湖北省2019中考数学一轮复习第一章数与式第一节实数第2课时实数的运算与大小比较课件
2019中考数学一轮新优化复习 第一部分 教材同步复习 第一章 数与式 第2讲 实数的大小比较与运算
h
2
作差法 作商法
设 a,b 是两个任意实数,则 a-b>0⇔a>b,a-b<0⇔a<b,a -b=0⇔a=b 设 a,b 是两个任意正实数,则ab>1⇔a>b,ab<1⇔a<b,ab=1⇔a =b
tan45°=⑩___1_____;tan60°=⑪____3____
h
5
运算
常见数 的开方
法则 4=⑫____2____, 9=⑬___3_____, 12=⑭__2___3_____, 16=⑮____4____, 18=⑯____3__2____, 25=⑰____5____, 3 8=⑱___2_____,3 -27=⑲___-__3_____
得这个数. (2)减法:减去一个数,等于加上这个数的○23 __相__反__数______,即 a-b=a+(-b).
h
7
(3)乘法:两数相乘,同号得○24 ____正____,异号得○25 ____负____,并把绝对值相乘;
|a|·|b|a,b同号, 任何数与 0 相乘,积为 0,即 ab=-|a|·|b|a,b异号,
解:原式=1+1-4× 23+2 3 =2.
h
15
h
16
h
4
运算
法则
-1 的奇数次幂为-1;
-1 的奇 -1 的偶数次幂为 1;
偶指数幂 如(-1)2 019=④___-__1_____,
(-1)2 018=⑤___1_____
1
2
sin30°=cos60°=⑥____2____;sin45°=cos45°=⑦____2____;
第一章数与式第2讲 实数的运算及大小比较
014
×( - 0.125)2
015
=
×( - 0.125)
2 015
=8
2 014
×( - 0.125)
2 014
×
( - 0.125) = [8×( - 0.125)]2
014
×( - 0.125) = 1×( - 0.125) =
19.已知 x,y 是实数,且满足(x+4) +|y-5|=0, 则(x+y)
(3)近似估算法(利用有理数估算无理数的大小范围 ); (4)中间值法;(5)平方法;(6)倒数法.
考点四
实数非负性的应用
若 n 个非负数的和为 0,则这 n 个非负数同时为 0. 如|a|+b2+ c=0,则 a=b=c=0.
温馨提示:
实数中三种重要的非负数形式:|a|≥ 0,b2≥ 0, c≥0c≥0,其中 a,b,c 可以表示一个字母,也 可以表示一个代数式.
方法总结: 实数混合运算的一般顺序为先乘方、开方,再乘 除,最后加减;同级运算,从左到右进行;如有括号, 先做括号内的运算.
1.比较-3,1,-2的大小,正确的是( A A.-3<-2<1 C.1<-2<-3 ∴-3<-2<1.故选A. B.-2<-3<1 D. 1<-3<-2
)
解析:∵|-3|>|-2|,∴-3<-2.
解析:由非负数和的性质,可得 x-1=0,y+3 =0,解得 x=1,y=-3.∴x+y=1-3=-2.故选 A.
11. 如图, 数轴上 A, B 两点表示的数分别为 2和 5.1,则 A,B 两点之间表示整数的点共有( C )
A.6 个
B.5 个
C.4 个
D.3 个
解析: ∵1< 2 < 2, ∴ 2 和 5.1 之间的整数有 2,3,4,5 共 4 个.故选 C.
中考第一轮复习--第一章数与式
第一章 数与式第一讲 实数【基础知识回顾】 一、实数的分类: 1、按实数的定义分类: 实数 有限小数或无限循环数2、按实数的正负分类:实数【名师提醒:1、正确理解实数的分类。
如:2π是 数,不是 数,722是 数,不是 数。
2、0既不是 数,也不是 数,但它是自然数】二、实数的基本概念和性质1、数轴:规定了 、 、 的直线叫做数轴, 和数轴上的点是一一对应的,数轴的作用有 、 、 等。
2、相反数:只有 不同的两个数叫做互为相反数,a 的相反数是 ,0的相反数是 ,a 、b 互为相反数⇔3、倒数:实数a 的倒数是 , 没有倒数,a 、b 互为倒数⇔4、绝对值:在数轴上表示一个数的点离开 的距离叫做这个数的绝对值。
a =因为绝对值表示的是距离,所以一个数的绝对值是 数,我们学过的非负数有三个: 、 、 。
【名师提醒:a+b 的相反数是 ,a-b 的相反数是 ,0是唯一一个没有倒数的数,相反数等于本身的数是 ,倒数等于本身的数是 ,绝对值等于本身的数是 】三、科学记数法、近似数和有效数字。
1、科学记数法:把一个较大或较小的数写成 的形式叫做科学记数法。
其中a 的取值范围是 。
2、近似数和有效数字:一般的,将一个数四舍五入后的到的数称为这个数的近似数,这时,从 数字起到近似数的最后一位止,中间所有的数字都叫这个数的有效数字。
【名师提醒:1、科学记数法不仅可以表示较大的数,也可以表示较小的数,其中a 的取值⎪ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎪ ⎨ ⎧ ⎩ ⎨ ⎧ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎨ ⎧ ⎩ ⎨ ⎧ ⎪ ⎩ ⎪ ⎨ ⎧ 正无理数 无理数 负分数 零 正整数 整数 有理数 无限不循环小数 ⎧⎨⎩⎧⎨⎩正数正无理数零 负有理数负数 (a >0) (a <0) 0 (a=0)范围一样,n 的取值不同,当表示较大数时,n 的值是原整数数位减一,表示较小的数时,n 是负整数,它的绝对值等于原数中左起第一个非零数字前零的个数(含整数数位上的零)。
中考数学总复习课件:第2课 实数的运算与大小比较
第 2 课 实数的运算与大小比较
知识梳理
知识回顾 1.实数的运算 (1)加法法则:同号两数相加,取_加__数__的符号,并把它们的绝对值_相__加__; 异号两数相加,取绝对值_较__大__的加数的符号,并用较大的绝对值减去较小的 绝对值. (2) 减 法 法 则 : 减 去 一 个 数 等 于 加 上 这 个 数 的 _相__反__数__ , 即 a - b = _a_+__(_-__b_) _. (3)乘法法则:两数相乘,同号取_正___,异号取_负___,并把绝对值_相__乘__, n 个实数相乘,有一个因数为 0,积就为__0__;若 n 个非 0 的实数相乘,积的 符号由负因数的个数决定,当负因数有偶数个时,积为_正___;当负因数有奇 数个时,积为_负___.
1 a0=__1__(a≠0),a-p=__a_p__ (a≠0).
(6)平方根:如果一个数的平方等于 a,那么这个数就叫做 a 的平方根, 一个正数的平方根_有__两__个__,它们_互__为__相__反__数___,可记作± a,其中正的平方 根和零的平方根统称为_算__术__平__方___根_.
解析 根据立方根的定义,求数 a 的立方根,也就是求一个数 x,使得 x3=a,则 x 就是 a 的一个立方根.∵23=8,∴8 的立方根是 2.
答案 2 题型二 实数的运算 要点回顾:解决此类考查实数综合运算能力的题型,关键是熟记特殊角 的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考 点的运算. 【例 2】 (2015·温州)计算:20150+ 12+2×-12.
题型三 实数的大小比较
要点回顾:实数的大小比较常用的四种方法:数轴比较法,代数比较法,
差值比较法,商值比较法.能否合理的运用这几种方法是进行实数大小比较
2019年中考数学总复习第一部分基础知识复习第1章数与式第2讲实数的运算课件_115
★知识点3 ★考点3
★知识点4 ★考点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4 ★考点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4 ★考点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4 ★考点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4 ★考点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4 ★考点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4 ★考点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知பைடு நூலகம்点3 ★考点3
★知识点4 ★考点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点4 ★考点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4 ★考点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
湖北专用2019中考数学新导向复习第一章数与式第1课实数课件
《中考新导向初中总复习(数学)》配套课件
第一章 数与式 第1课 实数
,
一、考点知识
1.实数的有关概念: (1)a与b互为相反数⇔a+b=__0______. (2)a与b互为倒数⇔ab=__1______. (3)当a>0时,|a|=__a____;当a<0时,|a|= -a ;
当a=0时,|a|= 0 ;当a ≥ 0时,|a|=__a____; 当a ≤ 0时,|a|=_-__a__ .
A.a<b
B.|a|>|b|
C.-a<-b D.b-a>0
8.已知实数x,y满足 x 2 y 1 2 0 ,则x-y等于( A )
A.3
B.-3
C.1
D.-1
提示:一个数的算术平方根为非负数, 一个数的平方也是非负数,
所以根据题意可得x-2=0,y+1=0,故选A.
9.计算: (1) 2×(-3)2-4×(-3);
解:由已知,得x=±2,y= . 1又∵xy<0,
2
∴x=2时,y= 或1 x=-2时,y=
2
.
1 2
∴当x=2,y= 时1 ,原式=xy=-4.
2
当x=-2,y= 时12 ,原式=xy=-4.
C组 11.已知a满足:a 2019 2018 a a
求 a+2 0192 的值. 解: 由已知,得2 018-a≥0,解得a≤2 018,
2,2解2得3
2019年中考数学专题复习第1讲《实数及有关概念》(含详细参考答案)
2019年中考数学精品专题复习第一章 数与式第一讲 实数及有关概念★★★核心知识回顾★★★知识点一、实数的分类 1.按实数的定义分类:⎧⎧⎧⎫⎪⎪⎪⎪⎪⎪⎪⎪⎨⎬⎪⎨⎪⎪⎨⎪⎪⎪⎩⎭⎪⎪⎪⎩⎪⎩整数有限小数或无限循环小数有理数实数:无限不循环小数 2.按实数的正负分类:⎧⎧⎪⎪⎨⎪⎪⎩⎪⎨⎪⎧⎪⎪⎨⎪⎪⎩⎩正实数正无理数实数零负有理数负实数知识点二、实数的基本概念和性质1.数轴:规定了 、 、 的直线叫做数轴,实数和数轴上的点是一一对应的。
2.相反数:(1)只有 不同的两个数叫做互为相反数,a 的相反数是 ,0的相反数是 ; (2)a+b=0⇔a 、b 互为 ;(3)在数轴上,表示相反数的两个点位于原点两侧,且到原点的距离 。
3.倒数:(1)乘积为 的两个数互为倒数,用数学语言表述为:1ab =,则a ,b 互为 ; (2)1和 的倒数还是它本身, 没有倒数。
4.绝对值:(1)一般地,数轴上表示数a 的点与原点的 叫做数a 的绝对值。
(2)(0)||0(0)(0)a a a a >⎧⎪==⎨⎪<⎩(3)因为绝对值表示的是距离,所以一个数的绝对值是 数,我们学过的非负数有三个: 、 和 。
知识点三、平方根、算术平方根、立方根 1.平方根: (1)一般地,如果一个数的 等于a ,那么这个数就叫做a 的平方根或二次方根,记作 ; (2)正数的平方根有两个,它们互为 ,0的平方根为 , 没有平方根。
2.算术平方根:(1)一般地,如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 叫做a 的算术平方根,记作 ;(2)正数的算术平方根为 ,0的算术平方根为 。
3.立方根: (1)一般地,如果一个数的立方等于a ,那么这个数就叫做a 的立方根或三次方根,记作 ; (2)正数的立方根为 , 0的立方根为 ,负数立方根为 ;每个实数有且只有一个立方根。
知识点四、科学记数法科学记数法:把一个较大或较小的数写成写成10na ⨯的形式(其中a 大于或等于1且小于10,n 是正整数),使用的是科学记数法。