ,由定积分的几何意义可得曲线2y x =与直线y x =所围成的封闭图形的面积为()122310111|236x x dx x x ⎛⎫-=-= ⎪⎝⎭⎰ ,故选A. 10.C解析:C 【分析】 由函数20()cos 0x f x x x ≥⎧=⎨<⎩,根据定积分的运算性质,得1122()cos 2f x dx xdx dx ππ--=+⎰⎰⎰,即可求解,得到答案.【详解】由题意,函数20()cos 0x f x x x ≥⎧=⎨<⎩,根据定积分的运算性质,可得110100222()cos 2sin |2|123f x dx xdx dx x x πππ---=+=+=+=⎰⎰⎰,故选C . 【点睛】本题主要考查了定积分的计算,其中解答中熟记定积分的运算性质,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.11.D解析:D 【分析】根据积分公式直接计算即可. 【详解】2200sin cos |cos 2cos0110xdx x πππ=-=-+=-+=⎰.故选:D. 【点睛】本题主要考查积分的计算,要求熟练掌握常见函数的积分公式,属于基础题.12.D解析:D 【分析】根据三视图可得到该几何体的直观图,进而可求出该几何体的体积. 【详解】根据三视图可知该几何体为四棱锥E ABCD -,四边形ABCD 是边长为1的正方形,BE ⊥平面ABCD ,2BE =,则四棱锥E ABCD -的体积为1233ABCD V S BE =⋅=. 故选D.【点睛】本题考查了三视图,考查了四锥体的体积的计算,考查了学生的空间想象能力,属于基础题.二、填空题13.1【分析】如图所示:计算交点为计算积分得到面积【详解】依题意令e+1=ex+1得x =1所以直线x =0y =e+1与曲线y =ex+1围成的区域的面积为S 故答案为:1【点睛】本题考查了利用积分求面积意在考解析:1 【分析】如图所示:计算交点为()1,1e +计算积分()()111xe e dx ⎡⎤+-+⎣⎦⎰得到面积.【详解】依题意,令e +1=e x +1,得x =1,所以直线x =0,y =e +1与曲线y =e x +1围成的区域的面积为S ()()()1111110xx xe e dx e e dx ex e ⎡⎤=⎰+-+=⎰-=-=⎣⎦故答案为:1【点睛】本题考查了利用积分求面积,意在考查学生的计算能力.14.【解析】【分析】本题首先可以绘出曲线和的图像并找出两曲线图像围成的区域然后通过微积分以及定积分的基本定理即可解出答案【详解】如图所示曲线和所围成的封闭图形的面积为:故答案为【点睛】本题考查几何中面积解析:13【解析】 【分析】本题首先可以绘出曲线2y x x 和2y x x 的图像,并找出两曲线图像围成的区域,然后通过微积分以及定积分的基本定理即可解出答案。
高中数学(人教A版选修2-2)练习:1.5.3 定积分的概念
课时提升作业(十)定积分的概念一、选择题(每小题3分,共12分)1.(2014·广州高二检测)关于定积分m=dx,下列说法正确的是( )A.被积函数为y=-xB.被积函数为y=-C.被积函数为y=-x+C,D.被积函数为y=-x3【解析】选B.由定积分的定义知,被积函数为y=-.2.定积分f(x)dx(f(x)>0)的积分区间是( )A.[-2,2]B.[0,2]C.[-2,0]D.不确定【解析】选A.由定积分的概念得定积分f(x)dx的积分区间是[-2,2].3.设f(x)=则f(x)dx的值是( )A.x2dxB.2x dxC.x2dx+2x dxD.2x dx+x2dx【解析】选D.因为f(x)在不同区间上的解析式不同,所以积分区间应该与对应的解析式一致.利用定积分的性质可得正确答案为D.4.(2014·南昌高二检测)下列等式不成立的是( )A.[mf(x)+ng(x)]dx=m f(x)dx+n g(x)dxB.[f(x)+1]dx=f(x)dx+b-aC.f(x)g(x)dx=f(x)dx·g(x)dxD.sinxdx=sinxdx+sinxdx【解析】选C.由定积分的性质知选项A,B,D正确.【误区警示】应用定积分的性质计算定积分时,要特别注意积分区间及被积函数的符号.二、填空题(每小题4分,共8分)5.(2014·长春高二检测)定积分(-3)dx=__________.【解析】3dx表示图中阴影部分的面积S=3×2=6,(-3)dx=-3dx=-6.答案:-66.计算:(1-cosx)dx=________.【解题指南】根据定积分的几何意义,运用余弦曲线的对称性计算,或通过补形转化为矩形的面积计算.【解析】根据定积分的几何意义,得1dx=2π,cosxdx=cosxdx+cosxdx+cosxdx+cosxdx=cosxdx-cosxdx-cosxdx+cosxdx=0,所以(1-cosx)dx=1dx-cosxdx=2π-0=2π.答案:2π【一题多解】在公共积分区间[0,2π]上,(1-cosx)dx表示直线y=1与余弦曲线y=cosx在[0,2π]上围成封闭图形的面积,如图,由于余弦曲线y=cosx在[0,π]上关于点中心对称,在上关于点中心对称,所以区域①与②的面积相等,所求平面图形的面积等于边长分别为1,2π的矩形的面积,其值为2π.所以(1-cosx)dx=2π.答案:2π三、解答题(每小题10分,共20分)7.(2014·济南高二检测)已知x3dx=,x3dx=,x2dx=,x2dx=,求:(1)3x3dx.(2)6x2dx.(3)(3x2-2x3)dx.【解析】(1)3x3dx=3x3dx=3=3=12.(2)6x2dx=6x2dx=6(x2dx+x2dx)=6=126.(3)(3x2-2x3)dx=3x2dx-2x3dx=3×-2×=-.8.求定积分(-x)dx的值.【解析】(-x)dx表示圆(x-1)2+y2=1(y≥0)的一部分与直线y=x所围成的图形(图中阴影部分)的面积,故原式=×π×12-×1×1=-.【拓展延伸】1.利用定积分的几何意义求定积分的方法步骤(1)确定被积函数和积分区间.(2)准确画出图形.(3)求出各部分的面积.(4)写出定积分,注意当f(x)≥0时,S=f(x)dx,而当f(x)≤0时,S=-f(x)dx.2.利用定积分的几何意义求定积分的注意点准确理解其几何意义,同时要合理利用函数的奇偶性、对称性来解决问题.另外,要注意结合图形的直观辅助作用.一、选择题(每小题4分,共12分)1.(2014·黄冈高二检测)设曲线y=x2与直线y=x所围成的封闭区域的面积为S,则下列等式成立的是( )A.S=(x2-x)dxB.S=(x-x2)dxC.S=(y2-y)dyD.S=(y-)dy【解析】选B.将曲线方程y=x2与直线方程y=x联立方程组,解得x=0或x=1,结合图形可得B正确.2.如图所示,图中曲线方程为y=x2-1,用定积分表示围成封闭图形(阴影部分)的面积是( )A.B.(x2-1)dxC.|x2-1|dxD.(x2-1)dx+(x2-1)dx【解题指南】由定积分的几何意义及性质即可得出.【解析】选 C.由定积分的几何意义和性质可得:图中围成封闭图形(阴影部分)的面积S=(1-x2)dx+(x2-1)dx=|x2-1|dx,故选C.【举一反三】将本题中的函数改为f(x)=x-1,则(x-1)dx=__________.【解析】直线y=x-1,与x=0,x=1.y=0围成的图形为三角形,面积为S=×1×1=.由定积分的几何意义得(x-1)dx=-.答案:-3.(2013·天津高二检测)曲线y=与直线y=x,x=2所围成的图形面积用定积分可表示为( )A.dxB.dxC.dxD.dx【解析】选A.如图所示,阴影部分的面积可表示为xdx-dx=dx.二、填空题(每小题4分,共8分)4.(2014·深圳高二检测)定积分2014dx=__________.【解析】根据定积分的几何意义2014dx表示直线x=2014,x=2015,y=0,y=2014围成的图形的面积,故2014dx=2014×(2015-2014)=2014.答案:20145.定积分(2+)dx=________.【解题指南】利用定积分的几何意义先分别求出2dx,dx.再由性质求和.【解析】原式=2dx+dx.因为2dx=2,dx=,所以(2+)dx=2+.答案:2+三、解答题(每小题10分,共20分)6.(2014·青岛高二检测)根据定积分的几何意义求下列定积分的值:(1)xdx.(2)cosxdx.(3)|x|dx.【解析】(1)如图(1),xdx=-A1+A1=0.(2)如图(2),cosxdx=A1-A2+A3=0.(3)如图(3),因为A1=A2,所以|x|dx=2A1=2×=1.(A1,A2,A3分别表示图中相应各处面积)【拓展延伸】利用几何意义求定积分的注意点(1)关键是准确确定被积函数的图象,以及积分区间.(2)正确利用相关的几何知识求面积.(3)不规则的图形常用分割法求面积,注意分割点的准确确定.7.一辆汽车的速度——时间曲线如图所示,求汽车在这一分钟内行驶的路程.【解析】依题意,汽车的速度v与时间t的函数关系式为v(t)=所以该汽车在这一分钟内所行驶的路程为s=v(t)dt=tdt+(50-t)dt+10dt=300+400+200=900(米).关闭Word文档返回原板块。
1 定积分的概念、微积分基本定理(重点练)高二数学(理)十分钟同步课堂专练(人教A版选修2-2)
1.5~1.6 定积分的概念、微积分基本定理重点练一、单选题1.)10x dx =⎰( )A .22π+B .12π+ C .122π-D .142π- 2.已知函数()e3211(1)2f x x dx x f x x'=⋅--⎰,则()()11f f '+=( ) A .-1B .1C .-2D .23.已知311tan 4e dx x πα⎛⎫+=- ⎪⎝⎭⎰,则2sin cos cos sin αααα+=-( ) A .4-B .4C .5D .5-4.已知()()ln xxf x e e -=+,201sin 2a xdx π=⎰, 1.112b ⎛⎫= ⎪⎝⎭,2log 3c =,则下列选项中正确的是( ) A .()()()f a f b f c >> B .()()()f a f c f b >> C .()()()f c f a f b >>D .()()()f c f b f a >>二、填空题5.011edx x-+=⎰⎰______________.6.如图,在边长为1的正方形中随机撒一粒黄豆,则它落在阴影部分的概率为_______.三、解答题7.计算下列各式的值.(1)()0sin cos d x x x π-⎰;(2)1x⎰.参考答案1.【答案】D【解析】由定积分的运算法则,可得)111()x dx dx x dx =+-⎰⎰⎰,又由1dx ⎰相当于是以(1,0)为圆心,以1为半径的圆的面积的14,如图所示,可得104dx π=⎰, 又因为021011()1()|22x d x x --=-=⎰,所以)1110001()42x dx dx x dx π=+-=-⎰⎰⎰. 故选D.2.【答案】A【解析】因为e111ln |1edx x x ==⎰,所以()()3212f x x x f x '=--,所以()()232'12f x x xf '=--,令1x =,得()()13212f f ''=--,解得1(1)3f '=,所以321()23f x x x x =--,14(1)1233f =--=-, ()()1411133f f ⎛⎫'+=+-=- ⎪⎝⎭,故选A . 3.【答案】D【解析】由()()()331311ln ln ln13e e dx x C e C C x ⎰=+=+-+=,则tan 1tan 341tan πααα+⎛⎫+==- ⎪-⎝⎭,则tan 2α=,由2sin cos 2tan 15cos sin 1tan αααααα++==---故选D. 4.【答案】C【解析】()()ln xxf x e e-=+,x ∈R ,则()()()ln xx f x ee f x --=+=,所以()f x 为R 上的偶函数,并且()x xx xe ef x e e---'=+,则[)0,x ∈+∞时,()0f x '≥,当且仅当0x =时,“=”成立, 所以()f x 在[)0,x ∈+∞上单调递增,在(],0x ∈-∞上单调递减,()220111sin cos 222a xdx x ππ==-=⎰1.111110222b ⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,221log log 332c ==-, 又()22111log 3log 3222f c f f f ⎛⎫⎛⎫⎛⎫=-=> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以()()()f c f a f b >>.故选C 5.【答案】21π+【解析】11edx x⎰=ln 1e x ln ln1101e =-=-=,因为2-⎰表示的是圆224x y +=在x 轴及其上方的面积,所以2-⎰21222ππ=⨯⨯=,所以11edx x⎰2-+⎰=12π+.故填21π+. 6.【答案】13【解析】由题意,结合定积分可得阴影部分的面积为31120021(1()|33S dx x x ==-=⎰, 由几何概型的计算公式可得,黄豆在阴影部分的概率为113113p ==⨯. 故填137.【答案】(1) 2;(2) π【解析】(1)由题得()0sin cos d (cos sin )|(cos sin )(cos 0sin 0)x x x x x ππππ-=--=-----⎰=10102-++=;(2)令22(1)4(13,0)y x y x y =∴-+=≤≤≥,因为1x ⎰等于1,3,x x x ==轴和曲线ADB 所围成的曲边梯形的面积,如图扇形ACB , 扇形ACB 的面积为212=4ππ⨯⨯,所以1x π=⎰.。
高中数学 专题1.5.3 定积分的概念测试(含解析)新人教A
定积分的概念(时间:25分,满分50分)班级 姓名 得分 1.(5分)定积分ʃba f (x )d x 的大小( )A .与f (x )和积分区间[a ,b ]有关,与ξi 的取法无关B .与f (x )有关,与区间[a ,b ]以及ξi 的取法无关C .与f (x )以及ξi 的取法有关,与区间[a ,b ]无关D .与f (x )、积分区间[a ,b ]和ξi 的取法都有关 【答案】 A【解析】积分=∫f(x)df(x)=[f(x)]^2/2=[f(b)]^2/2-[f(a)]^2/2=(a^2-b^2)/2 2.(5分)下列命题不正确的是( ) A .若f (x )是连续的奇函数,则ʃa-a f (x )d x =0 B .若f (x )是连续的偶函数,则ʃa-a f (x )d x =2ʃa0f (x )d x C .若f (x )在[a ,b ]上连续且恒正,则ʃba f (x )d x >0D .若f (x ) 在[a ,b ]上连续且ʃba f (x )d x >0,则f (x )在[a ,b ]上恒正 【答案】 D3.(5分)已知()3156f x dx =⎰,则()A. ()2128f x dx =⎰ B. ()3228f x dx =⎰C.()21256f x dx =⎰D.()()231256f x dx f x dx +=⎰⎰【答案】D【解析】由y =f (x ),x =1,x =3及y =0的图象围成的曲边梯形可分拆成两个:由y =f (x ),x =1,x =2及y =0的图象围成的曲边梯形和由y =f (x ),x =2,x =3及y =0的图象围成的曲边梯形.∴()()()32311256f x dx f x dx f x dx =+=⎰⎰⎰,故选D.4.(5分)下列命题不正确的是( ) A .若f (x )是连续的奇函数,则()0aaf x dx -=⎰B .若f (x )是连续的偶函数,则()()02aaaf x dx f x dx -=⎰⎰C .若f (x )在[a ,b ]上连续且恒正,则()0baf x dx >⎰D .若f (x )在[a ,b )上连续且()0baf x dx >⎰,则f (x )在[a ,b )上恒正【答案】D5.(5分)设a =ʃ10x 13d x ,b =ʃ10x 2d x ,c =ʃ10x 3d x ,则a ,b ,c 的大小关系是( )A .c >a >bB .a >b >cC .a =b >cD .a >c >b【答案】 B【解析】 根据定积分的几何意义,易知ʃ10x 3d x <ʃ10x 2d x <ʃ10x 13d x ,a >b >c ,故选B.6.(5分)lim n →∞ln n+1n2+2n2+n n2等于( )A .ʃ21ln 2x d x B .2ʃ21ln x d x C .2ʃ21ln(1+x )d x D .ʃ21ln 2(1+x )d x【答案】 B【解析】 lim n →∞ln n1+1n21+2n2…1+n n2=lim n →∞2n ln ⎣⎢⎡⎦⎥⎤1+1n1+2n…1+n n=2lim n →∞ ∑ni =1ln 1+i n n =2ʃ21ln x d x (这里f (x )=ln x ,区间[1,2]或者2lim n →∞ ∑ni =1ln 1+in n=2ʃ10ln(1+x )d x ,区间[0,1]).7.(5分)由y =sin x ,x =0,x =-π,y =0所围成图形的面积写成定积分的形式是S =________. 【答案】 -ʃ0-πsin x d x【解析】 由定积分的意义知,由y =sin x ,x =0,x =-π,y =0围成图形的面积为S =-ʃ0-πsin x d x . 8.(5分)已知12013x dx =⎰,22173x dx =⎰,则()2201x dx +⎰=________.【答案】143【解析】∵220x dx ⎰=120x dx ⎰+221x dx ⎰=178333+=,2012dx =⎰, ∴()2201x dx +⎰=220x dx ⎰+208141233dx =+=⎰.9.(5分)用定积分的意义求下列各式的值:(1)ʃ30(2x +1)d x ;(2)⎰1-x 2d x .(2)由y =1-x 2可知,x 2+y 2=1(y ≥0)图象如图(2),由定积分的几何意义知⎰1-x 2d x 等于圆心角为120°的弓形CED 的面积与矩形ABCD 的面积之和.S 弓形=12×23π×12-12×1×1×sin 23π=π3-34,S 矩形=|AB |·|BC |=2×32×12=32,∴⎰1-x 2d x =π3-34+32=π3+34.10.(5分)弹簧在拉伸的过程中,力与伸长量成正比,即力F (x )=kx (k 为常数,x 是伸长量),求弹簧从平衡位置拉长b 所做的功.【解析】将物体用常力F 沿力的方向移动距离x ,则所做的功为W =F·x .其长度为()1i b i b bx n n n-⋅∆=-=. 把在分段0,b n ⎡⎤⎢⎥⎣⎦,2,b b n n ⎡⎤⎢⎥⎣⎦,…,()1,n b b b -⎡⎤⎢⎥⎣⎦上所做的功分别记作ΔW 1,ΔW 2,…,ΔW n . (2)近似代替: 由条件知,()()()111,2,,i i b i b b W F x k i n n n n --⎛⎫∆≈⋅∆=⋅⋅=⎪⎭⋯ ⎝. (3)求和:()()()222221111101211.22n nn i i i i b n n b kb kb kb W W k n nnn n n ==--⎛⎫≈∆=⋅⋅=++++-=⋅=-⎡⎤ ⎪⎣⎦⎝⋯⎭∑∑(4)取极限:2211lim lim lim 122nn i n n n i kb kb W W W n →+∞→+∞→+∞=⎛⎫==∆=-= ⎪⎝⎭∑. 所以得到弹簧从平衡位置拉长b 所做的功为22kb .。
(必考题)高中数学高中数学选修2-2第四章《定积分》测试题(有答案解析)(1)
一、选择题1.在1100x y x y ==-=,,,围成的正方形中随机投掷10000个点,则落入曲线20x y -=,1y =和y 轴围成的区域的点的个数的估计值为( )A .5000B .6667C .7500D .78542.如图,由曲线21y x =-直线0,2x x ==和x 轴围成的封闭图形的面积是( )A .1B .23C .43D .23.若连续可导函数()F x 的导函数()()'F x f x =,则称()F x 为()f x 的一个原函数.现给出以下函数()F x 与其导函数()f x :①()2cos F x x x =+, ()2sin f x x x =-;②()3sin F x x x =+, ()23cos f x x x =+,则以下说法不正确...的是( ) A .奇函数的导函数一定是偶函数 B .偶函数的导函数一定是奇函数 C .奇函数的原函数一定是偶函数 D .偶函数的原函数一定是奇函数4.已知函数()2ln 2f x mx x x =+-在定义域内存在单调递减区间,则实数m 的取值范围是( ) A .12m ≥B .12m < C .1m ≥ D .1m < 5.曲线x y e =,x y e -=和直线1x =围成的图形面积是( ) A .1e e --B .1e e -+C .12e e ---D .12e e -+-6.已知二次函数()y f x =的图像如图所示 ,则它与x 轴所围图形的面积为( )A .25π B .43C .32D .2π 7.定积分()1e2xx dx -⎰的值为( )A .e 2-B .e 1-C .eD .e 1+8.函数()325f x x x x =+-的单调递增区间为( )A .5,3⎛⎫-∞- ⎪⎝⎭和1,B .5,3⎛⎫-∞-⋃ ⎪⎝⎭1,C .(),1-∞-和5,3⎛⎫+∞ ⎪⎝⎭D .(),1-∞-⋃5,3⎛⎫+∞ ⎪⎝⎭9.已知幂函数a y x =图像的一部分如下图,且过点(2,4)P ,则图中阴影部分的面积等于( )A .163B .83C .43D .2310.曲线()sin 0πy x x =≤≤与直线12y =围成的封闭图形的面积是 A .3B .23-C .π23-D .π33-11.1204x dx -=⎰( )A .4B .1C .4πD .332π+12.某几何体的三视图如图所示,则该几何体的体积为( )A .4B .2C .43D .23二、填空题13.232319x x dx -⎫-=⎪⎪⎭⎰____________________.14.已知曲线与直线所围图形的面积______.15.424(16)x x dx --+=⎰__________.16.已知曲线y x =,2y x =-,与x 轴所围成的图形的面积为S ,则S =__________.17.定积分()102xx e dx +=⎰__________.18.已知()12111,a x dx -=+-⎰则932a x x π⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭展开式中的各项系数和为________19.若,则的值是__________.20.定积分120124x x dx π⎫--⎪⎭⎰的值______. 三、解答题21.已知函数2()ln f x x a x =-(a R ∈),()F x bx =(b R ∈). (1)讨论()f x 的单调性;(2)设2a =,()()()g x f x F x =+,若12,x x (120x x <<)是()g x 的两个零点,且1202x x x +=, 试问曲线()y g x =在点0x 处的切线能否与x 轴平行?请说明理由. 22.已知函数()ln 3mf x x x x=++. (1)求函数()f x 的单调区间;(2)若对任意的[]0,2m ∈,不等式()()1f x k x ≤+,对[]1,x e ∈恒成立,求实数k 的取值范围.23.求由抛物线28(0)y x y =>与直线60x y +-=及0y =所围成图形的面积. 24.设()y f x =是二次函数,方程()0f x =有两个相等的实根,且()22f x x '=+. (1)求()y f x =的表达式;(2)若直线(01)x t t =-<<把()y f x =的图象与两坐标轴所围成图形的面积二等分,求t 的值.25.已知函数1211()(1)x f x adt x t+=++⎰()1x >-. (1)若()f x 在1x =处有极值,问是否存在实数m ,使得不等式2214()m tm e f x ++-≤对任意[]1,x e e ∈-及[]1,1t ∈-恒成立?若存在,求出m 的取值范围;若不存在,请说明理由.()2.71828e =;(2)若1a =,设2()()(1)F x f x x x =-+-. ①求证:当0x >时,()0F x <; ②设*111()12(1)n a n N n n n n =++⋅⋅⋅+∈++++,求证:ln 2n a > 26.计算由直线4,y x =-曲线2y x =以及x 轴所围图形的面积S 。
人教新课标A版高中选修2-2数学1.5定积分的概念同步练习D卷
人教新课标A版选修2-2数学1.5定积分的概念同步练习D卷姓名:________ 班级:________ 成绩:________一、选择题 (共15题;共30分)1. (2分) (2016高二下·三原期中) 定积分∫ sinxdx等于()A . 1B . 2C . ﹣1D . 02. (2分) (2017高二下·安阳期中) 曲线y=x2和曲线y2=x围成的图形面积是()A .B .C . 1D .3. (2分)设集合P={x|∫0x(3t2﹣10t+6)dt=0,x>0},则集合P的非空子集个数是()A . 2B . 3C . 7D . 84. (2分)如图,矩形OABC的四个顶点坐标依次为O(0,0),A(, 0),B(, 1),C(0,1),记线段OC,CB以及y=sinx(0)的图象围成的区域(图中阴影部分)为Ω,若向矩形OABC内任意投一点M,则点M落在区域Ω内的概率为()A .B .C .D .5. (2分)设函数在区间上连续,用分点,把区间等分成个小区间,在每个小区间上任取一点,作和式(其中为小区间的长度),那么的大小()A . 与和区间有关,与分点的个数和的取法无关B . 与和区间以及分点的个数有关,与的取法无关C . 与和区间以及分点的个数,的取法都有关D . 与和区间以及的取法有关,与分点的个数无关6. (2分) (2017高二下·荔湾期末) 直线x= ,x= ,y=0及曲线y=cosx所围成图形的面积是()A . 2B . 3C . πD . 2π7. (2分)若,则a的值是()A . 2B . 3C . 4D . 68. (2分)已知,,记则的大小关系是()A .B .C .D .9. (2分)一物体在力F(x)=4x-1(单位:N)的作用下,沿着与力F相同的方向,从x=1运动到x=3处(单位:m),则力F(x)所做的功为()A . 8(J)B . 10(J)C . 12(J)D . 14(J)10. (2分)边界在直线及曲线上的封闭的图形的面积为()A . 1C . 2D .11. (2分) (2016高二下·新洲期末) 由直线x=﹣,y=0与曲线y=sinx所围成的封闭图形的面积为()A .B .C .D . 112. (2分) (2016高二下·郑州期末) 由曲线y2=2x和直线y=x﹣4所围成的图形的面积()A . 21B . 16C . 20D . 1813. (2分) (2017高二下·沈阳期末) 如图,由曲线直线和轴围成的封闭图形的面积是()A .C .D .14. (2分)已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为(如右图所示).那么对于图中给定的,下列判断中一定正确的是()A . 在时刻,甲车在乙车前面B . t1时刻后,甲车在乙车后面C . 在时刻,两车的位置相同D . 时刻后,乙车在甲车前面15. (2分) (2018高二下·虎林期末) 由曲线与所围成的平面图形的面积是()A . 1B . 2C . 1.5D . 0.5二、填空题 (共5题;共5分)16. (1分) (2015高三上·秦安期末) (2﹣|1﹣x|)dx=________.17. (1分) (2018高二下·惠东月考) 定积分的值为________.18. (1分) (2015高二上·集宁期末) 曲线y=cosx(0≤x≤2π)与直线y=1所围成的图形面积是________.19. (1分)=________ .20. (1分)两曲线x﹣y=0,y=x2﹣2x所围成的图形的面积是________三、解答题 (共5题;共50分)21. (10分)平地上有一条水渠,其横断面是一段抛物线弧,如图,已知渠宽为 m,渠深为6m.(1)若渠中水深为m,求水面的宽,并计算水渠横断面上的过水面积;(2)为了增大水渠的过水量,现要把这条水渠改挖(不能填土)成横断面为等腰梯形的水渠,使水渠的底面与地面平行(不改变渠深),要使所挖土的土方量最少,请你设计水渠改挖后的底宽,并求出这个底宽.22. (5分)已知复数,且,求倾斜角为θ并经过点(﹣6,0)的直线l与曲线y=x2所围成的图形的面积.23. (10分) (2019高二下·海东月考) 如图:已知通过点(1,2),与有一个交点横坐标为,且 .(1)求与所围的面积与的函数关系;(2)当为何值时,取得最小值.24. (10分)已知==1,=,求下列定积分:(1);(2) .25. (15分) (2018高二下·通许期末) 已知函数,函数,(1)当时,求函数的表达式;(2)若时,函数在上的最小值是2,求a的值;(3)在(2)的条件下,求直线与函数的图象所围成图形的面积。
高中数学 综合测试题3 新人教A版选修2-2
高中新课标数学选修(2-2)综合测试题一、选择题1.函数2y x =在区间[12],上的平均变化率为( ) A.2 B.3 C.4 D.5答案:B2.已知直线y kx =是ln y x =的切线,则k 的值为( )A.1e B.1e- C.2e D.2e -答案:A3.如果1N 的力能拉长弹簧1cm ,为了将弹簧拉长6cm (在弹性限度内)所耗费的功为( ) A.0.18J B.0.26J C.0.12J D.0.28J答案:A4.方程2(4)40()x i x ai a ++++=∈R 有实根b ,且z a bi =+,则z =( )A.22i - B.22i + C.22i -+ D.22i --答案:A5.ABC △内有任意三点不共线的2002个点,加上A B C ,,三个顶点,共2005个点,把这2005个点连线形成不重叠的小三角形,则一共可以形成小三角形的个数为( ) A.4005 B.4002 C.4007 D.4000答案:A6.数列1,2,2,3,3,3,4,4,4,4,的第50项( ) A.8 B.9 C.10 D.11答案:C7.在证明()21f x x =+为增函数的过程中,有下列四个命题:①增函数的定义是大前提;②增函数的定义是小前提;③函数()21f x x =+满足增函数的定义是大前提;④函数()21f x x =+满足增函数的定义是大前提.其中正确的命题是( ) A.①② B.②④ C.①③ D.②③答案:C8.若a b ∈R ,,则复数22(45)(26)a a b b i -++-+-表示的点在( ) A.第一象限B.第二象限C.第三象限D.第四象限答案:D9.一圆的面积以210πcm /s 速度增加,那么当圆半径20cm r =时,其半径r 的增加速率u 为( )A.12cm/s B.13 cm/s C.14 cm/s D.15 cm/s答案:C10.用数学归纳法证明不等式“11113(2)12224n n n n +++>>++”时的过程中,由n k =到1n k =+时,不等式的左边( )A.增加了一项12(1)k +B.增加了两项11212(1)k k +++ C.增加了两项11212(1)k k +++,又减少了一项11k + D.增加了一项12(1)k +,又减少了一项11k +答案:C11.在下列各函数中,值域不是[22]-,的函数共有( ) (1)(sin )(cos )y x x ''=+ (2)(sin )cos y x x '=+ (3)sin (cos )y x x '=+(4)(sin )(cos )y x x ''=· A.1个B.2个C.3个D.4个答案:C12.如图是函数32()f x x bx cx d =+++的大致图象,则2212x x +等于( ) A.23B.43 C.83D.123答案:C二、填空题13.函数3()31f x x x =-+在闭区间[30]-,上的最大值与最小值分别为 .答案:3,17-14.若113z i =-,268z i =-,且12111z z z +=,则z 的值为 .答案:42255i -+15.用火柴棒按下图的方法搭三角形:按图示的规律搭下去,则所用火柴棒数n a 与所搭三角形的个数n 之间的关系式可以是 .答案:21n a n =+16.物体A 的运动速度v 与时间t 之间的关系为21v t =-(v 的单位是m/s ,t 的单位是s ),物体B 的运动速度v 与时间t 之间的关系为18v t =+,两个物体在相距为405m 的同一直线上同时相向运动.则它们相遇时,A 物体的运动路程为 .答案:72m三、解答题17.已知复数1z ,2z 满足2212121052z z z z +=,且122z z +为纯虚数,求证:123z z -为实数.证明:由2212121052z z z z +=,得22112210250z z z z -+=, 即221212(3)(2)0z z z z -++=,那么222121212(3)(2)[(2)]z z z z z z i -=-+=+, 由于,122z z +为纯虚数,可设122(0)z z bi b b ==∈≠R ,且, 所以2212(3)z z b -=,从而123z z b -=±, 故123z z -为实数.18.用总长14.8的钢条做一个长方体容器的框架,如果所做容器的底面的一边长比另一边长多0.5m ,那么高是多少时容器的容积最大?并求出它的最大容积.解:设该容器底面矩形的短边长为x cm ,则另一边长为(0.5)x +m ,此容器的高为14.8(0.5) 3.224y x x x =--+=-, 于是,此容器的容积为:32()(0.5)(3.22)2 2.2 1.6V x x x x x x x =+-=-++,其中0 1.6x <<,即2()6 4.4 1.60V x x x '=-++=,得11x =,2415x =-(舍去), 因为,()V x '在(01.6),内只有一个极值点,且(01)x ∈,时,()0V x '>,函数()V x 递增; (11.6)x ∈,时,()0V x '<,函数()V x 递减;所以,当1x =时,函数()V x 有最大值3(1)1(10.5)(3.221) 1.8m V =⨯+⨯-⨯=, 即当高为1.2m 时,长方体容器的空积最大,最大容积为31.8m . 19.如图所示,已知直线a 与b 不共面,直线c a M =,直线b c N =,又a 平面A α=,b 平面B α=,c 平面C α=,求证:A B C ,,三点不共线.证明:用反证法,假设A B C ,,三点共线于直线l , A B C α∈,,∵,l α⊂∴.c l C =∵,c ∴与l 可确定一个平面β. c a M =∵,M β∈∴.又A l ∈,a β⊂∴,同理b β⊂,∴直线a ,b 共面,与a ,b 不共面矛盾. 所以A B C ,,三点不共线.20.已知函数32()31f x ax x x =+-+在R 上是减函数,求a 的取值范围.解:求函数()f x 的导数:2()361f x ax x '=+-. (1)当()0()f x x '<∈R 时,()f x 是减函数.23610()0ax x x a +-<∈⇔<R 且36120a ∆=+<3a ⇔<-.所以,当3a <-时,由()0f x '<,知()()f x x ∈R 是减函数; (2)当3a =-时,33218()331339f x x x x x ⎛⎫=-+-+=--+ ⎪⎝⎭,由函数3y x =在R 上的单调性,可知当3a =-时,()()f x x ∈R 是减函数; (3)当3a >-时,在R 上存在使()0f x '>的区间,所以,当3a >-时,函数()()f x x ∈R 不是减函数. 综上,所求a 的取值范围是(3)--,∞.21.若0(123)i x i n >=,,,,,观察下列不等式:121211()4x x x x ⎛⎫++ ⎪⎝⎭≥,123123111()9x x x x x x ⎛⎫++++ ⎪⎝⎭≥,,请你猜测1212111()n nx x x x x x ⎛⎫++++++⎪⎝⎭满足的不等式,并用数学归纳法加以证明.解:满足的不等式为21212111()(2)n n x x x n n x x x ⎛⎫++++++⎪⎝⎭≥≥,证明如下: 1.当2n =时,结论成立;2.假设当n k =时,结论成立,即21212111()k kx x x k x x x ⎛⎫++++++⎪⎝⎭12121121121111111()()1k k k k k x x x x x x x x x x x x x ++⎛⎫⎛⎫=+++++++++++++++ ⎪ ⎪⎝⎭⎝⎭· 212111)1k kk x x x x ⎛⎫+++++++ ⎪⎝⎭≥ 2221(1)k k k ++=+≥.显然,当1n k =+时,结论成立.22.设曲线2(0)y ax bx c a =++<过点(11)-,,(11),. (1)用a 表示曲线与x 轴所围成的图形面积()S a ; (2)求()Sa 的最小值.解:(1)曲线过点(11)-,及(11),,故有1a b c a b c =-+=++,于是0b =且1c a =-,令0y =,即2(1)0ax a +-=,得x = 记α=,β,由曲线关于y 轴对称, 有2300()2[(1)]2(1)3a S a ax a dx x a x ββ⎡⎤=+-=+-⎢⎥⎣⎦⎰|2(13a a ⎡=-=⎢⎣· (2)()S a 3(1)()(0)a f a a a-=<,则223221(1)()[3(1)(1)](21)a f a a a a a a a -'=---=+.令()0f a '=,得12a =-或1a =(舍去).又12a ⎛⎫∈-- ⎪⎝⎭,∞时,()0f x'<;102a ⎛⎫∈- ⎪⎝⎭,时,()0f x '>.所以,当12a =-时,()f a 有最小值274,此时()S a高中新课标数学选修(2-2)综合测试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数cos sin y x x x =-的导数为 ( ) (A )cos x x (B )sin x x - (C )sin x x (D )cos x x -2.下列说法正确的是 ( ) (A )当0()0f x '=时,0()f x 为()f x 的极大值(B )当0()0f x '=时,0()f x 为()f x 的极小值 (C )当0()0f x '=时,0()f x 为()f x 的极值 (D )当0()f x 为()f x 的极值时, 0()0f x '=3.如果z 是34i +的共轭复数,则z 对应的向量OA 的模是 ( ) (A )1 (B 7 (C 13(D )54.若函数3()y a x x =-的递减区间为33(,33-,则a 的取值范围是 ( ) (A )(0,)+∞ (B )(1,0)- (C )(1,)+∞ (D )(0,1)5.下列四条曲线(直线)所围成的区域的面积是 ( ) (1)sin y x =;(2) s y co x =; (3)4x π=-;(4) 4x π=2 (B)22226.由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,叫 ( )(A )合情推理 (B )演绎推理 (C )类比推理 (D )归纳推理7.复数a bi -与c di +的积是实数的充要条件是 ( ) (A )0ad bc += (B )0ac bd += (C )0ad bc -= (D )0ac bd -= 8.已知函数1sin 2sin 2y x x =+,那么y '是 ( ) (A )仅有最小值的奇函数 (B )既有最大值又有最小值的偶函数 (C )仅有最大值的偶函数 (D )非奇非偶函数9.用边长为48厘米的正方形铁皮做一个无盖的铁盒时,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊成铁盒。
人教版高中数学选修2-2《1.5.3:定积分的概念》
y
所以
1
0
1 x dx =
2
4
1 x
小结
1、定积分的概念
b
a
ba f ( x)dx = lim f (i ) n n i =1
n
2、几何意义
当f x 0时, f ( x)dx = S
a
b
当f x 0时, f ( x)dx = S
O a
b a
b x
b a
S = S1 S2 = f ( x)dx g ( x)dx
ba 当f x 0时,定积分 f x dx = lim f i a n n i =1 1值是正还是负? y
b n
探究1:
2此时它的值还是阴影
y=f (x)
部分面积吗?如果不是 , 两者之间又是什么关系 呢?
解:
2
2
sin xdx
y
f(x)=sinx
2
1
S1 -1
S2
2
x
2
2
f ( x)dx =
0
2
f ( x)dx 2 f ( x)dx
0
= S 2 S1 = 0
结论:
(1)若奇函数 y = f x 的图像在 a, a
上连续,则
f x dx = 0;
y y=f ( x)
O
a y=g(x)
b
x
S = S1 S2 = f ( x)dx g ( x)dx
a a
b
b
结论:
(必考题)高中数学高中数学选修2-2第四章《定积分》测试卷(含答案解析)(1)
一、选择题1.由曲线22y x =和直线4y x =-所围成的图形的面积( )A .18B .19C .20D .212.已知函数sin (11)()1(12)x x f x x x-≤≤⎧⎪=⎨<≤⎪⎩,则21()f x dx -=⎰( )A .ln 2B .ln 2-C .12-D .3cos 1-3.在1100x y x y ==-=,,,围成的正方形中随机投掷10000个点,则落入曲线20x y -=,1y =和y 轴围成的区域的点的个数的估计值为( )A .5000B .6667C .7500D .78544.直线4y x =与曲线3y x =在第一象限内围成的封闭图形的面积为( ) A .22B .42C .2D .45.如图所示的阴影部分是由x 轴,直线1x =及曲线1x y e =-围成,现向矩形区域OABC 内随机投掷一点,则该点落在阴影部分的概率是( )A .1eB .11e - C .11e-D .21e e -- 6.已知是i 虚数单位,复数()1a i z a R i -=∈-,若01||(sin )z x dx ππ=-⎰,则a =( ) A .±1 B .1 C .1- D .12±7.三棱锥D ABC -及其正视图和侧视图如图所示,且顶点,,,A B C D 均在球O 的表面上,则球O 的表面积为( )A .32πB .36πC .128πD .144π8.已知幂函数a y x =图像的一部分如下图,且过点(2,4)P ,则图中阴影部分的面积等于( )A .163B .83C .43D .239.设曲线e xy x =-及直线0y =所围成的封闭图形为区域D ,不等式组1102x y -≤≤⎧⎨≤≤⎩所确定的区域为E ,在区域E 内随机取一点,则该点落在区域D 内的概率为A .2e 2e 14e--B .2e 2e 4e-C .2e e 14e--D .2e 14e-10.一物体在力F (x )=3x 2-2x +5(力单位:N ,位移单位:m)作用力下,沿与力F (x )相同的方向由x =5 m 直线运动到x =10 m 处做的功是( ). A .925 J B .850 JC .825 JD .800 J11.已知11em dx x=⎰,函数()f x 的导数()()()f x a x m x a '=++,若()f x 在x a =-处取得极大值,则a 的取值范围是( ) A .1a < B .10a -<< C .1a >或0a <D .01a <<或0a <12.二维空间中圆的一维测度(周长)2l r π=,二维测度(面积)2S r π=,观察发现()S r l '=:三维空间中球的二维测度(表面积)24S r π=,三维测度(体积)343V r π=,观察发现()V r S '=.则由四维空间中“超球”的三维测度38V r π=,猜想其四维测度W =( ). A .224r πB .283r πC .514r πD .42r π二、填空题13.定积分211dx x⎰的值等于________. 14.由曲线2y x=,直线y =2x ,x =2所围成的封闭的图形面积为______.15.()1||214x ex dx -+-=⎰__________________16.在下列命题中 ①函数1()f x x=在定义域内为单调递减函数; ②已知定义在R 上周期为4的函数()f x 满足(2)(2)f x f x -=+,则()f x 一定为偶函数;③若()f x 为奇函数,则()2()(0)aaaf x dx f x dx a -=>⎰⎰;④已知函数32()(0)f x ax bx cx d a =+++≠,则0a b c ++=是()f x 有极值的充分不必要条件;⑤已知函数()sin f x x x =-,若0a b +>,则()()0f a f b +>. 其中正确命题的序号为___________________(写出所有正确命题的序号).17.设函数()f x 的图象与直线,x a x b ==及x 轴所围成图形的面积称为函数()f x 在[],a b 上的面积,已知函数()sin f x nx =在0,2n π⎡⎤⎢⎥⎣⎦上的面积为1n()*n N ∈,则函数()()sin 32f x x π=-+在4,33ππ⎡⎤⎢⎥⎣⎦上的面积为__________.18.计算()2224x x dx -+-⎰得__________.19.如图,两曲线2y x =,2y x 围成图面积__________.20.定积分11d ex x ⎰的值为____________________. 三、解答题21.已知函数2()ln f x x a x =-(a R ∈),()F x bx =(b R ∈). (1)讨论()f x 的单调性;(2)设2a =,()()()g x f x F x =+,若12,x x (120x x <<)是()g x 的两个零点,且1202x x x +=, 试问曲线()y g x =在点0x 处的切线能否与x 轴平行?请说明理由.22.函数()ln ,kf x x k R x=+∈.若曲线()y f x =在点()(),e f e 处的切线与直线20x -=垂直,求()f x 的单调递减区间和极小值(其中e 为自然对数的底数).23.为了降低能源消耗,某冷库内部要建造可供使用20年的隔热层,每厘米厚的隔热层建造成本为4万元,又知该冷库每年的能源消耗费用c (单位:万元)与隔热层厚度x (单位:cm )满足关系()(010)25kc x x x =≤≤+,若不建隔热层,每年能源消耗为8万元.设()f x 为隔热层建造费用与20年的能源消耗费用之和. (1)求k 的值及()f x 的表达式;(2)隔热层修建多厚时,总费用()f x 达到最小?并求最小值.24.求由抛物线28(0)y x y =>与直线60x y +-=及0y =所围成图形的面积. 25.利用定积分的定义,计算2211d x x ⎰的值. 26.已知函数()ln mf x x x=+()m R ∈. (1)若函数()f x 的图象与直线240x y +-=相切,求m 的值; (2)求()f x 在区间[]1,2上的最小值;(3)若函数()f x 有两个不同的零点1x , 2x ,试求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】画出两曲线的图像,求得交点坐标,由定积分求得图形的面积即可. 【详解】根据题意,画出量曲线的图像,设其交点为,A B ,如下所示:联立22y x =和4y x =-, 解得()()2,2,8,4A B -, 根据抛物线的对称性, 即可得两曲线围成的面积28222d (24)d S x x x x x =++⎰⎰23022021622d 2233x x x ⎛⎫⎰== ⎪⎝⎭ 82(24)d x x x +⎰83222212432x x x ⎫=-+⎪⎭322212884832⎫=⨯-⨯+⨯⎪⎭322213822242323⎫-⨯-⨯+⨯=⎪⎭故所求面积为28222d (24)d x x x x x ++⎰⎰163833=+ 18=.故选:A. 【点睛】本题考查由定积分求解曲边梯形的面积,需要注意的是,本题中需要对曲边梯形的面积进行拆分求解,这是本题的难点.2.A解析:A将所求积分分成两段来进行求解,根据积分运算法则可求得结果. 【详解】()21212111111sin cos ln cos1cos1ln 2ln1ln 2f x dx xdx dx x x x ---=+=-+=-++-=⎰⎰⎰ 故选:A 【点睛】本题考查积分的计算问题,关键是能够按照分段函数的形式将所求积分进行分段求解.3.B解析:B 【分析】应用微积分基本定理求出对应的原函数,再由定积分定义求出空白区域面积,由正方形面积减去空白区域面积即可求出阴影部分面积,结合几何概型可推导出对应区域内的点的个数 【详解】由微积分基本定理可求出2yx 的原函数为()313F x x =,空白区域面积为31101133S x ==,故阴影部分面积212133S =-=,由几何概型可知,落入阴影部分的点数估计值为21000066673⨯≈ 故选:B 【点睛】本题考查定积分与微积分的基本定理,几何概型,属于基础题4.D解析:D 【解析】直线4y x =与曲线3y x =的交点坐标为(0,0)和(2,8), 故直线4y x =与曲线3y x =在第一象限内围成的封闭图形的面积23242001(4)2|8444S x x dx x x ⎛⎫=⎰-=-=-= ⎪⎝⎭.故选D .5.D【解析】试题分析:由几何概型可知,所求概率为.考点:几何概型、定积分.6.A解析:A 【解析】 因为11122a i a a z i i -+-==+-,所以222111()()22222a a z a +-=+=+,由定积分公式0011(sin )[cos ]|1x dx x x ππππ-=--=⎰,故22122112a a +=⇒=,即1a =±,应选答案A 。
人教A版选修2-2 1.5.3 定积分的概念 学案
1.5.3 定积分的概念预习课本P45~47,思考并完成下列问题(1)定积分的概念是什么?几何意义又是什么?(2)定积分的计算有哪些性质?[新知初探]1.定积分的概念与几何意义(1)定积分的概念:一般地,设函数f(x)在区间[a,b]上连续,用分点a=x0<x1<…<x i-1<x i<…<x n=b将区间[a,b]等分成n个小区间,在每个小区间[x i-1,x i]上任取一点ξi (i =1,2,…,n ),作和式∑i =1nf (ξi )Δx =i =1nb -anf (ξi ), 当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作⎠⎛a b f (x )d x ,即⎠⎛abf (x )d x =lim n →∞i =1n b -a n f (ξi ), 这里,a 与b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式.(2)定积分的几何意义:如果在区间[a ,b ]上函数连续且恒有f (x )≥0,那么定积分⎠⎛abf (x )d x 表示由直线x =a ,x =b (a <b ),y =0和曲线y =f (x )所围成的曲边梯形的面积(如图中的阴影部分的面积).[点睛] 利用定积分的几何意义求定积分的关注点.(1)当f (x )≥0时,⎠⎛abf (x )d x 等于由直线x =a ,x =b ,y =0与曲线y =f (x )围成曲边梯形的面积,这是定积分的几何意义.(2)计算⎠⎛abf (x )d x 时,先明确积分区间[a ,b ],从而确定曲边梯形的三条直边x =a ,x =b ,y =0,再明确被积函数f (x ),从而确定曲边梯形的曲边,这样就可以通过求曲边梯形的面积S 而得到定积分的值:当f (x )≥0时,⎠⎛abf (x )d x =S ;当f (x )<0时,⎠⎛a bf (x )d x =-S .2.定积分的性质(1)⎠⎛a b kf (x )d x =k ⎠⎛abf (x )d x (k 为常数).(2)⎠⎛a b [f 1(x )±f 2(x )]d x =⎠⎛a b f 1(x )d x ±⎠⎛a bf 2(x )d x .(3)⎠⎛a b f (x )d x =⎠⎛a c f (x )d x +⎠⎛cbf (x )d x (其中a <c <b ).[点睛]性质(1)的等式左边是一个定积分,等式右边是常数与一个定积分的乘积. 性质(2)对于有限个函数(两个以上)也成立.性质(3)对于把区间[a ,b ]分成有限个(两个以上)区间也成立.[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)⎠⎛02x2d x =1.( )(2)⎠⎛a bf (x )d x 的值一定是一个正数.( )(3)⎠⎛a b (x 2+2x )d x =⎠⎛a b x 2d x +⎠⎛ab 2xd x .( )答案:(1)√ (2)× (3)√2.已知⎠⎛02f (x )d x =8,则( )A.⎠⎛01f (x )d x =4B.⎠⎛02f (x )d x =4C.⎠⎛01f (x )d x +⎠⎛12f (x )d x =8D .以上答案都不对 答案:C3.直线x =1,x =2,y =0与曲线y =1x围成曲边梯形的面积用定积分表示为( )A.⎠⎛012d xB.⎠⎛120d xC.⎠⎛021xd xD.⎠⎛121xd x答案:D4.已知⎠⎛0t x d x =2,则⎠⎛0-t x d x =________. 答案:-2[典例] 利用定义求定积分⎠⎛03x 2d x .[解] 令f (x )=x 2,(1)分割:在区间[0,3]上等间隔地插入n -1个点,把区间[0,3]分成n 等份,其分点为x i =3i n (i =1,2,…,n -1),这样每个小区间[x i -1,x i ]的长度Δx =3n(i =1,2,…,n ).(2)近似代替、求和:令ξi =x i =3i n(i =1,2,…,n ),于是有和式:∑i =1nf (ξi )Δx =i =1n ⎝ ⎛⎭⎪⎫3i n 2·3n =27n 3∑i =1ni 2=27n 3·16n (n +1)(2n +1)=92⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫2+1n .(3)取极限:根据定积分的定义,有⎠⎛03x 2d x =lim n →∞∑i =1nf (ξi )Δx=lim n →∞⎣⎢⎡⎦⎥⎤92⎝⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫2+1n =9.用定义求定积分的一般步骤(1)分割:n 等分区间[a ,b ];(2)近似代替:取点ξi ∈[x i -1,x i ],可取ξi =x i -1或ξi =x i ;(3)求和:∑i =1nf (ξi )·b -an; (4)取极限:⎠⎛abf (x )=lim n →∞∑i =1nf (ξi )·b -a n .[活学活用]利用定积分的定义,计算⎠⎛12(3x +2)d x 的值.解:令f (x )=3x +2.(1)分割:在区间[1,2]上等间隔地插入(n -1)个分点,将区间[1,2]等分成n 个小区间⎣⎢⎡⎦⎥⎤n +i -1n,n +i n (i =1,2,…,n ),每个小区间的长度为Δx =n +i n -n +i -1n =1n .(2)近似代替、作和: 取ξi =n +i -1n(i =1,2,…,n ),则 S n =∑i =1nf ⎝ ⎛⎭⎪⎫n +i -1n Δx =i =1n ⎣⎢⎡⎦⎥⎤3n +i -1n +21n=i =1n ⎣⎢⎡⎦⎥⎤3i -1n2+5n =3n 2[0+1+2+…+(n -1)]+5=32×n 2-n n 2+5=132-32n. (3)取极限:⎠⎛12(3x +2)d x =lim n →∞S n =lim n →∞⎝ ⎛⎭⎪⎫132-32n =132.用定积分的性质求定积分[典例] (1)f (x )=⎩⎨⎧x +1,0≤x <1,2x 2,1≤x ≤2.则⎠⎛02f (x )d x =( )A.⎠⎛02(x +1)d xB.⎠⎛022x 2d xC.⎠⎛01(x +1)d x +⎠⎛122x 2d xD.⎠⎛012x d x +⎠⎛12(x +1)d x(2)已知⎠⎛0ex d x =e 22,⎠⎛0e x 2d x =e 33,求下列定积分的值:①⎠⎛0e(2x +x 2)d x ;②⎠⎛0e (2x 2-x +1)d x .[解析] (1)由定积分的几何性质得:⎠⎛02f (x )d x =⎠⎛01(x +1)d x +⎠⎛122x 2d x .答案:C(2)解:①⎠⎛0e (2x +x 2)d x =2⎠⎛0e x d x +⎠⎛0e x 2d x=2×e 22+e 33=e 2+e 33.②⎠⎛0e (2x 2-x +1)d x =⎠⎛0e 2x 2d x -⎠⎛0e x d x +⎠⎛0e1d x ,因为已知⎠⎛0ex d x =e 22,⎠⎛0e x 2d x =e 33,又由定积分的几何意义知:⎠⎛0e 1d x 等于直线x =0,x =e ,y =0,y =1所围成的图形的面积,所以⎠⎛0e1d x =1×e =e ,故⎠⎛0e (2x 2-x +1)d x =2×e 33-e 22+e =23e 3-12e 2+e.(1)如果被积函数是几个简单函数的和的形式,利用定积分的线性性质进行计算,可以简化计算.(2)如果被积函数含有绝对值或被积函数为分段函数,一般利用积分区间的连续可加性计算.[活学活用]若f (x )=⎩⎨⎧2x -1,-1≤x <0,e -x ,0≤x ≤1.且⎠⎛0-1(2x -1)d x =-2,⎠⎛01e -x d x =1-e -1,求⎠⎛1-1f (x )d x . 解:对于分段函数的定积分,通常利用积分区间可加性来计算,即⎠⎛1-1f (x )d x =⎠⎛0-1f (x )d x +⎠⎛01f (x )d x =⎠⎛0-1(2x -1)d x +⎠⎛01e -x d x =-2+1-e -1=-(e -1+1).[典例] 根据定积分的几何意义,求下列定积分的值.(1)⎠⎛-R R R 2-x 2d x ;(2)⎠⎛-11|x |d x .[解] (1)被积函数的图象是一个以原点为圆心,以R 为半径的半圆,如图①所示, 所以⎠⎛-RR R 2-x 2d x =12·πR 2=πR 22.(2)被积函数的图象如图②所示,由定积分的几何意义知其值为两部分阴影面积之和,所以⎠⎛-11|x |d x =2×12×1×1=1.当定积分表示的面积容易求时,则利用定积分的几何意义求积分. [活学活用]利用定积分的几何意义说明下列等式成立. (1)∫π2-π2cos x d x =2∫π20cos x d x ;(2)⎠⎛-ππsin x d x =0.解:(1)函数y =cos x ,x ∈⎣⎢⎡⎦⎥⎤-π2,π2是偶函数,故曲线y =cos x ,x ∈⎣⎢⎡⎦⎥⎤-π2,0与坐标轴围成图形的面积S 1等于曲线y =cos x ,x ∈⎣⎢⎡⎦⎥⎤0,π2与坐标轴围成图形的面积S 2,于是由定积分的几何意义, 有∫π2-π2cos x d x =S 1+S 2=2S 2=2∫π20cos x d x .(2)函数y =sin x ,x ∈[-π,π]是奇函数,设曲线y =sin x ,x ∈[-π,0]与x 轴围成图形的面积为S 1,设曲线y =sin x ,x ∈[0,π]与x 轴围成图形的面积为S 2,易知S 1=S 2,从而由定积分的几何意义,有⎠⎛-ππsin x d x =-S 1+S 2=0.层级一 学业水平达标1.定积分⎠⎛-22f (x )d x (f (x )>0)的积分区间是( )A .[-2,2]B .[0,2]C .[-2,0]D .不确定解析:选A 由定积分的概念得定积分⎠⎛2-2f (x )d x 的积分区间是[-2,2]. 2.定积分⎠⎛13(-3)d x 等于( )A .-6B .6C .-3D .3解析:选A 由定积分的几何意义知,⎠⎛13(-3)d x 表示由x =1,x =3,y =0及y=-3所围成的矩形面积的相反数,故⎠⎛13(-3)d x =-6.3.下列命题不正确的是( )A .若f (x )是连续的奇函数,则⎠⎛-aaf (x )d x =0B .若f (x )是连续的偶函数,则⎠⎛-a a f (x )d x =2⎠⎛0af (x )d xC .若f (x )在[a ,b ]上连续且恒正,则⎠⎛abf (x )d x >0D .若f (x )在[a ,b ]上连续且⎠⎛abf (x )d x >0,则f (x )在[a ,b ]上恒正解析:选D A 项,因为f (x )是奇函数,图象关于原点对称,所以x 轴上方的面积和x 轴下方的面积相等,故积分是0,所以A 项正确;B 项,因为f (x )是偶函数,图象关于y 轴对称,故y 轴两侧的图象都在x 轴上方或下方且面积相等,故B 项正确;由定积分的几何意义知,C 项显然正确;D 项,f (x )也可以小于0,但必须有大于0的部分,且f (x )>0的曲线围成的面积比f (x )<0的曲线围成的面积大.4.设f (x )=⎩⎨⎧x 2,x ≥0,2x ,x <0,则⎠⎛-11f (x )d x 的值是( )A.⎠⎛-11x 2d xB.⎠⎛-112xd xC.⎠⎛-11x 2d x +⎠⎛-112x d xD.⎠⎛-102x d x +⎠⎛01x 2d x解析:选D 由定积分性质(3)求f (x )在区间[-1,1]上的定积分,可以通过求f (x )在区间[-1,0]与[0,1]上的定积分来实现,显然D 正确,故应选D.5.下列各阴影部分的面积S 不可以用S =⎠⎛ab[f (x )-g (x )]d x 求出的是( )解析:选D 定积分S =⎠⎛ab[f (x )-g (x )]d x 的几何意义是求函数f (x )与g (x )之间的阴影部分的面积,必须注意f (x )的图象要在g (x )的图象上方.对照各选项可知,D 项中f (x )的图象不全在g (x )的图象上方.故选D.6.若⎠⎛a b f (x )d x =3,⎠⎛a b g (x )d x =2,则⎠⎛a b[f (x )+g (x )]d x =__________.解析:⎠⎛a b [f (x )+g (x )]d x =⎠⎛a b f (x )d x +⎠⎛abg (x )d x =3+2=5.答案:57.若⎠⎛a b f (x )d x =1,⎠⎛a b g (x )d x =-3,则⎠⎛a b[2f (x )+g (x )]d x =_______.解析:⎠⎛a b [2f (x )+g (x )]d x =2⎠⎛a b f (x )d x +⎠⎛abg (x )d x =2×1-3=-1.答案:-18.计算:⎠⎛0416-x 2d x =____________.解析:⎠⎛0416-x 2d x 表示以原点为圆心,半径为4的14圆的面积,∴⎠⎛0416-x 2d x =14π·42=4π. 答案:4π9.化简下列各式,并画出各题所表示的图形的面积.(1)⎠⎛-3-2 x 2d x +⎠⎛1-2x 2d x ; (2)⎠⎛01(1-x )d x +⎠⎛12(x -1)d x .解:(1)原式=⎠⎛1-3x 2d x ,如图(1)所示. (2)⎠⎛01(1-x )d x +⎠⎛12(x -1)d x =⎠⎛02|1-x |d x ,如图(2)所示.10.已知函数f (x )=⎩⎨⎧x 5,x ∈[-1,1],x ,x ∈[1,π,sin x ,x ∈[π,3π],求f (x )在区间[-1,3π]上的定积分.解:由定积分的几何意义知:∵f (x )=x 5是奇函数,故⎠⎛-11x 5d x =0;⎠⎛π3πsin x d x =0(如图(1)所示);⎠⎛1πx d x =12(1+π)(π-1)=12(π2-1)(如图(2)所示).∴⎠⎛-13πf (x )d x =⎠⎛-11x 5d x +⎠⎛1πx d x +⎠⎛π3πsin x d x=⎠⎛1πx d x =12(π2-1).层级二 应试能力达标1.设f (x )是[a ,b ]上的连续函数,则⎠⎛a b f (x )d x -⎠⎛abf (t )d t 的值( )A .小于零B .等于零C .大于零D .不能确定解析:选B ⎠⎛a b f (x )d x 和⎠⎛abf (t )d t 都表示曲线y =f (x )与x =a ,x =b 及y =0围成的曲边梯形面积,不因曲线中变量字母不同而改变曲线的形状和位置.所以其值为0.2.如图所示,图中曲线方程为y =x 2-1,用定积分表示围成封闭图形(阴影部分)的面积是( )A.⎠⎛02(x 2-1)d xB.⎠⎛01(x 2-1)d xC.⎠⎛02|x 2-1|d xD.⎠⎛01(x 2-1)d x +⎠⎛12(x 2-1)d x解析:选C 由定积分的几何意义和性质可得:图中围成封闭图形(阴影部分)的面积S =⎠⎛01(1-x 2)d x +⎠⎛12(x 2-1)d x =⎠⎛02|x 2-1|d x ,故选C.3.设a =⎠⎛01x 13d x ,b =⎠⎛01x 2d x ,c =⎠⎛01x 3d x ,则a ,b ,c 的大小关系是( )A .c >a >bB .a >b >cC .a =b >cD .a >c >b解析:选B 根据定积分的几何意义,易知⎠⎛01x 3d x <⎠⎛01x 2d x <⎠⎛01x 13d x ,即a >b>c ,故选B.4.已知t >0,若⎠⎛0t(2x -2)d x =8,则t =( )A .1B .-2C .-2或4D .4解析:选D 作出函数f (x )=2x -2的图象与x 轴交于点A (1,0),与y 轴交于点B (0,-2),易求得S △OAB =1,∵⎠⎛0t (2x -2)d x =8,且⎠⎛01(2x -2)d x =-1,∴t >1,∴S △AEF =12|AE ||EF |=12×(t -1)(2t -2)=(t -1)2=9,∴t =4,故选D.5.定积分⎠⎛01(2+1-x 2)d x =________.解析:原式=⎠⎛012d x +⎠⎛011-x 2d x .因为⎠⎛012d x =2,⎠⎛011-x 2d x =π4,所以⎠⎛01(2+1-x 2)d x =2+π4.答案:2+π46.已知f (x )是一次函数,其图象过点(3,4)且⎠⎛01f (x )d x =1,则f (x )的解析式为______.解析:设f (x )=ax +b (a ≠0), ∵f (x )图象过(3,4)点, ∴3a +b =4.又⎠⎛01f (x )d x =⎠⎛01(ax +b )d x =a ⎠⎛01x d x +⎠⎛01b d x =12a +b =1.解方程组⎩⎨⎧3a +b =4,12a +b =1,得⎩⎪⎨⎪⎧a =65,b =25.∴f (x )=65x +25.答案:f (x )=65x +257.一辆汽车的速度—时间曲线如图所示,用定积分法求汽车在这一分钟内行驶的路程.解:依题意,汽车的速度v 与时间t 的函数关系式为v (t )=⎩⎨⎧32t ,0≤t <20,50-t ,20≤t <40,10,40≤t ≤60.所以该汽车在这一分钟内所行驶的路程为s =∫600v (t )d t =∫20032t d t +⎠⎛2040(50-t )d t +⎠⎛406010d t=300+400+200=900(米).8.如图所示,抛物线y =12x 2将圆面x 2+y 2≤8分成两部分,现在向圆面上均匀投点,这些点落在图中阴影部分的概率为14+16π,求⎠⎛02⎝⎛⎭⎪⎫8-x 2-12x 2d x 的值.解:解方程组⎩⎨⎧x 2+y 2=8,y =12x 2,得x =±2.∴阴影部分的面积为⎠⎛2-2⎝⎛⎭⎪⎫8-x 2-12x 2d x . ∵圆的面积为8π,∴由几何概型可得阴影部分的面积是 8π·⎝ ⎛⎭⎪⎫14+16π=2π+43.由定积分的几何意义得 ⎠⎛02⎝ ⎛⎭⎪⎫8-x 2-12x 2d x =12⎠⎛2-2⎝ ⎛⎭⎪⎫8-x 2-12x 2d x =π+23.。
新课标人教A版高中数学选修2-2复习学案(考前复习专用,含答案)
选修2-2 复习学案一、导数及其应用1、求曲线的切线例1 (1)已知函数3()2f x x x =+- ①在0p 处的切线平行于直线41y x =-,则0p 点的坐标 ; ②函数)(x f 在点..(1,0)处的切线方程为 ; (2)曲线2y x =过点..P(3,5)的切线方程 .变式1:若函数21()ln 2f x x ax x =-+存在垂直于y 轴的切线,则实数a 的取值范围2、利用导数研究函数的性质例2.已知时都取得极值与在132)(23=-=+++=x x c bx ax x x f(1) 求a、b的值及函数)(x f 的单调区间.(2) 若对2)(],2,1[c x f x <-∈不等式恒成立,求c的取值范围. (3) 若对[1,2],()=0x f x ∈-方程有三个零点,求c的取值范围.变式2 已知函数1,13)(23=-=-+=x x x bx ax x f 在处取得极值(1)求函数)(x f 的解析式.(2)若过点)2)(,1(-≠m m A 可作曲线y=)(x f 的三条切线,求实数m 的取值范围.例3若函数32()23(1)68()f x x a x ax a R =-+++∈在(,0)-∞单增,求a 的取值范围变式3 (1)已知函数233)(x x x f +=在区间[2m-1,m+1]上递增,则m 的取值范围 . (2)已知函数233)(x x x f +=的单减区间为(a ,b ),则a+b= . 例4 已知函数()ln a f x x x=-(1)若()f x 存在最小值且最小值为2,求a 的值;(2)设()ln g x x a =-,若2()g x x <在(0,]e 恒成立,求a 的取值范围3、定积分的计算例5计算下列定积分(1)⎰+5321dx xx =_______; (2)⎰--1121dx x =_______.;(3)22|2|x x dx +-⎰= ;(4)21(23)t dx +=⎰ ;(5)已知()f x 为偶函数且⎰6)(dx x f =8则⎰-66)(dx x f =________________;(6)由曲线12,3y y x y x ==-=-所围成的图形的面积为二、推理与证明与复数1.下面几种推理是合情推理的是:①由圆的性质类比推出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是1800,归纳出所有三角形的内角和都是1800;③某次考试张军的成绩是100分,由此推出全班同学的成绩都是100分;④三角形内角和是1800,四边形内角和是3600,五边形的内角和是5400,得出凸n 边形内角和是(n-2)·1800.( ) A.①②B.①③④C.①②④D.②④2.若大前提是:任何实数的平方都大于0,小前提是:a ∈R ,结论是:a 2>0,那么这个演绎推理出错在( ) A.大前提B.小前提C.推理过程D.其他3.有一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”,结论显然是错误的,因为( )A .大前提错误B .小前提错误C .推理形式错误D .不是以上错误4. 用反证法证明命题“若a 2+b 2+c 2≠0,则a,b ,c 不全为零”反设正确的是( )A. a ,b ,c 全不为零B.a ,b ,c 全为零C.a ,b ,c 恰有一个为零D.a ,b ,c 至少有一个为零 5.用反证法证明“关于x 的方程ax=b (a ≠0)有且只有一个根”时,应该假设方程( ) A.无解 B.两解 C.至少两解 D.无解或至少两解6.(2012江西)观察下列各式:221,3,a b a b +=+=3344554,7,11,a b a b a b +=+=+= 则1010a b += ( ) A .28 B .76 C .123 D .1997. 观察下列各式:55=3125,56=15625,57=78125,…,则52011的末四位数字为( ) A .3125 B .5625 C .0625 D .8125 8.用数学归纳法证明等式1+2+3+…+(n +3)=(n +3)(n +4)2(n ∈N *)时,验证n =1,左边应取的项是( )A .1B .1+2C .1+2+3D .1+2+3+4 9.(2012全国卷理)下面是关于复数21z i=-+的四个命题:其中的真命题为( ) 1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p (C ),p p 24()D ,p p 3410.(2011重庆理)复数2341i i ii++=-( )(A )1122i -- (B) 1122i -+ (C)1122i - (D) 1122i +11.212.[2011·陕西卷] 观察下列等式1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49……照此规律,第n 个等式为_______________________________. 13.若数列{a n },(n ∈N *)是等差数列,则有数列b n =na a a n +⋯++21(n ∈N *)也是等差数列,类比上述性质,相应地:若数列{c n }是等比数列,且c n >0(n ∈N *),则有d n =___ ___ __(n ∈N *)也是等比数列.14.由“三角形的两边之和大于第三边”可以类比推出三棱锥的类似属性是 . 15.下列两个方程:x 2+(a -1)x +a 2=0,x 2+2ax -2a=0中至少有一个方程有实根,求实数a 的取值范围.16.在数列{a n }中,)(22,111++∈+==N n a a a a nn n ,试猜想这个数列的通项公式,并用数学归纳法证明.选修2-2 复习学案参考答案一、导数及其应用例1 (1)① (1,0)或(1,4)-- ② 440x y --= (2)210x y --=或10250x y --= 变式1 2a ≥例2略解:(1)2,21-=-=b a'22222223(2).()32,3201(),(1)332721(1),(2)2,()[1,2](2)22212f x x x x x x x f c f cf c f c f x f c c c c c =----==-=-=+=-+-=+=+-=+>+<->由得或且所以在上的最大值为从而解得或(3)由(2)知,结合图像应满足(1)02212272()03f c f -≤⎧⎪-<≤-⎨->⎪⎩得 变式2略解(1)求得x x x f 3)(3-=(2)设切点为33)(),3,(2'0300-=-x x f x x x M 因为200'20300020300200302066)(332)(,0332)1)(33(3),1)(33(x x x g m x x x g x A m x x x x m x x M x x m y -=++-=**=++---=----=-则设有三个不同的实数根的方程所以关于可作曲线的三条切线因为过点即所以又切线过点所以切线方程为'00000000()001()(,0),(1,),(0,1),()0,1(0)032(1)0(3,2)g x x x g x g x x x x g m g m ===-∞+∞==*>⎧-<<-⎨<⎩--由得或所以在上单调递增在上单调递减故函数的极值点为所以关于的方程有三个不同实根的充要条件是 解得所求的实数的取值范围是例3 解: 方法1:)1)((66)1(66)(2'--=++-=x a x a x a x x f方法2: 方法3.变式3 (1)1(,3][,2)2-∞-(2)2-例4 (1)a e =(2)1(ln,)22-+∞(详解见导学案《阶段质量检测一》18题) 例5 (1)58ln3+ (2)2π (3)3 (4)23t + (5)16 (6)136 21,()(,1),(,),.1,()6(1)0,()(,).1,()(,),(1,),()(,0),01.0,()(,0).a f x a a f x x f x a f x a f x a a f x >-∞+∞==-≥-∞+∞<-∞+∞-∞≤<≥-∞当时在上递增符合条件当时恒成立在上递增当时在上递增要保证在上递增则综上所述时在上递增'()(,0)()0(,0)(1)(1)(,0)0,10f x f x x x x a x x x x x aa -∞≥∈-∞-≥-∈-∞<∴-<∴≤≥因为在上递增所以在上恒成立即在上恒成立从而'2'()66(1)6(,0]1100220(0)00f x x a x a a a f a =-++-∞++⎧⎧≥<⎪⎪⎨⎨⎪⎪∆≤≥⎩⎩≥保证在上最小值大于或等于零故有或可解得二、推理与证明与复数 1-5 CACBD 6-10 CDDCC 11.<12.n +(n +1)+(n +2)+…+(3n -2)=(2n -1)213.n n c c c c (321)14.三棱锥任意三个面的面积和大于第四个面的面积15.若两个方程都没有实根,则⎩⎨⎧<∆<∆0021,解得-2<a <-1,所以a ≥1,或a ≤ 216解:在数列{a n }中,∵)(22,111++∈+==N n a a a a nnn,15222,14222,13222,12222,2214453342231121+=+=+=+=+=+=+=+===a a a a a a a a a a a a a ∴可以猜想,这个数列的通项公式是12+=n a n 。
新课程人教版高中数学选修2_2课后习题解答(全)
第一章 导数及其应用 3.1变化率与导数 练习(P6)在第3 h 和5 h 时,原油温度的瞬时变化率分别为1-和3. 它说明在第3 h 附近,原油温度大约以1 ℃/h 的速度下降;在第5 h 时,原油温度大约以3 ℃/h 的速率上升. 练习(P8)函数()h t 在3t t =附近单调递增,在4t t =附近单调递增. 并且,函数()h t 在4t 附近比在3t 附近增加得慢. 说明:体会“以直代曲”的思想. 练习(P9)函数()r V =(05)V ≤≤的图象为根据图象,估算出(0.6)0.3r '≈,(1.2)0.2r '≈.说明:如果没有信息技术,教师可以将此图直接提供给学生,然后让学生根据导数的几何意义估算两点处的导数. 习题1.1 A 组(P10)1、在0t 处,虽然1020()()W t W t =,然而10102020()()()()W t W t t W t W t t t t--∆--∆≥-∆-∆.所以,企业甲比企业乙治理的效率高.说明:平均变化率的应用,体会平均变化率的内涵.2、(1)(1) 4.9 3.3h h t h t t t∆+∆-==-∆-∆∆,所以,(1) 3.3h '=-. 这说明运动员在1t =s 附近以3.3 m /s 的速度下降. 3、物体在第5 s 的瞬时速度就是函数()s t 在5t =时的导数.(5)(5)10s s t s t t t∆+∆-==∆+∆∆,所以,(5)10s '=. 因此,物体在第5 s 时的瞬时速度为10 m /s ,它在第5 s 的动能213101502k E =⨯⨯= J. 4、设车轮转动的角度为θ,时间为t ,则2(0)kt t θ=>. 由题意可知,当0.8t =时,2θπ=. 所以258k π=,于是2258t πθ=.车轮转动开始后第3.2 s 时的瞬时角速度就是函数()t θ在 3.2t =时的导数.(3.2)(3.2)25208t t t t θθθππ∆+∆-==∆+∆∆,所以(3.2)20θπ'=. 因此,车轮在开始转动后第3.2 s 时的瞬时角速度为20π1s -. 说明:第2,3,4题是对了解导数定义及熟悉其符号表示的巩固.5、由图可知,函数()f x 在5x =-处切线的斜率大于零,所以函数在5x =-附近单调递增. 同理可得,函数()f x 在4x =-,2-,0,2附近分别单调递增,几乎没有变化,单调递减,单调递减. 说明:“以直代曲”思想的应用.6、第一个函数的图象是一条直线,其斜率是一个小于零的常数,因此,其导数()f x '的图象如图(1)所示;第二个函数的导数()f x '恒大于零,并且随着x 的增加,()f x '的值也在增加;对于第三个函数,当x 小于零时,()f x '小于零,当x 大于零时,()f x '大于零,并且随着x 的增加,()f x '的值也在增加. 以下给出了满足上述条件的导函数图象中的一种.说明:本题意在让学生将导数与曲线的切线斜率相联系. 习题3.1 B 组(P11)1、高度关于时间的导数刻画的是运动变化的快慢,即速度;速度关于时间的导数刻画的是速度变化的快慢,根据物理知识,这个量就是加速度.2、说明:由给出的()v t 的信息获得()s t 的相关信息,并据此画出()s t 的图象的大致形状. 这个过程基于对导数内涵的了解,以及数与形之间的相互转换.3、由(1)的题意可知,函数()f x 的图象在点(1,5)-处的切线斜率为1-,所以此点附近曲线呈下降趋势. 首先画出切线的图象,然后再画出此点附近函数的图象. 同理可得(2)(3)某点处函数图象的大致形状. 下面是一种参考答案.说明:这是一个综合性问题,包含了对导数内涵、导数几何意义的了解,以及对以直代曲思想的领悟. 本题的答案不唯一. 1.2导数的计算 练习(P18)1、()27f x x '=-,所以,(2)3f '=-,(6)5f '=.2、(1)1ln 2y x '=; (2)2x y e '=; (3)4106y x x '=-; (4)3sin 4cos y x x '=--;(5)1sin33x y '=-; (6)y '=习题1.2 A 组(P18)1、()()2S S r r S r r r r r π∆+∆-==+∆∆∆,所以,0()lim(2)2r S r r r r ππ∆→'=+∆=. 2、()9.8 6.5h t t '=-+.3、()r V '=4、(1)213ln 2y x x '=+; (2)1n x n x y nx e x e -'=+; (3)2323sin cos cos sin x x x x x y x-+'=; (4)9899(1)y x '=+; (5)2x y e -'=-; (6)2sin(25)4cos(25)y x x x '=+++.5、()8f x '=-+. 由0()4f x '=有 048=-+,解得0x =.6、(1)ln 1y x '=+; (2)1y x =-.7、1xy π=-+.8、(1)氨气的散发速度()500ln0.8340.834t A t '=⨯⨯.(2)(7)25.5A '=-,它表示氨气在第7天左右时,以25.5克/天的速率减少.习题1.2 B 组(P19) 1、(1)(2)当h 越来越小时,sin()sin x h xy h+-=就越来越逼近函数cos y x =.(3)sin y x =的导数为cos y x =.2、当0y =时,0x =. 所以函数图象与x 轴交于点(0,0)P . x y e '=-,所以01x y ='=-.所以,曲线在点P 处的切线的方程为y x =-.2、()4sin d t t '=-. 所以,上午6:00时潮水的速度为0.42-m /h ;上午9:00时潮水的速度为0.63-m /h ;中午12:00时潮水的速度为0.83-m /h ;下午6:00时潮水的速度为 1.24-m /h. 1.3导数在研究函数中的应用 练习(P26)1、(1)因为2()24f x x x =-+,所以()22f x x '=-.当()0f x '>,即1x >时,函数2()24f x x x =-+单调递增; 当()0f x '<,即1x <时,函数2()24f x x x =-+单调递减. (2)因为()x f x e x =-,所以()1x f x e '=-.当()0f x '>,即0x >时,函数()x f x e x =-单调递增; 当()0f x '<,即0x <时,函数()x f x e x =-单调递减. (3)因为3()3f x x x =-,所以2()33f x x '=-.当()0f x '>,即11x -<<时,函数3()3f x x x =-单调递增; 当()0f x '<,即1x <-或1x >时,函数3()3f x x x =-单调递减. (4)因为32()f x x x x =--,所以2()321f x x x '=--.当()0f x '>,即13x <-或1x >时,函数32()f x x x x =--单调递增;当()0f x '<,即113x -<<时,函数32()f x x x x =--单调递减.2、3、因为2()(0)f x ax bx c a =++≠,所以()2f x ax b '=+. (1)当0a >时,()0f x '>,即2bx a >-时,函数2()(0)f x ax bx c a =++≠单调递增; ()0f x '<,即2bx a<-时,函数2()(0)f x ax bx c a =++≠单调递减.(2)当0a <时,()0f x '>,即2bx a <-时,函数2()(0)f x ax bx c a =++≠单调递增;()0f x '<,即2bx a>-时,函数2()(0)f x ax bx c a =++≠单调递减.4、证明:因为32()267f x x x =-+,所以2()612f x x x '=-. 当(0,2)x ∈时,2()6120f x x x '=-<,因此函数32()267f x x x =-+在(0,2)内是减函数. 练习(P29)1、24,x x 是函数()y f x =的极值点,其中2x x =是函数()y f x =的极大值点,4x x =是函数()y f x =的极小值点. 2、(1)因为2()62f x x x =--,所以()121f x x '=-. 令()1210f x x '=-=,得112x =. 当112x >时,()0f x '>,()f x 单调递增;当112x <时,()0f x '<,()f x 单调递减. 所以,当112x =时,()f x 有极小值,并且极小值为211149()6()212121224f =⨯--=-.(2)因为3()27f x x x =-,所以2()327f x x '=-. 令2()3270f x x '=-=,得3x =±. 下面分两种情况讨论:①当()0f x '>,即3x <-或3x >时;②当()0f x '<,即33x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:注:图象形状不唯一.因此,当3x =-时,()f x 有极大值,并且极大值为54;当3x =时,()f x 有极小值,并且极小值为54-.(3)因为3()612f x x x =+-,所以2()123f x x '=-. 令2()1230f x x '=-=,得2x =±. 下面分两种情况讨论:①当()0f x '>,即22x -<<时;②当()0f x '<,即2x <-或2x >时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极小值,并且极小值为10-;当2x =时,()f x 有极大值,并且极大值为22(4)因为3()3f x x x =-,所以2()33f x x '=-. 令2()330f x x '=-=,得1x =±. 下面分两种情况讨论:①当()0f x '>,即11x -<<时;②当()0f x '<,即1x <-或1x >时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当1x =-时,()f x 有极小值,并且极小值为2-;当1x =时,()f x 有极大值,并且极大值为2练习(P31)(1)在[0,2]上,当112x =时,2()62f x x x =--有极小值,并且极小值为149()1224f =-. 又由于(0)2f =-,(2)20f =.因此,函数2()62f x x x =--在[0,2]上的最大值是20、最小值是4924-. (2)在[4,4]-上,当3x =-时,3()27f x x x =-有极大值,并且极大值为(3)54f -=;当3x =时,3()27f x x x =-有极小值,并且极小值为(3)54f =-;又由于(4)44f -=,(4)44f =-.因此,函数3()27f x x x =-在[4,4]-上的最大值是54、最小值是54-.(3)在1[,3]3-上,当2x =时,3()612f x x x =+-有极大值,并且极大值为(2)22f =.又由于155()327f -=,(3)15f =.因此,函数3()612f x x x =+-在1[,3]3-上的最大值是22、最小值是5527.(4)在[2,3]上,函数3()3f x x x =-无极值. 因为(2)2f =-,(3)18f =-.因此,函数3()3f x x x =-在[2,3]上的最大值是2-、最小值是18-. 习题1.3 A 组(P31)1、(1)因为()21f x x =-+,所以()20f x '=-<. 因此,函数()21f x x =-+是单调递减函数.(2)因为()cos f x x x =+,(0,)2x π∈,所以()1sin 0f x x '=->,(0,)2x π∈. 因此,函数()cos f x x x =+在(0,)2π上是单调递增函数. (3)因为()24f x x =--,所以()20f x '=-<. 因此,函数()24f x x =-是单调递减函数. (4)因为3()24f x x x =+,所以2()640f x x '=+>. 因此,函数3()24f x x x =+是单调递增函数.2、(1)因为2()24f x x x =+-,所以()22f x x '=+.当()0f x '>,即1x >-时,函数2()24f x x x =+-单调递增. 当()0f x '<,即1x <-时,函数2()24f x x x =+-单调递减. (2)因为2()233f x x x =-+,所以()43f x x '=-.当()0f x '>,即34x >时,函数2()233f x x x =-+单调递增. 当()0f x '<,即34x <时,函数2()233f x x x =-+单调递减.(3)因为3()3f x x x =+,所以2()330f x x '=+>. 因此,函数3()3f x x x =+是单调递增函数. (4)因为32()f x x x x =+-,所以2()321f x x x '=+-. 当()0f x '>,即1x <-或13x >时,函数32()f x x x x =+-单调递增. 当()0f x '<,即113x -<<时,函数32()f x x x x =+-单调递减.3、(1)图略. (2)加速度等于0.4、(1)在2x x =处,导函数()y f x '=有极大值; (2)在1x x =和4x x =处,导函数()y f x '=有极小值; (3)在3x x =处,函数()y f x =有极大值; (4)在5x x =处,函数()y f x =有极小值.5、(1)因为2()62f x x x =++,所以()121f x x '=+. 令()1210f x x '=+=,得112x =-. 当112x >-时,()0f x '>,()f x 单调递增; 当112x <-时,()0f x '<,()f x 单调递减.所以,112x =-时,()f x 有极小值,并且极小值为211149()6()212121224f -=⨯---=-.(2)因为3()12f x x x =-,所以2()312f x x '=-. 令2()3120f x x '=-=,得2x =±.下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极大值,并且极大值为16;当2x =时,()f x 有极小值,并且极小值为16-.(3)因为3()612f x x x =-+,所以2()123f x x '=-+. 令2()1230f x x '=-+=,得2x =±. 下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极大值,并且极大值为22;当2x =时,()f x 有极小值,并且极小值为10-.(4)因为3()48f x x x =-,所以2()483f x x '=-. 令2()4830f x x '=-=,得4x =±. 下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当4x =-时,()f x 有极小值,并且极小值为128-;当4x =时,()f x 有极大值,并且极大值为128.6、(1)在[1,1]-上,当112x =-时,函数2()62f x x x =++有极小值,并且极小值为4724. 由于(1)7f -=,(1)9f =,所以,函数2()62f x x x =++在[1,1]-上的最大值和最小值分别为9,4724. (2)在[3,3]-上,当2x =-时,函数3()12f x x x =-有极大值,并且极大值为16; 当2x =时,函数3()12f x x x =-有极小值,并且极小值为16-. 由于(3)9f -=,(3)9f =-,所以,函数3()12f x x x =-在[3,3]-上的最大值和最小值分别为16,16-.(3)在1[,1]3-上,函数3()612f x x x =-+在1[,1]3-上无极值.由于1269()327f -=,(1)5f =-,所以,函数3()612f x x x =-+在1[,1]3-上的最大值和最小值分别为26927,5-.(4)当4x =时,()f x 有极大值,并且极大值为128.. 由于(3)117f -=-,(5)115f =,所以,函数3()48f x x x =-在[3,5]-上的最大值和最小值分别为128,117-. 习题3.3 B 组(P32)1、(1)证明:设()sin f x x x =-,(0,)x π∈. 因为()cos 10f x x '=-<,(0,)x π∈ 所以()sin f x x x =-在(0,)π内单调递减因此()sin (0)0f x x x f =-<=,(0,)x π∈,即sin x x <,(0,)x π∈. 图略 (2)证明:设2()f x x x =-,(0,1)x ∈. 因为()12f x x '=-,(0,1)x ∈所以,当1(0,)2x ∈时,()120f x x '=->,()f x 单调递增,2()(0)0f x x x f =->=;当1(,1)2x ∈时,()120f x x '=-<,()f x 单调递减,2()(1)0f x x x f =->=;又11()024f =>. 因此,20x x ->,(0,1)x ∈. 图略(3)证明:设()1x f x e x =--,0x ≠. 因为()1x f x e '=-,0x ≠所以,当0x >时,()10x f x e '=->,()f x 单调递增,()1(0)0x f x e x f =-->=;当0x <时,()10x f x e '=-<,()f x 单调递减,()1(0)0x f x e x f =-->=;综上,1x e x ->,0x ≠. 图略 (4)证明:设()ln f x x x =-,0x >. 因为1()1f x x'=-,0x ≠ 所以,当01x <<时,1()10f x x'=->,()f x 单调递增, ()ln (1)10f x x x f =-<=-<;当1x >时,1()10f x x'=-<,()f x 单调递减, ()ln (1)10f x x x f =-<=-<;当1x =时,显然ln11<. 因此,ln x x <. 由(3)可知,1x e x x >+>,0x >.. 综上,ln x x x e <<,0x > 图略 2、(1)函数32()f x ax bx cx d =+++的图象大致是个“双峰”图象,类似“”或“”的形状. 若有极值,则在整个定义域上有且仅有一个极大值和一个极小值,从图象上能大致估计它的单调区间.(2)因为32()f x ax bx cx d =+++,所以2()32f x ax bx c '=++.下面分类讨论:当0a ≠时,分0a >和0a <两种情形: ①当0a >,且230b ac ->时,设方程2()320f x ax bx c '=++=的两根分别为12,x x ,且12x x <,当2()320f x ax bx c '=++>,即1x x <或2x x >时,函数32()f x ax bx cx d =+++单调递增; 当2()320f x ax bx c '=++<,即12x x x <<时,函数32()f x ax bx cx d =+++单调递减. 当0a >,且230b ac -≤时,此时2()320f x ax bx c '=++≥,函数32()f x ax bx cx d =+++单调递增. ②当0a <,且230b ac ->时,设方程2()320f x ax bx c '=++=的两根分别为12,x x ,且12x x <,当2()320f x ax bx c '=++>,即12x x x <<时,函数32()f x ax bx cx d =+++单调递增; 当2()320f x ax bx c '=++<,即1x x <或2x x >时,函数32()f x ax bx cx d =+++单调递减. 当0a <,且230b ac -≤时,此时2()320f x ax bx c '=++≤,函数32()f x ax bx cx d =+++单调递减 1.4生活中的优化问题举例 习题1.4 A 组(P37)1、设两段铁丝的长度分别为x ,l x -,则这两个正方形的边长分别为4x ,4l x -,两个正方形的面积和为 22221()()()(22)4416x l x S f x x lx l -==+=-+,0x l <<. 令()0f x '=,即420x l -=,2lx =.当(0,)2l x ∈时,()0f x '<;当(,)2lx l ∈时,()0f x '>.因此,2lx =是函数()f x 的极小值点,也是最小值点.所以,当两段铁丝的长度分别是2l时,两个正方形的面积和最小.2、如图所示,由于在边长为a 的正方形铁片的四角截去 四个边长为x 的小正方形,做成一个无盖方盒,所以无 盖方盒的底面为正方形,且边长为2a x -,高为x .(1)无盖方盒的容积2()(2)V x a x x =-,02ax <<.(2)因为322()44V x x ax a x =-+,所以22()128V x x ax a '=-+.令()0V x '=,得2a x =(舍去),或6a x =. 当(0,)6a x ∈时,()0V x '>;当(,)62a ax ∈时,()0V x '<.因此,6ax =是函数()V x 的极大值点,也是最大值点.所以,当6ax =时,无盖方盒的容积最大.3、如图,设圆柱的高为h ,底半径为R , 则表面积222S Rh R ππ=+由2V R h π=,得2V h R π=. 因此,2222()222V V S R R R R R R ππππ=+=+,0R >. 令2()40V S R R R π'=-+=,解得R =当R ∈时,()0S R '<;当)R ∈+∞时,()0S R '>.因此,R =是函数()S R 的极小值点,也是最小值点.此时,22V h R R π===. 所以,当罐高与底面直径相等时,所用材料最省.4、证明:由于211()()n i i f x x a n ==-∑,所以12()()n i i f x x a n ='=-∑.令()0f x '=,得11ni i x a n ==∑,可以得到,11ni i x a n ==∑是函数()f x 的极小值点,也是最小值点.这个结果说明,用n 个数据的平均值11ni i a n =∑表示这个物体的长度是合理的,这就是最小二乘法的基本原理.5、设矩形的底宽为x m ,则半圆的半径为2x m ,半圆的面积为28x π2m ,(第3题)矩形的面积为28x a π-2m ,矩形的另一边长为()8a xx π-m因此铁丝的长为22()(1)244xa x a l x x x x x πππ=++-=++,0x <<令22()104a l x x π'=+-=,得x =.当x ∈时,()0l x '<;当x ∈时,()0l x '>.因此,x =()l x 的极小值点,也是最小值点.时,所用材料最省. 6、利润L 等于收入R 减去成本C ,而收入R 等于产量乘单价. 由此可得出利润L 与产量q 的函数关系式,再用导数求最大利润.收入211(25)2588R q p q q q q =⋅=-=-,利润2211(25)(1004)2110088L R C q q q q q =-=--+=-+-,0200q <<.求导得1214L q '=-+令0L '=,即12104q -+=,84q =.当(0,84)q ∈时,0L '>;当(84,200)q ∈时,0L '<;因此,84q =是函数L 的极大值点,也是最大值点.所以,产量为84时,利润L 最大,习题1.4 B 组(P37)1、设每个房间每天的定价为x 元,那么宾馆利润21801()(50)(20)7013601010x L x x x x -=--=-+-,180680x <<. 令1()7005L x x '=-+=,解得350x =.当(180,350)x ∈时,()0L x '>;当(350,680)x ∈时,()0L x '>. 因此,350x =是函数()L x 的极大值点,也是最大值点. 所以,当每个房间每天的定价为350元时,宾馆利润最大. 2、设销售价为x 元/件时,利润4()()(4)()(5)b x L x x a c cc x a x b b -=-+⨯=--,54ba x <<. 令845()0c ac bc L x xb b +'=-+=,解得458a bx +=.当45(,)8a b x a +∈时,()0L x '>;当455(,)84a b bx +∈时,()0L x '<. 当458a bx +=是函数()L x 的极大值点,也是最大值点.所以,销售价为458a b+元/件时,可获得最大利润.1.5定积分的概念 练习(P42) 83. 说明:进一步熟悉求曲边梯形面积的方法和步骤,体会“以直代曲”和“逼近”的思想. 练习(P45)1、22112()[()2]()i i i i i s s v t n n n n n n'∆≈∆=∆=-+⋅=-⋅+⋅,1,2,,i n =.于是 111()n n ni i i i i is s s v t n ==='=∆≈∆=∆∑∑∑2112[()]ni i n n n ==-⋅+⋅∑22211111()()()2n n n n n n n n -=-⋅--⋅-⋅+2231[12]2n n=-++++31(1)(21)26n n n n ++=-⋅+111(1)(1)232n n=-+++取极值,得1111115lim [()]lim [(1)(1)2]323n nn n i i i s v n n n n →∞→∞====-+++=∑∑说明:进一步体会“以不变代变”和“逼近”的思想.2、223km.说明:进一步体会“以不变代变”和“逼近”的思想,熟悉求变速直线运动物体路程的方法和步骤.练习(P48)2304x dx =⎰. 说明:进一步熟悉定积分的定义和几何意义.从几何上看,表示由曲线3y x =与直线0x =,2x =,0y =所围成的曲边梯形的面积4S =.习题1.5 A 组(P50) 1、(1)10021111(1)[(1)1]0.495100100i i x dx =--≈+-⨯=∑⎰; (2)50021111(1)[(1)1]0.499500500i i x dx =--≈+-⨯=∑⎰; (3)100021111(1)[(1)1]0.499510001000i i x dx =--≈+-⨯=∑⎰. 说明:体会通过分割、近似替换、求和得到定积分的近似值的方法.2、距离的不足近似值为:18112171310140⨯+⨯+⨯+⨯+⨯=(m ); 距离的过剩近似值为:271181121713167⨯+⨯+⨯+⨯+⨯=(m ).3、证明:令()1f x =. 用分点 011i i n a x x x x x b -=<<<<<<=将区间[,]a b 等分成n 个小区间,在每个小区间1[,]i i x x -上任取一点(1,2,,)i i n ξ=作和式 11()nni i i b af x b a n ξ==-∆==-∑∑, 从而 11lim nban i b adx b a n →∞=-==-∑⎰,说明:进一步熟悉定积分的概念. 4、根据定积分的几何意义,⎰表示由直线0x =,1x =,0y =以及曲线y =所围成的曲边梯形的面积,即四分之一单位圆的面积,因此04π=⎰.5、(1)03114x dx -=-⎰. 由于在区间[1,0]-上30x ≤,所以定积分031x dx -⎰表示由直线0x =,1x =-,0y =和曲线3y x =所围成的曲边梯形的面积的相反数.(2)根据定积分的性质,得1133311011044x dx x dx x dx --=+=-+=⎰⎰⎰.由于在区间[1,0]-上30x ≤,在区间[0,1]上30x ≥,所以定积分131x dx -⎰等于位于x 轴上方的曲边梯形面积减去位于x 轴下方的曲边梯形面积.(3)根据定积分的性质,得202333110115444x dx x dx x dx --=+=-+=⎰⎰⎰由于在区间[1,0]-上30x ≤,在区间[0,2]上30x ≥,所以定积分231x dx -⎰等于位于x 轴上方的曲边梯形面积减去位于x 轴下方的曲边梯形面积.说明:在(3)中,由于3x 在区间[1,0]-上是非正的,在区间[0,2]上是非负的,如果直接利用定义把区间[1,2]-分成n 等份来求这个定积分,那么和式中既有正项又有负项,而且无法抵挡一些项,求和会非常麻烦. 利用性质3可以将定积分231x dx -⎰化为02331x dx x dx -+⎰⎰,这样,3x 在区间[1,0]-和区间[0,2]上的符号都是不变的,再利用定积分的定义,容易求出031x dx -⎰,230x dx ⎰,进而得到定积分231x dx -⎰的值. 由此可见,利用定积分的性质可以化简运算.在(2)(3)中,被积函数在积分区间上的函数值有正有负,通过练习进一步体会定积分的几何意义.习题1.5 B 组(P50)1、该物体在0t =到6t =(单位:s )之间走过的路程大约为145 m.说明:根据定积分的几何意义,通过估算曲边梯形内包含单位正方形的个数来估计物体走过的路程. 2、(1)9.81v t =.(2)过剩近似值:8111899.819.8188.292242i i =⨯⨯⨯=⨯⨯=∑(m ); 不足近似值:81111879.819.8168.672242i i =-⨯⨯⨯=⨯⨯=∑(m ) (3)409.81tdt ⎰; 49.81d 78.48t t =⎰(m ).3、(1)分割在区间[0,]l 上等间隔地插入1n -个分点,将它分成n 个小区间:[0,]l n ,2[,]l l n n ,……,(2)[,]n l l n -, 记第i 个区间为(1)[,]i l iln n-(1,2,i n =),其长度为 (1)il i l l x n n n-∆=-=.把细棒在小段[0,]l n ,2[,]l l n n ,……,(2)[,]n ll n-上质量分别记作: 12,,,n m m m ∆∆∆,则细棒的质量1ni i m m ==∆∑.(2)近似代替当n 很大,即x ∆很小时,在小区间(1)[,]i l iln n-上,可以认为线密度2()x x ρ=的值变化很小,近似地等于一个常数,不妨认为它近似地等于任意一点(1)[,]i i l iln nξ-∈处的函数值2()i i ρξξ=. 于是,细棒在小段(1)[,]i l il n n -上质量 2()i i i lm x nρξξ∆≈∆=(1,2,i n =).(3)求和得细棒的质量 2111()nnni i i i i i l m m x nρξξ====∆≈∆=∑∑∑. (4)取极限细棒的质量 21lim ni n i lm n ξ→∞==∑,所以20l m x dx =⎰..。
(必考题)高中数学高中数学选修2-2第四章《定积分》测试卷(有答案解析)(1)
一、选择题1.=( )A .12πB.128π+C.68π+ D.64π+2.计算211x dx x ⎛⎫+ ⎪⎝⎭⎰的值为( )A .34B .3ln 22+ C .55ln 22+ D .3ln 2+3.已知函数sin (11)()1(12)x x f x x x-≤≤⎧⎪=⎨<≤⎪⎩,则21()f x dx -=⎰( ) A .ln 2B .ln 2-C .12-D .3cos 1-4.若曲线ln y kx x =+在点()1,k 处的切线平行于x 轴,则k =( ) A .2- B .1- C .0 D .15.侧面与底面所成的角是45︒,则该正四棱锥的体积是( ) A .23B .43CD6.等比数列{}n a 中,36a =,前三项和3304S xdx =⎰,则公比q 的值为( )A .1-或12-B .1或12-C .12-D .17.由23y x =-和2y x =围成的封闭图形的面积是( ) A..9-.323 D .3538.曲线3y x =在点()1,1处的切线与x 轴、直线2x =所围成的三角形的面积为( ) A .83B .73C .53D .439.曲线x y e =,x y e -=和直线1x =围成的图形面积是( ) A .1e e --B .1e e -+C .12e e ---D .12e e -+-10.由曲线2y x =与直线2y x =+所围成的平面图形的面积为( ) A .52 B .4 C .2 D .9211.已知二次函数()y f x =的图像如图所示 ,则它与x 轴所围图形的面积为( )A .25π B .43C .32D .2π 12.使函数()322912f x x x x a =-+-图象与x 轴恰有两个不同的交点,则实数a 可能的取值为( ) A .8B .6C .4D .2二、填空题13.已知曲线与直线所围图形的面积______.14.由直线2x y +=,曲线2y x =所围成的图形面积是________ 15.曲线y=x 2与y=x 所围成的封闭图形的面积为______. 16.定积分21d 1x x ⎰-的值为__________. 17.202x xdx -+=__________18.定积分()12xx e dx +=⎰__________.19.定积分2sin cos t tdt π=⎰________.20.定积分120124x x dx π⎫--⎪⎭⎰的值______. 三、解答题21.函数()ln ,kf x x k R x=+∈.若曲线()y f x =在点()(),e f e 处的切线与直线20x -=垂直,求()f x 的单调递减区间和极小值(其中e 为自然对数的底数).22.已知2()2ln ,(0,]f x ax x x e =-∈ 其中e 是自然对数的底 . (1)若()f x 在1x = 处取得极值,求a 的值; (2)求()f x 的单调区间;23.如图,函数()sin()f x x ωϕ=+(其中π0,2ωϕ>≤)的图象与坐标轴的三个交点为,,P Q R ,且π(,0)6P ,2π(,0)3Q ,M 为QR 的中点,且M 的纵坐标为3(1)求()f x 的解析式;(2)求线段QR 与函数()f x 图象围成的图中阴影部分的面积. 24.设函数()x x f x e e -=- (1)证明:'()2f x ≥;(2)若对任意[0,)x ∈+∞都有21(22)f x x e e ---<-,求x 的取值范围.25.已知函数()xe f x x=.(1)若曲线()y f x =与直线y kx =相切于点P ,求点P 的坐标; (2)当a e ≤时,证明:当()0,x ∈+∞时,()()ln f x a x x ≥-. 26.已知()y f x =是二次函数,方程0f x 有两相等实根,且()22f x x '=+(Ⅰ)求()f x 的解析式.(Ⅱ)求函数()y f x =与函数241y x x =--+所围成的图形的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】令21y x =-()2210x y y +=≥,点(),x y 的轨迹表示半圆,则该积分表示该半圆与y 轴,12x =,x 轴围成的曲边梯形的面积,求出面积即可. 【详解】解:令21y x =-()2210x y y +=≥,点(),x y 的轨迹表示半圆,12201x dx -表示以原点为圆心,2为半径的圆的上半圆与y 轴,12x =,x 轴围成的曲边梯形的面积,如图:故1220113131122226812OAB BOCx dx SS ππ-=+=⨯⨯+⨯⨯=+扇形. 故选:B. 【点睛】本题考查定积分的几何意义,属基础题.2.B解析:B 【分析】根据牛顿莱布尼茨公式,即可代值求解. 【详解】根据牛顿莱布尼茨公式211x dx x ⎛⎫+ ⎪⎝⎭⎰2211()2x lnx =+1142122ln ln ⎛⎫=⨯+-+ ⎪⎝⎭ 322ln =+. 故选:B. 【点睛】本题考查牛顿莱布尼茨公式的直接应用,属基础题.3.A解析:A 【分析】将所求积分分成两段来进行求解,根据积分运算法则可求得结果. 【详解】()21212111111sin cos ln cos1cos1ln 2ln1ln 2f x dx xdx dx x x x ---=+=-+=-++-=⎰⎰⎰ 故选:A 【点睛】本题考查积分的计算问题,关键是能够按照分段函数的形式将所求积分进行分段求解.4.B解析:B【解析】因为1y k x'=+,所以10,1k k +==- ,选B. 点睛:(1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.5.B解析:B 【解析】设底面边长为a ,依据题设可得棱锥的高2ah =,底面中心到顶点的距离2d =,由勾股定理可得2221)()2a +=,解之得2a =,所以正四棱锥的体积21242323V =⨯⨯=,故应选答案B .6.B解析:B 【解析】试题分析:解:∵3304S xdx =⎰=18,,∴a 1+a 2=32a q (1+q)=12,⇒2q 2-q-1=0,⇒q=1或q=12-,故选B考点:等比数列的前n 项和, 定积分的基本运算点评:本题考查等比数列的前n 项和、定积分的基本运算,求定积分关键是找出被积函数的原函数,本题属于基础题.7.C解析:C 【解析】试题分析:画出函数图象如下图所示,所以围成的面积为()13122333232333x x x dx x x --⎛⎫--=--= ⎪⎝⎭⎰.考点:定积分.8.A解析:A 【解析】 试题分析:()'323x x=,所以切线方程为13(1),32y x y x -=-=-,所以切线与x 轴、直线2x =所围成的三角形的面积()2238323S x dx =-=⎰.考点:1、切线方程;2、定积分.【易错点晴】本题易错点有三个,一个是切线方程,错解为看成过()1,1的切线方程;第二个错误是看成与y 轴围成的面积,()()22320328103232333S x dx x dx =--+-=+=⎰⎰;第三个是没有将切线与x 轴的交点求出来,导致没有办法解决题目.切线的常见问题有两种,一种是已知切点求切线方程;另一种是已知切线过一点求切线方程,两种题目都需要我们认真掌握.9.D解析:D 【解析】试题分析:根据题意画出区域,作图如下,由{x xy e y e -==解得交点为(0,1),∴所求面积为:()()1101|2x x x x S e e dx e e e e --=-=+=+-⎰ 考点:定积分及其应用10.D解析:D 【解析】试题分析:由定积分的几何意义得,293122122132221=-+=-+=--⎰)(])[(x x x dx x x s ,故选D 。
人教新课标A版高中选修2-2数学1.5定积分的概念同步练习(II)卷
人教新课标 A 版选修 2-2 数学 1.5 定积分的概念同步练习(II)卷姓名:________班级:________成绩:________一、 选择题 (共 15 题;共 30 分)1. (2 分) (2017·渝中模拟) 若 A . 20 B . ﹣20 C . ﹣540 D . 540, 则二项式展开式中的常数项是( )2. (2 分) A . 2( ﹣1)dx=( )B . +1C . ﹣1D . 2﹣3. (2 分) 一个物体作变速直线运动,速度和时间关系为 v(t)=4﹣t2 m/s,则该物体从 0 秒到 4 秒运动所 经过的路程为( )A.B. C . 16m D . -16m第1页共9页4. (2 分) (2016 高一下·邵东期末) 由曲线 xy=1,直线 y=x,x=3 所围成封闭的平面图形的面积为 ( )A. B . 4-ln3 C . 4+ln3 D . 2-ln35. (2 分) 设函数在区间上连续,用分点,把区间等分成 个小区间,在每个小区间 区间的长度),那么 的大小(上任取一点 ),作和式A.与和区间有关,与分点的个数 和 的取法无关B.与和区间以及分点的个数 有关,与 的取法无关C.与和区间以及分点的个数 , 的取法都有关D.与和区间以及 的取法有关,与分点的个数 无关6. (2 分) 曲线 与直线 A. B. C. D.及 所围成的封闭图形的面积为( )(其中 为小7. (2 分) (2017 高三上·泰安期中) 定积分=( )第2页共9页A . 10﹣ln3 B . 8﹣ln3 C. D.8. (2 分) (2018 高二下·河池月考) 定积分 A.的值是( )B.C.0D.9. (2 分) 如果 10N 的力能使弹簧压缩 10cm,为在弹簧限度内将弹簧拉长 6cm,则力所做的功为( )A . 0.28JB . 0.12JC . 0.26JD . 0.18J10. (2 分) 由直线 x=1,x=2,曲线 y=sinx 及 x 轴所围图形的面积为( )A.πB . cos1+cos2C . cos1﹣cos2D . sin2﹣sin111. (2 分) (2018 高二下·龙岩期中) 由抛物线与直线所围成的图形的面积是( ).第3页共9页A.4 B. C.5 D. 12. (2 分) (2016 高二下·泗水期中) 如图,设 D 是图中边长分别为 1 和 2 的矩形区域,E 是 D 内位于函数图象下方的阴影部分区域,则阴影部分 E 的面积为( )A . ln2 B . 1﹣ln2 C . 2﹣ln2 D . 1+ln213. (2 分) (2019 高二下·深圳月考) 设 f(x)=|x﹣1|,则=( )A.5B.6C.7D.814. (2 分) 曲线 C:在点 A 处的切线 l 恰好经过坐标原点,则曲线 C、直线 l、y 轴围成的图形面积为第4页共9页()A.B.C.D.15. (2 分) (2018 高二下·虎林期末) 由曲线与()A.1B.2C . 1.5D . 0.5二、 填空题 (共 5 题;共 5 分)所围成的平面图形的面积是16. (1 分) (2017·荆州模拟) 已知函数 =________.的两个零点分别为 m、n(m<n),则17. (1 分) (2018 高二下·陆川月考) 定积分________.18. (1 分)的各项系数和是 1024,则由曲线 y=x2 和 y=xa 围成的封闭图形的面积为________.19. (1 分) (2017 高二下·成都期中) x2dx=________.20. (1 分) (2017 高三上·山西月考)三、 解答题 (共 5 题;共 35 分)________.第5页共9页21. (5 分) (2016 高二下·珠海期中) 已知 f(x)=∫1x(4t3﹣ )dt,求 f(1﹣i)•f(i). 22. (5 分) 一物体沿直线以速度 v(t)=2t﹣3(t 的单位为:秒,v 的单位为:米/秒)的速度作变速直线 运动,求该物体从时刻 t=0 秒至时刻 t=5 秒间运动的路程? 23. (5 分) (2016 高二下·三亚期末) 求由曲线 y=x+1 与 x=1,x=3,y=0 所围的图形的面积.24. (10 分) 已知==1,= ,求下列定积分:(1);(2).25. (10 分) (2019 高二下·海东月考) 如图:已知点横坐标为 ,且.通过点(1,2),与有一个交(1) 求与所围的面积 与 的函数关系;(2) 当 为何值时, 取得最小值.第6页共9页一、 选择题 (共 15 题;共 30 分)1-1、 2-1、 3-1、 4-1、 5-1、 6-1、 7-1、 8-1、 9-1、 10-1、 11-1、 12-1、 13-1、 14-1、 15-1、参考答案第7页共9页二、 填空题 (共 5 题;共 5 分)16-1、 17-1、 18-1、 19-1、 20-1、三、 解答题 (共 5 题;共 35 分)21-1、22-1、 23-1、 24-1、 24-2、第8页共9页25-1、 25-2、第9页共9页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教新课标A版选修2-2数学1.5定积分的概念同步练习(I)卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共15题;共30分)
1. (2分)函数的图象与x轴所围成的封闭图形的面积为()
A .
B . 1
C . 2
D .
2. (2分)(2017·临汾模拟) 一物体A以速度v(t)=t2﹣t+6沿直线运动,则当时间由t=1变化到t=4时,物体A运动的路程是()
A . 26.5
B . 53
C . 31.5
D . 63
3. (2分)在弹性限度内,弹簧所受的压缩力F与缩短的距离按胡克定律计算.今有一弹簧原长,每压缩1cm需0.049N的压缩力,若把这根弹簧从70cm压缩至50cm(在弹性限度内),外力克服弹簧的弹力做了()功(单位:J)
A . 0.196
B . 0.294
C . 0.686
D . 0.98
4. (2分) (2017高二下·枣强期末) 已知二次函数的图像如图所示,则它与轴所围图形的面积为()
A .
B .
C .
D .
5. (2分)求由抛物线与直线所围成的曲边梯形的面积时,将区间[ 等分成个小区间,则第个区间为()
A .
B .
C .
D .
6. (2分)由函数y=ex , y=e及直线x=0所围成的图形的面积为()
A . 1
B .
C . e
7. (2分)二项式的展开式的第二项的系数为,则的值为()
A . 3
B .
C . 3或
D . 3或
8. (2分) (2016高一下·宜春期中) 二项式的展开式的第二项的系数为,则的值为()
A . 3
B .
C . 3或
D . 3或
9. (2分)已知,,记则的大小关系是()
A .
B .
C .
D .
10. (2分)设物体以速度v(t)=3t2+t(m/s)作直线运动,则它在0~4s内所走的路程为()
A . 70m
C . 75m
D . 80m
11. (2分)(1+x+x2)(x﹣)6的展开式中常数项为m,则函数y=﹣x2与y=mx的图象所围成的封闭图形的面积为()
A .
B .
C .
D .
12. (2分) (2017高二下·临淄期末) 由直线x=﹣,x= ,y=0与直线y=cosx所围成的封闭图形的面积为()
A .
B . 1
C .
D .
13. (2分) (2016高二下·昌平期中) 由曲线y=x2﹣2x与直线x+y=0所围成的封闭图形的面积为()
A .
B .
C .
D .
14. (2分)已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为(如右图所示).那么对于图中给定的,下列判断中一定正确的是()
A . 在时刻,甲车在乙车前面
B . t1时刻后,甲车在乙车后面
C . 在时刻,两车的位置相同
D . 时刻后,乙车在甲车前面
15. (2分) (2018高二下·虎林期末) 由曲线与所围成的平面图形的面积是()
A . 1
B . 2
C . 1.5
D . 0.5
二、填空题 (共5题;共5分)
16. (1分)函数f(x)=x2﹣2x与x轴围成的曲边梯形的面积等于________.
17. (1分)已知函数y=x2与y=kx(k>0)的图象所围成的封闭区域的面积为,则k=________
18. (1分) (2019高二下·黑龙江月考) 曲线和所围成的封闭图形的面积是________.
19. (1分)若函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的图象如图所示,则图中的阴影部分
的面积为________
20. (1分)曲线y=与直线y=x﹣1及x=4所围成的封闭图形的面积为________
三、解答题 (共5题;共40分)
21. (5分)计算下列积分:
(1);
(2).
22. (15分)已知f(x)是定义在R上的奇函数恒满足,且对任意实数x恒满足f(x+2)=﹣f(x)当x∈[0,2]时,f(x)=2x﹣x2
(1)求证:函数f(x)是周期函数;
(2)当x∈[2,4],求f(x)的解析式;
(3)计算f(x)dx 的值.
23. (10分) (2018高二下·巨鹿期末) 设函数在点处有极值 .
(1)求常数的值;
(2)求曲线与轴所围成的图形的面积.
24. (5分) (2018高二下·大庆月考) 计算由直线曲线以及轴所围图形的面积。
25. (5分) (2020高二上·黄陵期末) 计算曲线与直线所围图形的面积.
参考答案一、选择题 (共15题;共30分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
二、填空题 (共5题;共5分) 16-1、
17-1、
18-1、
19-1、
20-1、
三、解答题 (共5题;共40分)
21-1、
22-1、
22-2、
22-3、
23-1、23-2、24-1、
25-1、。