高一集合练习题及答案汇编
高一数学集合练习题及答案-经典
高一数学集合练习题及答案-经典一、单选题1.设集合{}{lg 1},2A xx B x x =<=≤∣∣,则A B ⋃=( ) A .{02}xx <≤∣ B .{}2xx ≤∣ C .{10}x x <∣ D .R2.设集合{}2A x x a =<,{}23B x x a =>+,若A B =R ,则实数a 的取值范围为( ) A .()1,3- B .()(),13,-∞-⋃+∞ C .[]1,3-D .(][),13,-∞-+∞3.已知集合{}220A x x x =--<,(){}3log 22B x y x ==-,则A B =( )A .{}12x x -<<B .{}12x x <<C .{}12x x ≤<D .{}02x x ≤<4.已知集合{1A x x =≤-或}2x >,则 RA =( ).A .{}12x x -≤<B .{}12x x -<≤C .{}12x x -<<D .{1A x x =<-或}2x ≥5.集合{}240xA x =->,{}lg 10B x x =-<,则A B =( )A .()2,eB .()e,10C .()2,10D .()0,106.已知集合{}i ,N nM m m n ==∈,其中i 为虚数单位,则下列元素属于集合M 的是( ) A .()()1i 1i -+ B .1i1i-+ C .i 1i- D .()21i -7.已知集合{}13A x N x =∈≤≤,{}2650B x x x =-+<,则A B =( )A .∅B .{}1,2,3C .(]1,3D .{}2,38.设全集{}1,2,3,4,5U =,集合{}1,2A =,{}2,3B =,则()UA B =( ) A .{}4,5B .{}2,3C .{}1D .{}39.已知集合A 是集合B 的真子集,下列关于非空集合A 、B 的四个命题: ①若任取x A ∈,则x B ∈是必然事件.②若任取x A ∉,则x B ∈是不可能事件. ③若任取x B ∈,则x A ∈是随机事件.④若任取x B ∉,则x A ∉是必然事件. 其中正确的命题有( ). A .0个;B .1个;C .2个;D .3个.10.已知0a >且1a ≠,若集合{}{}22,log ||a M x x x N x x x =<=<,且N M ⊆﹐则实数a的取值范围是( )A .()1e 0,11,e ⎛⎤ ⎥⎝⎦B .()1e0,1e ,⎡⎫+∞⎪⎢⎣⎭C .()12e 0,11,e ⎛⎤ ⎥⎝⎦D .()12e 0,1e ,⎡⎫+∞⎪⎢⎣⎭11.设集合{}40,2,1,1,21x A xB x +⎧⎫=>=--⎨⎬-⎩⎭,则()R A B =( ) A .{}1,1- B .{}2,1-- C .{}2,1,1--D .{}2,1,1,2--12.设集合{}22M x Z x =∈-<,则集合M 的真子集个数为( ) A .16B .15C .8D .713.已知集合{}{}234014P x x x Q x N x =--<=∈≤≤,,则=P Q ( )A .{1,2,3,4}B .{1,2,3}C .{1,2}D .{2,3,4}14.已知集合{2,1,0,1,2}A =--,{}220B x x x =--<,则A B =( )A .{2,1,0,1}--B .{1,0,1,2}-C .{0,1}D .{1,0}-15.已知集合()(){}160M x x x =--<,{}1,2,3,5N =,则M N =( )A .{}1,2,3,5B .{}3,5C .{}2,3,5D .{}1,3,5二、填空题16.已知集合{}2410A x mx x =++=有两个子集,则m 的值是__________.17.设集合{1,2,3,4,6}M =,12,,,k S S S 都是M 的含有两个元素的子集,则k =______;若满足:对任意的{,}i i i S a b =,{,}j j j S a b ={}(,,1,2,3,,)i j i j k ≠∈都有,i i j j a b a b <<,且ji i ja ab b ≠,则k 的最大值是__________. 18.若集合{}{}220,10M x x x N x ax =+-==+=,且N M ⊆,则实数a 的取值集合为____.19.已知集合{}4194,A x x n n *==-+∈N ,{}6206,B y y n n *==-+∈N ,将A B 中的所有元素按从大到小的顺序排列构成一个数列{}n a ,则数列{}n a 的前n 项和的最大值为___________.20.若非空且互不相等的集合M ,N ,P 满足:M N M ⋂=,⋃=N P P ,则M P =________.21.已知函数()()sin 04f x x πωω⎛⎫=+> ⎪⎝⎭在2,43ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω的取值范围为______.22.设α:()124R m x m m +≤≤+∈;β:13x ≤≤.若β是α的充分条件,则实数m 的取值范围为______.23.若集合M 满足{}1,2,3,4M,则这样的集合M 有______个.24.已知集合{}{}2560,A x x x B x x x =--<==-,则A B =__________. 25.用描述法表示被4除余3的自然数全体组成的集合A =______.三、解答题26.已知集合{}2280A x x x =+-≤.集合106x B xx -⎧⎫=<⎨⎬-⎩⎭,设集合()R I A B =. (1)求I ;(2)当x I ∈时,求函数9()1f x x x =+-的最小值.27.已知全集为实数集R ,集合{A x y ==,(){}lg 2B x y x ==-. (1)求A B 及()R B A ;(2)设集合{}1C x x a =<<,若C A ⊆,求实数a 的取值范围.28.已知集合{}|11A x a x a =-≤≤+,{}2|430B x x x =-+≤,U =R .(1)若1a =,求,;U A B B(2)若A B A =,求实数a 的取值范围.29.已知不等式()x a x a <210-++的解集为M . (1)若2∈M ,求实数a 的取值范围; (2)当M 为空集时,求不等式1x a-<2的解集.30.已知集合(){}2log 31A x x =->,22112y y B y -⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭. (1)分别求出集合A 、B ; (2)设全集为R ,求()RA B ⋂.【参考答案】一、单选题 1.C 【解析】 【分析】先化简集合A ,再求A B 【详解】lg 1lg lg10010x x x <⇔<⇔<<,即{}010|A x x =<<,所以{}|10A B x x =< 故选:C 2.B 【解析】 【分析】由于A B =R ,所以223a a +<,解不等式即可. 【详解】由题意,223a a +<得1a <-或3a >, 故选:B . 3.B 【解析】 【分析】求解不等式可得集合A ,根据对数函数的定义可得集合B ,进而求解. 【详解】因为220x x --<,所以12x -<<,则{}12A x x =-<<, 因为220x ->,所以1x >,则{}1B x x =>, 所以{}12B x A =<<,4.B 【解析】 【分析】利用补集的概念求解 RA .【详解】因为{1A x x =≤-或}2x >,所以 RA ={}12x x -<≤,故选:B 5.C 【解析】 【分析】根据指数函数、对数函数的性质求出集合A 、B ,再根据交集的定义计算可得; 【详解】解:由240x ->,即2242x >=,所以2x >,所以{}{}2402xA x x x =->=;由lg 10x -<,即lg 1x <,解得010x <<,所以{}{}lg 10|010B x x x x =-<=<<; 所以{}|210A B x x =<< 故选:C 6.B 【解析】 【分析】计算出集合M ,在利用复数的四则运算化简各选项中的复数,即可得出合适的选项. 【详解】当N k ∈时,4i 1k =,41i i k +=,422i i 1k +==-,433i i i k +==-,则{}i,1,i,1M =--, ()()1i 1i 112M -+=+=∉,()()()21i1i 2i i 1i 1i 1i 2M ---===-∈++-,()()()i 1i i 11i 1i 1i 1i 22M +==-+∉--+,()2i 1i 2M =-∉-, 故选:B. 7.D 【解析】 【分析】本题考查集合的交集,易错点在于集合A 元素是自然数,集合B 的元素是实数. 【详解】∵{}{}131,2,3A x N x =∈≤≤=,{}{}265015B x x x x x =-+<=<<,∴{}2,3A B ⋂=.故选:D . 8.C 【解析】直接按照补集和交集的概念运算即可. 【详解】 由题意知:{}1,4,5UB =,则(){}1UAB =.故选:C. 9.D 【解析】 【分析】由随机事件、不可能事件、必然事件的定义逐一判断即可得出答案. 【详解】因集合A 是集合B 的真子集,故A 中的任意一个元素都是B 中的元素,而B 中至少有一个元素不在A 中,因此①正确,②错误,③正确,④正确. 故选:D . 10.D 【解析】 【分析】求出集合M ,再由给定条件,对集合N 分类讨论,构造函数,利用导数探讨函数最小值求解作答. 【详解】依题意,{}(1)0|{|01}x M x x x x =<<=<-,{}2lo |g 0a N x x x =-<,令2(g )lo a f x x x -=,当01a <<时,函数()f x 在(0,)+∞上单调递增,而2(1)10,()10f f a a =>=-<,则0(,1)x a ∃∈,使得0()0f x =,当00x x <<时,()0f x <,当0x x >时,()0f x >,此时{}0|0N x x x M =<<⊆,因此,01a <<,当1a >时,若01x <≤,log 0a x ≤,则()0f x >恒成立,N =∅,满足N M ⊆, 于是当1a >时,N M ⊆,当且仅当N =∅,即不等式()0f x ≥对(0,)∀∈+∞x 成立,2n (l )1x f x x a '-=,由()0f x '=得x =,当0x <<()0f x '<,当x >()0f x '>,则函数()f x 在上单调递减,在)+∞上单调递增,min 1111ln(2ln )log ()222ln 2n ln 2l ln a a a a a af x f =-=+=,于是得1ln(2ln )220ln ln a a a +≥, 即1ln(2ln )0a +≥,变形得1ln 2ea ≥,解得12e e a ≥,从而得当12e e a ≥时,()0f x ≥恒成立,N =∅,满足N M ⊆,所以实数a 的取值范围是01a <<或12e e a ≥. 故选:D 【点睛】思路点睛:涉及函数不等式恒成立问题,可以利用导数探讨函数的最值,借助函数最值转化解决问题. 11.C 【解析】 【分析】解分式不等式化简集合A ,再利用补集、交集的定义计算作答. 【详解】 解不等式401x x +>-,则(4)(1)0x x +->,解得:4x <-或1x >,即{|4A x x =<-或1}x >, 于是得{|41}R A x x =-≤≤,而{}2,1,1,2B =--, 所以(){}2,1,1R A B ⋂=--. 故选:C 12.D 【解析】 【分析】求出集合M 中的元素,再由子集的定义求解. 【详解】由题意{|04}{1,2,3}M x Z x =∈<<=, 因此其真子集个数为3217-=. 故选:D . 13.B 【解析】 【分析】解不等式得到14{|}P x x =-<<,根据题意得到{1,2,3,4}Q =,再由集合交集的概念得到结果. 【详解】由集合{}234|0P x x x =--<,解不等式得到:14{|}P x x =-<<,又因为{1,2,3,4}Q =,根据集合交集的概念得到:{}1,2,3P Q ⋂=. 故选:B. 14.C 【解析】 【分析】根据交集概念求解即可. 【详解】{}{}220=12B x x x x x =--<-<<,则{}0,1A B =. 故选:C 15.C 【解析】 【分析】求出集合M ,利用交集的定义可求得结果. 【详解】()(){}{}16016M x x x x x =--<=<<,因此,{}2,3,5MN =.故选:C.二、填空题16.0或4 【解析】 【分析】由题意得A 只有一个元素,对m 分类讨论求解 【详解】当0m =时,1{}4A =-,满足题意当0m ≠时,由题意得1640m ∆=-=,4m = 综上,0m =或4m = 故答案为:0或4 17. 10 6 【解析】 【分析】列举M 的2个元素子集数个数即可;利用,i i j j a b a b << ,再结合ji i ja ab b ≠进行排除其他的即为答案. 【详解】M 的两元素子集有{1,2}{1,3}{1,4}{1,6}{2,3}{2,4}{2,6}{3,4}{3,6}{4,6}、、、、、、、、、,所以共有10个,因此k =10;因为前面的列举方式已经保证,i i j j a b a b <<,只需要再增加条件ji i ja ab b ≠即可,所以{1,2}{2,4}、、{3,6}保留一个,{1,3}{2,6}、保留一个,{2,3}{4,6}、只能保留一个,所以以上10个子集需要删去4个,还剩下6个,所以则k 的最大值是6.故max 6k .故答案为:10;6.18.10,1,2⎧⎫-⎨⎬⎩⎭【解析】先求出集合M ,然后分N =∅和N ≠∅两种情况求解 【点睛】由220x x +-=,得(1)(2)0x x -+=,解得1x =或2x =-, 所以{}1,2M =-,当N =∅时,满足N M ⊆,此时0a = 当N ≠∅时,即0a ≠,则1N a ⎧⎫=-⎨⎬⎩⎭,因为N M ⊆,所以1M a-∈,所以11a -=或12a-=-, 解得1a =-或12a =, 综上,12a =,或1a =-,或0a =, 所以实数a 的取值集合为10,1,2⎧⎫-⎨⎬⎩⎭,故答案为:10,1,2⎧⎫-⎨⎬⎩⎭19.1472【解析】 【分析】由题意设4194n b n =-+,6206m c m =-+,根据n m b c =可得326m n -=,从而312194n n a b n ==-+,即可得出答案.【详解】设4194n b n =-+,由41940n b n =-+>,得48n ≤ 6206m c m =-+,由62060m c m =-+>,得34m ≤A B 中的元素满足n m b c =,即41946206n m -+=-+,可得326m n -=所以223m n =+,由,*m n N ∈,所以3,*n k k N =∈ 所以312194n n a b n ==-+,要使得数列{}n a 的前n 项和的最大值,即求出数列{}n a 中所以满足0n a ≥的项的和即可. 即121940n a n =-+≥,得16n ≤,则116182,2a a == 所以数列{}n a 的前n 项和的最大值为121618221614722a a a ++++=⨯= 故答案为:147220.P【解析】推导出M N ⊆,N P ⊆,由此能求出M P P =.【详解】解:非空且互不相等的集合M ,N ,P 满足:M N M ⋂=,⋃=N P P ,M N ∴⊆,N P ⊆,MP P ∴=.故答案为:P .21.9[1,]8【解析】 【分析】由()()sin()04f x x πωω=+>的单调递减区间包含2,43ππ⎡⎤⎢⎥⎣⎦可计算ω 的取值范围. 【详解】()()sin()04f x x πωω=+> 在2,43ππ⎡⎤⎢⎥⎣⎦上单调递减 令(),42x k k Z ππωπ+=+∈ 得14ππωω=+k x 令(),4x k k Z πωππ+=+∈得234k x ππωω=+ 23,+,4344k k ππππππωωωω⎡⎤⎡⎤∴⊂+⎢⎥⎢⎥⎣⎦⎣⎦442334k k πππωωπππωω⎧+≤⎪⎪∴⎨⎪≤+⎪⎩419382k k ωω⎧≥+⎪∴⎨≤+⎪⎩ 93110041082420k k k k Z k ω>∴<+<+∴-<<∈∴=ω∴∈9[1,]8故答案为:9[1,]822.102m -≤≤【解析】 【分析】根据给定条件可得β所对集合包含于α所对集合,再利用集合的包含关系列式作答. 【详解】令α所对集合为:{|124(R)}x m x m m +≤≤+∈,β所对集合为:{|13}x x ≤≤, 因β是α的充分条件,则必有{|13}{|124(R)}x x x m x m m ≤≤⊆+≤≤+∈,于是得11243m m +≤⎧⎨+≥⎩,解得102m -≤≤, 所以实数m 的取值范围为102m -≤≤. 故答案为:102m -≤≤ 23.15【解析】【分析】结合真子集公式可直接求解.【详解】因为{}1,2,3,4M ,故集合M 有42115-=个.故答案为:1524.{}|10x x -<≤【解析】【分析】求出集合A ,B ,依据交集的定义求出A B .【详解】 集合{}2560{|16}A x x x x x =--<=-<<,{}{}|0B x x x x x ==-=≤,{}|10A B x x ∴=-<≤.故答案为:{}|10x x -<≤.25.{}|43,N n n k k =+∈【解析】【分析】用数学式子表示出自然语言即可.【详解】被4除余3的自然数即为4的整数倍加3,因此{|43,N}A n n k k ==+∈.故答案为:{}|43,N n n k k =+∈.三、解答题26.(1){}26x x <<;(2)7.【解析】【分析】(1)化简集合,然后利用补集的定义及交集的定义运算即得; (2)利用基本不等式即得.(1) ∵{}{}228042A x x x x x =+-≤=-≤≤,{}10166x B x x x x -⎧⎫=<=<<⎨⎬-⎩⎭, ∴{R 4A x x =<-或}2x >,(){}R 26I A B x x =⋂=<<;(2) 当x I ∈时,()11,5x -∈,∴99()111711f x x x x x =+=-++≥=--, 当且仅当911x x -=-,即4x =取等号, 所以函数9()1f x x x =+-的最小值为7. 27.(1){|1}A B x x =≥,R (){|12}B A x x =≤≤(2)(,3]a ∈-∞【解析】【分析】 (1)先求出集合A 、B ,再求A B ,R ()B A ; (2)对C 是否为∅分类讨论,分别求出a 的范围.(1) 由1030x x -≥⎧⎨-≥⎩可得{}|13A x x =≤≤ 又{|20}{|2}B x x x x =->=>,则R {|2}B x x =≤ 所以{|1}A B x x =≥,R (){|12}B A x x =≤≤(2)当1a ≤时,C =∅,此时C A ⊆;当1a >时,C A ⊆,则13a ;综上可得(,3]a ∈-∞ 28.(1)[03]A B ⋃=,,{|1U B x x =<或3}x >; (2)0a ≤﹒【解析】【分析】(1)解出集合B ,求出集合A ,根据集合并集和补集运算方法计算即可;(2)由A B A =知A B ⊆,分A =∅和A ≠∅讨论即可﹒(1){|13}B x x =≤≤,当a =1时,{|02}A x x =≤≤,[]03A B ⋃=,,{|1U B x x =<或3}x >; (2)A B A =,A B ∴⊆,①当A =∅时,11a a ->+,∴0a <;②当A ≠∅时,01113a a a ≥⎧⎪-≥⎨⎪+≤⎩,解得0a =; 综上,0a ≤﹒29.(1)a >2(2)(-∞,1)∪3,2⎛⎫+∞ ⎪⎝⎭【解析】【分析】(1)由已知2∈M 可得,2满足已知不等式,代入即可求解; (2)由M 为空集,可求得a ,然后代入解分式不等式即可求解.(1)由已知2∈M 可得,4-2(a +1)+a <0,解得a >2, 所以实数a 的取值范围为()2,+∞;(2)当M 为空集,则()a a -∆=≤2410+,即()a -≤210; 所以10a -=,即1a = ∴1x a -<2,即11x -<2, ∴231x x -->0,解得x >32或x <1. ∴此不等式的解集为(-∞,1)∪3,2⎛⎫+∞ ⎪⎝⎭. 30.(1){}5A x x =>,{0B y y =<或}2y >(2)(){}R 5A B x x ⋂=≤【解析】【分析】(1)利用对数函数和指数函数的单调性可分别求得集合A 、B ; (2)求出A B ,利用补集的定义可求得集合()R A B ⋂. (1)解:(){}{}{}2log 31325A x x x x x x =->=->=>,{}{222112002y y B y y y y y y -⎧⎫⎪⎪⎛⎫=<=->=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭或}2y >.(2)解:由(1)可得{}5A B x x ⋂=>,因此,(){}R 5A B x x ⋂=≤.。
高一数学集合练习题及答案
高一数学集合练习题及答案一、单选题1.集合{}22A x x =-<≤,{}2,1,0,1B =--,则A B =( )A .{}1,1,2-B .{}2,1,0,1--C .{}1,0,1-D .{}2,1,0,1,2-- 2.已知集合(){}2{|14,},1,0,1M x x x R N =-<∈=-则M N =( )A .{}0,12,B .{}0,1C .{}1,0,2,3-D .{}0,123,, 3.集合,2k M x x k π⎧⎫==∈⎨⎬⎩⎭Z ,,2P x x k k ππ⎧⎫==+∈⎨⎬⎩⎭Z ,则M 、P 之间的关系为( )A .M P =B .M P ⊆C .P M ⊆D .M P ⋂=∅4.设集合{}1,0,2,3A =-,139x B x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =( ) A .{}2,3B .{}0,2C .{}0,2,3D .{}1,0,2,3- 5.设{|1},{|12}P x x Q x x ==-<≤≤,那么P Q =( )A .{|11}x x -<<B .{|12}x x -≤<C .{|12}x x ≤<D .{|11}x x -≤≤ 6.已知集合{}0,1,2,3,4,5A =,{}1,3,6,9B =,{}3,7,8C =,则 ()A B C ⋂⋃=( ) A .{}3 B .{}3,7,8 C .{}1,3,7,8 D .{}1,3,6,7,87.已知集合{}21A x x =<,{}02B x x =<<,则A B =( ) A .1,2 B .0,1 C .()0,2 D .1,28.已知集合{3,1,2}A =-,{}2|60B x N x x =∈--≤,则A B ⋃=( ) A .{}1,2B .{}3,0,1,2-C .{}3,1,2,3-D .{}3,0,1,2,3-9.下列命题说法错误的是( ) A .()2()lg 23f x x x =-++在(1,1)-上单调递增B .“1x =”是“2430x x -+=”的充分不必要条件C .若集合{}2440A x kx x =++=恰有两个子集,则1k =D .对于命题:p 存在0R x ∈,使得20010x x ++<,则¬p :任意R x ∈,均有210x x ++≥ 10.已知集合{}20A x x =-≤≤,{}21B x x =>,则A B ⋃=( ) A .[)2,1--B .[]()2,01,-⋃+∞C .(](),01,-∞⋃+∞D .[)2,1-11.已知集合2{|30}A x x x =-≥,集合{1234}B =,,,,则A B =( )A .{01234},,,,B .{123},,C .[0,4]D .[1,3]12.设全集U =R ,集合(){}ln 1|M x y x ==-,2{|4}N x y x ==-,则下面Venn 图中阴影部分表示的集合是( )A .()1,2B .(]1,2C .(2,)+∞D .[2,)+∞ 13.已知集合{1,5,},{2,}A a B b ==,若{2,5}A B ⋂=,则a b +的值是( )A .10B .9C .7D .4 14.已知集合{}2,3,4,5A =,{}1,B a =,若{}5A B =,则=a ( )A .2B .3C .4D .515.设集合{}260A x x x =--≤,{}15B x x =≤<,则A B =( ) A .{}23x x -<<B .{}13x x ≤≤C .{}13x x ≤<D .{}23x x -≤≤二、填空题16.已知集合{}|04A x x =<≤,集合{}|B x x a =<,若A B ⊆,则实数a 的取值范围是_____.17.已知集合[)[)2,6,1,4A B ==-,则A B ⋃=__________.18.全集U =R ,集合{}3A x x =≤-,则 U A =______.19.下列命题中正确的有________(写出全部正确的序号).①{2,4,6}⊆{2,3,4,5,6};②{菱形}⊆{矩形};③{x |x 2=0}⊆{0};④{(0,1)}⊆{0,1};⑤{1}∈{0,1,2};⑥{}|2x x ≥ {}|1x x >.20.已知集合{}2,1,2A =-,{}1,B a a =+,且B A ⊆,则实数a 的值是___________. 21.用适当的符号填空:(1){}0______()2,3-; (2){},,a c b ______{},,a b c ;(3)R______(],3-∞-; (4){}1,2,4______{}8x x 是的约数. 22.已知集合A 与B 的关系如下图,则图中所示的阴影部分用集合表示为________.(要求用集合A 与B 的符号关系表示)23.已知集合{}1,3,5,6,8A =,{}2,3,4,6B =,则下图中阴影部分表示的集合为___________.24.若“x a >”是“39x >”的必要条件,则a 的取值范围是________.25.设{}|11A x x =-<<,{}|0B x x a =->若A B ⊆,则a 的取值范围是_____.三、解答题26.集合22,Z 33A x k x k k ππππ⎧⎫=-<<+∈⎨⎬⎩⎭,222,Z 3B x k x k k πππ⎧⎫=<<+∈⎨⎬⎩⎭,,Z 62C x k x k k ππππ⎧⎫=+<<+∈⎨⎬⎩⎭,[]10,10D =-,分别求A B ,A C ,A D .27.已知函数()()4log 526f x x x =-+-()g x x α=(α为常数),且()g x 的图象经过点(8,22P .(1)求()f x 的定义域和()g x 的解析式;(2)记()f x 的定义域为集合A ,()g x 的值域为集合B ,求()A B ⋂R .28.已知命题“{}11x x x ∃∈-≤≤,使等式220x x m --=成立”是真命题.(1)求实数m 的取值集合A ;(2)设关于x 的不等式()2242360x a x a a -+++<的解集为B ,若B A ,求实数a 的取值范围.29.设M 为100个连续正整数的集合,已知其中2的倍数有50个,3的倍数有33个,6的倍数有16个,如何利用这些数据求出M 中不能被3整除的奇数的个数?30.已知集合{}A x x =是平行四边形,{}B x x =是矩形,{}C x x =是正方形,{}D x x =是菱形,求集合A ,B ,C ,D 之间的关系.【参考答案】一、单选题1.C【解析】【分析】利用交集的定义,直接计算即可.【详解】根据题意,A B ={}1,0,1-.故选:C .2.B【解析】【分析】先化简集合M ,再利用集合的交集运算求解.【详解】解:因为已知集合(){}{}2|14,|13M x x x R x x =-<∈=-<<,{}1,0,1N =-,所以MN ={}0,1,故选:B3.C【解析】【分析】用列举法表示集合M 、P ,即可判断两集合的关系;解:因为335,,2,,,,0,,,,2,,222222k M x x k Z ππππππππππ⎧⎫⎧⎫==∈=----⎨⎬⎨⎬⎩⎭⎩⎭, 5335,,,,,,,,2222222P x x k k Z ππππππππ⎧⎫⎧⎫==+∈=---⎨⎬⎨⎬⎩⎭⎩⎭, 所以P M ⊆,故选:C4.C【解析】【分析】先解指数不等式得集合B ,然后由交集定义可得.【详解】由2139x x -=⎛⎪3⎫ ⎭<⎝,得12x >-,所以12B x x ⎧⎫=>-⎨⎬⎩⎭,所以{}0,2,3A B =. 故选:C .5.D【解析】【分析】 直接根据集合交集运算求解即可.【详解】解:因为{|1},{|12}P x x Q x x ==-<≤≤,所以{|11}Q x x P -≤≤=.故选:D6.C 【解析】【分析】先求A B ,再求()A B C ⋂⋃.【详解】{}1,3A B =,(){}1,3,7,8A B C ⋂⋃=. 故选:C7.B【解析】【分析】解一元二次不等号求集合A ,再由集合的交运算求A B .【详解】由题设,{|11}A x x =-<<,又{|02}B x x =<<所以{|01}A B x x =<<.故选:B8.D【分析】先求出集合B 的元素,进行并集运算即可.【详解】因为{}()(){}2|60|320B x N x x x N x x =∈--≤=∈-+≤ {}{}|230,1,2,3x N x =∈-≤≤=,所以{}3,0,1,2,3A B ⋃=-.故选:D.9.C【解析】【分析】A.利用复合函数的单调性判断;B.利用充分条件和必要条件的定义判断;C.由方程2440kx x ++=有一根判断;D.由命题p 的否定为全称量词命题判断.【详解】A.令223t x x =-++,由2230x x -++>,解得13x ,由二次函数的性质知:t 在(1,1)-上递增,在(1,3)上递减,又lg y t =在()0,∞+上递增,由复合函数的单调性知:()2lg(23)f x x x =-++在(1,1)-上递增,故正确;B. 当1x =时,2430x x -+=成立,故充分,当2430x x -+=成立时,解得1x =或3x =,故不必要,故正确;C.若集合{}2440A x kx x =++=中只有两个子集,则集合只有一个元素,即方程2440kx x ++=有一根,当0k =时,1x =-,当0k ≠时,16160k ∆=-=,解得1k =,所以0k =或1k =,故错误;D.因为命题:p .存在0R x ∈,使得20010x x ++<是存在量词命题,则其否定为全称量词命题,即:p ⌝任意R x ∈,均有210x x ++≥,故正确;故选:C.10.C【解析】【分析】解不等式求得集合B ,由此求得A B .【详解】()()21,110x x x >+->,解得1x <-或1x >,所以()(),11,B =-∞-⋃+∞,所以(](),01,A B ⋃=-∞⋃+∞.故选:C11.B【解析】【分析】先求得{|03}A x x =≤≤,再根据交集的运算可求解.【详解】由已知{|03}A x x =≤≤,所以{}1,2,3A B =.故选:B .12.A【解析】【分析】由对数函数性质,二次根式定义确定集合,M N ,然后确定Venn 图中阴影部分表示的集合并计算.【详解】由题意{|10}{|1}M x x x x =->=>,2{|4}{|2N x x x x =≥=≤-或2}x ≥,{|22}U N x x =-<<,Venn 图中阴影部分为(){|12}U MN x x =<<. 故选:A .13.C【解析】【分析】利用交集的运算求解.【详解】解:因为集合{1,5,},{2,}A a B b ==,且{2,5}A B ⋂=,所以a =2,b =5,所以a b +=7,故选:C14.D【解析】【分析】根据集合的交运算结果,即可求得参数值.【详解】因为{}5A B =,故可得{}51,a ∈,则5a =.故选:D.15.B【解析】【分析】先求出集合A 的解集,然后进行交集运算即可.【详解】 因为{}23A x x =-≤≤,{}15B x x =≤<,所以{}13A B x x ⋂=≤≤.故选:B.二、填空题16.4a >【分析】结合数轴图与集合包含关系,观察即可得到参数的范围.【详解】在数轴上表示出集合A ,B ,由于A B ⊆,如图所示,则4a >.17.[1-,6)【解析】【分析】直接利用并集运算得答案.【详解】[2A =,6),[1B =-,4),[2A B ∴=,6)[1-,4)[1=-,6).故答案为:[1-,6).18.{}3x x >-【解析】【分析】直接利用补集的定义求解【详解】因为全集U =R ,集合{}3A x x =≤-,所以 U A ={}3x x >-, 故答案为:{}3x x >-19.①③⑥【解析】【分析】根据集合间的基本关系中的子集、真子集的定义及元素与集合的关系即可求解.【详解】对于①,2,4,6}{2,3,4,5,6∈,则{2,4,6}⊆{2,3,4,5,6},故①正确; 对于②,菱形不属于矩形,则{菱形} {矩形},故②不正确;对于③,由20x =,解得0x =,则{x |x 2=0}⊆{0},故③正确;对于④,()}{0,10,1∉,则{(0,1)}⊆{0,1},故④不正确;对于⑤,集合与集合不能用属于与不属于关系表示,所以{1}∈{0,1,2}不正确; 对于⑥,{}|2x x ≥ {}|1x x >,故⑥正确.故答案为:①③⑥.20.1【分析】由子集定义分类讨论即可.【详解】因为B A ⊆,所以a A ∈1A ∈,当2a =-1无意义,不满足题意;当1a =12=,满足题意;当2a =11=,不满足题意.综上,实数a 的值1.故答案为:121. ⊆ = ⊇ ⊆【解析】【分析】根据集合子集的定义及集合相等的概念求解.【详解】由集合的子集、集合的相等可知(1)⊆,(2)=,(3)⊇,(4)⊆ 故答案为:⊆,=,⊇,⊆22.()A B A B ⋃【解析】【分析】由集合的交并补运算求解即可.【详解】设全集为A B ,则阴影部分表示集合A 与B 交集的补集,即()A B A B ⋃ 故答案为:()A B A B ⋃23.{}1,5,8【解析】【分析】 分析可知,阴影部分所表示的集合为{x x A ∈且}x B ∉,即可得解.【详解】 由图可知,阴影部分所表示的集合为{x x A ∈且}{}1,5,8x B ∉=. 故答案为:{}1,5,8.24.2a ≤【解析】【分析】根据题意39x >解得:2x >,得出()()2,,a +∞⊆+∞,由此可得出实数a 的取值范围.【详解】根据题意39x >解得:2x >,由于“x a >”是“39x >”的必要条件,则()()2,,a +∞⊆+∞,2a ∴≤. 因此,实数a 的取值范围是:2a ≤.故答案为:2a ≤.25.(],1-∞-【解析】【分析】由数轴法可得到A B ⊆,则只要1a ≤-即可.【详解】根据题意作图:由图可知,A B ⊆,则只要1a ≤-即可,即a 的取值范围是(],1-∞-. 故答案为:(],1-∞-.三、解答题26.2,2,3k k k πππ⎛⎫+∈ ⎪⎝⎭Z ;2,2,63k k k ππππ⎛⎫++∈ ⎪⎝⎭Z ;7557,,,333333ππππππ⎛⎫⎛⎫⎛⎫--⋃-⋃ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 【解析】【分析】根据任意角的弧度表示及交集的概念即可计算.【详解】22,22,22,2,3333A B k k k k k k k ππππππππππ⎛⎫⎛⎫⎛⎫⋂=-+⋂+=+∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭Z ; 2,2,2,2,336263A C k k k k k k k ππππππππππππ⎛⎫⎛⎫⎛⎫⋂=-+⋂++=++∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭Z ; 分别令k =-1,0,1,即可得:[]75572,210,10,,,33333333A D k k ππππππππππ⎛⎫⎛⎫⎛⎫⎛⎫⋂=-+⋂-=--⋃-⋃ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 27.(1)()3,5;()12g x x =;(2)][)0,35,∞⎡⋃+⎣.【解析】【分析】 (1)根据f (x )解析式即可求其定义域,根据()g x x α=过P 求出α即可求出g (x )解析式;(2)根据幂函数的性质求g (x )值域即B ,根据集合的补集和交集的运算方法求解即可.(1)5052603x x x x ⎧-><⎧⇒⎨⎨->>⎩⎩, ∴f (x )定义域为()3,5;∵()g x x α=过(P ,则()3132218222g x x ααα==⇒=⇒=; (2)()3,5A =,[)0,B ∞=+,][(),35,A ∞∞=-⋃+R ,()][)0,35,A B ∞⎡⋂=⋃+⎣R. 28.(1){}13A m m =-≤≤ (2)113a -≤≤ 【解析】【分析】(1)分析可得()211m x =--,求出当11x -≤≤时,()211x --的取值范围,即可得解; (2)对3a 与2a +的大小进行分类讨论,求出集合B ,根据B A 可得出关于实数a 的不等式(组),综合可求得实数a 的取值范围.(1)解:由220x x m --=可得()22211m x x x =-=--,当11x -≤≤时,则210x -≤-≤,所以,()[]2111,3m x =--∈-,故{}13A m m =-≤≤. (2)解:()()()2242360320x a x a a x a x a -+++<⇔---<.当32a a >+,即1a >时,{}23B x a x a =+<<,因为B A ,则21331a a a +≥-⎧⎪≤⎨⎪>⎩,此时a 不存在; 当32a a =+,即1a =时,B =∅,满足题设条件;当32a a <+,即1a <时,{}32B x a x a =<<+,因为B A ,则31131a a a ≥-⎧⎪+≤⎨⎪<⎩,解得113a -≤<.综上可得,实数a 的取值范围为113a -≤≤. 29.33【解析】【分析】分析集合之间的关系,由()()()()card A B card A card B card A B ⋃=+-⋂可得.【详解】记{|2,,}A x x n x M n N ==∈∈,{|3,,}B x x n x M n N ==∈∈,则{|21,,}M A x x n x M n N ==-∈∈,{|3,,}M B x x n x M n N =≠∈∈, {|A B x x ⋂=是能被3整除的偶数,}x M ∈, ()(){|M M A B x x =是不能被3整除的奇数,}x M ∈由题知()50,()33,()16card A card B card A B ===,因为()()()M M M A B A B =,()()()()50331667card A B card A card B card A B =+-=+-=所以M 中不能被3整除的奇数有100-67=33个.30.答案见解析【解析】【分析】直接利用四边形的关系,判断即可.【详解】解:因为矩形、正方形、菱形都是特殊的平行四边形,所以B A ,C A ,D A ; 又正方形是特殊的矩形、特殊的菱形,所以C B ,C D ;。
高一数学集合练习题及答案经典
高一数学集合练习题及答案经典一、单选题1.已知集合{}1,4,M x x =,{}21,N x =,若N M ⊆,则实数x 组成的集合为( )A .{}0B .{}2,2-C .2,0,2D .2,0,1,22.设全集U =R ,集合302x A xx ⎧⎫-=≤⎨⎬+⎩⎭,集合{}ln 1B x x =≥,则()UA B =( )A .()e,3B .[]e,3C .[)2,e -D .()2,e -3.已知集合{0A x x =≤或}1≥x ,{}39xB x =<,则A B =( )A .{}12x x ≤<B .{0x x ≤或}12x ≤<C .{}2x x <D .{}02x x ≤<4.已知集合{}1,2,3A =,{}21,B y y x x A ==-∈,则A B =( ) A .{}1,2 B .{}1,2,3 C .{}1,3D .{}1,2,3,55.若集合302x A xx ⎧⎫-=<⎨⎬+⎩⎭,{}0B x x =>,则A B ⋃=( ) A .{}02x x << B .{}3x x > C .{}2x x >-D .{}3x x >-6.若集合{}220A x x x =--<,{}21B x x =<,则A B =( )A .AB .BC .()1,0-D .()0,27.设R U =,1{|2}2xA x =<,{1}B x =,则()U B A ⋂=( )A .{|0}x x <B .{}|1x x >C .{}|01x x <<D .{}|01x x <≤8.集合{|13}A x x =-<<,集合{}24B xx =<∣,则A B =( ) A .(-2,2)B .(-1,2)C .(-2,3)D .(-1,3)9.设集合{}1,0,2,3A =-,139xB x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =( )A .{}2,3B .{}0,2C .{}0,2,3D .{}1,0,2,3-10.已知全集{}{}1,2,3,,2,3U A U B =⊆=,若A B ⋂≠∅,且A B ⊆/则集合A 有( ) A .1个B .2个C .3个D .4个11.设集合{}40,2,1,1,21x A xB x +⎧⎫=>=--⎨⎬-⎩⎭,则()R A B =( ) A .{}1,1- B .{}2,1--C .{}2,1,1--D .{}2,1,1,2--12.已知集合{|1}A x y x ==+,集合{|1}B x x =<,则A B =( ) A .[)1,1-B .(1,1)-C .(,1)-∞D .(0,1)13.已知集合{}14A x x =-≤≤,{}260B x N x x =∈--≤ ,则A B =( )A .[]1,3-B .[]2,4-C .{}1,2,3D .{}0,1,2,314.已知集合{}ln ,1A y y x x ==>,1,12xB y y x ⎧⎫⎪⎪⎛⎫==>⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =( )A .102y y ⎧⎫<<⎨⎬⎩⎭B .{}01y y <<C .112y y ⎧⎫<<⎨⎬⎩⎭D .∅15.已知集合{5,3,1,0,2,4},{1,2,4},{5,0,2}U A B =---=-=-,则()U A B ⋃=( ) A .{2}B .{3}-C .{3,1,2}-D .{5,3,1,0,4}---二、填空题16.若集合406x A xx ⎧⎫-=<⎨⎬+⎩⎭,{}230B x x =+<,则()R A B ⋂=______. 17.集合{}2,A x x k k ==∈Z ,{}25B x x =≤,那么A B =______.18.集合{|13},{|25}A x x B x x =∈<≤=∈<<Z Z ,则A B 的子集的个数为___________. 19.若全集S ={2, 3, 4},集合A ={4, 3},则S A =____;若全集S ={三角形},集合B ={锐角三角形},则S B =______;若全集S ={1, 2, 4, 8}, A =∅,则S A =_______;若全集U ={1, 3, a 2+2a +1},集合A ={1, 3},UA ={4},则a =_______;已知U 是全集,集合A ={0,2, 4},UA ={-1, 1},UB ={-1, 0, 2},则B =_____.20.已知集合{}{}35,10A x Zx B y y =∈-<<=+>∣∣,则A B 的元素个数为___________. 21.1881年英国数学家约翰·维恩发明了Venn 图,用来直观表示集合之间的关系.全集U =R ,集合{}2220M x x ax =-+<,{}2log 1N x x =≤的关系如图所示,其中区域Ⅰ,Ⅱ构成M ,区域Ⅱ,Ⅲ构成N .若区域Ⅰ,Ⅱ,Ⅲ表示的集合均不是空集,则实数a 的取值范围是______.22.已知集合(){}(){},24,,5A x y x y B x y x y =-==+=∣∣,则A B 中元素个数为__________.23.已知集合{}2320A xx x =-+=∣,{06,}B x x x N =<<∈∣,则满足条件A ⊂C B ⊆的集合C 的个数为_________个 24.已知函数()5f x =-M ,集合{}9N x x =≥,若M N ⋂=∅,则实数a 的取值范围是_________. 25.判断下列命题的真假:(1)集合{}1,2,3是集合{}1,2,3的真子集;( ) (2){}1是集合{}1,2,3的元素;( ) (3)2是集合{}1,2,3的子集;( ) (4)满足{}{}00,1,2,3A的集合A 的个数是322-个.( )三、解答题26.对于任意的*n N ∈,记集合{1,2,3,,}n E n =,,n n n P x x a E b E ⎧⎫==∈∈⎨⎬⎩⎭,若集合A 满足下列条件:①n A P ⊆;②12,x x A ∀∈,且12x x ≠,不存在*N k ∈,使212x x k +=,则称A 具有性质Ω.如当2n =时,2{1,2}E =,2P ⎧=⎨⎩,112,x x P ∀∈,且12x x ≠,不存在*N k ∈,使212x x k +=,所以2P 具有性质Ω.(1)写出集合3P ,4P 中的元素个数,并判断3P 是否具有性质Ω. (2)证明:不存在A 、B 具有性质Ω,且A B =∅,使15E A B =⋃. (3)若存在A 、B 具有性质Ω,且A B =∅,使n P A B =⋃,求n 的最大值.27.记函数()()2lg 4f x x x =-的定义域为集合M ,函数()()213xg x x =<<的值域为N .求: (1)M ,N ; (2)M N ⋂,M N ⋃.28.已知全集U =R ,集合{}32A x x =-<<,{}|16B x x =≤≤,{}|121C x a x a =-≤≤+. (1)求()U A B ;(2)若()C A B ⊆⋃,求实数a 的取值范围.29.已知集合{}211A x m x m =-<<+,{}24B x x =<.(1)当2m =时,求,A B A B ⋃⋂;(2)若“x A ∈”是“x B ∈”成立的充分不必要条件,求实数m 的取值范围.30.设Y 是由6的全体正约数组成的集合,写出Y 的所有子集.【参考答案】一、单选题 1.C 【解析】 【分析】若N M ⊆,所以2x x =或24x =,解出x 的值,将x 的值代入集合,检验集合的元素满足互异性. 【详解】因为N M ⊆,所以2x x =,解得0x =,1x =或24x =,解得2x =±, 当0x =时,{}1,4,0M =,{}1,0N =,N M ⊆,满足题意. 当1x =时,{}1,4,1M =,不满足集合的互异性. 当2x =时,{}1,4,2M =,1,4N ,若N M ⊆,满足题意. 当2x =-时,{}1,4,2M =-,1,4N ,若N M ⊆,满足题意.故选:C. 2.D 【解析】 【分析】求出集合A 、B ,利用交集和补集的定义可求得集合()U A B ∩.【详解】因为{}30232x A xx x x ⎧⎫-=≤=-<≤⎨⎬+⎩⎭,{}{}ln 1e B x x x x =≥=≥, 所以,{}e UB x x =<,因此,()()2,e UA B =-.故选:D. 3.B 【解析】 【分析】解出不等式39x <,然后根据集合的交集运算可得答案. 【详解】因为{0A x x =≤或}1≥x ,{}39xB x =< {}2x x =<,所以A B ={0x x ≤或}12x ≤<,故选:B 4.C 【解析】 【分析】根据题意求出集合B ,在和集合A 取交集即可. 【详解】因为集合{}1,2,3A =,{}21,B y y x x A ==-∈, 所以{}1,3,5B =,所以{}1,3A B =, 故选:C. 5.C 【解析】 【分析】解分式不等式确定集合A ,再由并集的定义计算. 【详解】解:依题意,{}30232x A xx x x ⎧⎫-=<=-<<⎨⎬+⎩⎭,则{}2A B x x ⋃=>-, 故选:C . 6.B 【解析】 【分析】由题知{}12A x x =-<<,{}11B x x =-<<,再求交集即可. 【详解】解:解不等式220x x --<得12x -<<,故{}12A x x =-<<, 解不等式21x <得11x -<<,故{}11B x x =-<<, 所以A B ={}11x x B -<<=. 故选:B7.B 【解析】 【分析】解不等式求得集合A 、B ,由此求得()U B A ⋂. 【详解】 11222x -<=,由于2x y =在R 上递增,所以1x <-, 即{}|1A x x =<-,{}|1UA x x =≥-,11x >⇒>,所以{}|1B x x =>,所以(){}|1UB A x x =>.故选:B 8.B【解析】 【分析】先求集合B ,进一步求出答案. 【详解】集合{}24B xx =<∣{22}x x =-<<∣,{13}A x x =-<<∣, ∴{12}A B xx ⋂=-<<∣. 故选:B. 9.C 【解析】 【分析】先解指数不等式得集合B ,然后由交集定义可得. 【详解】由2139xx -=⎛⎪3⎫⎭<⎝,得12x >-,所以12B x x ⎧⎫=>-⎨⎬⎩⎭,所以{}0,2,3A B =.故选:C . 10.C 【解析】 【分析】根据题意,列举出符合题意的集合. 【详解】因为全集{}{}1,2,3,,2,3U A U B =⊆=,若A B ⋂≠∅,且A B ⊆/, 所以{}1,2,3A =或{}1,2A =或{}1,3A =. 故选:C 11.C 【解析】【分析】解分式不等式化简集合A ,再利用补集、交集的定义计算作答. 【详解】 解不等式401x x +>-,则(4)(1)0x x +->,解得:4x <-或1x >,即{|4A x x =<-或1}x >, 于是得{|41}R A x x =-≤≤,而{}2,1,1,2B =--, 所以(){}2,1,1R A B ⋂=--. 故选:C 12.A 【解析】 【分析】求出集合A ,根据集合的交集运算即可求得答案. 【详解】由题意得:{|{|1}A x y x x ===≥-, 故{|11}A B x x ⋂=-≤<, 故选:A 13.D 【解析】 【分析】由题知{}0,1,2,3B =,再根据集合交集运算求解即可. 【详解】解:解不等式260x x --≤得23x -≤≤,所以{}{}2600,1,2,3B x N x x =∈--≤=,因为{}14A x x =-≤≤ 所以A B ={}0,1,2,3 故选:D 14.A 【解析】 【分析】根据题意求出,A B 后运算 【详解】由题意,A B 为对应函数的值域,(0,)A =+∞,1(0,)2B =故1(0,)2A B =故选:A 15.B 【解析】 【分析】按照并集和补集计算即可. 【详解】由题意得,{5,1,0,2,4}A B =--,所以(){3}U A B =-.故选:B.二、填空题16.342x x ⎧⎫-≤<⎨⎬⎩⎭【解析】 【分析】先求出集合A 和集合B 的补集,再求两集合的交集即可 【详解】依题意,{}40646x A xx x x ⎧⎫-=<=-<<⎨⎬+⎩⎭,{}32302B x x x x ⎧⎫=+<=<-⎨⎬⎩⎭, 则R32B x x ⎧⎫=≥-⎨⎬⎩⎭, 故()R 342A B x x ⎧⎫⋂=-≤<⎨⎬⎩⎭.故答案为:342x x ⎧⎫-≤<⎨⎬⎩⎭17.{}2,0,2-【解析】 【分析】根据集合A 的含义,直接求解A B ⋂即可. 【详解】因为集合A 表示元素为偶数的集合,又{}2|5{|B x x x x =≤=≤≤,故{}2,0,2A B ⋂=-. 故答案为:{}2,0,2-. 18.8 【解析】 【分析】先求得A B ,然后求得A B 的子集的个数. 【详解】{}{}2,3,3,4A B ==,{2,3,4}A B ⋃=,有3个元素,所以子集个数为328=.故答案为:819. {2} {直角三角形或钝角三角形} {1, 2, 4, 8} 1或-3##-3或1 {1, 4}##{}4,1【解析】 【分析】利用补集的定义,依次分析即得解 【详解】若全集S ={2, 3, 4},集合A ={4, 3},由补集的定义可得S A ={2};若全集S ={三角形},集合B ={锐角三角形},由于三角形分为锐角、直角、钝角三角形,故S B ={直角三角形或钝角三角形};若全集S ={1, 2, 4, 8}, A =∅,由补集的定义S A ={1, 2, 4, 8}; 若全集U ={1, 3, a 2+2a +1},集合A ={1, 3},UA ={4},故{1,3,4}UU A A =⋃=即2214a a ++=,即223(1)(30a a a a +-=-+=),解得=a 1或-3; 已知U 是全集,集合A ={0, 2, 4},UA ={-1, 1},故{1,0,1,2,4}UU A A =⋃=-,UB ={-1, 0, 2},故B ={1, 4}故答案为:{2},{直角三角形或钝角三角形},{1, 2, 4, 8},1或-3,{1, 4} 20.5 【解析】 【分析】直接求出集合A 、B ,再求出A B ,即可得到答案. 【详解】因为集合{}{}352,1,0,1,2,3,4A x Z x =∈-<<=--∣,集合{}{}101B y y y y =+>=>-∣∣, 所以{}0,1,2,3,4A B =, 所以A B 的元素个数为5. 故答案为:5. 21.39,24⎛⎤⎥⎝⎦【解析】 【分析】由122N xx ⎧⎫=≤≤⎨⎬⎩⎭,又区域Ⅰ,Ⅱ,Ⅲ表示的集合均不是空集,则22112202222220a a ⎧⎛⎫-⋅+≥⎪ ⎪⎨⎝⎭⎪-⋅+<⎩或22112202222220a a ⎧⎛⎫-⋅+<⎪ ⎪⎨⎝⎭⎪-⋅+≥⎩解不等式组即可. 【详解】由{}21log 122N x x x x ⎧⎫=≤=≤≤⎨⎬⎩⎭,又区域Ⅰ,Ⅱ,Ⅲ表示的集合均不是空集,则22112202222220a a ⎧⎛⎫-⋅+≥⎪ ⎪⎨⎝⎭⎪-⋅+<⎩或22112202222220a a ⎧⎛⎫-⋅+<⎪ ⎪⎨⎝⎭⎪-⋅+≥⎩解得3924a <≤故答案为:39,24⎛⎤⎥⎝⎦22.1【解析】 【分析】利用交集的定义直接求解. 【详解】∵集合(){},24A x y x y =-=∣,(){},5B x y x y =+=∣, ∴()(){}24,3,25x y A B x y x y ⎧⎫-=⎧⎪⎪⋂==⎨⎨⎬+=⎩⎪⎪⎩⎭,∴A B 中元素个数为1. 故答案为:1. 23.7 【解析】 【分析】化简集合A ,B ,根据条件A C B ⊂⊆确定集合C 的个数即可. 【详解】因为{}2320{1,2}A xx x =-+==∣, {06,}{1,2,3,4,5}B x x x N =<<∈=∣,因为A C B ⊂⊆,所以1,2都是集合C 的元素, 集合C 中的元素还可以有3,4,5,且至少有一个,所以集合C 为:{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5}, {1,2,3,4,5},共7个. 故答案为:724.(,8]-∞【解析】 【分析】根据集合交集的性质,结合子集的性质进行求解即可. 【详解】∵{}9,N x x M N =≥⋂=∅,∵{}9M x x ⊆<,∵{}1M x x a =<+,∴19a +≤,解得8a ≤,∴实数a 的取值范围是(,8]-∞. 故答案为:(,8]-∞ 25. 假 假 假 真 【解析】 【分析】(1)利用真子集的定义即可判断. (2)由集合与集合的关系即可判断真假.(3)由元素与集合的关系即可判断真假.(4)由真子集的定义即可找到满足条件集合A 的个数.【详解】(1)因为{}1,2,3的真子集有{}{}{}{}{}{},1,2,3,1,2,1,3,2,3∅,所以{}1,2,3不是{}1,2,3真子集,命题为假命题.(2){}1是集合,因此不是{}1,2,3的元素,命题为假命题.(3)因为2是元素,因此不是{}1,2,3的子集,命题为假命题.(4)若{}0A ,所以集合A 中至少含有两个元素且其中一个必须为0,又因为{}0,1,2,3A ,所以集合A 可以从1,2,3中再选取一个元素、或者两个元素,所以满足条件的集合A 把∅和{}0,1,2,3去掉,所以满足条件集合A 的个数为322-个,命题为真命题. 故答案为:假;假;假;真三、解答题26.(1)3P ,4P 中的元素个数分别为9,14,3P 不具有性质Ω.(2)证明见解析(3)14【解析】【分析】(1)由已知条件能求出集合3P ,4P 中的元素个数,并判断出3P 不具有性质Ω. (2)假设存在A ,B 具有性质Ω,且A B =∅,使15E A B =.其中15{1E =,2,3,⋯,15},从而1A B ∈,由此推导出与A 具有性质Ω矛盾.从而假设不成立,即不存在A ,B 具有性质Ω,且A B =∅,使15E A B =.(3)当15n 时,不存在A ,B 具有性质Ω,且A B =∅,使n P A B =.14n =,根据1b =、4b =、9b =分类讨论,能求出n 的最大值为14.(1)解: 对于任意的*n N ∈,记集合{1n E =,2,3,⋯,}n ,,n n n P x x a E b E ⎧⎫=∈∈⎨⎬⎩⎭.当3n =时{}31,2,3E =,3P ⎧=⎨⎩; 当4n =时{}41,2,3,4E =,413,22P ⎧⎫=⎨⎬⎩⎭,∴集合3P ,4P 中的元素个数分别为9,14,集合A 满足下列条件:①n A P ⊆;②1x ∀,2x A ∈,且12x x ≠,不存在*k N ∈,使212x x k +=,则称A 具有性质Ω,因为31P ∈,33P ∈,2132+=,*2∈N ,不符合题意,3P ∴不具有性质Ω.(2)证明:假设存在A ,B 具有性质Ω,且A B =∅,使15E A B =.其中15{1E =,2,3,⋯,15}.因为151E ∈,所以1A B ∈,不妨设1A ∈.因为2132+=,所以3A ∉,3B ∈.同理6A ∈,10B ∈,15A ∈.因为21154+=,这与A 具有性质Ω矛盾. 所以假设不成立,即不存在A ,B 具有性质Ω,且A B =∅,使15E A B =.(3)解:因为当15n 时,15n E P ⊆,由(2)知,不存在A ,B 具有性质Ω,且A B =∅,使n P A B =.若14n =,当1b =时,1414x x a E E ⎧⎫∈=⎨⎬⎩⎭, 取1{1A =,2,4,6,9,11,13},1{3B =,5,7,8,10,12,14},则1A ,1B 具有性质Ω,且11A B =∅,使1411E A B =.当4b =时,集合14x x a E ⎧⎫=∈⎨⎬⎩⎭中除整数外,其余的数组成集合为13513{,,,,}2222⋯, 令215911{,,,}2222A =,23713{,,}222B =, 则2A ,2B 具有性质Ω,且22A B =∅,使2213513{,,,,}2222A B ⋯=.当9b =时,集14x x a E ⎧⎫=∈⎨⎬⎩⎭中除整数外,其余的数组成集合12457810111314{,,,,,,,,,}3333333333, 令31451013{,,,,}33333A =,32781114{,,,,}33333B =. 则3A ,3B 具有性质Ω,且33A B =∅,使3312457810111314{,,,,,,,,,}3333333333A B =. 集合1414,,1,4,9C x x a E b E b ⎧⎫==∈∈≠⎨⎬⎩⎭中的数均为无理数, 它与14P 中的任何其他数之和都不是整数,因此,令123A A A A C =,123B B B B =,则A B =∅,且14P A B =. 综上,所求n 的最大值为14.27.(1)()0,4M =,()2,8N =(2)(2,4)M N ⋂=,(0,8)M N ⋃=【解析】【分析】(1)根据函数的解析式结合对数函数的性质,可求得集合 M ,利用指数函数的单调性,可求得集合N ;(2)根据集合的交集以及并集运算,可求得答案.(1)由函数()()2lg 4f x x x =-可得240x x -> , 即04x << ,故(0,4)M =,由函数()()213x g x x =<< 可得28y << ,即(2,8)N =;(2)由(1)可知:(0,4)(2,8)(2,4)M N ==,(0,4)(2,8)(0,8)M N ==.28.(1){})1(|3U x x A B ⋂=-<<; (2)5(,2)(2,]2-∞-⋃-. 【解析】【分析】(1)利用补集及交集的定义运算即得;(2)利用并集的定义可得{}36A B x x ⋃=-<≤,然后分C =∅和C ≠∅讨论即得.(1)∵全集U =R , {}|16B x x =≤≤, ∴{1U B x x =<或}6x >,又集合{}32A x x =-<<,∴{})1(|3U x x A B ⋂=-<<;(2)∵{}32A x x =-<<,{}|16B x x =≤≤,∴{}36A B x x ⋃=-<≤,又()C A B ⊆⋃,∴当C =∅时,121a a ->+,∴2a <-,当C ≠∅时,则12113216a a a a -≤+⎧⎪->-⎨⎪+≤⎩, 解得522a -<≤, 综上,实数a 的取值范围为5(,2)(2,]2-∞-⋃-. 29.(1){}{}25,12A B x x A B x x ⋃=-<<⋂=<<,(2){}11m m -<≤【解析】【分析】(1)根据交集和并集的定义即可求出;(2)由x A ∈是x B ∈成立的充分不必要条件,可得A B ,进而得出实数m 的取值范围.(1)(1)当m =2时,{}15A x x =<<,{}22b x x =-<< , ∴{}{}25,12A B x x A B x x ⋃=-<<⋂=<<;(2)由x A ∈是x B ∈成立的充分不必要条件,得A B ,当A =∅时,即211m m -≥+时,此时m 无解,∴A ≠∅,∴212,12m m -≥-⎧⎨+≤⎩解得11m -≤≤, 当1m =-时,()2,2A B ==-,不成立.故实数m 的取值范围为{}11m m -<≤.30.答案见解析【解析】【分析】首先写出6的正约数,即可得到集合Y ,再用列举法列出Y 的所有子集;【详解】解:因为6的正约数有1、2、3、6,所以{}1,2,3,6Y =,所以Y 的子集有:∅、{}1、{}2、{}3、{}6、{}1,2、{}1,3、{}1,6、{}2,3、{}2,6、{}3,6、{}1,2,3、{}1,2,6、{}1,3,6、{}2,3,6、{}1,2,3,6共16个;。
高一数学集合练习题含答案
高一数学集合练习题含答案一、单选题1.已知{}{||2},0A x Z xB x x N x =∈<=∈>∣∣∣,则A B =( ) A .{1} B .{0,1}C .{0,1,2}D .∅2.已知集合{}24A x N x =∈≤,{}1,B a =,B A ⊆,则实数a 的取值集合为( ) A .{}0,1,2 B .{}1,2 C .{}0,2 D .{}23.已知集合(){}ln 2M x y x ==-,{}e x N y y ==,则M N =( )A .()0,∞+B .()2,+∞C .()0,2D .[)2,+∞ 4.设集合{}1,0,2,3A =-,139x B x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =( ) A .{}2,3 B .{}0,2 C .{}0,2,3 D .{}1,0,2,3- 5.已知集合{}15A x N x ∈≤≤,{}05B x x =<<,则A B ⋃=( )A .{}2,3,4B .{}1,2,3,4C .{}15x x ≤≤D .{}05x x <≤6.已知集合{}{}2230,1A x x x B x x =--<=≤,则R ()A B ⋂=( )A .(,1][1,)∞∞--⋃+B .(,1](1,)-∞-⋃+∞C .(]1,1-D .[1,1)-7.设集合{}|3,A x x x R =<∈,{}1,2,3B =,则A B =( )A .{}1B .{}1,2,3C .{}1,2D .{}1,0,1- 8.已知全集{0,1,2,3,4,5}U =,集合{1,2,3}A =,{2,3,4}B =,则()U A B =( ) A .{1} B .{4} C .{0,5} D .{0,1,4,5}9.已知集合{}220A x x x =-≤,{}0,1B =,则A B =( ) A .[]0,1 B .{}0,1 C .[]0,2 D .{}0,1,210.已知集合{}{}22540,7100A x x x B x x x =-+<=-+<,则A B ⋃=( ) A .()1,2 B .()1,5 C .()2,4 D .()4,5 11.设集合{}1,2,3M =,{|21,}.N y y x x M ==-∈下列表示正确是( ) A .{}1,2N ⊆, B .{}2M ⊇ C .M N ⋃ {}1,2,3,5 D .{}1,3M N ⋂= 12.集合M ={x |x =i n +1,n ∈N}(i 为虚数单位)的真子集的个数是( )A .1B .15C .3D .1613.已知集合{}2,3,4,5A =,{}1,B a =,若{}5A B =,则=a ( )A .2B .3C .4D .514.已知集合1144A x x ⎧⎫=-<⎨⎬⎩⎭,12B x a x ⎧⎫=<<⎨⎬⎩⎭,若B A ⊆,则实数a 的取值范围是( )A .10,2⎛⎫ ⎪⎝⎭B .10,2⎛⎤ ⎥⎝⎦C .[)0,∞+D .[)1,+∞15.已知集合{}2230A x x x =--≤,{}22B x x =-≤<,则A B ⋃=( ) A .{}12x x -≤< B .{}12x x -≤≤ C .{}22x x -<< D .{}23x x -≤≤二、填空题16.集合A =[1,6],B ={x |y ,若A ⊆B ,则实数a 的范围是________________.17.将集合{220s t A t s =-≤<且,}s t Z ∈中所有的元素从小到大排列得到的数列记为{}n a ,则50a =___________(填数值).18.若对任意的x A ∈,有1A x ∈,则称A 是“伙伴关系集合”,则集合11,01,22M ⎧⎫=⎨⎬⎩⎭-,,的所有非空子集中,具有伙伴关系的集合的个数为________.19.已知集合{}{}0,1,2,1P Q xx ==∣,则P Q 的非空真子集的个数为__________. 20.已知(],0A =-∞,[),B a =+∞,且A B R =,则实数a 的取值范围为______.21.已知函数()f x 满足()()2f x f x =-,当1≥x 时,()22f x x =-,若不等式()22f x a ->-的解集是集合{}13x x <<的子集,则a 的取值范围是______.22.若集合{}3cos23,x A x x x R π==∈,{}21,B y y y R ==∈,则A B ⋂=_______. 23.已知集合{}2320A xx x =-+=∣,{06,}B x x x N =<<∈∣,则满足条件A ⊂C B ⊆的集合C 的个数为_________个24.若a ∈R ,集合A ={1,a ,a +2},B ={1,3,5},且A =B ,则a =___________.25.已知集合{}{}2560,A x x x B x x x =--<==-,则A B =__________. 三、解答题26.已知集合A ={x |24x >},B ={x ||x -a |<2},其中a >0且a ≠1.(1)当a =2时,求A ∪B 及A ∩B ;(2)若集合C ={x |log ax <0}且C ⊆B ,求a 的取值范围.27.已知{|S x x =是小于9的正整数},{}4,5,6,7A =,{}3,5,7,8B =,求(1)A B(2)A B(3)()S C A B28.设全集U =R ,集合{}14A x x =-<≤,{}2log 1B x x =>(1)求()U A B ;(2)若集合{}123C x a x a =-<<+,满足B C B ⋃=,求实数a 的取值范围.29.已知集合{}|33A x a x a =-≤≤+,{}2|40B x x x =-≥. (1)当2a =时,求A B ,A B ;(2)若0a >,且“x A ∈”是“R x B ∈”的充分不必要条件,求实数a 的取值范围.30.已知集合{|211},{|01}A x a x a B x x =-<<+=≤≤.(1)在①1a =-,②0a =,③1a =这三个条件中选择一个条件,求A B ;(2)若R ()A B A ⋂=,求实数a 的取值范围.【参考答案】一、单选题1.A【解析】【分析】首先列举表示集合A ,再求A B .【详解】由条件可知{}1,0,1A =-,{}0B x x N x =∈>,所以{}1A B ⋂=.故选:A2.C【解析】【分析】化简集合A ,根据B A ⊆求实数a 的可能取值,由此可得结果.【详解】 因为集合{}24A x N x =∈≤化简可得{0,1,2}A = 又{}1,B a =,B A ⊆,所以0a =或2a =,故实数a 的取值集合为{0,2},故选:C.3.B【解析】【分析】首先根据指数函数、对数函数的性质求出集合N 、M ,再根据交集的定义计算可得;【详解】解:因为(){}{}ln 22M x y x x x ==-=>,{}{}e 0x N y y y y ===>, 所以{}|2M N x x ⋂=>;故选:B4.C【解析】【分析】先解指数不等式得集合B ,然后由交集定义可得.【详解】 由2139x x -=⎛⎪3⎫ ⎭<⎝,得12x >-,所以12B x x ⎧⎫=>-⎨⎬⎩⎭,所以{}0,2,3A B =. 故选:C .5.D【解析】【分析】理解集合的含义,由并集的概念运算【详解】{}15A x N x ∈≤≤,{}05B x x =<<,则A B ⋃={}05x x <≤故选:D6.B【解析】【分析】解一元二次不等式求集合A 、解绝对值不等式求集合B ,再应用集合的交补运算求R ()A B .【详解】由题设,{|13},{|11}A x x B x x =-<<=-≤≤,所以1{|1}A B x x =-<≤,则R (){|1A B x x ⋂=≤-或1}x >. 故选:B7.C【解析】【分析】求出集合A 的解集,取交集运算即可.【详解】因为{}|33A x x =-<<,{}1,2,3B =,所以{}1,2A B =.故选:C.8.B【解析】【分析】由补集、交集的概念运算【详解】{0,4,5}U A =,则(){4}U A B ⋂=.故选:B9.B【解析】【分析】先求出集合A ,再根据交集运算求出A B 即可.【详解】 由题意知:{}02A x x =≤≤,又{}0,1B =,故A B ={}0,1.故选:B.10.B【解析】【分析】先求出集合,A B ,再求A B 即可.【详解】{}{}14,25A x x B x x =<<=<<,故A B ⋃=()1,5.故选:B.11.D【解析】【分析】根据题意求得集合N ,结合集合的交运算和并运算,以及集合之间的包含关系,即可判断和选择.【详解】因为{}1,2,3M =,{}{}|21,1,3,5N y y x x M ==-∈=,则{}{}1,3,1,2,3,5M N M N ⋂=⋃=, 对A :因为{}1,2不是N 的子集,故A 错误;对B :因为{}1,2,3不是{}2的子集,故B 错误;对C :{}1,2,3,5M N ⋃=是{}1,2,3,5的非真子集,故C 错误;对D :{}1,3M N ⋂=.故D 正确.故选:D .12.B【解析】【分析】先根据虚数单位i 的性质确定集合M 的元素个数,再由n 元集合的真子集个数为21n -可得.【详解】当n ∈N 时,x =i n +1的值只有i ,-i ,1,-1,故M 中有4个元素,所以M 共有24-1=15个真子集.故选:B13.D【解析】【分析】根据集合的交运算结果,即可求得参数值.【详解】因为{}5A B =,故可得{}51,a ∈,则5a =.故选:D.14.C【解析】【分析】解不等式求得集合A ,对a 进行分类讨论,根据B 是A 的子集列不等式,从而求得a 的取值范围.【详解】1111111,,0,0,4444422x x x A ⎛⎫-<-<-<<<= ⎪⎝⎭, 当12a ≥时,B =∅,满足B A ⊆. 当12a <时,由于B A ⊆,所以102a ≤<. 综上所述,a 的取值范围是[)0,∞+.故选:C15.D【解析】【分析】先解一元二次不等式求出集合A ,再按集合的并集运算即可.【详解】 由题意得{}13A x x =-≤≤,因为{}22B x x =-≤<,所以{}23A B x x ⋃=-≤≤. 故选:D.二、填空题16.(,1]-∞【解析】【分析】先求出集合B ,再由A ⊆B ,可求出实数a 的范围【详解】由0x a -≥,得x a ≥,所以[,)B a =+∞,因为A =[1,6],且A ⊆B ,所以1a ≤,所以实数a 的范围是(,1]-∞,故答案为:(,1]-∞17.992【解析】【分析】列举数列的前几项,观察特征,可得出50a .【详解】由题意得10212032313012345622,22,22,22,22,22,,a a a a a a =-=-=-=-=-=-观察规律可得22s t -中,以2s 为被减数的项共有s 个,因为123945++++=,所以50a 是1022t -中的第5项,所以1055022992a =-=.故答案为:992.18.7【解析】【分析】在集合M 的子集中列举出满足“伙伴关系集合”的集合,从而可得结果.【详解】因为x A ∈,则1A x ∈,就称A 是伙伴关系集合,集合11,0,,1,22M ⎧⎫=-⎨⎬⎩⎭,所以具有伙伴关系的集合有{}{}{}11111,1,,2,1,1,1,,2,1,,2,1,1,,22222⎧⎫⎧⎫⎧⎫⎧⎫----⎨⎬⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭⎩⎭共7个. 故答案为:719.2【解析】【分析】先求P Q 后再计算即可.【详解】{}1,2,P Q P Q ⋂=∴⋂的非空真子集的个数为2222-=.故答案为:220.0a ≤【解析】【分析】根据并集的运算结果列出不等式,即可得解.【详解】解:因为A B R =,所以0a ≤.故答案为:0a ≤.21.24a ≤≤【解析】【分析】先由已知条件判断出函数()f x 的单调性,再把不等式()22f x a ->-转化为整式不等式,再利用子集的要求即可求得a 的取值范围.【详解】由()()2f x f x =-可知,()f x 关于1x =对称,又()22f =-,当1≥x 时,()22f x x =-单调递减,故不等式()22f x a ->-等价于211x a --<,即122a a x <<+, 因为不等式解集是集合{}13x x <<的子集, 所以12132a a ⎧≥⎪⎪⎨⎪+≤⎪⎩,解得24a ≤≤. 故答案为:24a ≤≤22.{}1【解析】【分析】易知{}1,1B =-,分别验证1,1-和集合A 的关系即可得结果.【详解】 因为{}{}21,1,1B y y y R ==∈=-,13cos 23π=,()13cos 23π--≠,即1A ∈,1A -∉,所以{}1A B ⋂=,故答案为:{}1.23.7【解析】【分析】化简集合A ,B ,根据条件A C B ⊂⊆确定集合C 的个数即可.【详解】因为{}2320{1,2}A x x x =-+==∣,{06,}{1,2,3,4,5}B x x x N =<<∈=∣,因为A C B ⊂⊆,所以1,2都是集合C 的元素,集合C 中的元素还可以有3,4,5,且至少有一个,所以集合C 为:{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5},共7个.故答案为:724.3【解析】【分析】根据集合相等的概念得到方程组,解之即可求出结果.【详解】∵A B =,∴325a a =⎧⎨+=⎩,解得3a =,或523a a =⎧⎨+=⎩,无解所以3a =.故答案为:3.25.{}|10x x -<≤【解析】【分析】求出集合A ,B ,依据交集的定义求出A B .【详解】 集合{}2560{|16}A x x x x x =--<=-<<,{}{}|0B x x x x x ==-=≤,{}|10A B x x ∴=-<≤.故答案为:{}|10x x -<≤.三、解答题26.(1)A ∪B ={x |x >0},A ∩B ={x |2<x <4};(2){a |1<a ≤2},【解析】【分析】(1)化简集合A ,B ,利用并集及交集的概念运算即得; (2)分a >1,0<a <1讨论,利用条件列出不等式即得.(1)∵A ={x |2x >4}={x |x >2},B ={x ||x -a |<2}={x |a -2<x <a +2}, ∴当a =2时,B ={x |0<x <4},所以A ∪B ={x | x >0},A ∩B ={x |2<x <4};(2)当a >1时,C ={x |log ax <0}={x |0<x <1},因为C ⊆B ,所以2021a a -≤⎧⎨+≥⎩,解得-1≤ a ≤2, 因为a >1,此时1<a ≤2,当0<a <1时,C ={x |log ax <0}={x |x >1},此时不满足C ⊆B , 综上,a 的取值范围为{a |1<a ≤2}.27.(1){}5,7A B =(2){}3,4,5,6,7,8A B =(3)(){}1,2,3,5,7,8S C A B =【解析】【分析】(1)根据交集概念求解即可.(2)根据并集概念求解即可.(3)根据补集和并集概念求解即可.(1){}4,5,6,7A =,{}3,5,7,8B =,{}5,7A B =.(2){}4,5,6,7A =,{}3,5,7,8B =,{}3,4,5,6,7,8A B =.(3){}1,2,3,4,5,6,7,8S =,{}1,2,3,8S C A =,{}3,5,7,8B =, (){}1,2,3,5,7,8S C A B =.28.(1)(4,)(,2]+∞-∞;(2)[3,)(,4]+∞-∞-.【解析】【分析】(1)利用对数函数的单调性化简集合B ,根据集合交集和补集的定义进行求解即可; (2)根据集合并集的运算性质进行求解即可.(1) 因为{}{}2log 12B x x x x =>=>,所以(2,4]A B ⋂=,因此()(4,)(,2]U A B =+∞-∞;(2)因为B C B ⋃=,所以C B ⊆,当123a a -≥+时,即4a ≤-时,C =∅,符合C B ⊆; 当123a a -<+时,即4a >-时,要想C B ⊆,只需:123a a -≥⇒≥,因为4a >-,所以3a ≥, 综上所述:实数a 的取值范围为:[3,)(,4]+∞-∞-. 29.(1){|45}A B x x ⋂=,{|0A B x x ⋃=或1}x ;(2)(0,1).【解析】【分析】(1)当2a =时,求出集合A ,B ,由此能求出A B ,A B ; (2)推导出0a >,R A B 是的真子集,求出{|04}R B x x =<<,A ≠∅,列出不等式组,能求出实数a 的取值范围.(1)2{|40}{|0B x x x x x =-=或4}x , 当2a =时,{|15}A x x =,{|45}A B x x ∴⋂=,{|0A B x x ⋃=或1}x ;(2)若0a >,且“x A ∈”是“R x B ∈”的充分不必要条件, 0a ∴>,R A B 是的真子集,{|04}R B x x =<<,A ≠∅,∴3034a a ->⎧⎨+<⎩,解得01a <<. ∴实数a 的取值范围是(0,1).30.(1)答案见解析(2)11a a ≤-≥或【解析】【分析】(1)分别对a 赋值,利用集合的并集进行求解; (2)先根据题意得到R A B ⊆,再利用集合间的包含关系进行求解,要注意A =∅的情形.(1)解:若选择①:当1a =-时,(3,0)A =-, 因为[0,1]B =,所以(]3,1A B ⋃=-. 若选择②:当0a =时,(1,1)A =-, 因为[0,1]B =,所以(1,1]A B ⋃=-. 若选择③:当1a =时,(1,2)A =, 因为[0,1]B =,所以[)0,2A B ⋃=.(2)解:因为[0,1]B =,所以R (,0)(1,)B =-∞+∞.因为R ()A B A ⋂=,所以R A B ⊆, 当A =∅时,2112a a a -≥+≥,即;当A ≠∅时,2210211a a a a <<⎧⎧⎨⎨+≤-≥⎩⎩或, 即112a a ≤-≤<或;综上,11a a ≤-≥或.。
高一数学集合练习题及答案(5篇)
高一数学集合练习题及答案(5篇)高一数学练习题及答案篇1一、填空题.(每题有且只有一个正确答案,5分×10=50分)1、已知全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 },那么集合 { 2 ,7 ,8}是 ( )2 . 假如集合A={x|ax2+2x+1=0}中只有一个元素,则a的值是 ( )A.0B.0 或1C.1D.不能确定3. 设集合A={x|1A.{a|a ≥2}B.{a|a≤1}C.{a|a≥1}.D.{a|a≤2}.5. 满意{1,2,3} M {1,2,3,4,5,6}的集合M的个数是 ( )A.8B.7C.6D.56. 集合A={a2,a+1,1},B={2a1,| a2 |, 3a2+4},A∩B={1},则a的值是( )A.1B.0 或1C.2D.07. 已知全集I=N,集合A={x|x=2n,n∈N},B={x|x=4n,n∈N},则 ( )A.I=A∪BB.I=( )∪BC.I=A∪( )D.I=( )∪( )8. 设集合M= ,则 ( )A.M =NB. M NC.M ND. N9 . 集合A={x|x=2n+1,n∈Z},B={y|y=4k±1,k∈Z},则A 与B的关系为 ( )A.A BB.A BC.A=BD.A≠B10.设U={1,2,3,4,5},若A∩B={2},( UA)∩B={4},( UA)∩( UB)={1,5},则以下结论正确的选项是( )A.3 A且3 BB.3 B且3∈AC.3 A且3∈BD.3∈A且3∈B二.填空题(5分×5=25分)11 .某班有同学55人,其中音乐爱好者34人,体育爱好者43人,还有4人既不爱好体育也不爱好音乐,则班级中即爱好体育又爱好音乐的有人.12. 设集合U={(x,y)|y=3x1},A={(x,y)| =3},则 A= .13. 集合M={y∣y= x2 +1,x∈ R},N={y∣ y=5 x2,x∈ R},则M∪N=_ __.14. 集合M={a| ∈N,且a∈Z},用列举法表示集合M=_15、已知集合A={1,1},B={x|mx=1},且A∪B=A,则m的值为三.解答题.10+10+10=3016. 设集合A={x, x2,y21},B={0,|x|,,y}且A=B,求x, y的值17.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a21=0} ,A∩B=B,求实数a的值.18. 集合A={x|x2ax+a219=0},B={x|x25x+6=0},C={x|x2+2x8=0}.?(1)若A∩B=A∪B,求a的值;(2)若A∩B,A∩C= ,求a的值.19.(本小题总分10分)已知集合A={x|x23x+2=0},B={x|x2ax+3a5=0}.若A∩B=B,求实数a的取值范围.20、已知A={x|x2+3x+2 ≥0}, B={x|mx24x+m10 ,m∈R}, 若A∩B=φ, 且A∪B=A, 求m的取值范围.21、已知集合,B={x|2参考答案C B AD C D C D C B26 {(1,2)} R {4,3,2,1} 1或1或016、x=1 y=117、解:A={0,4} 又(1)若B= ,则,(2)若B={0},把x=0代入方程得a= 当a=1时,B=(3)若B={4}时,把x=4代入得a=1或a=7.当a=1时,B={0,4}≠{4},∴a≠1.当a=7时,B={4,12}≠{4},∴a≠7.(4)若B={0,4},则a=1 ,当a=1时,B={0,4},∴a=1综上所述:a18、.解:由已知,得B={2,3},C={2,4}.(1)∵A∩B=A∪B,∴A=B于是2,3是一元二次方程x2ax+a219=0的两个根,由韦达定理知:解之得a=5.(2)由A∩B ∩ ,又A∩C= ,得3∈A,2 A,4 A,由3∈A,得323a+a219=0,解得a=5或a=2?当a=5时,A={x|x25x+6=0}={2,3},与2 A冲突;当a=2时,A={x|x2+2x15=0}={3,5},符合题意.∴a=2.19、解:A={x|x23x+2=0}={1,2},由x2ax+3a5=0,知Δ=a24(3a5)=a212a+20=(a2)(a10).(1)当2(2)当a≤2或a≥10时,Δ≥0,则B≠ .若x=1,则1a+3a5=0,得a=2,此时B={x|x22x+1=0}={1} A;若x=2,则42a+3a5=0,得a=1,此时B={2,1} A.综上所述,当2≤a10时,均有A∩B=B.20、解:由已知A={x|x2+3x+2 }得得.(1)∵A非空,∴B= ;(2)∵A={x|x }∴ 另一方面,,于是上面(2)不成立,否则,与题设冲突.由上面分析知,B= .由已知B= 结合B= ,得对一切x 恒成立,于是,有的取值范围是21、∵A={x|(x1)(x+2)≤0}={x|2≤x≤1},B={x|1∵ ,(A∪B)∪C=R,∴全集U=R。
高一数学集合练习题及答案-经典
高一数学集合练习题及答案-经典一、单选题1.已知集合ππ,42k M x x k ⎧⎫==+∈⎨⎬⎩⎭Z ,ππ,24k N x x k ⎧⎫==+∈⎨⎬⎩⎭Z ,则( ) A .N M ⊆B .M N ⊆C .M ND .M N ⋂=∅ 2.设集合{}230A x x x =->,则A =R ( )A .()0,3B .()(),03,-∞+∞C .[]0,3D .(][),03,-∞+∞ 3.设全集{2,1,0,1,2}U =--,集合{}{}1,0,1sin ,cos0M N π=-=,,则{1}-=( ) A .M N ⋂B .()U M NC .()U N M ⋂D .()()U U M N4.已知集合{}{}2,,,,M y y x x x N y y x x y ==-∈==∈∈R R R ,则M N =( )A .∅B .{(0,0),(2,2)}C .}{0,2D .1[,)4-+∞ 5.已知集合{}220A x x x =+-<,{}1e ,R x B y y x -==∈,则A B =( ) A .()2,0- B .()2,1- C .()0,1 D .()1,+∞6.已知集合{}21A x x =<,{}lg 0B x x =<,则A B =( ) A .{}11x x -<<B .{}10x x -<<C .{}1x x <D .{}01x x <<7.已知集合(){}2log 21M x y x ==-,103x N x x ⎧⎫+=≤⎨⎬-⎩⎭,则M N =( )A .1,2⎛⎫+∞ ⎪⎝⎭B .[)1,-+∞C .1,32⎛⎫ ⎪⎝⎭D .1,32⎛⎤ ⎥⎝⎦ 8.已知集合{|1}A x x =≥-,1{|28}4x B x =≤<,则A B =( ) A .[-2,3)B .[-1,3)C .[-2,3]D .[-1,3] 9.已知集合{}{01}A x x a B x x =<=<≤∣,∣,若A B =∅,则实数a 的取值范围是( )A .01a <≤B .0a >C .0a ≤D .0a ≤或1a ≥ 10.如图,已知集合{A =1-,0,1,2},{|128}x B x N +=∈<≤,则图中的阴影部分表示的集合为( )A .{1,2}B .{1-,0,3}C .{1-,3}D .{0,1,2}11.已知集合{3,1,2}A =-,{}2|60B x N x x =∈--≤,则A B ⋃=( ) A .{}1,2B .{}3,0,1,2-C .{}3,1,2,3-D .{}3,0,1,2,3-12.已知集合{}ln 0A x x =>,{}221x B x -=<,则A B =( ) A .{}2x x <B .{}1x x <C .{}02x x <<D .{}12x x <<13.已知全集{}0,1,2,3,4,5U =,集合{}1,3,5A =,{}0,1B =,则()U A B =( ) A .{}0B .{}2,4C .{}0,1,3,5D .{}0,1,2,414.已知集合{}21A x x =-<<,{}lg B x y x ==,则()R A B =( )A .(),1-∞B .[)1,+∞C .(]2,0-D .()0,115.已知集合{}2450A x x x =--≤,{}5B y y =>,则A B ⋃=( ) A .∅ B .[)1,-+∞ C .[)1,5- D .()5,+∞二、填空题16.设集合A 为空间中两条异面直线所成角的取值范围,集合B 为空间中直线与平面所成角的取值范围,集合C 为二面角的平面角的取值范围,则集合A 、B 、C 的真包含关系是___________.17.如图,用集合符号表述下列点、直线与平面之间的关系.(1)点C 与平面β:___________;(2)点A 与平面α:___________;(3)直线AB 与平面α:___________;(4)直线CD 与平面α:___________.18.某班共40人,其中24人喜欢篮球运动,16人喜欢乒乓球运动,6人这两项运动都不喜欢,则只喜欢其中一项运动的人数为________19.已知集合A 与B 的关系如下图,则图中所示的阴影部分用集合表示为________.(要求用集合A 与B 的符号关系表示)20.满足{}{},,a M a b c ⊆⊆的所有集合M 共有__________ 个.21.已知(],0A =-∞,[),B a =+∞,且A B R =,则实数a 的取值范围为______.22.若集合{}3cos23,x A x x x R π==∈,{}21,B y y y R ==∈,则A B ⋂=_______.23.若{}231,13a a ∈--,则=a ______.24.若{}0,1,2U =,{}220,M x x x x =-=∈R ,则M =______. 25.设集合{}|2A x x =>,{}|B x x a =≤,若A B =R ,则实数a 的取值范围是______.三、解答题26.已知集合A ={x |24x >},B ={x ||x -a |<2},其中a >0且a ≠1.(1)当a =2时,求A ∪B 及A ∩B ;(2)若集合C ={x |log ax <0}且C ⊆B ,求a 的取值范围.27.设集合{}2230A x x x =--<,集合{}22B x a x a =-<<+. (1)若2a =,求()R A B ⋃; (2)设命题:p x A ∈,命题:q x B ∈,若p 是q 成立的必要不充分条件,求实数a 的取值范围.28.设全集U =R ,集合{}14A x x =-<≤,{}2log 1B x x =>(1)求()U A B ;(2)若集合{}123C x a x a =-<<+,满足B C B ⋃=,求实数a 的取值范围.29.已知集合{}22A x a x a =-≤≤+,{|1B x x =≤或4}x ≥,U =R .(1)当3a =时,求A B ,()U A B ⋃;(2)若A B =∅,求实数a 的取值范围.30.已知集合2{20}A x x x =+-<,{213}B x m x m =+≤≤+(m )R ∈.(1)当1m =-时,求A B ,A B ;(2)若x A ∈是x B ∈的充分不必要条件,求实数m 的取值范围.【参考答案】一、单选题1.A【解析】【分析】利用集合的基本关系求解【详解】 解:因为()2πππ,,424k k M x x k x x k ⎧⎫+⎧⎫⎪⎪==+∈==∈⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭Z Z ,()21π,4k N x x k ⎧⎫+⎪⎪==∈⎨⎬⎪⎪⎩⎭Z , 当k ∈Z 时,21k +是奇数,2k +是整数,所以N M ⊆.故选:A .2.C【解析】【分析】利用集合的补集运算求解.【详解】 因为{}230A x x x =->, 所以{}[]2300,3R A x x x =-≤=. 故选:C3.B【解析】【分析】化简集合N ,然后由集合的运算可得.【详解】{}sin ,cos0}0,1 {N π==,{}2,1,2,U N ∴=--{}()1U MN ∴=- 故选:B.4.D【解析】【分析】根据二次函数、一次函数的性质求出其值域,然后由交集定义可得.【详解】 因为22111()244y x x x =-=--≥-,所以1{|}4M y y =≥- 易知N =R ,所以1{|}4My N y ≥=-,即1[,)4-+∞ 故选:D5.C【解析】【分析】化简集合,A B 即得解.【详解】 解: {}{}22021A x x x x x =+-<=-<<,{}{}1e ,R 0x B y y x y y -==∈=>,所以()0,1A B =.故选:C6.D【解析】【分析】根据对数函数的单调性,结合解一元二次不等式的方法、集合交集的定义进行求解即可.【详解】 因为{}21(1,1)A x x =<=-,{}lg 0(0,1)B x x =<=, 所以A B ={}01x x <<,故选:D7.C【解析】【分析】根据对数型函数定义域解法求出集合M ,根据分式不等式解法求出集合N ,再根据集合交集概念即可求得结果.【详解】由题意知(){}21log 21,2M x y x ∞⎛⎫==-=+ ⎪⎝⎭,[)101,33x N x x ⎧⎫+=≤=-⎨⎬-⎩⎭, 所以1,32M N ⎛⎫⋂= ⎪⎝⎭. 故选:C .8.B【解析】【分析】先化简集合B ,再利用交集运算求解.【详解】解:因为集合{|1}A x x =≥-,41|28{|23}x B x x x ⎧⎫=≤<=-≤<⎨⎬⎩⎭, 所以{}|13A B x x ⋂=-≤<,故选:B9.C【解析】【分析】利用交集的定义即得.【详解】∵集合{}{01}A xx a B x x =<=<≤∣,∣, A B =∅, ∴0a ≤.故选:C.10.B【解析】【分析】由题知{}1,2,3B =,进而得{}1,2A B =,再求阴影部分表示的集合即可.【详解】解:解不等式128x <≤得03x <≤,所以{}1,2,3B =,因为{A =1-,0,1,2},所以{}1,2A B =所以,图中的阴影部分表示的集合为{}1,0,3-.故选:B11.D【解析】【分析】先求出集合B 的元素,进行并集运算即可.【详解】因为{}()(){}2|60|320B x N x x x N x x =∈--≤=∈-+≤ {}{}|230,1,2,3x N x =∈-≤≤=,所以{}3,0,1,2,3A B ⋃=-.故选:D.12.D【解析】【分析】解指数和对数不等式可求得集合,A B ,由交集定义可得结果.【详解】 {}{}ln 01A x x x x =>=>,{}{}{}221202x B x x x x x -=<=-<=<,{}12A B x x ∴⋂=<<. 故选:D.13.A【解析】【分析】根据集合的补集与交集的运算求解即可.【详解】解:因为全集{}0,1,2,3,4,5U =,集合{}1,3,5A =,{}0,1B =,所以{}0,2,4U A =,所以(){}{}{}0,2,40,10U A B ==.故选:A14.B【解析】【分析】求出定义域得到集合B ,从而求出补集和交集.【详解】 {}()212,1A x x =-<<=-,{}()00,B x x ∞=>=+,所以(][),21,R A =-∞-⋃+∞,所以()[)1,R A B ∞⋂=+. 故选:B. 15.B【解析】【分析】先解一元二次不等式,在根据并集定义计算.【详解】∵{}{}[]2450151,5A x x x x x =--≤=-≤≤=-,{}()55,B y y ∞=>=+, ∴[)1,A B =-+∞.故选:B.二、填空题16.A B C ##C B A【解析】【分析】根据空间中两条异面直线所成角的范围求出A ,根据空间中直线与平面所成角的取值范围求出B ,根据二面角的平面角的取值范围求出C ,根据A 、B 、C 角的范围即可判断它们的包含关系.【详解】集合A 为空间中两条异面直线所成角的取值范围,π(0,]2A ∴=, 集合B 为空间中直线与平面所成角的取值范围,π[0,]2B ∴=, 集合C 为直角坐标平面上直线的倾斜角的取值范围,[0,π]C ∴=,∴集合A 、B 、C 的真包含关系为:A B C .故答案为:A B C .17. C β∉ A α AB B α⋂= CD α⊂【解析】【分析】根据元素与集合,集合与集合之间的关系,由图可写出答案【详解】(1)C 为元素,平面β为集合,所以,由图可得C β∉.(2)A 为元素,平面α为集合,所以,由图可得A α.(3)直线AB 为集合,平面α为集合,所以,由图可得AB B α⋂=.(4)直线CD 为集合,平面α为集合,所以,CD α⊂.故答案为:①C β∉;②A α;③AB B α⋂=;④CD α⊂;18.28【解析】【分析】首先确定喜欢两项运动的人数,进而得到喜欢一项运动的人数.【详解】 6人这两项运动都不喜欢,∴喜欢一项或两项运动的人数为40634-=人;∴喜欢两项运动的人数为:2416346+-=人,∴喜欢篮球的人数为24618-=人;喜欢乒乓球的人数为16610-=人;∴只喜欢其中一项运动的人数为181028+=人.故答案为:28.19.()A B A B ⋃【解析】【分析】由集合的交并补运算求解即可.【详解】设全集为A B ,则阴影部分表示集合A 与B 交集的补集,即()A B A B ⋃ 故答案为:()A B A B ⋃20.4【解析】【分析】由题意列举出集合M ,可得集合的个数.【详解】由题意可得,{}M a =或{},M a b =或{},M a c =或{},,M a b c =,即集合M 共有4个 故答案为:421.0a ≤【解析】【分析】根据并集的运算结果列出不等式,即可得解.【详解】解:因为A B R =,所以0a ≤.故答案为:0a ≤.22.{}1【解析】【分析】易知{}1,1B =-,分别验证1,1-和集合A 的关系即可得结果.【详解】 因为{}{}21,1,1B y y y R ==∈=-,13cos 23π=,()13cos 23π--≠,即1A ∈,1A -∉, 所以{}1A B ⋂=,故答案为:{}1.23.4-【解析】【分析】结合元素与集合的关系,利用集合的互异性分类讨论即可求解.【详解】若13a -=,则4a =,此时,2113a a -=-,不合题意,舍去; 若2133a -=,则4a =-或4a =,因为4a =不合题意,舍去. 故4a =-.故答案为:4-.24.{}1【解析】【分析】解一元二次方程求出集合M ,进而根据补集的概念即可求出结果.【详解】 因为{}{}220,0,2M x x x x =-=∈=R ,且{}0,1,2U =, 则{}1M =,故答案为:{}1.25.[)2,+∞【解析】【分析】根据并集求解参数的范围即可.【详解】根据题意,{|2}R A x x =≤R A B ⋃=R A B ∴⊆2a ∴≥.故答案为[)2,+∞.三、解答题26.(1)A ∪B ={x |x >0},A ∩B ={x |2<x <4};(2){a |1<a ≤2},【解析】【分析】(1)化简集合A ,B ,利用并集及交集的概念运算即得; (2)分a >1,0<a <1讨论,利用条件列出不等式即得.(1)∵A ={x |2x >4}={x |x >2},B ={x ||x -a |<2}={x |a -2<x <a +2}, ∴当a =2时,B ={x |0<x <4},所以A ∪B ={x | x >0},A ∩B ={x |2<x <4};(2)当a >1时,C ={x |log ax <0}={x |0<x <1},因为C ⊆B ,所以2021a a -≤⎧⎨+≥⎩,解得-1≤ a ≤2, 因为a >1,此时1<a ≤2,当0<a <1时,C ={x |log ax <0}={x |x >1},此时不满足C ⊆B ,综上,a 的取值范围为{a |1<a ≤2}.27.(1){1x x ≤-或}4x ≥(2)01a <≤【解析】【分析】(1)当2a =时,求出集合A 、B ,利用并集和补集的定义可求得集合()R A B ⋃; (2)根据已知条件可得出B A 且B ≠∅,可得出关于实数a 的不等式组,由此可解得实数a 的取值范围.(1) 解:{}{}223013A x x x x x =--<=-<<, 当2a =时,{}04B x x =<<,故{}14A B x x ⋃=-<<,因此,(){R 1A B x x ⋃=≤-或}4x ≥.(2)解:因为p 是q 成立的必要不充分条件,则B A 且B ≠∅, 所以,212223a a a a -≥-⎧⎪-<+⎨⎪+≤⎩,解得01a <≤, 当1a =时,{}13B x x =<< A ,合乎题意.因此,01a <≤.28.(1)(4,)(,2]+∞-∞;(2)[3,)(,4]+∞-∞-.【解析】【分析】(1)利用对数函数的单调性化简集合B ,根据集合交集和补集的定义进行求解即可; (2)根据集合并集的运算性质进行求解即可.(1)因为{}{}2log 12B x x x x =>=>,所以(2,4]A B ⋂=,因此()(4,)(,2]U A B =+∞-∞;(2)因为B C B ⋃=,所以C B ⊆,当123a a -≥+时,即4a ≤-时,C =∅,符合C B ⊆;当123a a -<+时,即4a >-时,要想C B ⊆,只需:123a a -≥⇒≥,因为4a >-,所以3a ≥,综上所述:实数a 的取值范围为:[3,)(,4]+∞-∞-.29.(1){11A B x x ⋂=-≤≤或}45x ≤≤,(){}15U A B x x ⋃=-≤≤(2)(),1-∞【解析】【分析】(1)将3a =代入集合A 中确定出A ,求出A 与B 的交集,求出B 的补集,求出A 与B 补集的并集即可;(2)由A 与B 以及两集合的交集为空集,对a 进行分类讨论,把分类结果求并集,即可求出结果.(1) 将3a =代入集合A 中的不等式得:{}15A x x =-≤≤,∵{|1B x x =≤或4}x ≥,∴{11A B x x ⋂=-≤≤或}45x ≤≤,{}14U B x x =<<,则(){}15U A B x x ⋃=-≤≤;(2)∵{}22A x a x a =-≤≤+,{|1B x x =≤或4}x ≥,当0a <时,A =∅;此时满足A B =∅,当0a =时,{}2A =,此时也满足A B =∅, 当0a >时,A ≠∅,若A B =∅,则2124a a ->⎧⎨+<⎩,解得:01a <<; 综上所述,实数a 的取值范围为(),1-∞30.(1){}11A B x x ⋂=-≤<,{}22A B x x ⋃=-<≤(2)32,2⎡⎤--⎢⎥⎣⎦ 【解析】【分析】(1)求出集合B ,进而求出交集和并集;(2)根据x A ∈是x B ∈的充分不必要条件得到A 是B 的真子集,进而得到不等式组,求出实数m 的取值范围.(1){}21A x x =-<<.当1m =-时,{}12B x x =-≤≤所以{}11A B x x ⋂=-≤<,{}22A B x x ⋃=-<≤;(2)x A ∈是x B ∈的充分不必要条件∴A是B的真子集,故21231 mm+≤-⎧⎨+≥⎩即3 22m-≤≤-所以实数m的取值范围是3 2,2⎡⎤--⎢⎥⎣⎦.。
高一数学集合练习题附答案
高一数学集合练习题附答案一、单选题1.设全集U =R ,集合302x A xx ⎧⎫-=≤⎨⎬+⎩⎭,集合{}ln 1B x x =≥,则()UA B =( )A .()e,3B .[]e,3C .[)2,e -D .()2,e -2.设M ,N ,U 均为非空集合,且满足M ⫋N ⫋U ,则()()U U M N ⋂=( ) A .MB .NC .u MD .u N3.已知集合{A xy =∣,{}0,1,2,3B =,则A B =( ) A .{3} B .{2,3} C .{1,2,3} D .{0,1,2,3}4.设全集(){},|R,R U x y x y =∈∈,集合(){},|cos sin 10A x y x y θθ=+-=,则UA 所表示的平面区域的面积为( )A .1πB C .1D .π5.若集合{A y y ==,{}3log 2B x x =≤,则A B =( ) A .(]0,9B .[)4,9C .[]4,6D .[]0,96.已知集合{}i ,N nM m m n ==∈,其中i 为虚数单位,则下列元素属于集合M 的是( ) A .()()1i 1i -+ B .1i1i-+ C .i 1i- D .()21i -7.设集合{}|14A x x =<<,集合2{|230}B x x x =≤一一,则A B =( ) A .[一1,4)B .(一1,4)C .(1,3]D .(1,3)8.已知集合{}24A x N x =∈≤,{}1,B a =,B A ⊆,则实数a 的取值集合为( )A .{}0,1,2B .{}1,2C .{}0,2D .{}29.若集合302x A xx ⎧⎫-=<⎨⎬+⎩⎭,{}0B x x =>,则A B ⋃=( ) A .{}02x x << B .{}3x x > C .{}2x x >- D .{}3x x >-10.已知集合02A x x,{}0,1B =,则A B ⋃=( )A .{}01x x <<B .{}01x x ≤≤C .{}02x x <≤D .{}02x x ≤≤11.已知集合{123}M =,,,{134}N =,,,则M N ⋂等于( ) A .{13},B .{1234},,, C .{24},D .{134},,12.满足条件{M ⋃永安,漳平}{=德化,漳平,永安}的集合M 的个数是( ) A .6B .5C .4D .313.设全集{}U 0|x x =≥,集合2{|}0M x x x =-<,{}|1N x x =≥,则()UM N =( ) A .()0,1B .[)0,1C .()1,+∞D .[)0,∞+14.已知函数()2log f x x =,()2g x a x =-,若存在[]12,1,2x x ∈,使得()()12f x g x =,则实数a 的取值范围是( ) A .()(),25,-∞⋃+∞ B .(][),25,-∞⋃+∞ C .()2,5D .[]2,515.已知集合{}2230A x x x =--<,{}15B x x =≤≤,则A B =( )A .(]1,3-B .[)1,3C .(]1,5-D .(]3,5二、填空题16.设集合{}13A x x =<<,{}B x x a =<,若A B ⊆,则a 的取值范围是_________.17.若集合{}{}220,10M x x x N x ax =+-==+=,且N M ⊆,则实数a 的取值集合为____.18.已知{}3A x a x a =≤≤+,{}15b x x =-<<,A B =∅,则实数a 的取值范围是______19.已知集合{}N 4sin ,02A x x θθπ=∈<≤≤,若集合A 中至少有3个元素,则实数θ取值范围为________20.某班有学生45人,参加了数学小组的学生有31人,参加了英语小组的学生有26人.已知该班每个学生都至少参加了这两个小组中的一个小组,则该班学生中既参加了数学小组,又参加了英语小组的学生有___________人.21.某学校开设校本课程,高一(2110)班确定了数学类、英语类、历史类三个类别校本课程供班上的40名学生选择参加,且40名学生全部参与选择.其中只选数学类的有8人,只选英语类的有8人,只选历史类的有8人,既选数学类又选英语类的有7人,既选数学类又选历史类的有11人,既选英语类又选历史类的有8人,则三类课程都选择参加的有___________人.22.若全集{}0,1,2,3,4U =,{}0,1,2,3A =,{}2,3,4B =,则A B ⋃=______. 23.已知集合A ={x |2<x <4},B ={x |(x -1)(x -3)<0},则A ∩B 等于________. 24.若集合A ={x ∈R|ax 2+ax +1=0}中只有一个元素,则a =________.25.已知集合{}2202120200A x x x =-+<,{}B x x a =<,若A B ⊆,则实数a 的取值范围是______.三、解答题26.立德中学高一年级共有200名学生,报名参加学校团委与学生会组织的社团组织,据统计,参加艺术社团组织的学生有103人,参加体育社团组织的学生有120人(并非每个学生必须参加某个社团).求在高一年级的报名学生中,同时参加这2个社团的最多有多少人?最少有有多少人?27.函数()f x 满足(21)41f x x +=-. (1)求()f x 的解析式;(2)集合{}2|()30A x x f x =++=,写出集合A 的所有子集.28.已知集合{12}S n =,,,(3n ≥且*n N ∈),12{}m A a a a =,,,,且A S ⊆.若对任意i j a A a A ∈∈,(1i j m ≤≤≤),当i j a a n +≤时,存在k a A ∈(1km ≤≤),使得i j k a a a +=,则称A 是S 的m 元完美子集.(1)判断下列集合是否是{12345}S =,,,,的3元完美子集,并说明理由; ①1{124}A =,,; ②2{245}A =,,.(2)若123{}A a a a =,,是{127}S =,,,的3元完美子集,求123a a a ++的最小值; (3)若12{}m A a a a =,,,是{12}S n =,,,(3n ≥且*n N ∈)的m 元完美子集,求证:12(+1)2m m n a a a +++≥,并指出等号成立的条件.29.设全集为R ,{3A x x =≤或}9x ≥,{}29B x x =-<≤. (1)求A B ,A B ; (2)求()R B A .30.已知集合{}2,560|U R A x x x ==-+≤,112B xx ⎧⎫=≤⎨⎬-⎩⎭. (1)求,A B ;(2)判断Ux A ∈是x B ∈的什么条件.【参考答案】一、单选题 1.D 【解析】 【分析】求出集合A 、B ,利用交集和补集的定义可求得集合()U A B ∩. 【详解】因为{}30232x A xx x x ⎧⎫-=≤=-<≤⎨⎬+⎩⎭,{}{}ln 1e B x x x x =≥=≥, 所以,{}e UB x x =<,因此,()()2,e UA B =-.故选:D. 2.D 【解析】 【分析】利用()()()U U uM N M N ⋂=⋃,判断相互之间的关系.【详解】()()()UU uM N M N ⋂=⋃,M N N ⋃=,()u uM N N ⋃=.故选D. 3.C 【解析】 【分析】先由y =A ,再根据集合交集的原则即可求解. 【详解】对于集合A ,10x -≥,即1≥x ,则{}1A x x =≥, 所以{}1,2,3A B =, 故选:C 4.D 【解析】 【分析】求出原点到直线(系)的距离,即可判断集合A ,从而得到UA ,即可求出所表示的平面区域的面积; 【详解】解:对于直线(系)cos sin 10x y θθ+-=,则坐标原点()0,0到直线的距离1d ==,则集合(){},|cos sin 10A x y x y θθ=+-=表示平面上所有到原点距离等于1的直线上的点组成的集合,全集(){},|R,R U x y x y =∈∈表示坐标平面上的所有点的集合, 所以(){}22,|1UA x y x y =+<,则UA 所表示的平面区域的面积为π;故选:D 5.A 【解析】 【分析】先解出集合A 、B,再求A B . 【详解】因为{{}0A y y y y ===≥,{}{}3log 209B x x x x =≤=<≤,所以{}09A B x x ⋂=<≤.故选:A . 6.B 【解析】 【分析】计算出集合M ,在利用复数的四则运算化简各选项中的复数,即可得出合适的选项. 【详解】当N k ∈时,4i 1k =,41i i k +=,422i i 1k +==-,433i i i k +==-,则{}i,1,i,1M =--, ()()1i 1i 112M -+=+=∉,()()()21i1i 2i i 1i 1i 1i 2M ---===-∈++-,()()()i 1i i 11i 1i 1i 1i 22M +==-+∉--+,()2i 1i 2M =-∉-, 故选:B. 7.A 【解析】 【分析】解二次不等式求得集合B 然后根据并集的定义即得. 【详解】由2230x x --≤,解得13x -≤≤,[]1,3B ∴=-,又()1,4A =,[1,4)A B ∴⋃=-.故选:A. 8.C 【解析】 【分析】化简集合A ,根据B A ⊆求实数a 的可能取值,由此可得结果. 【详解】因为集合{}24A x N x =∈≤化简可得{0,1,2}A =又{}1,B a =,B A ⊆, 所以0a =或2a =,故实数a 的取值集合为{0,2}, 故选:C. 9.C 【解析】 【分析】解分式不等式确定集合A ,再由并集的定义计算. 【详解】解:依题意,{}30232x A xx x x ⎧⎫-=<=-<<⎨⎬+⎩⎭,则{}2A B x x ⋃=>-, 故选:C . 10.D 【解析】 【分析】根据集合的并集的定义即可求解. 【详解】 {}{}{}200,102A B x x x x ==<≤≤≤.故选: D. 11.A 【解析】 【分析】根据交集的定义计算可得; 【详解】解:因为{}1,2,3M =,{}1,3,4N =,所以{}1,3M N ⋂=; 故选:A 12.C 【解析】 【分析】根据集合的并集可得答案. 【详解】因为集合{M ⋃永安,漳平}{=德化,漳平,永安}, 所以集合M 可以为{德化},{德化,漳平},{德化,永安}, {德化,永安,漳平},共4个,故选:C. 13.B 【解析】 【分析】首先解一元二次不等式求出集合M ,再根据补集、并集的定义计算可得; 【详解】解:由20x x -<,即()10x x -<,解得01x <<,所以{}{}210||0M x x x x x -=<=<<,因为{}|1N x x =≥,{}U 0|x x =≥,所以{}U|01N x x =≤<,所以(){}U|01MN x x =≤<;故选:B 14.D 【解析】 【分析】根据条件求出两个函数在[1,2]上的值域,结合若存在[]12,1,2x x ∈,使得12()()f x g x =,等价为两个集合有公共元素,然后根据集合关系进行求解即可. 【详解】当12x ≤≤时,22log 1()log 2f x ≤≤,即0()1f x ≤≤,则()f x 的值域为[0,1], 当12x ≤≤时,4()2a g x a -≤≤-,则()g x 的值域为[4,2]a a --, 因为存在[]12,1,2x x ∈,使得12()()f x g x =, 则[4,2][0,1]a a --≠∅ 若[4,2][0,1]a a --=∅, 则14a <-或02a >-, 得5a >或2a <,则当[4,2][0,1]a a --≠∅时,25a ≤≤, 即实数a 的取值范围是[2,5],A ,B ,C 错,D 对. 故选:D . 15.B 【解析】 【分析】求出集合{}2230A x x x =--<,再根据集合的交集运算求得答案.【详解】由题意,{}2230{|13}A x x x x x =--<=-<<,故{}{|13}15{|13}A B x x x x x x ⋂=-<<⋂≤≤=≤<, 故选:B二、填空题16.[)3,+∞【解析】 【分析】根据A B ⊆列出不等式即可求解. 【详解】因为{}13A x x =<<,{}B x x a =<,A B ⊆,故只需3a ≥即可满足题意. 故答案为:[)3,+∞.17.10,1,2⎧⎫-⎨⎬⎩⎭【解析】 【详解】先求出集合M ,然后分N =∅和N ≠∅两种情况求解 【点睛】由220x x +-=,得(1)(2)0x x -+=,解得1x =或2x =-, 所以{}1,2M =-,当N =∅时,满足N M ⊆,此时0a = 当N ≠∅时,即0a ≠,则1N a ⎧⎫=-⎨⎬⎩⎭,因为N M ⊆,所以1M a-∈,所以11a -=或12a-=-, 解得1a =-或12a =, 综上,12a =,或1a =-,或0a =, 所以实数a 的取值集合为10,1,2⎧⎫-⎨⎬⎩⎭,故答案为:10,1,2⎧⎫-⎨⎬⎩⎭18.4a ≤-或5a ≥ 【解析】 【分析】由3a a <+可得A ≠∅,根据题意可得到端点的大小关系,得到不等式,从而可得答案. 【详解】由题意 3a a <+,则A ≠∅要使得A B =∅,则31a +≤-或5a ≥ 解得4a ≤-或5a ≥ 故答案为:4a ≤-或5a ≥ 19.5,66ππ⎛⎫⎪⎝⎭【解析】 【分析】分析可知元素0、1、2必属于集合A ,可得出1sin 2θ>,由[]0,2θπ∈可求得θ的取值范围. 【详解】要使集合A 中至少有3个元素,则元素0、1、2必属于集合A ,所以只需4sin 2θ>,即1sin 2θ>, 又[]0,2θπ∈,解得5,66ππθ⎛⎫∈ ⎪⎝⎭. 故答案为:5,66ππ⎛⎫⎪⎝⎭.20.12 【解析】 【分析】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,列方程求解即可. 【详解】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,则31264512x =+-=. 故答案为:12. 21.5 【解析】 【分析】设三类课程都选择参加的学生有x 人,由题意得()()()83711840x x x x ⨯+-+-+-+=,解方程可求得结果 【详解】设三类课程都选择参加的学生有x 人,由题意得()()()83711840x x x x ⨯+-+-+-+=,解得5x =. 故答案为:522.{}0,1,4【解析】 【分析】根据集合的运算法则计算. 【详解】由已知{4}A =,{0,1}B =,所以{0,1,4}A B =. 故答案为:{0,1,4}. 23.{x |2<x <3} 【解析】 【分析】解二次不等式可得集合B ,再求交集即可. 【详解】∵A ={x |2<x <4},B ={x |(x -1)(x -3)<0}={x |1<x <3}, ∴A ∩B ={x |2<x <3}. 故答案为:{x |2<x <3} 24.4 【解析】 【分析】集合A 只有一个元素,分别讨论当0a =和0a ≠时对应的等价条件即可 【详解】解:2{|10}A x R ax ax =∈++=中只有一个元素, ∴若0a =,方程等价为10=,等式不成立,不满足条件.若0a ≠,则方程满足0∆=,即240a a -=,解得4a =或0a =(舍去). 故答案为:425.[)2020,∞+【解析】 【分析】解一元二次不等式求得集合A ,根据A B ⊆求a 的取值范围. 【详解】由2202120200x x -+<,解得:12020x <<, ∴()1,2020A =,又A B ⊆,且{}|B x x a =<, ∴2020a ≥,故a 的取值范围为[)2020,∞+. 故答案为:[)2020,∞+三、解答题26.103;23. 【解析】 【分析】由题可知当艺术社团组织的学生都参加体育社团组织时,同时参加这2个社团的人数最多,当每个学生都参加某个社团时,同时参加这2个社团的学生最少. 【详解】由题意:当艺术社团组织的103名学生都参加体育社团组织时,同时参加这2个社团的学生最多,且有103人;当每个学生都参加某个社团时,同时参加这2个社团的学生最少,且有10312020023+-=人,所以同时参加这2个社团的最多有103名学生,最少有23名学生. 27.(1)()23f x x =-(2){}0,{}2-,{}0,2-和∅【解析】【分析】(1)利用换元法:21t x =+,求出()f t ,即可求出()f x 的解析式;(2)根据()230x f x ++=求出集合A 的元素,根据元素即可写出集合A 的所有子集.(1)令21x t +=,所以12t x -=, 所以()141232t f t t -=⋅-=-,即()23f x x =-; (2)因为()23f x x =-, {}{}22|()30|20A x x f x x x x =++==+=,因为220x x +=,解得0x =或2x =-,所以{}0,2A =-,所以集合A 的所有子集为:{}0,{}2-,{}0,2-和∅.28.(1)1A 不是S 的3元完美子集;2A 是S 的3元完美子集;理由见解析(2)12(3)证明见解析;等号成立的条件是11N 1n a m +=∈+*且(1)(2)1i n i a i m m +=+≤≤ 【解析】【分析】(1)根据m 元完美子集的定义判断可得结论;(2)不妨设123a a a <<.由11a =,12a =,13a ≥分别由定义可求得123a a a ++的最小值; (3)不妨设12m a a a <<<,有121i i i i m i a a a a a a a n +-<+<+<<+≤.121i i i m i a a a a a a +-+++,,,是A 中1m i +-个不同的元素,且均属于集合12{}i i m a a a ++,,,,此时该集合恰有m i -个不同的元素,显然矛盾.因此对任意1i m ≤≤,都有11i m i a a n +-++≥,由此可得证.(1)解:(1)①因为1235+=≤,又13A ∉,所以1A 不是S 的3元完美子集. ②因为2245+=≤,且24A ∈,而55454425245+>+>+>+>+>, 所以2A 是S 的3元完美子集.(2)解:不妨设123a a a <<.若11a =,则112a a A +=∈,123A +=∈,134A +=∈,与3元完美子集矛盾; 若12a =,则114a a A +=∈,246A +=∈,而267+>,符合题意,此时12312a a a ++=. 若13a ≥,则116a a +≥,于是24a ≥,36a ≥,所以123+13a a a +≥. 综上,123a a a ++的最小值是12.(3)证明:不妨设12m a a a <<<.对任意1i m ≤≤,都有11i m i a a n +-++≥,否则,存在某个(1)i i m ≤≤,使得1i m i a a n +-+≤. 由12m a a a <<<,得121i i i i m i a a a a a a a n +-<+<+<<+≤. 所以121i i i m i a a a a a a +-+++,,,是A 中1m i +-个不同的元素,且均属于集合12{}i i m a a a ++,,,, 该集合恰有m i -个不同的元素,显然矛盾.所以对任意1i m ≤≤,都有11i m i a a n +-++≥. 于是1211211212()()()()()(1)m m m m m m a a a a a a a a a a a a m n ---++++=+++++++++≥. 即12(1)2m m n a a a ++++≥. 等号成立的条件是11N 1n a m +=∈+*且(1)(2)1i n i a i m m +=+≤≤. 29.(1){23A B x x ⋂=-<≤或}9x =,A B R =(2)(){2R B A x x ⋂=≤-或}9x >【解析】【分析】(1)根据集合的交集和并集的定义即可求解; (2)先根据补集的定义求出B R ,然后再由交集的定义即可求解. (1) 解:因为{3A x x =≤或}9x ≥,{}29B x x =-<≤, 所以{23A B x x ⋂=-<≤或}9x =,A B R =;(2)解:因为全集为R ,{3A x x =≤或}9x ≥,{}29B x x =-<≤, 所以{2R B x x =≤-或}9x >,所以(){2R B A x x ⋂=≤-或}9x >.30.(1){}|23A x x =≤≤;{2B x x =<或}3x ≥.(2)充分不必要条件【解析】【分析】(1)分别解一元二次不等式和分式不等式即可得答案; (2)由题知{2U A x x =<或}3x >,进而根据充分不必要条件判断即可.(1)解:解不等式2560x x -+≤得23x ≤≤,故{}|23A x x =≤≤; 解不等式()()320113110022220x x x x x x x ⎧--≤-≤⇔-≤⇔≤⇔⎨----≠⎩, 解得2x <或3x ≥,故{2B x x =<或}3x ≥.(2)解:因为{}|23A x x =≤≤, 所以{2U A x x =<或}3x >, 因为{2B x x =<或}3x ≥, 所以U x A ∈是x B ∈的充分不必要条件.。
高一数学集合练习题及答案-经典
高一数学集合练习题及答案-经典一、单选题1.已知集合{}1,4,M x x =,{}21,N x =,若N M ⊆,则实数x 组成的集合为( ) A .{}0 B .{}2,2- C .2,0,2 D .2,0,1,22.已知集合{|A x y ==,{}0B x x =>,则A B ⋃=( ) A .{|3}x x ≤ B .{|1}x x ≥- C .{}|3x x > D .{}|0x x >3.已知集合{}213A x x =+>,{}220B x x x =--<,则A B =( ) A .{}1x x >-B .{}11x x -<<C .{}211x x x -<或D .{}12x x <<4.已知全集为R ,集合115x A x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,11B x x ⎧⎫=≥⎨⎬⎩⎭,则A B ⋂=R( ) A .{}0x x ≤ B .{}01x x <≤ C .{}1x x > D .∅5.集合{}06A x Z x =∈<<,集合{}ln 1B x x =>,求A B ( )A .{}6x e x <<B .{}1,2,3e e e +++C .{}3,4,5D .{}2,3,4,56.已知集合{}21A x x =<,{}lg 0B x x =<,则A B =( ) A .{}11x x -<<B .{}10x x -<<C .{}1x x <D .{}01x x <<7.已知集合{}1,2M =,{}2,3N =,那么M N ⋂等于( )A .∅B .{}1,2,3C .{}2D .{}3 8.设集合{}{}(,)|20(,)|35A x y x y B x y x y =-==+=,,则A B =( ) A .{1,2}B .{1,2}x yC .(1,2)D .{(1,2)}9.设集合{A x y =,(){}ln 2B y y x ==-,(){}2,C x y y x ==,则下列集合不为空集的是( )A .A CB .BC ⋂ C .B A ⋂RD .A B C ⋂⋂10.设集合P ,Q 均为全集U 的非空子集,且U ()P Q P =∩,则U ()P Q =∩( ) A .P B .Q C .∅D .U 11.已知全集{}1,2,3,4,5U =,{}2,3,4A =,{}3,5B =,则()U A B =( ) A .{}1 B .{}3 C .{}2,4 D .{}1,2,4,512.设集合{}{}13,33A xx B x x =≤≤=-≤≤∣∣,则A B =( ) A .[]1,3 B .[]3,3- C .(]1,3 D .[]3,1- 13.已知集合{}21A x x =-<≤,{}2,1,0,1B =--,则A B =( )A .{}2,1,0,1--B .{}1,0,1-C .{}1,0-D .{}2,1,0--14.设集合{}220A x x x =-≤,{}1,2,3B =,{}2,3,4C =,则()A B C =( )A .{}2B .{}2,3C .{}1,2,3,4D .{}0,1,2,3,415.已知集合1144A x x ⎧⎫=-<⎨⎬⎩⎭,12B x a x ⎧⎫=<<⎨⎬⎩⎭,若B A ⊆,则实数a 的取值范围是( )A .10,2⎛⎫ ⎪⎝⎭B .10,2⎛⎤ ⎥⎝⎦C .[)0,∞+D .[)1,+∞二、填空题16.已知全集{1,2,3,4,5,6,7}U =,集合{}1,3,5,7A =,则U A ____________.17.已知全集U =R ,集合{}()3,,0A x x B ∞=≤-=-,则A B =________.18.集合(){},A x y y a x ==,(){},B x y y x a ==+,C AB =,且集合C 为单元素集合,则实数a 的取值范围是________.19.已知集合{}2430A x x x =-+=,{}30B x mx =-=,且B A ⊆,则实数m 的取值集合为___________.20.若{}31,2a ∈,则实数=a ____________.21.若集合{}{}230,0,1,2,3A xx x B =-==∣,则满足A M B ⊆⊆的集合M 的个数是___________.22.已知集合{}1,0,1A =-,{}220B x x x =-=,则A B ⋃=______. 23.若集合234|0A x x x ,{}|10B x ax =-=,且“x B ∈”是“x A ∈”的充分非必要条件,则实数a 组成的集合是______.24.若a 、b 、R x ∈且a 、0b ≠,集合b a B x x a b ⎧⎫⎪⎪==+⎨⎬⎪⎪⎩⎭,则用列举法可表示为______. 25.若集合1,24k M x x k Z ⎧⎫==+∈⎨⎬⎩⎭,1,42k N x x k Z ⎧⎫==+∈⎨⎬⎩⎭,则集合M 、N 之间的关系是______.三、解答题26.已知集合{}{}24121A x x B x m x m =-≤≤=-+≤≤-,.(1)若2m =,求R ,()A B A B ⋃⋂;(2)若A B A ⋃=,求m 的取值范围.27.对非空数集X ,Y ,定义X 与Y 的和集{},X Y x y x X y Y +=+∈∈.对任意有限集A ,记A 为集合A 中元素的个数.(1)若集合{}0,5,10X =,{}2,1,0,1,2Y =--,写出集合X X +与X Y +;(2)若集合{}12,,,n X x x x =满足12n x x x <<<,3n ≥,且2X X X +<,求证:数列1x ,2x ,,n x 是等差数列;(3)设集合{}12,,,n X x x x =满足12n x x x <<<,3n ≥,且()1,2,,i x i n ∈=Z ,集合{}B k Z m k m =∈-≤≤(2m ≥,N m ∈),求证:存在集合A 满足11n x x A B -≤+且X A B ⊆+.28.已知集合{|lg(3)A x y x ==-,2{|9200}B x x x =-+≤,{|121}C x a x a =+≤<-.若()C A B ⊆,求实数a 的取值范围.29.设集合{}22,3,42A a a =++,集合{}20,7,42,2B a a a =+--,这里a 是某个正数,且7A ∈,求集合B .30.已知集合2{|40}A x x =-≥,集合{|1}B x m x m =<<-.(1)求A .(2)求A B A ⋃=,求m 的取值范围.【参考答案】一、单选题1.C【解析】【分析】若N M ⊆,所以2x x =或24x =,解出x 的值,将x 的值代入集合,检验集合的元素满足互异性.【详解】因为N M ⊆,所以2x x =,解得0x =,1x =或24x =,解得2x =±,当0x =时,{}1,4,0M =,{}1,0N =,N M ⊆,满足题意.当1x =时,{}1,4,1M =,不满足集合的互异性.当2x =时,{}1,4,2M =,1,4N,若N M ⊆,满足题意. 当2x =-时,{}1,4,2M =-,1,4N,若N M ⊆,满足题意.故选:C.2.B【解析】【分析】由分式不等式求得集合A ,再根据并集的原则求解即可.【详解】 对于集合A ,满足1033x x x +⎧≥⎪-⎨⎪≠⎩,即()()3103x x x ⎧-+≤⎨≠⎩, 解得13x -≤<,即{}13A x x =-≤<, 又{}0B x x =>,所以{}1A B x x ⋃=≥-,故选:B3.D【解析】【分析】分别求出集合AB 、根据集合的交集运算可得答案. 【详解】{}{}2131=+>=>A x x x x ,{}{}22012=--<=-<<B x x x x x , ∴{}12A B x x ⋂=<<.故选:D .4.C【解析】【分析】根据题意解得集合{}|0A x x =>,{}|01B x x =<≤,由集合补集运算得到(](),01,B =-∞⋃+∞R ,再由集合交集运算得到最后结果.【详解】 集合115x A x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,解得{}|0A x x =>, 11B x x ⎧⎫=≥⎨⎬⎩⎭,()101110010x x x x x x x ⎧-≥-≥⇔≥⇔⇒<≤⎨≠⎩{}|01B x x ∴=<≤,(](),01,B =-∞⋃+∞R由集合交集运算得到:A B ⋂=R {}1x x >. 故选:C.5.C【解析】【分析】先化简出结合,A B ,然后再求交集.【详解】由{}1,2,3,4,5A =,ln 1x > 则x e >,所以集合(),B e =+∞所以{}3,4,5A B =故选:C6.D【解析】【分析】根据对数函数的单调性,结合解一元二次不等式的方法、集合交集的定义进行求解即可.【详解】因为{}21(1,1)A x x =<=-,{}lg 0(0,1)B x x =<=, 所以A B ={}01x x <<,故选:D7.C【解析】【分析】由交集的定义直接求解即可【详解】因为{}1,2M =,{}2,3N =所以{}2MN =,故选:C8.D【解析】【分析】联立方程求解即可.【详解】集合A 表示在直线2x -y =0上所有的点,集合B 表示3x +y =5上所有的点,所以联立方程2035x y x y -=⎧⎨+=⎩ ,解得x =1,y =2, ()1,2A B ⋂= ,即A 与B 的交集是点(1,2);故选:D.9.C【解析】【分析】先化简集合A ,B ,C ,再利用集合的类型和运算求解.【详解】解:因为集合{{}2A x y x x ===≥,(){}ln 2B y y x R ==-=,且(){}2,C x y y x ==为点集, 所以A C ⋂=∅,B C =∅,{}|2=<A x x R ,{}|2⋂=<B A x x R ,A B C =∅,故选:C10.B【解析】【分析】依题意可得U P Q ⊆,即可得到U Q P ⊆,从而即可判断; 【详解】解:因为U ()P Q P =∩,所以U P Q ⊆,所以U Q P ⊆,所以U ()P Q Q =∩; 故选:B11.D【解析】【分析】利用交集和补集的定义可求得结果.【详解】由已知可得{}3A B ⋂=,所以,(){}1,2,4,5U A B ⋂=.故选:D.12.A【解析】【分析】利用集合交集定义计算即可【详解】[1,3],[3,3],[1,3]A B A B ==-⋂=故选 :A13.B【解析】【分析】由交集定义可直接得到结果.【详解】由交集定义可知:{}1,0,1-.故选:B.14.C【解析】【分析】先求出集合A ,再按照交集并集的运算计算()A B C 即可.【详解】{}{}22002A x x x x x =-≤=≤≤,{}(){}1,2,1,2,3,4A B A B C ==. 故选:C.15.C【解析】【分析】解不等式求得集合A ,对a 进行分类讨论,根据B 是A 的子集列不等式,从而求得a 的取值范围.【详解】1111111,,0,0,4444422x x x A ⎛⎫-<-<-<<<= ⎪⎝⎭, 当12a ≥时,B =∅,满足B A ⊆. 当12a <时,由于B A ⊆,所以102a ≤<. 综上所述,a 的取值范围是[)0,∞+.故选:C二、填空题16.{}2,4,6【解析】【分析】由补集的定义即可求解.【详解】解:因为全集{1,2,3,4,5,6,7}U =,集合{}1,3,5,7A =,所以{}2,4,6U A =.故答案为:{}2,4,6 17.()3,0-【解析】【分析】 先求出{}3A x x =>-,进而求出交集.【详解】{}3A x x =>-,()3,0A B =-故答案为:()3,0-18.[1,1]-【解析】【分析】由题意可得集合A ,B 表示的曲线有一个交点,可得a x x a =+有一个根,当0a =时,符合题意,当0a ≠时,1x x a =+,分别作出y x =与1x y a =+的图象,根图象求解即可 【详解】因为C A B =,且集合C 为单元素集合,所以集合A ,B 表示的曲线有一个交点, 所以a x x a =+有一个根当0a =时,符合题意,当0a ≠时,1x x a =+,分别作出y x =与1x y a =+的图象, 由图象可知11a ≥或11a≤-时,两函数图象只有一个交点, 解得01a <≤或10a -≤<,综上,实数a 的取值范围是[1,1]-,故答案为:[1,1]-19.{}0,1,3【解析】【分析】讨论0m =和0m ≠两种情况,根据包含关系得出实数m 的取值集合.【详解】{}{}24301,3A x x x =-+==∣当0m =时,B =∅,满足B A ⊆; 当0m ≠时,3B m ⎧⎫=⎨⎬⎩⎭,因为B A ⊆,所以31m =或33m =,解得3m =或1m = 即实数m 的取值集合为{}0,1,3.故答案为:{}0,1,320.5##32【解析】【分析】根据题中条件,由元素与集合之间的关系,得到23a =求解,即可得出结果.【详解】因为{}31,2a ∈,所以23a =,解得32a =. 故答案为:32. 21.4【解析】【分析】求出集合A ,由A M B ⊆⊆即可求出集合M 的个数.【详解】因为集合{}{}2300,3A xx x =-==∣,{}0,1,2,3B =, 因为A M B ⊆⊆,故M 有元素0,3,且可能有元素1或2,所以{}0,3M =或{}0,1,3M =或{}0,2,3M =或{}0,1,2,3M =故满足A M B ⊆⊆的集合M 的个数为4,故答案为:4.22.{1,0,1,2}-【解析】【分析】根据给定条件求出集合B ,再利用并集的定义直接计算作答.【详解】解方程220x x -=得:0x =或2x =,则{}0,2B =,而{}1,0,1A =-,所以{1,0,1,2}A B =-.故答案为:{1,0,1,2}-23.10,1,4⎧⎫-⎨⎬⎩⎭【解析】【分析】解出集合A ,根据题意,集合B 为集合A 的真子集,进而求得答案.【详解】由题意,{}1,4A =-,因为“x B ∈”是“x A ∈”的充分非必要条件,所以集合B 为集合A 的真子集,若a =0,则B =∅,满足题意;若0a ≠,则1B a ⎧⎫=⎨⎬⎩⎭,所以111a a =-⇒=-或1144a a =⇒=. 故答案为:10,1,4⎧⎫-⎨⎬⎩⎭. 24.2,0,2【解析】【分析】分别讨论,a b 正负即可求出.【详解】当0,0a b <<时,112b a x a b =+=--=-, 当0,0a b <>时,110b a x a b =+=-+=, 当0,0a b ><时,110b a x a b =+=-=, 当0,0a b >>时,112b a x a b =+=+=,所以用列举法可表示为2,0,2. 故答案为:2,0,2..M N【解析】【分析】从两个集合的元素特征入手整理化简,再判定两集合的包含关系进行求解.【详解】 因为121,Z ,Z 244k k M x x k x x k ⎧⎫⎧⎫+==+∈==∈⎨⎬⎨⎬⎩⎭⎩⎭, 1+2,Z =,Z 424k k N x x k x x k ⎧⎫⎧⎫==+∈=∈⎨⎬⎨⎬⎩⎭⎩⎭, 若x M ∈,则21(21)244k k x +-+==, 因为Z k ∈,所以21Z k -∈,所以x ∈N ,所以M N ⊆,又因为0N ∈,0M ∉,所以M N .故答案为:M N .三、解答题26.(1){}|24A B x x =-≤≤,{R ()|21A B x x ⋂=-≤<-或}34x <≤ (2)52⎛⎤-∞ ⎥⎝⎦, 【解析】【分析】(1)根据交集、并集和补集的定义即可得解;(2)A B A ⋃=,即B A ⊆,分B =∅和B ≠∅两种情况讨论,从而可得出答案.(1)解:若2m =,则{}13B x x =-≤≤, 所以{}24A B x x ⋃=-≤≤,{R 1B x x =<-或}3x >,所以{R ()|21A B x x ⋂=-≤<-或}34x <≤;(2)解:因为A B A ⋃=,所以B A ⊆,当B =∅时,则211m m -<-+,解得23m <,此时B A ⊆,符合题意,当B ≠∅时,则12112214m m m m -+≤-⎧⎪-+≥-⎨⎪-≤⎩,解得2532m ≤≤, 综上所述52m ≤, 所以若A B A ⋃=,m 的取值范围为52⎛⎤-∞ ⎥⎝⎦,. 27.(1){}0,5,10,15,20X X +=,{}2,1,0,1,2,3,4,5,6,7,8,9,10,11,12X Y +=--;(2)详见解析;(3)详见解析.【解析】【分析】(1)利用和集的定义即得;(2)由题可得21X X n +=-,进而可得X X +中的所有元素为111213123,,,,,,,,n n n n n x x x x x x x x x x x x x x +++++++,结合条件可得112210n n n n x x x x x x ----=-==->,即证; (3)设{}i a ()()1121,N*i a x m i m i =++-+∈,令集合{}121,,,q A a a a +=,{}Z B k m k m =∈-≤≤,进而可得11n x x A B -≤+,{}{}1123Z ,,,,n n A B t x t x x x x x +⊇∈≤≤⊇,即得.(1) ∵集合{}0,5,10X =,{}2,1,0,1,2Y =--,∴{}0,5,10,15,20X X +=,{}2,1,0,1,2,3,4,5,6,7,8,9,10,11,12X Y +=--;(2)∵111213123n n n n n x x x x x x x x x x x x x x +<+<+<<+<+<+<<+, ∴集合X X +中至少包含21n -个元素, 所以21X X n +≥-,又X n =, 由题可知2X X n +<,又X X +为整数, ∴21X X n +≤-, ∴21X X n +=-,∴X X +中的所有元素为111213123,,,,,,,,n n n n n x x x x x x x x x x x x x x +++++++, 又1121222123,,,,,,,,n n n n n x x x x x x x x x x x x x x -+++++++是X X +中的21n -个元素,且1121222123n n n n n x x x x x x x x x x x x x x -+<+<+<<+<+<+<<+, ∴()1212,3,,j j x x x x j n -+=+=,即()1212,3,,j j x x x x j n --=-=, ∴112210n n n n x x x x x x ----=-==->,∴数列1x ,2x ,,n x 是等差数列;(3) ∵集合{}Z B k m k m =∈-≤≤, ∴21B m =+,设()121n x x m q r -=++,其中,N,02q r r m ∈≤≤, 设{}i a 是首项为1x m +,公差为21m +的等差数列,即()()1121,N*i a x m i m i =++-+∈, 令集合{}121,,,q A a a a +=, 则111111121n n n x x r x x r x x A q m B B -----=+=+=+≤++, ∴(){}1111,1,2,,212A B x x x x m q m +=+++++, 即(){}11Z 212A B t x t x m q m +=∈≤≤+++,∵()()1121212n x x m q r x m q m =+++≤+++, ∴{}{}1123Z ,,,,n n A B t x t x x x x x +⊇∈≤≤⊇, 所以X A B ⊆+,故存在集合A 满足11n x x A B-≤+且X A B ⊆+. 【点睛】数学中的新定义题目解题策略:(1)仔细阅读,理解新定义的内涵;(2)根据新定义,对对应知识进行再迁移. 28.(,3]-∞【解析】【分析】 求函数定义域得93,2A ⎛⎤= ⎥⎝⎦,解不等式得[4,5]B =,进而得(3,5]A B =,再结合题意,分C =∅和C ≠∅两种情况求解即可.【详解】解:由30920x x ->⎧⎨-≥⎩,解得932x <≤,所以93,2A ⎛⎤= ⎥⎝⎦, 因为()()2920450x x x x -+=--≤,解得45x ≤≤,所以[4,5]B = 所以(3,5]A B =因为()C A B ⊆,所以,当C =∅时,121a a +≥-,解得2a ≤C ≠∅时,可得12113215a a a a +<-⎧⎪+>⎨⎪-≤⎩,解得:23a <≤ 综上可得:实数a 的取值范围是(,3]-∞29.B ={0,7,3,1}.【解析】【分析】解方程2427a a ++=即得解.【详解】解:由题得2427a a ++=, 解得1a =或5a =-.因为0a >,所以1a =.当1a =时, B ={0,7,3,1}.故集合B ={0,7,3,1}.30.(1){|22}A x x =-≤≤(2)[1,)-+∞【解析】【分析】(1)由不等式240x -≥,求得22x -≤≤,即可求解; (2)由A B A ⋃=,得到B A ⊆,列出不等式组,即可求解.(1)解:由240x -≥,即24x ≤,可得22x -≤≤,可得集合{|22}A x x =-≤≤.(2)解:因为{|22}A x x =-≤≤,且集合{|1}B x m x m =<<-, 又因为A B A ⋃=,即B A ⊆,当B =∅时,即1m m ≥-,可得12m ≥,此时满足B A ⊆; 当B ≠∅时,则满足2121m m m m ≥-⎧⎪-≤⎨⎪<-⎩,解得112m -≤<, 综上可得,1m ≥-,即实数m 的取值范围[1,)-+∞.。
高一数学集合练习题及答案-经典
高一数学集合练习题及答案-经典一、单选题1.设集合(){}=10,A x x x x -<∈R ,{}2,B x x x =≤∈R ,则()R A B ⋂=( ) A .∅B .[]1,2C .(],0-∞D .(][],01,2-∞2.已知全集{}1,2,3,4,5U =,集合{}3,4,5A =,{}2,3,4B =,则()U A B =( )A .{}1,3,5B .{}1,2,5C .{}1,5D .{}2,53.已知{}+|17A x N x =∈-≤≤,{}|31,B x x n n N ==+∈,则A B =( ) A .{}1,4B .{}4,7C .{}1,4,7D .{}1,1,4,7-4.已知集合{}{}1,(2)0A x x B x x x =<=-<,则A B ⋃=( ) A .(0,1)B .(1,2)C .(,2)-∞D .(0,)+∞5.设集合{}22M x Z x =∈-<,则集合M 的真子集个数为( ) A .16B .15C .8D .76.已知:2{|560}A x x x =-+>,{|24}x B x =<,记{|,}A B x x A x B -=∈∉,则A B -=( ) A .(3,)+∞ B .(,2](3,)-∞+∞ C .(,2)(3,)-∞⋃+∞D .[3,)+∞7.设集合{}10M x x =-<,{}12,N y y x x M ==-∈,则M N =( )A .∅B .(,1)-∞-C .(,1)-∞D .(1,1)-8.若集合2{|60}A x x x =--+>,5{|1}3B x x =≤--,则A B 等于( ) A .()3,3-B .[2,3)-C .(2,2)-D .[2,2)-9.设全集U =R ,集合{1,0,1,2,3}M =-,{R |1}N x x =∈>,则下面Venn 图中阴影部分表示的集合是( )A .(,1)-∞B .(,1]-∞C .{1,0}-D .{1,0,1}-10.已知集合21|01x M x x -⎧⎫=>⎨⎬+⎩⎭,集合{}2|40N x x x =-<,则集合M N =( )A .{}|0x x >B .{}|14x x <<C .{|0x x <或}1x >D .{|0x x <或}4x >11.已知集合{}{}21,3,5,6,7,8,9,14480A B xx x ==-+∣,则下图中阴影部分表示的集合为( )A .{}1,3,5,7,9B .{}1,3,5,9C .{}1,3,5D .{}1,3,912.已知集合(){}2{34},log 22A x Zx B x x =∈-≤<=+<∣∣,则A B 的元素个数为( ) A .3 B .4 C .5 D .6 13.记2{|log (1)3}A x x =-<,N A B =,则B 的元素个数为( )A .6B .7C .8D .914.已知集合{}10,1,2,A B x y x ⎧⎫===⎨⎬⎩⎭∣,则A B ⋃=( )A .{}0,1,2B .{}1,2C .()0,∞+D .[)0,∞+15.已知集合{}0,1,2A =,(){},,,,B x y x A y A x y A x y A =∈∈+∈-∈,则集合B 中元素的个数是( ) A .1B .4C .3D .2二、填空题16.已知全集{1,2,3,4,5,6,7}U =,集合{}1,3,5,7A =,则UA____________.17.全集U =R ,集合{}3A x x =≤-,则UA =______.18.集合{}{}23,12,1A B m m ==+,,且A B =,则实数m =________.19.已知集合{}1A x x =>,{}2B x x =<,则集合A B = ________. 20.已知集合(){}2,2A x y y xx ==-,()(){},21B x y y x ==+,则AB =___________.21.从集合M={}1,2,3,4,,2021中去掉所有3的倍数和5的倍数,则剩下的元素个数为______22.已知集合{}()216,xA xB a ∞=≤=-,,若A B ⊆则实数a 的取值范围是____.23.如图所示,U 为全集,A U ⊆,B U ⊆,用A 、B 表示图中的阴影部分的集合是______.24.设集合{}|2A x x =>,{}|B x x a =≤,若A B =R ,则实数a 的取值范围是______. 25.用描述法表示被4除余3的自然数全体组成的集合A =______.三、解答题26.对于任意的*n N ∈,记集合{1,2,3,,}n E n =,,n n n P x x a E b E ⎧⎫==∈∈⎨⎬⎩⎭,若集合A 满足下列条件:①n A P ⊆;②12,x x A ∀∈,且12x x ≠,不存在*N k ∈,使212x x k +=,则称A 具有性质Ω.如当2n =时,2{1,2}E =,2P ⎧=⎨⎩,112,x x P ∀∈,且12x x ≠,不存在*N k ∈,使212x x k +=,所以2P 具有性质Ω.(1)写出集合3P ,4P 中的元素个数,并判断3P 是否具有性质Ω. (2)证明:不存在A 、B 具有性质Ω,且A B =∅,使15E A B =⋃. (3)若存在A 、B 具有性质Ω,且A B =∅,使n P A B =⋃,求n 的最大值.27.已知集合{}2320,,A x ax x x R a R =-+=∈∈.(1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值,并求集合A ; (3)若A 中至少有一个元素,求a 的取值范围.28.已知集合{}211A x m x m =-<<+,{}24B x x =<.(1)当2m =时,求,A B A B ⋃⋂;(2)若“x A ∈”是“x B ∈”成立的充分不必要条件,求实数m 的取值范围.29.已知集合{}|3217A x x =-<-<,集合}{23B x a x a =≤≤+.(1)若命题p :x A ∈,命题q :x B ∈,若p 是q 的必要条件,求实数a 的取值范围; (2)若A B =∅,求实数a 的取值范围.30.已知函数()f x A ,不等式1()402x ->的解集是集合 B ,求集合 A 和R ()B A ⋂ .【参考答案】一、单选题 1.D 【解析】 【分析】根据集合的交集与补集运算法则求解即可. 【详解】由条件,(){}()=10,=0,1A x x x x -<∈R , ∴()(][)R ,01,=-∞⋃+∞A ,又∵{}2,B x x x =≤∈R 因此()(][]R ,01,2B A ⋂=-∞⋃. 故选:D 2.B 【解析】 【分析】根据给定条件,利用交集、补集的定义直接计算作答. 【详解】集合{}3,4,5A =,{}2,3,4B =,则{3,4}A B =,而全集{}1,2,3,4,5U =, 所以(){1,2,5}UA B ⋂=.故选:B3.C 【解析】 【分析】根据集合元素的形式可得关于n 的不等式,从而可求A B . 【详解】令1317n -≤+≤,则223n -≤≤,而n N ∈,故0,1,2n =,故{}1,4,7A B =,故选:C. 4.C 【解析】 【分析】求出集合B ,由并集的定义即可求出答案. 【详解】因为{}{}(2)002B x x x x x =-<=<<,则}{2A B x x ⋃=<. 故选:C. 5.D 【解析】 【分析】求出集合M 中的元素,再由子集的定义求解. 【详解】由题意{|04}{1,2,3}M x Z x =∈<<=, 因此其真子集个数为3217-=. 故选:D . 6.A 【解析】 【分析】先求出集合,A B ,再按照给的定义计算A B -即可. 【详解】由题意知:|2{A x x =<或3}x >,{|2}B x x =<,故A B -={|3}x x >. 故选:A. 7.D 【解析】 【分析】解一元一次不等式求集合M ,求一次函数值域求集合N ,再应用集合的交运算求M N ⋂. 【详解】由题设,{|1}M x x =<,{|1}N y y =>-, 所以(1,1)M N =-.故选:D 8.D 【解析】 【分析】解不等式化简集合A ,B ,再利用交集的定义直接求解作答. 【详解】不等式260x x --+>化为:260x x +-<,解得:32x -<<,则(3,2)A =-, 不等式513x ≤--,即203x x +≤-,整理得:(2)(3)030x x x +-≤⎧⎨-≠⎩,解得23x -≤<,则[2,3)B =-,所以[2,2)A B ⋂=-. 故选:D 9.D 【解析】 【分析】根据Venn 图,明确阴影部分表示的集合的含义,即可求得答案. 【详解】由题意,可知Venn 图中阴影部分表示的集合是(){1,0,1}U M N =- ,故选:D 10.B 【解析】 【分析】分别化简集合M ,N 再求交集即可 【详解】2101011x x x x ->⇒->⇒>+ ()2404004x x x x x -<⇒-<⇒<< 则{}|1M x x =>,{}04|N x x =<<, 所以{}|14M N x x ⋂=<< 故选:B 11.B 【解析】 【分析】由图可知,图中阴影部分表示()R A B ⋂,先求出集合B ,再求出集合B 的补集,然后再与集合A 求交集 【详解】由图可知,图中阴影部分表示()R A B ⋂ 由214480x x -+≤,得68x ≤≤, 所以{}68B x x =≤≤, 所以{R 6B x x =<或}8x >, 因为{}1,3,5,6,7,8,9A =, 所以(){}R1,3,5,9A B =,故选:B12.A 【解析】 【分析】根据对数函数的单调性解得集合B ,再求A B ⋂即可得到其元素个数. 【详解】因为{34}A x Zx =∈-≤<∣{}3,2,1,0,1,2,3=---, ()2log 22x +<,即()22log 2log 4x +<,故024x <+<,解得22x -<<,即{|22}B x x =-<<,则{}1,0,1A B ⋂=-,其包含3个元素. 故选:A. 13.B 【解析】 【分析】解对数不等式化简A ,求出B 可得答案. 【详解】由()22log 1log 8x -<,得19x <<,即{|19}A x x =<<, 所以N B A ={2,3,4,5,6,7,8}=, 则B 中元素的个数为7. 故选:B 14.D 【解析】 【分析】先解出集合B ,再求A B . 【详解】{}0B x y xx⎧===>⎨⎩∣∣. 因为{}0,1,2A =,所以A B ⋃=[)0,+∞. 故选:D 15.B 【解析】 【分析】根据所给定义求出集合B ,即可判断; 【详解】解:因为{}0,1,2A =,(){},,,,B x y x A y A x y A x y A =∈∈+∈-∈,所以()()()(){}0,0,1,0,2,0,1,1B =,即集合B 中的元素有()0,0,()1,0,()2,0,()1,1共4个,故选:B .二、填空题16.{}2,4,6【解析】 【分析】由补集的定义即可求解. 【详解】解:因为全集{1,2,3,4,5,6,7}U =,集合{}1,3,5,7A =,所以{}2,4,6UA =.故答案为:{}2,4,617.{}3x x >-【解析】 【分析】直接利用补集的定义求解 【详解】因为全集U =R ,集合{}3A x x =≤-, 所以UA ={}3x x >-,故答案为:{}3x x >- 18.1或3-##3-或1 【解析】 【分析】由题意可得223m m +=,求出m , 【详解】因为{}{}23,12,1A B m m ==+,,且A B =,所以223m m +=,由223m m +=,得2230m m +-=,解得1m =或3- 故答案为:1或3-19.{}12x x <<【解析】 【分析】根据集合的交集运算,即可求出结果. 【详解】因为集合{}1A x x =>,{}2B x x =<, 所以{}{}{}1212x x x x x x A B ><=<<=.故答案为:{}12x x <<.20.()1,1,2,62⎧⎫⎛⎫-⎨⎬ ⎪⎝⎭⎩⎭【解析】 【分析】解方程组直接求解即可 【详解】由()2221y x x y x ⎧=-⎪⎨=+⎪⎩得121x y ⎧=-⎪⎨⎪=⎩或26x y =⎧⎨=⎩,∴()1,1,2,62A B ⎧⎫⎛⎫⋂=-⎨⎬ ⎪⎝⎭⎩⎭.故答案为:()1,1,2,62⎧⎫⎛⎫-⎨⎬ ⎪⎝⎭⎩⎭21.1078 【解析】 【分析】剔除集合中是3的倍数,5的倍数的元素,即可得出结果. 【详解】集合M 中,3的倍数有20216733⎡⎤=⎢⎥⎣⎦个,5的倍数有20214045⎡⎤=⎢⎥⎣⎦个,15的倍数有202113415⎡⎤=⎢⎥⎣⎦个, 则剩下的元素个数为2021(673404134)1078-+-=个. 故答案为:1078.22.4a >【解析】 【分析】根据指数函数的单调性求出集合A ,再根据A B ⊆列出不等式,即可的解. 【详解】解:{}(]216,4xA x ∞=≤=-,因为A B ⊆, 所以4a >. 故答案为:4a >. 23.A B ⋂##B A ⋂ 【解析】 【分析】根据集合的运算法则求解. 【详解】阴影部分是集合A 与集合B 的补集的公共部分,因此表示为:A B ⋂. 故答案为:A B ⋂.24.[)2,+∞【解析】 【分析】根据并集求解参数的范围即可. 【详解】根据题意,{|2}R A x x =≤R A B ⋃=R A B ∴⊆2a ∴≥.故答案为[)2,+∞.25.{}|43,N n n k k =+∈【解析】 【分析】用数学式子表示出自然语言即可. 【详解】被4除余3的自然数即为4的整数倍加3, 因此{|43,N}A n n k k ==+∈. 故答案为:{}|43,N n n k k =+∈.三、解答题26.(1)3P ,4P 中的元素个数分别为9,14,3P 不具有性质Ω. (2)证明见解析 (3)14 【解析】 【分析】(1)由已知条件能求出集合3P ,4P 中的元素个数,并判断出3P 不具有性质Ω. (2)假设存在A ,B 具有性质Ω,且A B =∅,使15E A B =.其中15{1E =,2,3,⋯,15},从而1AB ∈,由此推导出与A 具有性质Ω矛盾.从而假设不成立,即不存在A ,B具有性质Ω,且A B =∅,使15E A B =.(3)当15n 时,不存在A ,B 具有性质Ω,且A B =∅,使n P A B =.14n =,根据1b =、4b =、9b =分类讨论,能求出n 的最大值为14.(1)解: 对于任意的*n N ∈,记集合{1n E =,2,3,⋯,}n ,,n n n P x x a E b E ⎧⎫=∈∈⎨⎬⎩⎭.当3n =时{}31,2,3E =,3P ⎧=⎨⎩;当4n =时{}41,2,3,4E =,413,22P ⎧⎫=⎨⎬⎩⎭,∴集合3P ,4P 中的元素个数分别为9,14,集合A 满足下列条件:①n A P ⊆;②1x ∀,2x A ∈,且12x x ≠,不存在*k N ∈,使212x x k +=,则称A 具有性质Ω,因为31P ∈,33P ∈,2132+=,*2∈N ,不符合题意,3P ∴不具有性质Ω.(2)证明:假设存在A ,B 具有性质Ω,且A B =∅,使15E A B =.其中15{1E =,2,3,⋯,15}.因为151E ∈,所以1A B ∈,不妨设1A ∈.因为2132+=,所以3A ∉,3B ∈.同理6A ∈,10B ∈,15A ∈.因为21154+=,这与A 具有性质Ω矛盾. 所以假设不成立,即不存在A ,B 具有性质Ω,且A B =∅,使15E A B =.(3)解:因为当15n 时,15n E P ⊆,由(2)知,不存在A ,B 具有性质Ω,且A B =∅,使n P A B =.若14n =,当1b =时,1414x x a E E ⎧⎫∈=⎨⎬⎩⎭, 取1{1A =,2,4,6,9,11,13},1{3B =,5,7,8,10,12,14},则1A ,1B 具有性质Ω,且11A B =∅,使1411E A B =.当4b =时,集合14x x a E ⎧⎫=∈⎨⎬⎩⎭中除整数外,其余的数组成集合为13513{,,,,}2222⋯, 令215911{,,,}2222A =,23713{,,}222B =, 则2A ,2B 具有性质Ω,且22A B =∅,使2213513{,,,,}2222A B ⋯=. 当9b =时,集14x x a E ⎧⎫=∈⎨⎬⎩⎭中除整数外,其余的数组成集合12457810111314{,,,,,,,,,}3333333333, 令31451013{,,,,}33333A =,32781114{,,,,}33333B =. 则3A ,3B 具有性质Ω,且33A B =∅,使3312457810111314{,,,,,,,,,}3333333333A B =. 集合1414,,1,4,9C x x a E b E b ⎧⎫==∈∈≠⎨⎬⎩⎭中的数均为无理数, 它与14P 中的任何其他数之和都不是整数,因此,令123A A A A C =,123B B B B =,则A B =∅,且14P A B =. 综上,所求n 的最大值为14.27.(1)9,8⎛⎫+∞ ⎪⎝⎭ (2)当0a =时集合23A ⎧⎫=⎨⎬⎩⎭,当98a =时集合43A ⎧⎫=⎨⎬⎩⎭;(3)9,8⎛⎤-∞ ⎥⎝⎦ 【解析】【分析】(1)利用A 是空集,则Δ00a <⎧⎨≠⎩即可求出a 的取值范围; (2)对a 分情况讨论,分别求出符合题意的a 的值,及集合A 即可; (3)分A 中只有一个元素和有2个元素两种情况讨论,分别求出参数的取值范围,即可得解.(1)解: A 是空集,0a ∴≠且∆<0,9800a a -<⎧∴⎨≠⎩,解得98a >, a ∴的取值范围为:9,8⎛⎫+∞ ⎪⎝⎭; (2)解:①当0a =时,集合2{|320}3A x x ⎧⎫=-+==⎨⎬⎩⎭, ②当0a ≠时,0∆=,980a ∴-=,解得98a =,此时集合43A ⎧⎫=⎨⎬⎩⎭, 综上所求,当0a =时集合23A ⎧⎫=⎨⎬⎩⎭,当98a =时集合43A ⎧⎫=⎨⎬⎩⎭; (3)解:A 中至少有一个元素,则当A 中只有一个元素时,0a =或98a =; 当A 中有2个元素时,则0a ≠且0∆>,即9800a a ->⎧⎨≠⎩,解得98a <且0a ≠; 综上可得98a ≤时A 中至少有一个元素,即9,8a ⎛⎤∈-∞ ⎥⎝⎦ 28.(1){}{}25,12A B x x A B x x ⋃=-<<⋂=<<, (2){}11m m -<≤【解析】【分析】(1)根据交集和并集的定义即可求出;(2)由x A ∈是x B ∈成立的充分不必要条件,可得A B ,进而得出实数m 的取值范围.(1)(1)当m =2时,{}15A x x =<<,{}22b x x =-<< ,∴{}{}25,12A B x x A B x x ⋃=-<<⋂=<<;(2)由x A ∈是x B ∈成立的充分不必要条件,得A B ,当A =∅时,即211m m -≥+时,此时m 无解,∴A ≠∅,∴212,12m m -≥-⎧⎨+≤⎩解得11m -≤≤, 当1m =-时,()2,2A B ==-,不成立.故实数m 的取值范围为{}11m m -<≤.29.(1){|3a a >或11}2a -<< (2){2a ≥或4}a ≤-【解析】【分析】(1)先根据一元二次不等式的解法求出集合A ,再根据必要条件与集合间的包含关系的等价联系,即可解出;(2)根据题意可知A B =∅,共有3种情况,分别求解即可.(1){3217}{14}A x x x x =-<-<=-<<∣∣, {}23B x a x a =≤≤+,由题知,q p ⇒,即B A ⊆,当B ≠∅时,341121223a a a a a +<⎧⎪∴⇒-<<>-⎨⎪≤+⎩, 当B =∅时,233a a a >+⇒>所以实数a 的取值范围为{|3a a >或11}2a -<<. (2)若A B =∅.当B =∅时,233a a a >+⇒>; 当B ≠∅时,242323a a a a ≥⎧⇒≤≤⎨≤+⎩或31423a a a a +≤-⎧⇒≤-⎨≤+⎩. 实数a 的取值范围为{|2a a ≥或4}a ≤-.30.(,1][4,)A =-∞-⋃+∞; ()][)R 2,14,B A ∞⎡⋂=--⋃+⎣.【解析】【分析】先解出不等式2340x x --≥得到集合A ,再根据指数函数单调性解出集合B ,然后根据补集和交集的定义求得答案.【详解】由题意,()()2340140x x x x --≥⇒+-≥,则(,1][4,)A =-∞-⋃+∞, 又2111()40()222x x -⎛⎫->⇒> ⎪⎝⎭,则(),2B =-∞-,R [2,)B =-+∞, 于是()][)R 2,14,B A ∞⎡⋂=--⋃+⎣.。
高一数学必修一集合练习试题及答案()
高一数学必修一集合练习试题及答案()高一数学必修一集合练习试题及答案一、选择题1.下列各组对象能构成集合的有()①美丽的小鸟;②不超过10的非负整数;③立方接近零的正数;④高一年级视力比较好的同学A.1个B.2个C.3个D.4个【解析】①③中“美丽”“接近零”的范畴太广,标准不明确,因此不能构成集合;②中不超过10的非负整数有:0,1,2,3,4,5,6,7,8,9,10共十一个数,是确定的,故能够构成集合;④中“比较好”,没有明确的界限,不满足元素的确定性,故不能构成集合.【答案】A2.小于2的自然数集用列举法可以表示为()A.{0,1,2}B.{1}C.{0,1}D.{1,2}【解析】小于2的自然数为0,1,应选C.【答案】C3.下列各组集合,表示相等集合的是()①M={(3,2)},N={(2,3)};②M={3,2},N={2,3};③M={(1,2)},N={1,2}.A.①B.②C.③D.以上都不对【解析】①中M中表示点(3,2),N中表示点(2,3),②中由元素的无序性知是相等集合,③中M表示一个元素:点(1,2),N 中表示两个元素分别为1,2.【答案】B4.集合A中含有三个元素2,4,6,若a∈A,则6-a∈A,那么a 为()A.2B.2或4C.4D.0【解析】若a=2,则6-a=6-2=4∈A,符合要求;若a=4,则6-a=6-4=2∈A,符合要求;若a=6,则6-a=6-6=0∉A,不符合要求.∴a=2或a=4.【答案】B5.(2013•曲靖高一检测)已知集合M中含有3个元素;0,x2,-x,则x满足的条件是()A.x≠0B.x≠-1C.x≠0且x≠-1D.x≠0且x≠1【解析】由x2≠0,x2≠-x,-x≠0,解得x≠0且x≠-1.【答案】C二、填空题6.用符号“∈”或“∉”填空(1)22________R,22________{x|x<7};(2)3________{x|x=n2+1,n∈N+};(3)(1,1)________{y|y=x2};(1,1)________{(x,y)|y=x2}.【解析】(1)22∈R,而22=8>7,∴22∉{x|x<7}.(2)∵n2+1=3,∴n=±2∉N+,∴3∉{x|x=n2+1,n∈N+}.(3)(1,1)是一个有序实数对,在坐标平面上表示一个点,而{y|y=x2}表示二次函数函数值构成的集合,故(1,1)∉{y|y=x2}.集合{(x,y)|y=x2}表示抛物线y=x2上的点构成的集合(点集),且满足y=x2,∴(1,1)∈{(x,y)|y=x2}.【答案】(1)∈∉(2)∉(3)∉∈7.已知集合C={x|63-x∈Z,x∈N_},用列举法表示C=________.【解析】由题意知3-x=±1,±2,±3,±6,∴x=0,-3,1,2,4,5,6,9.又∵x∈N_,∴C={1,2,4,5,6,9}.【答案】{1,2,4,5,6,9}8.已知集合A={-2,4,x2-x},若6∈A,则x=________.【解析】由于6∈A,所以x2-x=6,即x2-x-6=0,解得x=-2或x=3.【答案】-2或3三、解答题9.选择适当的方法表示下列集合:(1)绝对值不大于3的整数组成的集合;(2)方程(3x-5)(x+2)=0的实数解组成的集合;(3)一次函数y=x+6图像上所有点组成的集合.【解】(1)绝对值不大于3的整数是-3,-2,-1,0,1,2,3,共有7个元素,用列举法表示为{-3,-2,-1,0,1,2,3};(2)方程(3x-5)(x+2)=0的实数解仅有两个,分别是53,-2,用列举法表示为{53,-2};(3)一次函数y=x+6图像上有无数个点,用描述法表示为{(x,y)|y=x+6}.10.已知集合A中含有a-2,2a2+5a,3三个元素,且-3∈A,求a的值.【解】由-3∈A,得a-2=-3或2a2+5a=-3.(1)若a-2=-3,则a=-1,当a=-1时,2a2+5a=-3,∴a=-1不符合题意.(2)若2a2+5a=-3,则a=-1或-32.当a=-32时,a-2=-72,符合题意;当a=-1时,由(1)知,不符合题意.综上可知,实数a的值为-32.11.已知数集A满足条件:若a∈A,则11-a∈A(a≠1),如果a=2,试求出A中的所有元素.【解】∵2∈A,由题意可知,11-2=-1∈A;由-1∈A可知,11--1=12∈A;由12∈A可知,11-12=2∈A.故集合A中共有3个元素,它们分别是-1,12,2.学好数学的几条建议1、要有学习数学的兴趣。
高一数学集合练习题及答案-百度文库
高一数学集合练习题及答案-百度文库一、单选题1.已知集合{}220A x x x =--<,(){}3log 22B x y x ==-,则A B =( )A .{}12x x -<<B .{}12x x <<C .{}12x x ≤<D .{}02x x ≤<2.设集合{}25A x x =-<<,162B x x ⎧⎫=-≤≤⎨⎬⎩⎭,则A B =( )A .122x x ⎧⎫-<≤-⎨⎬⎩⎭B .{}26x x -<≤C .1|52x x ⎧⎫-≤<⎨⎬⎩⎭D .{}|56x x <≤3.已知集合{}213A x x =+>,{}220B x x x =--<,则A B =( )A .{}1x x >-B .{}11x x -<<C .{}211x x x -<或D .{}12x x <<4.已知集合{}2|4A x x =≤,{}2|log 1B x x =≥,则A B ⋃=( )A .[]22-,B .{}2C .[)2+∞,D .[)2+-∞,5.已知全集U ={1,2,3,4,5},集合A ={1,2},B ={2,3},则 ()UA B ⋃=( )A .{4,5}B .{1,2}C .{2,3}D .{1,2,3,4}6.已知集合{}2450A x N x x =∈--≤,{}1,0,1,2B =-,则A B =( )A .{}1,0,1,2 -B .∅C .{}0,1,2D .{}1,2,37.设集合{}2,1,0,1,2,3A =--,{|B x y ==,则AB =( )A .{}2B .{}0,1C .{}2,3D .{}2,1,0,1,2--8.已知集合{}2|8120A x x x =-+<,{|14}B x Z x =∈<<,则A B =( )A .{1,2}B .{}2,4C .{3}D .∅9.已知集合{}lg 0A x x =≤,{}22320B x x x =+-≤,则A B ⋃=( )A .122x x ⎧⎫-≤≤⎨⎬⎩⎭B .{}21x x -≤≤C .102x x ⎧⎫-≤≤⎨⎬⎩⎭D .102x x ⎧⎫<≤⎨⎬⎩⎭10.已知集合2{|13},{|4}A x x B x x =-≤<=≥,则A B =( )A .[1,2]-B .[1,2]C .[2,3)D .[2,)+∞11.已知集合{}21A x x =<,{}e 2xB x =<,则A B =( )A .()1,1-B .()1,ln 2-C .()0,ln 2D .()ln 2,112.集合M ={x |x =i n +1,n ∈N}(i 为虚数单位)的真子集的个数是( ) A .1 B .15C .3D .1613.如图,已知集合A={-8,1},B={-8,-5,0,1,3},则Venn 图中阴影部分表示的集合为( )A .{-5,0,3}B .{-5,1,3}C .{0,3}D .{1,3}14.设集合{}220A x x x =-≤,{}1,2,3B =,{}2,3,4C =,则()A B C =( )A .{}2B .{}2,3C .{}1,2,3,4D .{}0,1,2,3,415.已知集合{|13}A x x =-<<,1,{}1,2B =-,则A B =( )A .{}1,2B .{}1,1,2-C .{}0,1,2D .{}1,0,1,2,3-二、填空题16.若{}}{1020x ax x x +=⊆-=,则=a __________.17.设()1,2,3i a i =均为实数,若集合{}123,,a a a 的所有非空真子集的元素之和为12,则123a a a ++=__________18.网络流行词“新四大发明’’是指移动支付、高铁、网购与共享单车.某中学为了解本校学生中“新四大发明”的普及情况,随机调查了100名学生,其中使用过移动支付或共享单车的学生共90名,使用过移动支付的学生共有80名,使用过共享单车的学生且使用过移动支付的学生共有60名,则该校使用共享单车的学生人数与该校学生总数比值的估计值为___________.19.已知T 是方程()22040x px q p q ++=->的解集,1379147{{1}}0A B ==,,,,,,,且T A T B T ⋂=∅⋂=,,则p q +=_____.20.设集合{}1,2,3,,2021M =⋅⋅⋅,对M 的任一非空子集A ,令()A σ为集合A 中元素的最大值与最小值之和,则所有这样的()A σ的算术平均值为______.21.已知集合{}1,2A =,{}21,B x =-.若{}1A B ⋂=,则x =___________.22.若非空且互不相等的集合M ,N ,P 满足:M N M ⋂=,⋃=N P P ,则M P =________.23.已知集合{}2280P x x x =-->,{}Q x x a =≥,若P Q Q ⋂=,则实数a 的取值范围是___________.24.若{}231,13a a ∈--,则=a ______.25.设P ,Q 为两个非空实数集合,P 中含有0,2两个元素,Q 中含有1,6两个元素,定义集合P+Q 中的元素是a+b ,其中aP ,b Q ,则P Q +中元素的个数是_________.三、解答题26.设A 为非空集合,令(){},,A A x y x y A ⨯=∈,则A A ⨯的任意子集R 都叫做从A 到A 的一个关系(Relation ),简称A 上的关系.例如{}0,1,2A =时,(){}10,2R =,2R A A =⨯,3R =∅,()(){}40,0,2,1R =等都是A 上的关系.设R 为非空集合A 上的关系.如果R 满足:①(自反性)若x A ∀∈,有(),x x R ∈,则称R 在A 上是自反的; ②(对称性)若(),x y R ∀∈,有(),y x R ∈,则称R 在A 上是对称的; ③(传递性)若(),x y ∀,(),y z R ∈,有(),x z R ∈,则称R 在A 上是传递的; 称R 为A 上的等价关系.(1)已知{}0,1,2A =.用列举法写出A A ⨯,然后写出A 上的关系有多少个,最后写出A 上的所有等价关系.(只需写出结果)(2)设1R 和2R 是某个非空集合A 上的关系,证明: (ⅰ)若1R ,2R 是自反的和对称的,则12R R 也是自反的和对称的;(ⅱ)若1R ,2R 是传递的,则12R R 也是传递的.(3)若给定的集合A 有n 个元素()4n ≥,()12,,,2m A A A m n ⋅⋅⋅≤≤为A 的非空子集,满足12m A A A A ⋅⋅⋅=且两两交集为空集.求证:()()()1122m m R A A A A A A =⨯⨯⋅⋅⋅⨯为A上的等价关系.27.已知全集U =R ,{}34A x x =->,108x B xx +⎧⎫=>⎨⎬-⎩⎭.求集合A B ,UA ,()UA B .28.已知集合{}{}|26,|3782A x x B x x x =≤≤=-≥-. (1)求A B ,R()A B ;(2)若{}|44C x a x a =-<≤+,且A ⊆C ,求a 的取值范围.29.设集合{}1,2,3,,M n =⋅⋅⋅,其中3n ≥,n N ∈,在M 的所有元素个数为K (K N ∈,2≤K ≤n )的子集中,我们把每个K 元子集的所有元素相加的和记为K T (K N ∈,2≤K ≤n ),每个K 元子集的最大元素之和记为K a (K N ∈,2≤K ≤n ),每个K 元子集的最小元素之和记为K b (K N ∈,2≤K ≤n ). (1)当n =4时,求3a 、3b 的值; (2)当n =10时,求4T 的值;(3)对任意的n ≥3,n N ∈,给定的K N ∈,2≤K ≤n ,KKb a 是否为与n 无关的定值?若是,请给出证明并求出这个定值:若不是,请说明理由.30.已知集合{}3A x x =<,{}2560B x x x =-+>.(1)求A B ,()RAB ;(2)若{}1C x m x m =<<+,且B C ≠∅,求实数m 的取值范围.【参考答案】一、单选题 1.B 【解析】 【分析】求解不等式可得集合A ,根据对数函数的定义可得集合B ,进而求解. 【详解】因为220x x --<,所以12x -<<,则{}12A x x =-<<, 因为220x ->,所以1x >,则{}1B x x =>, 所以{}12B x A =<<, 故选:B2.C 【解析】 【分析】直接由交集得概念求解即可. 【详解】由题意知:A B =1|52x x ⎧⎫-≤<⎨⎬⎩⎭.故选:C. 3.D 【解析】 【分析】分别求出集合AB 、根据集合的交集运算可得答案. 【详解】{}{}2131=+>=>A x x x x ,{}{}22012=--<=-<<B x x x x x ,∴{}12A B x x ⋂=<<. 故选:D . 4.D 【解析】 【分析】先化简集合A 、B ,再去求A B 【详解】{}{}2|4|22A x x x x =≤=-≤≤,{}{}2|log 1|2B x x x x =≥=≥则{}{}{}|22|2|2x x x B x A x x -≤≤⋃≥==≥-⋃ 故选:D 5.A 【解析】 【分析】先求出A B ,再由补集运算得出答案. 【详解】{}1,2,3A B =,则(){}4,5UA B ⋃=,故选:A . 6.C 【解析】 【分析】根据集合的交集运算即可求解. 【详解】解:{}{}{}2450150,1,2,3,4,5A x N x x x N x =∈--≤=∈-≤≤=,{}0,1,2A B =, 故选:C. 7.C 【解析】 【分析】根据偶次根式有意义及一元二次不等式的解法,再结合集合的交集的定义即可求解. 【详解】由y =()()250x x --≥,解得25x ≤≤,所以{}|25B x x =≤≤,A B ={}{}{}2,1,0,1,2,3|252,3x x --≤≤=,故选:C. 8.C 【解析】 【分析】解出不等式28120x x -+<,然后可得答案. 【详解】因为{}{}2|8120|26A x x x x x =-+<=<<,{}{}142,3B x Z x =∈<<=所以{}3⋂=A B , 故选:C 9.B 【解析】 【分析】解对数不等式以及一元二次不等式,求出集合A,B ,根据集合的并集运算求得答案. 【详解】解22320x x +-≤ 可得122x -≤≤, 故{}{}lg 001A x x x x =≤=<≤,122B x x ⎧⎫=-≤≤⎨⎬⎩⎭,所以{}21A B x x ⋃=-≤≤, 故选:B . 10.C 【解析】 【分析】先化简集合B ,再与集合A 取交集即可解决. 【详解】{2{|4}|2B x x x x =≥=≥或}2x ≤-则A B {|13}x x =-≤<⋂{|2x x ≥或}2x ≤-{|23}x x =≤<11.B 【解析】 【分析】由已知,分别求解出集合A 、集合B 的范围,然后直接求解交集即可. 【详解】由已知,集合{}21A x x =<,即集合{}11A x x =-<<, 集合{}2xB x e=<,即集合{}ln 2B x x =<,因为11ln ln 21ln e e-=<<=,所以A B ={}1ln 2x x -<<. 故选:B. 12.B 【解析】 【分析】先根据虚数单位i 的性质确定集合M 的元素个数,再由n 元集合的真子集个数为21n -可得. 【详解】当n ∈N 时,x =i n +1的值只有i ,-i ,1,-1,故M 中有4个元素,所以M 共有24-1=15个真子集. 故选:B 13.A 【解析】 【分析】由已知,结合给出的Venn 图可判断阴影部分为∁BA , 根据给到的集合A 和集合B ,可直接进行求解. 【详解】因为集合A={-8,1},B={-8,-5,0,1,3}, Venn 图中阴影部分表示的集合为∁BA={-5,0,3}. 故选:A. 14.C 【解析】 【分析】先求出集合A ,再按照交集并集的运算计算()A B C 即可. 【详解】{}{}22002A x x x x x =-≤=≤≤,{}(){}1,2,1,2,3,4A B A B C ==.故选:C. 15.A【分析】根据交集运算求A B 【详解】{|13}A x x =-<<,1,{}1,2B =-, {1,2}AB ∴=,故选:A二、填空题16.0或12-##12-或0【解析】 【分析】由题,先求出}{20x x -=所代表集合,再分别讨论{}10x ax +=作为子集的可能情况即可. 【详解】由}{20x x -=得集合为{}2,故{}10x ax +=为空集或{}2,当{}10x ax +=为{}2时,可得12a =-;当{}10x ax +=为空集时,可得0a =, 故答案为:0或12-17.4【解析】 【分析】列举出集合{}123,,a a a 的所有非空真子集,根据题意可求得123a a a ++的值. 【详解】集合{}123,,a a a 的所有非空真子集为:{}1a 、{}2a 、{}3a 、{}12,a a 、{}13,a a 、{}23,a a , 由题意可得()123312a a a ++=,解得1234a a a ++=. 故答案为:4. 18.710##0.7 【解析】 【分析】利用韦恩图,根据题中的信息得出样本中使用共享单车和移动支付的学生人数,将人数除以100可得出所求结果. 【详解】根据题意,将使用过移动支付、共享单车的人数用如图所示的韦恩图表示,所以该校使用共享单车的学生人数与该校学生总数比值的估计值为6010710010+=. 故答案为:710. 19.26【解析】 【分析】由题知{}4,10T =,再结合韦达定理求解即可. 【详解】解:因为240p q ->,所以方程()22040x px q p q ++=->的解集有两个不相等的实数根,因为1379147{{1}}0A B ==,,,,,,,且T A T B T ⋂=∅⋂=,, 所以{}4,10T =所以由韦达定理得14p =-,40q = 所以26p q += 故答案为:26 20.2022 【解析】 【分析】先分别求出集合M 的所有非空子集中最小的元素与最大的元素之和,从而得出答案. 【详解】集合{}1,2,3,,2021M =⋅⋅⋅的非空子集共有202121-个其中以1为最小元素的非空子集共有20202个,以2为最小元素的非空子集共有20192个, …………以2021为最小元素的非空子集共有021=个,所以集合M 的所有非空子集中最小的元素之和为202020190122220212⨯+⨯++⨯ ①其中以2021为最大元素的非空子集共有20202个,以20202为最大元素的非空子集共有20192个,…………以1为最大元素的非空子集共有021=个,所以集合M 的所有非空子集中最大的元素之和为202020190202122020212⨯+⨯++⨯ ②由① + ②可得:()()()202020190202112202022120212+⨯++⨯+++⨯202020190202222022220222=⨯+⨯++⨯()()2021202020192021122022222202220222112-=⨯+++=⨯=--所以所有这样的()A σ的算术平均值为:()20212021202221202221-=-故答案为:202221.±1【解析】 【分析】根据给定条件可得1B ∈,由此列式计算作答. 【详解】因集合{}1,2A =,{}21,B x =-,且{}1A B ⋂=,于是得1B ∈,即21x =,解得1x =±,所以1x =±. 故答案为:±122.P【解析】 【分析】推导出M N ⊆,N P ⊆,由此能求出M P P =.【详解】解:非空且互不相等的集合M ,N ,P 满足:M N M ⋂=,⋃=N P P ,M N ∴⊆,N P ⊆,MP P ∴=.故答案为:P .23.()4,+∞【解析】 【分析】求出集合P ,根据P Q Q ⋂=,得Q P ⊆,列出不等式即可得解. 【详解】解:{}{22804P x x x x x =-->=>或}2x <-,因为P Q Q ⋂=,所以Q P ⊆, 所以4a >. 故答案为:()4,+∞.24.4-【解析】 【分析】结合元素与集合的关系,利用集合的互异性分类讨论即可求解. 【详解】若13a -=,则4a =,此时,2113a a -=-,不合题意,舍去;若2133a -=,则4a =-或4a =,因为4a =不合题意,舍去. 故4a =-. 故答案为:4-. 25.4 【解析】 【分析】求得P Q +的元素,由此确定正确答案. 【详解】依题意,011,066,213,268+=+=+=+=, 所以P Q +共有4个元素. 故答案为:4三、解答题26.(1)答案见解析(2)(ⅰ)证明见解析;(ⅱ)证明见解析 (3)证明见解析 【解析】 【分析】(1)由A A ⨯的定义可直接得到结果;根据A A ⨯中元素个数可得其子集个数,即为A 上的关系个数;根据等价关系定义列举出所有满足的R 即可; (2)(ⅰ)由()1,x x R ∈,()2,y y R ∈可知()(){}()12,,,x x y y R R ⊆,自反性得证;由()1,x y R ∀∈,有()1,y x R ∈;()2,s t R ∀∈,有()2,t s R ∈,根据并集定义可知()()()(){}()12,,,,,,,x y y x s t t s RR ⊆,对称性得证;(ⅱ)采用反证法,可知1R 或2R 不是传递的,假设错误,传递性得证;(3)采用假设的方式,分别假设s s a A ∈,可知(){}(),s s s s a a A A R ⊆⨯⊆,自反性得证;假设,s t t a a A ∈,可知()(){}(),,,s t t s t t a a a a A A R ⊆⨯⊆,对称性得证;假设(),,1s t q q a a a A q m n ∈≤≤≤,可知()()(){}(),,,,,s t t s s q q q a a a a a a A A R ⊆⨯⊆,传递性得证;由此可得结论. (1)由题意得:()()()()()()()()(){}0,0,0,1,0,2,1,0,1,1,1,2,2,0,2,1,2,2A A ⨯=;A A ⨯共有9个元素,A A ∴⨯共有92个子集,即A 上的关系有72512=个; 所有等价关系有:()()(){}10,0,1,1,2,2R =,()()()()(){}20,0,1,1,2,2,0,1,1,0R =,()()()()(){}30,0,1,1,2,2,0,2,2,0R =,()()()()(){}40,0,1,1,2,2,1,2,2,1R =, ()()()()()()()()(){}50,0,1,1,2,2,1,2,2,1,0,2,2,0,0,1,1,0R =. (2)(ⅰ)若任意,x y A ∈,12,R R 在A 上是自反的,令()1,x x R ∈,()2,y y R ∈,()(){}()12,,,x x y y R R ∴⊆,则12R R 是自反的;若12,R R 在A 上是对称的,则()1,x y R ∀∈,有()1,y x R ∈;()2,s t R ∀∈,有()2,t s R ∈,()()()(){}()12,,,,,,,x y y x s t t s R R ∴⊆,则12R R 是对称的;综上所述:若1R ,2R 是自反的和对称的,则12R R 也是自反的和对称的.(ⅱ)假设12R R 不是传递的,则()()12,x y R R ∃∈,()()12,y z R R ∈,()()12,x z R R ∉,即()1,x z R ∉或()2,x z R ∉,此时1R 或2R 不是传递的,与已知矛盾, ∴若1R ,2R 是传递的,则12R R 也是传递的.(3)令{}123,,,,n A a a a a =⋅⋅⋅, 12m A A A A ⋅⋅⋅=且两两交集为空集,设s s a A ∈()1s m n ≤≤≤,则除s A 外,其余集合不包含元素s a ; 则(){}(),s s s s a a A A ⊆⨯,又()()()()1122s s m m A A A A A A A A ⨯⊆⨯⨯⋅⋅⋅⨯,(),s s a a R ∴∈,则R 在A 上是自反的;设,s t t a a A ∈()1t m n ≤≤≤,则除t A 外,其余集合不包含元素,s t a a ; 则()(){}(),,,s t t s t t a a a a A A ⊆⨯, 又()()()()1122t t m m A A A A A A A A ⨯⊆⨯⨯⋅⋅⋅⨯,(),s t a a R ∴∈,(),t s a a R ∈,则R 在A 上是对称的;设(),,1s t q q a a a A q m n ∈≤≤≤,则除q A 外,其余集合不包含元素,,s t q a a a ; 则()()(){}(),,,,,s t t s s q q q a a a a a a A A ⊆⨯, 又()()()()1122q q m m A A A A A A A A ⨯⊆⨯⨯⋅⋅⋅⨯,(),s t a a R ∴∈,(),t s a a R ∈,(),s q a a R ∈,则R 在A 上是传递的; 综上所述:()()()1122m m R A A A A A A =⨯⨯⋅⋅⋅⨯为A 上的等价关系.【点睛】关键点点睛:本题考查集合的自反性、对称性和传递性的证明,解决此问题的关键是能够充分理解已知中所说的性质的含义;解题基本思路是采用假设的方式和反证的方式,通过说明元素与集合、集合与集合之间关系证得结论. 27.{}8A B x x ⋂=>,{}7UA x x =≤,(){}17UA B x x ⋃=-≤≤【解析】 【分析】分别求出集合,A B ,再根据交集、并集和补集的定义即可得出答案. 【详解】解:{}{}347A x x x x =->=>,()(){}{1018088x B x x x x x x x ⎧⎫+=>=+->=>⎨⎬-⎩⎭或}1x <-, 所以{}8A B x x ⋂=>,{}7UA x x =≤,{7A B x x ⋃=>或}1x <-,所以(){}17UA B x x ⋃=-≤≤.28.(1)[]()()R 3,6,(),36,A A B B ⋂=-∞⋃+∞⋂ (2)[)2,6 【解析】 【分析】(1)解不等式求得集合B ,由此求得A B ,进而求得R()A B .(2)根据A 是C 的子集列不等式组,由此求得a 的取值范围.(1)3782,515,3x x x x -≥-≥≥,所以{}|3B x x =≥,所以[]()()R 3,6,(),36,A A B B ⋂=-∞⋃+∞⋂. (2)由于{}|44C x a x a =-<≤+,且A ⊆C ,所以422646a a a -<⎧⇒≤<⎨+≥⎩, 所以a 的取值范围是[)2,6. 29.(1)315a =,35b =; (2)4620 (3)K K b a 与n 无关,为定值1K,证明过程见解析. 【解析】 【分析】(1)将3元子集用列举法全部列举出来,从而求出3a 、3b 的值;(2)用组合知识得到每个元素出现的次数,进而用等差数列求和公式进行求解;(3)用组合及组合数公式先求出K a ,再求出K a 与k b 的和,进而求出k b 及比值.(1)当4n =时,{}1,2,3,4M =,则3元子集分别为{}{}{}{}1,2,3,1,2,4,1,3,4,2,3,4,则3344415a =+++=,311125b =+++=.(2)当n =10时,4元子集一共有410210C =个,其中从1到10,每个元素出现的次数均有3984C =次,故()410118412108446202T ⨯=⨯+++=⨯=(3)K K b a 与n 无关,为定值1K,证明过程如下: 对任意的n ≥3,n N ∈,给定的K N ∈,2≤K ≤n , 集合{}1,2,3,,M n =⋅⋅⋅的所有含K 个元素的子集个数为Kn C ,这Kn C 个子集中,最大元素为n 的有11K n C --个,最大元素为()1n -的有12K n C --个,……,最大元素为()n m -的有11K n m C ---个,……,最大元素为1n K -+的有11K K C --个,则()()()()1111112311121K K K K K K n n n n m K a nC n C n C n m C n K C -----------=+-+-++-++-+①,其中()11K K n m n m n m C KC -----=,所以()12K K K K KK n n n n m K a K C C C C C ---=++++++()111211K K KKK K n n n n m K n K C C C C C KC ++---++=++++++=, 这Kn C 个子集中,最小元素为1的有11K n C --个,最小元素为2的有12K n C --个,最小元素为3的有13K n C --个,……,最小元素为(m +1)的有11K n m C ---个,……,最小元素为K 的有11K K C --个,则()1111112311231K K K K K K n n n n m K b C C C m C KC -----------=+++++++②,则①+②得:()()()()111111123111111K K K K K K K K K n n n n m K n n a b n C C C C C n C K C -----+------++=+++++++=+=+,所以()1111111K K K K n n n b K C KC C ++++++=+-=,故1K K b a K=,证毕. 【点睛】集合与组合知识相结合,要能充分利用组合及组合数的公式进行运算,当然在思考过程中,可以用简单的例子进行辅助思考.30.(1){}3A B x x ⋃=≠,(){}23R A B x x ⋂=≤< (2){}2m m ≠ 【解析】 【分析】(1)解出集合B ,利用并集、补集以及交集的定义可求得结果;(2)由已知条件可得出关于m 的不等式,即可解得实数m 的取值范围. (1)解:因为{}3A x x =<,{}{25602B x x x x x =-+>=<或}3x >,所以{}3A B x x ⋃=≠,{}23R B x x =≤≤,(){}23R A B x x ⋂=≤<. (2)解:因为B C ≠∅,所以2m <或13m +>,解得2m <或2m >, 所以m 的取值范围为{}2m m ≠.。
(完整版)高一数学-集合练习题有答案
高一数学会合练习题(答案)一、选择题1.若会合X{ x | x 1},以下关系式中建立的为()A .0 XB .0 XC .XD .0X2. 50 名同学参加跳远和铅球测试,跳远和铅球测试成绩分别为及格40 人和 31人, 2 项测试成绩均不及格的有4 人, 2 项测试成绩都及格的人数是()A .35B .25C .28D .153.已知会合A x | x 2mx 1 0 , 若 A I R,则实数m的取值范围是()A .m 4B .m4C . 0 m 4D . 0 m 44.以下说法中,正确的选项是( )任何一个会合必有两个子集;若AI B ,则A,B中起码有一个为任何会合必有一个真子集;若S 为全集,且AI B S,则A B S,5.若U为全集,下边三个命题中真命题的个数是()(1)若 A B,则C U AC U B U(2)若AB U,则C U AC U B(3)若AB,则A BA .0个B . 1个C .2个D . 3个M { x | xk 1, k Z} N { x | xk 1, k Z }6.设会合2 4,4 2,则()A .M NB .MC N MD MI N7.设会合A{ x| x 2x 0}, B { x | x 2x 0} ,则会合 A IB ()A .C .D . 1,0,1B .二、填空题1.已知My | yx 24x3, x R , Ny | yx 2 2x 8, xR则 M N __________ 。
M{ m|10Z, mZ}2.用列举法表示会合:m 1=。
3.若Ix | x 1, x Z,则 C I N =。
4.设会合A1,2 , B1,2,3 , C 2,3,4 (A I B )U C。
则U(x, y) x, yRM( x, y)y2 1N( x, y) y x 45.设全集x2,,会合,那么(C UM)I(C UN )等于 ________________ 。
高一集合练习题及答案
一、选择题(一)1.下列八个关系式①{0}=φ②φ=0 ③φ {φ} ④φ∈{φ}⑤{0}⊇φ⑥0∉φ⑦φ≠{0} ⑧φ≠{φ}其中正确的个数( ) (A )4 (B )5 (C )6 (D )7 2.集合{1,2,3}的真子集共有( )(A )5个 (B )6个 (C )7个 (D )8个3.集合A={x Z k k x ∈=,2} B={Z k k x x ∈+=,12} C={Z k k x x ∈+=,14}又,,B b A a ∈∈则有( )(A )(a+b )∈A (B)(a+b) ∈B (C)(a+b) ∈ C (D)(a+b) ∈ A 、B 、C 任一个 4.设A 、B 是全集U 的两个子集,且A ⊆B ,则下列式子成立的是( ) (A )CUA ⊆CUB (B )CUA ⋃CUB=U (C )A ⋂CUB=φ (D )CUA ⋂B=φ5.已知集合A={022≥-x x } B={0342≤+-x x x }则A B ⋃=( ) (A )R (B ){12≥-≤x x x 或} (C ){21≥≤x x x 或} (D ){32≥≤x x x 或}6.设f(n)=2n +1(n ∈N),P ={1,2,3,4,5},Q ={3,4,5,6,7},记P ∧={n ∈N|f(n)∈P},Q ∧={n ∈N|f(n)∈Q},则(P ∧∩NQ ∧)∪(Q ∧∩NP ∧)=()(A) {0,3} (B){1,2} (C)(3,4,5} (D){1,2,6,7}7.已知A={1,2,a2-3a-1},B={1,3},A =⋂B {3,1}则a 等于( ) (A )-4或1 (B )-1或4 (C )-1 (D )48.设U={0,1,2,3,4},A={0,1,2,3},B={2,3,4},则(CUA )⋃(CUB )=( ) (A ){0} (B ){0,1}(C ){0,1,4} (D ){0,1,2,3,4}10.设A={x 0152=+-∈px x Z },B={x 052=+-∈q x x Z },若A ⋃B={2,3,5},A 、B 分别为( )(A ){3,5}、{2,3} (B ){2,3}、{3,5} (C ){2,5}、{3,5} (D ){3,5}、{2,5}11.设一元二次方程ax2+bx+c=0(a<0)的根的判别式042=-=∆ac b ,则不等式ax2+bx+c ≥0的解集为( ) (A )R (B )φ≠⊂(C ){a b x x 2-≠} (D ){ab 2-} 12.已知P={04<<-m m },Q={012<--mx mx m ,对于一切∈x R 成立},则下列关系式中成立的是( )13.若M={Z n x n x ∈=,2},N={∈+=n x n x ,21Z},则M ⋂N 等于( ) (A )φ (B ){φ} (C ){0} (D )Z14.已知集合则实数的取值范围是( ) A .B .C .[—1,2] D .15.设U={1,2,3,4,5},A ,B 为U 的子集,若A ⋂B={2},(CUA )⋂B={4},(CUA )⋂(CUB )={1,5},则下列结论正确的是( ) (A )3B A ∉∉3, (B )3B A ∈∉3, (C )3B A ∉∈3, (D )3B A ∈∈3,16.设集合10,2A ⎡⎫=⎪⎢⎭⎣, 1,12B ⎡⎤=⎢⎥⎣⎦, 函数()()1,221,x x A f x x x B⎧+∈⎪=⎨⎪-∈⎩,若0x A ∈,且()0f f x A ∈⎡⎤⎣⎦,则0x 的取值范围是( )(A )P Q (B )QP (C )P=Q (D )P ⋂Q=φ≠⊂≠⊂A .10,4⎛⎤ ⎥⎦⎝B .11,42⎛⎤ ⎥⎦⎝ C .11,42⎛⎫⎪⎝⎭D .30,8⎡⎤⎢⎥⎣⎦17.在R 上定义运算: 2a b ab a b =++,则满足()20xx -<的实数x 的取值范围为( )A. (0,2)B. (-1,2)C. ()(),21,-∞-+∞D. (-2,1) .18.集合P={x|x2=1},Q={x|mx=1},若QP ,则m 等于( )A .1B .-1C .1或-1D .0,1或-119.设全集U={(x,y )R y x ∈,},集合M={(x,y )122=-+x y },N={(x,y)4-≠x y },那么(CUM )⋂(CUN )等于( )(A ){(2,-2)} (B ){(-2,2)} (C )φ (D )(CUN ) 20.不等式652+-x x <x2-4的解集是( ) (A ){x 2,2>-<x x 或} (B ){x 2>x } (C ){ x 3>x } (D ){ x 2,32≠<<-x x 且} 二、填空题1. 在直角坐标系中,坐标轴上的点的集合可表示为 2. 若A={1,4,x},B={1,x2}且A ⋂B=B ,则x= 3. 若A={x 01032<-+x x } B={x 3<x },全集U=R ,则A )(B C U ⋃=4. 如果集合中只有一个元素,则a 的值是5. 集合{a,b,c}的所有子集是真子集是;非空真子集是 6. 方程x2-5x+6=0的解集可表示为方程组的解集可表示为⎩⎨⎧=-=+0231332y x y x7.设集合A={23≤≤-x x },B={x 1212+≤≤-k x k },且A ⊇B ,则实数k 的取值范围是 。
完整版)高一数学集合练习题及答案-经典
完整版)高一数学集合练习题及答案-经典升腾教育高一数学满分150分姓名一、选择题(每题4分,共40分)1、下列四组对象,能构成集合的是()A某班所有高个子的学生B著名的艺术家C一切很大的书D倒数等于它自身的实数答案:D解析:只有倒数等于它自身的实数可以构成集合。
2、集合{a,b,c }的真子集共有个()A。
7.B。
8.C。
9.D。
10答案:D解析:真子集不包含原集合,所以共有2^3-1=7个真子集。
3、若{1,2}A{1,2,3,4,5}则满足条件的集合A的个数是()A。
6.B。
7.C。
8.D。
9答案:A解析:集合A中的元素可以是1,2,也可以是1,2,3,或者1,2,3,4,或者1,2,3,4,5,共有6种情况。
4、若U={1,2,3,4},M={1,2},N={2,3},则CUM∪N)=()A。
{1,2,3}。
B。
{2}。
C。
{1,3,4}。
D。
{4}答案:A解析:M∪N={1,2,3},所以CUM∪N)={1,2,3}∪{4}={1,2,3,4}。
5、方程组x y1的解集是(。
)A。
{x=0,y=1}。
B。
{0,1}。
C。
{(0,1)}。
D。
{(x,y)|x=0或y=1}答案:C解析:将方程组化简得到y=x+1,所以解集为{(x,y)|y=x+1}={(x,x+1)}。
6、以下六个关系式:3Q,N。
a,b b,ax|x220,x Z是空集中,错误的个数是()A。
4.B。
3.C。
2.D。
1答案:B解析:第一个关系式中,应该是∈而不是;第二个关系式中,应该是∉而不是。
第三个关系式中,应该是={a,b}而不是;第四个关系式中,应该是x∈Z而不是x Z,所以错误的个数为3个。
8、设集合A=x1x2,B=xx a,若A B,则a的取值范围是()Aaa2Baa1Caa1Daa 2答案:D解析:由题意可得x1<a<x2,即1<a<2,所以a的取值范围是a<2.9、满足条件M11,2,3的集合M的个数是()A。
高一数学集合练习题附答案
高一数学集合练习题附答案一、单选题1.已知集合{}0,1,2,3A =,集合{}11B x x =-≤,则A B 等于( )A .{}3B .{}0,1,2C .{}1,2D .{}0,1,2,3 2.已知集合{}21A x x =-<<,{}lg B x y x ==,则()R A B ⋂=( )A .(,1)-∞B .[)1,+∞C .(]2,0-D .(0,1) 3.设S 是整数集Z 的非空子集,如果任意的,a b S ∈,有ab S ∈,则称S 关于数的乘法是封闭的.若T 、V 是Z 的两个没有公共元素的非空子集,T V ⋃=Z .若任意的,,a b c T ∈,有abc T ∈,同时,任意的,,x y z V ∈,有xyz V ∈,则下列结论恒成立的是( ) A .T 、V 中至少有一个关于乘法是封闭的B .T 、V 中至多有一个关于乘法是封闭的C .T 、V 中有且只有一个关于乘法是封闭的D .T 、V 中每一个关于乘法都是封闭的4.已知集合{}0,1,2,3,4,5A =,{}1,3,6,9B =,{}3,7,8C =,则 ()A B C ⋂⋃=( ) A .{}3 B .{}3,7,8 C .{}1,3,7,8 D .{}1,3,6,7,8 5.设集合{}0,1S =,{}0,3T =,则S T ⋃=( )A .{}0B .{}1,3C .{}0,1,3D .{}0,1,0,36.已知集合{}11A x Z x =∈-≤≤,{}1,2B =,则A B ⋃=( )A .{}1B .{}0,1,2C .1,0,1,2D .{}1,1,2- 7.设集合{}Z 22M x x =∈-<,则集合M 的子集个数为( )A .16B .15C .8D .78.已知集合{}2,3,6,8U =,{}2,3A =,{}2,6,8B =,则()U A B =( ) A .{6,8}B .{2,3,6,8}C .{2}D .{2,6,8}9.设全集U =R ,已知集合2|4A x x x >={},|B x y =={,则()U A B ⋂=( ) A .[0,4] B .(,4]-∞ C .(,0)-∞ D .[0,)+∞ 10.已知集合{}(5)0A x x x =-<,{}14B x x =-,则A B ⋃=( )A .[1,0)-B .[4,5)C .(0,4]D .[1,5)- 11.设集合P ,Q 均为全集U 的非空子集,且U ()P Q P =∩,则U ()P Q =∩( ) A .P B .Q C .∅ D .U 12.设全集{}1,2,3,4,5,6U =,集合{}1,2,4A =,{}3,4,5B =,则下图中的阴影部分表示的集合为( )A .{}4B .{}5C .{}1,2D .{}3,5 13.如图,已知集合A={-8,1},B={-8,-5,0,1,3},则Venn 图中阴影部分表示的集合为( )A .{-5,0,3}B .{-5,1,3}C .{0,3}D .{1,3}14.已知集合{}13A x x =≤≤,集合{}24B x x =≤≤,则A B =( )A .{}23x x ≤≤B .{}34x x <≤C .{}12x x <≤D .{|1x x <或}2x ≥ 15.已知集合{}1,0,1,2A =-,{}12B x x =-<<,则A B =( )A .{}1,0,1-B .{}0,1C .{}1,1,2-D .{}1,2二、填空题16.集合A ={2|x x -ax +2=0}的子集有两个,则实数a =______.17.已知集合2{2,}x 与{4,}x 相等,则实数x =__________.18.若全集S ={2, 3, 4},集合A ={4, 3},则S A =____;若全集S ={三角形},集合B ={锐角三角形},则S B =______;若全集S ={1, 2, 4, 8}, A =∅,则S A =_______;若全集U ={1, 3, a 2+2a +1},集合A ={1, 3},U A ={4},则a =_______;已知U 是全集,集合A ={0, 2, 4},U A ={-1, 1},U B ={-1, 0, 2},则B =_____.19.已知集合{}N 4sin ,02A x x θθπ=∈<≤≤,若集合A 中至少有3个元素,则实数θ取值范围为________20.已知函数()()sin 04f x x πωω⎛⎫=+> ⎪⎝⎭在2,43ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω的取值范围为______.21.若集合{}3cos23,x A x x x R π==∈,{}21,B y y y R ==∈,则A B ⋂=_______. 22.设α:()124R m x m m +≤≤+∈;β:13x ≤≤.若β是α的充分条件,则实数m 的取值范围为______.23.若集合{}23,21,4A a a a =---,且3A -∈,则实数=a ___________.24.写出集合{1,1}-的所有子集______.25.已知全集{}1,2,3,4,5,6U =,集合{}{}1,2,2,3,4A B ==,则A B ⋃=___________三、解答题26.已知集合{}{}24121A x x B x m x m =-≤≤=-+≤≤-,.(1)若2m =,求R ,()A B A B ⋃⋂;(2)若A B A ⋃=,求m 的取值范围.27.设集合{|16}A x x =-≤≤,{|121}B x m x m =-≤≤+,且B A ⊆.(1)求实数m 的取值范围;(2)当x ∈N 时,求集合A 的子集的个数.28.已知集合11{|}A x a x a =-≤≤+,5|03x B x x -⎧⎫=≤⎨⎬+⎩⎭. (1)若3a =-,求A B ;(2)在①A B =∅,②()R B A R ⋃=,③A B B ⋃=,这三个条件中任选一个作为已知条件,求实数a 的取值范围.29.已知U =R ,{}2=160A x x -<,{}2=3180B x x x -++>,求A B ,A B .30.判断下列每对集合之间的关系: (1){}2,N A x x k k ==∈,{}4,N B y y m m ==∈;(2){}1,2,3,4C =,D {x x 是12的约数}; (3){}32,N E x x x +=-<∈,{}1,2,3,4,5F =.【参考答案】一、单选题1.B【解析】【分析】由交集运算求解即可.【详解】{}{}{}1102,0,1,2B x x x x A B =-=≤≤∴⋂=∣ 故选:B2.B 【解析】【分析】求出集合A 的补集,化简集合B ,再根据交集的概念可求出结果.【详解】因为{}21A x x =-<<,所以R (,2][1,)A =-∞-+∞,又{}lg B x y x ==(0,)=+∞,所以()R A B ⋂=[1,)+∞.故选:B3.A【解析】【分析】本题从正面解比较困难,可运用排除法进行作答.考虑把整数集Z 拆分成两个互不相交的非空子集T 、V 的并集,如T 为奇数集,V 为偶数集,或T 为负整数集,V 为非负整数集进行分析排除即可.【详解】若T 为奇数集,V 为偶数集,满足题意,此时T 与V 关于乘法都是封闭的,排除B 、C ; 若T 为负整数集,V 为非负整数集,也满足题意,此时只有V 关于乘法是封闭的,排除D ;从而可得T 、V 中至少有一个关于乘法是封闭的,A 正确.故选:A .4.C【分析】先求A B ,再求()A B C ⋂⋃.【详解】{}1,3A B =,(){}1,3,7,8A B C ⋂⋃=.故选:C5.C【解析】【分析】由并集的概念运算【详解】S T ⋃={}0,1,3故选:C6.C【解析】【分析】首先用列举法表示集合A ,再根据并集的定义计算可得;【详解】 解:因为{}{}111,0,1A x Z x =∈-≤≤=-,{}1,2B =,所以{}1,0,1,2A B ⋃=-; 故选:C7.C【解析】【分析】利用公式法解绝对值不等式,再根据集合子集个数公式进行求解即可.【详解】 因为2222204x x x -<⇒-<-<⇒<<,所以{}1,2,3M =,因此集合M 的子集个数为328=,故选:C8.A【解析】【分析】由已知,先有集合U 和集合A 求解出U A ,再根据集合B 求解出()U A B ⋂即可. 【详解】因为{}2,3,6,8U =,{}2,3A =,所以{}6,8U A =,又因为{}2,6,8B =,所以(){}6,8U A B =.故选:A.9.D【分析】化简集合,A B ,先求出A B ,再求出其补集即可得解.【详解】2|4A x x x >={}{|0x x =<或4}x >,|B x y ={{|4}x x =≤,所以{|0}A B x x =<,所以()U A B ⋂={|0}x x ≥,即()U A B ⋂[0,)=+∞.故选:D10.D【解析】【分析】由一元二次不等式的解法求出集合A ,再根据并集的定义即可求解.【详解】 解:因为集合{}{}(5)005A x x x x x =-<=<<,{}14B x x =-, 所以{}{}[05141,5)A B x x x x ⋃=<<⋃-=-.故选:D.11.B【解析】【分析】依题意可得U P Q ⊆,即可得到U Q P ⊆,从而即可判断; 【详解】解:因为U ()P Q P =∩,所以U P Q ⊆,所以U Q P ⊆,所以U ()P Q Q =∩; 故选:B12.D【解析】【分析】图中阴影部分表示()U A B ⋂,再根据交集和补集的定义即可得出答案.【详解】解:图中阴影部分表示()U A B ⋂,因为{}1,2,3,4,5,6U =,集合{}1,2,4A =,{}3,4,5B =,所以{}3,5,6U A =,所以(){}3,5U A B =.故选:D.13.A【解析】【分析】由已知,结合给出的Venn 图可判断阴影部分为∁BA , 根据给到的集合A 和集合B ,可直接进【详解】因为集合A={-8,1},B={-8,-5,0,1,3},Venn 图中阴影部分表示的集合为∁BA={-5,0,3}.故选:A.14.A【解析】【分析】由交集运算直接求出两集合的交集即可.【详解】 由集合{}13A x x =≤≤,集合{}24B x x =≤≤则{}|23A B x x =≤≤故选:A15.B【解析】【分析】利用交集概念及运算,即可得到结果.【详解】∵集合{}1,0,1,2A =-,{}12B x x =-<<,∴{}0,1A B =,故选:B二、填空题16.±【解析】【分析】根据题意可得集合A 中仅有一个元素,则方程220x ax -+=只有一个解,从而有0∆=,即可得出答案.【详解】解:因为A ={2|x x -ax +2=0}的子集有两个,所以集合A 中仅有一个元素,所以方程220x ax -+=只有一个解,所以280a ∆=-=,解得a =±故答案为:±17.2【解析】【分析】由已知,两集合相等,可借助集合中元素的的互异性列出方程组,解方程即可完成求解.因为集合2{2,}x 与{4,}x 相等,则242x x ⎧=⎨=⎩,解得2x =. 故答案为:2.18. {2} {直角三角形或钝角三角形} {1, 2, 4, 8} 1或-3##-3或1 {1, 4}##{}4,1【解析】【分析】利用补集的定义,依次分析即得解【详解】若全集S ={2, 3, 4},集合A ={4, 3},由补集的定义可得S A ={2};若全集S ={三角形},集合B ={锐角三角形},由于三角形分为锐角、直角、钝角三角形,故S B ={直角三角形或钝角三角形};若全集S ={1, 2, 4, 8}, A =∅,由补集的定义S A ={1, 2, 4, 8};若全集U ={1, 3, a 2+2a +1},集合A ={1, 3},U A ={4},故{1,3,4}U U A A =⋃=即2214a a ++=,即223(1)(30a a a a +-=-+=),解得=a 1或-3; 已知U 是全集,集合A ={0, 2, 4},U A ={-1, 1},故{1,0,1,2,4}U U A A =⋃=-,U B ={-1, 0, 2},故B ={1, 4} 故答案为:{2},{直角三角形或钝角三角形},{1, 2, 4, 8},1或-3,{1, 4}19.5,66ππ⎛⎫ ⎪⎝⎭【解析】【分析】分析可知元素0、1、2必属于集合A ,可得出1sin 2θ>,由[]0,2θπ∈可求得θ的取值范围. 【详解】要使集合A 中至少有3个元素,则元素0、1、2必属于集合A ,所以只需4sin 2θ>,即1sin 2θ>, 又[]0,2θπ∈,解得5,66ππθ⎛⎫∈ ⎪⎝⎭. 故答案为:5,66ππ⎛⎫ ⎪⎝⎭. 20.9[1,]8【解析】【分析】 由()()sin()04f x x πωω=+>的单调递减区间包含2,43ππ⎡⎤⎢⎥⎣⎦可计算ω 的取值范围. 【详解】()()sin()04f x x πωω=+> 在2,43ππ⎡⎤⎢⎥⎣⎦ 上单调递减 令(),42x k k Z ππωπ+=+∈ 得14ππωω=+k x 令(),4x k k Z πωππ+=+∈得234k x ππωω=+ 23,+,4344k k ππππππωωωω⎡⎤⎡⎤∴⊂+⎢⎥⎢⎥⎣⎦⎣⎦442334k k πππωωπππωω⎧+≤⎪⎪∴⎨⎪≤+⎪⎩ 419382k k ωω⎧≥+⎪∴⎨≤+⎪⎩ 93110041082420k k k k Z k ω>∴<+<+∴-<<∈∴=ω∴∈9[1,]8故答案为:9[1,]821.{}1【解析】【分析】易知{}1,1B =-,分别验证1,1-和集合A 的关系即可得结果.【详解】因为{}{}21,1,1B y y y R ==∈=-,13cos 23π=,()13cos 23π--≠,即1A ∈,1A -∉, 所以{}1A B ⋂=,故答案为:{}1.22.102m -≤≤【解析】【分析】根据给定条件可得β所对集合包含于α所对集合,再利用集合的包含关系列式作答.【详解】令α所对集合为:{|124(R)}x m x m m +≤≤+∈,β所对集合为:{|13}x x ≤≤, 因β是α的充分条件,则必有{|13}{|124(R)}x x x m x m m ≤≤⊆+≤≤+∈,于是得11243m m +≤⎧⎨+≥⎩,解得102m -≤≤, 所以实数m 的取值范围为102m -≤≤. 故答案为:102m -≤≤ 23.0或1.【解析】【分析】根据题意,分33a -=-、213a -=-和243a -=-,三种情况讨论,结合元素的互异性,即可求解.【详解】由题意,集合{}23,21,4A a a a =---,且3A -∈,若33a -=-时,可得0a =,此时集合{}3,1,4A =---,符合题意; 若213a -=-时,可得1a =-,此时243a -=-,不满足集合元素的互异性,舍去; 若243a -=-时,可得1a =或1a =-(舍去),当1a =时,集合{}2,1,3A =--,符合题意,综上可得,实数a 的值为0或1.故答案为:0或1.24.∅,{}1-,{1},{1,1}-【解析】【分析】利用子集的定义写出所有子集即可.【详解】由子集的定义,得集合{1,1}-的所有子集有:∅,{}1-,{1},{1,1}-.故答案为:∅,{}1-,{1},{1,1}-.25.5,6##{}6,5【解析】【分析】先求出A B ,再进行补集运算及即可求解.【详解】因为集合{}{}1,2,2,3,4A B ==,所以{}1,2,3,4A B =, 因为{}1,2,3,4,5,6U =,所以{}5,6A B ⋃=,故答案为:5,6.三、解答题26.(1){}|24A B x x =-≤≤,{R ()|21A B x x ⋂=-≤<-或}34x <≤ (2)52⎛⎤-∞ ⎥⎝⎦, 【解析】【分析】(1)根据交集、并集和补集的定义即可得解; (2)A B A ⋃=,即B A ⊆,分B =∅和B ≠∅两种情况讨论,从而可得出答案.(1)解:若2m =,则{}13B x x =-≤≤, 所以{}24A B x x ⋃=-≤≤,{R 1B x x =<-或}3x >,所以{R ()|21A B x x ⋂=-≤<-或}34x <≤;(2)解:因为A B A ⋃=,所以B A ⊆,当B =∅时,则211m m -<-+,解得23m <,此时B A ⊆,符合题意,当B ≠∅时, 则12112214m m m m -+≤-⎧⎪-+≥-⎨⎪-≤⎩,解得2532m ≤≤, 综上所述52m ≤, 所以若A B A ⋃=,m 的取值范围为52⎛⎤-∞ ⎥⎝⎦,. 27.(1){|2m m <-或502m ≤≤} (2)128【解析】【分析】 (1)按照集合B 是空集和不是空集分类讨论求解; (2)确定集合A 中元素(个数),然后可得子集个数.(1)当121m m ->+即2m <-时,B =∅,符合题意;当B ≠∅时,有12111216m m m m -≤+⎧⎪-≥-⎨⎪+≤⎩,解得502m ≤≤.综上实数m 的取值范围是{|2m m <-或50}2m ≤≤;(2)当x ∈N 时,{0,1,2,3,4,5,6}A =,所以集合A 的子集个数为72128=个. 28.(1){|45}A B x x ⋃=-≤≤(2)答案见解析【解析】【分析】(1)分别求出集合A 和集合B ,求并集即可; (2)选①,根据集合A 和集合B 的位置在数轴上确定端点的关系,列出不等式组即可求解,选②,先求出R A ,再根据条件在数轴确定端点位置关系列出不等式组即可求解, 选③,得到A B ⊆,根据数轴端点位置关系列出不等式组即可求解.(1)因为3a =-,所以{|42}A x x =-≤≤-,又因为{|35}B x x =-<≤,所以{|45}A B x x ⋃=-≤≤.(2)若选①A B =∅:则满足15a ->或13a +≤-, 所以a 的取值范围为{|4a a ≤-或6}a >. 若选②()R B A R ⋃=:所以{|1R A x x a =<-或1}x a >+, 则满足1315a a ->-⎧⎨+≤⎩,所以a 的取值范围为{|24}a a -<≤. 若选③A B B ⋃=: 由题意得A B ⊆,则满足1315a a ->-⎧⎨+≤⎩所以a 的取值范围为{|24}a a -<≤29.{}=34A B x x ⋂-<<,{}=46A B x x ⋃-<<【解析】【分析】先化简集合A 、B ,再去求A B 、A B 即可解决.【详解】{}{}2=16044A x x x x -<=-<< {}{}2=318036B x x x x x -++>=-<< 则{}{}{}=443634A B x x x x x x ⋂-<<⋂-<<=-<< {}{}{}=443646A B x x x x x x ⋃-<<⋃-<<=-<< 30.(1)B A(2)C D(3)E F【解析】【分析】(1)分析A ,B 集合中元素的关系,即得解; (2)列举法表示集合D ,即得解;(3)列举法表示集合E ,即得解(1)由题意,任取4y m B =∈,有2(2),2y m m N =⨯∈,故y A且6,6A B ∈∉,故B A(2)由于D {x x 是12的约数}{1,2,3,4,6,12}= 故C D(3) 由于{}32,N E x x x +=-<∈{|5,}{1,2,3,4}x x x N +=<∈= 故E F。
高一数学集合练习题及答案-百度文库
高一数学集合练习题及答案-百度文库一、单选题1.已知集合{}1A x y x ==-∣,{}0,1,2,3B =,则A B =( ) A .{3} B .{2,3} C .{1,2,3} D .{0,1,2,3} 2.已知集合{}21A x x =-<≤,{}2,1,0,1B =--,则A B =( )A .{}2,1,0,1--B .{}1,0,1-C .{}1,0-D .{}2,1,0--3.已知集合{}{}2,,,,M y y x x x N y y x x y ==-∈==∈∈R R R ,则M N =( )A .∅B .{(0,0),(2,2)}C .}{0,2D .1[,)4-+∞ 4.已知集合U =R ,则正确表示集合U ,1{}1M =-,,{}²|0N x x x =+=之间关系的维恩图是( )A .B .C .D . 5.设集合{}|14A x x =<<,集合2{|230}B x x x =≤一一,则A B =( ) A .[一1,4) B .(一1,4) C .(1,3] D .(1,3)6.已知集合{}21A x x =<,{}lg 0B x x =<,则A B =( ) A .{}11x x -<<B .{}10x x -<<C .{}1x x <D .{}01x x <<7.已知{}+|17A x N x =∈-≤≤,{}|31,B x x n n N ==+∈,则A B =( ) A .{}1,4 B .{}4,7 C .{}1,4,7 D .{}1,1,4,7-8.集合{|13}A x x =-<<,集合{}24B xx =<∣,则A B =( ) A .(-2,2) B .(-1,2) C .(-2,3) D .(-1,3)9.已知集合{}2,3,4A =,{}28120B x Z x x =∈-+<,则A B 中元素的个数是( ) A .4 B .5 C .6 D .7 10.已知集{}23A x x =+≥合,{}3,1,1,3B =--,则A B =( )A .{}3B .{}1,3C .{}3,1--D .{}1,1,3-11.已知集合{}{}21,3,5,6,7,8,9,14480A B xx x ==-+∣,则下图中阴影部分表示的集合为( )A .{}1,3,5,7,9B .{}1,3,5,9C .{}1,3,5D .{}1,3,9 12.已知集合{}21A x x =-<≤,{}2,1,0,1B =--,则A B =( )A .{}2,1,0,1--B .{}1,0,1-C .{}1,0-D .{}2,1,0--13.若集合{}{}22,3,|560,A B x x x ==-+=则A B =( )A .{2,3}B .∅C .2D .2,3 14.已知集合{}{}21,,13A x x n n Z B x ==+∈=-,则A B =( ) A .{1,3} B .{1,3,5,7,9} C .{3,5,7} D .{1,3,5,7} 15.已知集合{}22280,03x A x x x B x x -⎧⎫=--≤=≤⎨⎬+⎩⎭,则A B ⋃=( ) A .{}42x x -≤≤B .{42x x -≤≤且3}x ≠-C .{}34x x -≤≤ D .{34}x x -<≤ 二、填空题16.已知集合A ={x |(x -3)(x +1)<0},B ={x |x -1>0},则A ∪B =___________. 17.记关于x 的不等式220x x a a -+-≤的解集为A ,集合{}12B x x =-≤<,若A B ,则实数a 的取值范围为___________.18.已知集合{}2Z,4A x x x =∈<,{}1,2B =-,则A B ⋃=_________. 19.已知集合{}2,1,2A =-,{}1,B a a =,且B A ⊆,则实数a 的值是___________. 20.集合{}33A x Z x =∈-<<的子集个数为______.21.已知集合{}{}0,1,2,1P Q xx ==∣,则P Q 的非空真子集的个数为__________. 22.若集合{}2210A x x x =-+=,{}210B x x =-=,则A ______B .(用符号“⊂”“=”或“⊃”连接)23.已知(],0A =-∞,[),B a =+∞,且A B R =,则实数a 的取值范围为______.24.已知集合{}{}2560,A x x x B x x x =--<==-,则A B =__________. 25.当x A ∈时,若有1x A -∉且1x A +∉,则称x 是集合A 的一个“孤元”,由A 的所有孤元组成的集合称为A 的“孤星集”,若集合{}1,2,3M =的孤星集是M ',集合{}1,3,4P =的孤星集是P ',则M P ''⋂=______.三、解答题26.已知集合{}26A x x =-≤≤,{}11,0B x m x m m =-≤≤+>.(1)若A B A ⋃=,求实数m 的取值范围;(2)若x A ∈是x B ∈的充分条件,求m 的取值范围.27.已知集合401x A x x ⎧⎫-=≤⎨⎬-⎩⎭,{}12B x a x a =+≤≤. (1)当2a =时,求A B ;(2)若B A ⋂=∅R ,求实数a 的取值范围.28.已知集合{}220A x x x =--=,{}1B x ax ==,若A B A ⋃=,求实数a 的取值集合.29.已知全集{1,2,3,4,5,6,7,8},{1,2,3},{2,3,4,5,6}U A B ===.(1)求A B ;(2)求()U A B ⋃.30.设全集U =R ,已知集合2{|2350}A x x x =+-≤,{(8)0}B xx x =->∣. (1)求()R ,A B A B ⋂⋃;(2)求()R ,A B A B ⋂⋃.【参考答案】一、单选题1.C【解析】【分析】先由y =A ,再根据集合交集的原则即可求解.【详解】对于集合A ,10x -≥,即1≥x ,则{}1A x x =≥,所以{}1,2,3A B =,故选:C2.B【解析】【分析】根据交集的定义运算.【详解】 因为集合{}21A x x =-<≤,{}2,1,0,1B =--,由交集定义可知:A B ={}1,0,1-.故选:B.3.D【解析】【分析】根据二次函数、一次函数的性质求出其值域,然后由交集定义可得.【详解】 因为22111()244y x x x =-=--≥-,所以1{|}4M y y =≥- 易知N =R ,所以1{|}4My N y ≥=-,即1[,)4-+∞ 故选:D4.A【解析】【分析】 先求得集合N ,判断出,M N 的关系,由此确定正确选项.【详解】∵{}{}2|1,00N x x x =-=+=,1{}1M =-,, ∴{1}M N ⋂=-,故A 正确,BCD 错误.故选:A.5.A【解析】【分析】解二次不等式求得集合B 然后根据并集的定义即得.【详解】由2230x x --≤,解得13x -≤≤,[]1,3B ∴=-,又()1,4A =,[1,4)A B ∴⋃=-.故选:A.6.D【解析】【分析】根据对数函数的单调性,结合解一元二次不等式的方法、集合交集的定义进行求解即可.【详解】 因为{}21(1,1)A x x =<=-,{}lg 0(0,1)B x x =<=, 所以A B ={}01x x <<,故选:D7.C【解析】【分析】根据集合元素的形式可得关于n 的不等式,从而可求A B .【详解】令1317n -≤+≤,则223n -≤≤,而n N ∈, 故0,1,2n =,故{}1,4,7A B =,故选:C.8.B【解析】【分析】先求集合B ,进一步求出答案.【详解】集合{}24B xx =<∣{22}x x =-<<∣,{13}A x x =-<<∣, ∴{12}A B xx ⋂=-<<∣. 故选:B.9.A【解析】【分析】求出集合B ,再根据并集的定义即可求出答案.【详解】{}()(){}{}{}28120260263,4,5B x Z x x x Z x x x Z x =∈-+<=∈--<=∈<<=, 所以{}2,3,4,5A B ⋃=.所以A B 中元素的个数是4.故选:A.10.B【解析】【分析】化简集合A ,由交集定义直接计算可得结果.【详解】化简可得{|1}A x x =≥,又{}3,1,1,3B =--所以{1,3}A B =.故选:B.11.B【解析】【分析】由图可知,图中阴影部分表示()R A B ⋂,先求出集合B ,再求出集合B 的补集,然后再与集合A 求交集【详解】由图可知,图中阴影部分表示()R A B ⋂由214480x x -+≤,得68x ≤≤, 所以{}68B x x =≤≤, 所以{R 6B x x =<或}8x >,因为{}1,3,5,6,7,8,9A =,所以(){}R 1,3,5,9AB =, 故选:B12.B【解析】【分析】由交集定义可直接得到结果.【详解】由交集定义可知:{}1,0,1-.故选:B.13.A【解析】【分析】依据交集定义去求A B 即可.【详解】{}{}2|560=2,3B x x x =-+=则{}{}{}2,32,32,3A B ⋂=⋂=,故选:A .14.B【解析】【分析】先求出集合[)1,10B =,再根据集合的交集运算求得答案.【详解】由题意得[){3}1,10B x =<=,其中奇数有1,3,5,7,9 又{}21,Z A x x n n ==+∈,则{}1,3,5,7,9A B ⋂=,故选:B .15.D【解析】【分析】分别解一元二次不等式以及分式不等式得集合A ,B ,再进行并集运算即可.【详解】 因为{}{}228024A x x x x x =--≤=-≤≤,{}20323x B x x x x -⎧⎫=≤=-<≤⎨⎬+⎩⎭, 所以{}34A B x x ⋃=-<≤,故选:D.二、填空题16.{x |x >-1}【解析】【分析】利用集合的并集运算求解.【详解】解:因为集合A ={x |(x -3)(x +1)<0}={x |-1<x <3},B ={x |x >1}, 所以A ∪B ={x |x >-1}.{x |x >-1}17.()1,2-【解析】【分析】首先将不等式变形,再对a 与1a -分三种情况讨论,分别求出集合A ,根据集合的包含关系得到不等式组,即可求出参数a 的取值范围;【详解】解:原不等式220x x a a -+-≤可变形为()()10x a x a -+-≤, 当1a a ,即12a =时,12A ⎧⎫=⎨⎬⎩⎭,满足题意; 当1a a <-,即12a <时,{}1A x a x a =≤≤-,所以112a a ≥-⎧⎨-<⎩,解得1a >-,所以112a -<<; 当1a a ,即12a >时,{}1A x a x a =-≤≤,所以21112a a a ⎧⎪<⎪-≥-⎨⎪⎪>⎩,解得122a <<. 综上可得1a 2-<<,即()1,2a ∈-;故答案为:()1,2-18.1,0,1,2【解析】【分析】求出集合A ,利用并集的定义可求得结果.【详解】{}{}{}2Z,4Z,221,0,1A x x x x x x =∈<=∈-<<=-,因此,{}1,0,1,2A B ⋃=-. 故答案为:1,0,1,2.19.1【解析】【分析】 由子集定义分类讨论即可.【详解】因为B A ⊆,所以a A ∈1A ∈,当2a =-1无意义,不满足题意;当1a =12=,满足题意;当2a =11=,不满足题意.综上,实数a 的值1.故答案为:120.32【解析】【分析】由n 个元素组成的集合,集合的子集个数为2n 个.【详解】解:由题意得{}2,1,0,1,2A =--,则A 的子集个数为5232=. 故答案为:32.21.2【解析】【分析】先求P Q 后再计算即可.【详解】{}1,2,P Q P Q ⋂=∴⋂的非空真子集的个数为2222-=. 故答案为:222.⊂【解析】【分析】先化简集合A 、B ,再去判断集合A 、B 间的关系即可解决.【详解】{}{}22101A x x x =-+==,{}{}2101,1B x x =-==-,则A B ⊂ 故答案为:⊂23.0a ≤【解析】【分析】根据并集的运算结果列出不等式,即可得解.【详解】解:因为A B R =,所以0a ≤.故答案为:0a ≤.24.{}|10x x -<≤【解析】【分析】求出集合A ,B ,依据交集的定义求出A B .【详解】 集合{}2560{|16}A x x x x x =--<=-<<,{}{}|0B x x x x x ==-=≤,{}|10A B x x ∴=-<≤.故答案为:{}|10x x -<≤.25.∅【解析】【分析】根据集合的新定义求解出集合M '和P ',再求解交集可得出答案.【详解】根据“孤星集”的定义,1,112,2A A ∈+=∈ 所以1不是集合M '的元素 同理2,3也都不是集合M '的元素M ∴'=∅,同理可得 {}1P '=所以M P '⋂'=∅.故答案为:∅.三、解答题26.(1)(0,3](2)[5,)+∞【解析】【分析】(1)根据A B A ⋃=,由B A 求解;(2)根据x A ∈是x B ∈的充分条件,由A B 求解.(1) 解:因为{}26A x x =-≤≤,{}11,0B x m x m m =-≤≤+>,且 A B A ⋃=,所以B A ,则01216m m m >⎧⎪-≥-⎨⎪+≤⎩, 解得03m <≤,所以实数m 的取值范围是(0,3];(2)因为x A ∈是x B ∈的充分条件,所以A B ,则01216m m m >⎧⎪-≤-⎨⎪+≥⎩, 解得5m ≥,所以m 的取值范围是 [5,)+∞.27.(1){}|14x x <≤; (2){}2a a ≤.【解析】【分析】(1)求出集合A 和B ,根据并集的计算方法计算即可;(2)求出A R ,分B 为空集和不为空集讨论即可. (1){}14A x x =<≤,当2a =时,{}|34B x x =≤≤,∴{}|14A B x x ⋃=<≤;(2)A =R {|1x x ≤或x >4},当B =∅时,B A ⋂=∅R ,12a a >+,解得a <1;当B ≠∅时,若B A ⋂=∅R ,则241121a a a a ≤⎧⎪⎨⎪≥⎩,+>,+,解得12a ≤≤. 综上,实数a 的取值范围为{}2a a ≤.28.10,1,2⎧⎫-⎨⎬⎩⎭【解析】【分析】由A B A ⋃=,得B A ⊆,然后分B =∅和B ≠∅的两种情况求解【详解】{}{}2201,2A x x x =--==-, 由A B A ⋃=,得B A ⊆,当B =∅时,满足B A ⊆,此时0a =, 当B ≠∅时,由B A ⊆,可得1B -∈或2B ∈, 所以1a -=或21a =,得1a =-或12a =, 综上实数a 的取值集合为10,1,2⎧⎫-⎨⎬⎩⎭ 29.(1){2,3}(2){1,2,3,7,8}【解析】【分析】(1)根据交集计算可得.(2)根据补集与并集的计算可得.(1)由己知{1,2,3},{2,3,4,5,6}A B ==,所以{2,3}A B =(2)∵{1,2,3,4,5,6,7,8},{1,2,3},{2,3,4,5,6}U A B ===, 所以{1,7,8}U B =,所以(){1,2,3,7,8}U A B =.30.(1)()[](]()R 0,5,,58,A B A B ⋂=⋃=-∞⋃+∞(2)[)()(]R 7,0,5,8A B A B ⋂=-⋃= 【解析】【分析】(1)解不等式求得集合,A B ,由此求得()R ,A B A B ⋂⋃. (2)结合(1)来求得()R ,A B A B ⋂⋃. (1) ()()2235750x x x x +-=+-≤,解得75x -≤≤, 所以[]7,5A =-,()()R ,75,A =-∞-⋃+∞. ()80x x ->,解得0x <或8x >, 所以()(),08,B =-∞⋃+∞,[]R 0,8B =, 所以()[](]()R 0,5,,58,A B A B ⋂=⋃=-∞⋃+∞.(2)由(1)得[)()(]R 7,0,5,8A B A B ⋂=-⋃=.。
高一数学集合练习题及答案-百度文库
高一数学集合练习题及答案-百度文库一、单选题1.已知集合102x A xx -⎧⎫=<⎨⎬-⎩⎭,{1}B x x =>-,则( ) A .RA B ⊆B .RA B ⊆ C .B A ⊆ D .A B ⊆2.已知集合{}22A x x =-≥,集合{2,3,4,5}B =,那么集合A B =( ) A .[2,5] B .(3,5] C .{4,5}D .{2,3,4,5}3.设集合{}1,0,1,2A =-,{}2230B x x x =+-<,则A B 的子集个数为( )A .2B .4C .8D .16 4.设集合{}|14A x x =<<,集合2{|230}B x x x =≤一一,则A B =( ) A .[一1,4)B .(一1,4)C .(1,3]D .(1,3)5.已知集合{}24A x x =≤,{}1B y y =≥-,则A B =( )A .∅B .[]1,2-C .[)2,-+∞D .[)1,2-6.已知集合{}24A x x =≤,{}42xB y y ==-,则A B =( )A .∅B .[]22-,C .[)0,2D .[)2,2-7.已知集合{}lg 0A x x =≤,{}22320B x x x =+-≤,则A B ⋃=( )A .122x x ⎧⎫-≤≤⎨⎬⎩⎭B .{}21x x -≤≤C .102x x ⎧⎫-≤≤⎨⎬⎩⎭D .102x x ⎧⎫<≤⎨⎬⎩⎭8.如图,已知集合{A =1-,0,1,2},{|128}xB x N +=∈<≤,则图中的阴影部分表示的集合为( )A .{1,2}B .{1-,0,3}C .{1-,3}D .{0,1,2}9.已知集合{}21A x x =≤,{}01B x x =<<,则A B =( )A .()1,1-B .[)1,1-C .[]1,1-D .()0,110.已知集合{}22A x x =-≤<,{}13B x x =≤<,则A B =( ) A .[)2,2-B .[)2,3-C .[)1,2D .[]1,211.设集合{}10M x x =-<,{}12,N y y x x M ==-∈,则M N =( )A .∅B .(,1)-∞-C .(,1)-∞D .(1,1)-12.已知集合{}27120A x x x =-+≤,{}20B x x m =+>,若A B ⊆,则m 的取值范围为( ) A .()6,-+∞B .[)6,-+∞C .(),6-∞-D .(],6∞--13.已知集合{}1,0,1,2M =-,{}21xN x =>,则()R M N ⋂=( )A .{}1-B .{}0x x ≤C .{}10x x -<≤D .{}1,0-14.已知集合{}13A x x =≤≤,集合{}24B x x =≤≤,则A B =( ) A .{}23x x ≤≤B .{}34x x <≤C .{}12x x <≤D .{|1x x <或}2x ≥15.已知集合{}24A x x =<,401x B xx ⎧⎫-=≤⎨⎬+⎩⎭,则()R A B ⋂=( ) A .()2,0- B .()2,2- C .()2,1-- D .(]2,1--二、填空题16.若集合406x A xx ⎧⎫-=<⎨⎬+⎩⎭,{}230B x x =+<,则()R A B ⋂=______. 17.已知全集{1,2,3,4,5,6,7}U =,集合{}1,3,5,7A =,则UA____________.18.已知平面上两个点集(){},112,,M x y x y x y x R y R =++++->∈∈,(){},11,,N x y x a y x R y R =-+-≤∈∈,若M N ⋂=∅,则实数a 的取值集合是___________.19.记关于x 的不等式220x x a a -+-≤的解集为A ,集合{}12B x x =-≤<,若A B ,则实数a 的取值范围为___________. 20.已知a ∈R ,不等式1ax≥的解集为P ,且-1∈P ,则a 的取值范围是____________. 21.已知集合(){}2,2A x y y xx ==-,()(){},21B x y y x ==+,则AB =___________.22.满足{}{},,a M a b c ⊆⊆的所有集合M 共有__________ 个.23.已知函数()94sin3264x x f x π-⋅+=,()21g x ax =-(0a >).若[]130,log 2x ∀∈,[]21,2x ∃∈,()()12f x g x =,则a 的取值范围是___________. 24.若集合A ={x ∈R|ax 2+ax +1=0}中只有一个元素,则a =________. 25.若集合{}|21A x x =-<≤,{}|13B x x =<≤,{}|2C x x =>,则()A B C =______.三、解答题26.设A 为非空集合,令(){},,A A x y x y A ⨯=∈,则A A ⨯的任意子集R 都叫做从A 到A 的一个关系(Relation ),简称A 上的关系.例如{}0,1,2A =时,(){}10,2R =,2R A A =⨯,3R =∅,()(){}40,0,2,1R =等都是A 上的关系.设R 为非空集合A 上的关系.如果R 满足:①(自反性)若x A ∀∈,有(),x x R ∈,则称R 在A 上是自反的; ②(对称性)若(),x y R ∀∈,有(),y x R ∈,则称R 在A 上是对称的; ③(传递性)若(),x y ∀,(),y z R ∈,有(),x z R ∈,则称R 在A 上是传递的; 称R 为A 上的等价关系.(1)已知{}0,1,2A =.用列举法写出A A ⨯,然后写出A 上的关系有多少个,最后写出A 上的所有等价关系.(只需写出结果)(2)设1R 和2R 是某个非空集合A 上的关系,证明: (ⅰ)若1R ,2R 是自反的和对称的,则12R R 也是自反的和对称的;(ⅱ)若1R ,2R 是传递的,则12R R 也是传递的.(3)若给定的集合A 有n 个元素()4n ≥,()12,,,2m A A A m n ⋅⋅⋅≤≤为A 的非空子集,满足12m A A A A ⋅⋅⋅=且两两交集为空集.求证:()()()1122m m R A A A A A A =⨯⨯⋅⋅⋅⨯为A上的等价关系.27.已知集合{}223A x a x a =≤≤+,{}14B x x =-≤≤,全集R.U =(1)当1a =时,求()U A B ⋂;(2)若“x A ∈”是“x B ∈”的充分条件,求实数a 的取值范围.28.已知函数()0)>f x a 的定义域为M . (1)若M R =,求实数a 的取值范围; (2)求{}x x a M ≥⋂.29.已知集合{23}M xx =-<≤∣, {}N x x a =≤∣.(1)当1a =时,求M N ⋂,M N ⋃,()RM N ;(2)当M N ⋂=∅时,求a 的取值范围.30.著名的“康托尔三分集”是由德国数学家康托尔构造的,是人类理性思维的产物,其操作过程如下:将闭区间[]0,1均分为三段,去掉中间的区间段12,33⎛⎫⎪⎝⎭记为第一次操作;再将剩下的两个闭区间10,3⎡⎤⎢⎥⎣⎦,2,13⎡⎤⎢⎥⎣⎦分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷.每次操作后剩下的闭区间构成的集合即是“康托尔三分集”.例如第一次操作后的“康托尔三分集”为120,,,133⎧⎫⎡⎤⎡⎤⎨⎬⎢⎥⎢⎥⎣⎦⎣⎦⎩⎭.(1)求第二次操作后的“康托尔三分集”;(2)定义[],s t 的区间长度为t s -,记第n 次操作后剩余的各区间长度和为()*n a n N ∈,求4a ; (3)记n 次操作后“康托尔三分集”的区间长度总和为n T ,若使n T 不大于原来的110,求n 的最小值.(参考数据:lg 20.3010=,lg30.4771=)【参考答案】一、单选题 1.D 【解析】 【分析】首先解分式不等式求出集合A ,再根据补集的定义求出RA 、RB ,再根据集合间解得基本关系判断可得; 【详解】解:由102x x -<-,等价于()()120x x --<,解得12x <<, 所以{}10|122x A xx x x -⎧⎫=<=<<⎨⎬-⎩⎭,{}R|12A x x x =≤≥或又{1}B x x =>-,所以{}R 1B x x =≤-, 所以A B ⊆ 故选:D 2.C 【解析】 【分析】解出不等式22x -≥,然后根据集合的交集运算可得答案. 【详解】因为{}{}224A x x x x =-≥=≥,{2,3,4,5}B =, 所以{4,5}A B =, 故选:C 3.B 【解析】 【分析】求出集合B ,可求得集合A B ,确定集合A B 的元素个数,利用集合子集个数公式可求得结果. 【详解】因为{}{}223031B x x x x x =+-<=-<<,所以,{}1,0A B ⋂=-,则集合A B 的元素个数为2,因此,A B 的子集个数为224=. 故选:B. 4.A 【解析】 【分析】解二次不等式求得集合B 然后根据并集的定义即得. 【详解】由2230x x --≤,解得13x -≤≤,[]1,3B ∴=-,又()1,4A =,[1,4)A B ∴⋃=-. 故选:A. 5.B 【解析】 【分析】求出集合A ,利用交集的定义可求得集合A B . 【详解】因为{}{}2422A x x x x =≤=-≤≤,所以[]1,2A B ⋂=-.故选:B. 6.C 【解析】 【分析】根据一元二次不等式的解法求出集合A ,根据函数值域的求法求出集合B , 进而求出A B 即可. 【详解】对于集合{}24A x x =≤求的是x 的取值范围,{}22A x x ∴=-≤≤对于集合{B y y ==求的是y20x >,20x ∴-<,424x ∴-<,02∴≤{}02B y y ∴=≤<[)0,2A B ∴=故选:C . 7.B 【解析】 【分析】解对数不等式以及一元二次不等式,求出集合A,B ,根据集合的并集运算求得答案. 【详解】解22320x x +-≤ 可得122x -≤≤, 故{}{}lg 001A x x x x =≤=<≤,122B x x ⎧⎫=-≤≤⎨⎬⎩⎭,所以{}21A B x x ⋃=-≤≤, 故选:B . 8.B 【解析】 【分析】由题知{}1,2,3B =,进而得{}1,2A B =,再求阴影部分表示的集合即可. 【详解】解:解不等式128x <≤得03x <≤,所以{}1,2,3B =, 因为{A =1-,0,1,2}, 所以{}1,2A B =所以,图中的阴影部分表示的集合为{}1,0,3-. 故选:B 9.D【分析】根据一元二次不等式解法求出集合A ,再根据交集的定义即可求解. 【详解】解:因为集合{}{}2111A x x x x =≤=-≤≤,{}01B x x =<<,所以()0,1A B =, 故选:D. 10.C 【解析】 【分析】 直接求解即可 【详解】因为{}|22A x x =-≤<,{}|13B x x =≤< 所以{}|12A B x x =≤< 故选:C 11.D 【解析】 【分析】解一元一次不等式求集合M ,求一次函数值域求集合N ,再应用集合的交运算求M N ⋂. 【详解】由题设,{|1}M x x =<,{|1}N y y =>-, 所以(1,1)M N =-.故选:D 12.A 【解析】 【分析】先解出集合,A B ,再结合A B ⊆得到关于m 的不等式,求解即可. 【详解】因为{}34,,2m A xx B x A B ⎧⎫==>-⊆⎨⎬⎩⎭∣,所以32m -<,解得6m >-. 故选:A. 13.D 【解析】 【分析】 先求出RN ,再结合交集定义即可求解.【详解】 由{}{}R210x N x x x =≤=≤,得()R M N ⋂={}1,0-故选:D【解析】 【分析】由交集运算直接求出两集合的交集即可. 【详解】由集合{}13A x x =≤≤,集合{}24B x x =≤≤ 则{}|23A B x x =≤≤ 故选:A 15.D 【解析】 【分析】求出集合A 、B ,利用补集和交集的定义可求得集合()RA B .【详解】因为{}{}2422A x x x x =<=-<<,{}40141x B xx x x ⎧⎫-=≤=-<≤⎨⎬+⎩⎭, 则{R 1B x x =≤-或}4x >,因此,()(]R2,1A B =--.故选:D.二、填空题16.342x x ⎧⎫-≤<⎨⎬⎩⎭【解析】 【分析】先求出集合A 和集合B 的补集,再求两集合的交集即可 【详解】依题意,{}40646x A xx x x ⎧⎫-=<=-<<⎨⎬+⎩⎭,{}32302B x x x x ⎧⎫=+<=<-⎨⎬⎩⎭, 则R32B x x ⎧⎫=≥-⎨⎬⎩⎭, 故()R 342A B x x ⎧⎫⋂=-≤<⎨⎬⎩⎭.故答案为:342x x ⎧⎫-≤<⎨⎬⎩⎭17.{}2,4,6【解析】 【分析】由补集的定义即可求解. 【详解】解:因为全集{1,2,3,4,5,6,7}U =,集合{}1,3,5,7A =,所以{}2,4,6UA =.故答案为:{}2,4,618.{}1-【解析】 【分析】结合点到直线距离公式可知M 表示到直线10x y ++=与10x y +-=的距离之和大于2的所有点的集合,又两平行线间距离为2,可得可行域;N 是以(),1a 为中心,2为边长的正方形及其内部的点集,采用数形结合的方式可确定a 的取值. 【详解】由112x y x y ++++->得:11222x y x y +++-+>,则M 表示到直线10x y ++=与10x y +-=的距离之和大于2的所有点的集合; 直线10x y ++=与10x y +-=之间的距离2d =,则集合()10,10x y M x y x y ⎧⎫+->⎧=⎨⎨⎬++<⎩⎩⎭,则其表示区域如阴影部分所示(不包含10x y ++=与10x y +-=上的点); 集合N 是以(),1a 为中心,2为边长的正方形及其内部的点集, 若M N ⋂=∅,则,M N 位置关系需如图所示,由图形可知:当且仅当1a =-时,M N ⋂=∅, ∴实数a 的取值集合为{}1-.【点睛】思路点睛:本题考查集合与不等式的综合应用问题,解题基本思路是能够确定集合所表示的点构成的区域图形,进而采用数形结合的方式来进行分析求解.19.()1,2-【解析】 【分析】首先将不等式变形,再对a 与1a -分三种情况讨论,分别求出集合A ,根据集合的包含关系得到不等式组,即可求出参数a 的取值范围; 【详解】解:原不等式220x x a a -+-≤可变形为()()10x a x a -+-≤, 当1a a ,即12a =时,12A ⎧⎫=⎨⎬⎩⎭,满足题意; 当1a a <-,即12a <时,{}1A x a x a =≤≤-,所以112a a ≥-⎧⎨-<⎩,解得1a >-,所以112a -<<;当1a a ,即12a >时,{}1A x a x a =-≤≤,所以21112a a a ⎧⎪<⎪-≥-⎨⎪⎪>⎩,解得122a <<.综上可得1a 2-<<,即()1,2a ∈-; 故答案为:()1,2-20.(]1-∞-【解析】 【分析】把1x =-代入不等式即可求解. 【详解】 因为1P -∈,故11a≥-,解得:1a ≤-,所以a 的取值范围是(]1-∞-. 故答案为:(]1-∞-21.()1,1,2,62⎧⎫⎛⎫-⎨⎬ ⎪⎝⎭⎩⎭【解析】 【分析】解方程组直接求解即可 【详解】由()2221y x x y x ⎧=-⎪⎨=+⎪⎩得121x y ⎧=-⎪⎨⎪=⎩或26x y =⎧⎨=⎩,∴()1,1,2,62A B ⎧⎫⎛⎫⋂=-⎨⎬ ⎪⎝⎭⎩⎭.故答案为:()1,1,2,62⎧⎫⎛⎫-⎨⎬ ⎪⎝⎭⎩⎭22.4【解析】【分析】由题意列举出集合M ,可得集合的个数. 【详解】由题意可得,{}M a =或{},M a b =或{},M a c =或{},,M a b c =,即集合M 共有4个 故答案为:4 23.35,88⎡⎤⎢⎥⎣⎦【解析】 【分析】由题意,()f x 的值域为()g x 的值域子集,先求得两个函数的值域,再利用包含关系求得a 的取值范围. 【详解】 因为()()294sin32311644x x xf x π-⋅+-+==, 又当[]30,log 2x ∈时,0311x ≤-≤,()f x 的值域为11,42⎡⎤⎢⎥⎣⎦.因为0a >,所以()g x 在[]1,2上单调递增,其值域为[]21,41a a --. 依题意得[]11,21,4142a a ⎡⎤⊆--⎢⎥⎣⎦,则12141412a a ⎧-≤⎪⎪⎨⎪-≥⎪⎩,解得3588a ≤≤. 故答案为:35,88⎡⎤⎢⎥⎣⎦24.4 【解析】 【分析】集合A 只有一个元素,分别讨论当0a =和0a ≠时对应的等价条件即可 【详解】解:2{|10}A x R ax ax =∈++=中只有一个元素, ∴若0a =,方程等价为10=,等式不成立,不满足条件.若0a ≠,则方程满足0∆=,即240a a -=,解得4a =或0a =(舍去). 故答案为:425.{}|23x x <≤【解析】 【分析】先求得A B ,然后求得()A B C . 【详解】{}23A B x x =|-<≤,()A B C ={}|23x x <≤.故答案为:{}|23x x <≤三、解答题26.(1)答案见解析(2)(ⅰ)证明见解析;(ⅱ)证明见解析 (3)证明见解析 【解析】 【分析】(1)由A A ⨯的定义可直接得到结果;根据A A ⨯中元素个数可得其子集个数,即为A 上的关系个数;根据等价关系定义列举出所有满足的R 即可; (2)(ⅰ)由()1,x x R ∈,()2,y y R ∈可知()(){}()12,,,x x y y R R ⊆,自反性得证;由()1,x y R ∀∈,有()1,y x R ∈;()2,s t R ∀∈,有()2,t s R ∈,根据并集定义可知()()()(){}()12,,,,,,,x y y x s t t s RR ⊆,对称性得证;(ⅱ)采用反证法,可知1R 或2R 不是传递的,假设错误,传递性得证;(3)采用假设的方式,分别假设s s a A ∈,可知(){}(),s s s s a a A A R ⊆⨯⊆,自反性得证;假设,s t t a a A ∈,可知()(){}(),,,s t t s t t a a a a A A R ⊆⨯⊆,对称性得证;假设(),,1s t q q a a a A q m n ∈≤≤≤,可知()()(){}(),,,,,s t t s s q q q a a a a a a A A R ⊆⨯⊆,传递性得证;由此可得结论. (1)由题意得:()()()()()()()()(){}0,0,0,1,0,2,1,0,1,1,1,2,2,0,2,1,2,2A A ⨯=;A A ⨯共有9个元素,A A ∴⨯共有92个子集,即A 上的关系有72512=个; 所有等价关系有:()()(){}10,0,1,1,2,2R =,()()()()(){}20,0,1,1,2,2,0,1,1,0R =,()()()()(){}30,0,1,1,2,2,0,2,2,0R =,()()()()(){}40,0,1,1,2,2,1,2,2,1R =, ()()()()()()()()(){}50,0,1,1,2,2,1,2,2,1,0,2,2,0,0,1,1,0R =. (2)(ⅰ)若任意,x y A ∈,12,R R 在A 上是自反的,令()1,x x R ∈,()2,y y R ∈,()(){}()12,,,x x y y R R ∴⊆,则12R R 是自反的;若12,R R 在A 上是对称的,则()1,x y R ∀∈,有()1,y x R ∈;()2,s t R ∀∈,有()2,t s R ∈,()()()(){}()12,,,,,,,x y y x s t t s R R ∴⊆,则12R R 是对称的;综上所述:若1R ,2R 是自反的和对称的,则12R R 也是自反的和对称的.(ⅱ)假设12R R 不是传递的,则()()12,x y R R ∃∈,()()12,y z R R ∈,()()12,x z R R ∉,即()1,x z R ∉或()2,x z R ∉,此时1R 或2R 不是传递的,与已知矛盾,∴若1R ,2R 是传递的,则12R R 也是传递的.(3)令{}123,,,,n A a a a a =⋅⋅⋅, 12m A A A A ⋅⋅⋅=且两两交集为空集,设s s a A ∈()1s m n ≤≤≤,则除s A 外,其余集合不包含元素s a ; 则(){}(),s s s s a a A A ⊆⨯,又()()()()1122s s m m A A A A A A A A ⨯⊆⨯⨯⋅⋅⋅⨯,(),s s a a R ∴∈,则R 在A 上是自反的;设,s t t a a A ∈()1t m n ≤≤≤,则除t A 外,其余集合不包含元素,s t a a ; 则()(){}(),,,s t t s t t a a a a A A ⊆⨯, 又()()()()1122t t m m A A A A A A A A ⨯⊆⨯⨯⋅⋅⋅⨯,(),s t a a R ∴∈,(),t s a a R ∈,则R 在A 上是对称的;设(),,1s t q q a a a A q m n ∈≤≤≤,则除q A 外,其余集合不包含元素,,s t q a a a ; 则()()(){}(),,,,,s t t s s q q q a a a a a a A A ⊆⨯, 又()()()()1122q q m m A A A A A A A A ⨯⊆⨯⨯⋅⋅⋅⨯,(),s t a a R ∴∈,(),t s a a R ∈,(),s q a a R ∈,则R 在A 上是传递的; 综上所述:()()()1122m m R A A A A A A =⨯⨯⋅⋅⋅⨯为A 上的等价关系.【点睛】关键点点睛:本题考查集合的自反性、对称性和传递性的证明,解决此问题的关键是能够充分理解已知中所说的性质的含义;解题基本思路是采用假设的方式和反证的方式,通过说明元素与集合、集合与集合之间关系证得结论. 27.(1)(){}11U A B x x ⋂=-≤< (2)112a -≤≤ 【解析】 【分析】(1)当1a =时,求出集合A ,利用补集和交集的定义可求得集合()U A B ⋂;(2)分析可知A B ⊆且A ≠∅,可得出关于实数a 的不等式组,由此可解得实数a 的取值范围. (1)解:当1a =时,{}15A x x =≤≤,则{1UA x x =<或}5x >,故(){}11U A B x x ⋂=-≤<. (2)解:由题意可知A B ⊆且A ≠∅,所以,223234a a a ⎧≤+⎨+≤⎩,解得112a -≤≤.28.(1)405a <≤; (2)答案见解析. 【解析】 【分析】(1)根据绝对值的性质,结合二次根式的性质进行求解即可; (2)根据绝对值的性质、交集的定义, 结合42,3a a -之间的大小关系分类讨论进行求解即可. (1)32,,2222,2232,2a x a x a x x a a x x x a x ⎧+-≥⎪⎪⎪++-=+--<<⎨⎪-+-≤-⎪⎪⎩所以|2||2|++-x x a 的最小值为32222⨯+-=+a aa ,因此232+≥a a , 所以405a <≤; (2)因为0a >,所以当x a ≥时,|2||2|32++-=-+x x a x a , 4232303a x a a x --+-≥⇒≥; 当2a ≥时,423a a -≥,此时{}42,3a x x a M ∞-⎡⎫≥⋂=+⎪⎢⎣⎭; ②当02a <<时,423a a -<,此时{}[),x x a M a ∞≥⋂=+. 29.(1){}|21MN x x =-<≤,{}|3MN x x =≤,()(]1,3R M N ⋂=(2)(]2-∞-, 【解析】 【分析】(1)由集合的交集运算和并集运算、补集元素概念可得答案; (2)由集合间的关系可求得a 的取值范围. (1)当1a =时,{}|1N x x =≤,又{}|23M x x =-<≤, 所以{}|21MN x x =-<≤,{}|3MN x x =≤;()1,RN =+∞,则()(]1,3R M N ⋂=(2)当M N ⋂=∅时,则需2a ≤-,所以a 的取值范围(]2-∞-,.30.(1)121278 0,,,,,,,1993399⎧⎫⎡⎤⎡⎤⎡⎤⎡⎤⎨⎬⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎩⎭(2)16()81t s-(3)6【解析】【分析】(1)根据“康托尔三分集”的定义,即可求得第二次操作后的“康托尔三分集”;(2)根据“康托尔三分集”的定义,分别求得前几次的剩余区间长度的和,求得其通项公式,即可求解;(3)由(2)可得第n次操作剩余区间的长度和为23nn nb=,结合题意,得到21()310n≤,利用对数的运算公式,即可求解.(1)解:根据“康托尔三分集”的定义可得:第一次操作后的“康托尔三分集”为12 0,,,133⎧⎫⎡⎤⎡⎤⎨⎬⎢⎥⎢⎥⎣⎦⎣⎦⎩⎭,第二次操作后的“康托尔三分集”为121278 0,,,,,,,1993399⎧⎫⎡⎤⎡⎤⎡⎤⎡⎤⎨⎬⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎩⎭;(2)解:将定义[],s t的区间长度为t s-,根据“康托尔三分集”的定义可得:每次去掉的区间长后组成的数为以1()3t s-为首项,13为公比的等比数列,第1次操作去掉的区间长为1()3t s-,剩余区间的长度和为2()3t s-,第2次操作去掉两个区间长为1()9t s-的区间,剩余区间的长度和为4()9t s-,第3次操作去掉四个区间长为的区间1()27t s-,剩余区间的长度和为8()27t s-,第4次操作去掉8个区间长为1()81t s-,剩余区间的长度和为16()81t s-,第n次操作去掉12n-个区间长为1()3nt s-,剩余区间的长度和为2()3nnt s-,所以第4次操作后剩余的各区间长度和为416()81t sa-=;(3)解:设定义区间为[]0,1,则区间长度为1,由(2)可得第n次操作剩余区间的长度和为23nn nb=,要使得“康托三分集”的各区间的长度之和不大于1 10,则满足21()310n≤,即21lg lg131n≤=-,即115.679lg3lg20.47710.3010n≥=≈--,因为n为整数,所以n的最小值为6.。
高一数学集合练习题附答案
高一数学集合练习题附答案一、单选题1.已知集合(){}{}|20,|10M x x x N x x =-<=-<,则M N =( )A .(),2-∞B .(),1-∞C .()0,1D .()1,22.已知集合2{|4}A x x =≥,则A =R( )A .()(),22,-∞-⋃+∞B .(][),22,-∞-+∞C .()2,2-D .[]22-,3.已知集合{}213A x x =+>,{}220B x x x =--<,则A B =( )A .{}1x x >-B .{}11x x -<<C .{}211x x x -<或D .{}12x x <<4.集合{}06A x Z x =∈<<,集合{}ln 1B x x =>,求A B ( ) A .{}6x e x << B .{}1,2,3e e e +++ C .{}3,4,5 D .{}2,3,4,55.已知集合{|23}M x x =-≤≤,{|ln 1}N x x =≥,则RMN ( )A .[]2,0-B .[)2,e -C .[]2,e -D .[e,3]6.已知集合02A x x,{}0,1B =,则A B ⋃=( )A .{}01x x <<B .{}01x x ≤≤C .{}02x x <≤D .{}02x x ≤≤7.设集合{}0,1S =,{}0,3T =,则S T ⋃=( ) A .{}0 B .{}1,3 C .{}0,1,3D .{}0,1,0,38.已知集合{}sin ,M y y x x ==∈R ,{}220N x x x =--<,则MN =( )A .(]1,1-B .[)1,2-C .()1,1-D .[)1,1-9.下列命题说法错误的是( )A .()2()lg 23f x x x =-++在(1,1)-上单调递增B .“1x =”是“2430x x -+=”的充分不必要条件C .若集合{}2440A x kx x =++=恰有两个子集,则1k =D .对于命题:p 存在0R x ∈,使得20010x x ++<,则¬p :任意R x ∈,均有210x x ++≥ 10.设集合{}09A x x =∈≤≤N ,{}1,2,3,6,9,10B =-,则()AA B ⋂=( ).A .{}0,1,4,5,7,8B .{}1,4,5,7,8C .{}2,3,6,9D .∅11.已知集合(){},M x y y x ==,(){}22,|1N x y xy =+=,M N A ⋂=,则A 中元素个数为( )个. A .1B .2C .3D .412.已知集合{1,2,3,4,5}A =,()(){}130B x R x x =∈+-≤,则集合A B 等于( ) A .{1}B .{3}C .{1,2,3}D .{3,4,5}13.已知集合{}21,A x x n n Z ==+∈,{}3B =,则A B =( ) A .{}1,3 B .{}3,5,7,9 C .{}3,5,7D .{}1,3,5,7,914.若集合{}3221x A x -=>,{}2,B y y x x A ==-∈,则A B =( ) A .24,33⎛⎤⎥⎝⎦B .4,3⎛⎫+∞ ⎪⎝⎭C .24,33⎛⎫ ⎪⎝⎭D .2,3⎛⎫+∞ ⎪⎝⎭15.已知集合{4,3,2,1,0,1,2,3,4}A =----,2{|9}B x x =<,则A B =( ) A .{0,1,2,3,4} B .{3,2,1,0,1,2,3}--- C .{2,1,0,1,2}--D .()3,3-二、填空题16.已知集合[)[)2,6,1,4A B ==-,则A B ⋃=__________.17.已知集合{}2,1,2A =-,}1,B a =,且B A ⊆,则实数a 的值是___________.18.设集合{}{}240,,20A xx x A x x a =-≤∈=+≤R ∣∣,且[]2,1A B =-,则=a ___________.19.设全集{1U =,2,3,4,5,6,7,8},集合{1S =,3,5},集合{3T =,6},则ST =__.20.{}2|60A x x x =+-=,{}|10B x mx =+=,且A B A ⋃=,则m 的值是__________.21.某班有学生45人,参加了数学小组的学生有31人,参加了英语小组的学生有26人.已知该班每个学生都至少参加了这两个小组中的一个小组,则该班学生中既参加了数学小组,又参加了英语小组的学生有___________人.22.若{}231,13a a ∈--,则=a ______.23.若全集{}22,4,1U a a =-+,且{}1,2A a =+,7A =,则实数=a ______.24.若{}0,1,2U =,{}220,M x x x x =-=∈R ,则M =______.25.设集合{}2,3,4U =,对其子集引进“势”的概念;①空集的“势”最小;②非空子集的元素越多,其“势”越大;③若两个子集的元素个数相同,则子集中最大的元素越大,子集的“势”就越大.最大的元素相同,则第二大的元素越大,子集的“势”就越大,以此类推.若将全部的子集按“势”从小到大顺序排列,则排在第6位的子集是_________.三、解答题26.(1)已知全集{}|510,Z U x x x =-≤≤∈,集合M ={|07,Z x x x ≤≤∈},N ={|24,Z x x x -<∈≤},求()U N M (分别用描述法和列举法表示结果);(2)已知全集{}0,1,2,3,4,5,6,7,8,9,10U A B =⋃=,若集合{}2,4,6,8UA B =,求集合B ;(3)已知集合2{|210,R,R}P x ax ax a x =++=∈∈,当集合P 只有一个元素时,求实数a 的值,并求出这个元素.27.在①{}{}21,22,1,0a a a a ⊆-+-;②关于x 的不等式13ax b <+≤的解集是{}34x x <≤这两个条件中任选一个,补充在下面的问题(1)中并解答,若同时选择两个条件作答,以第一个作答计分.(1)已知______,求关于x 的不等式230ax x a -->的解集A ;(2)在(1)的条件下,若非空集合{}22B x k x k =<≤+,A B A ⋃=,求实数k 的取值范围.28.设集合{}53A x x =-≤≤,{2B x x =<-或}4x >. (1)求A B ; (2)求R R ()()A B ⋃.29.已知集合702x A xx ⎧⎫-=≤⎨⎬+⎩⎭,{}123B x m x m =-≤≤-. (1)当6m =时,求集合A B ;(2)若{}58C x x =<≤,“()x A C ∈⋂”是“x B ∈”的充分条件,求实数m 的取值范围.30.设{}24,21,A a a=--,{}5,1,9B a a =--,已知{}9A B ⋂=,求a 的值.【参考答案】一、单选题 1.C 【解析】 【分析】分别求出集合M 和集合N ,然后取交集即可. 【详解】集合(){}{}|20|02M x x x x x =-<=<<,{}|1N x x =<, 则M N ={}()|010,1x x <<=,故选:C2.C 【解析】 【分析】先求得集合{|2A x x =≤-或2}x ≥,结合集合补集的概念及运算,即可求解. 【详解】由不等式24x ≥,解得2x -≤或2x ≥,即集合{|2A x x =≤-或2}x ≥, 根据集合补集的概念及运算,可得(){|22}2,2A x x =-<<=-R.故选:C. 3.D 【解析】 【分析】分别求出集合AB 、根据集合的交集运算可得答案. 【详解】{}{}2131=+>=>A x x x x ,{}{}22012=--<=-<<B x x x x x ,∴{}12A B x x ⋂=<<. 故选:D . 4.C 【解析】【分析】先化简出结合,A B ,然后再求交集. 【详解】由{}1,2,3,4,5A =,ln 1x > 则x e >,所以集合(),B e =+∞ 所以{}3,4,5A B = 故选:C 5.B 【解析】 【分析】由对数函数的单调性解不等式求集合N ,再应用集合的交补运算求RM N .【详解】由题设{|e}N x x =≥,则{|e}N x x =<R,所以{|2e}M N x x =-≤<R.故选:B 6.D 【解析】 【分析】根据集合的并集的定义即可求解. 【详解】 {}{}{}200,102A B x x x x ==<≤≤≤.故选: D. 7.C 【解析】 【分析】 由并集的概念运算 【详解】 S T ⋃={}0,1,3故选:C 8.A 【解析】 【分析】由正弦函数性质可得集合M ,解一元二次不等式可得集合N ,然后由交集定义可得. 【详解】由正弦函数值域可知{|11}M y y =-≤≤, 由220x x --<解得{|12}N x x =-<< 所以{|11}M N x x =-<≤,即(]1,1-故选:A9.C 【解析】 【分析】A.利用复合函数的单调性判断;B.利用充分条件和必要条件的定义判断;C.由方程2440kx x ++=有一根判断;D.由命题p 的否定为全称量词命题判断.【详解】A.令223t x x =-++,由2230x x -++>,解得13x ,由二次函数的性质知:t 在(1,1)-上递增,在(1,3)上递减,又lg y t =在()0,∞+上递增,由复合函数的单调性知:()2lg(23)f x x x =-++在(1,1)-上递增,故正确;B. 当1x =时,2430x x -+=成立,故充分,当2430x x -+=成立时,解得1x =或3x =,故不必要,故正确;C.若集合{}2440A x kx x =++=中只有两个子集,则集合只有一个元素,即方程2440kx x ++=有一根,当0k =时,1x =-,当0k ≠时,16160k ∆=-=,解得1k =,所以0k =或1k =,故错误;D.因为命题:p .存在0R x ∈,使得20010x x ++<是存在量词命题,则其否定为全称量词命题,即:p ⌝任意R x ∈,均有210x x ++≥,故正确; 故选:C. 10.A 【解析】 【分析】根据集合的运算直接可得. 【详解】解:依题意{}0123456789A ,,,,,,,,,=,{}1,2,3,6,9,10B =-, 所以{}2,3,6,9A B ⋂=,故(){}0,1,4,5,7,8AA B ⋂=.故选:A . 11.B 【解析】 【分析】联立方程,解方程组,考察方程组的解的组数,即为集合A 的元素个数; 【详解】联立方程得221y x x y =⎧⎨+=⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩x y ⎧=⎪⎪⎨⎪=⎪⎩所以集合M 与N 的交集A 中的元素个数为2个; 故选:B. 12.C 【解析】先化简集合B ,再利用交集运算求解. 【详解】解:因为集合{1,2,3,4,5}A =,()(){}{}13013B x R x x x x =∈+-≤=-≤≤, 所以{1,2,3}A B ⋂=, 故选:C . 13.D 【解析】 【分析】根据集合交集运算直接求解可得. 【详解】3得110x ≤<,则{1,3,5,7,9}A B =. 故选:D 14.C 【解析】 【分析】根据指数函数和一次函数的性质,分别求得集合,A B ,结合集合交集的概念与运算,即可求解. 【详解】由不等式3221x ->,可得320x ->,解得23x >,所以2{|}3A x x =>, 又由{}42,{|}3B y y x x A y y ==-∈=<,所以2424{|}(,)3333A B x x =<<=. 故答案为:C 15.C 【解析】 【分析】求得集合{|33}B x x =-<<,结合集合交集的运算,即可求解. 【详解】由题意,集合2{|9}{|33}B x x x x =<=-<<, 又由集合{4,3,2,1,0,1,2,3,4}A =----, 所以A B ={2,1,0,1,2}--. 故选:C.二、填空题16.[1-,6) 【解析】直接利用并集运算得答案. 【详解】[2A =,6),[1B =-,4),[2AB ∴=,6)[1-,4)[1=-,6).故答案为:[1-,6). 17.1 【解析】 【分析】由子集定义分类讨论即可. 【详解】因为B A ⊆,所以a A ∈1A ∈,当2a =-1无意义,不满足题意;当1a =12=,满足题意;当2a =11=,不满足题意. 综上,实数a 的值1. 故答案为:1 18.-2 【解析】 【分析】由二次不等式和一次不等式的解法,求出集合A ,B ,再由交集的定义,可得a 的方程,解方程可得a . 【详解】集合2{|40}{|22}A x x x x =-=-,{|20}{|}2B x x a x x a =+=-, 由{|21}A B x x ⋂=-,可得12a-=,则2a =-. 故答案为:-2.19.{}2,4,7,8【解析】 【分析】由已知得可以求得S 和T ,再由交集运算即可解决. 【详解】∵全集{1U =,2,3,4,5,6,7,8},集合{1S =,3,5},集合{3T =,6}, ∴{}=2,4,6,7,8S ,{}=1,2,4,5,7,8T , ∴{}2,4,7,8S T =. 故答案为:{}2,4,7,8.20.11023-、、【分析】先求出集合A ,再由A B A ⋃=,可得B A ⊆,然后分B =∅和B ≠∅两种情况求解即可 【详解】解:由260x x +-=,得2x =或3x =-,所以{}{}2|603,2A x x x =+-==-,因为A B A ⋃=,所以B A ⊆,当B =∅时,B A ⊆成立,此时方程10+=mx 无解,得0m =; 当B ≠∅时,得0m ≠,则集合{}1|10B x mx m ⎧⎫=+==-⎨⎬⎩⎭,因为B A ⊆,所以13m -=-或12m -=,解得13m =或12m =-, 综上,0m =,13m =或12m =-.故答案为:11023-、、 21.12 【解析】 【分析】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,列方程求解即可. 【详解】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,则31264512x =+-=. 故答案为:12.22.4-【解析】 【分析】结合元素与集合的关系,利用集合的互异性分类讨论即可求解. 【详解】若13a -=,则4a =,此时,2113a a -=-,不合题意,舍去; 若2133a -=,则4a =-或4a =,因为4a =不合题意,舍去. 故4a =-. 故答案为:4-. 23.3 【解析】 【分析】根据题意21a a -+7=,结合7A =,即可求得a . 【详解】因为{}22,4,1U a a =-+,且{}1,2A a =+,7A =,故可得217a a -+=,即()()320a a -+=,解得3a =或2a =-.当2a =-时,{}2,4,7U =,{}1,2A =-,不合题意,故舍去. 当3a =时,满足题意. 故答案为:3.24.{}1【解析】 【分析】解一元二次方程求出集合M ,进而根据补集的概念即可求出结果. 【详解】因为{}{}220,0,2M x x x x =-=∈=R ,且{}0,1,2U =,则{}1M =, 故答案为:{}1.25.{}2,4【解析】 【分析】根据题意依次按“势”从小到大顺序排列,得到答案. 【详解】根据题意,将全部的子集按“势”从小到大顺序排列为:∅,{}2,{}3,{}4,{}2,3,{}2,4,{}3,4,{}2,3,4.故排在第6的子集为{}2,4. 故答案为:{}2,4三、解答题26.(1){}|47,Z x x x ≤≤∈,{}4,5,6,7;(2){}0,1,3,5,7,9,10;(3)1a =,元素为1-. 【解析】 【分析】(1)根据补集和交集的定义直接计算作答. (2)利用补集的定义直接计算作答. (3)利用元素与集合的关系推理计算作答. 【详解】(1)由{}|510,Z U x x x =-≤≤∈,N ={|24,Z x x x -<∈≤}, 得:{|52U N x x =-≤<-或410,Z}x x ≤≤∈,而{|07,Z}M x x x =≤≤∈, 所以{}()|47,Z U N M x x x =≤≤∈{}4,5,6,7=. (2)由{}0,1,2,3,4,5,6,7,8,9,10U A B =⋃=,{}2,4,6,8UA B =,得{2,4,6,8}UB =,所以{}()0,1,3,5,7,9,10U U B B ==. (3)当0a =时,P =∅,不符合题意,当0a ≠时,因集合P 只有一个元素,则方程2210ax ax ++=有等根,2440a a ∆=-=,此时1a =,集合P 中的元素为1-,所以1a =,这个元素是1-.27.(1)条件选择见解析,12A x x ⎧=<-⎨⎩或}2x > (2)[)5,1,22∞⎛⎫--⋃ ⎪⎝⎭ 【解析】【分析】(1)若选①,分2122a a =-+和11a =-,求得a ,再利用一元二次不等式的解法求解; 若选②,根据不等式13ax b <+≤的解集为{}34x x <≤,求得a ,b ,再利用一元二次不等式的解法求解;(2)由A B A ⋃=,得到B A ⊆求解;(1)解:若选①,若2122a a =-+,解得1a =,不符合条件.若11a =-,解得2a =,则2222a a -+=符合条件.将2a =代入不等式230ax x a -->并整理得()()2210x x -+>,解得2x >或12x <-,故12A x x ⎧=<-⎨⎩或}2x >. 若选②,因为不等式13ax b <+≤的解集为{}34x x <≤,所以3143a b a b +=⎧⎨+=⎩,解得25a b =⎧⎨=-⎩. 将2a =代入不等式整理得()()2210x x -+>,解得2x >或12x <-. 故12A x x ⎧=<-⎨⎩或}2x >. (2)∵A B A ⋃=,∴B A ⊆,又∵B ≠∅, ∴22122k k k +>⎧⎪⎨+<-⎪⎩或2222k k k +>⎧⎨≥⎩, ∴52k <-或12k ≤<, ∴[)5,1,22k ⎛⎫∈-∞-⋃ ⎪⎝⎭. 28.(1){}52x x -≤<-; (2){5x x <-或}2x ≥-.【解析】【分析】(1)根据给定条件利用交集的定义直接计算作答.(2)利用补集的定义求出R A ,R B ,再利用并集的定义求解作答. (1) 因集合{}53A x x =-≤≤,{2B x x =<-或}4x >,所以{|52}A B x x ⋂=-≤<-.(2) 依题意,R {5A x x =<-或3}x >,{}R 24B x x =-≤≤,所以{R R ()()5A B x x ⋃=<-或}2x ≥-.29.(1){|29}x x -<≤(2)56m ≤≤【解析】【分析】(1)先化简集合A ,由6m =解得集合B ,然后利用并集运算求解.(2)根据“()x A C ∈⋂”是“x B ∈”的充分条件,转化为A B ⊆求解.(1)由702x x -≤+得:27x -<≤,即27{|}A x x =-<≤, 当6m =时,{|59}B x x =≤≤,所以{|29}A B x x ⋃=-<≤.(2)因为{}58C x x =<≤,所以{}57A C x x ⋂=<≤,由“A C ”是“x B ∈”的充分条件,则()A C B ⋂⊆,则2312237556156m m m m m m m m -≥-≥⎧⎧⎪⎪-≥⇒≥⇒≤≤⎨⎨⎪⎪-≤≤⎩⎩, 实数m 的取值范围是56m ≤≤.30.-3【解析】【分析】根据{}9A B ⋂=,分219a -=和29a =,讨论求解.【详解】解:因为{}24,21,A a a =--,{}5,1,9B a a =--,且{}9A B ⋂=,所以当219a -=时,解得5a =,此时{}{}4,9,25,0,4,9A B =-=-,不符合题意; 当29a =时,解得3a =或3a =-,若3a =,则{}{}4,52,9,9,,2B A =--=-,不成立;若3a =-,则{}{}4,7,9,8,4,9A B =--=-,成立;所以a的值为-3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题
1.下列八个关系式①{0}=φ ②φ=0 ③φ {φ} ④φ∈{φ} ⑤{0}⊇φ ⑥
0∉φ ⑦φ≠{0} ⑧φ≠{φ}其中正确的个数( ) (A )4 (B )5 (C )6 (D )7
2.集合{1,2,3}的真子集共有( )
(A )5个 (B )6个 (C )7个 (D )8个
3.集合A={x Z k k x ∈=,2} B={Z k k x x ∈+=,12} C={Z k k x x ∈+=,14}又
,,B b A a ∈∈则有( )
(A )(a+b )∈ A (B) (a+b) ∈B (C)(a+b) ∈ C (D) (a+b) ∈ A 、B 、C 任一个 4.设A 、B 是全集U 的两个子集,且A ⊆B ,则下列式子成立的是( ) (A )C U A ⊆C U B (B )C U A ⋃C U B=U (C )A ⋂C U B=φ (D )C U A ⋂B=φ
5.已知集合A={022≥-x x } B={0342≤+-x x x }则A B ⋃=( ) (A )R (B ){12≥-≤x x x 或} (C ){21≥≤x x x 或} (D ){32≥≤x x x 或}
6.设f (n )=2n +1(n ∈N ),P ={1,2,3,4,5},Q ={3,4,5,6,7},记P ∧
={n ∈N |f (n )∈P },Q ∧={n ∈N |f (n )∈Q },则(P ∧∩N ðQ ∧)∪(Q ∧∩N ðP ∧
)=( )
(A) {0,3} (B){1,2} (C) (3,4,5} (D){1,2,6,7}
7.已知A={1,2,a 2
-3a-1},B={1,3},A =⋂B {3,1}则a 等于( ) (A )-4或1 (B )-1或4 (C )-1 (D )4
8.设U={0,1,2,3,4},A={0,1,2,3},B={2,3,4},则(C U A )⋃(C U B )=( ) (A ){0} (B ){0,1}
(C ){0,1,4} (D ){0,1,2,3,4}
10.设A={x 0152=+-∈px x Z },B={x 052
=+-∈q x x Z },若A ⋃B={2,3,5},A 、B 分别为( )
(A ){3,5}、{2,3} (B ){2,3}、{3,5} (C ){2,5}、{3,5} (D ){3,5}、{2,5}
11.设一元二次方程ax 2
+bx+c=0(a<0)的根的判别式042
=-=∆ac b ,则不等式
ax 2
+bx+c ≥0的解集为( )
(A )R (B )φ
≠
⊂
(C ){a b x x 2-
≠} (D ){a
b 2-} 12.已知P={04<<-m m },Q={012<--mx mx m ,对于一切∈x R 成立},则下列关系式中成立的是( )
13.若M={Z n x n x ∈=
,2},N={∈+=n x n x ,2
1
Z},则M ⋂N 等于( ) (A )φ (B ){φ} (C ){0} (D )Z
14.
已知集合
则实数的取值范围是( )
A
.
B
.
C .[—1,
2] D
.
15.设U={1,2,3,4,5},A ,B 为U 的子集,若A ⋂B={2},(C U A )⋂B={4},(C U A )⋂(C U B )
={1,5},则下列结论正确的是( ) (A )3B A ∉∉3, (B )3B A ∈∉3, (C )3B A ∉∈3, (D )3B A ∈∈3,
16. 设集合10,2A ⎡⎫=⎪⎢⎭⎣, 1,12B ⎡⎤
=⎢⎥⎣⎦, 函数()()1
,221,x x A f x x x B
⎧+∈⎪=⎨⎪-∈⎩
,若0x A ∈,且
()0f f x A ∈⎡⎤⎣⎦,则0x 的取值范围是( )
(A )P Q (B )Q P
(C )P=Q (D )P ⋂Q=φ
≠⊂≠
⊂
A .10,
4⎛⎤ ⎥⎦⎝ B .11,42⎛⎤ ⎥⎦
⎝ C .11,42⎛⎫ ⎪⎝⎭
D .30,8
⎡⎤
⎢⎥⎣⎦
17. 在R 上定义运算
: 2a b ab a b =++,则满足()20x
x -<的实数x 的取值范围为
( )
A. (0,2)
B. (-1,2)
C.
()(),21,-∞-+∞ D. (-2,1) .
18. 集合P={x|x 2
=1},Q={x|mx=1},若Q
P ,则m 等于( )
A .1
B .-1
C .1或-1
D .0,1或-1
19.设全集U={(x,y )R y x ∈,},集合M={(x,y )12
2
=-+x y },N={(x,y)4-≠x y },那么(C U M )⋂(C U N )等于( )
(A ){(2,-2)} (B ){(-2,2)} (C )φ (D )(C U N ) 20.不等式652+-x x <x 2
-4的解集是( )
(A ){x 2,2>-<x x 或} (B ){x 2>x }
(C ){ x 3>x } (D ){ x 2,32≠<<-x x 且} 二、填空题
1. 在直角坐标系中,坐标轴上的点的集合可表示为
2. 若A={1,4,x},B={1,x 2
}且A ⋂B=B ,则x= 3. 若A={x 01032
<-+x x } B={x 3<x },全集U=R ,则A )(B C U ⋃=
4. 如果集合
中只有一个元素,则a 的值是
5. 集合{a,b,c}的所有子集是 真子集是 ;非空真子集是
6. 方程x 2
-5x+6=0的解集可表示为
方程组的解集可表示为⎩⎨
⎧=-=+0
2313
32y x y x
7.设集合A={23≤≤-x x },B={x 1212+≤≤-k x k },且A ⊇B ,则实数k 的取值范围是 。
8.设全集U={x x 为小于20的正奇数},若A ⋂(C U B )={3,7,15},(C U A )⋂B={13,17,19},又(C U A )⋂(C U B )=φ,则A ⋂B= 9.已知集合A ={x ∈R |x 2+2ax+2a 2-4a+4=0},若φ
A ,则实数a 的取值是
10.设全集为U ,用集合A 、B 、C 的交、并、补集符号表图中的阴影部分。
(1) (2) (3)
11.当{}{},0,14,,0a b -=时,a = ,b = 。
12.若集合{}{}
{}22,1,3,3,1,21,3,A a a B a a a A B =+-=-+-=-则A B = 。
13.集合{}1,1M
N =-,就M N 、两集合的元素组成情况来说,两集合M N 、的组成
情况最多有不同的 种。
14.已知{
}
{
}
2
2
43,,28,M y y x x x R N y y x x x R ==-+∈==-++∈,则
M
N = 。
15.设数集31,43M x m x m N x n x n ⎧⎫
⎧⎫
=≤≤+=-
≤≤⎨⎬⎨⎬⎩⎭
⎩⎭
,且M N 、都是集合{}01x x ≤≤的子集,如果把b a -叫做集合{}x a x b ≤≤的“长度”,那么集合M N 的
长度的最小值是 。
16. 已知集合{
}
2
0A x x x m =++=,若A
R φ=,则实数m 的取值范围是 。
17.设全集{}
{}{}2
2,3,23,2,,5U U a a A b C A =+-==,则a = ,b = 。
18. 如图,全集为 , , , 均为 的子集,那么阴影部分表示的集
合是_________.
19. 已知三个元素的集合 ,
,如果
,那么
的
值为 .
20. 设全集为Z , ,
,则
与
的关系
是 .
答案
二、填空题答案
1.{(x,y)0=⋅y x } 2.0,2± 3.{x 2<x ,或x ≥3} 4. 0或 1 5.φ,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c};除去{a,b,c}外所有子集;除去φ及{a,b,c}外的所有子集 6.{2,3};{(2,3)} 7.{2
1
1≤
≤-k k } 8.{1,5,9,11} 9. 2 10.(1) (A ⋃B ));(B A C u ⋂⋂(2)[(C U A )⋂(C U B )]C ⋂;(3)(A ⋂B )⋂(C U C ) 11. 4,1- 12.{}4,3,0,1,2-- 13. 9 14. {}
19.x x -≤≤ 15. 112 16. 14
m >
17. 24,3a b =-=或 18. (
) 19. 2- 20.。