专题09电磁感应现象及电磁感应规律的应用(名校试题)-高考物理小题精做系列(第01期)(解析版)
电磁感应规律的综合应用(解析版)-2023年高考物理压轴题专项训练(新高考专用)
压轴题07电磁感应规律的综合应用目录一,考向分析 (1)二.题型及要领归纳 (2)热点题型一以动生电动势为基综合考查导体棒运动的问题 (2)热点题型二以感生电动势为基综合考查导体棒运动的问题 (9)热点题型三以等间距双导体棒模型考动量能量问题 (16)热点题型四以不等间距双导体棒模型考动量定理与电磁规律的综合问题 (21)热点题型五以棒+电容器模型考查力电综合问题 (27)三.压轴题速练 (33)一,考向分析1.本专题是运动学、动力学、恒定电流、电磁感应和能量等知识的综合应用,高考既以选择题的形式命题,也以计算题的形式命题。
2.学好本专题,可以极大地培养同学们数形结合的推理能力和电路分析能力,针对性的专题强化,可以提升同学们解决数形结合、利用动力学和功能关系解决电磁感应问题的信心。
3.用到的知识有:左手定则、安培定则、右手定则、楞次定律、法拉第电磁感应定律、闭合电路欧姆定律、平衡条件、牛顿运动定律、函数图像、动能定理和能量守恒定律等。
电磁感应综合试题往往与导轨滑杆等模型结合,考查内容主要集中在电磁感应与力学中力的平衡、力与运动、动量与能量的关系上,有时也能与电磁感应的相关图像问题相结合。
通常还与电路等知识综合成难度较大的试题,与现代科技结合密切,对理论联系实际的能力要求较高。
4.电磁感应现象中的电源与电路(1)产生感应电动势的那部分导体相当于电源。
(2)在电源内部电流由负极流向正极。
(3)电源两端的电压为路端电压。
5.电荷量的求解电荷量q=IΔt,其中I必须是电流的平均值。
由E=n ΔΦΔt、I=ER总、q=IΔt联立可得q=n ΔΦR总,与时间无关。
6.求解焦耳热Q的三种方法(1)焦耳定律:Q=I2Rt,适用于电流、电阻不变。
(2)功能关系:Q=W克服安培力,电流变不变都适用。
(3)能量转化:Q=ΔE(其他能的减少量),电流变不变都适用。
7.用到的物理规律匀变速直线运动的规律、牛顿运动定律、动能定理、能量守恒定律等。
高三物理 专题复习 《电磁感应的综合应用》(含答案解析)
第9课时 电磁感应的综合应用 考点 楞次定律与法拉第电磁感应定律的应用1.求感应电动势的两种方法(1)E =n ΔΦΔt,用来计算感应电动势的平均值. (2)E =Bl v 或E =12Bl 2ω,主要用来计算感应电动势的瞬时值. 2.判断感应电流方向的两种方法(1)利用右手定则,即根据导体在磁场中做切割磁感线运动的情况进行判断.(2)利用楞次定律,即根据穿过闭合回路的磁通量的变化情况进行判断.3.楞次定律中“阻碍”的四种表现形式(1)阻碍磁通量的变化——“增反减同”.(2)阻碍相对运动——“来拒去留”.(3)使线圈面积有扩大或缩小的趋势——“增缩减扩”.(4)阻碍电流的变化(自感现象)——“增反减同”.例1 (多选)(2019·全国卷Ⅰ·20)空间存在一方向与纸面垂直、大小随时间变化的匀强磁场,其边界如图1(a)中虚线MN 所示.一硬质细导线的电阻率为ρ、横截面积为S ,将该导线做成半径为r 的圆环固定在纸面内,圆心O 在MN 上.t =0时磁感应强度的方向如图(a)所示;磁感应强度B 随时间t 的变化关系如图(b)所示.则在t =0到t =t 1的时间间隔内( )图1A .圆环所受安培力的方向始终不变B .圆环中的感应电流始终沿顺时针方向C .圆环中的感应电流大小为B 0rS 4t 0ρD .圆环中的感应电动势大小为B 0πr 24t 0答案 BC解析 在0~t 0时间内,磁感应强度减小,根据楞次定律可知感应电流的方向为顺时针,圆环所受安培力水平向左,在t 0~t 1时间内,磁感应强度反向增大,感应电流的方向为顺时针,圆环所受安培力水平向右,所以选项A 错误,B 正确;根据法拉第电磁感应定律得E =ΔΦΔt =12πr 2·B 0t 0=B 0πr 22t 0,根据电阻定律可得R =ρ2πr S ,根据欧姆定律可得I =E R =B 0rS 4t 0ρ,所以选项C 正确,D 错误.变式训练1.(多选)(2020·山东等级考模拟卷·12)竖直放置的长直密绕螺线管接入如图2甲所示的电路中,通有俯视顺时针方向的电流,其大小按图乙所示的规律变化.螺线管内中间位置固定有一水平放置的硬质闭合金属小圆环(未画出),圆环轴线与螺线管轴线重合.下列说法正确的是( )图2A .t =T 4时刻,圆环有扩张的趋势 B .t =T 4时刻,圆环有收缩的趋势 C .t =T 4和t =3T 4时刻,圆环内的感应电流大小相等 D .t =3T 4时刻,圆环内有俯视逆时针方向的感应电流 答案 BC解析 t =T 4时刻,线圈中通有俯视顺时针且逐渐增大的电流,则线圈中由电流产生的磁场向下且逐渐增加.由楞次定律可知,圆环有收缩的趋势,A 错误,B 正确;t =3T 4时刻,线圈中通有俯视顺时针且逐渐减小的电流,则线圈中由电流产生的磁场向下且逐渐减小,由楞次定律可知,圆环中的感应电流为俯视顺时针,D 错误;t =T 4和t =3T 4时刻,线圈中电流的变化率一致,即由线圈电流产生的磁场变化率一致,则圆环中的感应电流大小相等,C 正确. 例2 (多选)(2019·山东枣庄市上学期期末)如图3所示,水平放置的半径为2r 的单匝圆形裸金属线圈A ,其内部有半径为r 的圆形匀强磁场区域,磁场的磁感应强度大小为B 、方向竖直向下;线圈A 的圆心和磁场区域的圆心重合,线圈A 的电阻为R .过圆心的两条虚线ab 和cd 相互垂直.一根电阻不计的直导体棒垂直于ab 放置,使导体棒沿ab 从左向右以速度v 匀速通过磁场区域,导体棒与线圈始终接触良好,线圈A 中会有感应电流通过.撤去导体棒,使磁场的磁感应强度均匀变化,线圈A 中也会有感应电流,如果使cd 左侧的线圈中感应电流大小和方向与导体棒经过cd 位置时的相同,则( )图3A .磁场一定增强B .磁场一定减弱C .磁感应强度的变化率为4B v πrD .磁感应强度的变化率为8B v πr答案 AC解析 根据右手定则,导体棒切割磁感线产生的感应电流通过cd 左侧的线圈时的方向是逆时针的,根据楞次定律,使磁场的磁感应强度均匀变化,产生同样方向的感应电流,磁场一定增强,故A 正确,B 错误;导体棒切割磁感线时,根据法拉第电磁感应定律,导体棒经过cd位置时产生的感应电动势E =2Br v ,根据欧姆定律,通过cd 左侧的线圈中感应电流大小I =E R2=4Br v R ;磁场的磁感应强度均匀变化时,根据法拉第电磁感应定律和欧姆定律,ΔB Δt ×r 2πR=4Br v R ,ΔB Δt =4B v πr,故C 正确,D 错误. 变式训练2.(2019·山东济南市3月模拟)在如图4甲所示的电路中,螺线管匝数n =1 000匝,横截面积S =20 cm 2.螺线管导线电阻r =1.0 Ω,R 1=4.0 Ω,R 2=5.0 Ω,C =30 μF.在一段时间内,垂直穿过螺线管的磁场的磁感应强度B 的方向如图甲所示,大小按如图乙所示的规律变化,则下列说法中正确的是( )图4A .螺线管中产生的感应电动势为1.2 VB .闭合K ,电路中的电流稳定后,电容器的下极板带负电C .闭合K ,电路中的电流稳定后,电阻R 1的电功率为2.56×10-2 WD .闭合K ,电路中的电流稳定后,断开K ,则K 断开后,流经R 2的电荷量为1.8×10-2 C 答案 C解析 根据法拉第电磁感应定律:E =n ΔΦΔt =nS ΔB Δt ;解得:E =0.8 V ,故A 错误;根据楞次定律可知,螺线管的感应电流盘旋而下,则螺线管下端相当于电源的正极,则电容器的下极带正电,故B 错误;根据闭合电路欧姆定律,有:I =E R 1+R 2+r=0.08 A ,根据 P =I 2R 1解得:P =2.56×10-2 W ,故C 正确;K 断开后,流经R 2的电荷量即为K 闭合时电容器一个极板上所带的电荷量Q ,电容器两端的电压为:U =IR 2=0.4 V ,流经R 2的电荷量为:Q =CU =1.2×10-5 C ,故D 错误. 考点 电磁感应中的电路与图象问题1.电磁感应现象中的电源与电路(1)产生感应电动势的那部分导体相当于电源.(2)在电源内部电流由负极流向正极.(3)电源两端的电压为路端电压.2.解图象问题的三点关注(1)关注初始时刻,如初始时刻感应电流是否为零,是正方向还是负方向.(2)关注变化过程,看电磁感应发生的过程可以分为几个阶段,这几个阶段分别与哪段图象变化相对应.(3)关注大小、方向的变化趋势,看图线斜率的大小、图线的曲直是否和物理过程对应.3.解图象问题的两个分析方法(1)排除法:定性地分析电磁感应过程中物理量的变化趋势(增大还是减小)、变化快慢(均匀变化还是非均匀变化),特别是物理量的正负,排除错误的选项.(2)函数法:根据题目所给条件定量地写出两个物理量之间的函数关系,然后由函数关系对图象作出分析和判断,这未必是最简捷的方法,但却是最有效的方法.例3 (多选)(2019·贵州部分重点中学教学质量评测卷(四))长为L 的金属棒OP 固定在顶角为2θ的塑料圆锥体侧面上,ab 为圆锥体底面直径.圆锥体绕其轴OO ′以角速度ω在磁感应强度大小为B 、方向竖直向下的匀强磁场中匀速转动,转动方向如图5所示,下列说法正确的是( )图5A .金属棒上O 点的电势高于P 点B .金属棒上O 点的电势低于P 点C .金属棒OP 两端电势差大小为12Bω2L sin θD .金属棒OP 两端电势差大小为12BωL 2sin 2 θ 答案 AD解析 由右手定则知金属棒OP 在匀速转动过程中切割磁感线产生的感应电动势方向由P 指向O ,在电源内部由电势低处指向电势高处,则金属棒上O 点的电势高于P 点,故A 正确,B 错误.金属棒OP 在匀速转动过程中切割磁感线的有效长度L ′=O ′P =L sin θ,故产生的感应电动势E =BL ′·12ωL ′=12BωL 2sin 2 θ,故C 错误,D 正确. 变式训练3.(2019·安徽宣城市期末调研测试)边界MN 的一侧区域内,存在着磁感应强度大小为B 、方向垂直于光滑水平桌面的匀强磁场.边长为l 的正三角形金属线框abc 粗细均匀,三边阻值相等,a 顶点刚好位于边界MN 上,现使线框围绕过a 点且垂直于桌面的转轴匀速转动,转动角速度为ω,如图6所示,则在ab 边开始转入磁场的瞬间ab 两端的电势差U ab 为( )图6A.13Bl 2ω B .-12Bl 2ω C .-13Bl 2ω D.16Bl 2ω 答案 A 解析 当ab 边刚进入磁场时,ab 部分在切割磁感线,切割长度为两个端点间的距离,即a 、b 间的距离为l ,E =Bl v =Bl lω2=12Bl 2ω;设每个边的电阻为R ,a 、b 两点间的电势差为:U =I ·2R =E 3R ·2R ,故U =13Bωl 2,故A 正确,B 、C 、D 错误. 例4 (多选)(2019·全国卷Ⅱ·21)如图7,两条光滑平行金属导轨固定,所在平面与水平面夹角为θ,导轨电阻忽略不计.虚线ab 、cd 均与导轨垂直,在ab 与cd 之间的区域存在垂直于导轨所在平面的匀强磁场.将两根相同的导体棒PQ 、MN 先后自导轨上同一位置由静止释放,两者始终与导轨垂直且接触良好.已知PQ 进入磁场时加速度恰好为零.从PQ 进入磁场开始计时,到MN 离开磁场区域为止,流过PQ 的电流随时间变化的图像可能正确的是( )图7答案 AD解析 根据题述,PQ 进入磁场时加速度恰好为零,两导体棒从同一位置释放,则两导体棒进入磁场时的速度相同,产生的感应电动势大小相等,若释放两导体棒的时间间隔足够长,在PQ 通过磁场区域一段时间后MN 进入磁场区域,根据法拉第电磁感应定律和闭合电路欧姆定律可知流过PQ 的电流随时间变化的图像可能是A ;若释放两导体棒的时间间隔较短,在PQ 没有出磁场区域时MN 就进入磁场区域,则两棒在磁场区域中运动时回路中磁通量不变,两棒不受安培力作用,二者在磁场中做加速运动,PQ 出磁场后,MN 切割磁感线产生感应电动势和感应电流,且感应电流一定大于I 1,受到安培力作用,由于安培力与速度成正比,则MN 所受的安培力一定大于MN 的重力沿导轨平面方向的分力,所以MN 一定做减速运动,回路中感应电流减小,流过PQ 的电流随时间变化的图像可能是D. 变式训练4.(2019·安徽合肥市第一次质量检测)如图8所示,一有界匀强磁场区域的磁感应强度大小为B ,方向垂直纸面向里,磁场宽度为L ;正方形导线框abcd 的边长也为L ,当bc 边位于磁场左边缘时,线框从静止开始沿x 轴正方向匀加速通过磁场区域.若规定逆时针方向为电流的正方向,则反映线框中感应电流变化规律的图象是( )图8答案 B解析 设导线框运动的加速度为a ,则某时刻其速度v =at ,所以在0~t 1时间内(即当bc 边位于磁场左边缘时开始计时,到bc 边位于磁场右边缘结束),根据法拉第电磁感应定律得:E=BL v =BLat ,电动势为逆时针方向.由闭合电路欧姆定律得:I =BLa R t ,电流为正.其中R 为线框的总电阻.所以在0~t 1时间内,I ∝t ,故A 、C 错误;从t 1时刻开始,ad 边开始切割磁感线,电动势大小E =BLat ,其中t 1<t ≤t 2,电流为顺时针方向,为负,电流I =BLa Rt ,t 1<t ≤t 2,其中I 0=BLa R t 1,电流在t 1时刻方向突变,突变瞬间,电流大小保持I 0=BLa R t 1不变,故B 正确,D 错误.考点电磁感应中的动力学与能量问题1.电荷量的求解电荷量q =I Δt ,其中I 必须是电流的平均值.由E =n ΔΦΔt 、I =E R 总、q =I Δt 联立可得q =n ΔΦR 总,此式不涉及时间.2.求解焦耳热Q 的三种方法(1)焦耳定律:Q =I 2Rt ,适用于电流、电阻不变; (2)功能关系:Q =W 克服安培力,电流变或不变都适用;(3)能量转化:Q =ΔE 其他能的减少量,电流变或不变都适用.3.电磁感应综合题的解题策略(1) 电路分析:明确电源与外电路,可画等效电路图.(2) 受力分析:把握安培力的特点,安培力大小与导体棒速度有关,一般在牛顿第二定律方程里讨论,v 的变化影响安培力大小,进而影响加速度大小,加速度的变化又会影响v 的变化.(3) 过程分析:注意导体棒进入磁场或离开磁场时的速度是否达到“收尾速度”.(4) 能量分析:克服安培力做的功,等于把其他形式的能转化为电能的多少.例5 (2019·湖北稳派教育上学期第二次联考)如图9所示,倾角为θ的光滑绝缘斜面上平行于底边的虚线ef 下方有垂直于斜面向下的匀强磁场,磁场的磁感应强度大小为B ,边长为L 的正方形导线框abcd 放在斜面上,线框的电阻为R ,线框的cd 边刚好与ef 重合.无初速度释放线框,当ab 边刚好要进入磁场时,线框的加速度刚好为零,线框的质量为m ,重力加速度为g ,求:图9(1)ab 边刚好要进入磁场时线框的速度大小;(2)从释放线框到ab 边进入磁场时,通过线框横截面的电荷量.答案 (1)mgR sin θB 2L 2 (2)BL 2R解析 (1)ab 边刚好要进入磁场时, mg sin θ=F A =B 2L 2v R解得:v =mgR sin θB 2L 2(2)线框进入磁场的过程中,平均电流为I =E R根据法拉第电磁感应定律有:E =ΔФΔt 通过线框横截面的电荷量q =I Δt =ΔФR =BL 2R.变式训练5.(多选)(2019·辽宁葫芦岛市第一次模拟)如图10甲所示,在MN 、OP 间存在一匀强磁场,t =0时,一正方形光滑金属线框在水平向右的外力F 作用下紧贴MN 从静止开始做匀加速运动,外力F 随时间t 变化的图线如图乙所示,已知线框质量m =1 kg 、电阻R =2 Ω,则( )图10A .线框的加速度大小为2 m/s 2B .磁场宽度为6 mC .匀强磁场的磁感应强度大小为 2 TD .线框进入磁场过程中,通过线框横截面的电荷量为22 C 答案 ACD 解析 整个线框在磁场中运动时只受外力F 作用,则加速度a =F m=2 m/s 2.由题图可知,从线框右边刚进入磁场到右边刚离开磁场,运动的时间为2 s ,磁场的宽度d =12at 12=4 m ,所以选项A 正确,B 错误;当线框全部进入磁场前的瞬间:F 1-F 安=ma ,而F 安=BIL =B 2L 2v R=B 2L 2at R ,线框的宽度L =12at 12=12×2×12 m =1 m ,联立得:B = 2 T ,所以选项C 正确;线框进入磁场过程中,通过线框横截面的电荷量为q =ΔФR =BL 2R =2×122 C =22C ,所以选项D 正确.例6 (2019 ·浙南名校联盟期末)如图11甲所示,在竖直方向上有4条间距相等的水平虚线L 1、L 2、L 3、L 4,在L 1L 2之间、L 3L 4之间存在匀强磁场,大小均为1 T ,方向垂直于虚线所在平面.现有一根电阻为2 Ω的均匀金属丝,首尾相连制成单匝矩形线圈abcd ,连接处接触电阻忽略,宽度cd =L =0.5 m ,线圈质量为0.1 kg ,将其从图示位置由静止释放(cd 边与L 1重合),速度随时间变化的关系如图乙所示,其中0~ t 1时间内图线是曲线,其他时间内都是直线;并且t 1时刻cd 边与L 2重合,t 2时刻ab 边与L 3重合,t 3时刻ab 边与L 4重合,已知t 1~t 2的时间间隔为0.6 s ,整个运动过程中线圈平面始终处于竖直方向(重力加速度g 取10 m/s 2).求:图11(1)线圈匀速运动的速度大小;(2)线圈的长度ad ;(3)在0~t 1时间内通过线圈的电荷量;(4)0~t 3时间内,线圈ab 边产生的热量.答案 (1) 8 m/s (2) 2 m (3) 0.25 C (4) 0.18 J解析 (1) t 2~t 3时间ab 边在L 3L 4内做匀速直线运动,E =BL v 2,F =B E R L ,F =mg 联立解得:v 2=mgR B 2L2=8 m/s , (2)从cd 边出L 2到ab 边刚进入L 3线圈一直做匀加速直线运动,ab 刚进上方磁场时,cd 也应刚进下方磁场,设磁场宽度是d ,由v 2=v 1+gt 得,v 1=2 m/s ,则3d =v 1+v 22t =3 m ,得:d =1 m ,有:ad =2d =2 m ,(3)0~t 1时间内,通过线圈的电荷量为q =ΔΦR =BdL R=0.25 C , (4)在0~t 3时间内由能量守恒得:线圈产生热量Q 总=mg ·5d -12m v 22=1.8 J 故线圈ab 边产生热量Q =110Q 总=0.18 J. 变式训练6.(2019·福建三明市期末质量检测)如图12所示,足够长的光滑导轨倾斜放置,导轨平面与水平面夹角θ=37°,导轨间距L =0.4 m ,其下端连接一个定值电阻R =4 Ω,其他电阻不计.两导轨间存在垂直于导轨平面向下的匀强磁场,磁感应强度B =1 T .一质量为m =0.04 kg 的导体棒ab 垂直于导轨放置,现将导体棒由静止释放,取重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.图12(1)求导体棒下滑的最大速度;(2)若导体棒从静止加速到v =4 m/s 的过程中,通过R 的电荷量q =0.2 C ,求R 产生的热量值. 答案 (1)6 m/s (2)0.16 J解析 (1)当导体棒所受的合外力为零时,速度最大,则:mg sin θ=BIL ,I =BL v R 联立解得v =6 m/s(2)设该过程中电流的平均值为I ,则q =I ΔtI =ER ,E =BLx Δt 由能量守恒定律可得:mgx sin θ=12m v 2+Q 联立解得:x =2 m ,Q =0.16 J .考点 电磁感应中的动量和能量问题1.电磁感应与动量综合问题往往需要运用牛顿第二定律、动量定理、动量守恒定律、功能关系和能量守恒定律等重要规律,并结合闭合电路欧姆定律等物理规律及基本方法求解.2.动量观点在电磁感应问题中的应用,主要可以解决变力的冲量.所以,在求解导体棒做非匀变速运动的问题时,应用动量定理可以避免由于加速度变化而导致运动学公式不能使用的麻烦,在求解双杆模型问题时,在一定条件下可以利用动量守恒定律避免讨论中间变化状态,而直接求得最终状态.例7 (2019·福建福州市期末质量检测)如图13所示,空间存在一个范围足够大的竖直向下的匀强磁场,磁场的磁感应强度大小为B ;边长为L 的正方形金属框abcd (简称方框)放在光滑的水平地面上,其外侧套着一个与方框边长相同的U 形金属框架MNQP (仅有MN 、NQ 、QP 三条边,简称U 形框),U 形框的M 、P 端的两个触点与方框接触良好且无摩擦,其他地方没有接触.两个金属框每条边的质量均为m ,每条边的电阻均为r .(1)若方框固定不动,U 形框以速度v 0垂直NQ 边向右匀速运动,当U 形框的接触点M 、P 端滑至方框的最右侧时,如图乙所示,求U 形框上N 、Q 两端的电势差U NQ ;(2)若方框不固定,给U 形框垂直NQ 边向右的水平初速度v 0,U 形框恰好不能与方框分离,求方框最后的速度v t 和此过程流过U 形框上NQ 边的电荷量q ;(3)若方框不固定,给U 形框垂直NQ 边向右的初速度v (v >v 0),在U 形框与方框分离后,经过t 时间,方框的最右侧和U 形框的最左侧之间的距离为s .求分离时U 形框的速度大小v 1和方框的速度大小v 2.图13答案 见解析解析 (1)由法拉第电磁感应定律得:E =BL v 0此时电路图如图所示由串并联电路规律,外电阻为R 外=2r +3r ×r 3r +r =114r 由闭合电路欧姆定律得:流过QN 的电流I =E R 外+r=4BL v 015r 所以:U NQ =E -Ir =1115BL v 0; (2)U 形框向右运动过程中,方框和U 形框组成的系统所受合外力为零,系统动量守恒. 依题意得:方框和U 形框最终速度相同,设最终速度大小为v t ;3m v 0=(3m +4m )v t解得:v t =37v 0 对U 形框,由动量定理得:-BL I t =3m v t -3m v 0由q =I t解得:q =12m v 07BL(3)设U 形框和方框分离时速度分别为v 1和v 2,系统动量守恒:3m v =3m v 1+4m v 2 依题意得:s =(v 1-v 2)t联立解得:v 1=37v +4s 7tv 2=37v -3s 7t. 专题突破练级保分练1.(2019·广东珠海市质量监测)如图1所示,使一个水平铜盘绕过其圆心的竖直轴OO ′转动,摩擦等阻力不计,转动是匀速的.现把一个蹄形磁铁水平向左移近铜盘,则( )图1A .铜盘转动将变快B .铜盘转动将变慢C .铜盘仍以原来的转速转动D .因磁极方向未知,无法确定答案 B解析 假设蹄形磁铁的上端为N 极,下端为S 极,铜盘顺时针转动(从OO ′方向看).根据右手定则可以确定此时铜盘中的感应电流方向是从盘心指向边缘.通电导体在磁场中要受到力的作用,根据感应电流的方向和磁场的方向,利用左手定则可以确定磁场对铜盘的作用力的方向是沿逆时针方向,其受力方向与铜盘的转动方向相反,所以铜盘的转动速度将减小.无论怎样假设,铜盘的受力方向始终与转动方向相反.同时,转动过程中,机械能转化为电能,最终转化为内能,所以转得慢了.所以B 正确,A 、C 、D 错误.2.(多选)(2019·福建泉州市期末质量检查)如图2甲所示,匀强磁场垂直穿过矩形金属线框abcd ,磁感应强度B 随时间t 按图乙所示规律变化,下列说法正确的是( )图2A.t1时刻线框的感应电流方向为a→b→c→d→aB.t3时刻线框的感应电流方向为a→b→c→d→aC.t2时刻线框的感应电流最大D.t1时刻线框ab边受到的安培力方向向右答案AD解析t1时刻穿过线框的磁通量向里增加,根据楞次定律可知,线框的感应电流方向为a→b→c→d→a,由左手定则可知,线框ab边受到的安培力方向向右,选项A、D正确;t3时刻穿过线框的磁通量向里减小,可知线框的感应电流方向为a→d→c→b→a,选项B错误;B-t图象的斜率等于磁感应强度的变化率,可知t2时刻磁感应强度的变化率为零,则线框的感应电流为零,选项C错误.3.(多选)(2019·全国卷Ⅲ·19)如图3,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab、cd静止在导轨上.t=0时,棒ab以初速度v0向右滑动.运动过程中,ab、cd始终与导轨垂直并接触良好,两者速度分别用v1、v2表示,回路中的电流用I表示.下列图像中可能正确的是()图3答案AC解析棒ab以初速度v0向右滑动,切割磁感线产生感应电动势,使整个回路中产生感应电流,判断可知棒ab受到与v0方向相反的安培力的作用而做变减速运动,棒cd受到与v0方向相同的安培力的作用而做变加速运动,它们之间的速度差Δv=v1-v2逐渐减小,整个系统产生的感应电动势逐渐减小,回路中感应电流逐渐减小,最后变为零,即最终棒ab和棒cd的速度相同,v 1=v 2,这时两相同的光滑导体棒ab 、cd 组成的系统在足够长的平行金属导轨上运动,水平方向上不受外力作用,由动量守恒定律有m v 0=m v 1+m v 2,解得v 1=v 2=v 02,选项A 、C 正确,B 、D 错误.4.(2019·甘肃兰州市第一次诊断)如图4所示,宽为L 的光滑导轨竖直放置,左边有与导轨平面垂直的区域足够大的匀强磁场,磁感应强度为B ,右边有两块水平放置的金属板,两板间距为d .金属板和电阻R 都与导轨相连.要使两板间质量为m 、带电荷量为-q 的油滴恰好处于静止状态,阻值也为R 的金属棒ab 在导轨上的运动情况可能为(金属棒与导轨始终接触良好,导轨电阻不计,重力加速度为g )( )图4A .向右匀速运动,速度大小为2dmg BLqB .向左匀速运动,速度大小为2dmg BLqC .向右匀速运动,速度大小为dmg 2BLqD .向左匀速运动,速度大小为dmg 2BLq答案 A解析 两板间质量为m 、带电荷量为-q 的油滴恰好处于静止状态,则qE =mg ,板间电场强度E =mg q ,方向竖直向下;两板间电压U =Ed =mgd q,且上板带正电、下板带负电.金属棒ab 切割磁感线相当于电源,两金属板与电阻R 并联后接在金属棒两端,则金属棒中电流方向由b 流向a ,U =R R +R·E =12·BL v ,则金属棒ab 在导轨上的运动速度v =2mgd qBL ;据金属棒中电流方向由b 流向a 和右手定则可得,金属棒向右运动.综上,A 正确,B 、C 、D 错误.5.(2019·北京市东城区上学期期末)如图5所示,两光滑水平放置的平行金属导轨间距为L ,直导线MN 垂直跨在导轨上,且与导轨接触良好,整个装置处于垂直于纸面向里的匀强磁场中,磁感应强度大小为B .电容器的电容为C ,除电阻R 外,导轨和导线的电阻均不计.现给导线MN 一初速度,使导线MN 向右运动,当电路稳定后,MN 以速度v 向右匀速运动时( )图5A .电容器两端的电压为零B .通过电阻R 的电流为BL v RC .电容器所带电荷量为CBL vD .为保持MN 匀速运动,需对其施加的拉力大小为B 2L 2v R答案 C解析 当导线MN 匀速向右运动时,导线所受的合力为零,说明导线不受安培力,电路中电流为零,故电阻两端没有电压.此时导线MN 产生的感应电动势恒定,根据闭合电路欧姆定律得知,电容器两板间的电压为U =E =BL v ,故A 、B 错误.电容器所带电荷量Q =CU =CBL v ,故C 正确;因匀速运动后MN 所受合力为0,而此时无电流,不受安培力,则无需拉力便可做匀速运动,故D 错误.6.(多选)(2019·湖北稳派教育上学期第二次联考)如图6甲所示,通电直导线MN 和正方形导线框在同一水平面内,ab 边与MN 平行,先给MN 通以如图乙所示的电流,然后再通以如图丙所示的正弦交流电,导线和线框始终保持静止不动,电流从N 到M 为正,已知线框中的磁通量与直导线MN 中的电流成正比,则下列说法正确的是( )图6A .通以如图乙所示的电流时,线框中产生的电流先减小后增大B .通以如图乙所示的电流时,线框中的感应电流方向始终不变C .通以如图丙所示的电流时,0~t 2时间内,线框受到的安培力方向不变D .通以如图丙所示的电流时,t 3 时刻线框受到的安培力为零答案 BD解析 由题意可知,从N 到M 的方向为电流正方向;通以如题图乙所示的电流时,在0~t 1时间内电流方向为从M 到N ,穿过线框abcd 的磁场方向垂直纸面向外,大小在减小,由楞次定律可得,感应电流方向为逆时针,即为abcda ;在t 1时刻后,电流方向为N 到M ,穿过线框abcd 的磁场方向垂直纸面向里,大小在增大,由楞次定律可得,感应电流方向为逆时针,即为abcda ,故电流的方向不变,根据法拉第电磁感应定律有:E =ΔФΔt ,则线框中的感应电流为I =E R =ΔФΔt ×1R ,因线框中的磁通量与直导线MN 中的电流成正比,即ΔФΔt ∝ΔI Δt,则由乙图可知ΔI Δt 一直保持不变,故ΔФΔt不变,则感应电流I 不变,故A 错误,B 正确;通以如题图丙所示的电流时,在0~t 22时间内,导线中电流沿正方向增大,则线框中的磁场向里增大,由楞次定律可知,感应电流方向为逆时针,即为abcda ,根据左手定则可知,ab 边受到的安培力方向向右,cd 边受到的安培力方向向左,根据F =BIL 可知,I 、L 相同,但ab 边离导线近,故ab 边所在处的磁感应强度大于cd 边所在处的磁感应强度,则此时安培力的方向向右;在t 22~t 2时间内,导线中电流沿正方向减小,则线框中的磁场向里减小,由楞次定律可知,感应电流方向为顺时针,即为adcba ;根据左手定则可知,ab 边受到的安培力方向向左,cd 边受到的安培力方向向右,根据F =BIL 可知,I 、L 相同,但ab 边离导线近,故ab 边所在处的磁感应强度大于cd 边所在处的磁感应强度,则此时安培力的方向向左,故在0~t 2时间内线框受到的安培力方向改变,故C 错误;由题图丙可知,在t 3时刻电流为零,根据F =BIL 可知,此时线框受到的安培力为零,故D 正确.7.(2019·湖北十堰市上学期期末)如图7甲所示,导体棒MN 置于水平导轨上,PQMN 所围成的矩形的面积为S ,PQ 之间有阻值为R 的电阻,不计导轨和导体棒的电阻.导轨所在区域内存在沿竖直方向的匀强磁场,规定磁场方向竖直向上为正,在0~2t 0时间内磁感应强度的变化情况如图乙所示,导体棒MN 始终处于静止状态.下列说法正确的是( )图7A .在0~2t 0时间内,导体棒受到的导轨的摩擦力方向先向左后向右,大小不变B .在0~t 0时间内,通过导体棒的电流方向为N 到MC .在t 0~2t 0时间内,通过电阻R 的电流大小为SB 0Rt 0。
高二物理专题练习电磁感应规律综合应用(含例题解答)
电磁感觉规律的综合应用常州二中【基础知识概括】与本章知识相关的综合题主要表此刻以下几方面:1.电磁感觉问题与电路问题的综合.电磁感觉供给电路中的电源,解决这种电磁感觉中的电路问题,一方面要考虑电磁学中的相关规律如右手定章、法拉第电磁感觉定律等;另一方面还要考虑电路中的相关规律,如欧姆定律、串并联电路的性质等,有时可能还会用到力学的知识.2.电磁感觉中切割磁感线的导体要运动,感觉电流又要遇到安培力的作用,所以,电磁感觉问题又常常和力学识题联系在一同,解决电磁感觉中的力学识题,一方面要考虑电磁学中的相关规律;另一方面还要考虑力学中的相关规律,要将电磁学和力学的知识综合起来应用.【方法分析】1.电磁感觉中的电路剖析.在电磁感觉中,切割磁感线的导体或磁通量发生变化的回路将产生感觉电动势,则该导体或回路就相当于电源.将它们接上电容器能够使电容器充电;将它们接上电阻或用电器能够对用电器供电.在回路中形成电流.2.电磁感觉中的动力学剖析和能量剖析切割磁感线的导体作为一个电磁学研究对象有感觉电动势、感觉电流、两头电压、电流做功、电阻发热等问题;作为一个力学对象有受力、加快度、动能、能量及其变化等问题;所以电磁感觉和力学知识发生联系是必定的.因为这种问题中物理过程比较复杂,状态变化过程中变量比许多,重点是能抓住状态变化过程中变量“变”的特色和规律,进而确立状态变化过程中的临界点,求解时注意从动量、能量的看法出发,运用相应的规律进行剖析和解答.【典型例题精讲】[例 1]如下图,圆滑导轨倾斜搁置,其下端连结一个灯泡,匀强磁场垂直于导轨所在平面,当 ab 棒下滑到稳固状态时,小灯泡获取的功率为 P0,除灯泡外,其余电阻不计,要使稳固状态灯泡的功率变成 2P0,以下举措正确的选项是A.换一个电阻为本来一半的灯泡B.把磁感觉强度 B 增为本来的 2 倍C.换一根质量为本来的 2 倍的金属棒D .把导轨间的距离增大为本来的2 倍【分析】解答这种问题的基本思路是:先求出灯泡功率P 与其余量的关系式,而后再议论各选项能否正确.金属棒在导轨上下滑的过程中,受重力 mg、支持力 F N和安培力 F= IlB 三个力的作用.其中安培力 F 是磁场对棒 ab 切割磁感线所产生的感觉电流的作使劲,它的大小与棒的速度相关.当导体棒下滑到稳固状态时(匀速运动)所受合外力为零,则有mgsinθ= IlB .此过程小灯泡获取稳固的功率 P= I2R.由上两式可得P= m2g2Rsin2θ/ B2l 2.要使灯泡的功率由 P0变成 2P0,依据上式议论可得,题目所给的四个选项只有 C 是正确的.【思虑】( 1)试剖析在棒下滑的整个过程中,不一样形式的能量是怎样转变的?( 2)本题的答案与磁场的方向能否相关?【思虑提示】( 1)棒加快下滑时,它减小的重力势能一部分转变成电能,电能又转变成内能,另一部分转变成棒的动能.棒匀速下滑时,减小的重力势能所有转变成电能,电能又转变成内能.( 2)答案与磁场方向没关(只需导线下滑时切割磁感线即可).【设计企图】经过本例说明电磁感觉过程中能量的转变关系,并说明利用能量转变看法剖析电磁感觉过程的方法.[例 2]如下图,两根相距 d= 0.20 m 的平行金属长导轨,固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的感觉强度 B=0.20 T.导轨上面横放着两根金属细杆,构成矩形回路,每根金属细杆的电阻 r= 0.25 Ω,回路中其余部分的电阻可不计.已知两金属细杆在平行于导轨的拉力作用下,沿导轨朝相反方向匀速平移,速度大小都是 v= 5.0 m/s.不计导轨上的摩擦.( 1)求作用于每根金属细杆的拉力的大小;( 2)求两金属杆在间距增添 L = 0.40 m 的滑动过程中共产生的热量.【分析】设匀强磁场方向竖直向上.在两金属杆匀速平移的过程中,等效电路如下图,即两杆能够等效为两个串连的相同的电源( E0).依据能量转变和守恒定律,当杆匀速运动时,两拉力( F )的机械总功率等于闭合电路的热功率,即P= 2Fv=(2E0 ) 2(2Bdv) 2 2r2r所以,每根金属杆遇到的拉力大小为B2 d 2 v- 2F =r=× 10 N在两金属杆增添距离L 的过程中,产生的热量就等于两拉力所做的功,即Q= 2F L/2=F L=× 10-2J【设计企图】经过本例说明电磁感觉规律与电路知识和力学知识综合问题的剖析方法.[例 3]一个质量 m= 0.1kg 的正方形金属框总电阻 R= 0.5 Ω,金属框放在表面是绝缘且圆滑的斜面顶端,自静止开始沿斜面下滑,下滑过程中穿过一段界限与斜面底边 BB’平行、宽度为 d 的匀2象如图 2 所示,已知匀强磁场方向垂直斜面向上。
高三物理新课标电磁感应规律及其应用复习题(含答案)
高三物理新课标电磁感应规律及其应用复习题(含答案)电磁感应现象是指放在变化磁通量中的导体,会发生电动势,以下是电磁感应规律及其运用温习题,请考生练习。
一、选择题(共8小题,每题5分,共40分。
在每题给出的四个选项中,第1~5题只要一项契合6~8题有多项契合标题要求,全部选对的得5分,选对但不全的得3分,有选错的得0分。
)1.有一个磁悬浮玩具,其原理是应用电磁铁发生磁性,让具有磁性的玩偶动摇地飘浮起来,其结构如下图。
假定图中电源的电压恒定,可变电阻为一可随意改动电阻大小的装置,那么以下表达正确的选项是()A.电路中的电源必需是交流电源B.电路中的a端须衔接直流电源的负极C.假定添加盘绕软铁的线圈匝数,可添加玩偶飘浮的最大高度D.假定将可变电阻的电阻值调大,可添加玩偶飘浮的最大高度2.如下图,一导线弯成直径为d的半圆形闭合回路。
虚线MN 右侧有磁感应强度为B的匀强磁场,方向垂直于回路所在的平面。
回路以速度v向右匀速进入磁场,直径CD一直与MN 垂直。
从D点抵达边界末尾到C点进入磁场为止,以下说法中正确的选项是()A.感应电流方向为顺时针方向B.CD段直导线一直不受安培力C.感应电动势的最大值E = BdvD.感应电动势的平均值=Bdv3. (2021唐山一模)如下图,一呈半正弦外形的闭合线框abc,ac=l,匀速穿过边界宽度也为l的相邻磁感应强度大小相反的匀强磁场区域,整个进程中线框中感应电流图象为(取顺时针方向为正方向)()4.如下图,有一闭合的等腰直角三角形导线ABC。
假定让它沿BA的方向匀速经过有清楚边界的匀强磁场(场区宽度大于直角边长),以逆时针方向为正,从图示位置末尾计时,在整个进程中,线框内的感应电流随时间变化的图象是图中的()5.(2021长春质量监测)如下图,用一根横截面积为S的粗细平均的硬导线R的圆环,把圆环一半置于平均变化的磁场中,磁场方向垂直纸面向外,磁感应强度大小随时间的变化率=k(k0),ab为圆环的一条直径,导线的电阻率为,那么以下说法中正确的选项是()A.圆环具有扩张的趋向B.圆环中发生逆时针方向的感应电流C.图中ab两点间的电压大小为kR2D.圆环中感应电流的大小为6.如下图的正方形导线框abcd,电阻为R,现维持线框以恒定速度v沿x轴运动,并穿过图中所示的匀强磁场区域。
高考物理电磁感应现象习题知识点及练习题及答案
高考物理电磁感应现象习题知识点及练习题及答案一、高中物理解题方法:电磁感应现象的两类情况1.如图,光滑金属轨道POQ 、´´´P O Q 互相平行,间距为L ,其中´´O Q 和OQ 位于同一水平面内,PO 和´´P O 构成的平面与水平面成30°。
正方形线框ABCD 边长为L ,其中AB 边和CD 边质量均为m ,电阻均为r ,两端与轨道始终接触良好,导轨电阻不计。
BC 边和AD 边为绝缘轻杆,质量不计。
线框从斜轨上自静止开始下滑,开始时底边AB 与OO ´相距L 。
在水平轨道之间,´´MNN M 长方形区域分布着有竖直向上的匀强磁场,´OM O N L =>,´´N M 右侧区域分布着竖直向下的匀强磁场,这两处磁场的磁感应强度大小均为B 。
在右侧磁场区域内有一垂直轨道放置并被暂时锁定的导体杆EF ,其质量为m 电阻为r 。
锁定解除开关K 与M 点的距离为L ,不会阻隔导轨中的电流。
当线框AB 边经过开关K 时,EF 杆的锁定被解除,不计轨道转折处OO ´和锁定解除开关造成的机械能损耗。
(1)求整个线框刚到达水平面时的速度0v ; (2)求线框AB 边刚进入磁场时,AB 两端的电压U AB ; (3)求CD 边进入磁场时,线框的速度v ;(4)若线框AB 边尚未到达´´M N ,杆EF 就以速度23123B L v mr=离开M ´N ´右侧磁场区域,求此时线框的速度多大?【答案】(132gL 2)16BL gL 3)23323B L gL mr;(4)233223B L gL mr【解析】 【分析】 【详解】(1)由机械能守恒201sin 302sin 30022mgL mg L mv +=︒︒- 可得032v gL =(2)由法拉第电磁感应定律可知0E BLv =根据闭合电路欧姆定律可知032BLv I r =根据部分电路欧姆定律12AB U I r =⋅可得AB U =(3)线框进入磁场的过程中,由动量定理022BIL t mv mv -⋅∆=-又有232BL I t r ⋅∆=代入可得233B L v mr= (4)杆EF 解除锁定后,杆EF 向左运动,线框向右运动,线框总电流等于杆EF 上电流 对杆EF1BIL t m v ⋅∆=∆对线框22BIL t m v ⋅∆=⋅∆可得122v v ∆=∆整理得到2321123B L v v mr∆=∆=可得232223B L v v v mr=-∆=2.如图所示,两条平行的固定金属导轨相距L =1m ,光滑水平部分有一半径为r =0.3m 的圆形磁场区域,磁感应强度大小为10.5T B =、方向竖直向下;倾斜部分与水平方向的夹角为θ=37°,处于垂直于斜面的匀强磁场中,磁感应强度大小为B =0.5T 。
高考物理电磁感应现象习题专项复习及答案解析
高考物理电磁感应现象习题专项复习及答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,水平放置的两根平行光滑金属导轨固定在平台上导轨间距为1m ,处在磁感应强度为2T 、竖直向下的匀强磁场中,平台离地面的高度为h =3.2m 初始时刻,质量为2kg 的杆ab 与导轨垂直且处于静止,距离导轨边缘为d =2m ,质量同为2kg 的杆cd 与导轨垂直,以初速度v 0=15m/s 进入磁场区域最终发现两杆先后落在地面上.已知两杆的电阻均为r =1Ω,导轨电阻不计,两杆落地点之间的距离s =4m (整个过程中两杆始终不相碰)(1)求ab 杆从磁场边缘射出时的速度大小;(2)当ab 杆射出时求cd 杆运动的距离;(3)在两根杆相互作用的过程中,求回路中产生的电能.【答案】(1) 210m/s v =;(2) cd 杆运动距离为7m ; (3) 电路中损耗的焦耳热为100J .【解析】【详解】(1)设ab 、cd 杆从磁场边缘射出时的速度分别为1v 、2v设ab 杆落地点的水平位移为x ,cd 杆落地点的水平位移为x s +,则有2h x v g =2h x s v g+=根据动量守恒 012mv mv mv =+求得:210m/s v =(2)ab 杆运动距离为d ,对ab 杆应用动量定理1BIL t BLq mv ==设cd 杆运动距离为d x +∆22BL x q r r ∆Φ∆== 解得 1222rmv x B L ∆=cd 杆运动距离为12227m rmv d x d B L +∆=+= (3)根据能量守恒,电路中损耗的焦耳热等于系统损失的机械能222012111100J 222Q mv mv mv =--= 2.如图所示,足够长的光滑平行金属导轨MN 、PQ 倾斜放置,两导轨间距离为L ,导轨平面与水平面间的夹角θ,所处的匀强磁场垂直于导轨平面向上,质量为m 的金属棒ab 垂直于导轨放置,导轨和金属棒接触良好,不计导轨和金属棒ab 的电阻,重力加速度为g .若在导轨的M 、P 两端连接阻值R 的电阻,将金属棒ab 由静止释放,则在下滑的过程中,金属棒ab 沿导轨下滑的稳定速度为v ,若在导轨M 、P 两端将电阻R 改接成电容为C 的电容器,仍将金属棒ab 由静止释放,金属棒ab 下滑时间t ,此过程中电容器没有被击穿,求:(1)匀强磁场的磁感应强度B 的大小为多少?(2)金属棒ab 下滑t 秒末的速度是多大?【答案】(1)2sin mgR B L vθ=2)sin sin t gvt v v CgR θθ=+ 【解析】试题分析:(1)若在M 、P 间接电阻R 时,金属棒先做变加速运动,当加速度为零时做匀速运动,达到稳定状态.则感应电动势E BLv =,感应电流E I R=,棒所受的安培力F BIL =联立可得22B L v F R =,由平衡条件可得F mgsin θ=,解得2 mgRsin B L vθ (2)若在导轨 M 、P 两端将电阻R 改接成电容为C 的电容器,将金属棒ab 由静止释放,产生感应电动势,电容器充电,电路中有充电电流,ab 棒受到安培力.设棒下滑的速度大小为v ',经历的时间为t则电容器板间电压为 UE BLv ='= 此时电容器的带电量为Q CU = 设时间间隔△t 时间内流经棒的电荷量为Q 则电路中电流 Q C U CBL v i t t t ∆∆∆===∆∆∆,又v a t∆=∆,解得i CBLa = 根据牛顿第二定律得mgsin BiL ma θ-=,解得22mgsin gvsin a m B L C v CgRsin θθθ==++ 所以金属棒做初速度为0的匀加速直线运动,ts 末的速度gvtsin v at v CgRsin θθ'==+. 考点:导体切割磁感线时的感应电动势;功能关系;电磁感应中的能量转化【名师点睛】本题是电磁感应与电路、力学知识的综合,关键要会推导加速度的表达式,通过分析棒的受力情况,确定其运动情况.3.如图所示,足够长的U 型金属框架放置在绝缘斜面上,斜面倾角30θ=︒,框架的宽度0.8m L =,质量0.2kg M =,框架电阻不计。
高考物理:带你攻克电磁感应中的典型例题(附解析)
高考物理:带你攻克电磁感应中的典型例题(附解析)例1、如图所示,有一个弹性的轻质金属圆环,放在光滑的水平桌面上,环中央插着一根条形磁铁.突然将条形磁铁迅速向上拔出,则此时金属圆环将()A. 圆环高度不变,但圆环缩小B. 圆环高度不变,但圆环扩张C. 圆环向上跳起,同时圆环缩小D. 圆环向上跳起,同时圆环扩张解析:在金属环中磁通量有变化,所以金属环中有感应电流产生,按照楞次定律解决问题的步骤一步一步进行分析,分析出感应电流的情况后再根据受力情况考虑其运动与形变的问题.也可以根据感应电流的磁场总阻碍线圈和磁体间的相对运动来解答。
当磁铁远离线圈时,线圈和磁体间的作用力为引力,由于金属圆环很轻,受的重力较小,因此所受合力方向向上,产生向上的加速度.同时由于线圈所在处磁场减弱,穿过线圈的磁通量减少,感应电流的磁场阻碍磁通量减少,故线圈有扩张的趋势。
所以D选项正确。
一、电磁感应中的力学问题导体切割磁感线产生感应电动势的过程中,导体的运动与导体的受力情况紧密相连,所以,电磁感应现象往往跟力学问题联系在一起。
解决这类电磁感应中的力学问题,一方面要考虑电磁学中的有关规律,如安培力的计算公式、左右手定则、法拉第电磁感应定律、楞次定律等;另一方面还要考虑力学中的有关规律,如牛顿运动定律、动量定理、动能定理、动量守恒定律等。
例2、如图1所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L,M、P两点间接有阻值为R的电阻。
一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直。
整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略。
让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦。
(1)由b向a方向看到的装置如图2所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图;(2)在加速下滑过程中,当ab杆的速度大小为v时,求此时ab 杆中的电流及其加速度的大小;(3)求在下滑过程中,ab杆可以达到的速度最大值。
高考物理专题电磁学知识点之电磁感应经典测试题附答案解析
高考物理专题电磁学知识点之电磁感应经典测试题附答案解析一、选择题1.在图中,EF 、GH 为平行的金属导轨,其电阻不计,R 为电阻,C 为电容器,AB 为可在EF 和GH 上滑动的导体横杆.有匀强磁场垂直于导轨平面.若用I 1和I 2分别表示图中该处导线中的电流,则当横杆AB( )A .匀速滑动时,I 1=0,I 2=0B .匀速滑动时,I 1≠0,I 2≠0C .加速滑动时,I 1=0,I 2=0D .加速滑动时,I 1≠0,I 2≠02.两块水平放置的金属板间的距离为d ,用导线与一个n 匝线圈相连,线圈电阻为r ,线圈中有竖直方向的磁场,电阻R 与金属板连接,如图所示,两板间有一个质量为m 、电荷量+q 的油滴恰好处于静止,则线圈中的磁感应强度B 的变化情况和磁通量的变化率分别是A .磁感应强度B 竖直向上且正增强,tφ∆=dmg nq B .磁感应强度B 竖直向下且正增强,tφ∆=dmg nq C .磁感应强度B 竖直向上且正减弱,tφ∆=()dmg R r nqR + D .磁感应强度B 竖直向下且正减弱,tφ∆=()dmgr R r nqR + 3.如图所示,用粗细均匀的铜导线制成半径为r 、电阻为4R 的圆环,PQ 为圆环的直径,在PQ 的左右两侧均存在垂直圆环所在平面的匀强磁场,磁感应强度大小均为B ,但方向相反,一根长为2r 、电阻为R 的金属棒MN 绕着圆心O 以角速度ω顺时针匀速转动,金属棒与圆环紧密接触。
下列说法正确的是( )A .金属棒MN 两端的电压大小为2B r ωB .金属棒MN 中的电流大小为22B r Rω C .图示位置金属棒中电流方向为从N 到MD .金属棒MN 转动一周的过程中,其电流方向不变4.如图所示,A 、B 两闭合圆形线圈用同样导线且均绕成100匝。
半径A B 2R R =,内有以B 线圈作为理想边界的匀强磁场。
若磁场均匀减小,则A 、B 环中感应电动势A B :E E 与产生的感应电流A B :I I 分别是( )A .AB :2:1E E =;A B :1:2I I =B .A B :2:1E E =;A B :1:1I I =C .A B :1:1E E =;A B :2:1I I =D .A B :1:1E E =;A B :1:2I I =5.如图所示的电路中,电源的电动势为E ,内阻为r ,电感L 的电阻不计,电阻R 的阻值大于灯泡D 的阻值,在0t =时刻闭合开关S ,经过一段时间后,在1t t =时刻断开S ,下列表示灯D 中的电流(规定电流方向A B →为正)随时间t 变化的图像中,正确的是( )A .B .C .D .6.如图所示,两块水平放置的金属板间距离为d ,用导线与一个n 匝线圈连接,线圈置于方向竖直向上的磁场B 中。
高考物理电磁感应现象习题试卷及答案
高考物理电磁感应现象习题试卷及答案一、高中物理解题方法:电磁感应现象的两类情况1.某兴趣小组设计制作了一种磁悬浮列车模型,原理如图所示,PQ 和MN 是固定在水平地面上的两根足够长的平直导轨,导轨间分布着竖直(垂直纸面)方向等间距的匀强磁场1B 和2B ,二者方向相反.矩形金属框固定在实验车底部(车厢与金属框绝缘).其中ad边宽度与磁场间隔相等,当磁场1B 和2B 同时以速度0m 10s v =沿导轨向右匀速运动时,金属框受到磁场力,并带动实验车沿导轨运动.已知金属框垂直导轨的ab 边长0.1m L =m 、总电阻0.8R =Ω,列车与线框的总质量0.4kg m =,12 2.0T B B ==T ,悬浮状态下,实验车运动时受到恒定的阻力1h N .(1)求实验车所能达到的最大速率;(2)实验车达到的最大速率后,某时刻让磁场立即停止运动,实验车运动20s 之后也停止运动,求实验车在这20s 内的通过的距离;(3)假设两磁场由静止开始向右做匀加速运动,当时间为24s t =时,发现实验车正在向右做匀加速直线运动,此时实验车的速度为m 2s v =,求由两磁场开始运动到实验车开始运动所需要的时间.【答案】(1)m 8s ;(2)120m ;(3)2s 【解析】 【分析】 【详解】(1)实验车最大速率为m v 时相对磁场的切割速率为0m v v -,则此时线框所受的磁场力大小为2204-B L v v F R=()此时线框所受的磁场力与阻力平衡,得:F f = 2m 028m/s 4fRv v B L =-= (2)磁场停止运动后,线圈中的电动势:2E BLv = 线圈中的电流:EI R=实验车所受的安培力:2F BIL =根据动量定理,实验车停止运动的过程:m F t ft mv ∑∆+=整理得:224m B L vt ft mv R∑∆+=而v t x ∑∆=解得:120m x =(3)根据题意分析可得,为实现实验车最终沿水平方向做匀加速直线运动,其加速度必须与两磁场由静止开始做匀加速直线运动的加速度相同,设加速度为a ,则t 时刻金属线圈中的电动势 2)E BLat v =-( 金属框中感应电流 2)BL at v I R-=( 又因为安培力224)2B L at v F BIL R(-==所以对试验车,由牛顿第二定律得 224)B L at v f ma R(--=得 21.0m/s a =设从磁场运动到实验车起动需要时间为0t ,则0t 时刻金属线圈中的电动势002E BLat =金属框中感应电流002BLat I R=又因为安培力2200042B L at F BI L R==对实验车,由牛顿第二定律得:0F f =即2204B L at f R= 得:02s t =2.如图所示,足够长且电阻忽略不计的两平行金属导轨固定在倾角为α=30°绝缘斜面上,导轨间距为l =0.5m 。
高中物理专题练习-电磁感应规律及其应用(含答案)
高中物理专题练习-电磁感应规律及其应用(含答案)满分:100分 时间:60分钟一、单项选择题(本题共5小题,每小题6分,共30分.每小题只有一个选项符合题意.)1.(江苏单科,1)如图所示,一正方形线圈的匝数为n ,边长为a ,线圈平面与匀强磁场垂直,且一半处在磁场中.在Δt 时间内,磁感应强度的方向不变,大小由B 均匀地增大到2B .在此过程中,线圈中产生的感应电动势为( )A.Ba 22ΔtB.nBa 22ΔtC.nBa 2Δt D.2nBa 2Δt 2.(新课标全国卷Ⅱ,15)如图,直角三角形金属框abc 放置在匀强磁场中,磁感应强度大小为B ,方向平行于ab 边向上.当金属框绕ab 边以角速度ω逆时针转动时,a 、b 、c 三点的电势分别为U a 、U b 、U c .已知bc 边的长度为l .下列判断正确的是( )A .U a >U c ,金属框中无电流B .U b >U c ,金属框中电流方向沿a -b -c -aC .U bc =-12Bl 2ω,金属框中无电流D .U bc =12Bl 2ω,金属框中电流方向沿a -c -b -a3.(重庆理综,4)图为无线充电技术中使用的受电线圈示意图,线圈匝数为n ,面积为S .若在t 1到t 2时间内,匀强磁场平行于线圈轴线向右穿过线圈,其磁感应强度大小由B 1均匀增加到B 2,则该段时间线圈两端a 和b 之间的电势差φa -φb ( )A .恒为nS (B 2-B 1)t 2-t 1 B .从0均匀变化到nS (B 2-B 1)t 2-t 1C .恒为-nS (B 2-B 1)t 2-t 1D .从0均匀变化到-nS (B 2-B 1)t 2-t 14.(安徽理综,19)如图所示,abcd 为水平放置的平行“”形光滑金属导轨,间距为l ,导轨间有垂直于导轨平面的匀强磁场,磁感应强度大小为B ,导轨电阻不计.已知金属杆MN 倾斜放置,与导轨成θ角,单位长度的电阻为r ,保持金属杆以速度v 沿平行于cd 的方向滑动(金属杆滑动过程中与导轨接触良好).则( )A .电路中感应电动势的大小为Bl v sin θB .电路中感应电流的大小为B v sin θrC .金属杆所受安培力的大小为B 2l v sin θrD .金属杆的发热功率为B 2l v 2r sin θ5.(新课标全国卷Ⅰ,18)如图(a),线圈ab 、cd 绕在同一软铁芯上.在ab 线圈中通以变化的电流.用示波器测得线圈cd 间电压如图(b)所示.已知线圈内部的磁场与流经线圈的电流成正比,则下列描述线圈ab 中电流随时间变化关系的图中,可能正确的是( )二、 多项选择题(本题共3小题,每小题7分,共计21分.每小题有多个选项符 合题意.全部选对的得7分,选对但不全的得4分,错选或不答的得0分.)6.(江苏单科,7)如图所示,在线圈上端放置一盛有冷水的金属杯,现接通交流电源,过了几分钟,杯内的水沸腾起来.若要缩短上述加热时间,下列措施可行的有()A.增加线圈的匝数B.提高交流电源的频率C.将金属杯换为瓷杯D.取走线圈中的铁芯7.(新课标全国卷Ⅰ,19)1824年,法国科学家阿拉果完成了著名的“圆盘实验”.实验中将一铜圆盘水平放置,在其中心正上方用柔软细线悬挂一枚可以自由旋转的磁针,如图所示.实验中发现,当圆盘在磁针的磁场中绕过圆盘中心的竖直轴旋转时,磁针也随着一起转动起来,但略有滞后.下列说法正确的是()A.圆盘上产生了感应电动势B.圆盘内的涡电流产生的磁场导致磁针转动C.在圆盘转动的过程中,磁针的磁场穿过整个圆盘的磁通量发生了变化D.圆盘中的自由电子随圆盘一起运动形成电流,此电流产生的磁场导致磁针转动8.(山东理综,17)如图,一均匀金属圆盘绕通过其圆心且与盘面垂直的轴逆时针匀速转动.现施加一垂直穿过圆盘的有界匀强磁场,圆盘开始减速.在圆盘减速过程中,以下说法正确的是()A.处于磁场中的圆盘部分,靠近圆心处电势高B.所加磁场越强越易使圆盘停止转动C.若所加磁场反向,圆盘将加速转动D.若所加磁场穿过整个圆盘,圆盘将匀速转动三、计算题(本题共3小题,共计49分.解答时写出必要的文字说明,方程式和重要的演算步骤,只写出最后答案的不得分.)9.(江苏单科,13)(15分)做磁共振(MRI)检查时,对人体施加的磁场发生变化时会在肌肉组织中产生感应电流.某同学为了估算该感应电流对肌肉组织的影响,将包裹在骨骼上的一圈肌肉组织等效成单匝线圈,线圈的半径r=5.0 cm,线圈导线的截面积A=0.80 cm2,电阻率ρ=1.5 Ω·m.如图所示,匀强磁场方向与线圈平面垂直,若磁感应强度B在0.3 s内从1.5 T均匀地减为零,求:(计算结果保留一位有效数字)(1)该圈肌肉组织的电阻R;(2)该圈肌肉组织中的感应电动势E;(3)0.3 s内该圈肌肉组织中产生的热量Q.10.(江苏单科,13)(16分)如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为L,长为3d,导轨平面与水平面的夹角为θ,在导轨的中部刷有一段长为d的薄绝缘涂层.匀强磁场的磁感应强度大小为B,方向与导轨平面垂0.质量为m的导体棒从导轨的顶端由静止释放,在滑上涂层之前已经做匀速运动,并一直匀速滑到导轨底端.导体棒始终与导轨垂直,且仅与涂层间有摩擦,接在两导轨间的电阻为R,其他部分的电阻均不计,重力加速度为g.求:(1)导体棒与涂层间的动摩擦因数μ;(2)导体棒匀速运动的速度大小v;(3)整个运动过程中,电阻产生的焦耳热Q.11.(天津理综,11)(18分)如图所示,“凸”字形硬质金属线框质量为m ,相邻各边互相垂直,且处于同一竖直平面内,ab 边长为l ,cd 边长为2l ,ab 与cd平行,间距为2l .匀强磁场区域的上下边界均水平,磁场方向垂直于线框所在平面.开始时,cd 边到磁场上边界的距离为2l ,线框由静止释放,从cd 边进入磁场直到ef 、pq 边进入磁场前,线框做匀速运动,在ef 、pq 边离开磁场后,ab 边离开磁场之前,线框又做匀速运动.线框完全穿过磁场过程中产生的热量为Q .线框在下落过程中始终处于原竖直平面内,且ab 、cd 边保持水平,重力加速度为g .求:(1)线框ab 边将离开磁场时做匀速运动的速度大小是cd 边刚进入磁场时的几倍;(2)磁场上下边界间的距离H .答案1.B [由法拉第电磁感应定律可知,在Δt 时间内线圈中产生的平均感应电动势为E =n ΔΦΔt =n 2B a 22-B a 22Δt=nBa 22Δt ,选项B 正确.] 2.C [金属框绕ab 边转动时,闭合回路abc 中的磁通量始终为零(即不变),所以金属框中无电流.金属框在逆时针转动时,bc 边和ac 边均切割磁感线,由右手定则可知φb <φc ,φa <φc ,所以根据E =Bl v 可知,U bc =U ac =-Bl v -=-Bl 0+ωl 2=-12Bl 2ω.由以上分析可知选项C 正确.] 3.C [由于磁感应强度均匀增大,故φa -φb 为定值,由楞次定律可得φa <φb ,故由法拉第电磁感应定律得φa -φb =-nS (B 2-B 1)t 2-t 1,故C 项正确.] 4.B [电路中的感应电动势E =Bl v ,感应电流I =E R =E l sin θ r=B v sin θr 故A 错误,B 正确;金属杆所受安培力大小F=BIlsin θ=B2l vr,故C错误;金属杆的发热功率P=I2R=I2lsin θr=B2l v2sin θr,故D错误.]5.C[由题图(b)可知c、d间的电压大小是不变化的,根据法拉第电磁感应定律可判断出线圈cd中磁通量的变化率是不变的,又因已知线圈内部的磁场与流经线圈的电流成正比,所以线圈ab中的电流是均匀变化的,选项C正确,A、B、D均错误.]6.AB[当电磁铁接通交流电源时,金属杯处在变化的磁场中产生涡电流发热,使水温升高.要缩短加热时间,需增大涡电流,即增大感应电动势或减小电阻.增加线圈匝数、提高交变电流的频率都是为了增大感应电动势.瓷杯不能产生涡电流,取走铁芯会导致磁性减弱.所以选项A、B正确,选项C、D错误.]7.AB[圆盘运动过程中,半径方向的金属条在切割磁感线,在圆心和边缘之间产生了感应电动势,选项A正确;圆盘在径向的辐条切割磁感线过程中,内部距离圆心远近不同的点电势不等而形成涡流,产生的磁场又导致磁针转动,选项B正确;圆盘转动过程中,圆盘位置、圆盘面积和磁场都没有发生变化,所以没有磁通量的变化,选项C错误;圆盘本身呈现电中性,不会产生环形电流,选项D错误.]8.ABD[由右手定则可知,处于磁场中的圆盘部分,靠近圆心处电势高,选项A正确;根据E=BL v可知所加磁场越强,则感应电动势越大,感应电流越大,产生的阻碍圆盘转动的安培力越大,则圆盘越容易停止转动,选项B正确;若加反向磁场,根据楞次定律可知安培力阻碍圆盘的转动,故圆盘仍减速转动,选项C错误;若所加磁场穿过整个圆盘,则圆盘中无感应电流,不产生安培力,圆盘匀速转动,选项D正确.]9.解析(1)由电阻定律R=ρ2πrA,代入数据解得R≈6×103Ω(2)感应电动势E=ΔBΔtπr2,代入数据解得E≈4×10-2 V(3)由焦耳定律得Q=E2RΔt,代入数据解得Q≈8×10-8 J答案(1)6×103Ω(2)4×10-2 V(3)8×10-8 J 10.解析(1)在绝缘涂层上运动时,受力平衡,则有mg sin θ=μmg cos θ①解得:μ=tan θ②(2)在光滑导轨上匀速运动时,导体棒产生的感应电动势为:E =BL v ③则电路中的感应电流I =E R ④导体棒所受安培力F 安=BIL ⑤且由平衡条件得F 安=mg sin θ⑥联立③~⑥式,解得v =mgR sin θB 2L 2⑦(3)从开始下滑到滑至底端由能量守恒定律得:3mgd sin θ=Q +Q f +12m v 2⑧摩擦产生的内能Q f =μmgd cos θ⑨联立⑧⑨解得Q =2mgd sin θ-m 3g 2R 2sin 2θ2B 4L 4⑩答案 (1)tan θ (2)mgR sin θB 2L 2(3)2mgd sin θ-m 3g 2R 2sin 2 θ2B 4L 411.解析 (1)设磁场的磁感应强度大小为B ,cd 边刚进入磁场时,线框做匀速运动的速度为v 1,cd边上的感应电动势为E 1,由法拉第电磁感应定律,有E 1=2Bl v 1①设线框总电阻为R ,此时线框中电流为I 1,由闭合电路欧姆定律,有I 1=E 1R ②设此时线框所受安培力为F 1,有F 1=2I 1lB ③由于线框做匀速运动,其受力平衡,有mg =F 1④由①②③④式得v 1=mgR 4B 2l 2⑤设ab 边离开磁场之前,线框做匀速运动的速度为v 2,同理可得v 2=mgR B 2l 2⑥由⑤⑥式得v 2=4v 1⑦(2)线框自释放直到cd 边进入磁场前,由机械能守恒定律,有2mgl =12m v 21⑧线框完全穿过磁场的过程中,由能量守恒定律,有mg (2l +H )=12m v 22-12m v 21+Q ⑨由⑦⑧⑨式得H=Qmg+28l⑩答案(1)4倍(2)Qmg+28l1.电磁感应中动力学问题的分析方法(1)用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向.(2)求回路的电流.(3)分析导体受力情况(包含安培力在内的全面受力分析).(4)根据平衡条件或牛顿第二定律列方程.2.两种状态处理(1)导体处于平衡态——静止或匀速直线运动状态.处理方法:根据平衡条件合外力等于零列式分析.(2)导体处于非平衡态——加速度不为零.处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析.。
高中物理电磁感应现象习题专项复习及答案
高中物理电磁感应现象习题专项复习及答案一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,线圈工件加工车间的传送带不停地水平传送长为L ,质量为m ,电阻为R 的正方形线圈,在传送带的左端线圈无初速地放在以恒定速度v 匀速运动的传送带上,经过一段时间,达到与传送带相同的速度v 后,线圈与传送带始终相对静止,并通过一磁感应强度为B 、方向竖直向上的匀强磁场,已知当一个线圈刚好开始匀速度运动时,下一个线圈恰好放在传送带上,线圈匀速运动时,每两个线圈间保持距离L 不变,匀强磁场的宽度为3L ,求:(1)每个线圈通过磁场区域产生的热量Q .(2)在某个线圈加速的过程中,该线圈通过的距离S 1和在这段时间里传送带通过的距离S 2之比.(3)传送带每传送一个线圈,电动机多消耗的电能E (不考虑电动机自身的能耗)【答案】(1)232B L vQ R= (2) S 1:S 2=1:2 (3)E=mv 2+2B 2L 3v/R【解析】 【分析】 【详解】(1)线圈匀速通过磁场,产生的感应电动势为E=BLv ,则每个线圈通过磁场区域产生的热量为223()22BLv L B L vQ Pt R v R===(2)对于线圈:做匀加速运动,则有S 1=vt /2 对于传送带做匀速直线运动,则有S 2=vt 故S 1:S 2=1:2(3)线圈与传送带的相对位移大小为2112vts s s s ∆=-== 线圈获得动能E K =mv 2/2=fS 1传送带上的热量损失Q /=f (S 2-S 1)=mv 2/2送带每传送一个线圈,电动机多消耗的电能为E =E K +Q +Q /=mv 2+2B 2L 3v/R 【点睛】本题的解题关键是从能量的角度研究电磁感应现象,掌握焦耳定律、E=BLv 、欧姆定律和能量如何转化是关键.2.图中装置在水平面内且处于竖直向下的匀强磁场中,足够长的光滑导轨固定不动。
电源电动势为E (不计内阻),导体棒ab 初始静止不动,导体棒 ab 在运动过程中始终与导轨垂直, 且接触良好。
专题09电磁感应现象及电磁感应规律的应用(热点难点突破)-2021年高考物理考纲解读与热点难点突破
专题09 电磁感应现象及电磁感应规律的应用(热点难点突破)2018年高考物理考纲解读与热点难点突破1.如图1所示,两根足够长的光滑金属导轨水平平行放置,间距为l=1 m,c、d间,d、e间,c、f间分别接着阻值R=10 Ω的电阻。
一阻值R=10 Ω的导体棒ab以速度v=4 m/s匀速向左运动,导体棒与导轨接触良好;导轨所在平面存在磁感应强度大小B=0.5 T、方向竖直向下的匀强磁场。
下列说法中正确的是( )图1A.导体棒ab中电流的流向为由b到aB.c、d两端的电压为2 VC.d、e两端的电压为1 VD.f、e两端的电压为1 V2.边长为a的正三角形金属框架的左边竖直且与磁场右边界平行,该框架完全处于垂直框架平面向里的匀强磁场中。
现把框架匀速水平向右拉出磁场,如图2所示,则下列图象与这一过程相符合的是( )图23.如图4所示是法拉第制作的世界上第一台发电机的模型原理图。
把一个半径为r 的铜盘放在磁感应强度大小为B 的匀强磁场中,使磁感线水平向右垂直穿过铜盘,铜盘安装在水平的铜轴上,两块铜片C 、D 分别与转动轴和铜盘的边缘接触,G 为灵敏电流表。
现使铜盘按照图示方向以角速度ω匀速转动,则下列说法中正确的是( )图4A .C 点电势一定高于D 点电势B .圆盘中产生的感应电动势大小为12Bωr 2 C .电流表中的电流方向为由a 到bD .若铜盘不转动,使所加磁场磁感应强度均匀增大,在铜盘中可以产生涡旋电流解析 把铜盘看作由中心指向边缘的无数条铜棒组合而成,当铜盘开始转动时,每根铜棒都在切割磁感线,相当于电源,由右手定则知,盘边缘为电源正极,中心为电源负极,C 点电势低于D 点电势,选项A 错误;此电源对外电路供电,电流由b 经电流表再从a 流向铜盘,选项C 错误;铜棒转动切割磁感线,相当于电源,回路中感应电动势为E =Brv =Brω12r =12Bωr 2,选项B 正确;若铜盘不转动,使所加磁场磁感应强度均匀增大,在铜盘中产生感生环形电场,使铜盘中的自由电荷在电场力的作用下定向移动,形成环形电流,选项D 正确。
物理知识清单-专题09 电磁感应定律及综合应用(讲)(原卷+解析版)
专题九电磁感应定律及综合应用电磁感应是电磁学中最为重要的内容,也是高考命题频率最高的内容之一。
题型多为选择题、计算题。
主要考查电磁感应、楞次定律、法拉第电磁感应定律、自感等知识。
本部分知识多结合电学、力学部分出压轴题,其命题形式主要是电磁感应与电路规律的综合应用、电磁感应与力学规律的综合应用、电磁感应与能量守恒的综合应用。
复习中要熟练掌握感应电流的产生条件、感应电流方向的判断、感应电动势的计算,还要掌握本部分内容与力学、能量的综合问题的分析求解方法。
预测高考重点考查法拉第电磁感应定律及楞次定律和电路等效问题.综合试题还是涉及到力和运动、动量守恒、能量守恒、电路分析、安培力等力学和电学知识.主要的类型有滑轨类问题、线圈穿越有界磁场的问题、电磁感应图象的问题等.此除日光灯原理、磁悬浮原理、电磁阻尼、超导技术这些在实际中有广泛的应用问题也要引起重视。
知识点一、法拉第电磁感应定律法拉第电磁感应定律的内容是感应电动势的大小与穿过回路的磁通量的变化率成正比.在具体问题的分析中,针对不同形式的电磁感应过程,法拉第电磁感应定律也相应有不同的表达式或计算式.磁通量变化的形式表达式备注通过n 匝线圈内的磁通量发生变化E =n ·ΔΦΔt(1)当S 不变时,E =nS ·ΔB Δt (2)当B 不变时,E =nB ·ΔS Δt 导体垂直切割磁感线运动E =BLv 当v ∥B 时,E =0导体绕过一端且垂直于磁场方向的转轴匀速转动E =12BL 2ω线圈绕垂直于磁场方向的转轴匀速转动E =nBSω·sin ωt 当线圈平行于磁感线时,E 最大为E =nBSω,当线圈平行于中性面时,E =0知识点二、楞次定律与左手定则、右手定则1.左手定则与右手定则的区别:判断感应电流用右手定则,判断受力用左手定则.2.应用楞次定律的关键是区分两个磁场:引起感应电流的磁场和感应电流产生的磁场.感应电流产生的磁场总是阻碍引起感应电流的磁场的磁通量的变化,“阻碍”的结果是延缓了磁通量的变化,同时伴随着能量的转化.3.楞次定律中“阻碍”的表现形式:阻碍磁通量的变化(增反减同),阻碍相对运动(来拒去留),阻碍线圈面积变化(增缩减扩),阻碍本身电流的变化(自感现象).知识点三、电磁感应与电路的综合电磁感应与电路的综合是高考的一个热点内容,两者的核心内容与联系主线如图4-12-1所示:1.产生电磁感应现象的电路通常是一个闭合电路,产生电动势的那一部分电路相当于电源,产生的感应电动势就是电源的电动势,在“电源”内部电流的流向是从“电源”的负极流向正极,该部分电路两端的电压即路端电压,U =R R +rE .2.在电磁感应现象中,电路产生的电功率等于内外电路消耗的功率之和.若为纯电阻电路,则产生的电能将全部转化为内能;若为非纯电阻电路,则产生的电能除了一部分转化为内能,还有一部分能量转化为其他能,但整个过程能量守恒.能量转化与守恒往往是电磁感应与电路问题的命题主线,抓住这条主线也就是抓住了解题的关键.在闭合电路的部分导体切割磁感线产生感应电流的问题中,机械能转化为电能,导体棒克服安培力做的功等于电路中产生的电能.说明:求解部分导体切割磁感线产生的感应电动势时,要区别平均电动势和瞬时电动势,切割磁感线的等效长度等于导线两端点的连线在运动方向上的投影.高频考点一对楞次定律和电磁感应图像问题的考查例1、(多选)(2019·全国卷Ⅰ·20)空间存在一方向与纸面垂直、大小随时间变化的匀强磁场,其边界如图4(a)中虚线MN 所示.一硬质细导线的电阻率为ρ、横截面积为S ,将该导线做成半径为r 的圆环固定在纸面内,圆心O 在MN 上.t =0时磁感应强度的方向如图(a)所示;磁感应强度B 随时间t 的变化关系如图(b)所示.则在t =0到t =t 1的时间间隔内()图4A.圆环所受安培力的方向始终不变B.圆环中的感应电流始终沿顺时针方向C.圆环中的感应电流大小为B0rS4t0ρD.圆环中的感应电动势大小为B0πr24t0【举一反三】(2018年全国II卷)如图,在同一平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁场区域,区域宽度均为l,磁感应强度大小相等、方向交替向上向下。
专题05电磁感应现象及电磁感应规律的应用(名校试题)-高考物理大题狂做系列(第01期)(解析版)
高中物理学习材料(马鸣风萧萧**整理制作)1. 【2014·北京市石景山区高三第一学期期末考试】(11分)图甲为一研究电磁感应的实验装置示意图,其中电流传感器(相当于一只理想的电流表)能将各时刻的电流数据实时通过数据采集器传输给计算机,经计算机处理后在屏幕上同步显示出I-t图像.足够长光滑金属轨道电阻不计,倾角θ = 30°.轨道上端连接有阻值 R = 1.0 Ω的定值电阻,金属杆MN电阻 r = 0.5 Ω,质量 m = 0.4 kg,杆长 L = 1.0 m.在轨道区域加一垂直轨道平面向下的匀强磁场,让金属杆从图示位置由静止开始释放,此后计算机屏幕上显示出如图乙所示的I-t图像,设杆在整个运动过程中与轨道垂直,取 g = 10 m/s2.试求:(1)t = 0.5 s 时电阻R的热功率;(2)匀强磁场的磁感应强度B的大小;(3)估算 0~1.2 s内通过电阻R的电荷量大小及在R上产生的焦耳热.2.【2014·新余高三上学期期末质检】如图甲所示,水平面上的两光滑金属导轨平行固定放置,间距d=0.5 m,电阻不计,左端通过导线与阻值R =2 Ω的电阻连接,右端通过导线与阻值R L =4 Ω的小灯泡L连接.在CDEF矩形区域内有竖直向上的匀强磁场,CE长l =2 m,有一阻值r =2 Ω的金属棒PQ放置在靠近磁场边界CD处(恰好不在磁场中).CDEF区域内磁场的磁感应强度B随时间变化如图乙所示.在t=0至t=4s内,金属棒PQ保持静止,在t=4s时使金属棒PQ以某一速度进入磁场区域并保持匀速运动.已知从t=0开始到金属棒运动到磁场边界EF处的整个过程中,小灯泡的亮度没有发生变化,求:(1)通过小灯泡的电流.(2)金属棒PQ在磁场区域中运动的速度大小.3.【2014·北京市大兴区高三第一学期期末试卷】(13分)如图所示,光滑斜面的倾角α=30°,在斜面上放置一矩形线框abcd,ab边的边长L1=1m,bc边的边长L2=0.4m,线框的质量m=1kg,电阻R=0.2Ω。
重难点09 电磁感应规律及其应用 —2021年高考物理【热点·重点·难点】专练(新高考专用)
2021年高考物理【热点·重点·难点】专练(新高考专用)重难点09 电磁感应规律及其应用【知识梳理】考点一 电磁感应中的电路问题 1. 对电磁感应中电源的理解(1)电源的正负极、感应电流的方向、电势的高低、电容器极板带电问题,可用右手定则或楞次定律判定。
(2)电源的电动势的大小可由E =Blv 或tn E ∆∆Φ=求解。
2. 对电磁感应电路的理解(1)在电磁感应电路中,相当于电源的部分把其他形式的能通过电流做功转化为电能。
(2)“电源”两端的电压为路端电压,而不是感应电动势。
【重点归纳】1.电磁感应中电路知识的关系图2.电磁感应中电路问题的题型特点闭合电路中磁通量发生变化或有部分导体做切割磁感线运动,在回路中将产生感应电动势和感应电流.从而考题中常涉及电流、电压、电功等的计算,也可能涉及电磁感应与力学、电磁感应与能量的综合分析.3.分析电磁感应电路问题的基本思路(1)确定电源:用法拉第电磁感应定律和楞次定律或右手定则确定感应电动势的大小和方向,电源内部电流的方向是从低电势流向高电势;(2)分析电路结构:根据“等效电源”和电路中其他元件的连接方式画出等效电路.注意区别内外电路,区别路端电压、电动势;(3)利用电路规律求解:根据E =BLv 或tn E ∆∆Φ=结合闭合电路欧姆定律、串并联电路知识和电功率、焦耳定律等关系式联立求解。
考点二 电磁感应中的图象问题 1.题型特点一般可把图象问题分为三类:(1)由给定的电磁感应过程选出或画出正确的图象;(2)由给定的有关图象分析电磁感应过程,求解相应的物理量; (3)根据图象定量计算。
2.解题关键弄清初始条件,正负方向的对应,变化范围,所研究物理量的函数表达式,进、出磁场的转折点是解决问题的关键.3.解决图象问题的一般步骤(1)明确图象的种类,即是B -t 图象还是Φ-t 图象,或者是E -t 图象、I -t 图象等; (2)分析电磁感应的具体过程;(3)用右手定则或楞次定律确定方向对应关系;(4)结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等规律写出函数关系式; (5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等; (6)画出图象或判断图象。
高考物理二轮必会题型:9.3《专题、电磁感应规律的综合应用》(含答案)
第3讲 专题 电磁感应规律的综合应用1.闭合回路由电阻R 与导线组成,其内部磁场大小按Bt 图变化,方向如图1所示,则回路中( ).图1A .电流方向为顺时针方向B .电流强度越来越大C .磁通量的变化率恒定不变D .产生的感应电动势越来越大解析 由楞次定律可以判断电流方向为顺时针方向,A 项正确;由法拉第电磁感应定律E =N ΔΦΔt 可得,E =NΔB Δt S ,由图可知ΔBΔt是恒量,所以电动势恒定,D 项错误;根据欧姆定律,电路中电流是不变的,B 项错误;由于磁场均匀增加,线圈面积不变所以磁通量的变化率恒定不变,C 项正确. 答案 AC2.水平放置的金属框架cdef 处于如图2所示的匀强磁场中,金属棒ab 处于粗糙的框架上且接触良好,从某时刻开始,磁感应强度均匀增大,金属棒ab 始终保持静止,则( ).图2A .ab 中电流增大,ab 棒所受摩擦力增大B .ab 中电流不变,ab 棒所受摩擦力不变C .ab 中电流不变,ab 棒所受摩擦力增大D .ab 中电流增大,ab 棒所受摩擦力不变 解析 由法拉第电磁感应定律E =ΔΦΔt =ΔBΔtS 知,磁感应强度均匀增大,则ab 中感应电动势和电流不变,由F f =F 安=BIL 知摩擦力增大,选项C 正确. 答案 C3.如图3所示,空间某区域中有一匀强磁场,磁感应强度方向水平,且垂直于纸面向里,磁场上边界b 和下边界d 水平.在竖直面内有一矩形金属线圈,线圈上下边的距离很短,下边水平.线圈从水平面a 开始下落.已知磁场上下边界之间的距离大于水平面a 、b 之间的距离.若线圈下边刚通过水平面b 、c(位于磁场中)和d时,线圈所受到的磁场力的大小分别为F b 、F c 和F d ,则( ).图3A .F d >F c >F bB .F c <F d <F bC .F c >F b >F dD .F c <F b <F d解析 从a 到b 线圈做自由落体运动,线圈全部进入磁场后,穿过线圈的磁通量不变,线圈中无感应电流,因而也不受磁场力,即F c =0,从b 到d 线圈继续加速,v d >v b ,当线圈在进入和离开磁场时,穿过线圈的磁通量变化,线圈中产生感应电流,受磁场力作用,其大小为:F =BIl =B Blv R l =B 2l 2v R ,因v d >v b ,所以F d >F b >F c ,选项D 正确. 答案 D4.如图4所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感应强度为B ,方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、有效阻值为R2的金属导线ab 垂直导轨放置,并在水平外力F 的作用下以速度v 向右匀速运动,则(不计导轨电阻)( ).图4A .通过电阻R 的电流方向为P→R→MB .a 、b 两点间的电压为BLvC .a 端电势比b 端高D .外力F 做的功等于电阻R 上发出的焦耳热解析 由右手定则可知通过金属导线的电流由b 到a ,即通过电阻R 的电流方向为M→R→P,A 错误;金属导线产生的电动势为BLv ,而a 、b 两点间的电压为等效电路路端电压,由闭合电路欧姆定律可知,a 、b 两点间电压为23BLv ,B 错误;金属导线可等效为电源,在电源内部,电流从低电势流向高电势,所以a 端电势高于b 端电势,C 正确;根据能量守恒定律可知,外力做功等于电阻R 和金属导线产生的焦耳热之和,D 错误. 答案 C5.一空间有垂直纸面向里的匀强磁场B ,两条电阻不计的平行光滑导轨竖直放置在磁场内,如图5所示,磁感应强度B =0.5 T ,导体棒ab 、cd 长度均为0.2 m ,电阻均为0.1 Ω,重力均为0.1 N ,现用力向上拉动导体棒ab,使之匀速上升(导体棒ab、cd与导轨接触良好),此时cd静止不动,则ab上升时,下列说法正确的是( ).图5A.ab受到的拉力大小为2 NB.ab向上运动的速度为2 m/sC.在2 s内,拉力做功,有0.4 J的机械能转化为电能D.在2 s内,拉力做功为0.6 J解析对导体棒cd分析:mg=BIl=B2l2vR总,得v=2 m/s,故B选项正确;对导体棒ab分析:F=mg+BIl=0.2 N,选项A错误;在2 s内拉力做功转化的电能等于克服安培力做的功,即W=F安vt=0.4 J,选项C正确;在2 s内拉力做的功为Fvt=0.8 J,选项D错误.答案BC6.粗细均匀的电阻丝围成的正方形线框原先整个置于有界匀强磁场内,磁场方向垂直于线框平面,其边界与正方形线框的边平行,现使线框沿四个不同方向以相同速率v匀速平移出磁场,如图6所示,线框移出磁场的整个过程( )图6A.四种情况下ab两端的电势差都相同B.①图中流过线框的电荷量与v的大小无关C.②图中线框的电功率与v的大小成正比D.③图中磁场力对线框做的功与v2成正比解析由法拉第电磁感应定律E=ΔΦ/Δt,闭合电路欧姆定律I=E/R,电流定义式I=q/Δt可得q=ΔΦ/R,线框沿四个不同方向移出磁场,流过线框的电荷量与v的大小无关,选项B正确.四种情况下ab两端的电势差不相同,选项A错误.②图中线框的电功率P=E2/R,E=BLv,P与v的二次方大小成正比,选项C错误;③图中磁场力F=BIL,I=E/R,E=BLv,磁场力对线框做功W=FL,磁场力对线框做的功与v成正比,选项D错误.答案 B7.如图7甲所示,在竖直方向上有四条间距相等的水平虚线L1、L2、L3、L4,在L1L2之间、L3L4之间存在匀强磁场,大小均为1 T,方向垂直于虚线所在平面.现有一矩形线圈abcd,宽度cd=L=0.5 m,质量为0.1 kg,电阻为2 Ω,将其从图示位置静止释放(cd边与L1重合),速度随时间的变化关系如图乙所示,t1时刻cd边与L 2重合,t 2时刻ab 边与L 3重合,t 3时刻ab 边与L 4重合,已知t 1~t 2的时间间隔为0.6 s ,整个运动过程中线圈平面始终处于竖直方向.(重力加速度g 取10 m/s 2)则( ).图7A .在0~t 1时间内,通过线圈的电荷量为0.25 CB .线圈匀速运动的速度大小为8 m/sC .线圈的长度为1 mD .0~t 3时间内,线圈产生的热量为4.2 J解析 t 2~t 3时间ab 在L 3L 4内匀速直线运动,而E =BLv 2,F =B E R L ,F =mg 解得:v 2=mgRB 2L 2=8 m/s ,选项B正确.从cd 边出L 2到ab 边刚进入L 3一直是匀加速,因而ab 刚进磁场时,cd 也应刚进磁场,设磁场宽度是d ,有:3d =v 2t -12gt 2,得:d =1 m ,有:ad =2d =2 m ,选项C 错误,在0~t 3时间内由能量守恒得:Q =mg·5d-12mv 22=1.8 J ,选项D 错误.0~t 1时间内,通过线圈的电荷量为q =ΔΦR =BdLR =0.25 C ,选项A 正确. 答案 AB8.如图8甲所示,水平面上固定一个间距L =1 m 的光滑平行金属导轨,整个导轨处在竖直方向的磁感应强度B=1 T 的匀强磁场中,导轨一端接阻值R =9 Ω的电阻.导轨上有质量m =1 kg 、电阻r =1 Ω、长度也为1 m 的导体棒,在外力的作用下从t =0开始沿平行导轨方向运动,其速度随时间的变化规律是v =2t ,不计导轨电阻.求:(1)t =4 s 时导体棒受到的安培力的大小;(2)请在如图乙所示的坐标系中画出电流平方与时间的关系(I 2t)图象.图8解析 (1)4 s 时导体棒的速度v =2t =4 m/s 感应电动势E =BLv 感应电流I =ER +r此时导体棒受到的安培力F 安=BIL =0.4 N(2)由(1)可得I 2=⎝ ⎛⎭⎪⎫E R +r 2=4⎝ ⎛⎭⎪⎫BL R +r 2t =0.04t作出图象如图所示.答案 (1)0.4 N (2)见解析图9.如图9所示,宽度为L 的金属框架竖直固定在绝缘地面上,框架的上端接有一个电子元件,其阻值与其两端所加的电压成正比,即R =kU ,式中k 为已知常数.框架上有一质量为m ,离地高为h 的金属棒,金属棒与框架始终接触良好无摩擦,且保持水平.磁感应强度为B 的匀强磁场方向垂直于框架平面向里.将金属棒由静止释放,棒沿框架向下运动,不计金属棒及导轨的电阻.重力加速度为g.求:图9(1)金属棒运动过程中,流过棒的电流的大小和方向; (2)金属棒落到地面时的速度大小;(3)金属棒从释放到落地过程中通过电子元件的电荷量.解析 (1)流过电子元件的电流大小为I =U R =1k ,由串联电路特点知流过棒的电流大小也为1k ,由右手定则判定流过棒的电流方向为水平向右(或从a→b)(2)在运动过程中金属棒受到的安培力为F 安=BIL =BLk对金属棒运用牛顿第二定律有mg -F 安=ma 得a =g -BLmk 恒定,故金属棒做匀加速直线运动根据v 2=2ax ,得v =2h ⎝⎛⎭⎪⎫g -BL mk (3)设金属棒经过时间t 落地,有h =12at 2解得t =2h a= 2hkmmgk -BL故有q =I·t=1k2hkmmgk -BL答案 (1)1k 水平向右(或从a→b) (2)2h ⎝ ⎛⎭⎪⎫g -BL mk (3)1k2hkmmgk -BL10.如图10所示,电阻可忽略的光滑平行金属导轨长s =1.15 m ,两导轨间距L =0.75 m ,导轨倾角为30°,导轨上端ab 接一阻值R =1.5 Ω的电阻,磁感应强度B =0.8 T 的匀强磁场垂直轨道平面向上.阻值r =0.5 Ω,质量m =0.2 kg 的金属棒与轨道垂直且接触良好,从轨道上端ab 处由静止开始下滑至底端,在此过程中金属棒产生的焦耳热Q 1=0.1 J .(取g =10 m/s 2)求:图10(1)金属棒在此过程中克服安培力的功W 安; (2)金属棒下滑速度v =2 m/s 时的加速度a.(3)为求金属棒下滑的最大速度v m ,有同学解答如下:由动能定理,W 重-W 安=12mv 2m ,…….由此所得结果是否正确?若正确,说明理由并完成本小题;若不正确,给出正确的解答.解析 (1)下滑过程中安培力的功即为在电阻上产生的焦耳热,由于R =3r ,因此Q R =3Q r =0.3 J 故W 安=Q =Q R +Q r =0.4 J(2)金属棒下滑时受重力和安培力F 安=BIL =B 2L2R +r v由牛顿第二定律mgsin 30°-B 2L2R +r v =ma所以a =g sin 30°-B 2L 2+v=⎣⎢⎡⎦⎥⎤10×12-0.82×0.752×20.2× 1.5+0.5m/s 2 =3.2 m/s 2(3)此解法正确.金属棒下滑时受重力和安培力作用,其运动满足 mgsin 30°-B 2L2R +rv =ma上式表明,加速度随速度增加而减小,棒做加速度减小的加速运动.无论最终是否达到匀速,当棒到达斜面底端时速度一定为最大.由动能定理可以得到棒的末速度,因此上述解法正确. mgs sin 30°-Q =12mv 2m得v m = 2gs sin 30°-2Qm=2×10×1.15×12-2×0.40.2m/s=2.74 m/s答案 (1)0.4 J (2)3.2 m/s 2(3)见解析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(精心整理,诚意制作)
1.
【20xx·××市××区高三第一学期期末考试】如图8所示,一导线弯成直径为d 的半圆形闭合回路.虚线MN 右侧有磁感应强度为B 的匀强磁场,方向垂直于回路所在的平面.回路以速度v 向右匀速进入磁场,直径CD 始终与MN 垂直.从D 点到达边界开始到C 点进入磁场为止,下列说法中正确的是
A .感应电流的方向先沿顺时针方向,后沿逆时针方向
B .CD 段直导线始终不受安培力
C .感应电动势的最大值E = Bdv
D .感应电动势的平均值1
8
E Bdv π=
2.【20xx·山西高三四校联考】如图所示,匀强磁场的方向垂直纸面,规定向里的方向为正,在磁场中有一细金属圆环,线圈平面位于纸面内,现令磁感应强度B随时间t变化,先按图所示的Oa图线变化,后来又按bc和cd变化,令E1、E2、E3分别表示这三段变化过程中感应电动势的大小,I1、I2、I3分别表示对应的感应电流,则下列正确的是
A.E1<E2,I1沿逆时针方向,I2沿顺时针方向
B.E1<E2,I1沿顺时针方向,I2沿逆时针方向
C.E2<E3,I2沿逆时针方向,I3沿顺时针方向
D.E2= E3,I2沿逆时针方向,I3沿顺时针方向
3. 【20xx·辽宁省抚顺二中高三上期期中考试】在如图甲所示的电路中,螺线管匝数n = 1500匝,横截面积S = 20cm2.螺线管导线电阻r= 1.0Ω,R1 =
4.0Ω,R2 =
5.0Ω,C=30μF.在一段时间内,穿过螺线管的磁场的磁感应强度B按如图乙所示的规律变化.则下列说法中正确的是()
A.螺线管中产生的感应电动势为1.2V
B.闭合S,电路中的电流稳定后电容器上极板带正电
C.电路中的电流稳定后,电阻R1的电功率为5×10-2 W
D.S断开后,流经R2的电量为1.8×10-5C
4. 【20xx·江西稳派名校学术联盟高三调研】如图甲所示,导体棒MN置于水平导轨上,PQMN所围的面积为S,PQ之间有阻值为R的电阻,不计导轨和导体棒的电阻。
导轨所在区域内存在沿竖直方向的匀强磁场,规定磁场方向竖直向上为正,在0~2t0时间内磁感应强度的变化情况如图乙所示,导体棒MN始终处于静止状态。
下列说法正确的是
A. 在0~t0和t0~2t0时间内,导体棒受到的导轨的摩擦力方向相同
B. 在0~t0内,通过导体棒的电流方向为N到M
C. 在t0~2t0内,通过电阻R的电流大小为0
SB
Rt
D. 在0~2t0时间内,通过电阻R的电荷量为0
2
SB
R
考点:电磁感应
5.
【20xx·××市××区高三第一学期期末试卷】某同学为了验证自感现象,自己找来带铁芯的线圈L(线圈的自感系数很大,构成线圈导线的电阻可以忽略)、两个相同的小灯泡A和B、开关S 和电池组E,用导线将它们连接成如图所示的电路。
经检查,各元件和导线均是完好的,检查电路无误后,开始进行实验操作。
他可能观察到的现象是
A.闭合S瞬间,A比B先亮B.闭合S瞬间,B比A先亮
C.断开S瞬间,A比B先熄灭D.断开S瞬间,B比A先熄灭
6.【20xx·新余高三上学期期末质检】如图所示,在坐标系xOy中,有边长为L的正方形金属线框abcd,其一条对角线ac和y轴重合、顶点a位于坐标原点O处。
在y轴的右侧,的I、Ⅳ象限内有一垂直纸面向里的匀强磁场,磁场的上边界与线框的ab边刚好完全重合,左边界与y轴重合,右边界与y轴平行。
t =0时刻,线圈以恒定的速度v沿垂直于磁场上边界的方向穿过磁场区域。
取沿a→b→c→d→a方向的感应电流为正,则在线圈穿过磁场区域的过程中,感应电流i、ab间的电势差U ab随时间t变化的图线是下图中的( )
7.【20xx·辽宁省××市六校联合体高三上期期中考试】如图所示为新一代炊具——
电磁炉,无烟、无明火、无污染、不产生有害气体、高效节能等是电磁炉的优势所在。
电磁炉是利用电流通过线圈产生磁场,当磁场通过含铁质锅底部时,即会产生无数小涡流,使锅体本身自行高速发热,然后再加热锅内食物。
下列相关说法中正确的是( )
A.锅体中的涡流是由恒定的磁场产生的
B.恒定磁场越强,电磁炉的加热效果越好
C.锅体中的涡流是由变化的磁场产生的
D.降低磁场变化的频率,可提高电磁炉的加热效果
中涡流的强弱与磁场变化的频率有关,因此提高磁场变化的频率,可提高电磁炉的加热效果,故D错误。
考点:电磁感应在生活和生产中的应用.
8.
【20xx·××市东××区示范校高三第一学期12月联考试卷】如图所示,空间存在一有边界的条形匀强磁场区
域,磁场方向与竖直平面(纸面)垂直,磁场边界的间距为L。
一个质量为m、边长也为L的正方形导线框沿竖直方向运动,线框所在平面始终与磁场方向垂直,且线框上、下边始终与磁场的边界平行。
t=0时刻导线框的上边恰好与磁场的下边界重合(图中位置Ⅰ),导线框的速度为v0。
经历一段时间后,当导线框的下边恰好与磁场的上边界重合时(图中位置Ⅱ),导线框的速度刚好为零。
此后,导线框下落,经过一段时间回到初始位置Ⅰ。
则
A. 上升过程中,导线框的加速度逐渐增大
B. 下降过程中,导线框的加速度逐渐增大
C. 上升过程中合力做的功与下降过程中的相等
D. 上升过程中克服安培力做的功比下降过程中的多
9.【20xx·山西高三四校联考】青藏铁路刷新了一系列世界铁路的历史纪录,青藏铁路火车上多种传感器运用了电磁感应原理,有一种电磁装置可以向控制中心传输信号以确定火车位置和运动状态,原理是将能产生匀强磁场的磁铁,安装在火车首节车厢下面,俯视如图甲所示,当它经过安放在两铁轨间的线圈时,便产生一个电信号,被控制中心接收到,当火车通过线圈时,若控制中心接收到的线圈两端的电压信号为图乙所示,则说明火车在做
A.匀速直线运动 B.匀加速直线运动 C.匀减速直线运动 D.加速度逐渐加大的变加速直线运动
10.
【20xx·辽宁省五校协作体高三第二次模拟考试】如图所示,宽度为d的有界匀强磁场,方面垂直于纸面向里。
在纸面所在平面内有一对角线长也为d的正方形闭合导线ABCD,沿AC方向垂直磁场边界,匀速穿过该磁场区域。
规定逆时针方向为感应电流的正方向,t=0时C点恰好进入磁场,则从C点进入磁场开始到A点离开磁场为止,闭合导线中感应电流随时间的变化图象正确的是:
【答案】A
【解析】
试题分析:线框进入磁场后切割磁感线的有效长度先变大后减小,电流方向恒为逆时针,离开磁场时切割磁感线的有效长度先变大后减小,电流方向恒为顺时针,符合条件的选项为A 。
考点:导体切割磁感线时的感应电动势;闭合电路的欧姆定律
11. 【20xx·辽宁省××市高三教学质量监测(一)】如图所示,在磁感应强度B=1.0
T的匀强磁场中,金属杆PQ在外力F作用下在粗糙U型导轨上以速度s
2
=
v/
m
向右匀速滑动,两导轨间距离L=1.0 m,电阻R=3.0Ω,金属杆的电阻r=1.0
Ω,导轨电阻忽略不计,则下列说法正确的是
A、通过R的感应电流的方向为由d到a
B.金属杆PQ切割磁感线产生的感应电动势的大小为2.0 V
C. 金属杆PQ受到的安培力大小为0.5 N
D.外力F做功大小等予电路产生的焦耳热
12. 【20xx·山西沂州一中高三联考】如图所示,一个边长为l、总电阻为R的单匝等边三角形金属线框, 在外力的作用下以速度v匀速穿过宽度均为l的两个有界匀强磁场,磁场的磁感应强度大小均为B,方向相反.线框运动方向始终与底边平行且与磁场边界垂直.取顺时针方向的电流为正,从图示位置开始,线框中的感应电流i与线框沿运动方向的位移x之间的函数图象是。