专题三 不定积分
不定积分知识点
不定积分知识点
1. 一般积分:用数学中的积分运算来解决求某一函数在某一区间上的积分值的问题,是微积分中最基本的运算。
2. 不定积分:也称为普通积分,指的是在没有给定积分上限下求某一函数的积分值的问题,是一种比较复杂的积分运算。
3. 基本定理:不定积分的积分值等于原函数值减去原函数的积分值。
4. 替代变量法:将原函数中的变量替换成新的变量,以便更容易求解不定积分。
5. 公式法:对于一些常见的不定积分,可以直接使用相应的公式求解。
6. 分部积分法:将一个不定积分分成多个定积分,然后分别求解,最后把这些定积分的结果加起来即可得到不定积分的结果。
不定积分24个基本公式
不定积分24个基本公式一、原函数不定积分的概念原函数的定义:如果区间I上,可导函数F(x)的导函数为f'(x),即对任一x∈I都有 F'(x)=f(x) 或 dF(x)=f(x) dx 那么函数F(x)就称为f(x)(或 f(x) dx)在区间 I 内的一个原函数。
原函数存在定理:如果函数f(x)在区间 I 上连续,那么在区间 I 上存在可导函数F(x),使对任一x∈I都有 F'(x)=f(x).简单地说:连续函数一定有原函数。
不定积分的定义:在区间 I 上,函数f(x)的带有任意常数项的的原函数称为f(x)( f(x)dx ) 在区间 I 上的不定积分,记作∫ f(x)dx . 其中记号∫ 称为积分号,f(x)称为被积函数 f(x)dx 称为被积表达式,x 称为积分变量。
二、基本积分公式三、不定积分的性质设函数f(x)及g(x)的原函数存在,则∫ [ f(x) ± g(x)]dx= ∫ f(x) dx ± ∫ g(x) dx 。
记:合拢的加减积分可以分开加减积分2. 设函数f(x)及g(x)的原函数存在,k为非零常数,则∫ k f(x) dx=k ∫ f(x) dx记者:非零常数乘以积分,可以把常数拿出来,乘以不定积分。
四、第一类换元积分法设f(u)具有原函数,u=φ(x)可导,则有换元公式:也叫做凑微分法五、第二类换元积分法设x=ψ(t)是单调的可导函数,并且ψ'(t)≠0,又设f[ψ(t)]ψ'(t)具有原函数,则有换元公式是x=ψ(x)的反函数。
三种常见的换元公式(注:利用三角形理解去记)利用第二种换元积分法解出的常见的积分公式:六、分部积分法设函数u=u(x)及v=v(x)具有连续导数,则两个函数乘积的导数公式为 (uv)'=u'v+uv',移项,得: u v'=(u v)'-u' v对这个等式两边求积分∫ u v' dx=u v- ∫ u' v dx 称为分部积分公式按零件的集成顺序集成:反对力量指的是三,意思是从后面集成容易,先集成那个。
高数-专题三 积分计算的基本法则
a
a m1
1 (axb)m1C a(m1)
注: 当 m1时
dx ax
b
1lnaxbC a
目录 上页 下页 返回 结束
例2. 求
dx a2 x2
.
解:
dx a2 x2
1 a2
dx
1
((
xx aa
)) 2
令 u x , 则 du 1 d x
x5 f (x)
x ,则 x2 1
f(x)dxx4
dx (令t x21
1) x
t 3 d t 1 ( 1 t2) 1 dt2 1 t 2 2 1t2
1(1t2)1 2d(1t2)1(1t2)1 2d(1t2)
2
2
1(1t2)23 (1t2)12 C (代回原变量) 3
1 )f(x ,na b x )d x , 令tnaxb
2)f(x,nc ax x d b)dx,
令
t
n
a xb c xd
3 )f(x, a 2 x 2)d x,令 xasitn
4 )f(x, a 2 x 2)d x, 令 xatatn
5 )f(x, x 2 a 2)d x, 令 xase t c
ln se t tca t n C 1
ln
x2a2
a
x a
C1
x2 a2 x
t a
ln xx2a2 C (CC 1ln a)
目录 上页 下页 返回 结束
例12. 求
a2 x4
x2
dx
.
解:
令
x
1 t
,则
常见的不定积分(公式大全)
常见的不定积分(公式大全)一、基本积分公式1. $ \int x^n dx = \frac{x^{n+1}}{n+1} + C $,其中 $ n \neq 1 $。
2. $ \int dx = x + C $。
3. $ \int a dx = ax + C $,其中 $ a $ 为常数。
4. $ \int e^x dx = e^x + C $。
5. $ \int \ln x dx = x \ln x x + C $。
6. $ \int \frac{1}{x} dx = \ln |x| + C $。
7. $ \int \sin x dx = \cos x + C $。
8. $ \int \cos x dx = \sin x + C $。
9. $ \int \tan x dx = \ln |\cos x| + C $。
10. $ \int \cot x dx = \ln |\sin x| + C $。
二、换元积分法1. $ \int f(ax + b) dx = \frac{1}{a} \int f(ax + b) d(ax + b) $。
2. $ \int f(x^n) dx = \frac{1}{n} \int f(x^n) d(x^n) $。
3. $ \int f(\sqrt{ax^2 + bx + c}) dx = \frac{1}{a} \int f(\sqrt{ax^2 + bx + c}) d(\sqrt{ax^2 + bx + c}) $。
4. $ \int f(\sqrt{a^2 x^2}) dx = \frac{1}{a} \intf(\sqrt{a^2 x^2}) d(\sqrt{a^2 x^2}) $。
5. $ \int f(\sqrt{x^2 a^2}) dx = \frac{1}{a} \intf(\sqrt{x^2 a^2}) d(\sqrt{x^2 a^2}) $。
三、分部积分法1. $ \int u dv = uv \int v du $。
不定积分的解法汇总
不定积分的解法汇总不定积分,也称为不定积分或者原函数,是微积分中的一个重要概念,它是确定函数的不定积分。
不定积分的解法涉及到多种技巧和方法,掌握这些技巧和方法可以帮助我们更加灵活地求解不定积分。
本文将对不定积分的解法进行汇总,包括常用的积分公式、基本积分法、分部积分法、换元积分法等内容,希望能够帮助大家更好地掌握不定积分的解法。
一、常用的积分公式1. 幂函数积分公式当被积函数为幂函数时,可以通过直接积分法求解。
定义在区间[a, b]上的幂函数f(x)=x^n的不定积分为∫x^n dx = (1/(n+1)) * x^(n+1) + C,其中C为常数。
2. 三角函数积分公式当被积函数为三角函数时,可以通过三角函数的性质和积分公式求解。
sin(x)的不定积分为∫sin(x) dx = -cos(x) + C,cos(x)的不定积分为∫cos(x) dx = sin(x) + C。
3. 指数函数和对数函数积分公式当被积函数为指数函数或对数函数时,可以利用指数函数和对数函数的性质求解。
指数函数e^x的不定积分为∫e^x dx = e^x + C,对数函数ln(x)的不定积分为∫ln(x) dx = x * ln(x) - x + C。
二、基本积分法基本积分法又称为换元积分法,它是求不定积分的基本方法之一。
基本积分法的步骤如下:1. 选择适当的换元变量u,使得被积函数中的一部分可以变成u的导数;2. 对被积函数进行合理的替换,将被积函数变为u的函数;3. 求出u的不定积分;4. 将u的不定积分转换为原函数中的自变量。
对于不定积分∫2x * (x^2 + 1)^3 dx,我们可以选择u=x^2+1,然后求出du=2x dx。
接着将被积函数中的2x dx替换为du,得到∫(u^3) du,然后求出u的不定积分,最后用u的原函数替换进行还原得到不定积分的结果。
四、其他积分法除了基本积分法和分部积分法外,还有其他一些常用的积分法,如换元积分法、有理函数积分法、反常积分法等。
不定积分典型例题
不定积分典型例题一、直接积分法直接积分法是利用基本积分公式和不定积分性质求不定积分的方法,解题时往往需对被积函数进行简单恒等变形,使之逐项能用基本积分公式.例1、求∫(1−1)x x dx x 234−54714解原式=∫(x −x )dx =x 4+4x 4+C 7e 3x +1例2、求∫x dx e +1解原式=∫(e 2x −e x +1)dx =例3、求∫12x e −e x +x +C 21dx 22sin x cos xsin 2x +cos 2x 11解原式=∫dx =dx +dx =tan x −cot x +C 2222∫∫sin x cos x cos x sin x例4、∫cos 2解原式=∫x dx 2x +sin x 1+cos x dx =+C 22x 2例5、∫dx 21+x x 2+1−11dx =(1−解原式=∫∫1+x 2)dx =x −arctan x +C 1+x 2注:本题所用“加1减1”方法是求积分时常用的恒等变形技巧.二、第一类换元积分法(凑微分法)∫f (x )dx =∫g [ϕ(x )]ϕ'(x )dx 凑成令ϕ(x )=u =∫g (u )du 求出=G (u )+C 还原=G [ϕ(x )]+C 在上述过程中,关键的一步是从被积函数f (x )中选取适当的部分作为ϕ'(x ),与dx 一起凑成ϕ(x )的微分d ϕ(x )=du 且∫g (u )du 易求.tan x dx cos x例1、求∫3−2sin x −d cos x =−∫(cos x )2d cos x =+C dx =∫解原式=∫cos x cos x cos x cos x cos x例2、求∫arcsin xx −x 2dx解原式=∫arcsin x1−x ⋅1x dx =∫2arcsin x1−(x )2d (x )=2∫arcsin xd (arcsin x )=(arcsin x )2+C注1dx =2d (x )x1−x9−4x 2 例3、求∫dx1−1d (2x )12 解原式=∫+∫(9−4x )2d (9−4x 2)232−(2x )28=12∫2d (x )11213+9−4x 2=arcsin x +9−4x 2+C 423421−(x )23例4、求∫tan 1+x 2⋅x1+x 2dx解原式=∫tan1+x 2d 1+x 2=−ln |cos 1+x 2|+C 例5、求∫x x −x −12dxx (x +x 2−1)22dx =x dx +x x −1dx 解原式=∫2∫∫x −(x 2−1)3x 31x 31222=+∫x −1d (x −1)=+(x −1)2+C 3233例6、求∫1dx 1+tan xcos x 1cos x −sin x )dx dx =∫(1+sin x +cos x 2cos x +sin x解原式=∫=1⎡1⎤1++(cos sin )x d x x =(x +ln |cos x +sin x |)+C ∫⎢⎥2⎣cos x +sin x ⎦211+x ln dx 1−x 21−x11+x 1+x 121+x ln (ln +C )d ln =∫21−x 1−x 41−x例7、求∫ 解原式= 例8、求∫1dx x e +1e x 1+e x −e x dx =∫dx −∫dx 解原式=∫e x +11+e x=∫dx −∫1x x d (1+e )=x −ln(1+e )+C x1+e例9、求∫1dx e x +e −xe x 1 解原式=∫2x dx =∫d (e x )=arctan e x +C x 2e +11+(e ) 例10、求∫sin x dx 1+sin x11−sin x )dx =∫dx −∫dx 21+sin x cos x解原式=∫(1−=x −∫1sin x dx +dx =x −tan x +sec x +C 22∫cos x cos x例11、求∫dx x 2−3ln x−12 解原式=∫(2−3ln x )d (ln x )1111(2−3ln x )2+C =∫(2−3ln x )(−)d (2−3ln x )=−⋅33−1+12−12=−22−3ln x +C 31dx a 2sin 2x +b 2cos 2x1b 2+a 2tan 2x d (tan x )=11a (tan x )d ab ∫1+(a tan x )2b b例 12、求∫ 解原式=∫=1a arctan(tan x )+C ab bx 4+1dx 例13、求∫6x +1(x 2)2−x 2+1x 2x 4−x 2+1+x 2dx +∫32dx dx =∫解原式=∫(x 2)3+1(x )x 6+1=∫111133dx +dx =arctan x +arctan x +C 232∫1+x 31+(x )3例14、求∫1dx x (1+x 8)1+x 8−x 811x 78=−dx dx dx 解原式=∫=ln |x |−ln(1+x )+C 88∫x ∫1+x x (1+x )8例15、求∫3x −2dx x 2−4x +53d (x 2−4x +5)1+4∫2 解原式=∫2dx 2x −4x +5x −4x +5d (x −2)3ln |x 2−4x +5|+4∫22(x −2)+13ln |x 2−4x +5|+4arctan(x −2)+C 2== 注由于分子比分母低一次,故可先将分子凑成分母的导数,把积分化为形1dx 的积分(将分母配方,再凑微分).如∫2ax +bx +cx 2 例16、已知f (x −1)=ln 2,且f [ϕ(x )]=ln x ,求∫ϕ(x )dx .x −22x 2−1+1x +1 解 因为f (x −1)=ln 2,故f (x )=ln ,又因为x −1−1x −12f [ϕ(x )]=ln ϕ(x )+1ϕ(x )+1x +1=ln x ,得=x ,解出ϕ(x )=,从而ϕ(x )−1ϕ(x )−1x −1∫ϕ(x )dx =∫ 例17、求∫x +12dx =∫(1+)dx =x +2ln |x −1|+C x −1x −11dx cos 4x1 解原式=∫sec 2xd tan x =∫(1+tan 2x )d tan x =tan x +tan 3x +C 3例18、求∫1+ln x dx 22+(x ln x ) 解原式=∫1d (x ln x )x ln x arctan(=)+C 2+(x ln x )222三、第二类换元法设x =ϕ(t )单调可导,且ϕ'(t )≠0,已知∫f [ϕ(t )]ϕ'(t )dt =F (t )+C ,则∫f (x )dx 令x =ϕ(t )=∫f [ϕ(t )]ϕ'(t )dt =F (t )+C t =ϕ−1(x )还原=F [ϕ−1(x )]+C选取代换x =ϕ(t )的关键是使无理式的积分化为有理式的积分(消去根号),同时使∫f [ϕ(t )]ϕ'(t )dt 易于计算.例1、求∫xdx(x +1)1−x 22 解令x =sin t ,dx =cos tdt原式=∫111sin t cos tdt d cos t (=−)d cos t =−+22∫∫(sin t +1)cos t 2−cos t 222−cos t 2+cos t2+cos t 12+1−x 2ln +C =−+C ln =−2222−cos t 222−1−x 1例2、求∫dxx41+x2解令x=tan t,dx=sec2tdtsec2tdt cos3tdt1−sin2t原式=∫=∫=∫d sin t=∫(sin−4t−sin−2t)d sin t 444tan t⋅sec t sin t sin t(1+x2)3(1+x2)111++C=−++C=−333sin t sin t3x xx2−9dxx2例3、求∫解令x=3sec t,则dx=3sec t⋅tan tdt3tan t tan2t原式=∫⋅3sec t⋅tan tdt=∫dt=∫(sec t−cos t)dt29sec t sec t=ln|sec t+tan t|−sin t+C1x x2−a2x2−a2=ln+−+C1a a xx2−a2+C=ln x+x−a−x22例4、求∫1dxx(x7+2)11 解令x=,则dx=−2dt,t t1t 6117 原式=∫(−2)dt =−∫dt =−d (1+2t )77∫11+2t 141+2t +2t 7t t 111ln |1+2t 7|+C =−ln |2+x 7|+ln |x |+C 14142=− 注设m ,n 分别为被积函数的分子,分母关于x 的最高次数,当n −m >1时,可用倒代换求积分.例5、求∫x +1x 2x −12dx11 解令x =,dx =−2dt t t 1+111+t 1d (1−t 2)t (−2)dt =−∫dt =−∫dt +∫ 原式=∫222t 111−t 1−t 21−t −1t 2t 2=−arcsin t +1−t +C =2x 2−11−arcsin +C x x例6、求∫x 3x −x 24dxt 10⋅t 4t 6t 1411解原式=11∫83⋅12t dt =12∫5dt =12∫5dt dx =12t dt t −t t −1t −1令12x =t t 10−1+14121121212⋅t dt =∫(t 5+1+5)dt 5=t 10+t 5+ln |t 5−1|+C =12∫5t −15t −1105561212=x 6+x 12+ln x 12−1+C 555555例7、求∫dx1+e x解令1+e x =t ,e x =t 2−1,dx =2t dt 2t −112t 1t −11+e x −1原式=∫⋅2dt =2∫2dt =ln +C =ln +C x t t −1t −1t +11+e +1ln x dx x 1+ln x例8、求∫解令t =1+ln x原式=∫ln x t −1d ln x =∫dt 1+ln x t112322=∫(t −)dt =t −2t 2+C =(ln x −2)1+ln x +C 33t例9、求∫x +1−1dx x +1+1解令x +1=t ,x =t 2−1,dx =2tdt因为原式=∫x +2−2x +1x +1dx =x +2ln |x |−2∫dx x x而∫x +12t 2dt 1dx =∫2=2∫(1+2)dt x t −1t −1t −1x +1−1+C =2x +1+ln +C t +1x +1+1=2t +ln原式=x +2ln |x |−4x +1−2ln x +1−1+C =x −4x +1+4ln x +1+1+C x +1+1四、分部积分法分部积分公式为∫uv 'dx =uv −∫u 'vdx 使用该公式的关键在于u ,v '的选取,可参见本节答疑解惑4.例1、求∫x 3e x dx解原式=∫x 3de x =x 3e x −3∫x 2de x =x 3e x −3x 2e x +6∫xde x =x 3e x −3x 2e x +6xe x −6e x +C例2、求∫x 2cos 2解原式=x dx 2121312x (1+cos x )dx =x +∫x cos xdx ∫262=131211x +∫x d sin x =x 3+x 2sin x −∫x sin xdx 6262131211x +x sin x +∫xd cos x =x 3+x 2sin x +x cos x −∫cos xdx 62621312x +x sin x +x cos x −sin x +C 623==例3、求∫e x dx令3x =t 解原式dx =3t 2dt=3∫t e dt =3∫t de 2t 2t =3t 2e t −6te t +6e t +C=33x 2e 3x −63xe 3x +6e 3x +C例4、求∫cos(ln x )dx解原式=x cos(ln x )+∫sin(ln x )dx=x cos(ln x )+x sin(ln x )−∫cos(ln x )dxx移项,整理得原式=[cos(ln x )+sin(ln x )]+C2注应用一次分部积分法后,等式右端循环地出现了我们所要求出的积分式,移项即得解,类似地能出现循环现象的例题是求如下不定积分:αxe ∫cos βxdx 或αxe ∫sin βxdx例5、求∫ln(x +1+x 2)dx解原式=x ln(x +1+x 2)−∫x 1+x 2dx =x ln(x +1+x 2)−1+x 2+Cln 3x例6、求∫2dx x 1ln 3x 1 解原式==∫−ln xd ()=−−3∫ln 2xd ()x x x3ln 3x ⎡ln 2x 1⎤ln 3x 3ln 2x 6ln x 6−3⎢+2∫ln xd ()⎥=−−−−+C=−x x ⎦x x x x ⎣x例7、推导∫1dx 的递推公式22n(x +a ) 解令I n =∫1dx (x 2+a 2)nx x 2+a 2−a 21x 2I n =2n +dx 222=+−nI na dx n 2n 22n +122n 22n +1∫∫(x +a )(x +a )(x +a )(x +a )=x 2+2nI −2na In +1n 22n(x +a )I n +1=12na 2⎡⎤x(2n 1)I +−n ⎥⎢(x 2+a 2)n ⎣⎦⎡⎤x(2n 3)I +−n −1⎥⎢(x 2+a 2)n −1⎣⎦I n =12(n −1)a 2例8、推导I n=∫tan n xdx 的递推公式.解I n=∫tan n −2x ⋅tan 2xdx =∫tan n −2x ⋅(sec 2x −1)dx=∫tan n −2x ⋅sec 2xdx −∫tan n −2xdx =∫tann −2xd (tan x )−In −2=1tan n −1x −I n −2n −1注应用分部积分法可以建立与正整数n 有关的一些不定积分的递推公式.例9、已知f (x )的一个原函数是e −x ,求∫xf '(x )dx解原式=∫xdf (x )=xf (x )−∫f (x )dx =xf (x )−e −x +C例10、求∫x arctan x ln(1+x2)dx解因为∫x ln(1+x 2)dx ==221ln(1+x 2)d (1+x 2)∫211(1+x 2)ln(1+x 2)−x 2+C 221⎤⎡1所以 原式=∫arctan xd ⎢(1+x 2)ln(1+x 2)−x 2⎥2⎦⎣211⎡x 2⎤2222=(1+x )ln(1+x )−x arctan x −∫⎢ln(1+x )−2⎥22⎣1+x ⎦[]=13x arctan x (1+x 2)ln(1+x 2)−x 2−3−ln(1+x 2)+x +C 222[]注本题是三类函数相乘的形式,这类问题大多采用本题的方法.xe arctan xdx 例11、求∫2(1+x )解令x =tan t ,dx =sec 2tdttan t ⋅e t sec 2tdt =∫sin t cos te t dt 原式=∫4sec te arctan x (x 2+x −1)11t t +C =∫sin 2te dt =e (sin 2t −cos 2t )+C =25(1+x )210x 2arctan xdx 例12、求∫21+x 解原式=∫(1−11=−)arctan xdx arctan xdx ∫∫1+x 2arctan xdx 1+x 211=x arctan x −ln(1+x 2)−(arctan x )2+C22arcsin x 1+x 2⋅dx 例13、求∫22x 1−x 解令x =sin t ,arcsin x =t ,dx =cos tdt ,t (1+sin 2t )t cos ⋅tdt = 原式=∫∫sin 2tdt +∫tdt sin 2t cos t=td (−cot t )+∫121t=−t cot t +∫cot tdt +t2221=−t cos t +ln |sin t |+t 2+C21−x 21=−arcsin x +ln |x |+(arcsin x )2+Cx 2注直接积分法、换元法、分部积分法是求不定积分最重要的方法,主要用到了“拆、凑、换、分”的技巧,同时应注意这些方法的综合运用.五、有理函数的积分有理函数的积分总可化为整式和如下四种类型的积分:(1)∫Adx =A ln |x −a |+C x −a−AA 1dx =+C (n ≠1)n n −1(x −a )n −1(x −a )(2)∫(3)∫dx dx dx =∫⎡p 4q −p 2⎤n(x 2+px +q )n 2⎢(x +)+⎥24⎣⎦p令x +=u24q −p 2令=a 4=du 22n∫(u +a )2(4)∫(x +a )dx 11p dx()dx a =−+−,其2n 2n −12n∫(x +px +q )2(n −1)(x +px +q )2(x +px +q )中p 2−4q <0.这就是说有理函数积分,从理论上讲,可先化假分式为整式与真分式之和,再将真分式化为若干部分分式之和,然后逐项积分,但这样做有时非常复杂,因此我们最好先分析被积函数的特点,寻求更合适,更简捷的方法也是很必要的.例1、求∫dx2x −2x +31dx d (x −1)x −1arctan ==+C(x −1)2+2∫2+(x −1)222解原式=∫x 2+5x +4例2、求∫4dx 2x +5x +4x 2+4x解原式=∫2dx +5dx222∫(x +1)(x +4)(x +1)(x +4)dx 5dx 25112=∫2arctan x ()dx +∫2=+−222∫x +12(x +1)(x +4)6x +1x +45x 2+1+C=arctan x +ln 26x +4本题若用待定系数法,较麻烦一些,也可获得同样的结果.事实上,x 2+5x +4Ax +B Cx +D 设4=2+2,通分后应有2x +5x +4x +1x +4x 2+5x +4=(Ax +B )(x 2+4)+(Cx +D )(x 2+1)得A +C =0,B +D =0,4A +C =5,4B +D =4比较等式两端x 的同次幂的系数,55由此,A =,B =1,C =−,D =−1335⎡5⎤−−+11x x ⎢3⎥5x 2+13+2+arctan x +C 故原式=∫⎢2⎥dx =ln 2x +4⎥6x +4⎢x +1⎣⎦例3、求∫解设xdx3x −1x A Bx +C2=+,通分后应有x =A (x +x +1)+(Bx +C )(x −1)32x −1x −1x +x +1比较等式两端x 的同次幂的系数,得A +B =0,A −B +C =1,A −C =0,由此,111A =,B =−,C =333⎡1⎤x −1故原式=∫⎢dx −⎥2⎣3(x −1)3(x +x +1)⎦1d (x +)1dx 12x +112dx +∫=∫−∫23x −16x +x +12(x +1)2+324(x −1)212x +11=ln 2+arctan +C 6x +x +133例4、求∫dx24x (1−x )(x 2+1)−x 211解原式=∫2dx dx =−∫x 2(1−x 2)∫(1−x 2)(1+x 2)dx x (1−x 4)=∫(11111+−+)dx ()dx x 21−x 22∫1−x 21+x 211111=−+∫−dx dx 22∫21+x x 21−x 111+x 1−arctan x +C=−+ln x 41−x 2注:本题若用待定系数法,应当将被积函数分解为A B C D Ex +F11==++++x 2(1−x 4)x 2(1−x )(1+x )(1+x 2)x x 21−x 1+x 1+x 2然后再确定系数,显然这样做比较麻烦,也可获同样结果,此处从略.x 11dxdx 例5、求∫8x +3x 4+3解令x 4=u ,则du =4x 3dx ,于是,u 21411−原式=∫2du =∫(1+)du u +1u +24u +3u +241x 41=(u +ln |u +1|−4ln |u +2|+C )=+ln(1+x 4)−ln(x 4+2)+C 444x 5例6、求∫dx23(2x +3)解令2x 2+3=t ,x 2=t −3,4xdx =dt ,从而,2(t −3)21169原式=∫dt =(−2+3)dt 3∫4⋅4t 16t t t 169169(ln |t |+−2)+C =[ln |2x 2+3|+2−]+C 221616t 2t 2x +32(2x +3)=x 4dx 例7、求∫4x +5x 2+4x 4−(5x 2+4)解4=1+4x +5x 2+4x +5x 2+4−(5x 2+4)A 1x +B 1A 2x +B2设4=2+2,通分后应有x +5x 2+4x +1x +4−(5x 2+4)=(A 1x +B 1)(x 2+4)+(A 2x +B 2)(x 2+1)116由此,A 1=0,B 1=,A 2=0,B 2=−,故33⎡18116⎤xdx −原式=∫⎢1+arctan arctan =x +x −+C ⎥223(1)3(4)++x x 332⎣⎦例8、求∫dx 102x (x +1)x 10+1−x 10x 911==−10解由于102102102x (x +1)x (x +1)x (x +1)(x +1)1x 9x 9=−10−102x (x +1)(x +1)⎤⎡1x 9x 91d (x 10+1)1d (x 10+1)dx =ln |x |−∫10原式=∫⎢−10−∫10−102⎥2x x x (1)(1)10x +110(x +1)++⎦⎣111x 10110=ln |x |−ln(x +1)++C =ln ++C10x 10+110(x 10+1)1010(x 10+1)注对被积函数先做初等变形常常可以使问题得到简化,常见的初等变形有:分子分母同乘一个因子;有理化;加一项或者减一项以及利用三角函数恒等变形等.六、三角函数有理式的积分一般从理论上讲,三角函数有理式的积分∫R (sin x ,cos x )dx 可通过万能代换x化为代数有理式的积分,但有时较繁,因此我们常采用三角恒等变形,2然后再求解.t =tan 例1、求∫dx4sin x cos xsin 2x +cos 2x sin x dx dx dx =+解原式=∫442∫∫sin x cos x cos x sin x cos x=−∫=sin x dx1d (cos x )dx ++∫cos 2x ∫sin xcos 4x x 111d (cos x )x −+ln |tan |=++ln |tan |+C 3cos 3x ∫cos 2x 23cos 3x cos x 2例2、求∫1+sin xdxx x x x +cos 2+2sin cos dx2222解原式=∫sin 2=∫(sin x x x x x x+cos )2dx =∫(sin +cos )dx =−2cos +2sin +C222222例3、求∫dx2sin x −cos x +5x 2t 1−t 22dt,cos x ,dx ==,于是解令t =tan ,则sin x =22221+t 1+t 1+t x ⎞⎛3tan +1⎟⎜11dt ⎛3t +1⎞2⎟+C 原式=∫2arctan ⎜arctan ⎜=⎟+C =3t +2t +2555⎜⎟⎝5⎠⎜⎟⎝⎠例4、求∫sin xdx 1+sin xsin x (1−sin x )sin x 1−cos 2xdx =∫dx −∫dx 解原式=∫cos 2x cos 2x cos 2x=1−tan x +x +C cos xsin xdx sin x +cos x1sin x +cos x +sin x −cos x 1⎛sin x −cos x ⎞dx =⎜1+⎟dx ∫∫2sin x +cos x 2⎝sin x +cos x ⎠例5、求∫解原式==11−d (sin x +cos x )1x +∫=(x −ln |sin x +cos x |)+C 22sin x +cos x 2例6、求∫sin 5x cos xdx解原式=111[sin 4x +sin 6x ]dx =−cos 4x −cos6x +C 2∫812注积化和差公式1sin αx ⋅cos βx =[sin(α+β)x +sin(α−β)x ]21sin αx ⋅sin βx =[cos(α−β)x −cos(α+β)x ]21cos αx ⋅cos βx =[cos(α+β)x +cos(α−β)x ]2例7、求∫dx2(2+sin x )cos x解令sin x =t ,cos xdx =dt1(2+t 2)+(1−t 2)dt =于是原式=∫dt(2+t 2)(1−t 2)3∫(2+t 2)(1−t 2)=1dt 111+t 1dt tln +=+arctan()+C 22∫∫31−t 32+t 61−t 32211+sin x 1sin xarctan(=ln +)+C 61−sin x 322注形如∫R (sin x ,cos x )dx 的有理函数的积分,一般可利用代换tan 为有理函数的积分.(i) 若R (−sin x ,cos x )=−R (sin x ,cos x )或R (sin x ,−cos x )=−R (sin x ,cos x )成立,最好利用代换cos x =t 或对应的sin x =t .(ii) 若等式R (−sin x ,−cos x )=R (sin x ,cos x )成立,最好利用代换tan x =t .x=t 化2例8、求∫sin xdx sin 3x +cos 3x解令tan x =t ,则sec 2xdx =dt ,于是t 1(1+t )2−(1−t +t 2)1t +11dt dt =dt =dt −原式=∫1+t 33∫(1+t )(1−t +t 2)3∫1−t +t 23∫1+t 112t −11arctan()−ln |1+t |+C =ln(t 2−t +1)+63332tan x −11tan 2x −tan x +11+arctan()+C =ln 26(1+tan x )33 21。
(专升本)数学不定积分专题
1专题---不定积分§1、不定积分的概念与性质1、原函数与不定积分定义1:若)()(x f x F =',则称)(x F 为)(x f 的原函数。
1连续函数一定有原函数;2若)(x F 为)(x f 的原函数,则C x F +)(也为)(x f 的原函数;事实上,())()()(''x f x F C x F ==+3)(x f 的任意两个原函数仅相差一个常数。
事实上,由[]0)()()()()()('2'1'11=-=-=-x f x f x F x F x F x F ,得C x F x F =-)()(21故C x F +)(表示了)(x f 的所有原函数,其中)(x F 为)(x f 的一个原函数。
定义2:)(x f 的所有原函数称为)(x f 的不定积分,记为⎰dx x f )(,⎰-积分号,-)(x f 被积函数,-x 积分变量。
显然Cx F dx x f +=⎰)()(例1、求下列函数的不定积分①⎰+=Ckx kdx ②⎰⎪⎩⎪⎨⎧-=+-≠++=+1ln 1111μμμμμC x C x dx x 2、基本积分表(共24个基本积分公式)3、不定积分的性质①[]⎰⎰⎰±=±dx x g dx x f dx x g x f )()()()(②⎰⎰≠=)0()()(k dxx f k dx x kf 例2、求下列不定积分①⎰⎰+-=++-==+--C x C x dx x xdx 11)2(11)2(22②⎰⎰+=++-==+--Cx C x dx x xdx 21)21(11)21(21③⎰+-=⎪⎪⎭⎫⎝⎛+--C x x dx x x arctan 3arcsin 5131522⑤()⎰⎰⎰++-=-=-Cx x xdx x xdx dx x x x csc cot cot csc csc cot csc csc 2⑥⎰⎰⎰⎰++-=+=+=C x x xdx xdx dx xx x x x x dx tan cot sec csc cos sin cos sin cos sin 22222222⑦()⎰⎰+--=-=Cx x dx x dx x cot 1csc cot 22§2、不定积分的换元法一、第一类换元法(凑微分法)1、()()()()b ax d adx b ax d b ax f a dx b ax f +=++=+⎰⎰1,1即例1、求不定积分①()Cx udu u x x xd xdx +-===⎰⎰⎰)5cos(51sin 51555sin 515sin ②()()()()⎰⎰+--=+-+⋅-=---=-+C x C x x d x dx x 81777211612117121)21(212121③()())20(arctan 111222Ca x a a x a x d a x a dx +⎪⎭⎫⎝⎛=+=+⎰⎰④()())23(arcsin 1222Ca x a x a x d xa dx +⎪⎭⎫⎝⎛=-=-⎰⎰2、()()nn n n n n dx dx x dx x f n dx x x f ==--⎰⎰11,1即例2、求不定积分①()()()()Cx C x x d x dx x x +--=+-+⋅-=---=-+⎰⎰232121221221221311112111211②()C e x d e dx e x x x x +-=--=---⎰⎰333323131③⎰⎰⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-=+⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-=x d dx x C x x d x dx x x 111sin 11cos 1cos 122④⎰⎰⎪⎪⎭⎫⎝⎛=+==x d dx x Cx x d x dx xx 21sin 2cos 2cos 3、,tan sec ,sin cos ,cos sin ,,ln 12x d xdx x d xdx x d xdx de dx e x d dx xx x ==-===,,arcsin 11,arctan 11,sec tan sec 222222x a d dx x a x x d dx xx d dx xx d xdx x ±±=±=-=+=例3、求不定积分①⎰⎰⎰+=+-=-==)16(sec ln cos ln cos cos cos sin tan C x C x x xd dx x x xdx ②⎰⎰⎰+-=+===)17(cos ln sin ln sin sin sin cos cot C x C x x xd dx x x xdx ⑤()⎰⎰+==C x xdx x x ln ln ln ln ln 1⑥()()()⎰⎰++=++=+C x x x d x x dx 1tan ln 1tan 1tan tan 1cos 2⑦()()⎰⎰++=++=+C e ee d dx e e x xxx x 1ln 111⑧()()⎰⎰++-=+-+=+C e x ee e e dx x x x x x 1ln 111⑨()⎰⎰+=+=+Ce e de dx e e x xx xx arctan 1122⑩()Ce x d e dx e xx x x x +-=+--=++-+-+-⎰⎰2122121211例4、求不定积分①⎰⎰⎰⎰⎪⎭⎫⎝⎛++---=⎪⎭⎫ ⎝⎛+--=-a x a x d a x a x d a dx a x a x a a x dx )()(21112122)22)(21(ln 21C ax ax a +-=④()Cx x x xd x dx xdx +-=⋅-==⎰⎰⎰2sin 412122cos 21212122cos 1sin 2⑤()⎰⎰+--=+=Cx x dx x x xdx x 2cos 418cos 1612sin 8sin 213cos 5sin ⑥⎰⎰⎰⎰+====C x x xd x x x d x xdx dx x x sin ln ln sin ln sin ln sin ln sin sin sin ln sin cos sin ln cot ⑦C x x xx d xdx dx x x x dx +-=+=-=+⎰⎰⎰⎰cos 1tan cos cos sec cos sin 1sin 1222⑧()⎰⎰⎰⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=+=+44csc 214sin 2sin cos πππx d x x dx x x dx C x x +⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=4cot 4csc ln 21ππ二、第二类换元法1、三角代换例1、dxx a ⎰-22解:令)cos (sin t a t a x 或=,则tdta dx t a x a cos ,cos 22==-原式=()⎰⎰⎰⎰⎪⎭⎫⎝⎛+=+=⋅t td dt a dt t a tdt a t a 22cos 21222cos 1cos cos 22C a x a a x a a x a C t a t a +-⋅⋅⋅+=++=22222224arcsin 22sin 42C x a x a x a +-+=22221arcsin 21例2、()()C axa x a x d x a dx +=-=-⎰⎰arcsin1222解:令ta x sin =原式=⎰⎰+=+==C a xC t dt t a tdt a arcsin cos cos 例3、⎰+22x a dx 解:令)cot (tan t a t a x 或=,则tdta dx t a x a 222sec ,sec ==+原式=()⎰⎰+⎪⎪⎭⎫ ⎝⎛++=++==Ca x a a x C t t tdt t a tdta 222ln tan sec ln sec sec sec ())24(ln 22Ca x x +++=例4、⎰+42x x dx 解:令)cot (tan t a t a x 或=,则tdtdx t x 22sec 2,sec 24==+原式=()⎰⎰+⎪⎪⎭⎫ ⎝⎛++=++==C a x a a x C t t tdt t a tdta 222ln tan sec ln sec sec sec 例5、⎰-22a x dx 解:令)csc (sec t a t a x 或=,则tdtt a dx t a a x tan sec ,tan 22==-原式=()⎰⎰+⎪⎪⎭⎫ ⎝⎛-+=++==c aa x a x C t t tdt t a tdtt a 22ln tan sec ln sec tan tan sec ())25(ln 22Ca x x +-+=例6、⎰-dx xx 92解:令t a x sec =,则tdt t dx t x tan sec 3,tan 392==-原式=()()⎰⎰⎰+-=-==⋅C t t t tdt tdt t tttan 31sec 3tan 3tan sec 3sec 3tan 322C xx C x x +--=+⎪⎪⎭⎫ ⎝⎛--=3arccos393arccos 39322小结:)(x f 中含有⎪⎪⎩⎪⎪⎨⎧-+-222222a x a x x a 可考虑用代换⎪⎩⎪⎨⎧===t a x ta x t a x sec tan sin 2、无理代换例7、⎰++311x dx 解:令dtt dx t x t x 2333,1,1=-==+则原式=()⎰⎰⎰+⎪⎪⎭⎫ ⎝⎛++-=⎪⎭⎫ ⎝⎛++-=++-=+C t t t dt t t dt t t t dt t 1ln 231113111313222()()C x x x +++++-+=333211ln 313123例8、()⎰+31xx dx解:令dtt dx t x t x 5666,,===则原式=()()⎰⎰⎰+-=⎪⎭⎫ ⎝⎛+-=+=+C t t dt t dt t t t t dt t arctan 611161616222235()Cx x +-=66arctan 6例9、⎰+dxxx x 11解:令()22212,11,1--=-==+t tdtdx t x t x x 则原式=()()⎰⎰⎰+⎪⎭⎫ ⎝⎛+-+-=⎪⎭⎫ ⎝⎛-+-=--=⎪⎪⎭⎫ ⎝⎛---C t t t dt t dt t t t tdtt t 11ln 212111212121222222C xx xx x x +++-+-+-=11ln 12例10、⎰+xe dx1解:令()12,1ln ,122-=-==+t tdtdx t x t e x 则原式⎰⎰+++-+=++-⋅=-=-⋅=C e e C t t t dt dt t t t x x 1111ln 11ln 21212121224、倒代换例11、()⎰+46x x dx解:令()2676,4111,1t dtdx t t x x t x -=+=+=则原式()()C x x C t t t d t dt t ++=++-=++-=+-=⎰⎰4ln 24114ln 2411414241416666666()C x x ++-=4ln 241ln 416§3、分部积分法分部积分公式:()()VU UV V U V U V U UV '-'=''+'=',()⎰⎰⎰'-'='Vdx U dx UV dx V U ,故⎰⎰-=VdUUV UdV (前后相乘)(前后交换)例1、⎰xdxx cos ⎰⎰++=-==Cx x x xdx x x x xd cos sin sin sin sin 例2、⎰dxxe x ⎰⎰+-=-==Ce xe dx e xe xde x x x x x例3、⎰xdx ln ⎰⎰+-=⋅-=-=Cx x x dx xx x x x xd x x ln 1ln ln ln 或解:令te x t x ==,ln 原式C x x x C e te dt e te tde t t t t t +-=+-=-==⎰⎰ln 例4、⎰xdxarcsin ()⎰⎰⎰+-+=--+=--=-=Cx x x x x d x x dxxx x x x xd x x 22221arcsin 1121arcsin 1arcsin arcsin arcsin 或解:令tx t x sin ,arcsin ==原式C x x x C t t t tdt t t t td +-+=++=-==⎰⎰21arcsin cos sin sin sin sin 例5、⎰xdxe x sin ()⎰⎰⎰⎰⎰--=+-=-=-==xdxe x x e x d e x e x e xde x e xdx e x e xde x x x x x xx x x x sin cos sin cos cos sin cos sin cos sin sin 故()C x x e xdx e xx +-=⎰cos sin 21sin 例6、⎰dx xx2cos Cx x x xdx x x x xd +-=-==⎰⎰sec ln tan tan tan tan 例7、()⎰++dxx x 21ln ()()()Cx x x x dxxx x x x dx x x x xx xx x ++-++=+-++=++++⋅-++=⎰⎰222222211ln 11ln 1111ln §4、两种典型积分一、有理函数的积分有理函数01110111)()()(b x b x b x b a x a x a x a x Q x P x R m m m m n n n n ++++++++==---- 可用待定系数法化为部分分式,然后积分。
不定积分的解法汇总
不定积分的解法汇总不定积分是微积分中的一个重要概念,它是一种求导的逆运算。
求不定积分的过程称为积分。
本文将介绍一些常见的解不定积分的方法。
一、基本初等函数的积分法基本初等函数是指常见的函数,如多项式函数、幂函数、指数函数、对数函数、三角函数等。
对于这些函数,我们可以通过查表或直接运用公式的方式求积分。
例如:1. 若f(x)=k,其中k为常数,则∫f(x)dx=kx+C,其中C为常数。
2. 若f(x)=ax^n,其中a和n均为常数,且n≠-1,则∫f(x)dx=(a/(n+1))x^(n+1)+C。
3. 若f(x)=e^x,则∫f(x)dx=e^x+C。
4. 若f(x)=lnx,则∫f(x)dx=xlnx-x+C。
5. 若f(x)=sinx,则∫f(x)dx= -cosx+C。
6. 若f(x)=cosx,则∫f(x)dx=sinx+C。
这些公式是积分的基本公式,掌握它们对于求解不定积分非常重要。
二、换元法换元法是一种通过变量代换的方法来简化积分的过程。
具体步骤如下:1. 选择合适的变量代换,使得积分被简化。
2. 计算原积分中的dx,将之换成新变量dt。
3. 将原积分中的x用新变量t表示,并将原积分的区间进行相应调整。
4. 计算新的积分,并将结果用原变量表示。
要求不定积分∫(x+1)^(1/2)dx。
我们可以选择变量代换u=x+1,那么∫(x+1)^(1/2)dx=∫u^(1/2)du=(2/3)u^(3/2)+C=(2/3)(x+1)^(3/2)+C,其中C为常数。
三、分部积分法分部积分法是一种将乘积的积分转换成多个简单的积分相加的方法。
具体步骤如下:1. 选取一个部分用来求导,另一个部分用来求积分。
2. 计算选中部分的导数和积分。
3. 将计算结果代入原积分,并计算出新的积分。
4. 反复应用该方法,直到能够求得结果或者积分简化为可以求解的形式。
要求不定积分∫xlnx dx。
我们可以选择分部积分的方法,将xlnx分成两个部分,一个部分x求导,一个部分lnx积分。
不定积分公式大全
1专题---不定积分§1、不定积分的概念与性质1、 原函数与不定积分定义1:若)()(x f x F =',则称)(x F 为)(x f 的原函数。
① 连续函数一定有原函数;② 若)(x F 为)(x f 的原函数,则C x F +)(也为)(x f 的原函数; 事实上,())()()(''x f x F C x F ==+③ )(x f 的任意两个原函数仅相差一个常数。
事实上,由[]0)()()()()()('2'1'11=-=-=-x f x f x F x F x F x F ,得C x F x F =-)()(21故C x F +)(表示了)(x f 的所有原函数,其中)(x F 为)(x f 的一个原函数。
定义2:)(x f 的所有原函数称为)(x f 的不定积分,记为⎰dx x f )(,⎰-积分号,-)(x f 被积函数,-x 积分变量。
显然C x F dx x f +=⎰)()(例1、 求下列函数的不定积分①⎰+=C kx kdx②⎰⎪⎩⎪⎨⎧-=+-≠++=+1ln 1111μμμμμC x C x dx x2、 基本积分表(共24个基本积分公式)3、 不定积分的性质①[]⎰⎰⎰±=±dx x g dx x f dx x g x f )()()()( ②⎰⎰≠=)0()()(k dxx f k dx x kf例2、 求下列不定积分①⎰⎰+-=++-==+--C x C x dx x x dx 11)2(11)2(22②⎰⎰+=++-==+--C x C x dx x xdx 21)21(11)21(21③⎰+-=⎪⎪⎭⎫⎝⎛+--C x x dx x x arctan 3arcsin 5131522⑤()⎰⎰⎰++-=-=-C x x xdx x xdx dx x x x csc cot cot csc csc cot csc csc 2⑥⎰⎰⎰⎰++-=+=+=C x x xdx xdx dx xx x x x x dx tan cot sec csc cos sin cos sin cos sin 22222222⑦()⎰⎰+--=-=C x x dx x dx x cot1csc cot 22§2、不定积分的换元法一、 第一类换元法(凑微分法) 1、()()()()b ax d adx b ax d b ax f a dx b ax f +=++=+⎰⎰1,1即 例1、求不定积分 ①()C x udu u x x xd xdx +-===⎰⎰⎰)5cos(51sin 51555sin 515sin②()()()()⎰⎰+--=+-+⋅-=---=-+C x C x x d x dx x 81777211612117121)21(212121 ③()())20(arctan 111222Ca x a a x a x d a x a dx +⎪⎭⎫ ⎝⎛=+=+⎰⎰④()())23(arcsin 1222Ca x a x a x d xa dx +⎪⎭⎫⎝⎛=-=-⎰⎰2、()()nn n n n n dx dx x dx x f ndx x x f ==--⎰⎰11,1即 例2、求不定积分①()()()()C x C x x d x dx x x +--=+-+⋅-=---=-+⎰⎰321121221221311112111211②()C e x d e dx e x x x x +-=--=---⎰⎰333323131 ③⎰⎰⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-=+⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-=x d dx x C x x d x dx x x 111sin 11cos 1cos 122 ④⎰⎰⎪⎪⎭⎫ ⎝⎛=+==x d dx x Cx x d x dx xx 21sin 2cos 2cos3、,tan sec ,sin cos ,cos sin ,,ln 12x d xdx x d xdx x d xdx de dx e x d dx xx x ==-===,,arcsin 11,arctan 11,sec tan sec 222222x a d dx x a x x d dx xx d dx xx d xdx x ±±=±=-=+=例3、 求不定积分①⎰⎰⎰+=+-=-==)16(sec ln cos ln cos cos cos sin tan C x C x x xd dx x x xdx ②⎰⎰⎰+-=+===)17(cos ln sin lnsin cos cot C x C x xd dx x xdx⑤()⎰⎰+==C x xdx x x ln ln ln ln ⑥()()()⎰⎰++=++=+C x x x d x x dx 1tan ln 1tan 1tan tan 1cos 2 ⑦()()⎰⎰++=++=+C e ee d dx e e x xxx x 1ln 111 ⑧()()⎰⎰++-=+-+=+C e x ee e e dx xx x x x 1ln 111 ⑨()⎰⎰+=+=+C e e de dx e e x x xxx arctan 1122⑩()C e x d e dx e xx x x x +-=+--=++-+-+-⎰⎰2122121211例4、求不定积分①⎰⎰⎰⎰⎪⎭⎫⎝⎛++---=⎪⎭⎫ ⎝⎛+--=-a x a x d a x a x d a dx a x a x a a x dx )()(21112122 )22)(21(ln 1C ax +-=④()C x x x xd x dx xdx +-=⋅-==⎰⎰⎰2sin 412122cos 22221sin 2 ⑤()⎰⎰+--=+=C x x dx x x xdx x 2cos 418cos 1612sin 8sin 213cos 5sin⑥⎰⎰⎰⎰+====C x x xd x x x d x xdx dx x x sin ln ln sin ln sin ln sin ln sin sin sin ln sin cos sin ln cot ⑦C x x xx d xdx dx x x x dx +-=+=-=+⎰⎰⎰⎰cos 1tan cos cos sec cos sin 1sin 1222 ⑧()⎰⎰⎰⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=+=+44csc 214sin 2sin cos πππx d x x dx x x dx C x x +⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=4cot 4csc ln 21ππ二、 第二类换元法 1、三角代换例1、dx x a ⎰-22解:令)cos (sin t a t a x 或=,则tdt a dx t a x a cos ,cos 22==-原式=()⎰⎰⎰⎰⎪⎭⎫⎝⎛+=+=⋅t td dt a dt t a tdt a t a 22cos 21222cos 1cos cos 22C ax a a x a a x a C t a t a +-⋅⋅⋅+=++=22222224arcsin 22sin 42 C x a x a x a +-+=22221arcsin 21 例2、()()C axa x a x d x a dx +=-=-⎰⎰arcsin 1222解:令t a x sin =原式=⎰⎰+=+==C axC t dt t a tdt a arcsin cos cos 例3、⎰+22xa dx解:令)cot (tan t a t a x 或=,则tdt a dx t a x a 222sec ,sec ==+原式=()⎰⎰+⎪⎪⎭⎫ ⎝⎛++=++==C a x a a x C t t tdt t a tdta 222ln tan sec ln sec sec sec())24(ln 22C a x x +++=例4、⎰+42x x dx解:令)cot (tan t a t a x 或=,则tdt dx t x 22sec 2,sec 24==+原式=()⎰⎰+⎪⎪⎭⎫ ⎝⎛++=++==C a x a a x C t t tdt t a tdta 222ln tan sec ln sec sec sec 例5、⎰-22ax dx解:令)csc (sec t a t a x 或=,则tdt t a dx t a a x tan sec ,tan 22==-原式=()⎰⎰+⎪⎪⎭⎫⎝⎛-+=++==c aa x a x C t t tdt t a tdtt a 22ln tan sec ln sec tan tan sec ())25(ln 22C a x x +-+=例6、⎰-dx xx 92 解:令t a x sec =,则tdt t dx t x tan sec 3,tan 392==- 原式=()()⎰⎰⎰+-=-==⋅C t t t tdt tdt t tttan 31sec 3tan 3tan sec 3sec 3tan 322 C x x C x x +--=+⎪⎪⎭⎫ ⎝⎛--=3arccos 393arccos 39322 小结:)(x f 中含有⎪⎪⎩⎪⎪⎨⎧-+-222222a x a x x a 可考虑用代换⎪⎩⎪⎨⎧===t a x t a x t a x sec tan sin2、无理代换例7、⎰++311x dx解:令dt t dx t x t x 2333,1,1=-==+则原式=()⎰⎰⎰+⎪⎪⎭⎫ ⎝⎛++-=⎪⎭⎫ ⎝⎛++-=++-=+C t t t dt t t dt t t t dt t 1ln 231113111313222 ()()C x x x +++++-+=333211ln 313123 例8、()⎰+31xx dx解:令dt t dx t x t x 5666,,===则原式=()()⎰⎰⎰+-=⎪⎭⎫ ⎝⎛+-=+=+C t t dt t dt t t t t dt t arctan 611161616222235 ()C x x +-=66arctan 6例9、⎰+dx xxx 11解:令()22212,11,1--=-==+t tdtdx t x t x x 则原式=()()⎰⎰⎰+⎪⎭⎫ ⎝⎛+-+-=⎪⎭⎫ ⎝⎛-+-=--=⎪⎪⎭⎫ ⎝⎛---C t t t dt t dt t t t tdt t t 11ln 212111212121222222C x x xx x x +++-+-+-=11ln 12 例10、⎰+xedx 1解:令()12,1ln ,122-=-==+t tdtdx t x t e x 则 原式⎰⎰+++-+=++-⋅=-=-⋅=C e e C t t t dt dt t t t x x 1111ln 11ln 21212121224、 倒代换例11、()⎰+46x x dx解:令()2676,4111,1tdtdx t t x x t x -=+=+=则 原式()()C x x C t t t d t dt t ++=++-=++-=+-=⎰⎰4ln 24114ln 2411414241416666666 ()C x x ++-=4ln 241ln 416§3、分部积分法分部积分公式:()()V U UV V U V U V U UV '-'=''+'=',()⎰⎰⎰'-'='Vdx U dx UV dx V U ,故⎰⎰-=VdU UV UdV(前后相乘)(前后交换)例1、⎰xdx x cos⎰⎰++=-==C x x x xdx x x x xd cos sin sin sin sin例2、⎰dx xe x⎰⎰+-=-==C e xe dx e xe xde x x x x x例3、⎰xdx ln ⎰⎰+-=⋅-=-=C x x x dx xx x x x xd x x ln 1ln ln ln或解:令t e x t x ==,ln原式C x x x C e te dt e te tde t t t t t +-=+-=-==⎰⎰ln 例4、⎰xdx arcsin()⎰⎰⎰+-+=--+=--=-=C x x x x xd x x dx xx x x x xd x x 22221arcsin 1121arcsin 1arcsin arcsin arcsin或解:令t x t x sin ,arcsin ==原式C x x x C t t t tdt t t t td +-+=++=-==⎰⎰21arcsin cos sin sin sin sin 例5、⎰xdx e x sin()⎰⎰⎰⎰⎰--=+-=-=-==xdxe x x e x d e x e x e xde x e xdx e x e xde xxxxxxx x x x sin cos sin cos cos sin cos sin cos sin sin故()C x x e xdx e xx +-=⎰cos sin 21sin 例6、⎰dx xx2cos C x x x xdx x x x xd +-=-==⎰⎰sec ln tan tan tan tan例7、()⎰++dx x x 21ln()()()Cx x x x dxxx x x x dx x x x xx xx x ++-++=+-++=++++⋅-++=⎰⎰222222211ln 11ln 1111ln§4、两种典型积分一、有理函数的积分有理函数01110111)()()(b x b x b x b a x a x a x a x Q x P x R m m m m n n n n ++++++++==---- 可用待定系数法化为部分分式,然后积分。
不定积分(公式大全)省优质课赛课获奖课件市赛课一等奖课件
于是有 ∫u(x)·v'(x)dx=u(x)·v(x)-∫u'(x)·v(x)dx
或表达成 ∫u(x)dv(x)=u(x)·v(x)-∫v(x)du(x)
这一公式称为分部积分公式。
二、讲解例题
例1 求∫xexdx
解:令 u(x)=x,v'(x)=ex 则原式为∫u(x)·v'(x)dx旳形式
例1 求下列函数旳一种原函数:
⑴ f(x)=2x
⑵ f(x)=cosx
解:⑴∵(x2)'=2x
∴x2是函数2x旳一种原函数
⑵∵(sinx)'=cosx
∴sinx是函数cosx旳一种原函数
这里为何要强调是一种原函数呢?因为一种函数
旳原函数不是唯一旳。
例如在上面旳⑴中,还有(x2+1)'=2x,
(x2-1)'=2x
C
例5 求 2xex2 dx
解:设u=x2,则du=2xdx
2xex2 dx ex2 2xdx eudu eu C ex2 C
例7 求 tan xdx
解
:
tan
xdx
sin cos
x x
dx
设u=cosx,则du=-sinxdx
tan
xdx
1 cos
x
(
sin
x)dx
1 u
1 x3 x2 x C
3
再如
求
(x
1)( x 2 3x2
3)
dx
解:
(x 1)(x2 3)
3x2
dx
x3 x2 3x 3
高等数学微积分不定积分(专题)
分 表
(3)
dx x
说明:
ln x x
0,
C;
dx x
ln
x
C
,
x 0, [ln( x)] 1 ( x) 1 ,
x
x
dx x
ln(
x)
C
,
dx x
ln
|
x
|
C
,
简写为
dx x
ln
x
C.
2019/10/12
不定积分 冯国臣
(4)
1
三、不定积分的性质
(1) [ f ( x) g( x)]dx f ( x)dx g( x)dx;
证
f
( x)dx
g( x)dx
f ( x)dx
g( x)dx
f
( x)
g( x).
等式成立.
(此性质可推广到有限多个函数之和的情况)
2019/10/12
不定积分 冯国臣
(2) kf ( x)dx k f ( x)dx.
(k 是常数,k 0)
例5
求积分
( 1
3 x2
2 )dx.
1 x2
解
( 1
3 x2
2 )dx 1 x2
3
1
1 x
2
dx
2
1 dx 1 x2
3arctan x 2arcsin x C
不定积分的求解技巧总结
不定积分的求解技巧总结不定积分是微积分中的重要内容,用于求解函数的原函数。
下面总结一些常用的不定积分求解技巧。
一、基本积分公式法基本积分公式是指一些常用的函数的不定积分公式,主要包括:1. 常数函数的不定积分:∫a dx = ax + C,其中a为常数,C为任意常数。
2. 幂函数的不定积分:∫x^n dx = (x^(n+1))/(n+1) + C,其中n不等于-1,C为任意常数。
3. 指数函数的不定积分:∫a^x dx = (a^x)/(ln(a)) + C,其中a为正常数且不等于1,C为任意常数。
4. 对数函数的不定积分:∫1/x dx = ln|x| + C,其中x 不等于0,C为任意常数。
5. 三角函数和反三角函数的不定积分:∫sin(x) dx = -cos(x) + C,∫cos(x) dx = sin(x) + C,∫tan(x) dx = -ln|cos(x)| + C,等等。
二、分部积分法分部积分法通过对不定积分中函数的乘积进行分解,使得原积分转化为另一种形式的积分,从而简化计算。
其公式为:∫u dv = uv - ∫v du。
三、换元法(第一类换元法)换元法利用代数替换或三角函数代换的方式,将不定积分中的变量进行换元,从而简化积分的计算。
常用的代换方式有:1. 代数替换:常用的代数替换有三角函数代换、指数函数代换、对数函数代换、有理函数代换等。
2. 三角函数代换:可以通过利用三角函数之间的恒等关系进行推导,并将不定积分中的其他函数转化为三角函数的形式,然后进行换元求解。
四、分式分解法对于分式的部分或全部进行分解,将不定积分转化为更加简单的形式,常用的分式分解方法有:1. 部分分式分解:将一个分式表示为几个分式的和或差的形式。
2. 偏差分解:对于分母为多项式乘方的分式,将分子分解成多个不同次数的多项式相乘的形式。
五、参数微分法对于一些特殊的函数,可以通过引入参数的方式进行求解。
不定积分公式大全基本公式有哪些
不定积分公式大全基本公式有哪些不定积分是微积分中的一个重要概念,用于求函数的原函数。
在求不定积分时,由于原函数可以以任意常数为常数项,所以不定积分也可以表示为“∫f(x)dx=F(x)+C”,其中F(x)为f(x)的原函数,C为任意常数。
下面列举了一些常见的基本求不定积分的公式:1. 一次幂和:∫x^n dx = (n+1)x^(n+1)/(n+1)+C,其中n为实数,n≠-12. 常数乘积法则:∫c*f(x) dx = c*∫f(x) dx,其中c为常数。
3. 常数倍法则:∫(c*f(x)+d*g(x)) dx = c*∫f(x) dx + d*∫g(x) dx,其中c和d为常数。
4. 幂函数的积分:∫x^α dx = x^(α+1)/(α+1)+C,其中α≠-15. 正弦函数和余弦函数的积分:∫sin(x) dx = -cos(x)+C,∫cos(x) dx = sin(x)+C。
6. 指数函数的积分:∫e^x dx = e^x + C。
7. 自然对数函数的积分:∫1/x dx = ln,x,+C。
8. 倒数函数的积分:∫1/(x^2+a^2) dx = (1/a)arctan(x/a)+C,其中a不等于0。
9. 正切函数和余切函数的积分:∫sec^2(x) dx = tan(x)+C,∫csc^2(x) dx = -cot(x)+C。
10. 反正弦函数的积分:∫1/√(1-x^2) dx = arcsin(x)+C。
11. 反余弦函数的积分:∫1/√(1-x^2) dx = arccos(x)+C。
12. 反正切函数的积分:∫1/(1+x^2) dx = arctan(x)+C。
13. 积分的换元法:若∫f(g(x))*g'(x) dx = F(g(x))+C,则∫f(u) du = F(u)+C,其中u=g(x)。
14. 分部积分法:∫u*dv = u*v - ∫v*du,其中u和v都是函数,可以通过选择合适的u和dv来简化不定积分的计算。
不定积分课件
THANKS
03 不定积分的实际应用
物理问题中的应用
速度和加速度
通过不定积分计算物体的速度和 加速度,解决与运动学相关的物 理问题。
功和能量
不定积分可以用来计算力对物体 所做的功以及物体的能量变化, 解决与力学相关的物理问题。
电流和电压
不定积分可以用来计算电流和电 压的积分形式,解决与电磁学相 关的物理问题。
不定积分的几何意义
不定积分表示函数在某个区间上的面积,即函数图像与x轴围成的面积。
不定积分的性质
线性性质
对于任意常数C和D,有∫[f(x)+g(x)]dx=∫f(x)dx+∫g(x)dx。
积分区间可加性
对于任意区间[a,b]和[b,c],有∫f(x)dx=[∫f(x)dx]ab+[∫f(x)dx]bc。
工程问题中的应用
流体动力学
不定积分可以用来计算流体动力学中的流速、压力和 阻力等参数。
热力学
不定积分可以用来计算热力学中的温度、热量和熵等 参数。
控制工程
不定积分可以用来分析和设计控制系统,例如PID控 制器的设计和分析。
经济问题中的应用
01
02
03
成本和收益
不定积分可以用来计算成 本和收益的积分形式,解 决与经济学相关的经济问 题。
不定积分课件
目录
Contents
• 不定积分的基本概念 • 不定积分的计算方法 • 不定积分的实际应用 • 不定积分的注意事项与难点解析 • 不定积分的典型例题解析 • 不定积分的练习题与答案解析
01 不定积分的基本概念
不定积分的定义
原函数与不定积分
不定积分是微分的逆运算,给定一个函数f(x),如果存在一个函数F(x),使得 F'(x)=f(x),则称F(x)是f(x)的一个原函数,记作∫f(x)dx=F(x)+C,其中C是常数 。
不定积分总结范文
不定积分总结范文不定积分是微积分中的重要概念之一,它是定积分的逆运算。
在这篇文章中,我们将对不定积分进行详细总结,包括不定积分的定义、性质、基本公式和常用方法等内容。
一、不定积分的定义不定积分是函数积分的一种形式,也被称为原函数。
设函数f(x)在区间[a,b]上连续,函数F(x)在[a,b]上可导,如果对于[a,b]上任意一点x,都有F'(x) = f(x),则称F(x)为f(x)在[a,b]上的一个原函数。
记作F(x) = ∫f(x)dx + C,其中C为常数,称为不定积分常数。
不定积分的定义表达了函数F(x)是函数f(x)在[a,b]上的一个原函数的概念,可以理解为对函数f(x)所做的积分运算到一些常数C值时结束。
二、不定积分的性质1. 线性性:对于任意常数a和b,以及两个函数f(x)和g(x),有∫[a,b](af(x) + bg(x))dx = a∫[a,b]f(x)dx + b∫[a,b]g(x)dx。
2. 积分与极限运算的交换性:如果函数f(x)在[a,b]上连续,F(x)是f(x)在[a,b]上的一个原函数,则∫[a,b]f(x)dx = F(b) - F(a)。
3. 换元积分法:设u = g(x)是一个可导函数,且f(g(x))g'(x)是连续函数,将∫f(g(x))g'(x)dx进行换元,可以得到∫f(g(x))g'(x)dx =∫f(u)du。
三、基本公式1. 幂函数的不定积分:∫x^a dx = (x^(a+1))/(a+1) + C,其中a不等于-12. 三角函数的不定积分:∫sin(x) dx = -cos(x) + C,∫cos(x) dx = sin(x) + C,∫sec^2(x) dx = tan(x) + C。
3. 指数函数的不定积分:∫e^x dx = e^x + C。
4. 对数函数的不定积分:∫(1/x) dx = ln,x, + C。
不定积分求解方法及技巧
不定积分求解方法及技巧不定积分是微积分中的重要概念之一,它与定积分相互对应,是求导的逆运算。
在实际中,我们经常需要对函数进行不定积分来求函数的原函数,或者求解一些与变量相关的问题。
下面,我将介绍一些常见的不定积分求解方法及技巧。
一、基本不定积分法基本不定积分法是指利用函数的基本积分公式来求解不定积分的方法。
经过多年的研究,数学家总结出了许多函数的基本积分公式,我们可以根据这些公式来求解不定积分。
一些常见的基本积分公式包括:1. ∫x^n dx = (1/(n+1))x^(n+1) + C;其中n为非负整数,C为常数。
2. ∫e^x dx = e^x + C;3. ∫sin(x) dx = -cos(x) + C;4. ∫cos(x) dx = sin(x) + C;5. ∫1/x dx = ln|x| + C;6. ∫sec^2(x) dx = tan(x) + C;等等。
利用这些基本积分公式,我们可以将一个函数进行分解,然后求解出每一部分的不定积分,再进行合并。
需要注意的是,基本不定积分法只能求解一些特定的函数,如果遇到复杂的函数,就需要使用其他的方法。
二、换元积分法换元积分法是指通过变量代换来简化不定积分的方法。
它的基本思想是,通过选择一个新的中间变量,使得原函数可以转变为一个更简单的形式,进而求解出不定积分。
换元积分法的关键是选择一个合适的变量代换。
常用的变量代换有以下几种:1. u = g(x):将函数中的部分表达式用一个新的变量u 表示,使得原函数简化;2. x = g(u):将自变量用一个新的变量u表示,使得原函数简化。
换元积分法的步骤为:1. 选取合适的变量代换,使得原函数简化;2. 将原函数和新变量u的微元表达式相应地表示出来;3. 将原函数用新变量u表示,然后对u进行求积分;4. 将u的积分结果转换回原来的自变量x。
需要注意的是,换元积分法在选择变量代换时需要灵活运用,有时需要试几次才能找到一个合适的代换,特别是当函数较为复杂时。
[不定积分公式]不定积分公式总结
[不定积分公式]不定积分公式总结篇一 : 不定积分公式总结1不定积分小结一、不定积分基本公式xa+11?xdx=+Ca??1 ?dx=ln|x|+Ca?adx=+C ?sinxdx=?cosx+C lna?cosxdx=sinx+C ?tanxdx=?ln|cosx|+C?cotxdx=ln|sinx|+C ?secxdx=ln|secx+tanx|+C?cscxdx=ln|cscx?cotx|+C ?sec2xdx=tanx+C ?csc2xdx=?cot x+C ???dxdx 1xdx1+x2dxxax=arctanx+C1a?x=aarctana+C ?x?a=2aln|a+x+C x+a=2aln|a?x|+C ?a?x1a+x=arcsin??+??=ln|??+??????|+??=arcsin??+?? ??2xax??a2?x2dx=?a2?x2+arcsin+C2xa??dx=??ln|??+?+??二、两个重要的递推公式 ????=??????????????? ?cos???????????1?????1 则????=+?????2易得????:n为奇数时,可递推至D1=?sinxdx=?cosx+C; n为偶数时,可递推至D2=?sin2xdx=2?????????=?1??2???1则????+1=+????易得????可递推至??1=?x+a=aarctana+Cdx1xxsin2x4+C;2三、普遍方法换元积分法:第一类换元积分法这类方法需要敏锐的观察力,即观察出某个函数的导数,这就要求我们熟悉常见函数的导数。
[,首先我们来看一下最常见的一类有理函数的例子x例1: 注意到分母根号下为二次,其导数为一次,而分子正好就是一次,通过凑微分和配方可以得到解决。
x=11?+1d11=?+ 1=??5+x?x+dx2??xx3dx ?dx=?1242d1d1=???后面套公式就好啦21?dx dx1dxd?=?=? 例3:?31d?=arctan+C 2+tan2x接下来举几个我们可能不太熟悉的例子,不容易凑成微分。
不定积分常见题型
不定积分常见题型
不定积分是高等数学中的重要概念,在数学学习和应用中具有重要作用。
不定积分的题型非常多,下面介绍一些常见的题型:
1. 基本初等函数的不定积分:包括多项式函数、三角函数、指数函数、对数函数等的不定积分,是不定积分的基本题型。
2. 分部积分法:将不定积分中的积分式子分解成两个函数相乘的形式,然后利用分部积分公式求解不定积分。
3. 三角函数的不定积分:特别需要注意的是正切函数的不定积分,这个题型需要采用换元法或分式代换法。
4. 有理函数的不定积分:将有理函数分解成部分分式的形式,然后逐项求不定积分。
5. 幂函数与指数函数的不定积分:需要采用换元法或分式代换法。
6. 函数的合成积分:将不定积分中的函数替换成其他函数的复合形式后进行求解。
总之,不定积分的题型繁多,需要学生在平时的学习中多加练习,掌握不同的求解方法和技巧。
- 1 -。
不定积分的解法汇总
不定积分的解法汇总不定积分是微积分中的一项重要概念,用于求解函数的原函数。
在求解不定积分时,我们使用一些特定的方法和技巧,以便获得函数的原函数表达式。
1. 基本积分法:基本积分法是求解不定积分的最基本方法,它使用函数的基本积分公式或特定函数的积分公式,将函数积分转化为求导问题。
常见的基本积分公式包括幂函数的积分、三角函数的积分、指数函数的积分等。
2. 分部积分法:分部积分法是求解不定积分的一种常用技巧,它可以将一个函数的积分转化为两个函数的乘积的积分。
分部积分法的公式为∫u·dv = uv - ∫v·du,其中u 和v分别是可以求导和积分的函数。
3. 换元积分法:换元积分法是求解不定积分的一种常用方法,它通过引入新的变量转化被积函数,从而简化积分的计算。
换元积分法的公式为∫f(g(x))·g'(x)dx =∫f(u)du,其中u=g(x)。
4. 递推公式法:递推公式法是一种通过递归思想求解不定积分的方法,在每一步积分中都利用前一步的结果。
递推公式法常用于求解连续幂函数的积分,如∫x^n dx,其中n为自然数。
5. 有理函数的部分分式分解法:对于一个有理函数的不定积分,我们可以使用部分分式分解法将其分解为若干个简单的分式的和,然后逐个求解每个分式的不定积分。
6. 特殊函数的积分法:在求解不定积分时,我们经常会遇到一些特殊函数,如反三角函数、双曲函数等,对于这些函数,我们可以使用特殊函数的积分公式进行求解。
7. 看似无法求解的积分:有时候我们会遇到一些看似无法求解的积分,这时我们可以通过一些技巧和转换,将其转化为可以求解的积分。
例如利用对称性、奇偶性、周期性等性质,或者通过定义新的变量进行转换。
8. 积分表法:积分表是存储了各种常用函数的不定积分表达式的工具,在求解不定积分时,我们可以参考积分表中的公式进行计算。
需要注意的是,积分表法只适用于一些常见的函数,对于一些特殊函数可能不适用。