利用二次函数求最值

合集下载

二次函数应用题最值解法技巧

二次函数应用题最值解法技巧

二次函数应用题最值解法技巧
求解二次函数的最值,是高中数学教学中常见的问题,也是学生学习,应对考试经常遇到的难题。

下面介绍一般常用的求解二次函数最值的技巧:
一、求图像上最大最小值的步骤:
1、分析二次函数的几个重要关于最值的性质。

首先,二次函数的最值总是取决于它的顶点,而顶点的横纵坐标即为二次函数的最值。

2、求得顶点的横纵坐标,可以采用求导法:二次函数y=ax2+bx+c的导数为y'=2ax+b,上下两个函数图像关于x轴对称,故用y'=0即可求得函数最大最小值点的横坐标值。

3、求得二次函数最值点的横坐标后,就可以替换到y=ax2+bx+c中,求出该点处函数的值,就是函数的最值。

二、求导法求解二次函数最值的注意事项:
1、求导时,需要用合适的表达式;
2、求导法仅适用于求确定数学函数的最大最小值,不能用来求未定义函数或参数函数的最大最小值;
3、求导时,需要判断函数在不同区域的极大值极小值情况,以及确定顶点的横纵坐标值。

以上内容是求解求解二次函数的最值的常用技巧,但是学生在复习时,还需要多积累二次函数求解最值的实际应用实例,熟悉不同情况下的求解步骤,加强对求解最值的熟练操作。

二次函数求最值的三种方法

二次函数求最值的三种方法

二次函数求最值的三种方法一、引言在学习高中数学时,我们会学到二次函数,并学习如何求出这个函数的最值。

这是一个非常重要的问题,因为在实际生活中,很多问题都可以用二次函数来描述,例如:投射物的运动轨迹、拱桥的设计等。

为了更好地理解和掌握这一知识点,本文将分析三种常见的方法来解决二次函数求最值的问题。

这些方法包括:1.利用二次函数的顶点公式求最值2.利用二次函数的导数公式求最值3.利用求根公式解二次方程求最值在下文中,我们将详细展开上述三种方法的整体流程并进行详细描述。

二、利用二次函数的顶点公式求最值二次函数的标准形式为:y=ax²+bx+c,其中a、b、c分别代表二次项系数、一次项系数和常数项。

我们可以通过求出顶点来确定二次函数的最值。

我们知道,对于标准二次函数,其顶点坐标为(-b/2a,f(-b/2a))。

使用这一公式,我们可以简单地找到二次函数的最值。

接下来,我们将细致地介绍如何使用顶点公式求二次函数的最值。

1. 将二次函数转换为标准形式。

我们有一个二次函数y=2x²+4x-5,我们可以将其转换为y=2(x²+2x)-5。

2. 现在,我们可以通过分离平方项来找到二次项x²的系数a和一次项x的系数b。

在本例中,二次项系数a为2,一次项系数b为4。

3. 接下来,我们可以使用顶点公式来计算出顶点的坐标。

根据公式,顶点的横坐标为-b/2a,若b为正数,顶点为函数的最小值,反之为最大值。

在本例中,由于一次项系数为正数,因此我们将使用公式-b/2a来计算横坐标。

(a) 横坐标=-b/2a=(-4)/(2*2)=-1(b) 将横坐标代入原函数中,可得纵坐标f(-1)=2*(-1)²+4*(-1)-5=-7(c) 顶点坐标为(-1,-7)。

4. 因其二次项系数为正数,所以这是一个开口向上的抛物线,并且其最小值为-7,在顶点的位置。

答案为f(x)=-7。

三、利用二次函数的导数公式求最值另一种方法是使用二次函数的导数公式来确定最值。

二次函数求最值的六种考法(含答案)

二次函数求最值的六种考法(含答案)

二次函数与最值的六种考法-重难点题型【题型1 二次函数中的定轴定区间求最值】【例1】(2021春•瓯海区月考)已知二次函数y=﹣x2+2x+4,关于该函数在﹣2≤x≤2的取值范围内,下列说法正确的是()A.有最大值4,有最小值0B.有最大值0,有最小值﹣4C.有最大值4,有最小值﹣4D.有最大值5,有最小值﹣4【解题思路】根据题目中的函数解析式和二次函数的性质,可以得到该函数的对称轴和开口方向,然后根据﹣2≤x≤2,即可得到相应的最大值和最小值,从而可以解答本题.【解答过程】解:∵二次函数y=﹣x2+2x+4=﹣(x﹣1)2+5,∴该函数的对称轴是直线x=1,函数图象开口向下,∴当﹣2≤x≤2时,x=1时取得最大值5,当x=﹣2时,取得最小值﹣4,故选:D.【变式1-1】(2020秋•龙沙区期中)当﹣1≤x≤3时,二次函数y=x2﹣3x+m最大值为5,则m=.【解题思路】根据题目中的函数解析式和二次函数的性质,可以求得m的值,本题得以解决.【解答过程】解:∵二次函数y=x2﹣3x+m=(x−32)2+m−94,∴该函数开口向上,对称轴为x=3 2,∵当﹣1≤x≤3时,二次函数y=x2﹣3x+m最大值为5,∴当x=﹣1时,该函数取得最大值,此时5=1+3+m,解得m=1,故答案为:1.【变式1-2】(2021•哈尔滨模拟)已知二次函数y=x2﹣4x+3,当自变量满足﹣1≤x≤3时,y的最大值为a,最小值为b,则a﹣b的值为.【解题思路】根据题目中的函数解析式和二次函数的性质,可以得到自变量满足﹣1≤x≤3时,x=﹣1时取得最大值,x=2时取得最小值,然后即可得到a、b的值,从而可以求得a﹣b的值,本题得以解决.【解答过程】解:∵二次函数y=x2﹣4x+3=(x﹣2)2﹣1,∴该函数图象开口向上,对称轴为直线x=2,∵当自变量满足﹣1≤x≤3时,y的最大值为a,最小值为b,∴当x=﹣1时,取得最大值,当x=2时,函数取得最小值,∴a=1+4+3=8,b=﹣1,∴a﹣b=8﹣(﹣1)=8+1=9,故答案为:9.【变式1-3】(2020秋•番禺区校级期中)若函数y=x2﹣6x+5,当2≤x≤6时的最大值是M,最小值是m,则M﹣m=.【解题思路】根据题意画出函数图象,即可由此找到m 和M 的值,从而求出M ﹣m 的值. 【解答过程】解:原式可化为y =(x ﹣3)2﹣4, 可知函数顶点坐标为(3,﹣4), 当y =0时,x 2﹣6x +5=0, 即(x ﹣1)(x ﹣5)=0, 解得x 1=1,x 2=5. 如图:m =﹣4,当x =6时,y =36﹣36+5=5,即M =5. 则M ﹣m =5﹣(﹣4)=9.故答案为9.【题型2 二次函数中的动轴定区间求最值】【例2】(2021•雁塔区校级模拟)已知二次函数y =mx 2+2mx +1(m ≠0)在﹣2≤x ≤2时有最小值﹣2,则m =( ) A .3B .﹣3或38C .3或−38D .﹣3或−38【解题思路】先求出对称轴为x =﹣1,分m >0,m <0两种情况讨论解答即可求得m 的值. 【解答过程】解:∵二次函数y =mx 2+2mx +1=m (x +1)2﹣m +1, ∴对称轴为直线x =﹣1, ①m >0,抛物线开口向上,x =﹣1时,有最小值y =﹣m +1=﹣2, 解得:m =3;②m <0,抛物线开口向下,∵对称轴为直线x =﹣1,在﹣2≤x ≤2时有最小值﹣2, ∴x =2时,有最小值y =4m +4m +1=﹣2,解得:m =−38; 故选:C .【变式2-1】(2021•瓯海区模拟)已知二次函数y =ax 2﹣4ax ﹣1,当x ≤1时,y 随x 的增大而增大,且﹣1≤x ≤6时,y 的最小值为﹣4,则a 的值为( ) A .1B .34C .−35D .−14【解题思路】根据二次函数y =ax 2﹣4ax ﹣1,可以得到该函数的对称轴,再根据当x ≤1时,y 随x 的增大而增大,可以得到a 的正负情况,然后根据﹣1≤x ≤6时,y 的最小值为﹣4,即可得到a 的值. 【解答过程】解:∵二次函数y =ax 2﹣4ax ﹣1=a (x ﹣2)2﹣4a ﹣1, ∴该函数的对称轴是直线x =2, 又∵当x ≤1时,y 随x 的增大而增大, ∴a <0,∵当﹣1≤x ≤6时,y 的最小值为﹣4, ∴x =6时,y =a ×62﹣4a ×6﹣1=﹣4, 解得a =−14, 故选:D .【变式2-2】(2021•章丘区模拟)已知二次函数y =2ax 2+4ax +6a 2+3(其中x 是自变量),当x ≥2时,y 随x 的增大而减小,且﹣2≤x ≤1时,y 的最小值为15,则a 的值为( ) A .1或﹣2B .−√2或√2C .﹣2D .1【解题思路】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向下a <0,然后由﹣2≤x ≤1时,y 的最小值为15,可得x =1时,y =15,即可求出a . 【解答过程】解:∵二次函数y =2ax 2+4ax +6a 2+3(其中x 是自变量), ∴对称轴是直线x =−4a2×2a=−1, ∵当x ≥2时,y 随x 的增大而减小, ∴a <0,∵﹣2≤x ≤1时,y 的最小值为15, ∴x =1时,y =2a +4a +6a 2+3=15, ∴6a 2+6a ﹣12=0, ∴a 2+a ﹣2=0,∴a =1(不合题意舍去)或a =﹣2. 故选:C .【变式2-3】(2021•滨江区三模)已知二次函数y =12(m ﹣1)x 2+(n ﹣6)x +1(m ≥0,n ≥0),当1≤x ≤2时,y 随x 的增大而减小,则mn 的最大值为( ) A .4B .6C .8D .494【解题思路】由二次函数解析式求出对称轴直线方程,分类讨论抛物线开口向下及开口向上的m ,n 的取值范围,将mn 转化为含一个未知数的整式求最值.【解答过程】解:抛物线y =12(m ﹣1)x 2+(n ﹣6)x +1的对称轴为直线x =6−nm−1, ①当m >1时,抛物线开口向上, ∵1≤x ≤2时,y 随x 的增大而减小, ∴6−n m−1≥2,即2m +n ≤8.解得n ≤8﹣2m , ∴mn ≤m (8﹣2m ),m (8﹣2m )=﹣2(m ﹣2)2+8, ∴mn ≤8.②当0≤m <1时,抛物线开口向下, ∵1≤x ≤2时,y 随x 的增大而减小, ∴6−n m−1≤1,即m +n ≤7,解得m ≤7﹣n , ∴mn ≤n (7﹣n ),n (7﹣n )=﹣(n −72)2+494, ∴mn ≤494, ∵0≤m <1, ∴此情况不存在.综上所述,mn 最大值为8. 故选:C .【题型3 二次函数中的定轴动区间求最值】【例3】(2020秋•马鞍山期末)当a﹣1≤x≤a时,函数y=x2﹣2x+1的最小值为1,则a的值为.【解题思路】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a﹣1≤x≤a时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【解答过程】解:当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a﹣1≤x≤a时,函数有最小值1,∴a﹣1=2或a=0,∴a=3或a=0,故答案为:0或3.【变式3-1】(2021•济南模拟)函数y=﹣x2+4x﹣3,当﹣1≤x≤m时,此函数的最小值为﹣8,最大值为1,则m的取值范围是()A.0≤m<2B.0≤m≤5C.m>5D.2≤m≤5【解题思路】根据题目中的函数解析式和二次函数的性质,可以求得m的取值范围.【解答过程】解:∵y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴该函数图象开口向下,对称轴是直线x=2,顶点坐标为(2,1),∴x=﹣1和x=5对应的函数值相等,∵当﹣1≤x≤m时,此函数的最小值为﹣8,最大值为1,当x=﹣1时,y=﹣8,∴2≤m≤5,故选:D.【变式3-2】(2021•宁波模拟)若二次函数y=ax2﹣x+2的图象经过点(2,﹣1),当t≤x≤2时,y有最大值3,最小值﹣1,则t的取值范围应是()A.﹣6≤t≤2B.t≤﹣2C.﹣6≤t≤﹣2D.﹣2≤t≤2【解题思路】根据二次函数y=ax2﹣x+2的图象经过点(2,﹣1),可以求得a的值,然后即可得到该函数的解析式,再根据二次函数的性质和当t≤x≤2时,y有最大值3,最小值﹣1,即可得到t的取值范围.【解答过程】解:∵二次函数y=ax2﹣x+2的图象经过点(2,﹣1),∴﹣1=a×22﹣2+2,解得a=−1 4,∴y=−14x2﹣x+2=−14(x+2)2+3,∴该函数的图象开口向下,对称轴是直线x=﹣2,当x=﹣2时,该函数取得最大值3,∵当t≤x≤2时,y有最大值3,最小值﹣1,当x=2时,y=﹣1,∴﹣6≤t≤﹣2,故选:C.【变式3-3】(2021•莱芜区二模)已知二次函数y=(x+1)2﹣4,当a≤x≤b且ab<0时,y的最小值为2a,最大值为2b,则a+b的值为()A.2√3B.−72C.√3−2D.0【解题思路】根据a的取值范围分﹣1≤a<0,﹣b﹣2≤a<﹣1,a<﹣b﹣2三种情况讨论,求出满足题目条件的情况即可.【解答过程】解:∵a≤x≤b且ab<0,∴a,b异号,∴a<0,b>0,由二次函数的对称性,b关于对称轴的对称点为﹣b﹣2,若﹣1≤a<0,则(a+1)2﹣4=2a,解得a=−√3(舍),若﹣b﹣2≤a<﹣1,则﹣4=2a,a=﹣2,且(b+1)2﹣3=2b,解得b=√3,∴a+b=√3−2,若a<﹣b﹣2,则2a=﹣4,a=﹣2,2b=(a+1)2﹣4=﹣3,∴b=−32(舍),故选:C.【题型4 二次函数中求线段最值】【例4】(2020春•海淀区校级期末)如图,抛物线y=x2+5x+4与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,连接AC,点P在线段AC上,过点P作x轴的垂线交抛物线于点Q,则线段PQ长的最大值为.【解题思路】先解方程x2+5x+4=0得A(﹣4,0),再确定C(0,4),则可利用待定系数法求出直线AC的解析式为y=x+4,设P(t,t+4)(﹣4≤t≤0),Q(t,t2+5t+4),所以PQ=t+4﹣(t2+5t+4),然后利用二次函数的性质解决问题.【解答过程】解:当y=0时,x2+5x+4=0,解得x1=﹣4,x2=﹣1,则A(﹣4,0),B(﹣1,0),当x=0时,y=x2+5x+4=4,则C(0,4),设直线AC的解析式为y=kx+b,把A(﹣4,0),C(0,4)代入得{−4k+b=0b=4,解得{k=1b=4,∴直线AC的解析式为y=x+4,设P(t,t+4)(﹣4≤t≤0),则Q(t,t2+5t+4),∴PQ=t+4﹣(t2+5t+4)=﹣t2﹣4t=﹣(t+2)2+4,∴当t=﹣2时,PQ有最大值,最大值为4.故答案为4.【变式4-1】(2020秋•镇平县期末)如图,直线y=−34x+3与x轴交于点C,与y轴交于点B,抛物线y=−38x 2+34x +3经过B ,C 两点,点E 是直线BC 上方抛物线上的一动点,过点E 作y 轴的平行线交直线BC 于点M ,则EM 的最大值为 .【解题思路】设出E 的坐标,表示出M 坐标,进而表示出EM ,化成顶点式即可求得EM 的最大值. 【解答过程】解:∵点E 是直线BC 上方抛物线上的一动点,∴点E 的坐标是(m ,−38m 2+34m +3),点M 的坐标是(m ,−34m +3),∴EM =−38m 2+34m +3﹣(−34m +3)=−38m 2+32m =−38(m 2﹣4m )=−38(m ﹣2)2+32, ∴当m =2时,EM 有最大值为32,故答案为32.【变式4-2】(2021•埇桥区模拟)对称轴为直线x =﹣1的抛物线y =x 2+bx +c ,与x 轴相交于A ,B 两点,其中点A 的坐标为(﹣3,0). (1)求点B 的坐标.(2)点C 是抛物线与y 轴的交点,点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值.【解题思路】(1)利用二次函数对称性即可得出B 点坐标;(2)首先利用待定系数法求二次函数解析式,进而求出直线AC 的解析式,再利用QD =﹣x ﹣3﹣(x 2+2x ﹣3)进而求出最值.【解答过程】解:(1)∵点A (﹣3,0)与点B 关于直线x =﹣1对称, ∴点B 的坐标为(1,0). (2)∵a =1,∴y =x 2+bx +c .∵抛物线过点(﹣3,0),且对称轴为直线x =﹣1, ∴{9−3b +c =0−b2=−1∴解得:{b =2c =−3,∴y =x 2+2x ﹣3,且点C 的坐标为(0,﹣3). 设直线AC 的解析式为y =mx +n , 则{−3m +n =0n =−3, 解得:{m =−1n =−3,∴y =﹣x ﹣3如图,设点Q 的坐标为(x .y ),﹣3≤x ≤0.则有QD =﹣x ﹣3﹣(x 2+2x ﹣3)=﹣x 2﹣3x =﹣(x +32)2+94∵﹣3≤−32≤0,∴当x =−32时,QD 有最大值94.∴线段QD 长度的最大值为94.【变式4-3】(2020秋•滨海新区期末)如图,在平面直角坐标系中,已知抛物线y =ax 2+bx +52与x 轴交于A(5,0),B(﹣1,0)两点,与y轴交于点C.(Ⅰ)求抛物线的解析式;(Ⅱ)若点M是抛物线的顶点,连接AM,CM,求△ACM的面积;(Ⅲ)若点P是抛物线上的一动点,过点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线,垂足为点F,连接EF,当线段EF的长度最短时,求出点P的坐标.【解题思路】(Ⅰ)用待定系数法即可求解;(Ⅱ)△AMC的面积=S△MHC+S△MHA=12×MH×OA,即可求解;(Ⅲ)点D在直线AC上,设点D(m,−12m+52),由题意得,四边形OEDF为矩形,故EF=OD,即当线段EF的长度最短时,只需要OD最短即可,进而求解.【解答过程】解:(Ⅰ)令x=0,则y=52,即C(0,52)设抛物线的表达式为y=a(x﹣x1)(x﹣x2)=a(x﹣5)(x+1),将点C的坐标代入上式得:52=a(0﹣5)(0+1),解得a=−1 2,故抛物线的表达式为y=−12(x﹣5)(x+1)=−12x2+2x+52;(Ⅱ)由抛物线的表达式得顶点M(2,92),过点M作MH∥y轴交AC于点H,设直线AC 的表达式为y =kx +t ,则{t =520=5k +t, 解得{k =−12t =52, 故直线AC 的表达式为y =−12x +52,当x =2时,y =32,则MH =92−32=3,则△AMC 的面积=S △MHC +S △MHA =12×MH ×OA =12×3×5=152; (Ⅲ)点D 在直线AC 上,设点D (m ,−12m +52),由题意得,四边形OEDF 为矩形,故EF =OD ,即当线段EF 的长度最短时,只需要OD 最短即可,则EF 2=OD 2=m 2+(−12m +52)2=54m 2−52m +254,∵54>0,故EF 2存在最小值(即EF 最小),此时m =1, 故点D (1,2),∵点P 、D 的纵坐标相同,故2=−12x 2+2x +52,解得x =2±√5,故点P 的坐标为(2+√5,2)或(2−√5,2).【题型5 二次函数中求线段和最值】【例5】(2020秋•安居区期末)如图,在抛物线y =﹣x 2上有A ,B 两点,其横坐标分别为1,2,在y 轴上有一动点C ,当BC +AC 最小时,则点C 的坐标是( )A .(0,0)B .(0,﹣1)C .(0,2)D .(0,﹣2)【解题思路】利用二次函数图象上点的坐标特征可求出点A ,B 的坐标,作点B 关于y 轴的对称点B ′,连接AB ′交y 轴于点C ,此时BC +AC 最小,由点B 的坐标可得出点B ′的坐标,由点A ,B ′的坐标,利用待定系数法可求出直线AB ′的解析式,再利用一次函数图象上点的坐标特征,即可求出点C 的坐标.【解答过程】解:当x =1时,y =﹣12=﹣1,∴点A 的坐标为(1,﹣1);当x =2时,y =﹣22=﹣4,∴点B 的坐标为(2,﹣4).作点B 关于y 轴的对称点B ′,连接AB ′交y 轴于点C ,此时BC +AC 最小,如图所示.∵点B 的坐标为(2,﹣4),∴点B ′的坐标为(﹣2,﹣4).设直线AB ′的解析式为y =kx +b (k ≠0),将A (1,﹣1),B (﹣2,﹣4)代入y =kx +b 得:{k +b =−1−2k +b =−4, 解得:{k =1b =−2, ∴直线AB ′的解析式为y =x ﹣2.当x =0时,y =0﹣2=﹣2,∴点C 的坐标为(0,﹣2),∴当BC +AC 最小时,点C 的坐标是(0,﹣2).故选:D .【变式5-1】(2021•铁岭模拟)如图,已知抛物线y =﹣x 2+px +q 的对称轴为x =﹣3,过其顶点M 的一条直线y =kx +b 与该抛物线的另一个交点为N (﹣1,1).要在坐标轴上找一点P ,使得△PMN 的周长最小,则点P 的坐标为( )A .(0,2)B .(43,0)C .(0,2)或(43,0)D .以上都不正确【解题思路】首先,求得抛物线的解析式,根据抛物线解析式求得M 的坐标;欲使△PMN 的周长最小,MN 的长度一定,所以只需(PM +PN )取最小值即可.然后,过点M 作关于y 轴对称的点M ′,连接M ′N ,M ′N 与y 轴的交点即为所求的点P (如图1);过点M 作关于x 轴对称的点M ′,连接M ′N ,则只需M ′N 与x 轴的交点即为所求的点P (如图2).【解答过程】解:如图,∵抛物线y =﹣x 2+px +q 的对称轴为x =﹣3,点N (﹣1,1)是抛物线上的一点, ∴{−p −2=−31=−1−p +q, 解得{p =−6q =−4. ∴该抛物线的解析式为y =﹣x 2﹣6x ﹣4=﹣(x +3)2+5,∴M (﹣3,5).∵△PMN 的周长=MN +PM +PN ,且MN 是定值,所以只需(PM +PN )最小.如图1,过点M 作关于y 轴对称的点M ′,连接M ′N ,M ′N 与y 轴的交点即为所求的点P .则M ′(3,5).设直线M ′N 的解析式为:y =ax +t (a ≠0),则{5=3a +t 1=−a +t, 解得{a =1t =2, 故该直线的解析式为y =x +2.当x =0时,y =2,即P (0,2).同理,如图2,过点M 作关于x 轴对称的点M ′,连接M ′N ,则只需M ′N 与x 轴的交点即为所求的点P (−43,0).如果点P 在y 轴上,则三角形PMN 的周长=4√2+MN ;如果点P 在x 轴上,则三角形PMN 的周长=2√10+MN ;所以点P 在(0,2)时,三角形PMN 的周长最小.综上所述,符合条件的点P 的坐标是(0,2).故选:A .【变式5-2】(2021•包头)已知抛物线y =x 2﹣2x ﹣3与x 轴交于A ,B 两点(点A 在点B 的左侧)与y 轴交于点C ,点D (4,y )在抛物线上,E 是该抛物线对称轴上一动点,当BE +DE 的值最小时,△ACE 的面积为 .【解题思路】解方程x 2﹣2x ﹣3=0得A (﹣1,0),B (3,0),则抛物线的对称轴为直线x =1,再确定C (0,﹣3),D (4,5),连接AD 交直线x =1于E ,交y 轴于F 点,如图,利用两点之间线段最短可判断此时BE +DE 的值最小,接着利用待定系数法求出直线AD 的解析式为y =x +1,则F (0,1),然后根据三角形面积公式计算.【解答过程】解:当y =0时,x 2﹣2x ﹣3=0,解得x 1=﹣1,x 2=3,则A (﹣1,0),B (3,0), 抛物线的对称轴为直线x =1,当x =0时,y =x 2﹣2x ﹣3=﹣3,则C (0,﹣3),当x =4时,y =x 2﹣2x ﹣3=5,则D (4,5),连接AD 交直线x =1于E ,交y 轴于F 点,如图,∵BE +DE =EA +DE =AD ,∴此时BE +DE 的值最小,设直线AD 的解析式为y =kx +b ,把A (﹣1,0),D (4,5)代入得{−k +b =04k +b =5,解得{k =1b =1, ∴直线AD 的解析式为y =x +1,当x =1时,y =x +1=2,则E (1,2),当x =0时,y =x +1=1,则F (0,1),∴S △ACE =S △ACF +S △ECF =12×4×1+12×4×1=4. 故答案为4.【变式5-3】(2021•涪城区模拟)如图,抛物线y =53x 2−203x +5与x 轴分别交于A 、B 两点(点A 在点B 的左侧),与y 轴交于C ,在其对称轴上有一动点M ,连接MA 、MC 、AC ,则当△MAC 的周长最小时,点M 的坐标是 .【解题思路】点A 关于函数对称轴的对称点为点B ,连接CB 交函数对称轴于点M ,则点M 为所求点,即可求解.【解答过程】解:点A 关于函数对称轴的对称点为点B ,连接CB 交函数对称轴于点M ,则点M 为所求点,理由:连接AC ,由点的对称性知,MA =MB ,△MAC 的周长=AC +MA +MC =AC +MB +MC =CA +BC 为最小,令y =53x 2−203x +5=0,解得x =1或3,令x =0,则y =5,故点A 、B 、C 的坐标分别为(1,0)、(3,0)、(0,5),则函数的对称轴为x =12(1+3)=2,设直线BC 的表达式为y =kx +b ,则{0=3k +b b =5,解得{k =−53b =5, 故直线BC 的表达式为y =−53x +5,当x =2时,y =−53x +5=53,故点M 的坐标为(2,53). 【题型6 二次函数中求面积最值】【例6】(2020秋•盐城期末)如图,抛物线y =x 2+bx +c 与x 轴交于A (﹣1,0),B (3,0)两点,过点A 的直线l 交抛物线于点C (2,m ),点P 是线段AC 上一个动点,过点P 做x 轴的垂线交抛物线于点E .(1)求抛物线的解析式;(2)当P 在何处时,△ACE 面积最大.【解题思路】(1)利用交点式写出抛物线解析式;(2)先利用二次函数解析式确定C (2,﹣3),再利用待定系数法求出直线AC 的解析式为y =﹣x ﹣1,设E (t ,t 2﹣2t ﹣3)(﹣1≤t ≤2),则P (t ,﹣t ﹣1),利用三角形面积公式得到△ACE 的面积=12×(2+1)×PE =32(﹣t 2+t +2),然后根据二次函数的性质解决问题.【解答过程】解:(1)抛物线解析式为y =(x +1)(x ﹣3),即y =x 2﹣2x ﹣3;(2)把C (2,m )代入y =x 2﹣2x ﹣3得m =4﹣4﹣3=﹣3,则C (2,﹣3),设直线AC 的解析式为y =mx +n ,把A (﹣1,0),C (2,﹣3)代入得{−m +n =02m +n =−3,解得{m =−1n =−1, ∴直线AC 的解析式为y =﹣x ﹣1;设E (t ,t 2﹣2t ﹣3)(﹣1≤t ≤2),则P (t ,﹣t ﹣1),∴PE =﹣t ﹣1﹣(t 2﹣2t ﹣3)=﹣t 2+t +2,∴△ACE 的面积=12×(2+1)×PE=32(﹣t 2+t +2)=−32(t −12)2+278,当t =12时,△ACE 的面积有最大值,最大值为278,此时P 点坐标为(12,−32). 【变式6-1】(2021春•金塔县月考)如图,已知抛物线经过A (4,0),B (1,0),C (0,﹣2)三点.(1)求该抛物线的解析式;(2)在直线AC 上方的该抛物线上是否存在一点D ,使得△DCA 的面积最大,若存在,求出点D 的坐标及△DCA 面积的最大值;若不存在,请说明理由.【解题思路】(1)根据题意设出抛物线的交点式,用待定系数法求解即可;(2)根据题意作出相关辅助线,用待定系数法求得直线AC解析式为y=12x﹣2,因为点D在抛物线上,所以可设其坐标为(x,−12x2+52x﹣2),点E在直线AC上则设点E坐标为(x,12x﹣2),由图形可知S△DCA=S△DCE+S△DAE,将相关坐标及线段的长度代入求解,再根据二次函数的性质即可得出△DCA面积的最大值.【解答过程】(1)设该抛物线解析式为y=a(x﹣4)(x﹣1),将点C(0,﹣2)坐标代入解析式得:﹣2=a(0﹣4)(0﹣1),解得a=−1 2,∴y=−12(x﹣4)(x﹣1)=−12x2+52x﹣2,故该抛物线的解析式为:y=−12x2+52x﹣2,(2)如图,设存在点D在抛物线上,连接AD、CD,过点D作DE⊥x轴且与直线AC交于点E,设直线AC表达式为:y=kx+b(k≠0),将A(4,0),C(0,﹣2)代入其表达式得:{0=4k+b−2=b,解得{k=12b=−2,∴直线AC:y=12x﹣2,设点D坐标为(x,−12x2+52x﹣2),则点E坐标为(x,12x﹣2),S△DCA=S△DCE+S△DAE=12×DE×x E+12×DE×(x A﹣x E)=12×DE×x A=12×DE×4=2DE,∵DE=(−12x2+52x﹣2)﹣(12x﹣2)=−12x2+2x,∴S△DCA=2DE=2×(−12x2+2x)=﹣x2+4x=﹣(x﹣2)2+4,∴当x=2时,y=−12x2+52x﹣2═﹣2+5﹣2=1,即点D坐标为(2,1),此时△DCA的面积最大,最大值为4.【变式6-2】(2021春•无为市月考)如图,直线y=﹣x+n与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求抛物线的解析式.(2)若P为直线AB上方的抛物线上一点,且点P的横坐标为m,求四边形BCAP的面积S关于点P横坐标m的函数解析式,并求S的最大值.【解题思路】(1)将点A坐标代入直线解析式可求n的值,可求点B坐标,利用待定系数法可求解;(2)过点P做PE⊥x轴于点E,与直线AB交于点D,求得C的坐标和D的坐标,然后根据S=S△ABC+S △ABP得到S关于m的函数解析式,根据二次函数的性质即可求得结论.【解答过程】解:(1)∵直线y=﹣x+n与x轴交于点A(3,0),∴0=﹣3+n,∴n=3,∴直线解析式为:y=﹣x+3,当x=0时,y=3,∴点B (0,3),∵抛物线y =﹣x 2+bx +c 经过点A ,B ,∴{c =3−9+3b +c =0, ∴{b =2c =3, ∴抛物线的解析式为:y =﹣x 2+2x +3;(2)如图,过点P 做PE ⊥x 轴于点E ,与直线AB 交于点D ,∵点P 的横坐标为m ,∴点P 的坐标为(m ,﹣m 2+2m +3),∵点D 在直线AB 上,∴点D 的坐标为(m ,﹣m +3),∴PD =﹣m 2+2m +3﹣(﹣m +3)=﹣m 2+3m ,在y =﹣x 2+2x +3中.令y =0.则﹣x 2+2x +3=0,解得x 1=﹣1,x 2=3,∴点C 的坐标为(﹣1,0),∴S =S △ABC +S △ABP =12×4×3+12(﹣m 2+3m )×3=−32(m −32)2+758, ∴当m =32时,S 最大,最大值为758.【变式6-3】(2021春•无棣县月考)如图,在平面直角坐标系中,二次函数y =x 2+bx +c 的图象与x 轴交于A 、B 两点,B 点的坐标为(3,0),与y 轴交于点C (0,﹣3),点P 是直线BC 下方抛物线上的一个动点.(1)求二次函数解析式;(2)连接PO ,PC ,并将△POC 沿y 轴对折,得到四边形POP 'C .是否存在点P ,使四边形POP 'C 为菱形?若存在,求出此时点P 的坐标;若不存在,请说明理由;(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.【解题思路】(1)先根据点C坐标求出c=﹣3,再将点B坐标代入二次函数解析式中求出b,即可得出结论;(2)连接PP'交y轴于E,根据菱形的性质判断出点E是OC的中点,进而求出点P的纵坐标,最后代入二次函数解析式中求解,即可得出结论;(3)设出点P的坐标,进而利用梯形的面积+三角形的面积得出S四边形ABPC=−32(m−12)2+398,即可得出结论.【解答过程】解:(1)∵二次函数y=x2+bx+c与y轴的交点C(0,﹣3),∴c=﹣3,∴二次函数的解析式为y=x2+bx﹣3,∵点B(3,0)在二次函数图象上,∴9+3b﹣3=0,∴b=﹣2,∴二次函数的解析式为y=x2﹣2x﹣3;(2)存在,理由:如图1,连接PP'交y轴于E,∵四边形POP'C为菱形,∴PP'⊥OC,OE=CE=12OC,∵点C(0,﹣3),∴OC=3,∴OE=3 2,∴E (0,−32),∴点P 的纵坐标为−32,由(1)知,二次函数的解析式为y =x 2﹣2x ﹣3, ∴x 2﹣2x ﹣3=−32,∴x =2−√102或x =2+√102,∵点P 在直线BC 下方的抛物线上,∴0<x <3,∴点P (2+√102,−32);(3)如图2,过点P 作PF ⊥x 轴于F ,则PF ∥OC , 由(1)知,二次函数的解析式为y =x 2﹣2x ﹣3, 令y =0,则x 2﹣2x ﹣3=0,∴x =﹣1或x =3,∴A (﹣1,0),∴设P (m ,m 2﹣2m ﹣3)(0<m <3),∴F (m ,0),∴S 四边形ABPC =S △AOC +S 梯形OCPF +S △PFB =12OA •OC +12(OC +PF )•OF +12PF •BF =12×1×3+12(3﹣m 2+2m +3)•m +12(﹣m 2+2m +3)•(3﹣m ) =−32(m −32)2+758,∴当m =32时,四边形ABPC 的面积最大,最大值为758,此时,P (32,−154),即点P 运动到点(32,−154)时,四边形ABPC 的面积最大,其最大值为758.。

含参数的二次函数在指定范围内的最值

含参数的二次函数在指定范围内的最值

含参数的二次函数在指定范围内的最值
在指定范围内,如何求含参数的二次函数的最值?
对于形如$y=ax^2+bx+c$的二次函数,如果想要求出其在
$xin[a,b]$范围内的最大值或最小值,可以采用以下方法:
1. 求导并令导数为零,得到极值点的横坐标$x_0$,并判断
$x_0$是否在$[a,b]$范围内。

2. 求出函数在$a,b$以及$x_0$处的函数值$y_a,y_b,y_0$。

3. 比较$y_a,y_b,y_0$三个数的大小,即可得出最大值或最小值。

需要注意的是,如果函数的参数$a$在指定范围内变化,那么最
大值或最小值也会随之变化。

因此,在求解过程中需要对参数进行分类讨论,分别计算不同参数取值下的最值。

- 1 -。

初中数学二次函数最值解题技巧总结

初中数学二次函数最值解题技巧总结

初中数学中,二次函数是一个重要的概念,而求二次函数最值则是二次函数章节中的重点内容之一。

在解题过程中,初中生常常遇到一些困难,不知道如何准确地求出二次函数的最值。

本文将结合实例,总结出一些解题技巧,帮助初中生更好地掌握二次函数最值的求解方法。

一、二次函数图像的性质在求解二次函数的最值之前,我们首先要了解二次函数的图像性质。

对于一般形式的二次函数$y=ax^2+bx+c$,其图像是一个抛物线,开口方向由二次项系数$a$的正负来确定。

若$a>0$,则抛物线开口向上;若$a<0$,则抛物线开口向下。

根据这一性质,我们可以大致确定二次函数的最值所对应的点在抛物线的上方还是下方。

二、用配方法求二次函数最值有时候,我们可以通过配方法来化简二次函数,从而更容易求解最值。

对于一般形式的二次函数$y=ax^2+bx+c$,我们可以通过配方法将其写成平方形式,即完全平方的形式。

这样做的好处是,可以直观地读出二次函数的最值。

对于二次函数$y=x^2-4x+3$,我们可以通过配方法得出:$y=(x-2)^2-1$从而可以直接看出,当$x=2$时,二次函数取得最小值$-1$。

这种方法对于初学者来说简单直观,容易掌握和运用。

三、利用导数求二次函数最值另一种求解二次函数最值的方法是利用导数。

对于一般形式的二次函数$y=ax^2+bx+c$,我们可以对其进行求导,得到一次函数$y'=2ax+b$。

通过求导后的一次函数,我们可以求出二次函数的导数为0时对应的$x$值,并带入原二次函数中,从而得到最值点的坐标。

以二次函数$y=2x^2-8x+3$为例,我们可以对其求导,得到$y'=4x-8$。

令$y'=0$,可得$x=2$。

将$x=2$代入原函数,可得最小值为$-5$。

这种方法需要一定的导数知识作为基础,但是对于二次函数最值的求解非常方便。

初中生如果掌握了导数的基本概念,也可以尝试使用导数的方法来求解二次函数的最值。

二次函数线段最值问题

二次函数线段最值问题

二次函数线段最值问题二次函数线段最值问题是高中数学中经常出现的一个问题。

在实际生活中,许多问题都可以通过二次函数线段最值问题来解决。

本文将从以下几个方面来探讨这个问题:二次函数线段的定义、最值问题的解法、实际应用、注意事项等。

一、二次函数线段的定义二次函数线段是指一条由二次函数所描述的直线。

一般来说,它的函数公式为:y = ax² + bx + c,其中a、b和c均为常数。

其中,a控制二次函数的“开口向上”或“开口向下”,b控制二次函数图像的位置,c为常数项。

当a>0时,函数图像开口向上,当a<0时,函数图像开口向下。

二、最值问题的解法求解二次函数线段最值的问题,需要先找到函数图像的顶点。

顶点是函数图像的最高点或最低点。

根据函数的定义,可以求得顶点的坐标为:x = -b / 2ay = f(x) = -Δ / 4a + c其中Δ = b² - 4ac为判别式。

当a>0时,函数的最小值为y = f(x),当a<0时,函数的最大值为y = f(x)。

三、实际应用二次函数线段最值问题在许多实际问题中都有广泛应用。

例如,在生产生活中,我们需要计算能够取得最大利润的销售数量;在物理学、化学等领域,也需要求出最高或最低点的数值。

此外,对于空间中的曲面图像,也可以利用二次函数线段最值问题来求出曲面的极值点。

四、注意事项在解题过程中,需要注意以下几点:1. 判别式Δ要大于等于0,否则函数没有最值。

2. 当a = 0时,不是二次函数,也不存在最值问题。

3. 在应用中,需要理解题目中的具体含义,才能正确求解最值问题。

总之,二次函数线段最值问题是高中数学中的重要内容,应当掌握。

通过理解其定义、解法以及实际应用,我们可以更好地理解和应用二次函数线段的相关知识,更好地完成数学学习。

二次函数顶点式最大最小值

二次函数顶点式最大最小值

二次函数顶点式最大最小值二次函数是一种常见的二次多项式函数,其一般形式为f(x)=ax2+bx+c,其中a、b、c是常数且a eq0。

二次函数的图像是一个开口向上或向下的抛物线,而顶点则是抛物线的最高点或最低点。

在二次函数的顶点式中,我们可以轻松地求得抛物线的最大值或最小值。

二次函数顶点式在二次函数f(x)=ax2+bx+c中,其顶点坐标可以通过顶点式来表示。

顶点式是 $x = -\\frac{b}{2a}$,$y = f\\left(-\\frac{b}{2a}\\right)$。

最大最小值的求解方法通过顶点式,我们可以轻松地求得二次函数的最大值或最小值。

当a>0时,二次函数开口向上,顶点为最小值;当a<0时,二次函数开口向下,顶点为最大值。

1.若a>0,则二次函数的最小值为 $f\\left(-\\frac{b}{2a}\\right)$。

2.若a<0,则二次函数的最大值为 $f\\left(-\\frac{b}{2a}\\right)$。

举例说明例如,对于二次函数f(x)=2x2−4x+3,其中a=2,b=−4,c=3。

根据顶点式 $x = -\\frac{b}{2a}$,可得 $x = -\\frac{-4}{2 \\times 2} = 1$。

代入函数得$f(1) = 2 \\times 1^2 - 4 \\times 1 + 3 = 1$。

因此,二次函数f(x)=2x2−4x+3的最小值为 1,在x=1处取到。

结论通过二次函数的顶点式,我们可以轻松求得二次函数的最大值或最小值。

顶点式提供了简洁而有效的方法,帮助我们更好地理解和分析二次函数的特性。

在解决实际问题或优化函数时,顶点式的应用也具有重要意义。

二次函数最值问题解题技巧

二次函数最值问题解题技巧

二次函数最值问题解题技巧
二次函数最值问题是高中数学中比较常见的一类问题,也是许多学生比较头疼的问题之一。

那么,在解决这类问题时,我们应该掌握什么样的解题技巧呢?
首先,我们需要明确二次函数的最值出现在函数的顶点处。

因此,我们需要先求出二次函数的顶点坐标,然后通过分析函数的开口方向来判断最值的位置。

其次,我们需要掌握一些求解顶点坐标的方法。

在二次函数的一般式中,我们可以通过将$x$的系数除以$2a$,然后代入$x=-
frac{b}{2a}$来求出顶点的横坐标,再将横坐标代入函数式中求得顶点的纵坐标。

另外,我们还可以通过配方法将二次函数化为顶点式,这样可以更方便地求出顶点坐标。

具体来说,我们可以将二次函数的标准式化为$y=a(x-h)^2+k$的形式,其中$(h,k)$为顶点坐标。

最后,我们需要注意二次函数的开口方向对最值的影响。

当二次函数开口向上时,最小值出现在顶点处;而当二次函数开口向下时,最大值出现在顶点处。

综上所述,掌握二次函数最值问题的解题技巧需要我们熟练掌握求解顶点坐标的方法,并能够分析二次函数的开口方向以确定最值的位置。

只有通过不断地练习和探索,我们才能更加熟练地解决这类问题。

二次函数最值求解方法

二次函数最值求解方法

二次函数最值求解方法在数学中,“二次函数”是常见的一个重要概念,其形式为f(x) = ax^2 + bx + c,其中a、b、c为常数,且a不等于0。

这里的x为自变量,y为因变量,而f(x)则表示y,也就是函数的输出值。

二次函数是一类非常特殊的函数,它在数学和物理等领域中都有着重要的应用。

求解二次函数在一定区间内的最值,可以帮助我们更好地理解和应用它们。

确定二次函数的开口方向在求解二次函数最值的过程中,第一步通常是要明确函数的开口方向。

对于一般形式的二次函数,如果a > 0,则函数的开口朝上;如果a < 0,则函数的开口朝下。

因此,在求解最值时,我们需要先判断二次函数的开口方向,以便选择正确的求解方法。

求解二次函数最值的方法一:配方法配方法也叫作配方法消元法,是一种传统的求解二次函数最值的方法。

其基本思想是通过配方,将原函数变形为完全平方的形式,从而求出最值。

具体的步骤如下:1. 将二次项系数与自变量平方项相乘,将一次项系数乘以2,将常数项加上一个适当的数,使得方程左侧变为二次项的完全平方,即a(x + b)^2 + c2. 化简相加的三项到二项,化简完毕后即可得到二次函数的顶点坐标和最值。

这种方法简单易行,但适用范围有限。

在解Quadratic Equation时,如果存在两个根,该方法无法得到所有的根。

且在教育教学中呈现该种方法的时候,常常翻译为印度配方法,实际是中国学者张丘建在《算经》中载有配方法名为陇头法,舒勒(Euler)又称之为“中和术”。

求解二次函数最值的方法二:导数法在高中数学中,一般利用导数来求解二次函数最值。

具体的实现过程如下:1. 求出二次函数的导数f'(x) = 2ax + b,其中a、b、c为常数。

2. 令f'(x) = 0,解出x,即为二次函数的极值点。

3. 比较极值点和区间端点f(a)、f(b)的大小,最终确定最值所在的位置。

通过对导数的求解,我们可以比较轻松地求出函数的极值点。

二次函数求最值(动轴定区间、动区间定轴)

二次函数求最值(动轴定区间、动区间定轴)

4
4
4
2 x=1
x=1
2
x=1
2
k+2
k k+2
k k+2
k 15
5
10
5
15
5 10
5
15
10
10
5
5
2
2
2
6
4
2 x=1
15
k 10
k+2 5
2
4
4
4
4
6
评注6:例1属于6“轴定区间动”的问题,看6 作动区
间沿8x轴移动的过8 程中,函数8 最值的变化,8 即动区
间在定轴的左、右两侧及包10含定轴的变化,要注
y 解: ⑴当
即a≥ 2时
y的最小值为f(-1)
O -1 1 x
=4-a
例3:若x∈
,求函数

y =x2+ax+3的最小值:
(2)当 1 < a 1
2
y
即-2≤ a<2时
y的最小值为
O
f( )=
-1 1 x
例2:若x∈

,求函数
y =x2+ax+3的最小值:
y
O -1 1
(3)当
即a<-2时
解:画出函数在定义域内的图像如图 8
对称轴为直线x=1
6
由图知,y=f(x)在[ 2,4 ]上为增函数
4
故x=4时有最大值f(4)=5
x=2时有最小值f(2)=-3
10
5
2 x=1 2
45
2
4
y = x2 2∙x 3
y = x2 2∙x 3

二次函数的最大值公式

二次函数的最大值公式

二次函数的最大值公式二次函数是一种常见的数学函数,它的一般形式是y=ax2+bx+c,其中a,b,c是常数,且a≠0。

二次函数的图像是一条开口向上或向下的抛物线,它的最值出现在抛物线的顶点处。

本文将介绍如何求解二次函数的最大值公式,以及它的几何意义和应用。

一、最大值公式的推导要求解二次函数的最大值公式,首先要确定二次函数是否有最大值。

根据二次函数的性质,我们知道:当a>0时,二次函数开口向上,函数有最小值,没有最大值;当a<0时,二次函数开口向下,函数有最大值,没有最小值;当a=0时,二次函数退化为一次函数,没有最值。

因此,我们只考虑a<0的情况,即开口向下的抛物线。

为了方便起见,我们假设a=−1,则二次函数可以写成:y=−x2+bx+c要求解这个函数的最大值,我们可以利用配方法,将它化为标准形式:y=−(x2−2b2x+b24)+c+b24y=−(x−b2)2+c+b24由于(x−b2)2≥0对任意的x都成立,所以当且仅当(x−b2)2=0时,即x=b2时,函数取得最大值。

此时,最大值为:y max=c+b2 4这就是二次函数的最大值公式。

如果将a=−1恢复为一般情况,则有:y max=4ac−b2 4a二、最大值公式的几何意义二次函数的最大值公式可以从几何角度来理解。

如下图所示,抛物线y=ax2+bx+c的顶点为(h,k),其中h=−b2a 是对称轴的方程,k=4ac−b24a是顶点的纵坐标。

当a<0时,顶点是抛物线的最高点,也就是函数的最大值。

三、最大值公式的应用二次函数的最大值公式在实际问题中有很多应用,例如:投掷物体的最高点:如果一个物体以初速度v0从地面以角度θ抛出,忽略空气阻力,那么它的运动轨迹可以用一个二次函数来描述:y=x tanθ−gx22v20cos2θ其中x是水平方向的位移,y是竖直方向的高度,g是重力加速度。

这个函数的系数为a=−g2v20cos2θ<0,所以它有一个最大值,表示物体抛出后能达到的最高点。

二次函数求最值的方法

二次函数求最值的方法

二次函数求最值的方法
二次函数的一般式是y=ax的平方+bx+c,当a大于0时开口向上,函数有最小值;当a小于0时开口向下,则函数有最大值。

而顶点坐标就是(-2a分之b,4a分之4ac-b方),把a、b、c分别代入进去,求得顶点的坐标,4a分之4ac-b方就是最大值或最小值。

二次函数的基本表示形式为y=ax²+bx+c(a≠0)。

二次函数最高次必须为二次,二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。

二次函数表达式为y=ax²+bx+c(且a≠0),它的定义是一个二次多项式(或单项式)。

如果令y值等于零,则可得一个二次方程。

该方程的解称为方程的根或函数的零点。

“变量”不同于“未知数”,不能说“二次函数是指未知数的最高次数为二次的多项式函数”。

“未知数”只是一个数(具体值未知,但是只取一个值),“变量”可在一定范围内任意取值。

在方程中适用“未知数”的概念(函数方程、微分方程中是未知函数,但不论是未知数还是未知函数,一般都表示一个数或函数——也会遇到特殊情况),但是函数中的字母表示的是变量,意义已经有所不同。

从函数的定义也可看出二者的差别。

初中二次函数最值问题解题技巧

初中二次函数最值问题解题技巧

初中二次函数最值问题解题技巧
1. 嘿,你知道吗?配方法可是二次函数最值问题的一大绝招啊!就像给函数穿上合适的衣服,一下子就变得精神了。

比如说对于函数y=x²+2x-3,咱就可以配方成y=(x+1)²-4,这样最值不就一目了然啦!
2. 哇塞,还有公式法呢!这可是超级厉害的工具哟!就如同有了一把万能钥匙。

像求二次函数y=2x²-4x+1 的最值,直接代入公式,不就轻松搞定啦!
3. 嘿呀,判别式法也不能小瞧呀!它就像是一个侦探,能帮我们找出很多线索呢。

比如已知一个二次函数与某个条件的关系,用判别式说不定就能找到最值啦!
4. 哎呀呀,图像法可是直观得很呐!简直就是把二次函数展现在你眼前。

像看二次函数 y=-x²+2x+3 的图像,最高点不就是最大值嘛,多清楚呀!
5. 哇哦,构造法也很奇妙哟!就好似搭建一个独特的模型。

比如根据已知条件构造一个新的二次函数来求最值,是不是很有意思呀?
6. 嘿,别忘了还有变量替换法呢!这就像给函数变个小魔术,巧妙得很呐。

假设一个变量来替换某个式子,然后求最值,噫,真神奇!
7. 哈哈,对称性质法也是很有用的呀!相当于找到了函数的一个秘密通道。

知道二次函数的对称轴,那最值还远吗?
8. 哟呵,参数法也可以试试呀!就好像加入了一个特别的元素。

通过参数来求解最值,那感觉超棒的!
9. 总之呢,这么多的解题技巧,可得好好掌握呀!它们都是我们解决二次函数最值问题的有力武器,可别小瞧它们哦!用对了技巧,这些难题都不叫事儿!。

二次函数求最值的方法

二次函数求最值的方法

二次函数求最值的方法二次函数是一种具有形如f(x)=ax²+bx+c的函数,其中a、b、c是实数且a≠0。

二次函数图像呈现出抛物线的形状,我们可以利用二次函数的性质来求解其最值。

首先,我们可以将二次函数转化为标准形式或顶点形式。

标准形式表示为f(x)=a(x-h)²+k,其中(h,k)为抛物线的顶点坐标。

顶点形式表示为f(x)=a(x-p)(x-q),其中p和q为抛物线的两个x坐标。

通过观察函数的系数a的正负可以大致判断函数的开口方向。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

以标准形式为例,下面介绍二次函数求最值的方法:方法一:利用抛物线的对称性由于抛物线具有轴对称性,即抛物线关于顶点对称。

如果我们求出了抛物线的顶点坐标,那么最值对应的x值就是顶点的横坐标,最值的y值就是顶点的纵坐标。

求顶点坐标的方法如下:1. 将二次函数转化成顶点形式,并确定顶点的x坐标;2. 将顶点的x值代入二次函数中求出对应的y值。

例如,对于函数f(x)=2x²-4x+3,可以将其转化为顶点形式:f(x)=2(x-1)²+1。

因此,顶点的x坐标为1。

将x=1代入二次函数中,可以求得对应的y值:f(1)=2(1-1)²+3=3。

所以,对于函数f(x)=2x²-4x+3,其顶点坐标为(1,3)。

其中,最值的x值为1,对应的最值y值为3。

方法二:利用二次函数的对称轴二次函数的对称轴是过顶点的一条线,可以利用对称轴求最值。

对于标准形式的函数f(x)=a(x-h)²+k,它的对称轴的方程为x=h。

例如,对于函数f(x)=2x²-4x+3,可以直接观察到二次函数的对称轴方程为x=1。

我们可以代入对称轴的x值,计算得到对应的y值:f(1)=2(1)²-4(1)+3=1。

所以,对于函数f(x)=2x²-4x+3,其对称轴方程为x=1。

二次函数的最值公式

二次函数的最值公式

二次函数的最值公式
二次函数最值是指一个函数在某个时刻处于最高或最低点,其一般表示形式为f(x) = ax² + bx + c。

最值可以用 D=b2-4ac 来计算。

如果D>0,二次函数有两个极值,即最大值fmax和最小值fmin,分别满足fmax = (2a)对极值点的平方 + b 加上 b的符号积 - c,以及 fmin = (2a)对极值点的平方 + b 减去 b的符号积 - c。

而极值点则是满足 (2a)Xp+b=0的即
xp=(-b)/2a。

这意味着,当 a>0 时,函数的最大值出现在比 a 的值小的区域,而最小值出现在比 a 的值大的区域;当 a<0 时,正好相反。

有时,此处有定义域限制,我们可以通过定义域来判断最值。

综上可见,由二次函数的最值公式可以求出一个函数在某个特定点的最大最小值。

其中,D值的正负性可以判断函数是否存在无极值区间。

当然,D等于0时,意味着函数只有一个极值,即函数在某一点处呈现“拐点”,有可能是关于这一点对称的函数。

总而言之,二次函数的最值公式描述了一个函数在某一点处最大最小值的情况,是函数解析的重要内容。

两个二次函数相除求最值

两个二次函数相除求最值
b. 然后,我们计算 h(x) 的导数 h'(x)。
c. 将 h'(x) 置为零并解方程,找到 h(x) 的驻点。
d. 对驻点进行二阶导数测试,确定这些驻点是否为极值点。
e. 比较 h(x) 在定义域的端点和极值点的值,找到 h(x) 的最大值或最小值。
请注意,这个过程中要确保 g(x) 不为零,以避免除以零的错误。同时,记得在计算导数和解方程时,根据具体的函数形式使用适当的求导规则和解方程方法。
这是一种一般性的方法,但具体求解最值可能需要进一步的代数计算和分析,具体取决于给定的二次函数。
如果要求两个二次函数相除后的最值,我们可以通过一些步骤来解决。假设我Байду номын сангаас有两个二次函数,分别表示为 f(x) 和 g(x)。
首先,将两个二次函数相除,得到一个新的函数 h(x) = f(x) / g(x)。
接下来,我们需要找到 h(x) 的最值。要找到最值,我们可以采用以下方法:
a. 首先,找到 h(x) 的定义域。在这个定义域内,我们将寻找 h(x) 的最值。

二次函数求线段最大值

二次函数求线段最大值

二次函数求线段最大值介绍二次函数是数学中常见的函数类型之一,具有一系列重要的性质和应用。

在本文中,我们将讨论如何利用二次函数求解线段的最大值问题。

通过深入探讨二次函数的性质和求解最优化问题的方法,我们将为读者提供一种全面、详细的解决方案。

二次函数的概述二次函数是形如f(x) = ax^2 + bx + c的函数,其中a、b、c为常数,且a不等于0。

它是一个关于x的二次多项式函数,其中包含了一元二次方程的特殊情况。

二次函数的图像通常是一个抛物线,其开口方向由a的正负决定。

求解线段最大值的问题我们考虑一个简单的问题:给定一条线段,在一定范围内选择一个点,使得该点到线段两个端点的距离之和最大。

这个问题在几何学和优化问题中经常出现,例如在寻找物体最远位置的路径规划中。

为了解决这个问题,我们可以使用二次函数和数学优化的方法。

数学建模1.假设线段的两个端点分别为(A, B),其中A的横坐标小于B的横坐标。

2.我们需要找到一个点C,使得AC + BC的和最大。

3.假设C的横坐标为x,则C的纵坐标可以通过二次函数的表达式来计算。

求解过程1.首先,我们可以将线段的两个端点坐标用二次函数的形式表示。

2.然后,我们需要计算AC + BC的和,即二次函数上两点之间的距离之和。

–AC的距离可以由已知点坐标的差值计算得到。

–BC的距离可以由已知点坐标的差值计算得到。

3.将AC + BC的表达式进行化简,并求导数。

4.令导数为0,求解方程得到最值点的横坐标。

5.将最值点的横坐标代入二次函数的表达式,计算得到最值点的纵坐标。

6.最后,得到线段上到两个端点距离之和最大的点的坐标。

举例说明我们通过一个具体的例子来说明如何求解线段最大值的问题。

假设有一条线段,其两个端点的坐标分别为A(1, 2)和B(5, 6)。

我们需要找到线段上到端点A和B距离之和最大的点的坐标。

1.首先,我们将线段的两个端点坐标用二次函数的形式表示:–端点A的坐标表示为:f(x) = x^2 - 2x + 3–端点B的坐标表示为:f(x) = x^2 - 10x + 312.计算AC + BC的和,即二次函数上两点之间的距离之和:–AC的距离 = |x^2 - 2x + 3 - 2|–BC的距离 = |x^2 - 10x + 31 - 6|–AC + BC的和 = |x^2 - 2x + 3 - 2| + |x^2 - 10x + 31 - 6|3.将AC + BC的表达式进行化简,并求导数:–AC + BC的和 = |x^2 - 2x + 1| + |x^2 - 10x + 25|–求导数:d(AC + BC)/dx = (2x - 2) + (2x - 10)4.令导数为0,求解方程得到最值点的横坐标:–(2x - 2) + (2x - 10) = 0–4x - 12 = 0–x = 35.将最值点的横坐标代入二次函数的表达式,计算得到最值点的纵坐标:–f(3) = 3^2 - 2*3 + 3 = 9 - 6 + 3 = 66.结果分析:–线段上到端点A和B距离之和最大的点的坐标为(3, 6)。

二次方程最大值

二次方程最大值

二次方程最大值导言二次方程是数学中一个重要的概念,也是高中数学必学的内容之一。

在解决实际问题中,我们经常会遇到需要求二次方程的最大值的情况。

本文将介绍二次方程最大值的概念、求解方法以及一些典型例题,帮助读者更好地理解和应用这一知识点。

一、二次方程最大值的定义在代数学中,二次方程是指形如ax2+bx+c=0的方程,其中a、b、c是已知常数且a≠0。

解二次方程可以使用因式分解、配方法或求根公式等不同的方法。

对于给定的二次函数f(x)=ax2+bx+c,其中a≠0,我们可以通过对称轴来确定它的最大值或最小值。

对称轴是指函数图像关于某条直线对称的轴线,在二次给出。

函数中,对称轴由公式x=−b2a如果二次函数开口向上(即a>0),则该函数在对称轴上取得最小值;如果二次函数开口向下(即a<0),则该函数在对称轴上取得最大值。

二、求解二次方程最大值的方法1. 完全平方式当二次函数f(x)=ax2+bx+c的系数满足一定条件时,我们可以通过完全平方式求解其最大值。

首先,我们将二次函数写成完全平方的形式:f(x)=a(x−ℎ)2+k,其中ℎ=−b是对称轴的横坐标,k=f(ℎ)是对称轴上的纵坐标。

2a由于完全平方形式的二次函数开口向上(即a>0),所以它在对称轴上取得最小值。

因此,最大值等于对称轴上的纵坐标k。

2. 导数法另一种常用的方法是使用导数求解二次函数的最大值。

导数表示函数在某一点处的斜率,它可以帮助我们找到函数图像上的极值点。

对于二次函数f(x)=ax2+bx+c,我们可以先求出它的导数f′(x):f′(x)=2ax+b然后令导数等于零,并解方程得到极值点横坐标:2ax+b=0⇒x=−b 2a最后,将求得的横坐标代入原函数f(x)中,即可得到最大值或最小值。

需要注意的是,当二次函数开口向上时,对应的极值为最小值;当二次函数开口向下时,对应的极值为最大值。

三、例题解析例题一求解二次方程2x2−4x+1的最大值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用二次函数求面积最大(小)值问题知识要点:在生活实践中,人们经常面对带有“最”字的问题,如在一定的方案中,花费最少、消耗最低、面积最大、产值最高、获利最多等;解数学题时,我们也常常碰到求某个变量的最大值或最小值之类的问题,这就是我们要讨论的最值问题。

求最值的问题的方法归纳起来有以下几点: 1.运用配方法求最值;2.构造一元二次方程,在方程有解的条件下,利用判别式求最值; 3.建立函数模型求最值;4.利用基本不等式或不等分析法求最值.[例1]:在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm /s 的速度移动,同时点Q 从点B 出发沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 两点同时出发,分别到达B 、C 两点后就停止移动.(1)运动第t 秒时,△PBQ 的面积y(cm²)是多少? (2)此时五边形APQCD 的面积是S(cm²),写出S 与t 的函数关系式,并指出自变量的取值范围.(3)t 为何值时s 最小,最小值时多少? 答案:6336333607266126262621)1(2222有最小值等于时;当)()()()()()(S t t S t t t t t S tt t t y =∴+-=<<+-=+--⨯=+-=⋅-=[例2]:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?解:设花圃的宽为x 米,面积为S 平方米则长为:x x 4342432-=+-(米)则:)434(x x S -=x x 3442+-=4289)417(42+--=x ∵104340≤-<x∴2176<≤x∵6417<,∴S 与x 的二次函数的顶点不在自变量x 的范围内, 而当2176<≤x 内,S 随x 的增大而减小,∴当6=x 时,604289)4176(42m ax =+--=S (平方米)答:可设计成宽6米,长10米的矩形花圃,这样的花圃面积最大.[例3]:已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积. 解:设矩形PNDM 的边DN=x ,NP=y , 则矩形PNDM 的面积S=xy (2≤x≤4) 易知CN=4-x ,EM=4-y .过点B 作BH ⊥PN 于点H 则有△AFB ∽△BHP ∴PHBHBF AF =,即3412--=y x , ∴521+-=x y , x x xy S 5212+-==)42(≤≤x ,此二次函数的图象开口向下,对称轴为x=5, ∴当x≤5时,函数值y 随x 的增大而增大, 对于42≤≤x 来说,当x=4时,12454212=⨯+⨯-=最大S . 【评析】本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力.同时,也给学生探索解题思路留下了思维空间.[例4]:某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.4米的正方形ABCD ,点E 、F 分别在边BC 和CD 上,△CFE 、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE 、△ABE 和四边形AEFD 的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH .(1)判断图(2)中四边形EFGH 是何形状,并说明理由;(2)E 、F 在什么位置时,定制这批地砖所需的材料费用最省? 解:(1) 四边形EFGH 是正方形.图(2)可以看作是由四块图(1)所示地砖绕C 点 按顺(逆)时针方向旋转90°后得到的, 故CE =CF =CG .∴△CEF 是等腰直角三角形因此四边形EFGH 是正方形. (2)设CE =x , 则BE =0.4-x ,每块地砖的费用为y 元 那么:y =x ×30+×0.4×(0.4-x )×20+[0.16-x-×0.4×(0.4-x )×10])24.02.0(102+-=x x3.2)1.0(102+-=x )4.00(<<x当x =0.1时,y 有最小值,即费用为最省,此时CE =CF =0.1.答:当CE =CF =0.1米时,总费用最省.作业布置:1.(2008浙江台州)某人从地面垂直向上抛出一小球,小球的高度h (单位:米)与小球运动时间t (单位:秒)的函数关系式是,那么小球运动中的最大高度=最大h 4.9米 .2.(2008庆阳市)兰州市“安居工程”新建成的一批楼房都是8层高,房子的价格y (元/平方米)随楼层数x (楼)的变化而变化(x =1,2,3,4,5,6,7,8);已知点(x ,y )都在一个二次函数的图像上,(如图所示),则6楼房子的价格为 元/平方米.提示:利用对称性,答案:2080.3.如图所示,在一个直角△MBN 的内部作一个长方形ABCD ,其中AB 和BC分别在两直角边上,设AB =x m ,长方形的面积为y m 2,要使长方形的面积最大,其边长x 应为( D )A .424m B .6 m C .15 m D .25m 解:AB =x m ,AD=b ,长方形的面积为y m 2∵AD ∥BC ∴△MAD ∽△MBN ∴MB MA BN AD =,即5512x b -=,)5(512x b -=)5(512)5(5122x x x x xb y --=-⋅==, 当5.2=x 时,y 有最大值.4.(2008湖北恩施)将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大( C ) A .7 B .6 C .5 D .45.如图,铅球运动员掷铅球的高度y (m)与水平距离x (m)之间的函数关系式是:35321212++-=x x y ,则该运动员此次掷铅球的成绩是( D ) A .6 mB .12 mC .8 mD .10m解:令0=y ,则:02082=--x x 0)10)(2(=-+x x(图5) (图6) (图7)6.某幢建筑物,从10 m 高的窗口A ,用水管向外喷水,喷出的水流呈抛物线状(抛物线所在的平面与墙面垂直,如图6,如果抛物线的最高点M 离墙1 m ,离地面340m ,则水流落地点B 离墙的距离OB 是( B )A .2 mB .3 mC .4 mD .5 m解:顶点为)340,1(,设340)1(2+-=x a y ,将点)10,0(代入,310-=a 令0340)1(3102=+--=x y ,得:4)1(2=-x ,所以OB=37.(2007乌兰察布)小明在某次投篮中,球的运动路线是抛物线21 3.55y x =-+的一部分,如图7所示,若命中篮圈中心,则他与篮底的距离L 是( B ) A .4.6m B .4.5m C .4m D .3.5m8.某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成.若设花园的宽为x(m) ,花园的面积为y(m²).(1)求y 与x 之间的函数关系,并写出自变量的取值范围;(2)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大,最大面积是多少? 解:)240(x x y -=)20(22x x --=200)10(22+--=x∵152400≤-<x ∴205.12<≤x∵二次函数的顶点不在自变量x 的范围内, 而当205.12<≤x 内,y 随x 的增大而减小, ∴当5.12=x 时,5.187200)105.12(22m ax =+--=y (平方米)答:当5.12=x 米时花园的面积最大,最大面积是187.5平方米.9.如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x 米.(1)要使鸡场面积最大,鸡场的长度应为多少m ? (2)如果中间有n (n 是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?比较(1)(2)的结果,你能得到什么结论?解:(1)∵长为x 米,则宽为350x-米,设面积为S 平方米. )50(313502x x x x S --=-⋅= 3625)25(312+--=x ∴当25=x 时,3625max =S (平方米)即:鸡场的长度为25米时,面积最大. (2) 中间有n 道篱笆,则宽为250+-n x米,设面积为S 平方米.则:)50(212502x x n n x x S -+-=+-⋅= 2625)25(212++-+-=n x n ∴当25=x 时,2625m ax +=n S (平方米)由(1)(2)可知,无论中间有几道篱笆墙,要使面积最大,长都是25米. 即:使面积最大的x 值与中间有多少道隔墙无关.10.如图,矩形ABCD 的边AB=6 cm ,BC=8cm ,在BC 上取一点P ,在CD 边上取一点Q ,使∠APQ 成直角,设BP=x cm ,CQ=y cm ,试以x 为自变量,写出y 与x 的函数关系式.ABCD PQ解:∵∠APQ=90°, ∴∠APB+∠QPC=90°. ∵∠APB+∠BAP=90°,∴∠QPC=∠BAP ,∠B=∠C=90° .∴△ABP ∽△PCQ.,86,yxx CQ BP PC AB =-= ∴x x y 34612+-=.11.(2006年南京市)如图,在矩形ABCD 中,AB=2AD ,线段EF=10.在EF 上取一点M ,•分别以EM 、MF 为一边作矩形EMNH 、矩形MFGN ,使矩形MFGN ∽矩形ABCD .令MN=x ,当x 为何值时,矩形EMNH 的面积S 有最大值?最大值是多少? 解:∵矩形MFGN ∽矩形ABCD ∴MF=2MN =2x ∴ EM=10-2x ∴S=x (10-2x )=-2x 2+10x=-2(x-2.5)2+12.5 ∵1020<<x ,∴50<<x当x=2.5时,S 有最大值12.512.(2008四川内江)如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 0.5 米.答案:如图所示建立直角坐标系则:设c ax y +=2将点)1,5.0(-,)5.2,1(代入,⎩⎨⎧+=+-⨯=ca c a 5.2)5.0(12,解得⎩⎨⎧==5.02c a 5.022+=x y 顶点)5.0,0(,最低点距地面0.5米.13.(2008黑龙江哈尔滨)小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)当x 是多少时,矩形场地面积S 最大?最大面积是多少? 解:(1)根据题意,得x x x xS 3022602+-=⋅-=自变量的取值范围是(2)∵01<-=a ,∴S 有最大值当时,答:当为15米时,才能使矩形场地面积最大,最大面积是225平方米.14.(2008年南宁市)随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润与投资量成正比例关系,如图12-①所示;种植花卉的利润与投资量成二次函数关系,如图12-②所示(注:利润与投资量的单位:万元)(1)分别求出利润与关于投资量的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少? 解:(1)设=,由图12-①所示,函数=的图像过(1,2),所以2=,故利润关于投资量的函数关系式是=;因为该抛物线的顶点是原点,所以设2y =,由图12-②所示,函数2y =的图像过(2,2),所以,故利润2y 关于投资量的函数关系式是2221x y =; (2)设这位专业户投入种植花卉万元(),则投入种植树木(x -8)万元,他获得的利润是万元,根据题意,得==+21y y +== ∵021>=a ∴当时,的最小值是14;∴他至少获得14万元的利润.因为,所以在对称轴2=x 的右侧, z 随x 的增大而增大所以,当8=x 时,z 的最大值为32.15.(08山东聊城)如图,把一张长10cm ,宽8cm 的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).(1)要使长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少?(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;(3)如果把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.解:(1)设正方形的边长为cm,则.即.解得(不合题意,舍去),.剪去的正方形的边长为1cm.(2)有侧面积最大的情况.设正方形的边长为cm,盒子的侧面积为cm2,则与的函数关系式为:.即.改写为.当时,.即当剪去的正方形的边长为2.25cm时,长方体盒子的侧面积最大为40.5cm2.(3)有侧面积最大的情况.设正方形的边长为cm ,盒子的侧面积为cm 2.若按图1所示的方法剪折, 则与的函数关系式为:x xx x y ⋅-⋅+-=22102)28(2 即.当时,.若按图2所示的方法剪折, 则与的函数关系式为:x xx x y ⋅-⋅+-=2282)210(2. 即.当时,.比较以上两种剪折方法可以看出,按图2所示的方法剪折得到的盒子侧面积最大,即当剪去的正方形的边长为cm 时,折成的有盖长方体盒子的侧面积最大,最大面积为cm 2.16.(08兰州)一座拱桥的轮廓是抛物线型(如图16所示),拱高6m ,跨度20m ,相邻两支柱间的距离均为5m .(1)将抛物线放在所给的直角坐标系中(如图17所示),求抛物线的解析式; (2)求支柱的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m 、高3m 的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.解:(1)根据题目条件,的坐标分别是.设抛物线的解析式为,深圳实验培训中心2009年暑期初二培训资料 姓名 月 日11 将的坐标代入, 得 解得. 所以抛物线的表达式是.(2)可设,于是从而支柱的长度是米.(3)设是隔离带的宽,是三辆车的宽度和,则点坐标是. 过点作垂直交抛物线于, 则.根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.。

相关文档
最新文档