三角函数复习教案_整理

合集下载

三角函数复习教案

三角函数复习教案

三角函数复习教案整理第一章:三角函数的基本概念1.1 角的概念复习角度的定义和分类:锐角、直角、钝角、周角。

介绍弧度和度的转换关系。

1.2 正弦函数、余弦函数和正切函数复习正弦函数、余弦函数和正切函数的定义。

解释正弦函数、余弦函数和正切函数的图像和性质。

1.3 特殊角的三角函数值复习30°、45°、60°等特殊角的三角函数值。

第二章:三角函数的图像和性质2.1 正弦函数的图像和性质复习正弦函数的图像和性质:周期性、对称性、奇偶性、最大值和最小值。

2.2 余弦函数的图像和性质复习余弦函数的图像和性质:周期性、对称性、奇偶性、最大值和最小值。

2.3 正切函数的图像和性质复习正切函数的图像和性质:周期性、对称性、奇偶性、最大值和最小值。

第三章:三角函数的运算3.1 三角函数的加减法复习三角函数的加减法运算规则。

3.2 三角函数的乘除法复习三角函数的乘除法运算规则。

3.3 三角函数的复合复习三角函数的复合运算规则,包括正弦函数、余弦函数和正切函数的复合。

第四章:三角函数的应用4.1 三角函数在直角三角形中的应用复习三角函数在直角三角形中的应用,包括正弦定理、余弦定理。

4.2 三角函数在三角形测量中的应用复习三角函数在三角形测量中的应用,包括角度测量、距离测量。

4.3 三角函数在物理学中的应用复习三角函数在物理学中的应用,包括振动、波动、声音等。

第五章:三角函数的进一步研究5.1 三角函数的导数复习三角函数的导数,包括正弦函数、余弦函数和正切函数的导数。

5.2 三角函数的积分复习三角函数的积分,包括正弦函数、余弦函数和正切函数的积分。

5.3 三角函数的限制条件和极端值复习三角函数的限制条件和极端值,包括最大值、最小值、临界点。

第六章:三角恒等式6.1 三角恒等式的基本形式复习基本的三角恒等式,如和差化积、积化和差、倍角公式、半角公式等。

6.2 三角恒等式的证明学习并证明一些基本的三角恒等式,如正弦定理、余弦定理等。

《三角函数》复习教案

《三角函数》复习教案

《三角函数》复习教案【知识网络】学法:1.注重化归思想的运用.如将任意角的三角函数值的问题化归为锐角的三角函数的问题,将不同名的三角函数问题化成同名的三角函数的问题,将不同角的三角函数问题化成同角的三角函数问题等2.注意数形结合思想的运用.如讨论函数性质等问题时,要结合函数图象思考,便易找出解题思路和问题答案.第1课 三角函数的概念【学习目标】理解任意角的概念、弧度的意义. 能正确地进行弧度与角度的换算. 掌握终边相同角的表示方法. 掌握任意角的正弦、余弦、正切的意义.了解余切、正割、余割的定义. 掌握三角函数的符号法则. 【考点梳理】考点一、角的概念与推广1.任意角的概念:正角、负角、零角 2.象限角与轴线角:与α终边相同的角的集合:},2|{Z k k ∈+=απββ三角函数知识框架图第一象限角的集合:{|22,}2k k k Z πβπβπ<<+∈第二象限角的集合:{|22,}2k k k Z πβπβππ+<<+∈第三象限角的集合:3{|22,}2k k k Z πβππβπ+<<+∈ 第四象限角的集合:3{|222,}2k k k Z πβπβππ+<<+∈ 终边在x 轴上的角的集合:{|,}k k Z ββπ=∈ 终边在y 轴上的角的集合:{|,}2k k Z πββπ=+∈终边在坐标轴上的角的集合:{|,}2k k Z πββ=∈ 要点诠释:要熟悉任意角的概念,要注意角的集合表现形式不是唯一的,终边相同的角不一定相等,但相等的角终边一定相同,还要注意区间角与象限角及轴线角的区别与联系. 考点二、弧度制1.弧长公式与扇形面积公式: 弧长l r α=⋅,扇形面积21122S lr r α==扇形(其中r 是圆的半径,α是弧所对圆心角的弧度数).2.角度制与弧度制的换算:180π=;18010.017451()57.305718'180rad rad rad ππ=≈=≈=;要点诠释:要熟悉弧度制与角度制的互化以及在弧度制下的有关公式. 考点三、任意角的三角函数1. 定义:在角α上的终边上任取一点(,)P x y ,记r OP ==则sin y r α=, cos x r α=, tan y x α=,cot x y α=,sec rxα=,csc r y α=.2. 三角函数线:如图,单位圆中的有向线段MP ,OM ,AT 分别叫做α的正弦线,余弦线,正切线.3. 三角函数的定义域:sin y α=,cos y α=的定义域是R α∈;tan y α=,sec y α=的定义域是{|,}2k k Z πααπ≠+∈;cot y α=,csc y α=的定义域是{|,}k k Z ααπ≠∈.4. 三角函数值在各个象限内的符号:要点诠释:①三角函数的定义是本章内容的基础和出发点,正确理解了三角函数的定义,则三角函数的定义域、三角函数在各个象限内的符号以及同角三角函数之间的关系便可以得到牢固掌握.利用定义求三角函数值时,也可以自觉地根据角的终边所在象限进行分情况讨论.②三角函数线是三角函数的几何表示,是处理有关三角问题的重要工具,它能把某些繁杂的三角问题形象直观地表达出来.有关三角函数值的大小比较问题、简单三角不等式及简单三角方程的解集的确定等问题的解决常结合使用三角函数线,这是数形结合思想在三角中的具体运用. 【典型例题】类型一、角的相关概念 例1.已知θ是第三象限角,求角2θ的终边所处的位置. 【答案】2θ是第二或第四象限角 【解析】方法一:∵θ是第三象限角,即322,2k k k Z πππθπ+<<+∈, ∴3,224k k k Z πθπππ+<<+∈,当2k n =时,322,224n n n Z πθπππ+<<+∈, ∴2θ是第二象限角, 当21k n =+时,3722,224n n n Z πθπππ+<<+∈, ∴2θ是第四象限角, ∴2θ是第二或第四象限角. 方法二:由图知:2θ的终边落在二,四象限. 【总结升华】(1)要熟练掌握象限角的表示方法.本题容易误认为2θ是第二象限角,其错误原因为认为第三象限角的范围是3(,)2ππ.解决本题的关键就是为了凑出2π的整数倍,需要对整数进行分类.(2)确定“分角”所在象限的方法:若θ是第k (1、2、3、4)象限的角,利用单位圆判断nθ,(*n N ∈)是第几象限角的方法:把单位圆上每个象限的圆弧n 等份,并从x 正半轴开始,沿逆时针方向依次在每个区域标上1、2、3、4,再循环,直到填满为止,则有标号k 的区域就是角nθ (*n N ∈)终边所在的范围。

三角函数教案优秀3篇

三角函数教案优秀3篇

三角函数教案优秀3篇角函数教学设计篇一教材分析:本章包括锐角三角函数的概念(主要是正弦、余弦和正切的概念),以及利用锐角三角函数解直角三角形等内容。

锐角三角函数为解直角三角形提供了有效的工具,解直角三角形在实际当中有着广泛的应用,这也为锐角三角函数提供了与实际联系的机会。

研究锐角三角函数的直接基础是相似三角形的一些结论,解直角三角形主要依赖锐角三角函数和勾股定理等内容,因此相似三角形和勾股定理等是学习本章的直接基础。

本章内容与已学#39;相似三角形#39;#39;勾股定理#39;等内容联系紧密,并为高中数学中三角函数等知识的学习作好准备。

学情分析:锐角三角函数的概念既是本章的难点,也是学习本章的关键。

难点在于,锐角三角函数的概念反映了角度与数值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号sinA、cosA、tanA表示函数等,学生过去没有接触过,因此对学生来讲有一定的难度。

至于关键,因为只有正确掌握了锐角三角函数的概念,才能真正理解直角三角形中边、角之间的关系,从而才能利用这些关系解直角三角形。

第一课时教学目标:知识与技能:1、通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。

2、能根据正弦概念正确进行计算3、经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力。

过程与方法:通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力。

情感态度与价值观:引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯。

重难点:1.重点:理解认识正弦(sinA)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实。

2.难点与关键:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实。

三角函数复习教案_整理

三角函数复习教案_整理

三角函数复习教案_整理三角函数是高中数学中的重要内容,也是后续学习高等数学、物理等学科的基础。

为了帮助学生复习和巩固三角函数的相关知识,特别整理了以下的教案。

一、知识概述1.三角函数的定义及性质:正弦函数、余弦函数、正切函数、余切函数等。

2.三角函数的周期性及相关计算公式。

3.三角函数的图像与性质。

4.三角函数的运算:和差化积、积化和差、倍角公式、半角公式等。

二、教学目标1.熟练掌握三角函数的定义及性质。

2.能够准确绘制三角函数的图像。

3.能够灵活运用三角函数的运算公式。

三、教学重点1.熟练掌握三角函数的图像与性质。

2.掌握三角函数的运算公式及其应用。

四、教学难点能够灵活运用三角函数的运算公式,解决实际问题。

五、教学方法1.板书法:结合图表将三角函数的定义、性质及运算公式进行清晰明了的呈现。

2.演示法:通过具体的例子和解题步骤,引导学生掌握运算的方法和技巧。

3.练习法:通过大量的练习,让学生熟练运用所学的知识和方法。

六、教学内容1.三角函数的定义及性质:(1)正弦函数的定义及性质。

(2)余弦函数的定义及性质。

(3)正切函数的定义及性质。

(4)余切函数的定义及性质。

2.三角函数的周期性及相关计算公式:(1)正弦函数的周期及其计算公式。

(2)余弦函数的周期及其计算公式。

(3)正切函数的周期及其计算公式。

3.三角函数的图像与性质:(1)正弦函数的图像及性质。

(2)余弦函数的图像及性质。

(3)正切函数的图像及性质。

4.三角函数的运算:(1)和差化积公式的推导与应用。

(2)积化和差公式的推导与应用。

(3)倍角公式的推导与应用。

(4)半角公式的推导与应用。

七、教学步骤1.引入新知识,复习前置知识。

2.讲解三角函数的定义及性质。

3.探讨三角函数的周期性及计算公式。

4.分析讨论三角函数的图像及性质。

5.结合具体例子,讲解三角函数的运算公式的推导与应用。

6.练习三角函数的计算与运用。

7.总结与复习。

八、教学辅助资料1.板书及教学用具:教师应准备白板、黑板、彩笔、粉笔等教学用具,及时记录关键公式和重点内容。

三角函数的图像与性质复习教案

三角函数的图像与性质复习教案

三角函数的图像与性质复习教案第一章:引言1.1 三角函数的概念复习三角函数的定义和基本概念,如正弦、余弦、正切等。

引导学生理解三角函数的周期性和奇偶性。

1.2 三角函数的图像复习三角函数的图像特点,如正弦函数的波浪形状、余弦函数的波动形状等。

引导学生理解图像的平移、伸缩等变换。

第二章:正弦函数的图像与性质2.1 正弦函数的图像复习正弦函数的图像特点,如周期性、振幅等。

引导学生理解图像的平移、伸缩等变换。

2.2 正弦函数的性质复习正弦函数的性质,如单调性、奇偶性等。

引导学生理解函数的极值和拐点。

第三章:余弦函数的图像与性质3.1 余弦函数的图像复习余弦函数的图像特点,如周期性、振幅等。

引导学生理解图像的平移、伸缩等变换。

3.2 余弦函数的性质复习余弦函数的性质,如单调性、奇偶性等。

引导学生理解函数的极值和拐点。

第四章:正切函数的图像与性质4.1 正切函数的图像复习正切函数的图像特点,如周期性、振幅等。

引导学生理解图像的平移、伸缩等变换。

4.2 正切函数的性质复习正切函数的性质,如单调性、奇偶性等。

引导学生理解函数的极值和拐点。

第五章:三角函数的图像与性质的综合应用5.1 三角函数的图像与性质的综合应用引导学生理解三角函数图像与性质之间的关系,如周期性、奇偶性等。

举例讲解如何利用三角函数的图像与性质解决实际问题。

第六章:三角函数图像的变换6.1 图像的平移讲解如何通过平移变换得到不同三角函数的图像。

引导学生理解平移的方向和距离对图像的影响。

6.2 图像的伸缩讲解如何通过伸缩变换得到不同三角函数的图像。

引导学生理解伸缩的比例和对称性对图像的影响。

第七章:三角函数的周期性和对称性7.1 周期性复习三角函数的周期性,包括基本周期和周期函数的性质。

引导学生理解周期性在图像上的表现。

7.2 对称性复习三角函数的对称性,包括奇偶性和对称轴。

引导学生理解对称性在图像上的表现。

第八章:三角函数的极值和拐点8.1 极值讲解如何确定三角函数的极大值和极小值。

三角函数复习教案_整理

三角函数复习教案_整理

《三角函数》复习教案【知识网络】考试注意:理解任意角的概念、弧度的意义.能正确地进行弧度与角度的换算.掌握终边相同角的表示方法.掌握任意角的正弦、余弦、正切的意义.了解余切、正割、余割的定义.掌握三角函数的符号法则.知识典例:1.角α的终边在第一、三象限的角平分线上,角α的集合可写成.2.已知角α的余弦线是单位长度的有向线段,那么角α的终边( ) A.在x轴上B.在y轴上C.在直线y=x上D.在直线y=-x上.3.已知角α的终边过点p(-5,12),则cosα} ,tanα= .4.tan(-3)cot5cos8的符号为.5.若cosθtanθ>0,则θ是( )A.第一象限角B.第二象限角C.第一、二象限角 D.第二、三象限角【讲练平台】例1 已知角的终边上一点P(- 3 ,m),且sinθ= 24m,求cosθ与tanθ的值.分析已知角的终边上点的坐标,求角的三角函数值,应联想到运用三角函数的定义解题,由P的坐标可知,需求出m的值,从而应寻求m的方程.解由题意知r= 3+m2,则sinθ= mr=m3+m2.又∵sinθ= 24m,∴m3+m2=24m.∴m=0,m=± 5 .当m=0时,cosθ= -1 , tanθ=0 ;当m= 5 时,cosθ= -64, tanθ= -153;当m= - 5 时,cosθ= -64,tanθ=153.点评已知一个角的终边上一点的坐标,求其三角函数值,往往运用定义法(三角函数的定义)解决.例2 已知集合E={θ|cosθ<sinθ,0≤θ≤2π},F={θ|tanθ<sinθ},求集合E∩F.分析对于三角不等式,可运用三角函数线解之.解 E={θ|π4<θ<5π4}, F ={θ|π2<θ<π,或3π2<θ<2π},∴E∩F={θ|π2<θ<π}.例3 设θ是第二象限角,且满足|sin θ2|= -sinθ2,θ2是哪个象限的角?解∵θ是第二象限角,∴2kπ+ π2<θ<2kπ+3π2,k∈Z.∴kπ+ π4<θ2<kπ+3π4,k∈Z .∴θ2是第一象限或第三象限角.①又∵|sin θ2|= -sinθ2,∴sinθ2<0. ∴θ2是第三、第四象限的角.②由①、②知,θ2是第三象限角.点评已知θ所在的象限,求θ2或2θ等所在的象限,要运用终边相同的角的表示法来表示,否则易出错.【知能集成】注意运用终边相同的角的表示方法表示有关象限角等;已知角的终边上一点的坐标,求三角函数值往往运用定义法;注意运用三角函数线解决有关三角不等式.【训练反馈】1.已知α是钝角,那么α2是()A.第一象限角B.第二象限角C.第一与第二象限角D.不小于直角的正角2.角α的终边过点P(-4k,3k)(k<0},则cosα的值是()A.35B.45C.-35D.-453.已知点P(sinα-cosα,tanα)在第一象限,则在[0,2π]内,α的取值范围是( )A.( π2,3π4)∪(π,5π4) B.(π4,π2)∪(π,5π4)C.( π2,3π4)∪(5π4,3π2) D.(π4,π2)∪(3π4,π)4.若sinx= -35,cosx =45,则角2x的终边位置在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限5.若4π<α<6π,且α与-2π3终边相同,则α= .6.角α终边在第三象限,则角2α终边在象限.7.已知|tanx|=-tanx,则角x的集合为.8.如果θ是第三象限角,则cos(sinθ)·sin(sinθ)的符号为什么?9.已知扇形AOB的周长是6cm,该扇形中心角是1弧度,求该扇形面积.第2课同角三角函数的关系及诱导公式【考点指津】掌握同角三角函数的基本关系式:sin 2α+cos2α=1,sinαcosα=tanα,tanαcotα=1,掌握正弦、余弦的诱导公式.能运用化归思想(即将含有较多三角函数名称问题化成含有较少三角函数名称问题)解题.【知识在线】1.sin2150°+sin2135°+2sin210°+cos2225°的值是( )A.14B.34C.114D.942.已知sin(π+α)=-35,则( )A.cosα= 45B.tanα=34C.cosα= -45D.sin(π-α)=353.已tanα=3,4sinα-2cosα5cosα+3sinα的值为.4.化简1+2sin(π-2)cos(π+2) = .5.已知θ是第三象限角,且sin4θ+cos4θ= 59,那么sin2θ等于( )A.2 23B.-2 23C.23D.-23【讲练平台】例1 化简sin(2π-α)tan(π+α)cot(-α-π)cos(π-α)tan(3π-α).分析式中含有较多角和较多三角函数名称,若能减少它们的个数,则式子可望简化.解原式= (-sinα)tanα[-cot(α+π) ](-cosα)tan(π-α)=(-sinα)tanα(-cotα)(-cosα)(-tanα)= sinα·cosαsinαcosα=1 .点评将不同角化同角,不同名的三角函数化成同名的三角函数是三角变换中常用的方法.例2 若sinθcosθ= 18,θ∈(π4,π2),求cosθ-sinθ的值.分析已知式为sinθ、cosθ的二次式,欲求式为sinθ、cosθ的一次式,为了运用条件,须将cosθ-sinθ进行平方.解 (cosθ-sinθ)2=cos2θ+sin2θ-2sinθcosθ=1-14=34.∵θ∈(π4,π2),∴ cosθ<sinθ.∴cosθ-sinθ= -32.变式1 条件同例,求cosθ+sinθ的值.变式2 已知cosθ-sinθ= -32,求sinθcosθ,sinθ+cosθ的值.点评 sinθcosθ,cosθ+sinθ,cosθ-sinθ三者关系紧密,由其中之一,可求其余之二.例3 已知tanθ=3.求cos2θ+sinθcosθ的值.分析因为cos2θ+sinθcosθ是关于sinθ、cosθ的二次齐次式,所以可转化成tanθ的式子.解原式=cos2θ+sinθcosθ= cos2θ+sinθcosθcos2θ+sin2θ=1+tanθ1+tan2θ=25.点评 1.关于cosθ、sinθ的齐次式可转化成tanθ的式子.2.注意1的作用:1=sin 2θ+cos2θ等.【知能集成】1.在三角式的化简,求值等三角恒等变换中,要注意将不同名的三角函数化成同名的三角函数.2.注意1的作用:如1=sin 2θ+cos2θ.3.要注意观察式子特征,关于sinθ、cosθ的齐次式可转化成关于tanθ的式子.4.运用诱导公式,可将任意角的问题转化成锐角的问题.【训练反馈】1.sin600°的值是()A.12B.-12C.32D.-322.sin(π4+α)sin(π4-α)的化简结果为()A.cos2αB.12cos2αC.sin2αD.12sin2α3.已知sinx+cosx=15,x∈[0,π],则tanx的值是()A.-34B.-43C.±43D.-34或-434.已知tanα=-13,则12sinαcosα+cos2α= .5.1-2sin10°cos10°cos10°-1-cos2170°的值为.6.证明1+2sinαcosαcos2α-sin2α=1+ tanα1-tanα.7.已知2sinθ+cosθsinθ-3cosθ=-5,求3cos2θ+4sin2θ的值.8.已知锐角α、β、γ满足sinα+sinγ=sinβ,cosα-cosγ=cosβ,求α-β的值.第3课两角和与两角差的三角函数(一)【考点指津】掌握两角和与两角差的正弦、余弦、正切公式,掌握二倍角的正弦、余弦、正切公式,能运用化归思想(将不同角化成同角等)解题.【知识在线】1.cos105°的值为 ( )A . 6 + 2 4B . 6 - 2 4C . 2 - 6 4D . - 6 - 2 42.对于任何α、β∈(0,π2),sin(α+β)与sin α+sin β的大小关系是 ( ) A .sin(α+β)>sin α+sin β B .sin(α+β)<sin α+sin βC .sin(α+β)=sin α+sin βD .要以α、β的具体值而定3.已知π<θ<3π2,sin2θ=a ,则sin θ+cos θ等于 ( ) A . a+1 B .- a+1 C . a 2+1 D .±a 2+1 4.已知tan α=13,tan β=13,则cot(α+2β)= . 5.已知tanx=12,则cos2x= . 【讲练平台】例1 已知sin α-sin β=- 13 ,cos α-cos β=12,求cos(α-β)的值 . 分析 由于cos(α-β)=cos αcos β+sin αsin β的右边是关于sin α、cos α、sin β、cos β的二次式,而已知条件是关于sin α、sin β、cos α、cos β的一次式,所以将已知式两边平方.解 ∵sin α-sin β=-13, ① cos α-cos β= 12, ②①2 +②2,得2-2cos(α-β)= 1336 .∴cos(α-β)= 72 59.点评审题中要善于寻找已知和欲求的差异,设法消除差异.例2 求2cos10°-sin20°cos20°的值.分析式中含有两个角,故需先化简.注意到10°=30°-20°,由于30°的三角函数值已知,则可将两个角化成一个角.解∵10°=30°-20°,∴原式=2cos(30°-20°)-sin20°cos20°= 2(cos30°cos20°+sin30°sin20°)-sin20°cos20°=3 cos30°cos20°= 3 .点评化异角为同角,是三角变换中常用的方法.例3 已知:sin(α+β)=-2sinβ.求证:tanα=3tan(α+β).分析已知式中含有角2α+β和β,而欲求式中含有角α和α+β,所以要设法将已知式中的角转化成欲求式中的角.解∵2α+β=(α+β)+α,β=(α+β)-α,∴sin[(α+β)+α]=-2sin[(α+β)-α].∴sin(α+β)cosα+cos(α+β)sinα=-2sin(α+β)cosα+2cos(α+β)sinα.若cos(α+β)≠0 ,cosα≠0,则3tan(α+β)=tanα.点评审题中要仔细分析角与角之间的关系,善于运用整体思想解题,此题中将α+β看成一个整体【知能集成】审题中,要善于观察已知式和欲求式的差异,注意角之间的关系;整体思想是三角变换中常用的思想.【训练反馈】1.已知0<α<π2<β<π,sinα=35,cos(α+β)=-45,则sinβ等于()A.0 B.0或2425C.2425D.0或-24252.sin7°+cos15°sin8°cos7°-sin15°sin8°的值等于()A.2+ 3 B.2+ 32C.2- 3 D.2- 323.△ABC中,3sinA+4cosB=6,4sinB+3cosA=1,则∠C的大小为()A.π6B.5π6C.π6或5π6D.π3或2π34.若α是锐角,且sin(α-π6)=13,则cosα的值是.5.cos π7cos2π7cos3π7= .6.已知tanθ=12,tanφ=13,且θ、φ都是锐角.求证:θ+φ=45°.7.已知cos(α-β)=-45,cos(α+β)=45,且(α-β)∈(π2,π),α+β∈(3π2,2π),求cos2α、cos2β的值.8.已知sin(α+β)= 12,且sin(π+α-β)=13,求tanαtanβ.第4课两角和与两角差的三角函数(二)【考点指津】掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式;能灵活运用和角、差角、倍角公式解题.【知识在线】求下列各式的值1.cos200°cos80°+cos110°cos10°= .2.12(cos15°+ 3 sin15°)= .3.化简1+2cos2θ-cos2θ= .4.cos(20°+x)cos(25°-x)-cos(70°-x)sin(25°-x)= .5.11-tanθ-11+tanθ= .【讲练平台】例1 求下列各式的值(1)tan10°+tan50°+ 3 tan10°tan50°;(2) ( 3 tan12°-3)csc12°4cos 212°-2.(1)解原式=tan(10°+50°)(1-tan10°tan50°)+ 3 tan10°tan50°= 3 .(2)分析式中含有多个函数名称,故需减少函数名称的个数,进行切割化弦.解原式= ( 3 ·sin12°cos12°-3)1sin12°2 cos24°=︒︒-︒24cos212sin312cos3=︒︒-︒=︒︒︒︒-︒48sin 21)12cos 2312sin 21(3224cos 12cos 12sin 212cos 312sin 3 =.3448sin )6012sin(34-=︒︒-︒ 点评 (1)要注意公式的变形运用和逆向运用,注意公式tanA+tanB=tan(A+B)(1-tanAtanB ),asinx+bsinx=22b a +sin(x+φ)的运用;(2)在三角变换中,切割化弦是常用的变换方法.例2 求证1+sin4θ-cos4θ2 tan θ = 1+sin4θ+cos4θ 1-tan 2θ. 分析 三角恒等式的证明可从一边开始,证得它等于另一边;也可以分别从两边开始,证得都等于同一个式子;还可以先证得另一等式,从而推出需要证明的等式.由欲证的等式可知,可先证等式1+sin4θ-cos4θ 1+sin4θ+cos4θ =2tan θ 1-tan 2θ,此式的右边等于tan2θ,而此式的左边出现了“1-cos4θ”和“1+cos4θ”,分别运用升幂公式可出现角2θ,sin4θ用倍角公式可出现角2θ,从而等式可望得证.证略点评 注意倍角公式cos2α=2cos 2α-1,cos2α=1-2sin 2α的变形公式:①升幂公式1+cos2α=2cos 2α,1-cos2α=2sin 2α,②降幂公式sin 2α=1-cos2α2 ,cos 2α= 1+cos2α2的运用;三角恒等式证明的方法:从一边推得另一边;左右归一,先证其等价等于等式;分析法等.例3 已知cos(π4+x)= 35,17π12<x < 7π4,求sin2x +sin2xtanx 1-tanx的值.解 原式= sin2x (1+tanx ) 1-tanx =sin2x ×tan π4+tanx 1-tan π4tanx =sin2xtan (π4+x ) = -cos [2(x+π4)]tan(x+π4)= -[2cos 2(x+ )-1]tan (π4+x ) ∵17π12<x < 7π4, ∴ 5π3<x+π4<2π. ∴sin(π4+x) = -45 ,∴tan (π4+x )=- 43. ∴原式 = - 2875. 点评 (1)注意两角和公式的逆用;(2)注意特殊角与其三角函数值的关系,如1=tan π4等;(3)注意化同角,将所求式中的角x 转化成已知条件中的角x+ π4. 【知能集成】在三角变换中,要注意三角公式的逆用和变形运用,特别要注意如下公式: tanA+tanB=tan(A+B)[1-tanAtanB ]; asinx+bcosx=22b a sin(x+φ)及升幂、降幂公式的运用.【训练反馈】1.cos75°+cos15°的值等于 ( )A . 6 2B - 6 2C . - 2 2D . 2 22.a= 2 2(sin17°+cos17°),b=2cos 213°-1,c= 2 2,则 ( ) A .c <a <b B . b <c <a C . a <b <c D . b <a <c3.化简1+sin2θ-cos2θ1+sin2θ+cos2θ= .4.化简sin(2α+β)-2sinαcos(α+β)= .5.在△ABC中,已知A、B、C成等差数列,则tan A2+tanC2+ 3 tanA2tanC2的值为.6.化简sin2A+sin2B+2sinAsinBcos(A+B).7 化简sin50°(1+ 3 tan10°).8 已知sin(α+β)=1,求证:sin(2α+β)+sin(2α+3β)=0.第5课三角函数的图象与性质(一)【考点指津】了解正弦函数、余弦函数、正切函数的图象和性质,能运用数形结合的思想解决问题,能讨论较复杂的三角函数的性质.【知识在线】1.若 3 +2cosx<0,则x的范围是.2.下列各区间,使函数y=sin(x+π)的单调递增的区间是()A.[π2,π] B.[0,π4]C.[-π,0]D.[π4,π2]3.下列函数中,周期为π2的偶函数是()A.y=sin4x B.y=cos22x-sin22x C.y=tan2x D.y=cos2x4.判断下列函数的奇偶性(1)y=xsinx+x 2cos2x 是 函数;(2)y=|sin2x |-xcotx 是 函数;(3)y=sin(7π2+3x)是 函数. 5.函数f(x)=cos(3x+φ)是奇函数,则φ的值为 .【讲练平台】例1 (1)函数y=x x sin 21)tan 1lg(--的定义域为(2)若α、β为锐角,sin α<cos β,则α、β满足 (C )A .α>βB .α<βC .α+β<π2 D . α+β>π2 分析 (1)函数的定义域为⎩⎨⎧>>0.2sinx -10,tanx -1 (*) 的解集,由于y=tanx 的最小正周期为π,y=sinx 的最小正周期为2π, 所以原函数的周期为2π,应结合三角函数y=tanx 和y=sinx 的图象先求出(-π2, 3π2)上满足(*)的x 的范围,再据周期性易得所求定义域为{x |2k π-π2<x <2k π+π6 ,或2k π+ 5π6< x <2k π+5π4,k ∈Z} . 分析(2)sin α、cos β不同名,故将不同名函数转化成同名函数, cos β转化成sin(π2 -β),运用y=sinx 在[0,π2]的单调性,便知答案为C . 点评 (1)讨论周期函数的问题,可先讨论一个周期内的情况,然后将其推广;(2)解三角不等式,要注意三角函数图象的运用;(3)注意运用三角函数的单调性比较三角函数值的大小.例2 判断下列函数的奇偶性: (1)y= x x x cos 1cos sin +-; (2)y=.cos sin 1cos sin 1xx x x +--+ 分析 讨论函数的奇偶性,需首先考虑函数的定义域是否关于原点对称,然后考f(-x)f(x)或-f(x) .解 (1)定义域关于原点对称,分子上为奇函数的差,又因为1+cosx=2cos 2 x 2,所以分母为偶函数,所以原函数是奇函数. (2)定义域不关于原点对称(如x=-π2,但x ≠π2),故不是奇函数,也不是偶函数.点评 将函数式化简变形,有利于判断函数的奇偶性.例3 求下列函数的最小正周期:(1)y=sin(2x -π6)sin(2x+ π3) ;(2)y= .)32cos(2cos )32sin(2sin ππ++++x x x x 分析 对形如y=Asin(ωx+φ)、y=Acos(ωx+φ)和y=Atan(ωx+φ)的函数,易求出其周期,所以需将原函数式进行化简.解 (1)y=sin(2x -π6)sin(2x+ π2-π6)= 12sin(4x -π3), 所以最小正周期为2π4 = π2. (2)y=23)2(sin 21)2(cos 2cos 23)2(cos 21)2(sin 2sin ⨯-⨯+⨯+⨯+x x x x x x =x x x x 2sin 232cos 232cos 232sin 23-+=).62tan(2tan 331332tan 2tan 312tan 3π+=-+=-+x x x x x ∴是小正周期为π2. 点评 求复杂函数的周期,往往需先化简,其化简的目标是转化成y=Asin(ωx+φ)+k 或y=Acos(ωx+φ) +k 或y=Atan(ωx+φ) +k 的形式(其中A 、ω、φ、k 为常数,ω≠0).例4 已知函数f(x)=5sinxcosx -53cos 2x+235 (x ∈R) . (1)求f(x)的单调增区间;(2)求f(x)图象的对称轴、对称中心.分析 函数表达式较复杂,需先化简.解 f(x)= 52sin2x -53×1+cos2x 2+235 =5sin(2x -π3). (1)由2k π-π2≤2x -π3≤2k π+π2,得[k π-π12 ,k π+5π12](k ∈Z )为f(x)的单调增区间.(2)令2x - π3=k π+π2,得x= k 2π+5π12 (k ∈Z ),则x= k 2π+5π12 (k ∈Z )为函数y=f(x)图象的对称轴所在直线的方程,令2x -π3 =k π,得x=k 2π+π6(k ∈Z ),∴ y=f(x)图象的对称中心为点(k 2π+π6,0)(k ∈Z ). 点评 研究三角函数的性质,往往需先化简,以化成一个三角函数为目标;讨论y=Asin(ωx+φ)(ω>0)的单调区间,应将ωx+φ看成一个整体,设为t,从而归结为讨论y=Asint的单调性.【知能集成】讨论较复杂的三角函数的性质,往往需要将原函数式进行化简,其目标为转化成同一个角的同名三角函数问题.讨论三角函数的单调性,解三角不等式,要注意数形结合思想的运用.注意函数性质在解题中的运用:若一个函数为周期函数,则讨论其有关问题,可先研究在一个周期内的情形,然后再进行推广;若要比较两个角的三角函数值的大小,可考虑运用三角函数的单调性加以解决.【训练反馈】1.函数y=lg(2cosx-1)的定义域为()A.{x|-π3<x<π3} B.{x|-π6<x<π6}C.{x|2kπ-π3<x<2kπ+π3,k∈Z} D.{x|2kπ-π6<x<2kπ+π6,k∈Z}2.如果α、β∈(π2,π),且tanα<cotβ,那么必有()A.α<βB.β<αC.α+β<3π2D.α+β>3π23.若f(x)sinx是周期为π的奇函数,则f(x)可以是()A.sinx B.cosx C.sin2x D.cos2x 4.下列命题中正确的是()A.若α、β是第一象限角,且α>β,且sinα>sinβB.函数y=sinxcotx的单调递增区间是(2kπ-π2,2kπ+π2),k∈ZC.函数y=1-cos2xsin2x的最小正周期是2πD.函数y=sinxcos2φ-cosxsin2φ的图象关于y轴对称,则φ=kπ2+π4,k∈Z5.函数y=sin x2+cosx2在(-2π,2π)内的递增区间是.6.y=sin6x+cos6x的周期为.7.比较下列函数值的大小:(1)sin2,sin3,sin4;(2)cos2θ,sin2θ,tan2θ(π4<θ<π2).8.设f(x)=sin(k5x+π3) (k≠0) .(1)写出f(x)的最大值M,最小值m,以及最小正周期T;(2)试求最小的正整数k,使得当自变量x在任意两个整数间(包括整数本身)变化时,函数f(x)至少有一个M与m.第6课三角函数的图象与性质(二)【考点指津】了解正弦函数、余弦函数、正切函数的图象,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的图象,理解参数A、ω、φ的物理意义.掌握将函数图象进行对称变换、平移变换、伸缩变换.会根据图象提供的信息,求出函数解析式.【知识在线】1.将y=cosx的图象作关于x轴的对称变换,再将所得的图象向下平移1个单位,所得图象对应的函数是()A.y=cosx+1 B.y=cosx-1 C.y=-cosx+1 D.y=-cosx-12.函数f(x)=sin3x图象的对称中心的坐标一定是()A.(12kπ,0),k∈Z B.(13kπ,0),k∈ZC.(14kπ,0),k∈Z D.(kπ,0),k∈Z3.函数y=cos(2x+π2)的图象的一个对称轴方程为()A.x=--π2B.x=-π4C.x=π8D.x=π4.为了得到函数y=4sin(3x+π4),x∈R的图象,只需把函数y=3sin(x+π4)的图象上所有点()A.横坐标伸长到原来的3倍,纵坐标不变B.横坐标缩短到原来的13倍,纵坐标不变C.纵坐标伸长到原来的3倍,横坐标不变D.纵坐标缩短到原来的13倍,横坐标不变.5.要得到y=sin(2x-π3)的图象,只需将y=sin2x的图象()A.向左平移π3个单位B.向右平移π3个单位C.向左平移π6个单位D.向右平移π6个单位【讲练平台】例1 函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<π2)的最小值为-2,其图象相邻的最高点和最低点横坐标差3π,又图象过点(0,1),求这个函数的解析式.分析求函数的解析式,即求A、ω、φ的值.A与最大、最小值有关,易知A=2,ω与周期有关,由图象可知,相邻最高点与最低点横坐标差3π,即T2=3π.得 T=6π,所以ω=13.所以y=2sin(x3+φ),又图象过点(0,1),所以可得关于φ的等式,从而可将φ求出,易得解析式为y=2sin(x 3+π6).解略点评 y=Asin(ωx+φ)中的A 可由图象的最高点、最低点的纵坐标的确定,ω由周期的大小确定,φ的确定一般采用待定系数法,即找图像上特殊点坐标代入方程求解,也可由φ的几何意义(图象的左右平移的情况)等确定(请看下例). 例2 右图为某三角函数图像的一段(1)试用y=Asin (ωx+φ)(2)求这个函数关于直线x=2π解:(1)T= 13π3- π3=4π.∴ω=2πT = 12.又A=3,由图象可知 所给曲线是由y=3sin x 2沿x 轴向右平移 π3而得到的.∴解析式为 y=3sin 12(x -π3).(2)设(x ,y)为y=3sin(12x -π6)关于直线x=2π对称的图像上的任意一点,则该点关于直线x=2π的对称点应为(4π-x ,y),故与y=3sin(12x -π6)关于直线x=2π对称的函数解析式是y=3sin [12(4π-x)-π6]=-3sin(12x+π6).点评 y=sin(ωx+φ)(ω>0)的图象由y=sinωx的图象向左平移(φ>0)或向右平移(φ<0)|φ|ω个单位.特别要注意不能搞错平移的方向和平移的单位数量.求一个函数的图象关于一条直线对称图象的函数解析式时,要注意解几知识的运用.例3 已知函数y=12cos2x+32sinxcosx+1 (x∈R).(1)当y取得最大值时,求自变量x的集合;(2)该函数图象可由y=sinx(x∈R)的图象经过怎样的平移和伸缩变换得到?解 (1)y= 12·1+cos2x2+32·12sin2x +1=12sin(2x+π6)+54.当2x+π6=2kπ+π2,即x=kπ+π6,k∈Z时,ymax=74.(2)由y=sinx图象左移π6个单位,再将图象上各点横坐标缩短到原来的12(纵坐标不变),其次将图象上各点纵坐标缩短到原来的12(横坐标不变),最后把图象向上平移54个单位即可.思考还有其他变换途径吗?若有,请叙述.点评(1)回答图像的变换时,不能省略“纵坐标不变”、“横坐标不变”等术语.(2)周期变换后的左右平移要注意平移单位的变化.【知能集成】已知三角函数y=Asin(ωx+φ)的图象,欲求其解析式,必须搞清A、ω、φ和图象的哪些因素有关;y=sin ωx 和y=sin(ωx+φ)两图象间平移变换的方向和平移的单位数量极易搞错,解题时要倍加小心. 【训练反馈】1.函数y= 12sin(2x+θ)的图象关于y 轴对称的充要条件是 ( )A .θ=2k π+π2B .θ=k π+π2 C .θ=2k π+π D .θ=k π+π(k ∈Z)2.先将函数y=sin2x 的图象向右平移π3个单位长度,再将所得图象作关于y 轴的对称变换,则所得函数图象对应的解析式为 ( ) A .y=sin(-2x+π3 ) B .y=sin(-2x -π3)C .y=sin(-2x+ 2π3 )D . y=sin(-3.右图是周期为2π的三角函数y=f(x)那么f(x)可以写成() A .sin(1+x)B . sin(-1-x)C .sin(x -1)D . sin(1-x)4.5则该封闭图形面积是 . 6.将y=sin(3x - π6)的图象向(左、右) 平移 个单位可得y=sin(3x+π3)B A CD的图像.7.已知函数y=Asin(ωx+φ),在同一个周期内,当x=π9时取得最大值12,当x=4π9时取得最小值-12,若A>0,ω>0,|φ|<π2,求该函数的解析表达式.8.已知函数y= 3 sinx+cosx,x∈R.(1)当y取得最大值时,求自变量x的取值集合;(2)该函数的图象可由y=sinx(x∈R)的图象经过怎样的平移和伸缩变换得到?9.如图:某地一天从6时到14ωx+φ)+b.(1)求这段时间的最大温差;(2)写出这段曲线的函数解析式.第7课【考点指津】掌握基本三角函数y=sinx和y=cosx的最值,及取得最值的条件;掌握给定区间上三角函数的最值的求法;能运用三角恒等变形,将较复杂的三角函数的最值问题转化成一个角的一个三角函数的最值问题.【知识在线】1.已知(1)cos2x=1.5 ;(2)sinx-cosx=2.5 ;(3)tanx+1tanx=2 ;(4)sin3x=-π4.上述四个等式成立的是()A.(1)(2)B.(2)(4)C.(3)(4)D.(1)(3)2.当x∈R时,函数y=2sin(2x+π12)的最大值为,最小值为,当x∈〔-5π24,π24〕时函数y的最大值为,最小值为.3.函数y=sinx- 3 cosx的最大值为,最小值为.4.函数y=cos2x+sinx+1的值域为.【讲练平台】例1 求函数f(x)=sin 2x+2sinxcosx+3cos2x的最大值,并求出此时x的值.分析由于f(x)的表达式较复杂,需进行化简.解 y=sin2x+cos2x+sin2x+1+cos2x=sin2x+cos2x+2= 2 sin(2x+π4)+2当2x+π4=2kπ+π2,即x=kπ+π8(k∈Z)时,ymax= 2 +2 .点评要熟练掌握y=asinx+bcosx类型的三角函数最值的求法,asinx+bcosx= a2+b2sin(x+φ).例2 若θ∈[-π12,π12],求函数y=cos(π4+θ)+sin2θ的最小值.分析在函数表达式中,含有两个角和两个三角函数名称,若能化成含有一个角和一个三角函数名称的式子,则问题可得到简化.解 y=cos(π4+θ)-cos[2(θ+π4)]=cos(π4+θ)-[2cos2(θ+π4)-1]=-2cos2(θ+π4)+cos(π4+θ)+1 =-2[cos2(θ+π4)-12cos(θ+π4)]+1=-2[cos(θ+π4)-14]2+98.∵θ∈[-π12,π12],∴θ+π4∈[π6,π3].∴12≤cos(θ+π4)≤32,∴y最小值=3 -12.点评(1)三角函数表达式转化成一个角的一个三角函数的形式(即f(sinx)或g(cosx)),是常见的转化目标;(2)形如y=f(sinx)或y=g(cosx)的最值,常运用sinx,cosx的有界性,通过换元转化成y=at2+bt+c在某区间上的最值问题;(3)对于y= Asin(ωx+φ)或y=Acos(ωx+φ)的最值的求法,应先求出t=ωx+φ的值域,然后再由y=Asint和y=Acost的单调性求出最值.例3 试求函数y=sinx+cosx+2sinxcosx+2的最大值和最小值.分析由于sinx+cosx与sinxcosx可以相互表示,所以令sinx+cosx=t,则原三角函数的最值问题转化成y=at2+bt+c在某区间上的最值问题.解令t=sinx+cosx,则y=t+t2+1=(t+12)2+34,且t∈[- 2 , 2 ],∴ymin =34,ymax=3+ 2 .点评注意sinx+cosx与sinxcosx的关系,运用换元法将原三角函数的最值问题转化成y=at2+bt+c在某个区间上的最值问题.【知能集成】较复杂的三角函数的最值问题,往往通过需要恒等变形,转化成形如y=f(sinx)或y=g(cosx)型或y= Asin(ωx+φ)+k型的三角函数的最值问题,运用三角函数的有界性、单调性求三角函数的最值.用换元法解题,特别要注意sinx+tcosx 与sinxcosx 的关系,令sinx+cosx=t ,则sinxcosx=t 2-12.【训练反馈】 1.函数y =12+sinx+cosx的最大值是 ( )A . 2 2 -1B . 2 2 +1C . 1- 2 2D . -1- 2 22.若2α+β=π,则y=cos β-6sin α的最大值和最小值分别为 ( )A .7,5B . 7,-112C . 5,-112 D . 7,-5 3.当0≤x ≤π2时,函数f(x)= sinx+1cosx+1的 ( )A .最大值为2,最小值为12 B .最大值为2,最小值为0 C .最大值为2,最小值不存在 D .最大值不存在,最小值为0 4.已知关于x 的方程cos 2x -sinx+a=0,若0<x <π2时方程有解,则a 的取值范围是( )A .[-1,1]B .(-1,1)C .[-1,0]D .(-∞,-54) 5.要使sin α- 3 cos α=4m -64-m有意义,则m 的取值范围是 . 6.若f(x)=2sin ωx(0<ω<1),在区间[0,π3]上的最大值为 2 ,则ω= . 三、解答题7.y=sinxcosx+sinx+cosx ,求x ∈[0, π3]时函数y 的最大值.8.已知函数f(x)=-sin 2x -asinx+b+1的最大值为0,最小值为-4,若实数a >0,求a,b的值.9.已知函数f(x)=2cos2x+ 3 sin2x+a,若x∈[0,π2],且|f(x)|<2,求a的取值范围.第8课解斜三角形【考点指津】掌握正弦定理、余弦定理,能根据条件,灵活选用正弦定理、余弦定理解斜三角形.能根据确定三角形的条件,三角形中边、角间的大小关系,确定解的个数.能运用解斜三角形的有关知识,解决简单的实际问题.【知识在线】1.△ABC中,若sinAsinB<cosAcosB,则△ABC的形状为.2.在△ABC中,已知c=10,A=45°,C=30°,则b= .3.在△ABC中,已知a= 2 ,b=2,∠B=45°,则∠A等于()A.30°B.60°C.60°或120°D.30°或150°4.若三角形三边之比为3∶5∶7,则这个三角形的最大内角为()A.60°B.90°C.120°D.150°5.货轮在海上以40千米/小时的速度由B到C航行,航向的方位角∠NBC=140°,A处有灯塔,其方位角∠NBA=110°,在C处观测灯塔A的方位角∠N′CA=35°,由B到C需航行半小时,则C到灯塔A的距离是()A.10 6 km B.10 2 kmC.10( 6 - 2 ) km D.10( 6 + 2 )km【讲练平台】例1 在△ABC中,已知a=3,c=3 3 ,∠A=30分析已知两边及一边的对角,求另一边的对角,用正弦定理.注意已知两边和一边的对角所对应的三角形是不确定的,所以要讨论.解∵∠A=30°,a<c,c·sinA=3 32<a,∴此题有两解.sinC=csinAa=33×123=32,∴∠C=60°,或∠C=120°.∴当∠C=60°时,∠B=90°,b=a2+b2 =6.当∠C=120°时,∠B=30°,b=a=3.点评已知两边和一边的对角的三角形是不确定的,解答时要注意讨论.例2 在△ABC中,已知acosA=bcosB,判断△ABC的形状.分析欲判断△ABC的形状,需将已知式变形.式中既含有边也含有角,直接变形难以进行,若将三角函数换成边,则可进行代数变形,或将边换成三角函数,则可进行三角变换.解方法一:由余弦定理,得 a·(b2+c2—a22bc)=b·(a2+c2—b22ac),∴a 2c 2-a 4-b 2c 2+b 4=0 .∴(a2-b2)(c 2-a2-b2)=0 .∴a2-b2=0,或c2-a2-b2=0.∴a=b,或c2=a2+b2.∴△ABC是等腰三角形或直角三角形.方法二:由acosA=bcosB,得 2RsinAcosA=2RsinBcosB.∴sin2A=sin2B.∴2A=2B,或2A=π-2B.∴A=B,或A+B=π2.∴△ABC 为等腰三角形或直角三角形.点评 若已知式中既含有边又含有角,往往运用余弦定理或正弦定理,将角换成边或将边换成角,然后进行代数或三角恒等变换.例3 已知圆内接四边形ABCD 的边长分别为AB=2, BC=6,CD=DA=4,求四边形ABCD 的面积.分析 四边形ABCD 的面积等于△ABD 和△BCD 的 面积之和,由三角形面积公式及∠A+∠C=π可知,只需 求出∠A 即可.所以,只需寻找∠A 的方程.解 连结BD ,则有四边形ABCD 的面积S=S △ABD +S △CDB =12AB ·AD ·sinA+12BC ·CD ·sinC .∵A+C=180°, ∴sinA=sinC . 故S=12(2×4+6×4)sinA=16sinA .在△ABD 中,由余弦定理,得BD 2=AB 2+AD 2-2AB ·ADcosA=20-16cosA . 在△CDB 中,由余弦定理,得BD 2=CB 2+CD 2-2CB ·CD ·cosC=52-48cosC . ∴20-16cosA=52-48cosC .∵cosC=-cosA , ∴64cosA=-32,cosA=- 12.又∵0°<A <180°,∴A=120°. 故S=16sin120°=8 3 . 点评 例4 下端距水平视线a 米,问观察者距墙壁多少米时,才能使· AB CDO观察者上、下视角最大.分析 如图,使观察者上下视角最大,即使∠APB最大,所以需寻找∠APB 的目标函数.由于已知有关边长,所以考虑运用三角函数解之.解 设观察者距墙壁x 米的P 处观察,PC ⊥AB ,AC=b ,BC=a(0<a <b), 则∠APB=θ为视角.y=tan θ=tan(∠APC -∠BPC)= tan ∠APC —tan ∠BPC 1+ tan ∠APC ·tan ∠BPC =xa xb x a x b ⋅+-1 = b —a x+ab x ≤b —a 2ab , 当且仅当x= ab x , 即x=ab 时,y 最大. 由θ∈(0,π2)且y=tan θ在(0,π2)上为增函数,故当且仅当x=ab 时视角最大.点评 注意运用直角三角形中三角函数的定义解决解三角形的有关问题.【知能集成】运用正弦定理或余弦定理,有时将有关式子转化成仅含有边的或仅含有角的式子,然后进行代数或三角恒等变形,问题往往可以得解.在解决较复杂的几何问题时,要注意两个三角形公用边的运用. 【训练反馈】1.△ABC 中,tanA+tanB+ 3 = 3 tanAtanB ,sinAcosA= 3 4,则该三角形是 ()A.等边三角形B.钝角三角形C.直角三角形D.等边三角形或直角三角形2.在△ABC中,已知(b+c)∶(c+a)∶(a+b)=4∶5∶6,则此三角形的最大内角为()A.120°B.150°C.60°D.90°3.若A、B是锐角△ABC的两个内角,则点P(cosB-sinA,sinB-cosA)在()A.第一象限B.第二象限C.第三象限D.第四象限4.在△ABC中,若sinA∶sinB∶sinC=5∶12∶13,则cosA= .5.在△ABC中,3sinA+4cosB=6,4sinB+3cosA=1,则∠C的大小为.6.已知a、b、c是△ABC中∠A、∠B、∠C的对边,S是△ABC的面积,若a=4,b=5,s=5 3 ,求c的长度.7.在△ABC中,sin2A-sin2B+sin2C=sinAsinC8.半圆O的直径为2,AB为半圆上任意一点,以AB点在什么位置时,四边形OACB的面积最大,并求出这个最大面积.【单元检测】单元练习(三角函数)(总分100分,测试时间100分钟)一、选择题:本大题共12小时,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若角α满足sin2α<0,cosα-sinα<0,则α在()A.第一象限B.第二象限C.第三象限D.第四象限2.若f(x)sinx是周期为π的偶函数,则f(x)可以是()A.sin2x B.cosx C.sinx D.cox2x3.若sinx=m-3m+5,cosx=4-2 mm+5,且x∈[π2,π],则m的取值范围为()A.3<m<9 B.m=8 C.m=0 D.m=0或m=8 4.函数f(x)=log13(sin2x+cos2x)的单调递减区间是()A.(kπ-π4,kπ+π8)(k∈Z) B.(kπ-π8,kπ+π8)(k∈Z)C.(kπ+π8,kπ+3π8)(k∈Z) D.(kπ+π8,kπ+5π8)(k∈Z)5.在△ABC中,若2cosBsinA=sinC,则△ABC的形状一定是()A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形6.△ABC中,∠A=60°,b=1,其面积为 3 ,则a+b+csinA+sinB+sinC等于()A.3 3 B.2393C.26 33D.3927.已知函数y= 2 cos(ωx+φ)(0<φ<π2)在一个周期内的函数图象如图,则()A.T=6π5,φ=π4B.T=3π2,φ=π4C.T=3π,φ=-π4D.T=3π,φ=π48.将函数y=f(x)sinx的图象向右平移π4个单位后,再作关于x轴的对称变换,得到函数y=1-2sin2x的图象,则f(x)可以是()A.cosx B.2cosx C.sinx D.2sinx9.函数f(x)=Msin(ωx+φ)(ω>0)在区间[a,b]上是增函数,且f(a)=-M,f(b)=M,则函数g(x)=Mcos(ωx+φ)在区间[a,b]上()A.是增函数B.是减函数C.可以取得最大值M D.可以取得最小值-M10.在△ABC中,∠C>90°,则tanA·tanB与1的关系适合()A.tanA·tanB>1 B.anA·tanB<1 C.tanA·tanB=1 D.不确定11.设θ是第二象限角,则必有( A )A.cot θ2<tanθ2B.tanθ2<cotθ2C.sin θ2>cosθ2D.sinθ2<cosθ212.若sinα>tanα>cotα(-π2<α<π2},则α∈()A.(-π2,-π4)B.(-π4,0)C.(0,π4)D.(π4,π2) 二、填空题:本大题共4小题,每小题3分,共12分,把答案填在题中横线上.13.sin390°+cos120°+sin225°的值是 .14. sin39°-sin21°cos39°-cos21°= . 15.已知sin θ+cos θ= 15,θ∈(0,π),cot θ的值是 . 16.关于函数f(x)=4sin(2x+π3)(x ∈R),有下列命题: (1)y=f(x)的表达式可改写为y=4·cos(2x -π6); (2)y=f(x)是以2π为最小正周期的周期函数;(3)y=f(x)的图象关于点(- π6,0)对称; (4)y=f(x)的图象关于直线x=- π6对称. 其中正确的命题序号是 (注:把你认为正确的命题序号都填上).三、解答题:本大题共6小题,共52分,解答应写出文字说明,证明过程或演算步骤.17.(本小题8分)已知角α的顶点与直角坐标系的原点重合,始边在x 轴的正半轴上,终边经过点P (-1,2),求sin(2α+2π3)的值. 18.(本小题8分)已知sin 22α+sin2αcos α-cos2α=1,α∈(0,π2),求sin α、tan α的值.19.(本小题9分)设f(x)=sin 2x -asin 2x 2,求f(x)的最大值m .20.(本小题9分)已知α、β∈(0,π4),且3sin β=sin(2α+β),4tan α2 =1-tan 2α2,求α+β的值.21.(本小题9分)某港口水的深度y(米)是时间t(0≤t ≤24,单位:时)的函数,记作y=f(t),下面是某日水深的数据:经长期观察,y=f(t)的曲线可以近似地看成函数y=Asin ωt+b 的图象.(1)试根据以上数据,求出函数y=f(t)的近似表达式;(2)一般情况下,船舶航行时,船底离海底的距离为5米或5米以上时认为是安全的,某船吃水深度(船底离水面的距离)为6.5米,试求一天内船舶安全进出港的时间.22.(本小题9分)在△ABC 中,角A 、B 、C 所对边分别为a 、b 、c . 若b 2=ac ,求y= 1+sin2B sinB+cosB 的取值范围. 本章节答案(另附平面向量答案)三角函数答案第1课 三角函数的概念【知识在线】1.{α|α=k π+π4 ,k ∈Z} 2. A 3.- 513 , - 125. 4.+ 5. C【训练反馈】1. A 2. B 3. B 4. D 5.16π36.一、二 7.{2k π+ π2<x <2k π+π或2k π+3π2<x <2k π+2π ,k ∈Z} 8.负 9. 2cm 2.第2课 同角三角函数的关系及诱导公式【知识在线】1. A 2. D 3.574.sin2-cos2 5. A 【训练反馈】1. D 2. B 3. B 4.103 5. 1 6. 略 7.75 8.-π3第3课 两角和与两角差的三角函数(一)【知识在线】1. C 2. B 3. B 4.12 5.35【训练反馈】1. C 2. C 3. A 4.2 6 -16 5. 18 6.略 7. cos2α=-725,cos2β=-1 8. 15第4课 两角和与两角差的三角函数(二) 【知识在线】1.- 12 2. 2 2 3. 2 4. 2 25.tan2θ 【训练反馈】1. A 2. A 3. tan θ 4. sin β 5. 3 6. sin 2(A +B ).7. 1 8 .略.第5课 三角函数的图象与性质(一)【知识在线】1. 2k π+5π6<x <2k π+ 7π6,k ∈Z 2. B 3. B 4.(1)偶 (2)偶 (3)偶 5. k π+ π2,k ∈Z 【训练反馈】1. C 2. C 3. B 4. D 5. [- 3π2 , π) 6. π27.(1)sin4 <sin3< sin2 (2)cos 2θ<sin 2θ<tan 2θ8.(1)M=1,m=-1,T= 2π | k 5 | = 10π | k |(k ≠0). (2)k=32. 第6课 三角函数的图象与性质(二)【知识在线】1. D 2. B 3. B 4. B 5. D【训练反馈】1. B 2. D 3. D 4. A 5. 4 π 6.左,π67. y=12 sin(3x+π6) 8.(1){x |x=π3+2k π,k ∈Z }; (2)将y=sinx的图象向左平移π6,得到函数y=sin(x+π6)的图象,再将所得图象上各点横坐标不变,纵坐标伸长到原来的2倍,得到函数y=2sin(x+π6)的图象.9.(1)最大温差20℃; (2)y=10sin(π8x+3π4)+20,x ∈[6,14].第7课三角函数的最值【知识在线】1.C 2. 2 ,-2 ,12,-323.2,-2 4.[0,94]【训练反馈】1.B 2.D 3.A 4.A 5.-1≤m≤736.347.12+ 2 8.a=2, b=-2 9.-2<a<-1第8课解斜三角形【知识在线】1.钝角三角形2.5( 6 + 2 )3.A 4.C 5.C 【训练反馈】1.A 2.A 3.B 4.12135.π66.21 或617.π38.设∠AOB=θ,θ= 5π6时,S最大值=2+5 34单元练习(三角函数)一、选择题1.B 2.C 3.B 4.B 5.C 6.B 7.A 8.B 9.C 10.B 11.A 12.B二、填空题13.—2214.— 3 15.-3416.(1)(3)。

三角函数复习教案-整理

三角函数复习教案-整理

《三角函数》复习教案【知识网络】应用弧长公同角三角诱应用・计算与应用'任意角的一角度制j任意角一三角函小已知三丨应用-和角公角公应用学法:1. 注重化归思想的运用.如将任意角的三角函数值的问题化归为锐角的三角函数的问题,将不同名的三角函数问题化成同名的三角函数的问题,将不同角的三角函数问题化成同角的三角函数问题等2 .注意数形结合思想的运用.如讨论函数性质等问题时,要结合函数图象思考,便易找出解题思路和问题答案.第1课三角函数的概念考试注意:理解任意角的概念、弧度的意义. 能正确地进行弧度与角度的换算. 掌握终边相同角的表示方法. 掌握任意角的正弦、余弦、正切的意义.了解余切、正割、余割的定义. 掌握三角函数的符号法则.知识典例:1 .角a的终边在第一、三象限的角平分线上,角a的集合可写成 __________________ .2. 已知角a的余弦线是单位长度的有向线段,那么角a的终边()A.在x轴上B .在y轴上C .在直线上D .在直线—x上.3.已知角a的终边过点p( —5, 12),则a } , a4.的符号为5.若ee> o,贝y e 是()A.第一象限角B.第二象限角C.第一、二象限角D.第二、三象限角【讲练平台】例1已知角的终边上一点P (—, m),且e = ,4)m,求e与e 的值.分析已知角的终边上点的坐标,求角的三角函数值,应联想到运用三角函数的定义解题,由P的坐标可知,需求出m的值,从而应寻求m的方程.解由题意知,则e ==)又re = ,4)m,二)=,4) m . 二0,土.当o时,e =—1 , e =o ;当时,e =- -,4), e = —,3);当一时,e=—,4),e =,3).点评已知一个角的终边上一点的坐标,求其三角函数值,往往运用定义法( 三角函数的定义) 解决.例 2 已知集合{e|e<e, 0<e< 2 n}, {e|e<e },求集合E n F.分析对于三角不等式,可运用三角函数线解之.解{e| <e< }, F = {e| <e<n,或<e< 2 n},二E n{e|<e<n }.例3设e是第二象限角,且满足| —,是哪个象限的角?解Te 是第二象限角,二2k n + <e< 2k n + , k € Z.k n + << k n + , k € Z .二是第一象限或第三象限角. ①又'.T — , • < 0. •是第三、第四象限的角. ②由①、②知,是第三象限角.点评已知e所在的象限,求或2e等所在的象限,要运用终边相同的角的表示法来表示,否则易出错.【知能集成】注意运用终边相同的角的表示方法表示有关象限角等;已知角的终边上一点的坐标,求三角函数值往往运用定义法;注意运用三角函数线解决有关三角不等式. 【训练反馈】1.已知a是钝角,那么是()A.第一象限角B.第二象限角C.第一与第二象限角.不小于直角的正角D2.角a的终边过点P (—4k, 3k) (k < 0},则a的值是()A. ,5) B . C . —D .—3. 已知点P( a —a, a )在第一象限,则在]0, 2n ]内,a的取值范围是()A. ( , ) U ( n, ) B . ( , ) U ( n,)C. ( , ) u ( , ) D . ( , ) U ( ,n )4. 若—,=,则角2x的终边位置在()A.第一象限 B .第二象限C .第三象限D .第四象限5. 若4nVaV 6 n,且a与一____ 终边相同,则a = .6. _______________________________________________ 角a终边在第三象限,则角 2 a终边在_________________________________________ 象限.7. 已知「=—,贝V角x的集合为_____________________________________8. 如果e是第三象限角,则(e)•(e)的符号为什么?9. 已知扇形的周长是6,该扇形中心角是1弧度,求该扇形面积.第2课同角三角函数的关系及诱导公式【考点指津】掌握同角三角函数的基本关系式:2a 2a =1, a ) a,aa =1,掌握正弦、余弦的诱导公式.能运用化归思想(即将含有较多三角函数名称问题化成含有较少三角函数名称问题)解题.【知识在线】1. 2150° 2135° +2210°2225 ° 的值是()A. B . C . D .2. 已知(n + a )= 一,贝U ()A.a = B . a = C . a = —D . ( n — a )=3. 已a =3, 的值为____________ .4. ___________________ 化简= .5 .已知e是第三象限角,且4e4e「那么2 e等于()A . ,3)B . —,3)C .D .—【讲练平台】例 1 化简(n - a )(3 n - a )).分析式中含有较多角和较多三角函数名称,若能减少它们的个数,则式子可望简化.解原式=],(a )( n - a )) = ( a )( a ))= a ), a ) =1 .点评将不同角化同角,不同名的三角函数化成同名的三角函数是三角变换中常用的方法.例2 若ee = ,ee (,),求e-e的值.分析已知式为e、e的二次式,欲求式为e、e的一次式,为了运用条件,须将e-e进行平方.22 2解( e-e ) 22e 2e- 2ee =1- = .•/ee (,),二eve.•*«e — e = —,2).变式1 条件同例,求ee的值.变式2 已知e-e = —,2), 求ee,ee的值.点评ee,ee,e-e三者关系紧密,由其中之一,可求其余之二.例3已知e =3.求2eee的值.分析因为2eee是关于e、e的二次齐次式,所以可转化成e的式子.解原式2eee = 2e 2e ) = 1 2e ) = .点评1 .关于e、e的齐次式可转化成e的式子.2. 注意1的作用:1 2e 2e等.【知能集成】1 .在三角式的化简,求值等三角恒等变换中,要注意将不同名的三角函数化成同名的三角函数.2. 注意1 的作用:如1 2e 2e.3. 要注意观察式子特征,关于e>e的齐次式可转化成关于&的式子.4. 运用诱导公式,可将任意角的问题转化成锐角的问题【训练反馈】1. 600 °的值是(),2)A. B . —C.,2)D•—2. (+ a)(—a )的化简结果为( )A. 2 a B . 2 a C . 2 a D.2 a3.已知,x €[ 0,n],则的值是( )A.— B .— C .± D .—或—4.已知a二一,贝H 2 aa 2 a )=5. 10 °-)的值为.-6.证明2a—a ) = a , 1 — a ).7.已知e--3e)=—5,求32e +42e 的值.8.已知锐角a、B、丫满足况丫B,a —Y B,求a — ^的值.第3课 两角和与两角差的三角函数(一)【考点指津】掌握两角和与两角差的正弦、余弦、正切公式,掌握二倍角的正弦、余弦、正 切公式,能运用化归思想(将不同角化成同角等)解题. 【知识在线】 1. 105 °的值为A .+ ,4)B . - ,4)C . -, 4)D .- ,4)2 •对于任何a 、B€( 0,) , ( a + B )与a^的大小关系是 ()A . ( a +B ) >aB B . ( a + B ) VaBC. ( a + B ) aB D .要以a 、B 的具体值而定 3.已知nvev,2B,贝y ee 等于 ()A.B . -C .D . ±4. 已知 a =,B =,则(a +2B )= _____________ .5.已知,则 2 .【讲练平台】例1 已知a-B = :— ,a — B =,求(a — B )的值分析 由于(a-B)aBaB 的右边疋关于a 、a 、B 、B 的一次式,而已知条件疋关于a 、B 、a 、B 的一次式,所以将已知式两边平方.解 v a — B =—,① a — B = ,②①2 +②2,得 2-2( a-B )=• ( a — B )=.点评 审题中要善于寻找已知和欲求的差异,设法消除差异. 例2 求20 ° ) 的值. 分析式中含有两个角,故需先化简.注意到10° =30°- 20°,由于30的三角函数值已知,则可将两个角化成一个角.解 v 10° =30°— 20°,二原式=20° )=20 ° )= 30 ° ,20 ° )=.点评 化异角为同角,是三角变换中常用的方法. 例 3 已知:(a + B )= — 2B ・求证:a =3( a + B ). 分析 已知式中含有角2a + B 和B,而欲求式中含有角a 和a + B,所以要设法将已知式中的角转化成欲求式中的角.解T 2 a + P =( a + P )+ a,B =( a + B ) — a,二](a + B )+ a] =— 2[ ( a + B ) — a].「•( a + B ) a ( a + B ) a =— 2( a + B ) a +2( a + B ) a.若(a + B )工 O ,aM 0,贝 U 3( a + B ) a.点评 审题中要仔细分析角与角之间的关系,善于运用整体思想解题,此题中 将a +B 看成一个整体【知能集成】审题中,要善于观察已知式和欲求式的差异,注意角之间的关系;整体思想是 三角变换中常用的思想.【训练反馈】1.已知0 VaVV BVn,a =, ( a + B )=—, 则B 等于(A. 0 B.0或 CD0或—2. 7 °— 15 °8 °)的值等于()A. 2+ B .,2) C. 2 —D. ,2)3. △中,346, 4 ■31,则/ C 的大小为( )A. B C . 或 D . 或4 . 若a是锐角,且(a —)=,贝Ua的值![是5 . =6. 已知B =,© =, 且B、©都是锐角. 求证:B+ © =45 °.7 .已知(a — B )= —, ( a + B )=,且(a —B)€(,n)求2a、2B的值.,a + B€(, 2 n),8.已知(a + B )=,且(n + a —p )=,求.第4课两角和与两角差的三角函数(二)【考点指津】掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、切公式;能灵活运用和角、差角、倍角公式解题.【知识在线】求下列各式的值1. 200° 80° 110° 10° = _________ .2. ( 15° +15°) = ________ .3. 化简1+22e—2 e = __________ .4. (20 ° )(25 ° —x) —(70 ° —x)(25 ° —x)= ___ .5. _______________ —= .【讲练平台】例1 求下列各式的值(1) 10°+ 50° + 10 ° 50°;(2) 12 ° -3) 12° , 4 212° -2).(1)解原式(10 ° +50° ) (1 —10° 50°) +10° 50° =.(2)分析式中含有多个函数名称,故需减少函数名称的个数,3 3解原式=•—3) 12° ),2 24 ° ) = sin^2cos24°1 ,3=J3sin1宀3cos仔朋(尹12°-云如2。

三角函数复习教案

三角函数复习教案

三角函数复习教案整理一、教学目标1. 知识与技能:(1)掌握三角函数的定义及性质;(2)了解三角函数在实际问题中的应用;(3)熟练运用三角函数公式进行计算。

2. 过程与方法:(1)通过复习,巩固三角函数的基本概念、公式和性质;(2)培养学生的数学思维能力和解决问题的能力。

3. 情感态度与价值观:(2)培养学生勇于探索、积极向上的精神风貌。

二、教学内容1. 三角函数的定义与性质(1)正弦函数、余弦函数、正切函数的定义;(2)三角函数的周期性、奇偶性、单调性。

2. 三角函数公式(1)和差化积公式;(2)积化和差公式;(3)倍角公式;(4)半角公式。

3. 三角函数在实际问题中的应用(1)角度与弧度的互化;(2)三角函数在工程、物理等领域的应用。

三、教学重点与难点1. 重点:(1)三角函数的定义与性质;(2)三角函数公式的运用;(3)三角函数在实际问题中的应用。

2. 难点:(1)三角函数公式的灵活运用;(2)解决实际问题时,三角函数的转化与运用。

四、教学措施1. 采用讲解、例题、练习、讨论等方式进行教学;2. 利用多媒体课件,直观展示三角函数的图象和性质;3. 注重引导学生发现规律,培养学生的逻辑思维能力;4. 针对不同层次的学生,给予适当的辅导和指导。

五、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态;2. 练习完成情况:检查学生作业、测验等的完成质量,评估学生对知识点的掌握程度;3. 小组讨论:评估学生在小组讨论中的表现,了解学生的合作能力和解决问题的能力;4. 课后反馈:收集学生对教学内容的反馈意见,为下一步教学提供参考。

六、教学过程1. 导入:回顾上一节课的内容,引导学生复习三角函数的基本概念和性质。

2. 新课内容:讲解三角函数的公式,并通过例题展示其在实际问题中的应用。

3. 课堂练习:布置练习题,让学生运用所学知识解决问题,巩固知识点。

4. 小组讨论:组织学生进行小组讨论,分享解题心得,培养学生的合作能力。

三角函数复习教案

三角函数复习教案

三角函数复习教案整理一、教学目标1. 回顾和巩固三角函数的基本概念、性质和公式。

2. 提高学生运用三角函数解决实际问题的能力。

3. 培养学生的逻辑思维能力和团队合作精神。

二、教学内容1. 三角函数的定义与性质正弦函数、余弦函数、正切函数的定义周期性、奇偶性、单调性图像与性质2. 三角函数的公式和差公式、倍角公式、半角公式积化和差与和差化积公式正弦定理与余弦定理3. 三角函数的应用角度与弧度的互化三角函数在几何中的应用三角函数在物理中的应用三、教学方法1. 采用问题驱动的教学方式,引导学生主动探究三角函数的性质和公式。

2. 利用多媒体课件辅助教学,展示三角函数的图像和实际应用场景。

3. 组织小组讨论,鼓励学生分享自己的解题思路和心得。

四、教学步骤1. 复习三角函数的基本概念,引导学生回顾正弦函数、余弦函数、正切函数的定义。

2. 分析三角函数的性质,如周期性、奇偶性、单调性,并通过示例讲解如何应用这些性质解决问题。

3. 讲解三角函数的公式,包括和差公式、倍角公式、半角公式等,并通过例题展示公式的应用。

4. 结合实际应用场景,讲解三角函数在几何和物理中的应用,巩固学生对三角函数的理解。

五、课后作业1. 复习本节课所学内容,整理三角函数的基本概念、性质和公式。

2. 完成课后练习题,巩固和应用三角函数的知识。

3. 准备下一节课的预习内容,了解三角函数图像的特点和绘制方法。

六、教学评价1. 课堂讲解:观察学生在课堂上的参与程度、提问回答情况和理解程度,评估学生对三角函数基本概念、性质和公式的掌握情况。

2. 课后作业:检查学生完成的课后练习题,评估学生对课堂所学知识的应用能力。

3. 小组讨论:评估学生在小组讨论中的表现,包括合作态度、交流能力和思维深度。

七、教学资源1. 多媒体课件:制作三角函数的图像、公式和实际应用场景的演示文稿。

2. 练习题库:准备一系列的练习题,包括填空题、选择题、解答题等,用于巩固和检测学生的学习效果。

三角函数教案

三角函数教案

三角函数教案三角函数教案(精选4篇)三角函数教案篇11、锐角三角形中,任意两个内角的和都属于区间,且满意不等式:即:一角的正弦大于另一个角的余弦。

2、若,则,3、的图象的对称中心为( ),对称轴方程为。

4、的图象的对称中心为( ),对称轴方程为。

5、及的图象的对称中心为( )。

6、常用三角公式:有理公式: ;降次公式: , ;万能公式: , , (其中)。

7、帮助角公式: ,其中。

帮助角的位置由坐标打算,即角的终边过点。

8、时, 。

9、。

其中为内切圆半径, 为外接圆半径。

特殊地:直角中,设c为斜边,则内切圆半径,外接圆半径。

10、的图象的图象( 时,向左平移个单位, 时,向右平移个单位)。

11、解题时,条件中若有消失,则可设,则。

12、等腰三角形中,若且,则。

13、若等边三角形的边长为,则其中线长为,面积为。

14、;三角函数教案篇2二、复习要求1、三角函数的概念及象限角、弧度制等概念;2、三角公式,包括诱导公式,同角三角函数关系式和差倍半公式等;3、三角函数的图象及性质。

三、学习指导1、角的概念的推广。

从运动的角度,在旋转方向及旋转圈数上引进负角及大于3600的角。

这样一来,在直角坐标系中,当角的终边确定时,其大小不肯定(通常把角的始边放在x轴正半轴上,角的顶点与原点重合,下同)。

为了把握这些角之间的联系,引进终边相同的角的概念,凡是与终边α相同的角,都可以表示成k·3600 α的形式,特例,终边在x 轴上的角集合{α|α=k·1800,k∈z},终边在y轴上的角集合{α|α=k·1800 900,k∈z},终边在坐标轴上的角的集合{α|α=k·900,k∈z}。

在已知三角函数值的大小求角的大小时,通常先确定角的终边位置,然后再确定大小。

弧度制是角的度量的重要表示法,能正确地进行弧度与角度的换算,熟记特别角的弧度制。

在弧度制下,扇形弧长公式l=|α|r,扇形面积公式,其中α为弧所对圆心角的弧度数。

高中数学复习教案:三角函数应用

高中数学复习教案:三角函数应用

高中数学复习教案:三角函数应用一、引言本教案旨在帮助高中生复习和掌握三角函数应用的相关知识点。

三角函数在实际生活中有着广泛的应用,如建筑设计、航海导航等领域。

通过本教案的学习和练习,学生将更好地理解和运用三角函数的概念和技巧。

二、基础知识回顾1. 角度与弧度制•角度制是我们常见的测量角度的方式,以360°为一个完整圆。

•弧度制是数学上使用最广泛的角度单位,以弧长比半径定义。

一个完整圆周对应的弧度为2π。

2. 三角函数定义与性质•正弦函数(sin)、余弦函数(cos)和正切函数(tan)是最常见的三角函数。

•正弦函数表示直角三角形中斜边与 hypotenuse 的比值;余弦函数表示邻边与 hypotenuse 的比值;正切函数表示对边与邻边的比值。

•注意,正切函数在某些特殊情况下可能无定义或者无意义。

3. 特殊角及其值•30度、45度和60度的三个特殊角值是非常重要的,需要记住它们在角度制和弧度制下的数值。

三、三角函数应用1. 射线问题•射线问题是三角函数应用中最常见的一个类型。

我们可以利用已知角的正弦、余弦或正切值求解未知长度或高度。

#### 示例:树木高度测量问题描述:一棵树与观察者之间形成一个直角三角形,观察者站在离树10米的地方,从眼睛到顶部的角度为30°。

求该树的高度。

解题步骤:1.利用正切函数计算tan(30°) = X/10,得到 X 的值。

2.确定 X 的单位后,即可得到树木的高度。

2. 角分析问题•角分析问题包括求解已知两边长度和夹角,则可以利用余弦定理或正弦定理来求解第三边或第二个夹角数值。

#### 示例:桥梁高空抛物线轨道计算问题描述:一座桥梁上有一个高空抛物线轨道,其中两座桥塔相距150米,高差50米。

桥塔顶部与水平线夹角为60°,求抛物线的方程。

解题步骤:1.分析桥塔与水平线构成的三角形,并计算斜边的长度。

2.利用已知条件,使用正弦函数计算箭头发射点的高度与水平距离之间的关系。

三角函数复习教案整理

三角函数复习教案整理

三角函数复习教案整理一、教学目标1. 知识与技能:(1)掌握三角函数的定义及性质;(2)了解三角函数在各象限的符号变化;(3)掌握三角函数的图像和几何意义;(4)学会运用三角函数解决实际问题。

2. 过程与方法:(1)通过复习,巩固三角函数的基本概念;(2)借助图像,理解三角函数的性质;(3)运用数形结合的方法,解决三角函数问题。

3. 情感态度与价值观:(1)培养学生的逻辑思维能力;(2)提高学生对数学美的感知;(3)激发学生学习三角函数的兴趣。

二、教学内容1. 三角函数的定义与性质(1)正弦函数、余弦函数、正切函数的定义;(2)三角函数的周期性;(3)三角函数的奇偶性;(4)三角函数的单调性。

2. 三角函数在各象限的符号变化(1)第一象限:正弦函数、余弦函数、正切函数均为正;(2)第二象限:正弦函数为正,余弦函数、正切函数为负;(3)第三象限:正弦函数、余弦函数、正切函数均为负;(4)第四象限:正弦函数为负,余弦函数、正切函数为正。

3. 三角函数的图像与几何意义(1)正弦函数、余弦函数、正切函数的图像;(2)三角函数在直角坐标系中的几何意义;(3)三角函数图像的变换。

4. 三角函数的应用(1)已知三角函数值,求角度;(2)已知角度,求三角函数值;(3)运用三角函数解决实际问题。

三、教学重点与难点1. 重点:三角函数的定义、性质、图像及应用。

2. 难点:三角函数在各象限的符号变化,三角函数图像的变换。

四、教学方法与手段1. 教学方法:讲解法、演示法、练习法、小组讨论法。

2. 教学手段:多媒体课件、黑板、三角板、教具。

五、教学过程1. 导入新课:回顾上节课的内容,引出本节课的主题——三角函数复习。

2. 知识梳理:讲解三角函数的定义、性质、图像及应用。

3. 课堂演示:利用多媒体课件,展示三角函数的图像,引导学生理解三角函数的性质。

4. 实例分析:分析实际问题,运用三角函数解决,巩固所学知识。

5. 练习巩固:布置练习题,让学生独立完成,检查学习效果。

三角函数复习教学案

三角函数复习教学案

一、任意角的三角函数1、与角α终边相同的角的集合为 .2、弧度与角度互化:180º= 弧度,1º= 弧度,1弧度= ≈ º3、弧长公式:l = 扇形面积公式:s = .4、定义:设P(x, y)是角α终边上任意一点,且 |PO| =r ,则sin α= ; cos α= ; tan α= ;例1、已知角θ的终边经过点P ()(0),sin m m θ≠=且,试判断角θ所在的象限,并求cos tan θθ和的值.练习1、角α的终边经过点P (6,x ),且,135cos -=α则____=x 2、如果α与︒80角终边相同,那么2α是第几象限角? 3、一个扇形的周长为20cm ,当扇形的圆心角α等于多少弧度时,这个扇形的面积最大?并求出这个扇形的最大面积。

二、同角三角函数的关系及诱导公式1、同角三角函数的基本关系式平方关系 商数关系2、诱导公式: 记忆:奇变偶不变,符号看象限例2、已知αsin =54,且α是第二象限角,求cos α,tan α的值 例3、已知11tan tan -=-αα,求下列各式的值. ①ααααcos sin cos 3sin +-;②2cos sin sin 2++ααα 练习1. sin(π4+α)sin (π4-α)的化简结果为2、已知tan α=512,求sin α, cos α的值 3 、已知81cos sin =⋅αα,且24παπ<<,则ααsin cos -的值是 4、 )619sin(π-的值等于 5、 若21)sin(=+A π,则=-)23cos(A π_________________ 6、已知sinx+cosx=15,x ∈[0,π],则tanx 的值是[学后反思]____________________________________________________一、两角和与差的三角函数sin(α±β)=____________________ cos(α±β)= tan(α±β)=二、二倍角的正弦、余弦、正切sin2α= cos2α= = = tan2α=降幂公式:__________sin 2=α __________cos 2=α三、形如x b x a cos sin ±的化简 =±x b x a cos sin例1、求)10tan 31(50sin ︒︒+的值例2、求值:140cos 40cos 2)40cos 21(40sin 2-︒+︒︒+︒例3、已知x x x x f cos sin sin 3)(2+-=; (1) 求)625(πf 的值; (2) 设2341)2(),,0(-=∈απαf ,求sinα的值.例4、已知2π-<x <0,sin x+cos x= 51 。

三角函数复习教案

三角函数复习教案

三角函数复习教案整理一、教学目标1. 回顾和巩固三角函数的基本概念、性质和公式。

2. 提高学生解决实际问题中涉及三角函数的能力。

3. 培养学生的逻辑思维和运算能力。

二、教学内容1. 三角函数的定义与性质正弦函数、余弦函数、正切函数的定义与性质特殊角的三角函数值2. 三角函数的图象与性质三角函数的图象特点三角函数的周期性、奇偶性、单调性3. 三角函数公式和差公式、倍角公式、半角公式、积化和差与和差化积公式正弦定理、余弦定理4. 三角函数的应用三角函数在几何中的应用三角函数在物理中的应用三、教学重点与难点1. 重点:三角函数的基本概念、性质、公式及应用。

2. 难点:三角函数的图象与性质的理解和应用,以及解决实际问题中的三角函数应用。

四、教学方法1. 采用讲解、示范、练习、讨论相结合的方法。

2. 利用多媒体课件辅助教学,直观展示三角函数的图象和性质。

3. 引导学生通过自主学习、合作交流,提高解决问题的能力。

五、教学过程1. 导入:回顾三角函数的定义与性质,引导学生思考三角函数在实际问题中的应用。

2. 新课:讲解三角函数的图象与性质,通过示例让学生理解并掌握。

3. 练习:让学生通过练习题,巩固所学内容,提高解决问题的能力。

4. 拓展:引导学生思考三角函数在其他领域的应用,如物理、工程等。

5. 小结:总结本节课的主要内容,强调重点和难点。

6. 作业:布置适量作业,让学生巩固所学知识。

六、教学评估1. 课堂讲解:观察学生对三角函数概念、性质和公式的理解程度,以及他们能否熟练运用相关知识解决问题。

2. 练习题:通过学生完成练习题的情况,评估他们对于三角函数图象与性质、公式的掌握程度。

3. 小组讨论:评估学生在合作交流中的参与程度,以及他们解决问题的能力。

七、教学反思1. 针对课堂讲解,反思教学方法是否适合学生的学习需求,是否需要调整讲解方式和节奏。

2. 针对练习题,反思习题难度是否适中,是否需要增加或调整习题类型。

三角函数复习教案

三角函数复习教案

三角函数复习教案整理一、教学目标1. 知识与技能:(1)掌握三角函数的定义及性质;(2)了解三角函数在各象限的符号;(3)熟练运用三角函数公式进行计算。

2. 过程与方法:(1)通过复习,巩固三角函数的基本概念;(2)通过例题解析,提高学生解决实际问题的能力;(3)培养学生运用三角函数解决几何问题的能力。

3. 情感态度与价值观:(1)激发学生对三角函数的学习兴趣;(2)培养学生的团队合作精神;(3)鼓励学生勇于探索,提高自主学习能力。

二、教学内容1. 三角函数的定义及性质(1)正弦函数、余弦函数、正切函数的定义;(2)三角函数的周期性;(3)三角函数的奇偶性;(4)三角函数的单调性。

2. 三角函数在各象限的符号(1)第一象限:正弦函数、余弦函数、正切函数均为正;(2)第二象限:正弦函数为正,余弦函数、正切函数为负;(3)第三象限:正弦函数、余弦函数、正切函数均为负;(4)第四象限:正弦函数为负,余弦函数、正切函数为正。

3. 三角函数公式(1)和角公式;(2)差角公式;(3)积化和差公式;(4)和差化积公式;(5)二倍角公式;(6)半角公式。

三、教学重点与难点1. 教学重点:(1)三角函数的定义及性质;(2)三角函数在各象限的符号;(3)三角函数公式的运用。

2. 教学难点:(1)三角函数公式的灵活运用;(2)解决复杂三角函数问题。

四、教学方法1. 采用讲解法,系统讲解三角函数的基本概念、性质和公式;2. 利用例题解析,让学生掌握三角函数公式的运用;3. 运用分组讨论法,引导学生合作探究,解决实际问题;4. 采用问答法,激发学生的思维,巩固所学知识。

五、教学过程1. 导入新课:回顾上节课的内容,引导学生进入本节课的学习。

2. 讲解三角函数的定义及性质:通过PPT展示,讲解三角函数的基本概念,让学生理解并掌握三角函数的性质。

3. 讲解三角函数在各象限的符号:引导学生通过绘制函数图像,观察并总结三角函数在各象限的符号。

三角函数复习教案

三角函数复习教案

三角函数复习教案一、教学目标1. 知识点:(1)掌握三角函数的定义及性质;(2)了解三角函数在实际问题中的应用;(3)熟练运用三角函数公式进行计算。

2. 能力目标:(1)提高学生的逻辑思维能力;(2)培养学生的数学表达能力;(3)提升学生的数学解决问题的能力。

二、教学内容1. 三角函数的定义及性质(1)正弦函数、余弦函数、正切函数的定义;(2)三角函数的周期性;(3)三角函数的奇偶性;(4)三角函数的单调性。

2. 三角函数公式(1)和差化积公式;(2)积化和差公式;(3)倍角公式;(4)半角公式。

三、教学方法1. 采用问题驱动法,引导学生主动探究三角函数的性质和公式;2. 利用多媒体课件,直观展示三角函数的图像和实际应用问题;3. 开展小组讨论,培养学生的合作意识;4. 进行适量练习,巩固所学知识。

四、教学步骤1. 导入新课,回顾三角函数的定义及性质;2. 讲解三角函数公式,并通过例题演示公式的应用;3. 开展小组讨论,让学生自主探究三角函数的性质和公式;4. 利用多媒体课件,展示三角函数在实际问题中的应用;5. 进行课堂练习,巩固所学知识。

五、课后作业1. 复习三角函数的定义及性质;2. 熟练掌握三角函数公式,并进行相关计算;3. 思考实际问题中三角函数的应用。

教学反思:在课后对教学效果进行反思,根据学生的掌握情况,调整教学策略,以提高教学效果。

关注学生的学习兴趣,激发学生的学习积极性,提高学生的数学素养。

六、教学评价1. 评价内容:(1)三角函数定义及性质的理解;(2)三角函数公式的掌握及运用;(3)实际问题中三角函数的应用。

2. 评价方法:(1)课堂问答;(2)课后作业;(3)小组讨论;(4)测试卷。

七、教学拓展1. 深入了解三角函数在科学、工程、医学等领域的应用;2. 探究三角函数与其他数学学科的联系;3. 研究三角函数的历史发展。

八、教学资源1. 教材;2. 多媒体课件;3. 练习题;4. 相关论文及资料。

初中一对一培训教案三角函数复习一

初中一对一培训教案三角函数复习一

BAO 1rad r r 学生姓名 原就读学校 年级 授课时间 教师姓名教学内容 三角函数复习一教学目标任意角、弧度制、同角三角函数、诱导公式教学重、难点同角三角函数、诱导公式一、知识要点1、角的概念的推广(1)正角、负角、零角;象限角、轴线角。

(2)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S= 。

即任一与角α终边相同的角,都可以表示成角α与整数个周角的和。

2、弧度制角度制弧度制定义周角的1360为1°的角长度等于 的弧所对的圆心角叫的1弧度的角 图示周长的1360相同点 角的大小与半径无关换算 1°= rad≈0.0175rad1rad =( )°≈ °弧长公式 ==扇形面积公式S = =S =3、任意角的三角函数定义。

定义一:角α的顶点在坐标原点,始边与x 轴正向重合,终边上任意一点 P (x ,y ),点P 到 原点的距离为r =22x y +,则sin α= ,cos α= ,tan α= 。

定义二:角α的终边与单位圆交于P (x ,y ),则sin α= ,cos α= ,tan α= 。

4、三角函数在各象限的符号:简记为“一全正,二正弦,三为切,四余弦。

” 5、同角三角函数的基本关系(1)平方关系: 。

(2)商数关系: 。

(3)变式应用:sin 2α=1-cos 2α cos 2α=1-sin 2αsin α=tan α·cos αsin α=21cos α±- cos α=21sin α±-(“±”由α所在象限确定)B AO)k = B.600tan240+的值是(3B.2α=,则陕西)若tan2(每小题20分,共100分)1、25sin6π等于()A.12B.32C.12-D.32-2、若4sin5α=,且α是第二象限角,则tanα的值等于()A.43-B.34C.34±D.43±3、角α的终边经过点P(b,4)且3cos5α=-,则b的值为()A.3 B.-3 C.±3 D.5 4、下列各对角中,终边相同的是()A.32π和32()2k k zππ-∈B.5π-和225πC.79π-和119πD.203π和1223π5、12sin4cos4-⋅= 。

三角函数复习教案

三角函数复习教案

三角函数复习教案教案标题:三角函数复习教案教学目标:1. 复习三角函数的基本概念和性质。

2. 掌握三角函数的图像、周期性、正弦定理和余弦定理。

3. 运用三角函数解决实际问题。

教学重点:1. 三角函数的基本概念和性质。

2. 三角函数的图像和周期性。

3. 正弦定理和余弦定理的应用。

教学难点:1. 运用三角函数解决实际问题。

2. 正弦定理和余弦定理的应用。

教学准备:1. 教师准备:教学课件、复习教材、白板、彩色粉笔、计算器等。

2. 学生准备:课本、笔记本、计算器等。

教学过程:Step 1:引入复习(5分钟)教师通过提问和简要复习,引导学生回忆三角函数的基本概念和性质,例如正弦函数、余弦函数、正切函数等。

Step 2:讲解三角函数的图像和周期性(15分钟)教师使用教学课件或白板,展示三角函数的图像,并解释图像的特点和周期性。

强调正弦函数和余弦函数的周期为2π,正切函数的周期为π。

Step 3:讲解正弦定理和余弦定理(15分钟)教师讲解正弦定理和余弦定理的概念和公式,并通过示例演示如何运用这些定理解决实际问题。

Step 4:练习与巩固(20分钟)教师提供一些练习题,让学生在课堂上进行练习,并解答学生的疑问。

教师可提供不同难度的题目,以适应不同水平的学生。

Step 5:拓展应用(15分钟)教师提供一些实际问题,要求学生利用所学的三角函数知识解决问题。

教师鼓励学生积极思考和讨论,培养学生的应用能力。

Step 6:总结与反思(5分钟)教师对本节课的内容进行总结,并与学生一起回顾所学知识。

鼓励学生提出问题和反思,以便进一步巩固所学内容。

教学延伸:1. 学生可利用计算器或在线工具绘制三角函数的图像,进一步加深对图像和周期性的理解。

2. 学生可自主查找相关实际问题,运用三角函数解决,并进行展示和分享。

教学评估:1. 课堂练习:通过学生在课堂上的练习情况,检查他们对三角函数的理解和应用能力。

2. 问题解答:通过对学生提出的问题的解答情况,评估他们对三角函数的掌握程度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《三角函数》复习教案【知识网络】学法:1.注重化归思想的运用.如将任意角的三角函数值的问题化归为锐角的三角函数的问题,将不同名的三角函数问题化成同名的三角函数的问题,将不同角的三角函数问题化成同角的三角函数问题等2.注意数形结合思想的运用.如讨论函数性质等问题时,要结合函数图象思考,便易找出解题思路和问题答案.第1课三角函数的概念考试注意:理解任意角的概念、弧度的意义.能正确地进行弧度与角度的换算.掌握终边相同角的表示方法.掌握任意角的正弦、余弦、正切的意义.了解余切、正割、余割的定义.掌握三角函数的符号法则.知识典例:1.角α的终边在第一、三象限的角平分线上,角α的集合可写成.2.已知角α的余弦线是单位长度的有向线段,那么角α的终边( )A.在x轴上B.在y轴上C.在直线y=x上D.在直线y=-x上.3.已知角α的终边过点p(-5,12),则cosα} ,tanα= .4.tan(-3)cot5cos8的符号为.5.若cosθtanθ>0,则θ是( ) A.第一象限角B.第二象限角C.第一、二象限角D.第二、三象限角【讲练平台】例1 已知角的终边上一点P (- 3 ,m ),且sin θ=24m ,求cos θ与tan θ的值.分析 已知角的终边上点的坐标,求角的三角函数值,应联想到运用三角函数的定义解题,由P 的坐标可知,需求出m 的值,从而应寻求m 的方程.解 由题意知r= 3+m 2 ,则sin θ= m r = m3+m 2. 又∵sin θ=24m , ∴ m3+m 2= 24 m . ∴m=0,m=±5 . 当m=0时,cos θ= -1 , tan θ=0 ; 当m= 5 时,cos θ= -6 4, tan θ= - 15 3; 当m= - 5 时,cos θ= -6 4,tan θ=153. 点评 已知一个角的终边上一点的坐标,求其三角函数值,往往运用定义法(三角函数的定义)解决.例2 已知集合E={θ|cos θ<sin θ,0≤θ≤2π},F={θ|tan θ<sin θ},求集合E ∩F .分析 对于三角不等式,可运用三角函数线解之.解 E={θ|π4 <θ<5π4}, F ={θ| π2<θ<π,或3π2<θ<2π},∴E ∩F={θ|π2<θ<π}.例3 设θ是第二象限角,且满足|sin θ2|= -sin θ2 ,θ2是哪个象限的角?解 ∵θ是第二象限角, ∴2k π+π2<θ<2k π+3π2,k ∈Z . ∴k π+π4<θ2<k π+ 3π4,k ∈Z . ∴θ2是第一象限或第三象限角. ① 又∵|sin θ2|= -sin θ2 , ∴sin θ2<0. ∴ θ2是第三、第四象限的角. ②由①、②知,θ2是第三象限角. 点评 已知θ所在的象限,求θ2或2θ等所在的象限,要运用终边相同的角的表示法来表示,否则易出错. 【知能集成】注意运用终边相同的角的表示方法表示有关象限角等;已知角的终边上一点的坐标,求三角函数值往往运用定义法;注意运用三角函数线解决有关三角不等式. 【训练反馈】1. 已知α是钝角,那么α2 是 ( )A .第一象限角B .第二象限角C .第一与第二象限角D .不小于直角的正角2. 角α的终边过点P (-4k ,3k )(k <0},则cos α的值是 ( )A .3 5 B . 45 C .- 35 D .- 453.已知点P(sin α-cos α,tan α)在第一象限,则在[0,2π]内,α的取值范围是 ( )A .( π2, 3π4)∪(π, 5π4)B .( π4, π2)∪(π, 5π4)C .(π2 , 3π4 )∪(5π4,3π2) D .( π4, π2 )∪(3π4,π) 4.若sinx= - 35,cosx =45 ,则角2x 的终边位置在 ( )A .第一象限B .第二象限C .第三象限D .第四象限5.若4π<α<6π,且α与- 2π3终边相同,则α= .6. 角α终边在第三象限,则角2α终边在 象限.7.已知|tanx |=-tanx ,则角x 的集合为 . 8.如果θ是第三象限角,则cos(sin θ)²sin(sin θ)的符号为什么?9.已知扇形AOB 的周长是6cm ,该扇形中心角是1弧度,求该扇形面积.第2课 同角三角函数的关系及诱导公式【考点指津】掌握同角三角函数的基本关系式:sin 2α+cos 2α=1,sin αcos α=tan α,tan αcot α=1, 掌握正弦、余弦的诱导公式.能运用化归思想(即将含有较多三角函数名称问题化成含有较少三角函数名称问题)解题 . 【知识在线】1.sin 2150°+sin 2135°+2sin210°+cos 2225°的值是 ( ) A . 14 B . 34 C . 114 D . 942.已知sin(π+α)=-35,则 ( )A .cos α= 45B .tan α= 34C .cos α= -45D .sin(π-α)= 353.已tan α=3,4sin α-2cos α5cos α+3sin α的值为 .4.化简1+2sin(π-2)cos(π+2) = .5.已知θ是第三象限角,且sin 4θ+cos 4θ= 59,那么sin2θ等于 ( )3333【讲练平台】例1 化简 sin(2π-α)tan(π+α)cot(-α-π)cos(π-α)tan(3π-α).分析 式中含有较多角和较多三角函数名称,若能减少它们的个数,则式子可望简化.解 原式= (-sin α)tan α[-cot(α+π) ] (-cos α)tan(π-α) = (-sin α)tan α(-cot α)(-cos α)(-tan α)= sin α²cos αsin αcos α=1 .点评 将不同角化同角,不同名的三角函数化成同名的三角函数是三角变换中常用的方法.例2 若sin θcos θ= 18 ,θ∈(π4 ,π2),求cos θ-sin θ的值.分析 已知式为sin θ、cos θ的二次式,欲求式为sin θ、cos θ的一次式,为了运用条件,须将cos θ-sin θ进行平方.解 (cos θ-sin θ)2=cos 2θ+sin 2θ-2sin θcos θ=1- 14 = 34.∵θ∈(π4 ,π2),∴ cos θ<sin θ.∴cos θ-sin θ= -32. 变式1 条件同例, 求cos θ+sin θ的值. 变式2 已知cos θ-sin θ= -32, 求sin θcos θ,sin θ+cos θ的值. 点评 sin θcos θ,cos θ+sin θ,cos θ-sin θ三者关系紧密,由其中之一,可求其余之二.例3 已知tan θ=3.求cos 2θ+sin θcos θ的值.分析 因为cos 2θ+sin θcos θ是关于sin θ、cos θ的二次齐次式,所以可转化成tan θ的式子.解 原式=cos 2θ+sin θcos θ= cos 2θ+sin θcos θ cos 2θ+sin 2θ = 1+tan θ 1+tan 2θ = 25 . 点评 1.关于cos θ、sin θ的齐次式可转化成tan θ的式子.2.注意1的作用:1=sin 2θ+cos 2θ等.【知能集成】1.在三角式的化简,求值等三角恒等变换中,要注意将不同名的三角函数化成同名的三角函数.2.注意1的作用:如1=sin 2θ+cos 2θ.3.要注意观察式子特征,关于sin θ、cos θ的齐次式可转化成关于tan θ的式子. 4.运用诱导公式,可将任意角的问题转化成锐角的问题 . 【训练反馈】1.sin600°的值是 ( )22222. sin(π4+α)sin (π4-α)的化简结果为 ( )A .cos2αB .12cos2αC .sin2αD . 12sin2α3.已知sinx+cosx=15,x ∈[0,π],则tanx 的值是 ( )A .-34B .- 43C .±43D .-34或-434.已知tan α=-13,则12sin αcos α+cos 2α = .5.1-2sin10°cos10° cos10°-1-cos 2170°的值为 .6.证明1+2sin αcos α cos 2α-sin 2α =1+ tan α1-tan α.7.已知2sin θ+cos θ sin θ-3cos θ=-5,求3cos2θ+4sin2θ的值.8.已知锐角α、β、γ满足sin α+sin γ=sin β,cos α-cos γ=cos β,求α-β的值.第3课 两角和与两角差的三角函数(一)【考点指津】掌握两角和与两角差的正弦、余弦、正切公式,掌握二倍角的正弦、余弦、正切公式,能运用化归思想(将不同角化成同角等)解题. 【知识在线】1.cos105°的值为 ( ) A .6 + 2 4 B . 6 - 2 4 C . 2 - 6 4 D . - 6 - 242.对于任何α、β∈(0,π2),sin(α+β)与sin α+sin β的大小关系是 ( ) A .sin(α+β)>sin α+sin β B .sin(α+β)<sin α+sin β C .sin(α+β)=sin α+sin β D .要以α、β的具体值而定 3.已知π<θ<3π2,sin2θ=a ,则sin θ+cos θ等于 ( )A . a+1B .- a+1C . a 2+1D .±a 2+1 4.已知tan α=13,tan β=13,则cot(α+2β)= .5.已知tanx=12,则cos2x= .【讲练平台】例1 已知sin α-sin β=- 13 ,cos α-cos β=12,求cos(α-β)的值 .分析 由于cos(α-β)=cos αcos β+sin αsin β的右边是关于sin α、cos α、sin β、cosβ的二次式,而已知条件是关于sin α、sin β、cos α、cos β的一次式,所以将已知式两边平方.解 ∵sin α-sin β=-13, ① cos α-cos β= 12, ②①2 +②2 ,得2-2cos(α-β)= 1336. ∴cos(α-β)=7259. 点评 审题中要善于寻找已知和欲求的差异,设法消除差异.例2 求 2cos10°-sin20°cos20° 的值 .分析 式中含有两个角,故需先化简.注意到10°=30°-20°,由于30°的三角函数值已知,则可将两个角化成一个角.解 ∵10°=30°-20°,∴原式=2cos(30°-20°)-sin20°cos20°=2(cos30°cos20°+sin30°sin20°)-sin20° cos20°= 3 cos30°cos20°= 3 .点评 化异角为同角,是三角变换中常用的方法.例3 已知:sin(α+β)=-2sin β.求证:tan α=3tan(α+β).分析 已知式中含有角2α+β和β,而欲求式中含有角α和α+β,所以要设法将已知式中的角转化成欲求式中的角.解 ∵2α+β=(α+β)+α,β=(α+β)-α,∴sin [(α+β)+α]=-2sin [(α+β)-α].∴sin(α+β)cos α+cos(α+β)sin α=-2sin(α+β)cos α+2cos(α+β)sin α. 若cos(α+β)≠0 ,cos α≠0,则3tan(α+β)=tan α.点评 审题中要仔细分析角与角之间的关系,善于运用整体思想解题,此题中将α+β看成一个整体 【知能集成】审题中,要善于观察已知式和欲求式的差异,注意角之间的关系;整体思想是三角变换中常用的思想. 【训练反馈】1.已知0<α<π2<β<π,sin α=35,cos(α+β)=-45,则sin β等于 ( )A .0B .0或2425C . 2425D .0或-24252.sin7°+cos15°sin8°cos7°-sin15°sin8°的值等于 ( )A .2+ 3B .2+ 32 C .2-3 D . 2- 3 23. △ABC 中,3sinA+4cosB=6,4sinB+3cosA=1,则∠C 的大小为 ( )A .π6 B . 5π6 C . π6或5π6 D . π3或2π34.若α是锐角,且sin(α-π6)= 13,则cos α的值是 . 5.cos π7cos 2π7cos 3π7= .6.已知tan θ=12,tan φ=13,且θ、φ都是锐角.求证:θ+φ=45°.7.已知cos(α-β)=-45,cos(α+β)= 45,且(α-β)∈(π2,π),α+β∈(3π2,2π),求cos2α、cos2β的值.8. 已知sin(α+β)= 12,且sin(π+α-β)= 13,求tan αtan β.第4课 两角和与两角差的三角函数(二)【考点指津】掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式;能灵活运用和角、差角、倍角公式解题. 【知识在线】 求下列各式的值1.cos200°cos80°+cos110°cos10°= . 2.12(cos15°+ 3 sin15°)= . 3.化简1+2cos 2θ-cos2θ= .4.cos(20°+x)cos(25°-x)-cos(70°-x)sin(25°-x)= . 5.11-tan θ- 11+tan θ= . 【讲练平台】例1 求下列各式的值(1)tan10°+tan50°+ 3 tan10°tan50°;(2) ( 3 tan12°-3)csc12° 4cos 212°-2.(1)解 原式=tan(10°+50°)(1-tan10°tan50°)+ 3 tan10°tan50°= 3 . (2)分析 式中含有多个函数名称,故需减少函数名称的个数,进行切割化弦.解 原式= ( 3 ·sin12°cos12°-3)1sin12°2 cos24° =︒︒-︒24cos 212sin 312cos 3=︒︒-︒=︒︒︒︒-︒48sin 21)12cos 2312sin 21(3224cos 12cos 12sin 212cos 312sin 3 =.3448sin )6012sin(34-=︒︒-︒点评 (1)要注意公式的变形运用和逆向运用,注意公式tanA+tanB=tan(A+B)(1-tanAtanB ),asinx+bsinx=22b a +sin(x+φ)的运用;(2)在三角变换中,切割化弦是常用的变换方法.例2 求证1+sin4θ-cos4θ2 tan θ = 1+sin4θ+cos4θ1-tan 2θ.分析 三角恒等式的证明可从一边开始,证得它等于另一边;也可以分别从两边开始,证得都等于同一个式子;还可以先证得另一等式,从而推出需要证明的等式.由欲证的等式可知,可先证等式1+sin4θ-cos4θ 1+sin4θ+cos4θ =2tan θ1-tan 2θ ,此式的右边等于tan2θ,而此式的左边出现了“1-cos4θ”和“1+cos4θ”,分别运用升幂公式可出现角2θ,sin4θ用倍角公式可出现角2θ,从而等式可望得证.证略点评 注意倍角公式cos2α=2cos 2α-1,cos2α=1-2sin 2α的变形公式:①升幂公式1+cos2α=2cos 2α,1-cos2α=2sin 2α,②降幂公式sin 2α= 1-cos2α2 ,cos 2α= 1+cos2α2的运用;三角恒等式证明的方法:从一边推得另一边;左右归一,先证其等价等于等式;分析法等.例3 已知cos(π4+x)= 35,17π12<x < 7π4,求sin2x +sin2xtanx 1-tanx的值.解 原式= sin2x (1+tanx ) 1-tanx =sin2x ³tan π4+tanx 1-tan π4tanx=sin2xtan (π4+x )= -cos [2(x+π4)]tan(x+π4)= -[2cos 2(x+ )-1]tan (π4+x )∵17π12<x < 7π4, ∴ 5π3<x+π4<2π. ∴sin(π4+x) = -45 ,∴tan (π4+x )=- 43.∴原式 = -2875.点评 (1)注意两角和公式的逆用;(2)注意特殊角与其三角函数值的关系,如1=tan π4等;(3)注意化同角,将所求式中的角x 转化成已知条件中的角x+π4. 【知能集成】在三角变换中,要注意三角公式的逆用和变形运用,特别要注意如下公式: tanA+tanB=tan(A+B)[1-tanAtanB ];asinx+bcosx=22b a sin(x+φ)及升幂、降幂公式的运用. 【训练反馈】1.cos75°+cos15°的值等于 ( ) A . 6 2 B - 6 2 C . - 2 2 D . 2 2 2.a=2 2(sin17°+cos17°),b=2cos 213°-1,c= 2 2,则 ( ) A .c <a <b B . b <c <a C . a <b <c D . b <a <c 3.化简1+sin2θ-cos2θ1+sin2θ+cos2θ= .4.化简sin(2α+β)-2sin αcos(α+β)= .5.在△ABC 中,已知A 、B 、C 成等差数列,则tan A 2+tan C 2+ 3 tan A 2tan C2的值为 .6.化简sin 2A+sin 2B+2sinAsinBcos(A+B).7 化简sin50°(1+ 3 tan10°).8 已知sin(α+β)=1,求证:sin(2α+β)+sin(2α+3β)=0.第5课 三角函数的图象与性质(一)【考点指津】了解正弦函数、余弦函数、正切函数的图象和性质,能运用数形结合的思想解决问题,能讨论较复杂的三角函数的性质. 【知识在线】1.若 3 +2cosx <0,则x 的范围是 . 2.下列各区间,使函数y=sin(x+π)的单调递增的区间是 ( )A .[π2,π]B . [0,π4]C . [-π,0]D . [π4,π2]3.下列函数中,周期为π2的偶函数是 ( )A .y=sin4xB . y=cos 22x -sin 22xC . y=tan2xD . y=cos2x 4.判断下列函数的奇偶性(1)y=xsinx+x 2cos2x 是 函数;(2)y=|sin2x |-xcotx 是 函数; (3)y=sin(7π2+3x)是 函数.5.函数f(x)=cos(3x+φ)是奇函数,则φ的值为 . 【讲练平台】 例1 (1)函数y=xx sin 21)tan 1lg(--的定义域为(2)若α、β为锐角,sin α<cos β,则α、β满足 (C )A .α>βB .α<βC .α+β<π2D . α+β>π2分析 (1)函数的定义域为⎩⎨⎧>>0.2sinx -10,tanx -1 (*) 的解集,由于y=tanx 的最小正周期为π,y=sinx 的最小正周期为2π, 所以原函数的周期为2π,应结合三角函数y=tanx和y=sinx 的图象先求出(-π2, 3π2)上满足(*)的x 的范围,再据周期性易得所求定义域为{x |2k π-π2<x <2k π+π6 ,或2k π+ 5π6< x <2k π+5π4 ,k ∈Z} .分析(2)sin α、cos β不同名,故将不同名函数转化成同名函数, cos β转化成sin(π2-β),运用y=sinx 在[0,π2]的单调性,便知答案为C . 点评 (1)讨论周期函数的问题,可先讨论一个周期内的情况,然后将其推广;(2)解三角不等式,要注意三角函数图象的运用;(3)注意运用三角函数的单调性比较三角函数值的大小.例2 判断下列函数的奇偶性:(1)y=x x x cos 1cos sin +-; (2)y=.cos sin 1cos sin 1xx xx +--+ 分析 讨论函数的奇偶性,需首先考虑函数的定义域是否关于原点对称,然后考f(-x)是否等于f(x)或-f(x) .解 (1)定义域关于原点对称,分子上为奇函数的差,又因为1+cosx=2cos 2 x2,所以分母为偶函数,所以原函数是奇函数.(2)定义域不关于原点对称(如x=-π2,但x ≠π2),故不是奇函数,也不是偶函数.点评 将函数式化简变形,有利于判断函数的奇偶性.例3 求下列函数的最小正周期:(1)y=sin(2x -π6)sin(2x+ π3) ;(2)y= .)32cos(2cos )32sin(2sin ππ++++x x x x 分析 对形如y=Asin(ωx+φ)、y=Acos(ωx+φ)和y=Atan(ωx+φ)的函数,易求出其周期,所以需将原函数式进行化简.解 (1)y=sin(2x -π6)sin(2x+ π2-π6)= 12sin(4x -π3), 所以最小正周期为2π4 = π2 . (2)y=23)2(sin 21)2(cos 2cos 23)2(cos 21)2(sin 2sin ⨯-⨯+⨯+⨯+x x x x x x =x x x x 2sin 232cos 232cos 232sin 23-+ =).62tan(2tan 331332tan 2tan 312tan 3π+=-+=-+x x x x x ∴是小正周期为π2. 点评 求复杂函数的周期,往往需先化简,其化简的目标是转化成y=Asin(ωx+φ)+k 或y=Acos(ωx+φ) +k 或y=Atan(ωx+φ) +k 的形式(其中A 、ω、φ、k 为常数,ω≠0).例4 已知函数f(x)=5sinxcosx -53cos 2x+235 (x ∈R) . (1)求f(x)的单调增区间;(2)求f(x)图象的对称轴、对称中心.分析 函数表达式较复杂,需先化简.解 f(x)= 52sin2x -53³1+cos2x 2+235 =5sin(2x -π3). (1)由2k π-π2≤2x -π3≤2k π+π2,得[k π-π12 ,k π+5π12](k ∈Z )为f(x)的单调增区间.(2)令2x - π3=k π+π2,得x= k 2π+5π12 (k ∈Z ),则x= k 2π+5π12(k ∈Z )为函数y=f(x)图象的对称轴所在直线的方程,令2x -π3 =k π,得x=k 2π+π6(k ∈Z ),∴ y=f(x)图象的对称中心为点(k 2π+π6,0)(k ∈Z ). 点评 研究三角函数的性质,往往需先化简,以化成一个三角函数为目标;讨论y=Asin(ωx+φ)(ω>0)的单调区间,应将ωx+φ看成一个整体,设为t ,从而归结为讨论y=Asint 的单调性.【知能集成】讨论较复杂的三角函数的性质,往往需要将原函数式进行化简,其目标为转化成同一个角的同名三角函数问题.讨论三角函数的单调性,解三角不等式,要注意数形结合思想的运用.注意函数性质在解题中的运用:若一个函数为周期函数,则讨论其有关问题,可先研究在一个周期内的情形,然后再进行推广;若要比较两个角的三角函数值的大小,可考虑运用三角函数的单调性加以解决.【训练反馈】1.函数y=lg(2cosx -1)的定义域为 ( )A .{x |-π3<x <π3}B .{x |-π6<x <π6} C .{x |2k π-π3<x <2k π+π3,k ∈Z} D .{x |2k π-π6<x <2k π+π6,k ∈Z} 2.如果α、β∈(π2,π),且tan α<cot β,那么必有 ( ) A .α<β B . β<α C . α+β<3π2 D . α+β>3π23.若f(x)sinx 是周期为π的奇函数,则f(x)可以是 ( )A .sinxB . cosxC . sin2xD . cos2x4.下列命题中正确的是 ( )A .若α、β是第一象限角,且α>β,且sin α>sin βB .函数y=sinxcotx 的单调递增区间是(2k π-π2,2k π+π2),k ∈Z C .函数y=1-cos2x sin2x的最小正周期是2π D .函数y=sinxcos2φ-cosxsin2φ的图象关于y 轴对称,则φ=k π2+π4,k ∈Z 5.函数y=sin x 2+cos x 2在(-2π,2π)内的递增区间是 . 6.y=sin 6x+cos 6x 的周期为 .7.比较下列函数值的大小:(1)sin2,sin3,sin4;(2)cos 2θ,sin 2θ,tan 2θ(π4<θ<π2).8.设f(x)=sin(k 5x+π3) (k ≠0) . (1)写出f(x)的最大值M ,最小值m ,以及最小正周期T ;(2)试求最小的正整数k ,使得当自变量x 在任意两个整数间(包括整数本身)变化时,函数f(x)至少有一个M 与m .第6课 三角函数的图象与性质(二)【考点指津】了解正弦函数、余弦函数、正切函数的图象,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的图象,理解参数A 、ω、φ的物理意义.掌握将函数图象进行对称变换、平移变换、伸缩变换.会根据图象提供的信息,求出函数解析式.【知识在线】1.将y=cosx 的图象作关于x 轴的对称变换,再将所得的图象向下平移1个单位,所得图象对应的函数是 ( )A .y=cosx+1B .y=cosx -1C .y=-cosx+1D .y=-cosx -12.函数f(x)=sin3x 图象的对称中心的坐标一定是 ( )A . (12k π,0), k ∈ZB .(13k π,0), k ∈Z C .(14k π,0), k ∈Z D .(k π,0),k ∈Z 3.函数y=cos(2x+π2)的图象的一个对称轴方程为 ( )A .x=--π2B .x=- π4C .x= π8D .x=π 4.为了得到函数y=4sin(3x+π4),x ∈R 的图象,只需把函数y=3sin(x+π4)的图象上所有点( ) A .横坐标伸长到原来的3倍,纵坐标不变B .横坐标缩短到原来的13倍,纵坐标不变 C .纵坐标伸长到原来的3倍,横坐标不变D .纵坐标缩短到原来的13倍,横坐标不变. 5.要得到y=sin(2x - π3)的图象,只需将y=sin2x 的图象 ( )A .向左平移π3个单位B . 向右平移π3个单位 C .向左平移π6个单位 D . 向右平移π6个单位 【讲练平台】例1 函数y=Asin (ωx+φ)(A >0,ω>0,|φ|<π2)的最小值为-2,其图象相邻的最高点和最低点横坐标差3π,又图象过点(0,1),求这个函数的解析式.分析 求函数的解析式,即求A 、ω、φ的值.A 与最大、最小值有关,易知A=2,ω与周期有关,由图象可知,相邻最高点与最低点横坐标差3π,即T 2=3π.得 T=6π,所以ω=13.所以y=2sin(x 3+φ),又图象过点(0,1),所以可得关于φ的等式,从而可将φ求出,易得解析式为y=2sin(x 3 +π6). 解略点评 y=Asin(ωx+φ)中的A 可由图象的最高点、最低点的纵坐标的确定,ω由周期的大小确定,φ的确定一般采用待定系数法,即找图像上特殊点坐标代入方程求解,也可由φ的几何意义(图象的左右平移的情况)等确定(请看下例).例2 右图为某三角函数图像的一段(1)试用y=Asin (ωx+φ)型函数表示其解析式;(2)求这个函数关于直线x=2π对称的函数解析式. 解:(1)T= 13π3- π3 =4π.∴ω=2πT = 12 .又A=3,由图象可知 所给曲线是由y=3sin x 2沿x 轴向右平移 π3而得到的. ∴解析式为 y=3sin 12 (x -π3). (2)设(x ,y)为y=3sin(12 x -π6 )关于直线x=2π对称的图像上的任意一点,则该点关于直线x=2π的对称点应为(4π-x ,y),故与y=3sin(12 x -π6)关于直线x=2π对称的函数解析式是y=3sin [12(4π-x)- π6]=-3sin(12 x +π6). 点评 y=sin(ωx+φ)(ω>0)的图象由y=sin ωx 的图象向左平移(φ>0)或向右平移(φ<0)|φ|ω个单位.特别要注意不能搞错平移的方向和平移的单位数量.求一个函数的图象关于一条直线对称图象的函数解析式时,要注意解几知识的运用.例3 已知函数y=12cos 2x+ 3 2sinxcosx+1 (x ∈R). (1)当y 取得最大值时,求自变量x 的集合;(2)该函数图象可由y=sinx(x ∈R)的图象经过怎样的平移和伸缩变换得到?解 (1)y= 12²1+cos2x 2 + 3 2²12 sin2x +1= 12sin(2x+π6)+ 54. 当2x+π6 =2k π+π2 ,即x=k π+π6,k ∈Z 时,y max = 74. (2)由y=sinx 图象左移π6个单位,再将图象上各点横坐标缩短到原来的12(纵坐标不变),其次将图象上各点纵坐标缩短到原来的12(横坐标不变),最后把图象向上平移 54个单位即可.思考 还有其他变换途径吗?若有,请叙述.点评 (1)回答图像的变换时,不能省略“纵坐标不变”、“横坐标不变”等术语.(2)周期变换后的左右平移要注意平移单位的变化.【知能集成】已知三角函数y=Asin(ωx+φ)的图象,欲求其解析式,必须搞清A 、ω、φ和图象的哪些因素有关;y=sin ωx 和y=sin(ωx+φ)两图象间平移变换的方向和平移的单位数量极易搞错,解题时要倍加小心.【训练反馈】1.函数y= 12sin(2x+θ)的图象关于y 轴对称的充要条件是 ( ) A .θ=2k π+π2 B .θ=k π+π2C .θ=2k π+πD .θ=k π+π(k ∈Z) 2.先将函数y=sin2x 的图象向右平移π3个单位长度,再将所得图象作关于y 轴的对称变换,则所得函数图象对应的解析式为 ( )A .y=sin(-2x+π3 )B .y=sin(-2x -π3) C .y=sin(-2x+ 2π3 ) D . y=sin(-2x -2π3)3.右图是周期为2π的三角函数y=f(x)的图象,那么f(x)可以写成 ( )A .sin(1+x)B . sin(-1-x)C .sin(x -1)D . sin(1-x)4.y=tan(12x -π3)在一个周期内的图象是 ( )5.已知函数y=2cosx(0≤x ≤2π)的图象与直线y=2围成一个封闭的平面图形,则该封闭图形面积是 .6.将y=sin(3x - π6)的图象向(左、右) 平移 个单位可得y=sin(3x+π3)的图像. 7.已知函数y=Asin(ωx+φ),在同一个周期内,当x=π9时取得最大值12,当x=4π9时取得最小值- 12,若A >0,ω>0,|φ|<π2,求该函数的解析表达式.8.已知函数y= 3 sinx+cosx ,x ∈R .(1)当y 取得最大值时,求自变量x 的取值集合;(2)该函数的图象可由y=sinx(x ∈R)的图象经过怎样的平移和伸缩变换得到?-B A C D9.如图:某地一天从6时到14时的温度变化曲线近似满足函数y=Asin(ωx+φ)+b .(1)求这段时间的最大温差; (2)写出这段曲线的函数解析式.第7课 三角函数的最值【考点指津】掌握基本三角函数y=sinx 和y=cosx 的最值,及取得最值的条件;掌握给定区间上三角函数的最值的求法;能运用三角恒等变形,将较复杂的三角函数的最值问题转化成一个角的一个三角函数的最值问题.【知识在线】1.已知(1)cos 2x=1.5 ;(2)sinx -cosx=2.5 ;(3)tanx+1tanx =2 ;(4)sin 3x =- π4.上述四个等式成立的是 ( )A .(1)(2)B .(2)(4)C .(3)(4)D .(1)(3)2.当x ∈R 时,函数y=2sin(2x+π12)的最大值为 ,最小值为 ,当x ∈〔-5π24, π24〕时函数y 的最大值为 ,最小值为 . 3.函数y=sinx - 3 cosx 的最大值为 ,最小值为 .4.函数y=cos 2x+sinx+1的值域为 .【讲练平台】例1 求函数f(x)=sin 2x+2sinxcosx+3cos 2x 的最大值,并求出此时x 的值. 分析 由于f (x )的表达式较复杂,需进行化简.解 y=sin 2x+cos 2x+sin2x+1+cos2x=sin2x+cos2x+2= 2 sin(2x+π4)+2 当2x+π4=2k π+π2, 即x=k π+π8 (k ∈Z)时,y max = 2 +2 .点评 要熟练掌握y=asinx+bcosx 类型的三角函数最值的求法,asinx+bcosx=a 2+b 2 sin (x+φ).例2 若θ∈[-π12, π12],求函数y=cos(π4+θ)+sin2θ的最小值. 分析 在函数表达式中,含有两个角和两个三角函数名称,若能化成含有一个角和一个三角函数名称的式子,则问题可得到简化.解 y=cos(π4+θ)-cos [2(θ+π4)]=cos(π4+θ)-[2cos 2(θ+π4)-1] =-2cos 2(θ+π4)+cos(π4+θ)+1 =-2[cos 2(θ+π4)-12cos(θ+π4)]+1 =-2[cos(θ+π4)-14]2+98. ∵θ∈[-π12, π12], ∴θ+π4∈[π6,π3]. ∴12≤cos(θ+π4)≤ 3 2, ∴y 最小值 = 3 -12 . 点评 (1)三角函数表达式转化成一个角的一个三角函数的形式(即f(sinx)或g(cosx)),是常见的转化目标;(2)形如y=f(sinx)或y=g(cosx)的最值,常运用sinx ,cosx 的有界性,通过换元转化成y=at 2+bt+c 在某区间上的最值问题;(3)对于y= Asin(ωx+φ)或y=Acos(ωx+φ)的最值的求法,应先求出t=ωx+φ的值域,然后再由y=Asint 和y=Acost 的单调性求出最值.例3 试求函数y=sinx+cosx+2sinxcosx+2的最大值和最小值.分析 由于sinx+cosx 与sinxcosx 可以相互表示,所以令sinx+cosx=t ,则原三角函数的最值问题转化成y=at 2+bt+c 在某区间上的最值问题.解 令t=sinx+cosx ,则y=t+t 2+1=(t+12)2+34,且t ∈[- 2 , 2 ], ∴y min =34 ,y max =3+ 2 .点评 注意sinx+cosx 与sinxcosx 的关系,运用换元法将原三角函数的最值问题转化成y=at 2+bt+c 在某个区间上的最值问题.【知能集成】较复杂的三角函数的最值问题,往往通过需要恒等变形,转化成形如y=f(sinx)或y=g(cosx)型或y= Asin(ωx+φ)+k 型的三角函数的最值问题,运用三角函数的有界性、单调性求三角函数的最值.用换元法解题,特别要注意sinx+tcosx 与sinxcosx 的关系,令sinx+cosx=t ,则sinxcosx=t 2-12. 【训练反馈】1.函数y =12+sinx+cosx 的最大值是 ( ) A . 2 2 -1 B . 2 2 +1 C . 1- 2 2 D . -1- 2 22.若2α+β=π,则y=cos β-6sin α的最大值和最小值分别为 ( )A .7,5B . 7,-112 C . 5,-112D . 7,-5 3.当0≤x ≤π2时,函数f(x)= sinx+1 cosx+1的 ( )A .最大值为2,最小值为12B .最大值为2,最小值为0C .最大值为2,最小值不存在D .最大值不存在,最小值为04.已知关于x 的方程cos 2x -sinx+a=0,若0<x <π2时方程有解,则a 的取值范围是( ) A .[-1,1] B .(-1,1) C .[-1,0] D .(-∞,-54) 5.要使sin α- 3 cos α= 4m -6 4-m有意义,则m 的取值范围是 . 6.若f(x)=2sin ωx(0<ω<1),在区间[0,π3]上的最大值为 2 ,则ω= . 三、解答题7.y=sinxcosx+sinx+cosx ,求x ∈[0, π3]时函数y 的最大值.8.已知函数f(x)=-sin 2x -asinx+b+1的最大值为0,最小值为-4,若实数a >0,求a ,b的值.9.已知函数f(x)=2cos 2x+ 3 sin2x+a ,若x ∈[0,π2],且|f(x)|<2,求a 的取值范围.第8课 解斜三角形【考点指津】掌握正弦定理、余弦定理,能根据条件,灵活选用正弦定理、余弦定理解斜三角形.能根据确定三角形的条件,三角形中边、角间的大小关系,确定解的个数.能运用解斜三角形的有关知识,解决简单的实际问题.【知识在线】1.△ABC 中,若sinAsinB <cosAcosB ,则△ABC 的形状为 .2.在△ABC 中,已知c=10,A=45°,C=30°,则b= .3.在△ABC 中,已知a= 2 ,b=2,∠B=45°,则∠A 等于 ( )A .30°B .60°C .60°或120°D .30°或150°4.若三角形三边之比为3∶5∶7,则这个三角形的最大内角为 ( )A .60°B . 90°C . 120°D . 150°5.货轮在海上以40千米/小时的速度由B 到C 航行,航向的方位角∠NBC=140°,A 处有灯塔,其方位角∠NBA=110°,在C 处观测灯塔A 的方位角∠N ′CA=35°,由B 到C需航行半小时,则C 到灯塔A 的距离是 ( )A .10 6 kmB .10 2 kmC .10( 6 - 2 ) kmD .10( 6 + 2 )km【讲练平台】 例1 在△ABC 中,已知a=3,c=3 3 ,∠A=30°,求∠C 及分析 已知两边及一边的对角,求另一边的对角,用正弦定理.注意已知两边和一边的对角所对应的三角形是不确定的,所以要讨论.解 ∵∠A=30°,a <c ,c ²sinA=3 3 2<a , ∴此题有两解. sinC=csinA a = 33³12 3 = 3 2, ∴∠C=60°,或∠C=120°. ∴当∠C=60°时,∠B=90°,b=a 2+b 2 =6.当∠C=120°时,∠B=30°,b=a=3.点评 已知两边和一边的对角的三角形是不确定的,解答时要注意讨论. 例2 在△ABC 中,已知acosA=bcosB ,判断△ABC 的形状.分析 欲判断△ABC 的形状,需将已知式变形.式中既含有边也含有角,直接变形难以进行,若将三角函数换成边,则可进行代数变形,或将边换成三角函数,则可进行三角变换.解 方法一:由余弦定理,得 a ²(b 2+c 2—a 22bc )=b ²(a 2+c 2—b 22ac ),∴a 2c 2-a 4-b 2c 2+b 4=0 .∴(a 2-b 2)(c 2-a 2-b 2)=0 .∴a 2-b 2=0,或c 2-a 2-b 2=0.∴a=b ,或c 2=a 2+b 2.∴△ABC 是等腰三角形或直角三角形.方法二:由acosA=bcosB ,得 2RsinAcosA=2RsinBcosB .∴sin2A=sin2B . ∴2A=2B ,或2A=π-2B . ∴A=B ,或A+B=π2. ∴△ABC 为等腰三角形或直角三角形.点评 若已知式中既含有边又含有角,往往运用余弦定理或正弦定理,将角换成边或将边换成角,然后进行代数或三角恒等变换.例3 已知圆内接四边形ABCD 的边长分别为AB=2,BC=6,CD=DA=4,求四边形ABCD 的面积.分析 四边形ABCD 的面积等于△ABD 和△BCD 的 面积之和,由三角形面积公式及∠A+∠C=π可知,只需求出∠A 即可.所以,只需寻找∠A 的方程.解 连结BD ,则有四边形ABCD 的面积 S=S △ABD +S △CDB =12AB ²AD ²sinA+12BC ²CD ²sinC . ∵A+C=180°, ∴sinA=sinC .故S=12(2³4+6³4)sinA=16sinA . 在△ABD 中,由余弦定理,得BD 2=AB 2+AD 2-2AB ²ADcosA=20-16cosA .在△CDB 中,由余弦定理,得BD 2=CB 2+CD 2-2CB ²CD ²cosC=52-48cosC .∴20-16cosA=52-48cosC .∵cosC=-cosA , ∴64cosA=-32,cosA=- 12. ² AB CD O又∵0°<A <180°,∴A=120°. 故S=16sin120°=8 3 .点评 注意两个三角形的公用边在解题中的运用.例4 墙壁上一幅图画,上端距观察者水平视线b 下端距水平视线a 米,问观察者距墙壁多少米时,才能使观察者上、下视角最大. 分析 如图,使观察者上下视角最大,即使∠APB最大,所以需寻找∠APB 的目标函数.由于已知有关边长,所以考虑运用三角函数解之.解 设观察者距墙壁x 米的P 处观察,PC ⊥AB ,AC=b ,BC=a(0<a <b),则∠APB=θ为视角. y=tan θ=tan(∠APC -∠BPC)= tan ∠APC —tan ∠BPC 1+ tan ∠APC ²tan ∠BPC =xa xb x a x b ⋅+-1 =b —a x+ab x ≤b —a 2ab , 当且仅当x= ab x , 即x=ab 时,y 最大.由θ∈(0,π2)且y=tan θ在(0,π2)上为增函数,故当且仅当x=ab 时视角最大. 点评 注意运用直角三角形中三角函数的定义解决解三角形的有关问题.【知能集成】运用正弦定理或余弦定理,有时将有关式子转化成仅含有边的或仅含有角的式子,然后进行代数或三角恒等变形,问题往往可以得解.在解决较复杂的几何问题时,要注意两个三角形公用边的运用.【训练反馈】1.△ABC 中,tanA+tanB+ 3 = 3 tanAtanB ,sinAcosA= 3 4,则该三角形是 ( ) A .等边三角形 B .钝角三角形C .直角三角形D .等边三角形或直角三角形2.在△ABC 中,已知(b+c )∶(c+a)∶(a+b)=4∶5∶6,则此三角形的最大内角为 ( )A .120°B .150°C .60°D .90°3.若A 、B 是锐角△ABC 的两个内角,则点P (cosB -sinA ,sinB -cosA )在 ( )A .第一象限B .第二象限C .第三象限D .第四象限4.在△ABC 中,若sinA ∶sinB ∶sinC=5∶12∶13,则cosA= .5.在△ABC 中,3sinA+4cosB=6,4sinB+3cosA=1,则∠C 的大小为 .6.已知a 、b 、c 是△ABC 中∠A 、∠B 、∠C 的对边,S 是△ABC 的面积,若a=4,b=5,s=5 3 ,求c 的长度.7.在△ABC 中,sin 2A -sin 2B+sin 2C=sinAsinC ,试求角B 的大小.8.半圆O 的直径为2,A 为直径延长线上一点,且OA=2,B 为半圆上任意一点,以AB 为边向外作等边△ABC ,问点在什么位置时,四边形OACB 大面积.【单元检测】单元练习(三角函数)(总分100分,测试时间100分钟)一、选择题:本大题共12小时,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若角α满足sin2α<0,cos α-sin α<0,则α在 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.若f(x)sinx 是周期为π的偶函数,则f(x)可以是 ( ) A .sin2x B . cosx C . sinx D . cox2x3.若sinx=m -3m+5,cosx=4-2 m m+5,且x ∈[π2,π],则m 的取值范围为 ( )A .3<m <9B . m=8C . m=0D . m=0或m=8 4.函数f(x)=log 13(sin2x+cos2x)的单调递减区间是 ( )A .(k π-π4,k π+π8)(k ∈Z)B .(k π-π8,k π+π8)(k ∈Z)C .(k π+π8,k π+3π8)(k ∈Z)D .(k π+π8,k π+ 5π8)(k ∈Z)5.在△ABC 中,若2cosBsinA=sinC ,则△ABC 的形状一定是 ( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等边三角形 6.△ABC 中,∠A=60°,b=1,其面积为 3 ,则a+b+csinA+sinB+sinC 等于 ( )A .3 3B .239 3C .26 3 3D .3927.已知函数y= 2 cos(ωx+φ)(0<φ<π2)在一个周期内的函数图象如图,则 ( )A .T=6π5,φ= π4B .T=3π2,φ=π4C .T=3π,φ=- π4D .T=3π,φ= π48.将函数y=f(x)sinx 的图象向右平移π4个单位后,再作关于x 轴的对称变换,得到函数y=1-2sin 2x 的图象,则f(x)可以是( ) A .cosx B .2cosx C .sinx D .2sinx9.函数f(x)=Msin(ωx+φ)(ω>0)在区间[a ,b ]上是增函数,且f(a)=-M ,f(b)=M ,则函数g(x)=Mcos(ωx+φ)在区间[a ,b ]上 ( ) A .是增函数 B .是减函数C .可以取得最大值MD .可以取得最小值-M10.在△ABC 中,∠C >90°,则tanA ²tanB 与1的关系适合 ( )A .tanA ²tanB >1 B .anA ²tanB <1C .tanA ²tanB=1D .不确定 11.设θ是第二象限角,则必有 ( A )A .cot θ2<tan θ2B .tan θ2<cot θ2C .sin θ2>cos θ2D .sin θ2<cos θ212.若sin α>tan α>cot α(-π2<α<π2},则α∈ ( )A .(-π2,- π4 )B .(-π4,0)C .(0,π4)D .(π4,π2)二、填空题:本大题共4小题,每小题3分,共12分,把答案填在题中横线上.13.sin390°+cos120°+sin225°的值是 . 14.sin39°-sin21°cos39°-cos21°= .15.已知sin θ+cos θ= 15,θ∈(0,π),cot θ的值是 .16.关于函数f(x)=4sin(2x+π3)(x ∈R),有下列命题:(1)y=f(x)的表达式可改写为y=4²cos(2x -π6);(2)y=f(x)是以2π为最小正周期的周期函数; (3)y=f(x)的图象关于点(-π6,0)对称; (4)y=f(x)的图象关于直线x=-π6对称. 其中正确的命题序号是 (注:把你认为正确的命题序号都填上).三、解答题:本大题共6小题,共52分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题8分)已知角α的顶点与直角坐标系的原点重合,始边在x 轴的正半轴上,终边经过点P (-1,2),求sin(2α+2π3)的值.18.(本小题8分)已知sin 22α+sin2αcos α-cos2α=1,α∈(0,π2),求sin α、tan α的值.19.(本小题9分)设f(x)=sin 2x -asin 2x2,求f(x)的最大值m .20.(本小题9分)已知α、β∈(0,π4),且3sin β=sin(2α+β),4tan α2 =1-tan 2α2,求α+β的值.。

相关文档
最新文档