3.2直棱柱的表面展开图
八年级数学认识直棱柱;直棱柱的表面展开图;三视图浙江版知识精讲
初二数学认识直棱柱;直棱柱的表面展开图;三视图某某版【本讲教育信息】一. 教学内容:3.1 认识直棱柱3.2 直棱柱的表面展开图3.3 三视图3.4 由三视图描述几何体二. 重点、难点:重点:1. 直棱柱的表面展开图画法2. 三视图的画法3. 根据三视图描述基本几何体难点:1. 通过空间想象把一个物体的形状看成两个(或多个)几何体的组合2. 画直棱柱的多种表面展开图以及画组合体的三视图有一定的难度3. 根据三视图描述实物原形三. 知识要点及学习目标1. 了解多面体、直棱柱的侧棱、侧面、底面等有关概念,会认直棱柱的侧棱、侧面、底面。
由若干个平面围成的几何体,叫做多面体。
多面体上相邻两个面之间的交线叫做多面体的棱,几个面的公共顶点叫做多面体的顶点。
棱柱是多面体的一种,棱柱分为直棱柱和斜棱柱。
(根据其侧棱与底面是否垂直)根据底面多边形的边数而分为直三棱柱、直四棱柱……长方体和立(正)方体都是直四棱柱。
2. 了解直棱柱以下特征,能根据特征准确说出直棱柱的面、棱的关系。
(1)面的特征:有上、下两个底面,底面是平面图形中彼此全等的多边形;侧面都是长方形(含正方形)。
(2)棱的特征:直棱柱的侧棱互相平行且相等。
3. 了解直棱柱的表面展开图的概念。
会画简单的直棱柱的表面展开图。
如下图,当我们沿着某些棱把一个立方体的盒子剪开,且使其六个面还连在一起,然后铺平,就得到这个立方体的表面展开图。
由于可以从不同的棱剪开,所以一个立方体可以有不同的表面展开图。
反过来,如果我们有了一个几何体的表面展开图,我们也可以把它折叠成原来的几何体。
4. 能根据表面展开图判断出原直棱柱形状。
5. 了解主视图、俯视图、左视图和三视图的概念,能识别简单物体的三视图。
通过从不同方向观察同一物体可以看到不一样的结果得出关于三视图的概念。
主视图是从正面看到的图形,左视图是从左面看到的图形,俯视图是从上面向下看时看到的图形。
一般来说,首先要指定正面。
第5讲 直棱柱及表面展开图
第5讲直棱柱及表面展开图【知识要点】1.由若干个平面围成的几何体叫多面体;多面体上相邻两个面之间的交线叫多面体的棱;几个面的公共顶点叫多面体的顶点。
2.棱柱的上下底面平行且全等,每个侧面都是平行四边形。
3.根据侧棱与底面是否垂直,棱柱分为直棱柱和斜棱柱,直棱柱的每个侧面都是长方形(含正方形)。
4.根据底面多边形的边数,直棱柱可分为直三棱柱、直四棱柱……长方体和正方体都是直四棱柱。
5.欧拉公式:V+F-E=2(V:顶点数,F: 面数,E: 棱数)。
6.几何体的表面积=侧面积+底面积(上、下底的面积和)7.常见的几种几何体的表面积的计算公式①圆柱体表面积:2πR2+2πRh (R为圆柱体上下底圆半径,h为圆柱体高)②长方体表面积:2(ab+ah+bh)(a为长方体的长,b为长方体的宽,h为长方体的高③正方体表面积:6a2(a为正方体棱长)8.几何体的展开图:(1)同一个立体图形按不同的方式展开,得到的平面展开图是不一样的,立体图形的展开图是平面图形。
(2)常见几何体的侧面展开图:①圆柱的侧面展开图是长方形.②圆锥的侧面展开图是扇形.③正方体的侧面展开图是长方形.④三棱柱的侧面展开图是长方形.从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.9.正方体相对两个面上文字:(1)对于此类问题一般方法是用纸按图的样子折叠后可以解决,或是在对展开图理解的基础上直接想像。
(2)正方体的展开图有11种情况,分析平面展开图的各种情况后再认真确定哪两个面的对面.【典型例题】〖讨论1〗在长、宽都是3,高是8的长方体纸箱的外部,一只蚂蚁从顶点A沿纸箱表面爬到顶点B点,那么它所行的最短路线的长是____________.〖讨论2〗如图是一个正方体纸盒的展开图,当折叠成正方体纸盒时,A点与_______点重合,C点与_______点重合.〖讨论3〗一个简单多面体的各个面都是三角形,请你说明它的顶点数V和面数F之间的关系为F=2V-4.学力训练一.选择题(共15小题)1.下列各几何体中,直棱柱的个数是()A.5B.4C.3D.22.七棱柱的侧面是()第3题A.长方形B.七边形C.三角形D.正方形3.如图所示,在长方体中,与棱AB平行的棱有()A.1条B.2条C.3条D.4条4.下列关于棱柱的说法:①棱柱的所有面都是平面;②棱柱的所有棱长都相等;③棱柱的所以侧面都是长方形或正方形;④棱柱的侧面个数与底面边数相等;⑤棱柱的上、下底面形状、大小相等其中正确的有()A.2个B.3个C.4个D.5个5.一个直棱柱有12个顶点,那么它的面的个数是()A.10个B.9个C.8个D.7个6.一个棱柱有18条棱,那么它的底面一定是()A.十八边形B.八边形C.六边形D.四边形7.(2012•台湾)如图1为图2中三角柱ABCEFG的展开图,其中AE、BF、CG、DH是三角柱的边.若图1中,AD=10,CD=2,则下列何者可为AB长度?()A. 2B. 3C. 4D. 5第7题第8题第9题8.(2012•佛山)一个几何体的展开图如图所示,这个几何体是()A.三棱柱B.三棱锥C.四棱柱D.四棱锥9.(2011•台湾)若下列只有一个图形不是右图的展开图,则此图为何?()A.B.C.D.10.(2011•呼和浩特)将如图所示表面带有图案的正方体沿某些棱展开后,得到的图形是()A.B.C.D.11. (2012•德州)如图给定的是纸盒的外表面,下面能由它折叠而成的是()A.B.C.D.12.(2011•河北)将图1围成图2的正方体,则图1中的红心“”标志所在的正方形是正方体中的()A.面CDHE B.面BCEF C.面ABFG D.面ADHG13.(2010•宁波)骰子是一种特的数字立方体(见图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是()A.B.C.D.二.填空题(共2小题)14.已知三棱柱有5个面6个顶点9条棱,四棱柱有6个面8个顶点12条棱,五棱柱有7个面10个顶点15条棱,…,由此可以推测n 棱柱有_________个面,_________个顶点,棱有_________条.15.一个直棱柱有7个面,则它有________个顶点,________条棱,表面上至少有______个直角.三.解答题(共6小题)16.(2010•宁波)十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:多面体顶点数(V)面数(F)棱数(E)四面体 4 4长方体8 6 12正八面体8 12正十二面体20 12 30你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是_________.(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是_________.(3)某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,求x+y的值.17..下列图形中,图(a)是正方体木块,把它切去一块,得到如图(b)(c)(d)(e)的木块.图号顶点数x 棱数y 面数z(a)8 12 6(b)(c)(d)(e)(1)我们知道,图(a)的正方体木块有8个顶点、12条棱、6个面,请你将图(b)、(c)、(d)、(e)中木块的顶点数、棱数、面数填入下表;(2)上表,各种木块的顶点数、棱数、面数之间的数量关系可以归纳出一定的规律,请你试写出顶点数x、棱数y、面数z之间的数量关系式.18.如图1所示为一上面无盖的正方体纸盒,现将其剪开展成平面图,如图2所示.已知展开图中每个正方形的边长为1.(1)求在该展开图中可画出最长线段的长度这样的线段可画几条?(2)试比较立体图中∠BAC与平面展开图中∠B′A′C′的大小关系?19.如图,是一个无盖立方体盒子,请把下列不完整的展开图补充完整.(请画出三种)20.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示)21.如图是一个正方体的展开图,标注了字母“a”的面是正方体的正面,如果正方体相对两个面上的代数式的值相等,求x、y的值.22.一个简单多面体的各个面都是五边形,请你说明它的顶点数V和面数F满足以下关系式:2V=3F+4。
3直棱柱及三视图
年级:八年级课时数:3辅导科目:数学课题直棱柱教学目的1、认识直棱柱,并会判断直棱柱,能找出现实生活中的直棱柱;2、体会立体图形与平面图形的关系,并会表示直棱柱表面展开图的面积计算;3、表表示立体图形的三视图,并由三视图描绘物体的体积。
教学内容3.1 认识直棱柱10.课前思考1.观察家里的电冰箱、大衣柜,它们是什么形状的图形?2.阅读课本3.1节“认识直棱柱”,并回答下列问题:(1)什么样的几何体是直棱柱?(2)直棱柱的侧面是什么图形?二、知识梳理1、了解棱柱、直棱柱的概念,会判断直棱柱;2、能说出一个直棱柱的顶点、棱、面的个数;3、直棱柱的相邻两条侧棱互相平行且相等。
三、重难点分析例1、已知一个直棱柱有11个面,这个直棱柱是直几棱柱?有多少条棱?多少个顶点?表现上至少有多少个直角?例2、(1)长方体可叫做面体,也可叫做棱柱(2)一个直8棱柱的侧面个数是顶点个数是棱的条数是。
(3)一个正方体的每个面上都标有数字1、2、3、4、5、6,根据图中该正方体A、B、C三种状态所显示的数字,可推出“?”处的数字是例3、(1)下列图形中直棱柱的是()(2)一个直棱柱有12个顶点,则它的棱的条数是()(A) 12 (B) 6 (C) 18 (D) 20(3)正多面体的面数、棱数、顶点数三在之间存在一个奇特的关系,若用f、e、v分别表示正多面体的面数、棱数、顶点数,则有f+v-e=2,现有一个正多面体共有12条棱,6个顶点,则它的面数f等于()(A)6 (B) 8 (C) 12 (D) 20四、课堂练习1.如图所示的棱柱中,请补画被遮挡住的棱线。
2.阅读课本阅读材料,画一个长、宽各为2cm,高为3cm的长方体的立体图形。
3、拓展思考:三个正方体木块粘合成如图的模型,它们的棱长分别是1cm,2cm,4cm,要在模型表面涂油漆,如图除去粘合的部分不涂外,求模型的涂漆面积。
4、火眼金睛:四个正方体,每个正方体的面都按相同次序涂黑、白、红、黄、蓝、绿六色,将四个正方体叠在一起,只能看到它们的部分颜色,从这个图你能识别最上面一个正方体的下面、背面涂的颜色吗?3.2 直棱柱的表面展开图一、课前思考1.自做一个长方体,展开之后有哪些不同情况?2. 阅读课本3.2节“直棱柱的表面展开图”,并回答下列问题:(1)如何画直棱柱的表面展开图,它是唯一的吗?(2)根据展开图怎样判断物体的形状?二、知识梳理1.了解直棱柱表面展开图的概念;2.会画简单直棱柱的表面展开图;3.能根据展开图判断和制作立体模型。
八年级上数学3.2直棱柱的表面展开图
G´
C ´´
G F
5cm
HAΒιβλιοθήκη CGC´B
F
C B
D
H D
E
D´ A
E
变一变:如图,有一边长为5cm的立方体纸盒,A处的一只蚂
蚁要吃到C处的糖果需要爬行的最短路程是多少?
G´
C ´´
G F
5cm
H
A
C
B
√ C´ 52 102
=√ 125
D
E
D´
a
563
1
甲 正确
正确 乙
丙 不正确
考考你
下图中的哪些图形经过折叠可以成为长方体包装盒?
⑴
⑵
⑶
⑷
(5)
画出如图所示的底面为正三角形直棱柱的 表面展开图.(尺寸要求与原图一样)
挑战一下:---- “蚂蚁吃糖”问题
口诀
“一四一” ,“一三二”. “一”在同层可任意; “三个二”成阶梯, “二个三”,“日”字连; 异层 “日”字连, 整体没有“田”.
判断下列各图中,哪些图形是立方体的表面 展开图?
A
B
C
D
E
F
G
展开你的想象
下图可以折叠成一个立方体吗?如果可 以,请在展开图中用1,2,3,4,5,6表 示左边立方体的各个对应的面. (请给出
合作学习 要求将:立 方 体 纸 盒 , 沿 某 些 棱 剪 开 , 且
使六个面连在一起,然后铺平. 你能得到怎样的图形?
将立方体沿某些棱剪开后铺平,且六 个面连在一起,这样的平面图形称为 立方体的表面展开图。
探究规律: 各种展开图中六个面www.c的zsx.c排列有什么规律?
3.2直棱柱的表面展开图
将立方体沿某些棱剪开后铺平, 将立方体沿某些棱剪开后铺平,且 六个面连在一起, 六个面连在一起,这样的图形叫立 方体的表面展开图 表面展开图。 方体的表面展开图。
请帮皮皮思考下列各图中, 请帮皮皮思考下列各图中,哪些能折叠 成一个立方体,并寻找规律?动手试一试。 成一个立方体,并寻找规律?动手试一试。
1、皮皮的礼盒已经完成,你有什么收获 、皮皮的礼盒已经完成,你有什么收获? 2、作业: 、作业: ቤተ መጻሕፍቲ ባይዱ业本3.2 作业本 课后作业题
1
2
×
三个二型
√
3
√ √9
4
5 ×
6
二个三型
7
8
×
10
√
11 ×
分一分: 分一分:
√ √ √ 要求:1、观察上面的 种正方体的展开图有没有什 、观察上面的11种正方体的展开图有没有什 √
么规律? 么规律? 2、这些正方体展开图可以分为几类?哪几号 、这些正方体展开图可以分为几类? √ 展开图可以分为一类,为什么 为什么? 展开图可以分为一类 为什么 √ √ 一四一型 一三二型 ×
●
●
壁虎
小壁虎遇难题: 小壁虎遇难题:
又有一天,壁虎在立方体的下方 发现斜对角 又有一天,壁虎在立方体的下方,发现斜对角 有一只蚊子,饥饿的它要想尽快吃到蚊子, 有一只蚊子,饥饿的它要想尽快吃到蚊子,应该 走哪条路最近呢? 走哪条路最近呢?
蚊子
蚊子 壁虎 壁虎
聪明的皮皮通过小壁虎的故事想到, 聪明的皮皮通过小壁虎的故事想到,把现有一个 正方体盒子沿某些边剪开铺平,再观察、制作! 正方体盒子沿某些边剪开铺平,再观察、制作!
黄
蓝
红
上
黄
相 对 两 面 不 相 连
立体图形的表面展开图例题与讲解
立体图形的表面展开图例题与讲解(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--立体图形的表面展开图1.圆柱、圆锥、棱柱的表面展开图将一个几何体的外表面展开,就像打开一件礼物的包装纸.礼物外形不同,包装纸的形状也各不相同.那么我们熟悉的一些几何体,如圆柱、圆锥、棱柱的表面展开图是什么形状呢(1)圆柱的表面展开图是两个圆(作底面)和一个长方形(作侧面).(2)圆锥的表面展开图是一个圆(作底面)和一个扇形(作侧面).(3)棱柱的表面展开图是两个完全相同的多边形(作底面)和几个长方形(作侧面).【例1】如图,将图中的阴影部分剪下来,围成一个几何体的侧面,使AB,DC重合,则所围成的几何体图形是().解析:此题可用排除法.因为阴影部分是个扇环,而圆柱的侧面展开图是长方形,所以排除A;圆锥的侧面展开图是扇形,所以排除B;长方体的侧面展开图是长方形,所以C 也要排除;故选D.答案:D2.正方体的表面展开图(1)正方体的表面展开图按展开图中正方形所在的行数及正方形的个数,归纳起来有四种情形,各种类型的共同特点是行与行之间有且只有一个“日”型结构,由此可知正方体的展开图不会出现如下面图形所示的“凹”字型和“田”字型结构,因为这里的行与行之间出现了两组“日”型结构.(2)正方体展开图中相对面的寻找技巧:相间的两个小正方形(中间隔着一个小正方形)是正方体的两个对面,如图1中的A面和B面;‘Z’字两端处的小正方形是正方体的对面,如图2、图3的A面和B面.此种方法简称为“相间、‘Z’端是对面”.解技巧正方体的表面展开图的判断思路(1)是否满足四种阵型中的一种;(2)行与行之间有且只有一个“日”型结构.【例2】一个正方形的每一个面上都写有一个汉字,其平面展开图如图所示,那么在该正方形中,与“爱”相对的字是().A.家B.乡C.孝D.感解析:本题以热爱家乡为素材,考查正方体的表面展开图.解题时可亲自动手剪一剪、折一折,即可得到与“爱”相对的字是“乡”;另外也可对展开图加以分析,根据展开图对面之间不能有公共边或公共的顶点,“爱”的对面不可能是“我”或“家”,折叠起来后“孝”、“感”与“爱”相邻,所以“爱”的对面不可能是“孝”、“感”,所以与“爱”相对的字是“乡”;但如果本题应用正方体展开图的对面寻找技巧——“相间、‘Z’端是对面”来解决,会非常简单,由相间的两个小正方形(中间隔着一个小正方形)是正方体的两个对面易知“爱”与“乡”相对.答案:B【例3】如图是正方体的展开图,则原正方体相对两个面上的数字和最小是().A.4 B.6 C.7D.8解析:将展开图还原成正方体,2和6相对,3和4相对,1和5相对,则原正方体相对两个面上的数字和最小为6.答案:B谈重点解决正方体展开图问题的关键熟练掌握正方体展开图的对面寻找技巧可以有效降低解题的难度,起到事半功倍的效果.3.正方体表面展开图的应用如果不考虑由于旋转等造成的相对位置的不同,正方体表面展开图一共有11个.正方体表面展开图的特点是每一个顶点周围的棱不超过三条.(1)“1–4–1”型有6个,其中通过“1”的移动可以由一个得到另外的5个,如图.(2)“1–3–2”型有3个,其中通过“1”的移动可以由1个得到另外的2个,如图.(3)“3–3”型有一个,“2–2–2”型有一个,如图.【例3-1】一个正方体的每一个面上都写着一个汉字,其表面展开图如图所示,那么,在该正方体中和“超”所对的汉字是__________.解析:这是“1–3–2”型的正方体表面展开图.根据展开图可知对面之间不能有公共边或公共顶点,所以“超”字的对面不能是“沉”、“着”、“越”,根据上下相对和左右相对,由于“信”和“着”相对,“着”和“超”相邻,所以“信”和“超”相邻.这样和“超”相对的字只能是“自”.答案:自【例3-2】六一儿童节时,阿兰准备用硬纸片通过裁剪、折叠制作一个封闭的正方体礼盒.她先在硬纸片上设计了一个如图1所示的裁剪方案(实线部分),经裁剪、折叠后成为一个封闭的正方体礼盒.请你参照如图,帮她设计另外两种不同的裁剪方案,使之经裁剪、折叠后也能成为一个封闭的正方体礼盒.图1 图2分析:阿兰设计的是正方体的11种展开图中的一种,可以从剩下的10种展开图中任选两种在如图的小方格中画出.解:如图2所示.4.其他立体图形展开图的应用由平面图形围成的立体图形叫多面体,其表面展开图可以有不同的形状.应多实践,观察,并大胆想象立体图形与表面展开图的关系.立体图形的表面展开图包括侧面展开图和底面展开图,画立体图形的展开图时,一定先观察立体图形的每一个面的形状.圆柱的侧面展开图是长方形,底面是圆;圆锥的侧面展开图是扇形,底面是圆;n棱柱的侧面展开图是n个高相等的长方形,底面是n边形;n棱锥的侧面展开图是n个三角形,底面是n边形.【例4】小新的茶杯是圆柱形,如图所示.左边下方有一只蜘蛛,从A处爬行到对面的中点B处,如果蜘蛛爬行路线最短,请画出这条最短路线图.分析:先画出圆柱的侧面展开图,再连接得到最短路线.解:如图所示.5.立体图形展开图的应用立体图形展开图的考查一般以选择题为主要方式,答案的获得需要学生经历一定的实验操作过程,当然学生也可以将操作活动转化为思维活动,在头脑中模拟(想象)折纸、翻转活动,较好地考查了学生的空间观念.解决此类问题,要充分考虑带有各种符号和各种图案的面的特点及位置,解题时,先正确画出立体图形的表面展开图,再仔细观察图案以及符号的不同特点,从而选出正确的答案.有时,根据图案的位置和方向可以先把一些很明显的不符合题目要求的选择项先排除掉,再一步步的寻找正确的选项.要想灵活解决此类问题,一要熟练掌握立体图形展开图的基本知识和解题技巧;二要充分发挥自己的空间想象力;三要不断积累生活经验和解题经验.【例5-1】如图所示的正方体的展开图是().解析:利用正方体及其表面展开图的特点解题.选项A和选项D折叠后,箭头不指向白三角形,C项折叠后与原正方体不符.B折叠后与原正方体相同.故选B.答案:B【例5-2】图1是由白色纸板拼成,将其中两面涂上颜色,如图2所示.下列四个中哪一个是图2的表面展开图().解析:由图中阴影部分的位置,首先可以排除B,D,又阴影部分正方形在左,三角形在右.故选A.答案:A。
立方体表面展开图规律的探索.
立方体表面展开图规律的探索――《3.2直棱柱的表面展开图》教学片断[教学背景]《3.2直棱柱的表面展开图》是浙教版新教材八年级上册第三章第二节的学习内容.这节课的教学目标是四点:1. 了解直棱柱的表面展开图的概念;2. 会在简单情况下判断一个平面图形是否直棱柱的表面展开图,培养学生的空间想象能力;3. 会画简单直棱柱的表面展开图;4. 能根据展开图判断和制作立体模型.教学重点是:直棱柱的表面展开图,包括会认和画展开图.教学难点是:立方体的表面展开图的辨认.由于在这套教材体系里,学生是第一次接触空间立体图形与平面图形的相互转化,因此,考虑到本节内容自身的数学特点,以及学生学习数学的心理规律,我认为在教学中应该强调从学生已有的生活经验出发,充分重视数学过程,提供足够的操作与交流的空间,有利于学生经历观察、实验、猜测、尝试、推理、交流、反思等活动,从而帮助学生建立初步的空间观念,培养他们的空间想象能力.所以,我把这一节课定位于一节数学操作活动课.鉴于这样的定位,我给出了相应的教学设计.我发现这节课的表面展开图重点不在一般的直棱柱。
而主要是立方体的表面展开图。
于是我下面就重点给出立方体表面展开图规律的探索过程及结论,包括由杜登尼的著名谜题“蛛蝇问题”引出的空间立体图形与平面图形的相互转化,即从立方体的表面展开图深化到长方体的表面展开图的系列问题。
[预设与生成]一、教学准备教师和每个学生准备六个边长为8厘米的正方形,并用透明胶粘成一个立方体纸盒,便于进行课堂内的“剪与展”活动;分好四人学习小组;多媒体课件,辅助演示教学。
二、教学片断(一)、片断一:立方体表面展开图规律的探索1、形成概念(1)师:请同学们将事先准备好的立方体纸盒,沿某些棱剪开,且使六个面连在一起,然后铺平.你能得到怎样的图形? 你一共剪了几刀?生:七刀。
师:为什么?观察一下六个面相连需要几条棱?生:5条棱。
噢……总共有12条棱,剩下5条棱,那么当然要剪七刀。
第4讲 直棱柱
第4讲 直棱柱一、内容提要1. 了解直棱柱, 会画直棱柱的三视图,会判断简单物体(直棱柱形状)的三视图,能根据三视图描述直棱柱或实物原型(直棱柱形状).2. 了解直棱柱的表面展开图, 能根据展开图判断和制作立体模型.3. 初步了解直棱柱与其三视图、展开图之间的关系;通过典型实例,知道这种关系在现实生活中的应用(如物体的包装).二. 热身练习[A]组题1.下列几何体中,不属于多面体的是( )A.立方体 B .三棱柱C .长方体D .球 2.如图1,下列多面体中,直棱柱的个数是…( )A.6个B.4个C.3个D.2个3.下面各个图形是由6个大小相同的正方形组成的,其中能沿正方形的边折叠成一个正方体的是( )4.下面图形中是正方体平面展开图的是( )图图1A .B .C .D .5.下面简单几何体的左视图是( )6.一物体的主视图是长方形,则该物体不可能是()A. 圆柱体B. 长方体C. 三棱锥D. 直棱柱 7.如图是一些立体图形的三视图,请根据视图说出这些立体图形的名称:(1)(2)名称: 名称:8.如图2是某品牌牙膏的软包装盒,其尺寸如图所标(单位:cm ),请画出这种包装盒的表面展开图,并计算这个包装盒的表面积.三. 例题分析例1、一个直棱柱有12个顶点,它是几棱柱?有多少条棱?多少个面?例2、把图1折成正方体后,如果相对面所对应的值相等,那么x 的平方根与y 的算术平方根之积为 .A .B .C .D .A .B .C .D .正面图12145图2例3、如图3是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数.请画出这个几何体的主视图、左视图.★★例4、已知一个几何体的三视图如图4所示,描述该几何体的形状,并根据图中数据计算它的表面积.(结果精确到1cm 2)★★例5、 如图,长方体的长为15cm ,宽为10cm ,高为20cm ,点B 在棱CD 上,CB=5cm. 一只壁虎要沿长方休的表面从A 点爬到B 点,需要爬行的最短路径是多少cm?四. 思维提升 [B]组题1.下列实物的形状中,是直棱柱的是( )A. B. C. D.2.直棱柱的棱数,一定是下列某自然数的倍数( )A.2B.3C.5D.73.如图1所示,八棱柱模型的底面边长都是4cm ,侧棱长为4cm . 下列说法,错误的是( )A .每个面都是正方形B .侧面积为128cm 2C .共有16个顶点D .共有24条棱32211图3图 5图14.一个直三棱柱(如图4甲)顺着侧棱的方向切一刀,可以得到一个直三棱柱和一个直四棱柱(如图4乙).(1) 对图3甲用同样的方法切一刀, 能否得到两个直三棱柱?如何切?(2) 一个直四棱柱用同样的方法切一刀,得到一个直n 棱柱和一个直m 棱柱, 写出m , n 所有可能的值.5.如图6是一个食品包装盒的侧面展开图.(1) 请写出这个包装盒的多面体形状的名称;(2) 请根据图中所标的尺寸,计算这个多面体的侧面积.7.图7表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的主视图为( )★★8。
浙教版八年级第3章直棱柱教材分析
第三章直棱柱本章的主要内容有直棱柱、展开图、三视图及其有关应用。
这些内容在前两个学段学生已有接触,但十分肤浅,只学过长方体和立方体。
本章是学生已有空间图形知识的进一步扩展,对培养学生的空间想像能力是很重要的一环。
尽管本章内容仍是直观的,但要求已有所不同。
也为高中进一步学习立体几何打下基础,因此,本章具有承前启后的作用。
另外,《数学课程标准》中有关视图的要求本套教科书分两步到位,本章只涉及直棱柱的三视图及表面展开图,有关圆柱、圆锥、球等几何体的三视图及表面展开图将到九年级学习。
直棱柱是一种基本的立体图形,它在我们的周围随处可见,和人们的生活和生产实践密切相关。
直棱柱的表面展开图与三视图,在今后的立体几何学习中会经常碰到,是本章的教学重点。
直棱柱的表面展开图的判断和画法对学生的空间想像能力要求较高,是本章主要的教学难点。
本章教学时间约需7课时,具体安排如下:3.1 认识直棱柱1课时3.2 直棱柱的表面展开图 1课时3.3 三视图 1课时3.4 由三视图描述几何体 1课时复习、评估2课时,机动使用1课时,合计7课时一、教科书内容和课程教学目标(1) 本章知识结构框图如下:(2) 本章教学要求①了解直棱柱的表面展开图,并能根据展开图判断和制作立体模型。
②会画基本几何体(直棱柱)的三视图(主视图、左视图、俯视图),会判断简单物体的三视图,能根据三视图描述基本几何体或实物原型。
③了解基本几何体与三视图、展开图之间的关系;通过典型实例,知道这种关系在现实生活中的应用(如物品的包装)。
④观察与现实生活有关的立体图形,了解并欣赏一些有趣的立体图形(如不可能的立体图形等)。
(3) 本章教材分析1.本章的主要内容是直棱柱,课本从学生生活周围熟悉的物体入手,使学生对物体形状的认识从感性逐步上升到抽象的几何图形。
同时,教师可以补充一些具体的事例,再进一步认识一些简单的几何图形,它们都是由若干个平面围成的,而将这些平面沿某些棱剪开、铺平就得到这个几何体的表面展开图;而分别从正面、左面、和上面看这个几何体所得到的图形就是这个几何体的三视图。
3.2_直棱柱的表面展开图
3.2 直棱柱的表面展开图 姓名学习目标:1.了解直棱柱的表面展开图的概念2.会在简单的情况下判断一个平面图形是不是直棱柱的表面展开图。
3.会画简单的直棱柱的表面展开图4.能根据展开图判断和制作立体模型课前自学:1.请同学们将事先准备好的立方体纸盒,沿某些棱剪开,且使六个面连在一起,然后铺开,你能得到怎样的图形?请画下来(看看你能画几种情况).2.下图是一个立方体的表面展开图吗?如果是,请分别用1,2,3,4,5,6中的同一个数字表示它的展开图中各对对应的面3.判断下列各图中,哪些图能折叠成一个立方体4、有一种牛奶包装盒如图所示。
为了生产这种包装盒,需要先画出展开图纸样。
(1)如图给出的三种纸样,它们都正确吗?(2)从已知正确的纸样中选出一种,标注上尺寸;(3)利用你所选的一种纸样,求出包装盒的侧面积和表面积(侧面积与两个底面积的和)甲 乙丙课堂检测:1.等你来挑战:下面的图形都是立方体的展开图吗?2.让想象力更充分一些:添上一个小正方形,使下图折叠后能围成一个立方体,共有几种添法?3.让思维更活跃一点:如图,这是一个正方体的展开图,如果将它组成原来的正方体,哪些点与点P 重合?4.如图是一个正方体纸盒的展开图,图中的6个正方形中分别已填入了-1a 、b 、c ,使展开图沿虚线折叠成正方体后相对面上的两个数互为相反数,5. 将前、右、上三个面做有标记的立方体盒子展开,以下各示意图中是它的展开图的是()l S T P H R U V M N Q ZY WK ___,___,____ab c ===AB D C。
九年级数学下册 3.2 直棱柱、圆锥的侧面展开图 巧记口
巧记口诀确定正方体表面展开图6个相连的正方形组成的平面图形,经折叠能否围城正方体问题,是近年来中考常考题型。
同学们在学习这一知识时常感到无从下手,现将确定正方体展开图的方法以口诀的方式总结出来,供大家参考:正方体盒巧展开,六个面儿七刀裁。
十四条边布周围,十一类图记分明:四方成线两相卫,六种图形巧组合;跃马失蹄四分开;两两错开一阶梯。
对面相隔不相连,识图巧排“7”、“凹”、“田”。
现将口诀的内涵解释如下:将一个正方体盒的表面沿某些棱剪开,展开成平面图形,需剪7刀,故平面展开图中周围有14条边长共有十一种展开图:一、四方成线两相卫,六种图形巧组合(1)(2)(3)(4)(5)(6)以上六种展开图可归结为四方连线,即上下两侧,共六种情况。
二、跃马失蹄四分开(1)(2)(3)(4)以上四种情况可归结为五个小方块组成“三二相连”的基本图形(如图),另外一个小方块的位置有四种情况,即图中四个小方块中的任意一个,这一图形有点像失蹄的马,故称为“跃马失蹄”。
三、两两错开一阶梯 这一种图形是两个小方块一组,两两错开,像阶梯一样,故称“两两错开一阶梯”。
四、对面相隔不相连这是确定展开图的又一种方法,也是确定展开图中的对面的一种方法。
如果出现三个相连,则1号面与3号面是对面,中间隔了一个2号面,并且是对面的一定不相连。
五、识图巧排“7”、“凹”、“田”(1) (2) (3)这里介绍的是一种排除法。
如果图中出现象图(1)中的“7”形结构的图形不可能是正方体展开图的,因为图中1号面与3号面是对面,3号面又与5号面是对面,出现矛盾。
如果图中出现象图(2)中的“田”形结构的图形不可能是正方体展开图的,因为同一顶点处不可能出现四个面的。
如果图中出现象图(3)中的“凹”形结构的图形不可能是正方体展开图的,因为如果把该图形折叠起来将有两个面重合。
现举例说明:例1.(海口市实验区)下面的平面图形中,是正方体的平面展开图的是( )解析:本题可用“识图巧排 ‘7’、‘田’、‘凹’”来解决。
3.4直棱柱的表面展开图解读
把你们小组所做的立方体纸盒沿着某些棱剪开, 且使六个面连在一起,然后铺平,把你所得到的图形画 出来,数一数剪了几刀?并比一比,有何异同?
将立方体沿某些棱剪开后铺平,且六 个面连在一起,这样的图形叫立方体 的表面展开图。
展开图规律之一:立方体的展开过程需要剪七刀.
口诀
展开图规律之二: 异层 “日”字连,整体没有“田 ”
“日”字异层见;
二.
整体没有“田”;
作业 作业: 1、作业本(2) 2、同步练习3. 2
3、课后作业1~5
4、预习3.3三视图
如图是立方体的表面展开图,要求折成立方体后,使 得6在前,右面是2,哪个面在上?
1 2 5 6 3 4
合作游戏(二) 下面的图形都是立方体的展开图吗?
添上一个小正方形,使下图折叠后能围成一个 立方体,共有几种添法?
E
Bபைடு நூலகம்
D
---- “蜘蛛和苍蝇”问题 杜登尼(Dudeney,1857-1930年)是19 世纪英国知名的谜题创作者.“蜘蛛 和苍蝇”问题.
A
B
---- “蜘蛛和苍蝇”问题 在一个长方形长、宽、高 分别为3米,2米,2米长方 体房间内,一蜘蛛在一面的中间,离天花板0.1米 处(A点),苍蝇在对面墙的中间,离地面0.1米处(B点 ),试问:蜘蛛去捉苍蝇需要爬行的最短距离是多少?
2
c 7 -1 a b
合作游戏----争做小小数学家 连连看
如图,上面的图形分别是下面哪个立体图形展开 有一种牛奶包装盒如图所示。为了生产这种包装 的形状?把它们用线连起来。 盒,需要先画出展开图纸样。 (1)如图给出的三种纸样,它们都正确吗? (2)从已知正确的纸样中选出一种,标注上尺寸; (3)利用你所选的一种纸样,求出包装盒的侧面积 和表面积(侧面积与两个底面积的和)
初中数学章节目录
八 年 级 下
1.1 二次根式 第1章 二 1.2 二次根式的性质 次根式 1.3节二次根式的运算 第2章 一 2.1 一元二次方程 元二次方 2.2一元二次方程的解法 程 2.3一元二次方程的应用 第3章 频 3.1 频数和频率 数及其分 3.2 频数分布 布 3.3 频数的应用 4.1 定义与命题 第4章 命 4.2 证明 题与证明 4.3 反例与证明 4.4反证法 5.1多边形 5.2 平行四边形 5.3 平行四边形的性质 第5章 平 5.4 中心对称 行四边形 5.5 平行四边形的判定 5.6 三角形的中位线 5.7 2 菱形 边形与梯 6.3 正方形 形 6.4 梯形
第1章 平行线
第2章 特殊三 角形
第3章 直棱柱 八 年 第4章 级 样本与 上 数据的 分析初 步 第5章 一元一 次不等 式 第6章 图形与 坐标 第7章 一次函 数
1.1 同位角内错角同旁内角 1.2 平行线的判定 1.3 平行线的性质 1.4 平行线之间的距离 2.1 等腰三角形 2.2 等腰三角形的性质 2.3 等腰三角形的判定 2.4 等边三角形 2.5 直角三角形 2.6 探索勾股定理 2.7直角三角形的全等判定 3.1 认识直棱柱 3.2 直棱柱的表面展开图 3.3三视图 3.4 由三视图描述几何体 4.1 抽样 4.2 平均数 4.3 众位数和众数 4.4 方差和标准差 4.5 统计量的选择和应用 5.1 认识一元一次不等式 5.2 不等式的基本性质 5.3 一元一次不等式 5.4 一元一次不等式组 6.1 探索确定位置的方法 6.2 平面直角坐标系 6.3 坐标平面内的图形变换 7.1 常量和变量 7.2 认识函数 7.3 一次函数 7.4 一次函数的图象 7.5 一次函数的简单应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
创设问题情境
将立方体纸盒沿某些棱剪开, 并使六个面连在一起,然后铺平。 你能画出铺平后的图形吗? (看谁画最多)
表面展开图 下面的展开图对吗?
一三二型 二个三型
一四一型
三个二型
一 四 一 型
口诀
“一四一” “一三二”, “一”在同层可任行; “三个二”成阶梯,
一 三 二 型 三 个 二 型பைடு நூலகம்两 个 三 型
2 5 1 6 3
4
C
B
4cm
A
例4:如图,已知立方体的棱长为4cm,一只蚂蚁
从点A沿立方体表面爬到点C,试求它爬行的最
短距离是多少?
本节课你的收获是什么?
作业:
课后作业 作业本(1)
“二个三”,“日”状连; 异层必有“日字 现” 整体没有“田”, 有“田”就完蛋。
例1:下列图形不是正方体的表面展开图的是(
)
A
B
C
D
例2:下列图形可围成一个立方体的是(
)
A
B
C
D
例3见课本59页例1如图是一个立方体的表面展开图吗?
如果是,请分别用1,2,3,4,5,6中的同一个数字 表示立方体和它的展开图中各对对应的面(只要求给 出一种表示法)