直线,射线,线段精选习题
直线射线线段和角的练习题
直线射线线段和角的练习题图图2直线、射线、线段练习(1)一、填 空1.我们在用玩具枪瞄准时,总是用一只眼对准准星和目标,用数学知识解释为__________________.2. 三条直线两两相交,则交点有_______________个. 3.如图1,AC=DB ,写出图中另外两条相等的线段__________.4.如图2所示,线段AB 的长为8cm ,点C 为线段AB 上任意一点,若M 为线段AC 的中点,N 为线段CB 的中点,则线段MN 的长是_______________.5.已知线段AB 及一点P ,若AP+PB>AB,则点P 在 .6.已知线段AB=10,直线AB 上有一点C,且BC=4,M 是线段AC 的中点,则AM 的长为 .7.下列说法中不正确的有①一条直线上只有两个点;②射线没有端点;③如图,点A 是直线a 的中点; ④射线OA 与射线AO 是同一条射线;⑤延长线段AB 到C ,使AB BC =;⑥延长直线CD 到E ,使DE CD =.8. 如图给出的分别有射线,直线,线段,其中能相交的图形有 个.二、选 择1.下列说法中错误的是( ).A .A 、B 两点之间的距离为3cm B .A 、B 两点之间的距离为线段AB 的长度C .线段AB 的中点C 到A 、B 两点的距离相等D .A 、B 两点之间的距离是线段AB2.下列说法中,正确的个数有( ).(1)射线AB 和射线BA 是同一条射线 (2)延长射线MN 到C(3)延长线段MN 到A 使NA==2MN (4)连结两点的线段叫做两点间的距离AaA BDDA B CBba① ②③④A .1B .2C .3D .43.同一平面内有四点,过每两点画一条直线,则直线的条数是 ( )(A)1条 (B)4条 (C)6条 (D)1条或4条或6条4.如图4,C 是线段AB 的中点,D 是CB 上一点,下列说法中错误的是( ). A .CD=AC-BD B .CD=21BC C .CD=21AB-BD D .CD=AD-BC 5.如果线段AB=13cm,MA+MB=17 cm,那么下面说法中正确的是 ( ).A .M 点在线段AB 上 B .M 点在直线AB 上C .M 点在直线AB 外D .M 点可能在直线AB 上,也可能在直线AB 外 6.如图5,小华的家在A 处,书店在B 处,星期日小明到书店去买书, 他想尽快的赶到书店,请你帮助他选择一条最近的路线( ) ). A .A →C →D →B B .A →C →F →B C .A →C →E →F →B D .A →C →M →B7. 某公司员工分别住在A ,B ,C 三个住宅区,A 区有30人,B 区有15人,C 区有10人,三个区在同一条直线上,如图所示,该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在( )A.A 区 B.B 区 C.C 区 D.A ,B 两区之间8.已知点A 、B 、C 都是直线l 上的点,且AB=5cm ,BC=3cm ,那么点A 与点C 之间的距离是( ).A .8cmB .2cmC .8cm 或2cmD .4cm 三、想一想1.如图6,四点A 、B 、C 、D ,按照下列语句画出图形: (1)连结A ,D ,并以cm 为单位,度量其长度; (2)线段AC 和线段DB 相交于点O ; (3)反向延长线段BC 至E ,使BE=BC .2.动手操作题:点和线段在生活中有着广泛的应用. 如图7,用7根火柴棒可以摆成图中的“8”.你能去掉其图图6图4A B C100200中的若干根火柴棒,摆出其他的9个数字吗?请画出其中的4个来.3.(10分)如图8,C为线段AB的中点,N为线段CB的中点,CN=1cm.求图中所有线段的长度的和.4.(本题12分)在同一条公路旁,住着五个人,他们在同一家公司上班,如图9,不妨设这五个人的家分别住在点ABDEF位置,公司在C点,若AB=4km,BC=2km,CD=3km,DE=3km,EF=1km,他们全部乘出租车上班,车费单位报销.出租车收费标准是:起步价3元(3km以内,包括3km),以后每千米1.5元(不足1km,以1km计算),每辆车能容纳3人.(1)若他们分别乘出租车去上班,公司在支付车费多少元?(2)如果你是公司经理,你对他们有没有什么建议?图96. 如图,在正方形两个相距最远的顶点处逗留着一只苍蝇和一只蜘蛛.①蜘蛛可以从哪条最短的路径爬到苍蝇处?请你画图并说明你的理由?②如果蜘蛛要沿着棱爬到苍蝇处,最短的路线有几条?苍蝇蜘蛛7.图10为中国象棋棋盘的一半,棋子“马”走的规则是沿“日”形的对角线走,例如:图中“马”所在的位置可以直接走到点A.B等处.若“马”的位置在C处,为了到达D点,请按“马”走的规则,在图10的棋盘上用虚线画出一种你认为合理的行走路线.图8直线、射线、线段练习(2)一.选择题:1.下列说法中,错误的是().A.经过一点的直线可以有无数条 B.经过两点的直线只有一条C.一条直线只能用一个字母表示 D.线段CD和线段DC是同一条线段2. 已知线段2AC=,3BC=,则线段AB的长度是()A.5 B.1 C.5或1 D.非以上答案3.下列图形中,能够相交的是( ).4. 下列叙述正确的是()①线段AB可表示为线段BA;②射线AB可表示为射线BA;③直线AB可表示为直线BA.A.①②B.①③C.②③D.①②③5. 平面上有三点A,B,C,如果8AB=,5AC=,3BC=,则()A.点C在线段AB上B.点C在线段AB的延长线上C.点C在直线AB外D.点C可能在直线AB上,也可能在直线AB外6. 如图,13AC AB=,14BD AB=,AE CD=,则CE与AB之比为()A.16B.18C.112D.1167.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程,其中可用公理“两点之间,线段最短”来解释的现象有A.①②B.①③C.②④D.③④二.填空题:8. 直线有个端点,射线有个端点,线段有个端点.9. 经过两点可以作条线段,条射线,条直线.10根据图,填空:⑴线段AD交射线BC于E;线段BA至F;反向延长射线.A C E D B⑵延长线段DC 交 的 于点F ,线段CF 是线段DC 的 线.11 三点A ,B ,C 在同一条直线上,若2BC AB =且AB m =,则____AC =. 12. 在一直线上有A ,B ,C 三点,M 为AB 的中点,N 为BC 的中点,若AB m =,BC n =,则用含m ,n 的代数式 可表示线段MN . 13. 在连结两点的所有线中,最短的是 . 三.解答题:14. 读句子,画图形:⑴直线l 与两条射线OA ,OB 分别交于点C ,点D . ⑵作射线OA ,在OA 上截取点D ,E ,使OD DE =.15. 如图:4AB =cm ,3BC =cm ,如果O 是线段AC 的中点. 求线段OB 的长度.(括号内注理由)解:∵ AC= + =7 (cm ), 又∵ O 为AC 的中点,( )∴OC= AC= (㎝),( )∴0.5OB OC BC =-=(cm ).16. 图中A ,B ,C ,D 是四个居民小区,现在为了使居民生活方便,想在四个小区之间建一个超市,最好能使超市距四个小区的距离之和最小.请你来设计,能找到这样的位置P 点吗?如果能,请画出点P .17. 往返于甲、乙两地的客车,中途停靠三个站,问:(1)有多少种不同的票价?(2)要准备多少种车票?18.如图,234AB BC CD =::::,AB 的中点M 与CD 的中点N 的距离是3cm ,则____BC =.AADABCDEF19. 已知线段10AB ,试探讨下列问题.⑴是否存在一点C,使它到A,B两点的距离之和等于8cm?并试述理由.⑵是否存在一点C,使它到A,B两点的距离之和等于10cm?若存在,它的位置惟一吗?⑶当点C到A,B两点的距离之和等于20cm时,点C一定在直线AB外吗?举例说明.20. 如图8,一圆柱体的底面周长为24cm,高AB为4cm,BC是直径,一只蚂蚁从点A出发沿着圆柱体的表面爬行到点C的最短路程大约是多少?.(图AB CM B C D一、选择题1、如图,△ABC ≌△AEF ,AB =AE ,∠B =∠E ,则对于结论①AC =AF .②∠FAB =∠EAB ,③EF =BC ,④∠EAB =∠FAC ,其中正确结论的个数是( ) A.1个 B.2个 C.3个 D.4个(第1题图) (第3题图) (第4题图) (第5题图) 2、已知MN 是线段AB 的垂直平分线,C 、D 是MN 上任意两点,则∠CAD 与∠CBD 的大小关系是( ) A.∠CAD>∠CBD B.∠CAD=∠CBD C.∠CAD<∠CBD D.与C 、D 无关3、如图,在Rt △ABC 中,∠C=90°,BD 是∠ABC 的平分线,交AC 于点D ,若CD=n ,AB=m ,则△ABD 的面积是( ) A.mn B.21mn C.2mn D.31mn 4、如图,已知AC 平分∠PAQ ,点B ,B ′分别在边AP ,AQ 上,如果添加一个条件,即可推出AB=AB ′,那么该条件可以是( )A 、BB ′⊥AC B 、BC=B ′C C 、∠ACB=∠ACB ′D 、∠ABC=∠AB ′C5、如图,FD ⊥AO 于D ,FE ⊥BO 于E ,下列条件:①OF 是∠AOB 的平分线;②DF=EF ;③DO=EO ;④∠OFD=∠OFE 。
数学四年级上册《线段直线射线》练习题(含答案)
3.1线段、直线、射线(基础应用篇)一、单选题(共10题)1.过一点可以画出()条直线.A . 1B . 2C . 无数D . 无法判断2.下面( )是线段.A .B .C .D .3.下面()是射线.A . 米尺B . 手电筒的光C . 竹棍D .卷尺4.一条直线长()A . 5厘米B . 35厘米C . 70厘米D . 无法测量5.一只由几条线段组成的小鱼经过平移后,它()平行.A . 只有一组线段B . 有两组对应线段C . 所有线段都D . 所有对应线段都不6.把线段向一端无限延长,就得到一条()A . 线B . 线段C . 射线D . 直线7.下图中共有()线段.A . 4条B . 5条C . 6条D .8条8.左图中有()线段.A . 2条B . 3条C . 4条D .10条9.下面说法中,正确的是()A . 小明画了一条5厘米的射线B . 用二倍放大镜看45°的角,看到的角是90°C . 两个完全相同的梯形可以拼成一个平行四边形D . 教室的面积约是50公顷10.三条直线相交最多有()个交点.A . 1B . 2C . 3D .4二、填空题(共10题)11.量一量下面各角的度数,再写出它们的名称.________________12.线段有________个端点,射线有________个端点,直线________个端点.13.把线段的________端无限延长,就得到一条直线.14.________线、________线都可以无限延伸,其中________线没有端点,________只有一个端点.15.画线段,量距离.以A 、B 为线段的两个端点,画出一条线段,并测量出它们的距离.(精确到毫米)这条线段的长度是________.16.过一个圆的圆心可画________条射线?17.________是直线,________是射线,________是线段,________是直角,________是锐角,________是平角,________是周角,________是钝角.(只填序号)18.过一点可以画________条直线,可以画________条射线.19.一个长方形是由四条________围成的.20.过一点可以画________条射线,可以画________条直线.过两点可以画________直线.三、判断题(共10题)21.太阳光可以看成是射线. ()22. 过直线外一点和已知直线的垂线,只能作一条. ()23.射线比直线短,线段更短.()24.一条直线长8厘米. ()25.经过同一平面上的两点,只能画一条直线.()26.“"这是一条线段.()27.左图只有三条线段. ()28.图中共有3条线段、6条射线、1条直线.()29.线段是可以测量出长度的.()30.小明画了一条长10厘米的射线.()四、解答题(共6题)31.王村和李村之间要修一条公路,这条路怎样才能距离最短?请你画出来.32.画出下面长度的各线段.(1)3厘米(2)50毫米(3)0.06米33.填一填.34.把直线、射线、线段填入下面相应的括号.35.在距离2厘米处画一个,6厘米处画一个.36.不用尺,你能画一条8厘米长的线段吗?参考答案一、单选题1. C2. C3. B4. D5. C6. C7. C8. A9. C10. C二、填空题11. 360°;周角;10°;锐角12. 2;1;013. 两14. 射;直;直;射15. 70毫米16. 无数17. ④;①;②;⑤;⑦;⑧;⑨;⑥18. 无数;无数19. 线段20. 无数;无数;一条三、判断题21. √22. √23. ×24. ×25. √26. ×27. ×28. √29. √30. ×四、解决问题31.解:如图所示:两点之间的线段长度就是两点之间的距离,两点之间线段是最短的;由此画出图形即可.32.(1)解:(2)解:(3)解:画线段时先画出一个端点,用直尺的0刻度与这个端点对齐,沿直尺画出一定长度的线段即可;注意50毫米就是5厘米,0.06米就是6厘米.33.解:根据直线、线段、射线的意义及特征进行解答即可.34.解:射线、线段、直线根据图中的端点可以区分出直线、线段和射线.射线有一个端点;线段有两个端点,直线没有端点.本题考查线的认识.35.解:如图:画图时要注意第二棵树距离第一棵树2厘米;第三棵树距离第一棵树6厘米;用线段测量出长度后再画树.36.解:可以根据生活中掌握的长度在头脑中形成的图像来画线段,如自己的小手指宽约1厘米,格尺的一半长是10厘米,手掌宽约8厘米等.然后根据自己的推断画出线段,再用尺子量一量,再估,再测,反复巩固练习,就能使自己估算得很准确因为自己的小手指宽约1厘米,画出8个小手指宽的线段,大约是8厘米,手掌宽约8厘米,画出手掌宽的线段.。
直线、射线、线段练习题
直线、射线、线段练习题一、填空1.我们在用玩具枪瞄准时,总是用一只眼对准准星和目标,用数学知识解释为__________________.2.三条直线两两相交,则交点有_______________个.3.如图1,AC=DB,写出图中另外两条相等的线段__________.4.如图2所示,线段AB的长为8cm,点C为线段AB上任意一点,若M为线段AC的中点,N为线段CB的中点,则线段MN的长是_______________.5.已知线段AB及一点P,若AP+PB>AB,则点P在 .6.下列说法中不准确的有①一条直线上只有两个点;②射线没有端点;③如图,点是直线的中点;④射线与射线是同一条射线;⑤延长线段到,使;⑥延长直线到,使.7 如图给出的分别有射线,直线,线段,其中能相交的图形有个.8、若线段AB=10㎝,在直线AB上有一点C,且BC=4㎝,M是线段AC的中点,则AM=㎝.9、.在直线上取A、B、C三点,使得AB = 9 厘米,BC = 4 厘米,如果O是线段AC 的中点,则线段OA的长为厘米.10、往返于甲、乙两地的火车中途要停靠三个站,则有种不同的票价(来回票价一样),需准备种车票.11、①如图(1)直线l上有2个点,则图中有2条可用图中字母表示的射线有②如图(2)直线l上有3个点,则图中有条可用图中字母表示的射线,有条线段。
③直线上有n个点,则图中有条射线,有条线段。
④某校七年级共有6个班实行足球比赛,准备实行单循环赛(即每两队之间赛一场),预计全部赛完共需场比赛。
12、用恰当的几何语言描述图形,如图3(1)可描述为:__________________如图3(2)可描述为________________________________ ________________。
13、根据图,填空:⑴线段交射线于;⑵延长线段交的于点,线段是线段的线.14、三点,,在同一条直线上,若且,则.15、在一直线上有,,三点,为的中点,为的中点,若,,则用含,的代数式可表示线段.二、选择16、下列说法中错误的是().A.A、B两点之间的距离为3cm B.A、B两点之间的距离为线段AB的长度C.线段AB的中点C到A、B两点的距离相等 D.A、B两点之间的距离是线段AB 18、下列说法中,准确的个数有().(1)射线AB和射线BA是同一条射线(2)延长射线MN到C(3)延长线段MN到A使NA==2MN (4)连结两点的线段叫做两点间的距离A.1 B.2 C.3 D.419、同一平面内有三点,过每两点画一条直线,则直线的条数是()(A)1条 (B)3条 (C)2条 (D)1条或3条20、如图3,C是线段AB的中点,D是CB上一点,下列说法中错误的是().A.CD=AC-BD B.CD=BCC.CD=AB-BD D.CD=AD-BC21、如果线段AB=13cm,MA+MB=17 cm,那么下面说法中准确的是 ( ).A.M点在线段AB上 B.M点在直线AB上C.M点在直线AB外 D.M点可能在直线AB上,也可能在直线AB外22、如图4,小华的家在A处,书店在B处,星期日小明到书店去买书,他想尽快的赶到书店,请你协助他选择一条最近的路线().A.A→C→D→B B.A→C→F→BC.A→C→E→F→B D.A→C→M→B23、某公司员工分别住在,,三个住宅区,区有30人,区有15人,区有10人,三个区在同一条直线上,如图所示,该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在()A.区B.区C.区D.,两区之间24、已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是().A.8cm B.2cm C.8cm或2cm D.4cm三、解答题25、读句子,画图形:⑴直线与两条射线,分别交于点,点.⑵作射线,在上截取点,,使.26如图:cm,cm,如果是线段的中点.求线段的长度.(括号内注理由)解:∵AC= + =7 (cm),又∵为的中点,()∴OC= AC= (㎝),()∴(cm).27、如图5,C为线段AB的中点,N为线段CB的中点,CN=1cm.求图中所有线段的长度的和.28、如图,点C在线段AB上,AC=8 cm,CB=6 cm,点M、N分别是AC、BC的中点。
人教版版四年级上册数学《线段 直线 射线》练习题(附答案)
人教版版四年级上册数学线段直线射线练习题(附答案)一、单选题1.一条()长300米.A. 射线B. 直线C. 线段2.经过平面上的任意两点,可以画()条直线。
A. 1B. 2C. 无数D. 不确定3.把线段的一端无限延长,就得到一条()。
A. 垂线B. 射线C. 线段D. 直线4.下面图形中有条线段.()A. 3B. 6C. 10D. 155.下图中共有()线段。
A. 4条B. 5条C. 6条D. 8条二、判断题6.直线比射线长,射线比线段长.()7.一条直线长25厘米。
()8.一条直线长10分米.()9.线段有两个端点,是直线的一部分。
()三、填空题10.三角形由________条线段围成,长方形由________条线段围成。
11.在横线上填“经过”或“不经过”。
线段AB经过点C吗?________12.正方形是由________条线段围成的,三角形是由________条线段围成的.13.下图是由________条线段组成的,有________个直角。
14.手电筒发出的光是一条________。
四、解答题15.用两种不同的方法数出框中一共有()条线段,并在图中画出你数线段的方法。
16.画一条比4厘米短5毫米的线段,并给这条线段标上长度。
五、作图题17.过AB两点画一条直线,并量出线段AB的长度。
线段AB长()毫米。
答案一、单选题1. C2. A3. B4. C5. C二、判断题6. 错误7. 错误8. 错误9. 正确三、填空题10. 3;4 11. 不经过12. 4;3 13. 9;614. 射线四、解答题15. 解:,5+4+3+2+1=15(条)答:数出框中一共有15条线段。
16.五、作图题17.量得线段AB的长度是2厘米,即线段AB长20毫米。
射线直线线段练习题
射线、直线、线段练习题一、选择题1. 下列说法正确的是:A. 射线有一个端点,无限长B. 直线有两个端点,有限长C. 线段有一个端点,有限长D. 射线与直线长度相等2. 在下列图形中,哪个是线段?A. 两条平行线B. 一个端点,向一方无限延伸C. 两个端点,有限长D. 一个端点,向两边无限延伸A. 两个端点,有限长B. 一个端点,向一方无限延伸C. 两个端点,无限长D. 无端点,无限长二、填空题1. 线段是由两个______和它们之间的______组成的。
2. 射线有一个______,向一方______延伸。
3. 直线无______,______延伸。
三、判断题1. 射线的长度大于线段的长度。
()2. 直线比射线更长。
()3. 线段有两个端点,有限长。
()四、连线题请将下列射线、直线、线段的定义与相应的图形连线:1. 直线:______2. 射线:______3. 线段:______五、作图题1. 画出一条线段,长度为5厘米。
2. 画出一条射线,从一个端点出发,经过点A。
3. 画出一条直线,使它与线段AB平行。
六、简答题1. 请简要说明射线、直线和线段的特点。
2. 如何用直尺和三角板画出一条指定长度的线段?3. 在日常生活中,你能找到哪些射线、直线和线段的例子?请分别列举。
七、应用题1. 在平面直角坐标系中,点A(2,3)和点B(5,3)是线段AB的两个端点,求线段AB的长度。
2. 已知射线OC从点O(0,0)出发,经过点C(4,0),求射线OC上距离点O 6个单位长度的点D的坐标。
3. 在直角坐标系中,直线l经过点P(1,2)和点Q(4,6),请写出直线l的方程。
八、拓展题1. 如果一条射线逆时针旋转90度,它变成了什么?2. 在平面上,两条直线相交,形成的四个角中,有几个角是相等的?3. 有一根无限长的直线,你在上面任意取两点,这两点之间的是什么?九、探究题1. 如何证明两条平行线之间的距离处处相等?2. 在同一平面内,如果两条直线不相交,那么它们一定是平行的吗?3. 请设计一个实验,证明线段的长度是可以通过测量得到的。
线段、射线、直线练习题-基础
线段,射线,直线一、选择题1.手电筒射出的光线,给我们的形象是( ).A .直线B .射线C .线段D .折线2.下列各图中直线的表示法正确的是( ).3.点P 在线段EF 上,现有四个等式①PE=PF;②PE=EF;③EF=PE;④2PE=EF;其中能表示点P 是EF 中点的有( ).A .4个B .3个C .2个D .1个4.如图中分别有直线、射线、线段,能相交的是( ).5.(2015•黄冈中学自主招生)如图,点A 、B 、C 顺次在直线l 上,点M 是线段AC 的中点,点N 是线段BC 的中点.若想求出MN 的长度,那么只需条件( )A .AB=12B . B C=4C . A M=5D . CN=2 6.(2016•宜昌)如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )1212A.垂线段最短B.经过一点有无数条直线C.经过两点,有且仅有一条直线D.两点之间,线段最短二、填空题7.(2016春•威海期中)平面内不同的两点确定一条直线,不同的三点最多确定三条直线,平面内不同的六个点最多可确定条直线.8.在修建崇钦高速公路时,有时需要将弯曲的道路改直,依据是.9. 如图所示,数一数,图中共有________条线段,________条射线,________条直线,其中以B为端点的线段是________;经过点D的直线是________,可以表示出来的射线有________条.10.如图所示,(1)AC=BC+ ;(2)CD=AD- ;(3)CD= -BC;(4)AB+BC= -CD.11. 如图所示,直线_______和直线______相交于点P ;直线AB 和直线EF•相交于点______;点R 是直线________和直线________的交点.12.如图,若CB=4cm ,DB=7cm ,且D 是AC 的中点,则AC= cm .三、解答题13.如图,已知AB=2cm ,延长线段AB 至点C ,使BC=2AB ,点D 是线段AC 的中点,用刻度尺画出图形,并求线段BD 的长度.14.如图,延长线段AB 到C ,使12BC AB,D 为AC 的中点,DC =2,求AB 的长.15.已知:如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若线段AC=6,BC=4,求线段MN的长度;(2)若AB=a,求线段MN的长度;(3)若将(1)小题中“点C在线段AB上”改为“点C在直线AB上”,(1)小题的结果会有变化吗?求出MN的长度.一、选择题1.【答案】B;【解析】手电筒本身看作射线的端点,射出的光线看作向前方无限延伸.2.【答案】C;【解析】要牢记直线、射线、线段的表示方法.3.【答案】A;【解析】点P是线段AB的中点,表示方法不唯一.4.【答案】B;5.【答案】A.【解析】根据点M是线段AC的中点,点N是线段BC的中点,可知:,∴只要已知AB即可.6.【答案】D;【解析】解:∵用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB的长小于点A绕点C到B的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短,故选D.二、填空题【解析】解:平面内不同的六个点最多可确定 15条直线.故答案为:15.8. 【答案】两点之间线段最短;【解析】线段的性质:两点之间线段最短.9. 【答案】6 ,18, 4,线段AB 、线段BC 、线段BD ;直线AD 、直线BD 、直线CD ,10; 【解析】注意利用线段、射线、直线的表示法进行区别.10.【答案】AB , AC ,BD ,AD ;11.【答案】AB , CD , O , CD , EF ;12.【答案】6.三、解答题13.【解析】解:如图:,由BC=2AB ,AB=2cm ,得BC=4cm ,由线段的和差,得AC=AB+BC=2+4=6cm ,由点D 是线段AC 的中点,得AD=AC=×6=3cm.由线段的和差,得BD=AD ﹣AB=3﹣2=1cm . 6(61)2⨯-=14.【解析】解:设AB x =,则1122BC AB x ==,所以有:32AC AB BC x =+= 又∵D 为线段AC 的中点且2DC =∴324DC x == 解得:83x = 所以AB 的长为83. 15. 【解析】解:(1)∵ AC =6,BC =4,∴ AB =6+4=10又∵ 点M 是AC 的中点,点N 是BC 的中点,∴ MC =AM =12AC ,CN =BN =12BC , ∴ MN =MC+CN =12AC+12BC =12(AC+BC)=12AB =5(cm). (2)由(1)中已知AB =10cm 求出MN =5cm ,分析(1)的推算过程可知MN =12AB , 故当AB =a 时,MN =12a , 从而得到规律:线段上任一点把线段分成的两部分的中点间的距离等于原线段长度的一半.(3)分类讨论:当点C 在点B 的右侧时,如图可得:1111()(64)12222MN MC NC AC BC AC BC =-=-=-=-=; 当点C 在线段AB 上时,如(1);当点C 在点A 的左侧时,不满足题意.综上可得:点C 在直线AB 上时,MN 的长为1或5.。
直线 射线 线段的练习题
直线射线线段的练习题直线、射线和线段是解析几何中的基本概念,它们广泛应用于数学和物理领域。
本文将为您提供一系列与直线、射线和线段相关的练习题,以帮助您更好地理解和运用这些概念。
1. 练习题一已知直线AB的斜率为1/2,经过点C(-1, 3),求直线AB的方程。
解析:由直线的斜率与过一点的关系,可以得到直线AB过点C(-1, 3)的方程为:y - 3 = 1/2(x + 1)。
2. 练习题二已知射线OA和射线OB的夹角为60°,OA的长度为2,求射线OB的长度。
解析:根据三角函数的定义,可以得到三角形OAB的边长比关系为:OB = OA * tan(60°) = 2 * tan(60°)。
3. 练习题三已知线段PQ的长度为5,线段PQ的中点为M,求线段PM的长度。
解析:线段PQ的中点M即为线段PQ的中垂线的交点,根据中垂线的性质,可以得到线段PM的长度为PQ的一半,即2.5。
4. 练习题四已知直线L1过点A(2, 4),斜率为2,直线L2过点B(-1, 3),斜率为-1/2,求直线L1和L2的交点坐标。
解析:由两条直线的方程可得:y - 4 = 2(x - 2) 和 y - 3 = -1/2(x + 1),解方程组得到交点坐标为(1, 2)。
5. 练习题五已知直线L与x轴交于点A(-3, 0),L与y轴交于点B(0, 4),求直线L的方程。
解析:由直线与坐标轴的交点可以直接得到直线的截距,进而得到直线L的方程为y = -4/3x + 4。
通过以上的练习题,希望能够加深您对直线、射线和线段的理解,并且对解析几何的运用有更好的掌握。
在解题过程中,注意合理运用直线和点的性质,灵活应用相关的计算公式和几何知识。
在实际应用中,这些基本概念和方法将为您提供有力的工具和思路。
祝您在解析几何学习中取得优异的成绩!。
直线、射线、线段练习题(含答案)
1.下列各说法一定成立的是A.画直线AB=10厘米B.已知A、B、C三点,过这三点画一条直线C.画射线OB=10厘米D.过直线AB外一点画一条直线和直线AB平行2.如图,用圆规比较两条线段A′B′和AB的长短,其中正确的是A.A′B′>AB B.A′B′=ABC.A′B′<AB D.A′B′≤AB3.工人师傅在给小明家安装晾衣架时,一般先在阳台天花板上选取两个点,然后再进行安装.这样做的数学原理是A.过一点有且只有一条直线B.两点之间,线段最短C.连接两点之间的线段叫两点间的距离D.两点确定一条直线4.下列语句正确的是A.延长线段AB到C,使BC=ACB.反向延长线段AB,得到射线BAC.取直线AB的中点D.连接A、B两点,并使直线AB经过C点5.如图所示,不同的线段的条数是A.4条B.5条C.10条D.12条6.如图所示,该条直线上的线段有A.3条B.4条C.5条D.6条7.射线OA与OB是同一条射线,画图正确的是A.B.C.D.8.如果线段AB=5cm,BC=4cm,且A、B、C在同一条直线上,那么A、C两点的距离是A.1cm B.9cmC.1cm或9cm D.以上答案都不正确9.如图,对于直线AB,线段CD,射线EF,其中能相交的图是A.B.C.D.10.经过同一平面内的A,B,C三点中的任意两点,可以作出__________条直线.11.如图,该图中不同的线段数共有__________条.12.如下图,从小华家去学校共有4条路,第__________条路最近,理由是__________.13.如图,若D是AB中点,E是BC中点,若AC=8,EC=3,AD=__________.14.如图,已知线段AB,反向延长AB到点C,使AC=12AB,D是AC的中点,若CD=2,求AB的长.15.如图,B、C是线段AD上两点,且AB:BC:CD=3:2:5,E、F分别是AB、CD的中点,且EF=24,求线段AB、BC、CD的长.16.AB、AC是同一条直线上的两条线段,M在AB上,且AM=13AB,N在AC上,且AN=13AC,线段BC和MN的大小有什么关系?请说明理由.17.如图所示,C是线段AB上的一点,D是AC的中点,E是BC的中点,如果AB=9cm,AC=5cm.求:(1)AD的长;(2)DE的长.18.如图,已知A、B、C、D四点,根据下列语句画图:(1)画直线AB;(2)连接AC、BD,相交于点O;(3)画射线AD、BC,交于点P.19.如图,点C在线段AB上,点D是AC的中点,如果CB=32CD,AB=7cm,那么BC的长为A.3cm B.3.5cmC.4cm D.4.5cm20.如图,C是AB的中点,D是BC的中点,则下列等式不成立的是A.CD=AD–AC B.CD=12AB-BDC.CD=14AB D.CD=13AB21.A、B是直线l上的两点,P是直线l上的任意一点,要使PA+PB的值最小,那么点P的位置应在A.线段AB上B.线段AB的延长线上C.线段AB的反向延长线上D.直线l上22.已知点P是线段AB的中点,则下列说法中:①PA+PB=AB;②PA=PB;③PA=12AB;④PB=12AB.其中,正确的有A.1个B.2个C.3个D.4个23.如图,D是线段AB中点,E是线段BC中点,若AC=10,则线段DE=________.24.在直线l两侧各取一定点A、B,直线l上动点P,则使PA+PB最小的点P的位置是________.25.如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a cm,其他条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC–BC=b cm,M、N分别为AC、BC的中点,你能猜想MN 的长度吗?并说明理由.26.如图所示,直线l是一条平直的公路,A、B是某公司的两个仓库,位于公路两旁,请在公路上找一点建一货物中转站C,使A、B到C的距离之和最小,请在图中找出点C的位置,并说明理由.27.(2017•桂林)如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB=__________.28.(2017•河北)在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p.1.【答案】D【解析】A、直线无限长,错误;B、若A、B、C三点不共线,则无法画出一条直线,错误;C、射线无限长,错误;D、过直线AB外一点只能画一条直线与AB平行,正确.故选D.4.【答案】B【解析】A、延长线段AB到C,使BC=AC,不可以做到,故本选项错误;B、反向延长线段AB,得到射线BA,故本选项正确;C、取直线AB的中点,错误,直线没有中点,故本选项错误;D、连接A、B两点,并使直线AB经过C点,若A、B、C三点不共线则做不到,故本选项错误.故选B.5.【答案】C【解析】图中线段有:AB,AC,AD,AE,BC,BD,BE,CD,CE,DE共有10条.故选C.6.【答案】D【解析】线段有:AB,AC,AD,BC,BD,CD共6条.故选D.7.【答案】B【解析】A、射线OA与OB不是同一条射线,选项错误;B、射线OA与OB是同一条射线,选项正确;C、射线OA与OB不是同一条射线,选项错误;D、射线OA与OB不是同一条射线,选项错误.故选B.8.【答案】C【解析】如图所示,当点C在AB之间时,AC=AB−BC=5−4=1(cm);当点C在点B的右侧时,AC=AB+BC=5+4=9(cm).故选C.10.【答案】1或3【解析】若A,B,C三点在同一直线上,可作出1条直线;若A,B,C三点不在同一直线上,可作出3条.故答案为:1或3.11.【答案】6【解析】因为图中的线段有:BC、DC、AC、BD、BA、DA,所以共有6条线段.故答案为:6. 12.【答案】③;两点之间,线段最短【解析】从小华家去学校共有4条路,第③条路最近,理由是:两点之间,线段最短.13.【答案】1【解析】因为EC=3,E是BC中点,所以BC=2EC=2×3=6,因为AC=8,所以AB=AC–BC=8–6=2,因为D是AB中点,所以AD=12AB=12×2=1.14.【解析】因为D是AC的中点,所以AC=2CD,因为CD=2cm,所以AC=4cm,因为AC=12AB,所以AB=2AC,所以AB=2×4cm=8cm.15.【解析】设AB=3x,则BC=2x,CD=5x,因为E、F分别是AB、CD的中点,所以BE=32x,CF=52x,因为BE+BC+CF=EF,且EF=24,所以32x+2x+52x=24,解得x=4,所以AB=12,BC=8,CD=20.16.【解析】BC=3MN.分三种情况:17.【解析】(1)因为AC=5cm,D是AC中点,所以AD=DC=12AC=52cm,(2)因为AB=9cm,AC=5cm,所以BC=AB−AC=9−5=4(cm),因为E是BC中点,所以CE=12BC=2cm,所以DE=CD+CE=52+2=92(cm).18.【解析】(1)如图所示,直线AB即为所求;(2)如图所示,线段AC,BD即为所求;(3)如图所示,射线AD、BC即为所求.19.【答案】A20.【答案】D【解析】因为C是AB的中点,所以CA=CB,又因为D是BC的中点,所以DC=DB,所以CD=DB=14AB;CD=BC−BD=12AB−BD;CD=AD−AC.故选D.21.【答案】A【解析】当P点在线段AB的延长线上,则PA+PB=PB+AB+PB=AB+2PB;当P点在线段AB的反向延长线上,则PA+PB=PA+AB+PB=AB+2PA;当P点在线段AB上,则PA+PB=AB,所以当P点在线段AB上时PA+PB的值最小.故选A.22.【答案】D【解析】由P是线段AB的中点,得①PA+PB=AB②PA=PB③PA=12AB④PB=12AB,故选D.23.【答案】5【解析】因为D是线段AB中点,E是线段BC中点,所以BD=12AB,BE=12BC,所以DE=BD+BE=12AB+12BC=12(AB+BC)=12AC,因为AC=10,所以DE=1102=5.故答案为:5.24.【答案】点P是直线AB与l的交点【解析】由两点之间,线段最短可知:当点P位于直线AB与l的交点时,PA+PB最小.故答案为:点P是直线AB与l的交点.25.【解析】(1)因为点M、N分别是AC、BC的中点,因为点M、N分别是AC、BC的中点,所以MC=12AC,NC=12BC,所以MN=MC–CN=12(AC–BC)=12b(cm).26.【解析】如图所示,理由:两点之间,线段最短.27.【答案】4【解析】因为点C是线段AD的中点,若CD=1,所以AD=1×2=2,因为点D是线段AB的中点,所以AB=2×2=4.故答案为:4.28.【解析】(1)若以B为原点,则C表示1,A表示–2,。
直线、射线、线段同步练习题
直线、射线、线段第 1 课时直线、射线、线段1. 下列几何语言描述正确的是()A. 直线mn与直线ab相交于点DB. 点A在直线M上C. 点A在直线AB上D. 延长直线AB2.如图, 直线的表示方法()(第2题)A. 都正确B. 都错误C. 只有一个错误D. 只有一个正确3. 下列说法正确的是()A. 射线可以延长B. 射线的长度可以是5 mC. 射线可以反向延长D. 射线不可以反向延长4.将线段AB延长至C, 再将线段AB反向延长至D, 则共得到的线段有()A. 8条B. 7条C. 6条D. 5条5.如图, 下列说法正确的是()A. 直线AB和直线a不是同一条直线B. 直线AB和直线BA是两条直线C. 射线AB和射线BA是两条射线D. 线段AB和线段BA是两条线段(第5题)(第6题)6. 如图, 可以用字母表示出来的不同线段和射线的条数是()A. 3条线段, 4条射线B. 6条线段, 6条射线C.6条线段, 8条射线D.3条线段, 1条射线7. 经过同一平面内任意三点中的两点共可以画出()A. 一条直线B. 两条直线C. 一条或三条直线D. 三条直线8.下列说法中, 错误的是()A. 直线AB和直线BA是同一条直线B. 三条直线两两相交必有三个交点C. 线段MN是直线MN的一部分D. 三条直线两两相交, 可能只有一个交点9.平面内不同的两点确定一条直线, 不同的三点最多确定三条直线, 若平面内不同的n 个点最多可确定15条直线, 则n的值为()A. 4B. 5C. 6D. 710.下列说法中: ①过两点只能画一条直线;②过两点只能画一条射线;③过两点只能画一条线段;④过两点能画两条射线.其中, 正确的有()A. 1个B. 2个C. 3个D. 4个11.京广高铁全线通车后, 一列往返于北京和广州的火车, 沿途要经过石家庄、郑州、武汉、长沙四站, 铁路部门要为这趟列车准备印制车票()A. 6种B. 12种C. 15种D. 30种12.如图, 直线有多少条?把它们分别表示出来;线段有多少条?把它们分别表示出来;射线有多少条?可以表示的射线有多少条?把它们分别表示出来.(第12题)13. 点A, B, C, D的位置如图, 按下列要求画出图形:(1)画直线AB, 直线CD, 它们相交于点E;(2)连接AC, 连接BD, 它们相交于点O;(3)画射线AD, 射线BC, 它们相交于点F.(第13题)14. 如图, 已知数轴上的原点为O, 点A表示3, 点B表示-1, 回答下列问题:(1)数轴在原点O左边部分(包括原点)是一条什么线?怎样表示?(2)射线OB上的点表示什么数?(3)数轴上表示不大于3且不小于-1的数的部分是什么图形?怎样表示?(第14题)15. 往返于甲、乙两地的列车, 中途停靠3个站. 试求:(1)最多有多少种不同的票价?(2)要准备多少种不同的车票?(从特殊到一般的思想)16. 观察下列图形(无三直线共点)找出规律, 并解答问题.(第16题)(1)5条直线相交(无三直线共点), 有______个交点, 平面被分成______块;(2)n条直线相交(无三直线共点), 有______个交点, 平面被分成______块;(3)一张圆饼切10刀(不许重叠), 最多可得到多少块饼?17. 如图, 已知平面内有公共端点的六条射线OA, OB, OC, OD, OE, OF, 从射线OA开始按逆时针方向依次在射线上写出数1, 2, 3, 4, 5, 6, 7, ….(1)17在射线________上;(2)请任意写出三条射线上数的排列规律;(3)2 016在哪条射线上?(第17题)第 2 课时线段1. 尺规作图的工具是()A. 刻度尺和圆规B. 三角尺和圆规C. 直尺和圆规D. 没有刻度的直尺和圆规2.如图, 已知线段a, b, 作线段AB, 使AB=2a-b(注明作图步骤).(第2题)3. 下列图形中能比较大小的是()A. 两条线段B. 两条直线C. 直线与射线D. 两条射线4.比较线段a和b的大小, 其结果一定是()A. a=bB. a>bC. a<bD. a>b或a=b或a<b5.为了比较线段AB与CD的大小, 小明将点A与点C重合使两条线段在一条直线上, 结果点B在CD的延长线上, 则()A. AB<CDB. AB>CDC. AB=CDD. 以上都不对6. 七年级一班的同学想举行一次拔河比赛, 他们想从两条大绳中挑出一条最长的绳子, 请你为他们选择一种合适的方法()A.把两条大绳的一端对齐, 另外两端在公共端点的同侧, 然后拉直两条大绳, 另一端在外面的即为长绳B. 把两条绳子接在一起C.把两条绳子重合, 观察另一端情况D. 没有办法挑选7.如图, AB=CD, 则AC与BD的大小关系是()(第7题)A. AC>BDB. AC<BDC. AC=BDD. 无法确定8.点C在线段AB上, 下列条件中不能确定点C是线段AB中点的是()A. AC=BCB. AC+BC=ABC. AB=2ACD. BC=AB9. 下列说法正确的是()A. 若AC=AB, 则C是AB的中点B. 若AB=2CB, 则C是AB的中点C. 若AC=BC, 则C是AB的中点D. 若AC=BC=AB, 则C是AB的中点10.如图, C是线段AB上的一点, M是线段AC的中点, 若AB=8 cm, BC=2 cm, 则MC的长是()A. 2 cmB. 3 cmC. 4 cmD. 6 cm(第10题)(第11题)11. (2014·长沙)如图, C, D是线段AB上的两点, 且D是线段AC的中点, 若AB=10 cm, BC=4 cm, 则AD的长为()A. 2 cmB. 3 cmC. 4 cmD. 6 cm12.已知线段AB=10 cm, 点C是直线AB上一点, BC=4 cm, 若M是AC的中点, N 是BC的中点, 则线段MN的长度是()A. 7 cmB. 3 cmC. 7 cm或3 cmD. 5 cm13. 已知线段AB=8 cm, 点C是直线AB上一点, 若BC=5 cm, 求线段AC的长.14.如图是一张三角形纸片, 你能准确地比较线段AB与线段BC的长短吗?(第14题)15. 已知线段a, b, c(a>c), 如图所示.(第15题)求作: 线段AB, 使AB=a+b-c.16.如图, 已知线段AB=4.8 cm, 点M为AB的中点, P在MB上, N为PB的中点, 且NB=0.8 cm, 求AP的长.(第16题)17. 画线段AB=2厘米, 延长AB至C, 使AC=2AB, 反向延长AB至E, 使AE=CE.(1)求线段CE的长;(2)线段AC是线段CE的几分之几?(3)线段CE是线段BC的几倍?18.如图, 线段AB=4, 点O是线段AB上一点, C, D分别是线段OA, OB的中点.(1)求线段CD的长;(2)若题中的“点O是线段AB上一点”改为“点O是线段AB延长线上一点”, 其他条件不变, 请你画出图形, 并求CD的长.(第18题)19. 如图, 在数轴上有A, B, C, D四个整数点(即各点均表示整数), 且2AB=BC=3CD, 若A, D两点表示的数分别为-5和6, 点E为BD的中点, 那么该数轴上A, B, C, D四个点中,离点E最近的点表示的数是多少?(第19题)第3 课时线段的性质1. 下列说法正确的是()A. 连接两点的线段叫做两点间的距离B. 两点间的连线的长度叫做两点间的距离C. 连接两点的直线的长度叫做两点间的距离D. 连接两点的线段的长度叫做两点间的距离2.点B在直线AC上, 线段AB=5, BC=3, 则A, C两点间的距离是()A. 8B. 2C. 8或2D. 无法确定3.如图, AB=12, C为AB的中点, 点D在线段AC上, 且AD∶CB=1∶3, 则D, B两点间的距离为()(第3题)A. 4B. 6C. 8D. 104.(2014·徐州)点A, B, C在同一数轴上, 其中点A, B表示的数分别为-3, 1, 若BC=2, 则AC等于()A. 3B. 2C. 3或5D. 2或65.如图所示, 在我国“西气东输”的工程中, 从A城市往B城市架设管道, 有三条路可供选择, 在不考虑其他因素的情况下, 架设管道的最短路线是________, 依据是________________________.(第5题)(第6题)6. 如图所示, 由M到N有①②③④共4条路线, 最短的路线选①的理由是()A. 因为它是直线B. 两点确定一条直线C. 两点之间的距离D.两点之间, 线段最短7. 下列说法正确的是()A. 两点之间, 直线最短B. 线段MN就是M, N两点间的距离C. 在连接两点的所有线中, 最短的连线的长度就是这两点间的距离D. 从武汉到北京, 火车行走的路程就是武汉到北京的距离8.(2015·新疆)如图, 某同学的家在A处, 星期日他到书店去买书, 想尽快赶到书店B,请你帮助他选择一条最近的路线()(第8题)A. A→C→D→BB. A→C→F→BC. A→C→E→F→BD. A→C→M→B9.(改编·济宁)把一条弯曲的公路改成直道, 可以缩短路程, 用几何知识解释其道理正确的是()A. 两点确定一条直线B. 两点之间, 直线最短C. 两点之间, 线段最短D.两点之间, 射线最短10. (中考·襄阳)下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时, 只要定出两棵树的位置, 就能确定同一行树所在的直线;③从A地到B地架设电线, 总是尽可能沿着线段AB架设;④把弯曲的公路改直, 就能缩短路程.其中可用基本事实“两点之间, 线段最短”来解释的现象有()A. ①②B. ①③C. ②④D. ③④11. 已知数轴上有点A, B, C, 它们所表示的有理数分别是6, -8, x.(1)求线段AB的长;(2)求线段AB的中点D表示的数;(3)已知AC=8, 求x.12. 平面上有A, B两点, 且AB=7 cm.(1)若在该平面上找一点C, 使CA+CB=7 cm, 则点C在何处?(2)若使CA+CB>7 cm, 则点C在何处?(3)若使CA+CB<7 cm, 则点C在何处?13. 如图, 3条线段AB, BC, CA围成一个三角形, AB>CA.(1)延长AC到点D, 使CD=BC;(2)比较AD与AB的大小.(第13题)14. 如图所示, 在一条笔直公路a的两侧, 分别有A, B两个村庄, 现要在公路a上建一个汽车站C, 使汽车站到A, B两村的距离之和最小, 问汽车站C的位置应如何确定?(第14题)15. 已知线段AB=6 cm, 试讨论下列问题:(1)在平面内是否存在一点C, 使B, C和A, C之间的距离相等?如果存在, 有多少个这样的点C?在什么情况下, 点C才是线段AB的中点?(2)是否存在一点C, 使它到A, B两点的距离之和最小?若存在, 点C的位置在什么地方?最小距离之和是多少?(3)当点C到A, B两点的距离之和大于6 cm时, 点C的位置在什么地方?试举例说明;(4)由(2), 你能得出一个什么结论?16. 如图, 有一只蚂蚁想从A点沿正方体的表面(不包括下底面)爬到B点, 走哪一条路最近?(1)请你利用展开图画出这条最短的路线, 并说明理由;(2)试着在正方体上画出行走的最短路线, 并说明这种最短路线有几条?(第16题)专训1: 巧用线段中点的有关计算1.已知A, B, C三点在同一条直线上, 若线段AB=20 cm, 线段BC=8 cm, M, N分别是线段AB, BC的中点.(1)求线段MN的长;(2)根据(1)中的计算过程和结果, 设AB=a, BC=b, 且a>b, 其他条件都不变, 你能猜出MN的长度吗?(直接写出结果)2. 画线段MN=3 cm, 在线段MN上取一点Q, 使MQ=NQ;延长线段MN到点A, 使AN=MN;延长线段NM到点B, 使BN=3BM.(1)求线段BM的长;(2)求线段AN的长;(3)试说明点Q是哪些线段的中点.3.如图, B, C两点把线段AD分成2∶4∶3三部分, M是AD的中点, CD=6 cm, 求线段MC的长.(第3题)4. A, B两点在数轴上的位置如图所示, O为原点, 现A, B两点分别以1个单位长度/秒、4个单位长度/秒的速度同时向左运动.(1)几秒后, 原点恰好在两点正中间?(2)几秒后, 恰好有OA∶OB=1∶2?(第4题)专训2: 线段上的动点问题1. (1)如图①, D是AB上任意一点, M, N分别是AD, DB的中点, 若AB=16, 求MN的长.(2)如图②, AB=16, 点D是AB上一动点, M, N分别是AD, DB的中点, 能否求出线段MN的长?若能, 求出其长;若不能, 试说明理由.(3)如图③, AB=16, 点D运动到线段AB的延长线上, 其他条件不变, 能否求出线段MN的长?若能, 求出其长;若不能, 试说明理由.(4)你能用一句简洁的话, 描述你发现的结论吗?(第1题)2. 如图, 已知数轴上A, B两点对应的数分别为-2, 6, O为原点, 点P为数轴上的一动点,其对应的数为x.(第2题)(1)PA=______, PB=______(用含x的式子表示).(2)在数轴上是否存在点P, 使PA+PB=10?若存在, 请求出x的值;若不存在, 请说明理由.(3)点P以1个单位长度/s的速度从点O向右运动, 同时点A以5个单位长度/s的速度向左运动, 点B以20个单位长度/s的速度向右运动, 在运动过程中, M, N分别是AP, OB的中点, 问: 的值是否发生变化?请说明理由.3. 如图, 线段AB=24, 动点P从A出发, 以每秒2个单位长度的速度沿射线AB运动, M 为AP的中点.(1)出发多少秒后, PB=2AM?(2)当P在线段AB上运动时, 试说明2BM-BP为定值.(3)当P在AB延长线上运动时, N为BP的中点, 下列两个结论:①MN长度不变;②MA+PN的值不变.选择一个正确的结论, 并求出其值.(第3题)。
直线、射线、线段练习题(含答案)
直线、射线、线段
1.向两边延伸的笔直铁轨给我们的形象似( )
A.直线
B.射线
C.线段
D.以上都不对
2.如图,下列说法错误的是( )
A.直线MN过点O
B.线段MN过点O
C.线段MN是直线MN的一部分
D.射线MN过点O
3.当需要画一条5厘米的线段时,我们常常在纸上正对零刻度线和“5厘米”刻度线处打上两点,再连接即可,这样做的道理是.
4.如图,平面内有四点,画出通过其中任意两点的直线,并直接写出直线条数.
5.如图,按要求完成下列小题:
(1)作直线BC与直线l交于点D;
(2)作射线CA;
(3)作线段AB.
第1课时直线、射线、线段1.A 2.B 3.两点确定一条直线
4.解:如图所示,共画6条直线.
5.解:(1)(2)(3)如图所示.。
四年级数学上册《线段、直线、射线》练习题
《线段、直线、射线》
一、填空
1、直线上两点间的一段叫做(),线段有()个端点。
2、()、()都可以无限延长,其中()没有端点,()只有一个端点。
3、从一点引出两条射线所组成的图形叫做()。
这个点叫做它的(),这两条射线叫做它的()。
4、线段是直的,有()个端点;将线段向两个方向无限延长,就形成了()线;从线段的一个端点向一个方向无限延长,就得到一条()线。
5、过一点可以画出()条直线,过两点只能画出()条直线;从一点出发可以画()条射线。
6、手电筒、太阳等射出来的光线,都可以近似地看成是,因为它们都只有端点。
二、请在括号里对的画“√”,错的画“×”。
1、线段是直线上两点之间的部分。
()
2、过一点只能画出一条直线。
()
3、一条射线长6厘米。
()
4、手电筒射出的光线可以被看成是线段。
()
5、过两点只能画一条直线。
()
6、线段比射线短,射线比直线短。
( )
7、经过一点可以画一条直线。
( )
8、一条射线OA,经过度量它的长度是5厘米。
()。
直线、射线、线段 小学数学 习题集
一、选择题
1. 数一数,一共有()条线段。
A.1 B.3 C.4 D.6
2. 如图()是线段。
A.B.
C.
3. 直线、射线、线段三者比较,正确的是()。
A.直线最长B.线段最短C.无法比较
4. 下列线中,()是射线。
A.B.C.5. 一条线段的是2cm,这条线段的长是()
A.4cm B.2cm C.6cm
二、填空题
6. 认一认,归类。
(将序号填入相应的括号里)
射线:( ) 直线:( ) 线段:( ) 角:( ) 7. 下图中有( )条射线,有( )个角。
8. 下图中有______条射线,______条线段。
9. 画一条6厘米长的线段,可以从尺子的( )刻度画起,画到刻度( )的地方。
10. 左图有( )条线段,( )个锐角,( )个直角,( )个钝角.
三、解答题
11. 不用尺,你能画一条8厘米长的线段吗?
12. 先量出线段的长度,再画一条比它长4毫米的线段。
()厘米
13. 中(国)老(挝)铁路是中国与老挝友谊的“连心桥”。
晓娟查阅有关资料了解到中老铁路的磨丁至万象市段的站点,如图所示。
这一段铁路单程需要准备多少种
不同的车票?
14. 填一填,画一画。
(1)数一数,机器人身上共有()条线段。
(2)用彩笔把这些线段描一描。
(3)画一条1厘米长的线段作为机器人的嘴。
直线射线和线段练习题及答案
直线射线和线段练习题及答案一、选择题1.下列说法中,错误的是( )A .通过一点能够作许多条直线B .通过两点只能作一条直线C .一条直线只能用一个字母表示D .线段CD 和线段DC 是同一条线段 2.下列说法中,正确的是( )A .射线AB 和射线BA 是同一条射线 B .延长射线MN 到CC .延长线段MN 到P 使NP =2MND .连结两点的线段叫做两点间的距离3. 假如点P 在AB 上,下列表达式中不能表示P 是AB 中点的是( )A .AP=12AB B .AB=2BPC .AP=BPD .AP+BP =AB4.下列四个图中的线段(或直线、射线)能相交的是( )1()2()C4()C3()BA A BC D5.如右图,从A 地到C 地,可供选择的方案是走水路、走陆路、走空中.从A地到B 地有2条水路、2条陆路,从B 地达到C 地有3条陆路可供选择,走空中从A 地不经B 地直截了当到C 地.则从A 地到C 地可供选择的方案有( )A .20种B . 8种C . 5种D .13种二、填空题6.在直线MN 上取A 、B 、C 三个点,则图中共有射线__________条. 7. 已知线段AB=18,直线AB 上有一点C,且BC=8,M 是线段AC 的中点,则AM的长为________.8. 一跳蚤在一直线上从O 点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,……,依此规律跳下去,当它跳第100次落下时,落点处离O 点的距离是____个单位.三、解答题9. 在一条直线上取两上点A 、B ,共得几条线段?在一条直线上取三个点A 、B 、C,共得几条线段?在一条直线上取A 、B 、C 、D 四个点时,共得多少条线段? 在一条直线上取n 个点时,共可得多少条线段?10.通过阅读所得的启发来回答问题(阅读中的结论可直截了当用)阅读:在直线上有个不同的点,则此图中共有多少条线段? 分析:通过画图尝试,得表格:问题:(1)某学校初三年级共有8个班进行辩论赛,规定进行单循环赛(每两班之间赛一场),那么该初三年级的辩论赛共有多少场次?(2)有一辆客车,往返两地,中途停靠三个车站,问有多少种不同的票价?要预备多少种车票?6=0+1+2+3 直线上点的个数 共有线段条数图形两者关系2 3 4 5 1 3 6 10 ......n ......n(n-1)/2=0+1+2+……+(n-1) n(n-1)/210=0+1+2+3+4 3=0+1+2 1=0+1A 1 A 2A 1 A 3 A 1 A 2 A 2 A2 A3 A 1 A 3 A 3 A 1 A4 A 2 A 5A 4 A 4 A n …答案:1.C 2.C 3.D 4.A 5.D6.67.58.509.在一条直线上2个点时1条线段;在一条直线上3个点时有2+1=3条线段;在一条直线上4个点时有3+2+1=6条线段;在一条直线上n 个点时有(n-1)+(n-2)+……+3+2+1=12()n n-条线段.10.(1)取n=8,竞赛场次为:881282()-=.(2)5个站点共有551102()-=种不同票价,每两站之间要预备往返两种车票,因此需要预备20种不同的车票.。
直线射线线段练习题
一.填空
1.线段有()个端点,直线有()个端点,射线有()
端点。
2.直线和射线都()(填“可以”或“不可以”)无限延伸,因此
以,直线和射线都()(填“可以”或“不可以”)度量长度。
二.选择
1.经过一点可以画()条直线。
A.1
B.2 C无数
2.经过两点可以画()直线,可以画()射线,可以画()线段。
A.1
B.2 C无数
3.小明画了一条8厘米的()
A.直线 B.射线 C.线段
4.把线段的一端无限延长,就得到一条( ), 把线段的两端无限延长,就得到一条( ) A.直线 B.射线 C.线段
三判断.
1.一条直线1000米.( )
2.手电筒我的射了出的光线可以看作射线.( )
3.直线比射线长. ( )
4.直线有两个端点. ( )
四.操作题.
1.画一条6厘米长的线段.
2.经过A点画两条射线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题
1.延长线段AB到C,下列说法正确的是()
A.点C在线段AB上B.点C在直线AB上
C.点C不在直线AB上D.点C在直线BA的延长线上2.如图,图中共有线段的条数是()
A. 4 B. 5 C. 6 D. 7
3.下列各直线的表示法中,正确的是()
A .直线A B
.
直线AB C
.
直线ab D
.
直线Ab
4.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()
A.两点确定一条直线
B.两点之间线段最短
C.垂线段最短
D.在同一平面内,过一点有且只有一条直线与已知直线垂直
5.如图,点A、B、C在一直线上,则图中共有射线()
A. 1条B.2条C.4条D. 6条
6.平面内的三个点A、B、C能确定的直线的条数是()
A .1条B
.
2条C
.
3条D
.
1条或3条
7.观察图形,下列说法正确的个数是()
(1)直线BA和直线AB是同一条直线
(2)射线AC和射线AD是同一条射线
(3)AB+BD>AD
(4)三条直线两两相交时,一定有三个交点.
8.如下图,直线l、射线PQ、线段MN中能相交的是()
A .B
.
C
.
D
.
9.将线段AB延长至C,再将线段AB反向延长至D,则图中共有线段()
条.A.8 B. 7 C. 6 D. 5
10.下列说法中正确的是()
A.画一条3厘米长的射线B.画一条3厘米长的直线
C.画一条5厘米长的线段D.在线段、射线、直线中直线最长
11.下列说法正确的是()
A.过一点P只能作一条直线B.直线AB和直线BA表示同一条直线
C.射线AB和射线BA表示同一条射线D.射线a比直线b短
12.下列说法错误的是()
A.点P为直线AB外一点
B.直线AB不经过点P
C.直线AB与直线BA是同一条直线
D.点P在直线AB上
13.下列说法正确的是()
A.射线OA与OB是同一条射线B.射线OB与AB是同一条射线
C.射线OA与AO是同一条射线D.射线AO与BA是同一条射线
14.往返于A、B两地的客车,中途停三个站,在客车正常营运中,不同的票价
有()A. 10种B. 4种C. 3种D.5种
15.平面内两两相交的6条直线,其交点个数最少为m个,最多为n个,则m+n
等于()A. 12 B. 16 C. 20 D.以上都不对
16.如图所示,关于线段、射线和直线的条数,下列说法正确的是()
A.五条线段,三条射线
B.一条直线,三条线段
C.三条线段,三条射线
D.三条线段,两条射线,一条直线
17.如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜
色.下列图形中,是该几何体的表面展开图的是()
A .1个B
.
2个C
.
3个D
.
4个
18.在立方体六个面上,分别标上“我、爱、郑、州、一、中”,如图是立方体的三种不同摆法,则三种摆法的左侧面上三个字分别是()
A.爱、郑、州B.一、中、州
C.一、我、州D.爱、一、中
19.按右边3×3方格中的规律,在下面4个符号中选择一个填入方格左上方的空格内()
A.B.C.D.
20.各个面都是平面的一个几何体,如果它只有4个顶点,那么这个几何体共有()个平面.A. 3 B. 4 C. 5 D. 6
二.填空题
21.平面内三条直线两两相交,最多有a个交点,最少有b个交点,则a+b=.22.直线上有n个点,我们进行如下操作:在每相邻两点间插入2个点.经过2次这样的操作后,直线上共有个点.(用含n的代数式表示)23.乘火车从A站出发,沿途经过3个车站方可到达B站,那么在A、B两站之间需要安排不同的车票种.
(友情提示:A到B与B到A车票不同.)24.如图,A、B、C三点在同一直线上.
(1)用上述字母表示的不同线段共有条;
(2)用上述字母表示的不同射线共有条.25.过两点最多可以画1条直线;过三点最多可以画3条直线;过四点最多可以画条直线;…;过同一平面上的n
个点最多可以画条直线.
26.一条直线上有5个不同的点,则这条直线上有线段条.27.在已知的线段AB上取10个点(包括A,B两点),这些点把线段AB共分成条线段.
28.以图中的点A、B、C、D、E为端点的线段条数为.
29.如图,两条直线相交只有1个交点,三条直线相交最多有3个交点,四条直线相交最多有6个交点,…,二十条直线相交最多有个交点.
30.直线AB外有C、D两个点,由点A、B、C、D可确定的直线条数是.31.图中的直线表示方法中,正确的是(填序号)
32.如图,该图中不同的线段数共有条.15题
33.如图,下面表述正确的是(填序号)
(1)延长直线AB;(2)直线l在点A上;(3)点B在直线l上;(4)点P是直线AB外一点.
34.6条直线两两相交,最多有个交点,最多将平面分割为
个部分.
35.如图,在线段AB上,画1个点,可得3条线段;画2个不同点,可得6条线段;画3个不同点,可10条线段,…照此规律,画n个不同点,可得
条线段.
36.将一根细木条固定在墙上,只需两个钉子,其依据是.37.开学整理教室时,老师总是先把每一列最前和最后的课桌摆好,然后再依次摆中间的课桌,一会儿一列课桌摆在一条线上,整整齐齐,这是因为.38.要在墙上钉牢一根木条,至少要钉颗钉子,根据是:.39.如图,是一个正方形的平面展开图,若折成正方体后相对面上标注的值相等,则x+y.
三.解答题
40.①如图1直线l上有2个点,则图中有2条可用图中字母表示的射线,有1条线段
;
②如图2直线l上有3个点,则图中有条可用图中字母表示的射线,有条线段;
③如图3直线上有n个点,则图中有条可用图中字母表示的射线,有条线段;
④应用③中发现的规律解决问题:某校七年级共有6个班进行足球比赛,准备进行循环赛(即每两队之间赛一场),预计全部赛完共需场比赛.
41.点A,B,C,D的位置如图,按下列要求画出图形.(1)画直线AB,直线CD,它们相交于点E;
(2)连接AC,连接BD,它们相交于点O;
(3)画射线AD,射线BC,它们交于点F.
42.如图,在平面内有A、B、C三点.
(1)画直线AC,线段BC,射线AB;
(2)在线段BC上任取一点D(不同于B、C),连接线段AD;(3)数数看,此时图中线段共有条.
43.如图,平面上有四个点A、B、C、D,根据下列语句画图.(1)画直线AB、CD交于E点;
(2)画线段AC、BD交于点F;
(3)连接E、F交BC于点G;
(4)连接AD,并将其反向延长;
(5)作射线BC;
(6)取一点P,使P在直线AB上又在直线CD上.
44.如图,已知A、B、C、D四个点.
(1)画直线AB、CD相交于点P;
(2)连接AC和BD并延长AC和BD相交于点Q;
(3)连接AD、BC相交于点O;
(4)以点C为端点的射线有条;
(5)以点C为一个端点的线段有条.
B
A
C D
45.按下列语句画出图形.
①两条线段AB、CD相交于点P;
②点M是直线a外一点,经过点M有一条直线b与直线a相交于点E;
③经过点O的三条直线a、b、c.46.按照要求画图
如图,射线CD的端点C在直线AB上,按照下面的要求画图,并标出相应的字母.
过点P画直线PE,交AB于点E,过点P画射线PF交射线CD于点F,画线段EF.
47.在数轴上点O表示原点,点A表示﹣2,点B表示1,点C表示2,问:(1)数轴上可以看作什么图形?
(2)数轴上原点及原点左边的部分是什么图形?应怎样表示?
(3)射线AB和射线BA有什么不同?
(4)数轴上表示绝对值不大于2的部分是什么图形?这个图形怎样表示?。