备战高考--高中数学平面向量知识点总结

合集下载

平面向量复习基本知识点及结论总结

平面向量复习基本知识点及结论总结

平面向量复习基本知识点及结论总结平面向量是指在平面上具有大小和方向的量,用箭头表示。

平面向量有两个重要的基本运算:向量的加法和数乘。

1.平面向量的加法:-向量的加法满足交换律:A+B=B+A-向量的加法满足结合律:(A+B)+C=A+(B+C)-零向量的性质:对于任意向量A,有A+0=0+A=A-负向量的性质:对于任意向量A,有A+(-A)=02.平面向量的数乘:-数乘的分配律:k(A+B)=kA+kB-数乘的结合律:(k+m)A=kA+mA- 数乘的分配律:k(lmA)= (klm)A-零向量的数乘:0A=03.平面向量的基本性质和结论:-平行向量:若存在非零实数k,使得A=kB,称向量A与向量B平行。

-相等向量:若AB,CD是向量,则A=C,B=D,则称向量AB和CD相等。

-相反向量:若AB是向量,则存在一个向量BA,满足AB+BA=0,称向量BA是向量AB的相反向量。

-向量共线:若有两个不共线的向量AB和CD,如果存在非零实数k,使得CD=kAB,则称向量CD与向量AB共线。

-平移:若向量u等于向量a加上向量b,即u=a+b,则向量u和向量a平行。

4.向量的模:-向量的模表示向量的长度,通常用,A,表示,它的计算公式为,A,=√(x²+y²),其中(x,y)是向量A的坐标。

5.向量的共线与垂直:-向量共线:若向量A与向量B不为零向量且存在非零实数k,使得A=kB,则称向量A与向量B共线。

-向量垂直:若点A的坐标(x₁,y₁)和点B的坐标(x₂,y₂)满足x₁x₂+y₁y₂=0,则称向量AB垂直。

6.单位向量与方向角:-单位向量:向量长度为1的向量称为单位向量。

-方向角:向量与x轴的夹角称为它的方向角,用θ表示。

以上是平面向量的基本知识点和结论的总结,掌握这些知识可以帮助我们进行平面向量的运算、证明和推断。

为了更好地理解和应用平面向量,需要进行大量的练习和实践。

高中平面向量知识点总结

高中平面向量知识点总结

高中平面向量知识点总结引言:平面向量是解决几何问题中常用的数学工具之一。

在高中数学课程中,平面向量的概念和性质被广泛学习和应用。

下面将对高中平面向量的知识点进行总结,以加深对该内容的理解和应用。

一、平面向量的定义和表示法平面向量是有大小和方向的量,通常表示为带箭头的有向线段。

向量的大小称为模,表示为|v|,方向可以用角度或者与坐标轴的夹角表示。

在坐标系中,我们可以使用有序数对(x, y)来表示向量。

二、平面向量的运算1. 向量的加法和减法:向量的加法和减法可以分别用三角形法则和平行四边形法则进行计算。

具体来说,向量A + 向量B等于以向量A和向量B为边的三角形的第三边,而向量A - 向量B等于以向量A和向量B为对角线的平行四边形的对角线。

2. 向量的数量乘法:向量的数量乘法指的是将向量的大小与一个实数相乘。

具体来说,给定向量A和实数k,kA等于以向量A的起点为端点,且长度为|k|倍的向量。

3. 向量的点积和叉积:向量的点积和叉积是向量运算中的两种重要形式。

向量的点积表示为A·B,计算公式为A·B = |A||B|cosθ,其中θ为A和B之间的夹角。

向量的点积满足交换律和分配律。

向量的叉积表示为A×B,计算公式为A×B = |A||B|sinθn,其中θ为A和B之间的夹角,n为单位法向量。

向量的叉积具有反交换律和分配律。

三、向量的共线性和垂直性1. 向量的共线性:给定两个非零向量A和B,如果存在一个实数k,使得A=kB,那么向量A和向量B共线。

2. 向量的垂直性:给定两个非零向量A和B,如果A·B=0,那么向量A和向量B垂直。

该性质可以用来解决垂直向量的判断和运算问题。

四、向量在平面几何中的应用1. 平面向量与平移:平面向量的加法和减法可以用于描述平移过程。

给定向量a表示原点O到点A的位移向量,那么点B的坐标可以表示为B = A + a。

同样地,如果我们知道点A和点B的坐标,那么向量AB的坐标可以表示为AB = B - A。

高中数学平面向量知识点归纳总结

高中数学平面向量知识点归纳总结

高中数学平面向量知识点归纳总结
1. 平面向量的定义
平面向量是具有大小和方向的有序数对,可以用箭头表示。


用字母表示向量,如a、b等。

向量的大小可以用模表示,记作|a|。

2. 平面向量的运算
2.1 向量的加法
向量的加法是指将两个向量按照相同的方向连接起来,得到一
个新的向量。

加法满足交换律和结合律。

2.2 向量的减法
向量的减法是指将两个向量相加的相反向量相加,得到一个新
的向量。

2.3 向量的数量积
向量的数量积(点积)是指两个向量相乘后的数量,用点表示,记作a · b。

数量积满足交换律和分配律。

2.4 向量的向量积
向量的向量积(叉积)是指两个向量相乘后的向量,用叉表示,记作a × b。

3. 平面向量的性质
3.1 平行向量
如果两个向量的方向相同或相反,则它们是平行向量。

平行向
量的数量积等于两个向量的模的乘积。

3.2 垂直向量
如果两个向量的数量积为0,则它们是垂直向量。

垂直向量的
点积为0。

3.3 向量的模
向量的模表示向量的大小,可以使用勾股定理求解。

4. 平面向量的应用
平面向量在几何中有广泛的应用,可以用来表示平移、旋转和
线段的位置关系等。

在物理学中,平面向量可以用来表示力的大小
和方向。

以上是关于高中数学平面向量的基本知识点归纳总结。

希望能够对你的学习和理解有所帮助!。

(完整版)平面向量知识点总结(精华)

(完整版)平面向量知识点总结(精华)

平面向量基础知识复习必修4 平面向量知识点小结一、向量的基本概念1.向量的概念:既有大小又有方向的量,注意向量和数量的区别.向量常用有向线段来表示.注意:不能说向量就是有向线段,为什么? 提示:向量可以平移.举例1 已知(1,2)A ,(4,2)B ,则把向量AB u u u r按向量(1,3)a =-r 平移后得到的向量是_____. 结果:(3,0)2.零向量:长度为0的向量叫零向量,记作:0r,规定:零向量的方向是任意的;3.单位向量:长度为一个单位长度的向量叫做单位向量(与AB u u u r共线的单位向量是||AB AB ±u u u ru u u r );4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;5.平行向量(也叫共线向量):方向相同或相反的非零向量a r、b r 叫做平行向量,记作:a r∥b r ,规定:零向量和任何向量平行.注:①相等向量一定是共线向量,但共线向量不一定相等; ②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0r );④三点A B C 、、共线 AB AC ⇔u u u r u u u r、共线.6.相反向量:长度相等方向相反的向量叫做相反向量.a r的相反向量记作a -r.举例2 如下列命题:(1)若||||a b =r r ,则a b =rr .(2)两个向量相等的充要条件是它们的起点相同,终点相同.(3)若AB DC =u u u r u u u u r,则ABCD 是平行四边形.(4)若ABCD 是平行四边形,则AB DC =u u u r u u u u r.(5)若a b =rr ,b c =r r ,则a c =r r .(6)若//a b r r ,//b c r r 则//a c r r.其中正确的是 . 结果:(4)(5) 二、向量的表示方法1.几何表示:用带箭头的有向线段表示,如AB u u u r,注意起点在前,终点在后;平面向量基础知识复习2.符号表示:用一个小写的英文字母来表示,如a r ,b r ,c r等;3.坐标表示:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量,i j r r 为基底,则平面内的任一向量a r可表示为(,)a xi yj x y =+=r r r ,称(,)x y 为向量a r 的坐标,(,)a x y =r 叫做向量a r的坐标表示.结论:如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同.三、平面向量的基本定理定理 设12,e e r r 同一平面内的一组基底向量,a r是该平面内任一向量,则存在唯一实数对12(,)λλ,使1122a e e λλ=+r r r.(1)定理核心:1122a λe λe =+r r r;(2)从左向右看,是对向量a r 的分解,且表达式唯一;反之,是对向量a r 的合成.(3)向量的正交分解:当12,e e r r 时,就说1122a λe λe =+r r r为对向量a r 的正交分解.举例3 (1)若(1,1)a =r ,(1,1)b =-r ,(1,2)c =-r ,则c =r . 结果:1322a b -rr . (2)下列向量组中,能作为平面内所有向量基底的是 BA.1(0,0)e =r ,2(1,2)e =-r B.1(1,2)e =-r ,2(5,7)e =r C.1(3,5)e =r ,2(6,10)e =r D.1(2,3)e =-r,213,24e ⎛⎫=- ⎪⎝⎭r (3)已知,AD BE u u u r u u u r 分别是ABC △的边BC ,AC 上的中线,且AD a =u u u r r ,BE b =u u u r r ,则BCu u u r可用向量,a b r r 表示为 . 结果:2433a b +rr . (4)已知ABC △中,点D 在BC 边上,且2CD DB =u u u r u u u r ,CD rAB sAC =+u u u r u u u r u u u r,则r s +=的值是 . 结果:0. 四、实数与向量的积实数λ与向量a r 的积是一个向量,记作a λr,它的长度和方向规定如下:(1)模:||||||a a λλ=⋅r r;(2)方向:当0λ>时,a λr 的方向与a r 的方向相同,当0λ<时,a λr的方向与a r的方向相反,当0λ=时,0a λ=r r ,注意:0a λ≠r .五、平面向量的数量积1.两个向量的夹角:对于非零向量a r,b r ,作OA a =u u u r r ,OB b =u u u r r ,则把(0)AOB θθπ∠=≤≤称为向量a r,b r 的夹角.当0θ=时,a r ,b 同向;当θπ=时,a r ,b 反向;当2πθ=时,a r,b 垂直.2.平面向量的数量积:如果两个非零向量a r,b r ,它们的夹角为θ,我们把数量||||cos a b θr r 叫做a r与b r 的数量积(或内积或点积),记作:a b ⋅r r ,即||||cos a b a b θ⋅=⋅r r r r.规定:零向量与任一向量的数量积是0.注:数量积是一个实数,不再是一个向量.举例4 (1)ABC △中,||3AB =u u u r ,||4AC =u u u r ,||5BC =u u u r ,则AB BC ⋅=u u u r u u u r_________. 结果:9-.(2)已知11,2a ⎛⎫= ⎪⎝⎭r ,10,2b ⎛⎫=- ⎪⎝⎭r ,c a kb =+r r r ,d a b =-r r r ,c r 与d r 的夹角为4π,则k = ____. 结果:1.(3)已知||2a =r ,||5b =r ,3a b ⋅=-rr ,则||a b +=r r ____. (4)已知,a b r r 是两个非零向量,且||||||a b a b ==-r r r r ,则a r 与a b +rr 的夹角为____. 结果:30o.3.向量b r 在向量a r上的投影:||cos b θr ,它是一个实数,但不一定大于0.举例 5 已知||3a =r ,||5b =r ,且12a b ⋅=rr ,则向量a r 在向量b r 上的投影为______. 结果:125. 4.a b ⋅r r 的几何意义:数量积a b ⋅r r 等于a r 的模||a r 与b r在a r上的投影的积.5.向量数量积的性质:设两个非零向量a r,b r ,其夹角为θ,则:(1)0a b a b ⊥⇔⋅=r rr r ;(2)当a r、b r 同向时,||||a b a b ⋅=⋅r r r r ,特别地,22||||aa a a a =⋅=⇔=r r r r r ||||ab a b ⋅=⋅r r r r 是a r、b r 同向的充要分条件;当a r 、b r 反向时,||||ab a b ⋅=-⋅r r r r ,||||a b a b ⋅=-⋅r r r r 是a r、b r 反向的充要分条件;当θ为锐角时,0a b ⋅>r r ,且a r、b r 不同向,0a b ⋅>r r 是θ为锐角的必要不充分条件;当θ为钝角时,0a b ⋅<r r ,且a r、b r 不反向;0a b ⋅<r r 是θ为钝角的必要不充分条件.(3)非零向量a r,b r 夹角θ的计算公式:cos ||||a b a b θ⋅=r r r r ;④||||a b a b ⋅≤r r r r . 举例6 (1)已知(,2)aλλ=r ,(3,2)b λ=r ,如果a r与b r 的夹角为锐角,则λ的取值范围是______. 结果:43λ<-或0λ>且13λ≠;(2)已知OFQ △的面积为S ,且1OF FQ ⋅=u u u r u u u r ,若12S <,则OF u u u r ,FQ u u u r 夹角θ的取值范围是_________. 结果:,43ππ⎛⎫⎪⎝⎭; (3)已知(cos ,sin )a x x =r ,(cos ,sin )b y y =r ,且满足|||ka b a kb +-r r r r(其中0k >).①用k 表示a b ⋅r r ;②求a b ⋅rr 的最小值,并求此时a r 与b r 的夹角θ的大小.结果:①21(0)4k a b k k +⋅=>r r ;②最小值为12,60θ=o. 六、向量的运算1.几何运算 (1)向量加法运算法则:①平行四边形法则;②三角形法则.运算形式:若AB a =u u u r r ,BC b =u u u r r ,则向量AC u u u r 叫做a r与b r 的和,即a b AB BC AC +=+=u u ur u u u r u u u r r r ;作图:略.注:平行四边形法则只适用于不共线的向量. (2)向量的减法运算法则:三角形法则.运算形式:若AB a =u u u r r ,AC b =u u u r r ,则a b AB AC CA -=-=u u ur u u u r u u u r r r ,即由减向量的终点指向被减向量的终点.作图:略.注:减向量与被减向量的起点相同.举例7 (1)化简:①AB BC CD ++=u u u r u u u r u u u r ;②AB AD DC --=u u u r u u u r u u u u r;③()()AB CD AC BD ---=u u u r u u u r u u u r u u u r . 结果:①AD u u u r ;②CB u u u r ;③0r;(2)若正方形ABCD 的边长为1,AB a =u u u r r ,BC b =u u u r r ,AC c =u u u r r ,则||a b c ++=r r r. 结果:(3)若O 是ABC △所在平面内一点,且满足2OB OC OB OC OA -=+-u u u r u u u r u u u r u u u r u u u r,则ABC △的形状为. 结果:直角三角形;(4)若D 为ABC △的边BC 的中点,ABC △所在平面内有一点P ,满足0PA BP CP ++=u u u r u u u r u u u r r ,设||||AP PD λ=u u u ru u u r ,则λ的值为 . 结果:2; (5)若点O 是ABC △的外心,且0OA OB CO ++=u u u r u u u r u u u r r,则ABC △的内角C 为 . 结果:120o.2.坐标运算:设11(,)a x y =r,22(,)b x y =r ,则(1)向量的加减法运算:1212(,)a b x x y y +=++r r ,1212(,)a b x x y y -=--r r . 举例8 (1)已知点(2,3)A ,(5,4)B ,(7,10)C ,若()AP AB AC λλ=+∈R u u u r u u u r u u u r,则当λ=____时,点P 在第一、三象限的角平分线上. 结果:12;(2)已知(2,3)A ,(1,4)B ,且1(sin ,cos )2AB x y =u u u r ,,(,)22x y ππ∈-,则x y += .结果:6π或2π-; (3)已知作用在点(1,1)A 的三个力1(3,4)F =u u r ,2(2,5)F =-u u r ,3(3,1)F =u u r,则合力123F F F F =++u u r u u r u u r u u r的终点坐标是 . 结果:(9,1).(2)实数与向量的积:1111(,)(,)a x y x y λλλλ==r.(3)若11(,)A x y ,22(,)B x y ,则2121(,)AB x x y y =--u u u r,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标.举例9 设(2,3)A ,(1,5)B -,且13AC AB =u u u r u u u r,3AD AB =u u u r u u u r ,则,C D 的坐标分别是__________. 结果:11(1,),(7,9)3-. (4)平面向量数量积:1212a b x x y y ⋅=+rr .举例10 已知向量(sin ,cos )a x x =r ,(sin ,sin )b x x =r ,(1,0)c =-r.(1)若3x π=,求向量a r 、c r的夹角; (2)若3[,]84x ππ∈-,函数()f x a b λ=⋅r r 的最大值为12,求λ的值.结果:(1)150o;(2)12或1.(5)向量的模:2222||||aa x y a ==+⇔=r r r举例11 已知,a b rr 均为单位向量,它们的夹角为60o,那么|3|a b +=r r = .结果:(6)两点间的距离:若11(,)A x y ,22(,)B x y,则||AB =举例12 如图,在平面斜坐标系xOy 中,xOy ∠=P 关于斜坐标系的斜坐标是这样定义的:若12OP xe ye =+u u u r r r ,其中12,e e r ry 轴同方向的单位向量,则P 点斜坐标为(,)x y .(1)若点P 的斜坐标为(2,2)-,求P 到O 的距离||PO ;(2)求以O 为圆心,1为半径的圆在斜坐标系xOy 中的方程. 结果:(1)2;(2)2210x y xy ++-=. 七、向量的运算律1.交换律:a b b a +=+r r r r ,()()a a λμλμ=r r,a b b a ⋅=⋅r r r r ;2.结合律:()ab c a b c ++=++r r r r r r ,()a b c a b c --=-+r r r r r r ,()()()a b a b a b λλλ=⋅=⋅r r r r r r; 3.分配律:()a a a λμλμ+=+r r r,()a b a b λλλ+=+r r r r ,()a b c a c b c +⋅=⋅+⋅r r r r r r r .举例13 给出下列命题:① ()a b c a b a c ⋅-=⋅-⋅r r r r r r r ;② ()()a b c a b c ⋅⋅=⋅⋅r r r r r r;③222()||2||||||a b a a b b -=-+r rr r r r ;④ 若0a b ⋅=rr ,则0a =r r 或0b =r r ;⑤若a b c b ⋅=⋅r r r r 则a c=r r ;⑥22||a a =r r ;⑦2a b b a a⋅=r r r r r ;⑧222()a b a b ⋅=⋅r r r r ;⑨222()2a b a a b b -=-⋅+r r rr r r .其中正确的是 . 结果:①⑥⑨. 说明:(1)向量运算和实数运算有类似的地方也有区别:对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量,切记两向量不能相除(相约);(2)向量的“乘法”不满足结合律,即()()a b c a b c ⋅⋅≠⋅⋅r r r r r r,为什么? 八、向量平行(共线)的充要条件221212//()(||||)0a b a b a b a b x y y x λ⇔⇔⋅=⇔-=r r r rr r r r .举例14 (1)若向量(,1)a x =r ,(4,)b x =r ,当x =_____时,a r 与b r 共线且方向相同. 结果:2.(2)已知(1,1)a =r ,(4,)b x =r ,2u a b =+r r r ,2v a b =+rr r ,且//u v r r ,则x = . 结果:4.(3)设(,12)PA k =u u u r ,(4,5)PB =u u u r ,(10,)PC k =u u u r,则k = _____时,,,A B C 共线. 结果:2-或11.九、向量垂直的充要条件12120||||0a b a b a b a b x x y y ⊥⇔⋅=⇔+=-⇔+=r r r rr r r r .特别地||||||||AB AC AB AC AB AC AB AC ⎛⎫⎛⎫+⊥- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r . 举例15 (1)已知(1,2)OA =-u u u r ,(3,)OB m =u u u r ,若OA OB ⊥u u u r u u u r,则m = .结果:32m =; (2)以原点O 和(4,2)A 为两个顶点作等腰直角三角形OAB ,90B ∠=︒,则点B 的坐标是 .结果:(1,3)或(3,-1));(3)已知(,)n a b =r 向量n m ⊥r r ,且||||n m =r r ,则m=r 的坐标是 .结果:(,)b a -或(,)b a -.十、线段的定比分点1.定义:设点P 是直线12PP 上异于1P 、2P 的任意一点,若存在一个实数λ ,使12PP PP λ=u u u r u u u r,则实数λ叫做点P 分有向线段12P P u u u u r 所成的比λ,P 点叫做有向线段12P P u u u u r 的以定比为λ的定比分点.2.λ的符号与分点P 的位置之间的关系(1)P 内分线段12P P u u u u r,即点P 在线段12PP 上0λ⇔>;(2)P 外分线段12P P u u u u r时,①点P 在线段12PP 的延长线上1λ⇔<-,②点P 在线段12PP 的反向延长线上10λ⇔-<<.注:若点P 分有向线段12PP u u u u r 所成的比为λ,则点P 分有向线段21P P u u u u r所成的比为1λ.举例16 若点P 分AB u u u r 所成的比为34,则A 分BP u u u r所成的比为 . 结果:73-. 3.线段的定比分点坐标公式:设111(,)P x y ,222(,)P x y ,点(,)P x y 分有向线段12P P u u u u r所成的比为λ,则定比分点坐标公式为1212,1(1).1x x x y y y λλλλλ+⎧=⎪⎪+≠-⎨+⎪=⎪+⎩. 特别地,当1λ=时,就得到线段12PP 的中点坐标公式1212,2.2x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩ 说明:(1)在使用定比分点的坐标公式时,应明确(,)x y ,11(,)x y 、22(,)x y 的意义,即分别为分点,起点,终点的坐标.(2)在具体计算时应根据题设条件,灵活地确定起点,分点和终点,并根据这些点确定对应的定比λ.举例17 (1)若(3,2)M --,(6,1)N -,且13MP MN =-u u u u r u u u ur ,则点P 的坐标为 . 结果:7(6,)3--; (2)已知(,0)A a ,(3,2)B a +,直线12y ax =与线段AB 交于M ,且2AM MB =u u u u r u u u u r,则a =r. 结果:2或4-. 十一、平移公式如果点(,)P x y 按向量(,)a h k =r 平移至(,)P x y '',则,.x x h y y k '=+⎧⎨'=+⎩;曲线(,)0f x y =按向量(,)a h k =r平移得曲线(,)0f x h y k --=.说明:(1)函数按向量平移与平常“左加右减”有何联系?(2)向量平移具有坐标不变性,可别忘了啊!举例18 (1)按向量a r 把(2,3)-平移到(1,2)-,则按向量a r 把点(7,2)-平移到点______. 结果:(8,3)-;(2)函数sin 2y x =的图象按向量a r 平移后,所得函数的解析式是cos21y x =+,则a =r ________. 结果:(,1)4π-. 十二、向量中一些常用的结论1.一个封闭图形首尾连接而成的向量和为零向量,要注意运用;2.模的性质:||||||||||a b a b a b -≤+≤+r r r r r r.平面向量基础知识复习(1)右边等号成立条件: a b r r 、同向或 a b r r 、中有0r ||||||a b a b ⇔+=+r r ;(2)左边等号成立条件: a b r r 、反向或 a b r r 、中有0r ||||||a b a b ⇔-=+r r r r;(3)当 a b r r 、不共线||||||||||a b a b a b ⇔-<+<+r r r r r r.3.三角形重心公式 在ABC △中,若11(,)A x y ,22(,)B x y ,33(,)C x y ,则其重心的坐标为123123(,)33x x x y y y G ++++. 举例19 若ABC △的三边的中点分别为(2,1)A 、(3,4)B -、(1,1)C --,则ABC △的重心的坐标为 .结果:24,33⎛⎫- ⎪⎝⎭. 5.三角形“三心”的向量表示(1)1()3PG PA PB PC G =++⇔u u u r u u u r u u u r u u u r为△ABC 的重心,特别地0PA PB PC G++=⇔u u u r u u u r u u u r r 为△ABC 的重心.(2)PA PB PB PC PC PA P ⋅=⋅=⋅⇔u u u r u u u ru u u r u u u ru u u r u u u r为△ABC 的垂心.(3)||||||0AB PC BC PA CA PB P ++=⇔u u u u r u u u r u u u u r u u u r u u u u r u u u r为△ABC 的内心;向量(0)||||AB AC AB AC λλ⎛⎫+≠ ⎪ ⎪⎝⎭u u u r u u u ru u u u r u u u u r 所在直线过△ABC 的内心. 6.点P 分有向线段12P P u u u u r所成的比λ向量形式设点P 分有向线段12P P u u u u r所成的比为λ,若M 为平面内的任一点,则121MP MPMP λλ+=+u u u u r u u u u r u u u r ,特别地P 为有向线段12P P u u u u r 的中点122MP MPMP +⇔=u u u u r u u u u ru u u r .7. 向量,,PA PB PC u u u r u u u r u u u r中三终点,,A B C 共线⇔存在实数,αβ,使得PA PB PC αβ=+u u u r u u u r u u u r且1αβ+=.举例20 平面直角坐标系中,O 为坐标原点,已知两点(3,1)A ,(1,3)B -,若点C 满足12OC OA OB λλ=+u u u r u u u r u u u r,其中12,λλ∈R 且121λλ+=,则点C 的轨迹是 . 结果:直线AB .。

(完整版)高中数学平面向量知识点总结

(完整版)高中数学平面向量知识点总结

高中数学必修4之平面向量知识点归纳一.向量的基本概念与基本运算1、向量的概念:①向量:既有大小又有方向的量向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行③单位向量:模为1个单位长度的向量④平行向量(共线向量):方向相同或相反的非零向量⑤相等向量:长度相等且方向相同的向量2、向量加法:设,ABa BCb uu u ru uu r r r ,则a +b r =AB BC u u u r u u u r =ACuu u r (1)a a a 00;(2)向量加法满足交换律与结合律;AB BCCDPQQRAR u u u r u u u r u uu r u u u r u u u r u u u rL,但这时必须“首尾相连”.3、向量的减法:①相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量②向量减法:向量a 加上b 的相反向量叫做a 与b 的差,③作图法:b a可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点)4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下:(Ⅰ)a a ;(Ⅱ)当0时,λa 的方向与a 的方向相同;当时,λa 的方向与a 的方向相反;当0时,0a,方向是任意的5、两个向量共线定理:向量b 与非零向量a 共线有且只有一个实数,使得b =a6、平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21,使:2211e ea,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底二.平面向量的坐标表示1平面向量的坐标表示:平面内的任一向量a r可表示成axi yj r rr ,记作a r=(x,y)。

2平面向量的坐标运算:(1)若1122,,,ax y bx y rr ,则1212,a bx x y y r r (2)若2211,,,y x B y x A ,则2121,AB x x y y u u u r(3)若a r =(x,y),则a r =(x, y)(4)若1122,,,a x y b x y r r ,则1221//0a b x y x y rr (5)若1122,,,ax y bx y rr ,则1212a bx x y y r r 若ab rr ,则02121y y x x 三.平面向量的数量积1两个向量的数量积:已知两个非零向量a r 与b r,它们的夹角为,则a r ·b r =︱a r︱·︱b r ︱cos 叫做a r与b r 的数量积(或内积)规定00ar r 2向量的投影:︱b r ︱cos =||a b a r r r ∈R ,称为向量b r 在a r方向上的投影投影的绝对值称为射影3数量积的几何意义:a r ·b r 等于a r 的长度与b r 在a r方向上的投影的乘积4向量的模与平方的关系:22||a a a a r r r r 5乘法公式成立:2222a b ab a b a b r r r r r r r r ;2222abaa bb r r r r r r 222aa bbr r r r 6平面向量数量积的运算律:①交换律成立:a bb arr r r ②对实数的结合律成立:a b a b a bRr r r r r r ③分配律成立:abca cb c r r r r r r r ca br r r 特别注意:(1)结合律不成立:ab ca b c r r r r r r ;(2)消去律不成立a ba cr r r r 不能得到bc rr (3)a b r r =0不能得到a r =0r或b r =0r 7两个向量的数量积的坐标运算:已知两个向量1122(,),(,)ax y b x y rr,则a r ·b r=1212x x y y 8向量的夹角:已知两个非零向量a r与b r ,作OA u u u r =a r , OB uuu r =b r ,则∠AOB=(01800)叫做向量a r 与b r 的夹角cos =cos,a b a ba b??r r r r r r =222221212121y x y x y y x x 当且仅当两个非零向量a r 与b r 同方向时,θ=00,当且仅当a r与b r 反方向时θ=1800,同时0r与其它任何非零向量之间不谈夹角这一问题9垂直:如果a r 与b r 的夹角为900则称a r 与b r 垂直,记作a r⊥br 10两个非零向量垂直的充要条件:a ⊥ba ·b =O02121y y x x 平面向量数量积的性质一、选择题1.在△ABC 中,AB =AC ,D ,E 分别是AB ,AC 的中点,则().A .AB 与AC 共线B .DE 与CB 共线C .AD 与AE 相等D .AD 与BD 相等2.下列命题正确的是().A .向量AB 与BA 是两平行向量B .若a ,b 都是单位向量,则a =bC .若AB =DC ,则A ,B ,C ,D 四点构成平行四边形D .两向量相等的充要条件是它们的始点、终点相同3.平面直角坐标系中,O 为坐标原点,已知两点A(3,1),B(-1,3),若点C满足OC =OA +OB ,其中,∈R ,且+=1,则点C 的轨迹方程为().A .3x +2y -11=0B .(x -1)2+(y -1)2=5C .2x -y =0D .x +2y -5=04.已知a 、b 是非零向量且满足(a -2b)⊥a ,(b -2a)⊥b ,则a 与b 的夹角是A .6B .3C .23D .565.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则AP =A .λ(AB +AD ),λ∈(0,1)B .λ(AB +BC ),λ∈(0,22)C .λ(AB -AD ),λ∈(0,1)D .λ(AB -BC ),λ∈(0,22)6.△ABC 中,D ,E ,F 分别是AB ,BC ,AC 的中点,则DF =().(第1题)A.EF+ED B.EF-DE C.EF+AD D.EF+AF7.若平面向量a与b的夹角为60°,|b|=4,(a+2b)·(a-3b)=-72,则向量a的模为().A.2 B.4 C.6 D.128.点O是三角形ABC所在平面内的一点,满足OA·OB=OB·OC=OC·OA,则点O是△ABC的().A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点9.在四边形ABCD中,AB=a+2b,BC=-4a-b,DC=-5a-3b,其中a,b不共线,则四边形ABCD为().A.平行四边形B.矩形C.梯形D.菱形10.如图,梯形ABCD中,|AD|=|BC|,EF∥AB∥CD则相等向量是().A.AD与BC B.OA与OBC.AC与BD D.EO与OF二、填空题11.已知向量OA=(k,12),OB=(4,5),OC=(-k,10),且A,B,C三点共线,则k=.12.已知向量a=(x+3,x2-3x-4)与MN相等,其中M(-1,3),N(1,3),则x=.13.已知平面上三点A,B,C满足|AB|=3,|BC|=4,|CA|=5,则AB·BC +BC·CA+CA·AB的值等于.14.给定两个向量a=(3,4),b=(2,-1),且(a+mb)⊥(a-b),则实数m 等于.15.已知A,B,C三点不共线,O是△ABC内的一点,若OA+OB+OC=0,则O是△ABC的.16.设平面内有四边形ABCD和点O,OA=a,OB=b,OC=c, OD=d,若a+c=b+d,则四边形ABCD的形状是.三、解答题17.已知点A(2,3),B(5,4),C(7,10),若点P满足AP=AB+λAC(λ∈R),试求λ为何值时,点P在第三象限内?(第10题)18.如图,已知△ABC,A(7,8),B(3,5),C(4,3),M,N,D分别是AB,AC,BC的中点,且MN与AD交于F,求DF.(第18题)19.如图,在正方形ABCD中,E,F分别为AB,BC的中点,求证:AF⊥DE(利用向量证明).(第19题) 20.已知向量a=(cos θ,sin θ),向量b=(3,-1),则|2a-b|的最大值.一、选择题1.B 解析:如图,AB 与AC ,AD 与AE 不平行,AD 与BD 共线反向.2.A解析:两个单位向量可能方向不同,故B 不对.若AB =DC ,可能A ,B ,C ,D 四点共线,故C 不对.两向量相等的充要条件是大小相等,方向相同,故D 也不对.3.D解析:提示:设OC =(x ,y),OA =(3,1),OB =(-1,3),OA =(3,),OB =(-,3),又OA +OB =(3-,+3),∴(x ,y)=(3-,+3),∴33+=-=y x ,又+=1,由此得到答案为D .4.B解析:∵(a -2b)⊥a ,(b -2a)⊥b ,∴(a -2b)·a =a 2-2a ·b =0,(b -2a)·b =b 2-2a ·b =0,∴a 2=b 2,即|a|=|b|.∴|a|2=2|a||b|cos θ=2|a|2cos θ.解得cos θ=21.∴a 与b 的夹角是3π.5.A解析:由平行四边形法则,AB +AD =AC ,又AB +BC =AC ,由λ的范围和向量数乘的长度,λ∈(0,1).6.D解析:如图,∵AF =DE ,∴DF =DE +EF =EF +AF .7.C解析:由(a +2b)·(a -3b)=-72,得a 2-a ·b -6b 2=-72.而|b|=4,a ·b =|a||b|cos 60°=2|a|,∴|a|2-2|a|-96=-72,解得|a|=6.8.D 解析:由OA ·OB =OB ·OC =OC ·OA ,得OA ·OB =OC ·OA ,即OA ·(OC -OB )=0,故BC ·OA =0,BC ⊥OA ,同理可证AC ⊥OB ,∴O 是△ABC 的三条高的交点.9.C解析:∵AD =AB +BC +D C =-8a -2b =2BC ,∴AD ∥BC 且|AD |≠|BC |.∴四边形ABCD 为梯形.10.D解析:AD 与BC ,AC 与BD ,OA 与OB 方向都不相同,不是相等向量.(第1题)二、填空题11.-32.解析:A ,B ,C 三点共线等价于AB ,BC 共线,AB =OB -OA =(4,5)-(k ,12)=(4-k ,-7),BC =OC -OB =(-k ,10)-(4,5)=(-k -4,5),又A ,B ,C 三点共线,∴5(4-k)=-7(-k -4),∴k =-32.12.-1.解析:∵M(-1,3),N(1,3),∴MN =(2,0),又a =MN ,∴=4-3-2=3+2x x x 解得4=1=-1=-x x x 或∴x =-1.13.-25.解析:思路1:∵AB =3,BC =4,CA =5,∴△ABC 为直角三角形且∠ABC =90°,即AB ⊥BC ,∴AB ·BC =0,∴AB ·BC +BC ·CA +CA ·AB=BC ·CA +CA ·AB =CA ·(BC +AB )=-(CA )2=-2CA =-25.思路2:∵AB =3,BC =4,CA =5,∴∠ABC =90°,∴cos ∠CAB =CAAB =53,cos ∠BCA =CABC=54.根据数积定义,结合图(右图)知AB ·BC =0,BC ·CA =BC ·CA cos ∠ACE =4×5×(-54)=-16,CA ·AB =CA ·AB cos ∠BAD =3×5×(-53)=-9.∴AB ·BC +BC ·CA +CA ·AB =0―16―9=-25.14.323.解析:a +mb =(3+2m ,4-m),a -b =(1,5).∵(a +mb)⊥(a -b),∴ (a +mb)·(a -b)=(3+2m)×1+(4-m)×5=0m =323.15.答案:重心.解析:如图,以OA ,OC 为邻边作□AOCF交AC 于点E ,则OF =OA +OC ,又OA +OC =-OB ,(第15题)D(第13题)∴OF =2OE =-OB .O 是△ABC 的重心.16.答案:平行四边形.解析:∵a +c =b +d ,∴a -b =d -c ,∴BA =CD .∴四边形ABCD 为平行四边形.三、解答题17.λ<-1.解析:设点P 的坐标为(x ,y),则AP =(x ,y)-(2,3)=(x -2,y -3).AB +λAC =(5,4)-(2,3)+λ[(7,10)-(2,3)]=(3,1)+λ(5,7)=(3+5λ,1+7λ).∵AP =AB +λAC ,∴ (x -2,y -3)=(3+5λ,1+7λ).∴713532yx 即7455yx 要使点P 在第三象限内,只需74055解得λ<-1.18.DF =(47,2).解析:∵A(7,8),B(3,5),C (4,3),AB =(-4,-3),AC =(-3,-5).又D 是BC 的中点,∴AD =21(AB +AC )=21(-4-3,-3-5)=21(-7,-8)=(-27,-4).又M ,N 分别是AB ,AC 的中点,∴F 是AD 的中点,∴DF =-FD =-21AD =-21(-27,-4)=(47,2).19.证明:设AB =a ,AD =b ,则AF =a +21b ,ED =b -21a .∴AF ·ED =(a +21b)·(b -21a)=21b 2-21a 2+43a ·b .又AB ⊥AD ,且AB =AD ,∴a 2=b 2,a ·b =0.∴AF ·ED =0,∴AF ⊥ED .本题也可以建平面直角坐标系后进行证明.20.分析:思路1:2a -b =(2cos θ-3,2sin θ+1),∴|2a -b|2=(2cos θ-3)2+(2sin θ+1)2=8+4sin θ-43cos θ.又4sin θ-43cos θ=8(sin θcos3π-cos θsin3π)=8sin(θ-3π),最大值为8,∴|2a -b|2的最大值为16,∴|2a -b|的最大值为4.思路2:将向量2a ,b 平移,使它们的起点与原点重合,则|2a -b|表示2a ,b终点间的距离.|2a|=2,所以2a 的终点是以原点为圆心,2为半径的圆上的动点P ,b 的终点是该圆上的一个定点Q ,由圆的知识可知,|PQ|的最大值为直径的长为4.(第18题)(第19题)。

高中数学平面向量知识点总结

高中数学平面向量知识点总结

高中数学平面向量知识点总结一、平面向量的基本概念1. 定义:平面向量是有大小和方向的量,可以用有序实数对表示。

2. 表示法:通常用小写字母加箭头表示,如 $\vec{a}$。

3. 相等:两个向量大小相等且方向相同时,这两个向量相等。

4. 零向量:大小为零的向量,没有特定方向。

二、平面向量的运算1. 加法:- 规则:平行四边形法则或三角形法则。

- 交换律:$\vec{a} + \vec{b} = \vec{b} + \vec{a}$。

- 结合律:$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$。

2. 减法:- 规则:与加法类似,但方向相反。

- 逆向量:$\vec{a} - \vec{a} = \vec{0}$。

3. 数乘:- 定义:向量与实数相乘。

- 规则:$k\vec{a} = \vec{a}$ 的长度变为 $|k|$ 倍,方向与$k$ 的符号一致。

- 分配律:$(k + l)\vec{a} = k\vec{a} + l\vec{a}$。

- 结合律:$k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$。

三、平面向量的坐标表示1. 坐标表示:$\vec{a} = (x, y)$,其中 $x$ 和 $y$ 是向量在坐标轴上的分量。

2. 几何意义:$x$ 分量表示向量在 $x$ 轴上的长度,$y$ 分量表示向量在 $y$ 轴上的长度。

3. 坐标运算:- 加法:$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$。

- 减法:$(x_1, y_1) - (x_2, y_2) = (x_1 - x_2, y_1 - y_2)$。

- 数乘:$k(x, y) = (kx, ky)$。

四、平面向量的模与单位向量1. 模(长度):- 定义:向量从原点到其终点的距离。

(完整版)高中数学必修4平面向量知识点总结

(完整版)高中数学必修4平面向量知识点总结

高中数学必修 4 知识点总结平面向量知点一 .向量的基本看法与基本运算1向量的看法:①向量:既有大小又有方向的量向量一般用 a, b, c ⋯⋯来表示,或用有向段的起点与uuur uuurxi yj ( x, y)点的大写字母表示,如:AB 几何表示法AB ,a;坐表示法 a向uuur量的大小即向量的模(度),作 | AB | 即向量的大小,作|a|向量不可以比大小,但向量的模能够比大小.②零向量:度 0 的向量,0,其方向是随意的,0与随意愿量平行零向量 a =0|r ra |=0因为0的方向是随意的,且定0 平行于任何向量,故在有关向量平行(共)的中必看清楚能否有“非零向量” 个条件.(注意与 0 的区)③ 位向量:模 1 个位度的向量向量 a0位向量| a0|=1④平行向量(共向量):方向同样或相反的非零向量随意一平行向量都能够移到同一直上方向同样或相反的向量,称平行向量作a∥ b因为向量能够行随意的平移( 即自由向量 ) ,平行向量能够平移到同向来上,故平行向量也称共向量数学中研究的向量是自由向量,只有大小、方向两个因素,起点能够随意取,在必划分清楚共向量中的“共” 与几何中的“共”、的含,要理解好平行向量中的“平行”与几何中的“平行”是不一的.⑤相等向量:度相等且方向同样的向量相等向量平移后能够重合, a b 大x1x2小相等,方向同样(x1, y1 )(x2 , y2 )y1y22向量加法求两个向量和的运算叫做向量的加法uuur r uuur r r uuur uuur uuurAB a, BC b ,a+ b = AB BC =AC(1)0 a a 0 a ;(2)向量加法足交律与合律;向量加法有“三角形法”与“平行四形法”:(1)用平行四形法,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条角,而差向量是另一条角,方向是从减向量指向被减向量(2)三角形法的特色是“首尾相接” ,由第一个向量的起点指向最后一个向量的点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点当两个向量的起点公共时,用平行四边形法例;当两向量是首尾连结时,用三角形法例.向量加法的三角形法例可推行至多个向量相加:uuur AB uuurBCuuurCD LuuurPQuuurQRuuurAR ,但这时一定“首尾相连”.3 向量的减法①相反向量:与 a 长度相等、方向相反的向量,叫做记作 a ,零向量的相反向量还是零向量a 的相反向量对于相反向量有:( i)( a)= a;(ii) a +( a )=( a )+ a =0;(iii) 若a、b是互为相反向量,则 a = b , b= a , a +b= 0②向量减法:向量 a 加上b的相反向量叫做 a 与 b的差,记作: a b a ( b) 求两个向量差的运算,叫做向量的减法③作图法: a b 能够表示为从 b 的终点指向 a 的终点的向量( a 、 b 有共同起点)4实数与向量的积:①实数λ与向量 a 的积是一个向量,记作λ a ,它的长度与方向规定以下:(Ⅰ)a a;(Ⅱ)当0 时,λa 的方向与 a 的方向同样;当0 时,λa 的方向与 a 的方向相反;当0 时,a0 ,方向是随意的②数乘向量知足互换律、联合律与分派律5两个向量共线定理:向量 b 与非零向量 a 共线有且只有一个实数,使得b=a6平面向量的基本定理:假如e1 , e2是一个平面内的两个不共线向量,那么对这一平面内的任一直量 a ,有且只有一对实数 1 , 2 使:a1e1 2 e2 ,此中不共线的向量e1 , e2叫做表示这一平面内全部向量的一组基底7特别注意 :(1)向量的加法与减法是互逆运算(2)相等向量与平行向量有差别,向量平行是向量相等的必需条件(3)向量平行与直线平行有差别,直线平行不包含共线(即重合),而向量平行则包含共线(重合)的状况(4)向量的坐标与表示该向量的有向线条的始点、终点的详细地点没关,只与其相对地点有关学习本章主要建立数形转变和联合的看法,以数代形,以形观数,用代数的运算办理几何问题,特别是办理向量的有关地点关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量能否垂直等 因为向量是一新的工具,它常常会与三角函数、数列、不等式、解几等联合起来进行综合考察,是知识的交汇点例 1 给出以下命题:① 若 | r r r ra | = |b | ,则 a = b ;② 若 A ,B ,C ,D 是不共线的四点,则uuur uuur AB DC 是四边形 ABCD 为平行四边形的充要条件;r rr rr r ③ 若 a = b , b = c ,则 a = c ,rrrrr r④ a =b 的充要条件是 | a |=| b | 且 a // b ;r r r r r r⑤ 若 a // b , b // c ,则 a //c,此中正确的序号是解:①不正确.两个向量的长度相等,但它们的方向不必定同样.uuur uuur uuur uuur uuur uuur ② 正确.∵AB DC ,∴ | AB| |DC |且 AB// DC ,又 A ,B ,C ,D 是不共线的四点, ∴ 四边形 ABCD 为平行四边形; 反之,若四边形 ABCDuuuruuur uuur uuur 为平行四边形,则,AB//DC 且|AB| |DC |,uuur uuur所以, AB DC .③ 正确.∵r r r ra =b ,∴ a , b 的长度相等且方向同样;r r r r 又 b = c ,∴ b , c 的长度相等且方向同样,r r r r ∴ a , c 的长度相等且方向同样,故 a = c .r rr r r r r r ④ 不正确.当 a // b 且方向相反时,即便 | a |=| b | ,也不可以获得 a =b ,故 | a |=| b | r r r r 且 a // b 不是 a =b 的充要条件,而是必需不充足条件.r r⑤ 不正确.考虑 b = 0 这类特别状况.综上所述,正确命题的序号是②③.评论:本例主要复习向量的基本看法.向量的基本看法许多,因此简单忘记.为此,复习一方面要建立优秀的知识构造, 另一方面要擅长与物理中、 生活中的模型进行类比和联想.例 2 设 A 、B 、 C 、 D 、 O 是平面上的随意五点,试化简:uuur uuur uuur uuur uuur uuur uuur uuur uuur uuur ① AB BC CD ,② DB AC BD ③OAOCOBCO解:①原式 = uuur uuur uuur uuur uuur uuur( AB BC ) CD AC CD AD ②原式 = uuur uuur uuur r uuur uuur ( DBBD) AC 0 AC AC③原式=uuur (OBuuurOA)uuur ( OC uuurCO)uuurAB uuur(OCuuurCO) uuurAB ruuurAB例 3 设非零向量rrrrrrrrrra 、b 不共线,c =k a + b ,d = a +k b(k R),若 c ∥ d ,试求 kr r解:∵ c ∥ d∴由向量共线的充要条件得:r r (λ R) c =λ d r r r rr r r 即 k a +b =λ( a +k b ) ∴ (k λ ) a + (1 λ k) b = 0r r又∵ a 、 b 不共线∴由平面向量的基本定理k 0 k11 k二 .平面向量的坐标表示1 平面向量的坐标表示: r r在直角坐标系中, 分别取与 x 轴、y 轴方向同样的两个单位向量 i , j作为基底 由平面向量的基本定理知, 该平面内的任一直量 r r r rr a 可表示成 a xi yj ,因为 a 与r rr 数对 (x,y)是一一对应的,所以把 (x,y)叫做向量 a 的坐标,记作 a =(x,y),此中 x 叫作 a 在 x 轴上的坐标, y 叫做在 y 轴上的坐标(1) 相等的向量坐标同样,坐标同样的向量是相等的向量(2) 向量的坐标与表示该向量的有向线段的始点、终点的详细地点没关,只与其相对位置有关 2 平面向量的坐标运算:(1) rx 1, y 1 rr rx 1 x 2 , y 1 y 2若 a ,bx 2 , y 2 ,则 a b uuur(2) 若 A x 1, y 1 , B x 2 , y 2 ,则 ABx 2 x 1 , y 2 y 1 (3) r r x, y)若 a =(x,y),则 a =((4) rx 1, y 1 rx 2 , y 2 r rx 1 y 2 x 2 y 1 0若 a,b,则 a // b(5) rx 1, y 1 r x 2 , y 2 r r x 1 x 2 y 1 y 2若 a,b,则 a br r y 1 y 2 0若 a b ,则 x 1 x 23 向量的运算向量的加减法,数与向量的乘积,向量的数目(内积)及其各运算的坐标表示和性质运几何方法坐标方法运算性质算 类型向 1 平行四边形法例 r rx,y 21 y)2a bb a量 2 三角形法例a b (x 1的 (a b) c a (b c)加法uuur uuur uuurAB BC AC向 三角形法例r ra b a ( b )量a b (x 1 x 2,y 1 y 2)的 uuur uuur减ABBA法uuur uuur uuurOB OA AB 向a 是一个向量 ,a( x, y)(a)() a量 知足 :的>0 时, a 与 a 同向 ;()aaa 乘<0 时, a 与 a 异向 ;法=0 时,a = 0( a b ) a ba ∥ bab向 a ? b 是一个数r rx 1x 2 y 1y 2a ?b b ? a量a?b的a0 或 b 0时 ,( a) ba ( b)(a b)数???量 a?b =0(ab) ?ca ?cb ?c积a 0且b 0 时 ,a 2 | a |2 , |a | x 2 y 2a?b |a||b|cos a,b| a ? b | | a || b | r r r r r r r r r r例 1 已知向量 a (1,2), b (x,1), u a 2b , v 2a b ,且 u // v ,务实数 x 的值r r r r r r r r解:因为 a (1,2), b (x,1),u a 2b , v 2a br 2( x,1) (2 x 1,4) r 2(1,2) ( x,1) (2 x,3)所以 u (1,2) , vr r又因为 u // v所以 3(2 x 1) 4(2 x) 0 ,即 10x 5解得 x12AC 和 OB ( O 为坐标原点)交例 2 已知点 A(4,0), B(4,4),C(2,6) ,试用向量方法求直线点 P 的坐标uuur uuur(x 4, y)解:设 P(x, y) ,则 OP ( x, y), AP因为 P 是 AC 与OB 的交点 所以 P 在直线 AC 上,也在直线 OB 上uuur uuur uuur uuur即得 OP // OB, AP // ACuuur uuur由点 A(4,0),B(4,4),C(2,6) 得, AC ( 2,6), OB (4, 4)6( x 4) 2 y 0得方程组4x 4 y 0x 3解之得y 3故直线 AC 与 OB 的交点 P 的坐标为 (3,3) 三.平面向量的数目积1 两个向量的数目积:r rrrr r 已知两个非零向量 a 与 b ,它们的夹角为 ,则 a ·b =︱ a ︱ ·︱ b ︱ cosr r r r叫做 a 与 b 的数目积(或内积) 规定 0 a 0r r rr r2 = a b向量的投影: ︱ b ︱ cos r ∈R ,称为向量 b 在 a 方向上的投影 投影的绝对值称为射| a |影3 数目积的几何意义:r r r r ra ·b 等于 a 的长度与 b 在 a 方向上的投影的乘积4 向量的模与平方的关系: r r r 2 r 2 a aa | a |5 乘法公式建立:r r r r r 2 r 2 r a b a b a bar r 2 r 2r r r 2 r a ba2a b b a2 r 2b ;2 r rr 22a bb6 平面向量数目积的运算律:①互换律建立: rrr r a b b a②对实数的联合律建立: r r r r r r Ra ba b a b③分派律建立:r r r r r r r rr r a bc a cb cca b特别注意 :( 1)联合律不建立: r r rr r r;a b ca b cr r r rr r(2)消去律不建立 a ba c不可以获得 b crr不可以获得r r r r (3) a b =0a = 0 或b =07 两个向量的数目积的坐标运算:rrrr已知两个向量a ( x 1 , y 1),b ( x 2 , y 2 ) ,则 a ·b = x 1x 2 y 1 y 2rr uuur ruuur r8 向 量 的 夹 角 : 已 知 两 个 非 零 向 量 a 与 b , 作 OA = a ,OB = b , 则 ∠ AOB=( 000)叫做向量r r180 a 与b的夹角r rr rx1 x2y1 y2cos= cosa ?b=a, b r r2222? ba x1y1x2y2当且仅当两个非零向量r r r r r a 与b同方向时,θ=00,当且仅当 a 与b反方向时θ=1800,同时0与其余任何非零向量之间不谈夹角这一问题r r900r r r r9 垂直:假如a与b的夹角为则称 a 与b垂直,记作 a ⊥b10 两个非零向量垂直的充要条件:a ⊥b a ·b=O x1 x2y1 y20平面向量数目积的性质例 1判断以下各命题正确与否:r r r0 ;(1)0 a0 ;(2)0 ar r r r r r r(3)若a0, a b a c ,则 b c ;r r r r r r r r⑷若 a b a c ,则 b c当且仅当 a0 时建立;r r r r r r r r r(5)( a b )c a(b c ) 对随意 a,b , c 向量都建立;(6)对随意愿量r r2r2 a,有 a a解:⑴错;⑵对;⑶错;⑷错;⑸ 错;⑹对例 2 已知两单位向量r r120,若r r r r r r r r a 与b的夹角为c2a b, d3b a ,试求c 与d的夹角解:由题意,r r r r0,a b 1 ,且a与 b 的夹角为 120r r r r01,所以, a b a b cos1202r r r r r r r r2r r r 227 ,Q c c c(2 a b) (2 a b)4a4a b b r7 ,cr13同理可得dr r r r r r r r r 2r217,而 c d(2a b ) (3b a)7a b3b2a2 rr设为 c 与d的夹角,则 cos2 171317 91 arccos17917 182182评论:向量的模的求法和向量间的乘法计算可见一斑例 3r4,3 r1,2 rr r r r r的已知 a, b, mab , n2a b ,按以下条件务实数值r r r r r r( 1) m n ;( 2) m // n ; (3) m nr r r4,32 r r r 7,8解: m a b, n 2a br r 47 3 28 052( 1) m n;r r9483 27 01 ;( 2) m// n2r r 423 227 28 25 2488 0(3) mn2 2 115评论:此例展现了向量在座标形式下的基本运算。

高中数学平面向量知识点总结

高中数学平面向量知识点总结

高中数学平面向量知识点总结
向量的基本概念:向量是有大小和方向的量,通常用箭头表示。

向量的起点和终点可以表示为一个有序对,如AB(或→AB),其中A为向量的起点,B为向量的终点。

零向量是大小为0的向量,与任何向量都平行。

向量的负向量是与原向量大小相等、方向相反的向量。

向量的相等:两个向量相等当且仅当它们的大小相等且方向相同。

向量的加法:向量相加的结果称为向量的和,可以用平行四边形法则或三角形法则进行计算。

向量的数乘:一个向量乘以一个实数得到的向量。

即向量AB乘以实数k得到的向量为k→AB,大小为|k||→AB|,方向与→AB相同或相反。

向量的分解:可以将一个向量分解为两个或多个其他向量的和,这通常用于解决复杂的问题。

向量的坐标表示:在平面直角坐标系中,向量可以用坐标表示。

向量的x轴和y轴的分量分别为向量的坐标中的x分量和y分量。

向量的数量积:两个向量的数量积等于它们的模的乘积与它们夹角的余弦值的乘积。

数量积可以用来计算向量的夹角、判断向量的垂直关系等。

向量的应用:向量在物理、工程、计算机图形学等领域有广泛的应用。

例如,在物理学中,力、速度和加速度等都是向量;在计算机图形学中,向量用于表示方向和位置等。

以上就是高中数学平面向量的主要知识点。

学习这些知识时,需要注意理解向量的概念和运算,掌握向量的性质和定理,并能够应用这些知识解决实际问题。

平面向量知识点归纳

平面向量知识点归纳

平面向量知识点归纳平面向量是高中数学中的重要内容之一,它涉及到向量运算、平行四边形法则、数量积、向量共线、向量垂直等多个知识点。

本文将对这些知识点进行详细的归纳和总结。

1. 平面向量的定义和表示方法平面向量是具有大小和方向的量,在数学上常用一个有向线段来表示。

用字母加上一个箭头来表示向量,例如:AB→表示从点A指向点B的向量。

向量的大小通常用线段的长度来表示,用两个点表示向量的起点和终点。

2. 平面向量的运算平面向量可以进行加法和数乘运算。

2.1 加法运算向量的加法运算满足平行四边形法则,即如果A、B、C是三个向量的顶点,则从A到C的向量等于从A到B的向量加上从B到C的向量。

表示为AC→ = AB→ + BC→。

2.2 数乘运算数乘运算指的是向量与一个实数的乘积。

当实数大于0时,数乘改变向量的大小;当实数小于0时,数乘改变向量的方向。

3. 平面向量的数量积数量积是平面向量比较重要的运算之一,它可以求出两个向量之间的夹角及其它相关性质。

3.1 定义设有两个向量a→和b→,它们的数量积定义为:a→·b→ =|a→|·|b→|·cosθ,其中|a→|和|b→|分别表示向量a→和b→的模长,θ表示向量a→和b→之间的夹角。

3.2 性质数量积具有以下性质:- 若a→·b→=0,则a→和b→垂直;- 若a→·b→>0,则a→和b→夹角为锐角;- 若a→·b→<0,则a→和b→夹角为钝角。

4. 平面向量的共线和垂直性4.1 共线性如果两个非零向量a→和b→平行或反向,则它们共线。

即存在一个实数k,使得a→=k·b→。

4.2 垂直性如果两个向量a→和b→的数量积a→·b→=0,则a→和b→垂直。

5. 平面向量的定位和坐标表示在坐标平面上,可以利用坐标表示向量。

5.1 向量的定位表示将向量终点的坐标减去向量起点的坐标,得到的差就是这个向量的定位表示。

(完整版)平面向量重要基础知识点

(完整版)平面向量重要基础知识点

平面向量重要知识点1、向量有关概念:(1)向量的概念:既有大小又有方向的量,向量是可以平移的,(2)零向量:长度为0的向量叫零向量,记作:,注意零向量的方向是任意的;(3)单位向量:长度为一个单位长度的向量叫做单位向量(与AB u u u r 共线的单位向量是||AB AB ±u u u r u u u r ); (4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;(5)平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:∥,规定零向量和任何向量平行。

提醒平行向量无传递性!(因为有0r )2.平面向量的基本定理:如果e 1和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有一对实数1λ、2λ,使a =1λe 1+2λe 2。

3、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa :当λ>0时,λa 的方向与a 的方向相同,当λ<0时,λa 的方向与a 的方向相反4、平面向量的数量积:(1)两个向量的夹角:(2)平面向量的数量积:规定:零向量与任一向量的数量积是0注意数量积是一个实数,不再是一个向量。

(3)b 在a 上的投影为||cos b θr ,它是一个实数,但不一定大于0。

(4)a •b 的几何意义:数量积•等于的模||a r 与在上的投影的积。

(5)向量数量积的性质:设两个非零向量,,其夹角为θ,则:①0a b a b ⊥⇔•=r r r r ;②当a ,b 同向时,a •b =a b r r ,特别地,22,a a a a a =•==r r r r r ;当a 与b 反向时,•=-a b r r ;当θ为锐角时,•>0,且 a b r r 、不同向,0a b ⋅>r r 是θ为锐角的必要非充分条件;当θ为钝角时,•<0,且 a b r r 、不反向,0a b ⋅<r r 是θ为钝角的必要非充分条件; ③非零向量,夹角θ的计算公式:cos a b a bθ•=r r r r ;④||||||a b a b •≤r r r r 。

高中数学平面向量知识点总结及常见题型

高中数学平面向量知识点总结及常见题型

高中数学平面向量知识点总结及常见题型平面向量一、向量的基本概念与基本运算1.向量的概念:向量是既有大小又有方向的量。

向量一般用a、b、c等字母来表示,或用有向线段的起点与终点的大写字母表示,如:AB(几何表示法)或a(坐标表示法)。

向量的大小即向量的模(长度),记作|AB|或|a|。

向量不能比较大小,但向量的模可以比较大小。

②零向量:长度为0的向量,记为0,其方向是任意的,与任意向量平行。

③单位向量:模为1个单位长度的向量。

向量a为单位向量|a|=1.④平行向量(共线向量):方向相同或相反的非零向量。

任意一组平行向量都可以移到同一直线上。

方向相同或相反的向量,称为平行向量,记作a∥b。

由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量。

⑤相等向量:长度相等且方向相同的向量。

相等向量经过平移后总可以重合,记为a b。

大小相等,方向相同(x1,y1)(x2,y2)x1x2,y1y2.2.向量加法求两个向量和的运算叫做向量的加法。

设AB a,BC b,则a+b=AB BC=AC。

1)0+a=a;(2)向量加法满足交换律与结合律;向量加法有“三角形法则”与“平行四边形法则”:1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。

2)三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点。

当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则。

向量加法的三角形法则可推广至多个向量相加:AB BC CD…+PQ QR AR,但这时必须“首尾相连”。

3.向量的减法①相反向量:与a长度相等、方向相反的向量,叫做a的相反向量,记作a。

零向量的相反向量仍是零向量。

关于相反向量有:(i)(a)=a;(ii) a+(a)=(a)+a=0.iii) 若向量a、b互为相反向量,则a=-b,b=-a,a+b=0.向量减法:向量a加上b的相反向量叫做a与b的差,记作a-b=a+(-b),求两个向量差的运算,叫做向量的减法。

高中数学平面向量知识及注意事项

高中数学平面向量知识及注意事项

高中数学平面向量知识及注意事项一、向量基础知识1、实数与向量的积的运算律:设λ、μ为实数,那么(1)结合律:λ(μa )=(λμ) a ;(2)第一分配律:(λ+μ) a =λa +μa ;(3)第二分配律:λ(a +b)=λa +λb .2、向量的数量积的运算律:(1) a ·b = b ·a(交换律);注:c b a c b a )()(∙≠∙(2)(λa )·b = λ(a ·b )=λa ·b = a ·(λb );(3)(a +b )·c = a ·c +b ·c .3、平面向量基本定理:如果1e 、2e是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a =λ11e +λ22e .不共线的向量1e 、2e 叫做表示这一平面内所有向量的一组基底.4、投影:向量b 在向量a方向上的投影为|b |cos θ。

5、a 与b 的数量积(或内积):a ·b =|a ||b |cos θ.6、a ·b 的几何意义:数量积a ·b 等于a 的长度|a|与b 在a 的方向上的投影|b |cos θ的乘积.7、平面向量的坐标运算:(1)设a =11(,)x y ,b =22(,)x y ,则a +b=1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a -b=1212(,)x x y y --.(3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa =(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212x x y y +.8、两向量的夹角公式:121222221122cos x x y y x y x y θ+=+⋅+(a=11(,)x y ,b =22(,)x y ).9、向量的模与平面两点间的距离公式:|a |22x y =+,A B d =||AB AB AB =⋅ 222121()()x x y y =-+-(A 11(,)x y ,B 22(,)x y ).10、两个非零向量的共线与垂直的充要条件:设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a ∥b ⇔b =λa12210x y x y ⇔-=.a ⊥b (a ≠0 )⇔a ·b=012120x x y y ⇔+=.11、三角形的重心坐标公式:△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC的重心的坐标是123123(,)33x x x y y y G ++++.G G GC 0A B++= 二、向量中需要注意的问题1、向量运算的几何形式和坐标形式,请注意:向量运算中向量起点、终点及其坐标的特征.2、几个概念:零向量、单位向量(与AB 共线的单位向量是||ABAB ± ,平行(共线)向量(无传递性,是因为有0 )、相等向量(有传递性)、相反向量、向量垂直、以及一个向量在另一向量方向上的投影(a 在b上的投影是cos ,a ba ab b⋅=<>=∈R).3、两非零向量....共线的充要条件://a b a b λ⇔= cos ,1a b ⇔<>=± 12210x y x y ⇔-=. 两个非零向量....垂直的充要条件:0||||a b a b a b a b ⊥⇔⋅=⇔+=- 12120x x y y ⇔+=. 特别:零向量和任何向量共线和垂直. b a λ=是向量平行的充分不必要条件!4、三点A B C 、、共线⇔ AB AC 、共线;向量 PA PB PC、、中三终点A B C 、、共线⇔存在实数αβ、使得:PA PB PC αβ=+且1αβ+=.5、向量的数量积:22||()a a a a ==⋅ ,1212||||cos a b a b x x y y θ⋅==+,121222221122cos ||||x x y y a b a b x y x y θ+⋅==++ ,12122222||cos ,||x x y y a b a b a a b b x y +⋅=<>==+在上的投影. 注意:,a b <> 为锐角⇔0a b ⋅> 且 a b 、不同向;,a b <>为直角⇔0a b ⋅= 且 0a b ≠ 、; ,a b <> 为钝角⇔0a b ⋅< 且 a b 、不反向,0a b ⋅< 是,a b <> 为钝角的必要非充分条件.6、一个重要的不等式:||||||||||||a b a b a b -≤±≤+注意: a b 、同向或有0⇔||||||a b a b +=+ ≥||||||||a b a b -=- ; a b 、反向或有0 ⇔||||||a b a b -=+ ≥||||||||a b a b -=+; a b、不共线⇔||||||||||||a b a b a b -<±<+ .(这些和实数集中类似)7、中点坐标公式1212,22x x y y x y ++==,122MP MP MP P +=⇔为12PP 的中点.。

平面向量知识点整理

平面向量知识点整理

平面向量知识点整理平面向量是线性代数中的重要概念,具有广泛的应用。

下面是关于平面向量的知识点整理。

一、平面向量的定义和表示平面向量是指在平面上一个具有大小和方向的量。

平面向量可以表示为箭头,箭头的长度表示向量的大小,箭头的方向表示向量的方向。

平面向量通常表示为有序对(a,b),其中a和b是实数。

二、平面向量的运算1.加法:平面向量的加法运算是指将两个向量相加得到一个新的向量。

加法运算满足交换律和结合律。

2.数乘:将一个向量乘以一个标量得到一个新的向量,标量可以是实数。

数乘的结果是将向量的大小和方向进行相应的调整。

3.减法:将一个向量减去另一个向量等于将第二个向量取相反数后与第一个向量相加。

减法运算可以转化为加法运算。

三、平面向量的性质1.平行向量:两个向量的方向相同或相反,则它们是平行向量。

平行向量的大小可以不同。

2.零向量:大小为零的向量称为零向量,用0表示。

任何向量与零向量相加的结果仍为原向量本身。

3.负向量:一个向量的大小和方向相同但方向相反的向量称为它的负向量。

4.共线向量:两个或更多个向量都平行于同一条直线时,它们是共线向量。

5.非共线向量:不在同一直线上的向量是非共线向量。

6. 数量积:两个非零向量a和b的数量积(也称为点积或内积)是一个标量,定义为a·b= ,a,,b,cosθ,其中,a,和,b,分别表示向量a和向量b的模长,θ表示两个向量之间的夹角。

7. 向量积:两个非零向量a和b的向量积(也称为叉积或外积)是一个向量,定义为 a × b = ,a,,b,sinθ n,其中,a,和,b,分别表示向量a和向量b的模长,θ表示两个向量之间的夹角,n为一个与a和b都垂直的单位向量。

8.向量共线条件:两个向量共线的充要条件是它们的向量积等于零向量。

四、平面向量的应用1.几何问题:平面向量可以用于解决距离、角度等几何问题,如计算点的坐标、计算直线的夹角等。

2.物理问题:平面向量常用于物理学中的力学问题,如计算物体的合力、分解力等。

高中数学平面向量知识点总结,文档

高中数学平面向量知识点总结,文档

高中数学必修4之平面向量知识点概括一.向量的基本观点与基本运算、向量的观点:①向量:既有大小又有方向的量向量不可以比较大小,但向量的模能够比较大小.②零向量:长度为0的向量,记为0,其方向是随意的,0与随意愿量平行③单位向量:模为1个单位长度的向量④平行向量(共线向量):方向同样或相反的非零向量⑤相等向量:长度相等且方向同样的向量2、向量加法:设uuurr uuuruuuruuuruuurABa,BC b,则a+b=AB BC=AC(1)0a a0a;(2)向量加法知足互换律与联合律;u uuruuuruuurLuuuruuur uuurA BBCCDPQQRAR,但这时一定“首尾相连”.3、向量的减法:①相反向量:与a长度相等、方向相反的向量,叫做a的相反向量②向量减法:向量a加上b的相反向量叫做a与b的差,③作图法:ab能够表示为从b的终点指向a的终点的向量(a、b有共同起点)4、实数与向量的积:实数λ与向量a的积是一个向量,记作λa,它的长度与方向规定以下:(Ⅰ)aa;(Ⅱ)当0时,λa的方向与a的方向同样;当0时,λa的方向与a的方向相反;当0时,a0,方向是随意的5、两个向量共线定理:向量b与非零向量a共线有且只有一个实数,使得b=a6、平面向量的基本定理:假如e1,e2是一个平面内的两个不共线向量,那么对这一平面内的任一直量a,有且只有一对实数1,2使:a1e12e2,此中不共线的向量e1,e2叫做表示这一平面内全部向量的一组基底二.平面向量的坐标表示1平面向量的坐标表示:平面内的任一直量r r r r ra可表示成a xi yj,记作a=(x,y)。

平面向量的坐标运算:(1)rx1,y1rx2,y2r rx1x2,y1y2若a,b,则a buuurx2x1,y2y1(2)若Ax1,y1,Bx2,y2,则AB(3)r=(x,y),则rx,y)若a a=((4)r rx2,y2r rx1y2x2y10若a x1,y1,b,则a//b(5)rx,yrx,yr rx x y y 若a,b2,则a b1121212 r ry1y20若a b,则x1x21三.平面向量的数目积两个向量的数目积:r r r r r r已知两个非零向量a与b,它们的夹角为,则a·b=︱a︱·︱b︱cos r r r r叫做a与b的数目积(或内积)规定0a0r r rr r2=ab向量的投影:︱b︱cos r∈R,称为向量b在a方向上的投影投影的绝对值称为射影|a|3数目积的几何意义:r r r r ra·b等于a的长度与b在a方向上的投影的乘积4向量的模与平方的关系:r r r2r2 a a a|a|5乘法公式建立:r r r r r2r2ra b a b a b a r r2r2r r r2r a b a2ab b a r2b;2r r r22a b b平面向量数目积的运算律:①互换律建立:r r r r a b ba②对实数的联合律建立:r r r r r rR a b ab a b③分派律建立:r r r r r r r r r r a b c a c b c c a b特别注意:(1)联合律不建r r r r r r;立:ab cab cr rr rr r(2)消去律不建立aba c 不可以获得b cr r不可以获得 r r rr(3)ab=0a= 0或b=07 两个向量的数目积的坐标运算:rrr r已知两个向量a(x 1,y 1),b(x 2,y 2),则a ·b=x 1x 2y 1y 2rruuurr uuur r0 0r r8向量的夹角:已知两个非零向量 与b ,作OA OB =b,AOB=180与b 的a =a, ( )叫做向量a则∠夹角rr rrx 1x 2y 1y 2a ?b =cos=cosa,brr x 12y 12x 22y 22a ?brrrrr当且仅当两个非零向量b 同方向时,θ,同时0与其余任何非零向量a 与 =00,当且仅当a 与b 反方向时θ=180 之间不谈夹角这一问题r rr rrr9垂直:假如a 与b 的夹角为 90 则称a 与b 垂直,记作a ⊥b10两个非零向量垂直的充要条件:a ⊥b a ·b =Ox 1x 2y 1y 20平面向量数目积的性质。

高考文科平面向量知识点

高考文科平面向量知识点

高考文科平面向量知识点高考是对学生多年来所学知识的综合考察,而数学是文科生必考的一门科目。

在数学中,平面向量是一个重要的知识点,也是考试中常常涉及的内容。

下面,将介绍高考文科平面向量的知识点,帮助考生更好地理解和掌握这一部分内容。

一、向量的概念和运算向量是表示有大小和方向的量,常用箭头表示。

在平面上,向量通常用一个有序数对表示,如AB向量可以表示为a = (x, y)。

向量的长度是指从起点到终点的距离,记作|a|。

向量的加法和减法可以通过对应坐标的加减实现,如a + b = (x₁ + x₂, y₁ + y₂)。

二、向量的数量积向量的数量积也称点积,是指两个向量间的乘积结果,记作a·b。

计算公式为:a·b = |a| |b| cosθ。

其中,θ表示两个向量之间的夹角。

数量积的结果为一个实数,具有求模、交换律以及分配律等性质。

三、向量的向量积向量的向量积也称叉积,是指两个向量间的乘积结果,记作a × b。

计算公式为:a × b = |a| |b| sinθ n。

其中,θ表示两个向量之间的夹角,n表示垂直于两个向量所在平面的单位法向量。

向量积的结果为一个向量,其方向遵循右手法则,模长为|a| |b| sinθ。

四、向量的共线与线性运算在平面向量中,如果存在一个实数k,使得a = kb,那么向量a与向量b就是共线的。

共线的向量也叫线性相关向量。

线性运算是指对多个向量进行加法、减法和数量乘法的运算。

线性相关的向量之间可以进行代入消元等操作,进而解出线性方程组。

五、向量的应用平面向量广泛应用于各个学科和职业领域,如物理学、力学、工程、计算机图形学等。

在解决实际问题时,我们可以利用向量进行几何推理、计算机模拟、数据分析等。

例如,在解决运动问题时,可以将速度、加速度等物理量抽象为向量,简化计算过程。

六、习题和应用题为了更好地理解和掌握平面向量的知识,考生可以进行大量的习题和应用题的训练。

高中平面向量知识点总结

高中平面向量知识点总结

高中平面向量知识点总结一、平面向量的定义与性质1. 平面向量的定义平面向量是具有大小和方向的几何对象,通常用有向线段来表示,记作AB→,其中A、B 为起点和终点。

2. 平面向量的性质(1)平面向量相等的充分必要条件是它们的大小相等,方向相同。

(2)平面向量相加的几何意义:平面向量A+B的几何意义是以B为起点,在A的方向上作另一有向线段,则A+B的终点是以A、B的起点为起点、终点的有向线段。

(3)平面向量乘以实数的几何意义:实数k是负数时,它对平面向量的作用是对此向量作方向相反或绝对值为|k|倍的拉伸;k为正数时,它对平面向量的作用是对此向量作方向相同或绝对值为k倍的拉伸;k=0时,作用是得到一个零向量。

二、平面向量的基本运算1. 平面向量的加法平面向量A(a1, a2)、B(b1, b2)相加的结果是C(c1, c2),其中c1=a1+b1,c2=a2+b2。

2. 平面向量的减法平面向量A(a1, a2)、B(b1, b2)相减的结果是C(c1, c2),其中c1=a1-b1,c2=a2-b2。

3. 平面向量的数量积平面向量A(a1, a2)、B(b1, b2)的数量积是a1b1+a2b2,它是一个标量(实数)。

4. 平面向量的数量积的性质(1)交换律:A·B = B·A(2)分配律:A·(B+C) = A·B + A·C(3)A·A = |A|^2,其中|A|为向量A的模。

(4)若向量A与向量B夹角为θ,则A·B = |A||B|cosθ5. 平面向量的夹角若向量A、B夹角为θ,则A·B = |A||B|cosθ三、平面向量的应用1. 向量的共线性与共面性两个向量共线的充分必要条件是它们的方向相同或相反;三个向量共面的充分必要条件是它们的线性相关。

2. 向量的投影向量A在向量B上的投影是A在B方向上的长度,记作proj_BA = |A|cosθ,其中θ为A 与B的夹角。

高中数学:关于平面向量的考点整理

高中数学:关于平面向量的考点整理

高中数学:关于平面向量的考点整理1、高中数学知识点总结平面向量的概念:平面向量是既有大小又有方向的量。

向量和数量是数学中讨论的两种量的形式,数量是实数。

2、平面向量的三种形式:(1)字母形式:用单独的小写字母带箭头或者用两个大写字母带箭头表示向量;(2)几何形式;用平面内的有向线段表示向量,零向量是一个点;(3)坐标形式:向量可以在坐标平面内用坐标表示,向量坐标等于它的终点坐标减去始点坐标。

3、平面向量的相关概念,(1)模(绝对值):向量的大小或者向量的长度叫做向量的模,模是大于等于的实数。

模也叫作绝对值、大小、长度,这几个说法是一个意思。

(2)相等向量:方向相同、大小相等的向量叫做相等向量(或者叫相同向量),两个相等向量的x,y坐标对应相等。

(3)相反向量:方向相反、大小相等的向量叫做相反向量。

一个向量加负号即变为其相反向量,在向量化简和运算中很常见、很重要。

(4)平行(共线)向量:平面内两个向量所在的直线平行或者重合,则说这两个向量平行(或者共线),用平行符号表示。

因为向量可以自由平移,所以对向量来讲平行和共线是一个意思。

两个非零向量平行时,必定方向相同或相反。

规定零向量和任意向量都平行,但不能说零向量和其它向量方向相同或相反。

(5)垂直向量:两向量所在的直线垂直(或者说夹角为90度),则说这两个向量为垂直向量,用垂直符号表示。

规定零向量和任意向量都垂直,但不能说夹角90度。

(6)零向量:大小为零(或者说模、绝对值、长度为零都是一个意思)的向量叫做零向量,规定零向量的方向是任意的,不能讨论零向量和其它向量方向的关系及夹角问题。

规定零向量和任意向量都平行且垂直。

(7)单位向量:长度为1的向量叫做单位向量。

一个向量除以自己的模得到和这个向量同方向的单位向量;单位向量乘以一个向量的模得到这个向量。

(8)位置向量:向量AB可以表示点B相对点A的位置,所以向量AB可以叫做点B关于点A的位置向量。

(9)方向向量:一个非零向量与一条直线平行,则这个向量叫做这条直线的平行向量。

平面向量知识点总结归纳

平面向量知识点总结归纳

平面向量知识点总结归纳平面向量是二维空间内的向量,由两个有大小和方向的向量组成,可以用于描述平面内的位移、速度、加速度等物理量。

平面向量的知识点总结如下:一、平面向量的定义1. 平面向量是具有大小和方向的量,通常用有向线段来表示,记作→AB。

2. 平面向量的大小称为模,记作|→AB|或AB,表示向量的长度。

3. 平面向量的方向可以用与x轴的夹角来表示,记作θ。

二、平面向量的表示方法1. 基底表示法:使用坐标系中的两个非零向量作为基底,根据向量分解的原理将向量表示为基底的线性组合。

2. 基底表示法的基底选择:通常选择单位向量i和j作为基底,i表示x轴的正方向,j表示y轴的正方向。

三、平面向量的运算1. 加法:向量相加的结果是一个新的向量,新向量的大小等于两个向量大小的和,方向等于两个向量的夹角的平分线方向。

2. 减法:向量相减的结果是一个新的向量,新向量的大小等于两个向量大小的差,方向等于两个向量的夹角的平分线反方向。

3. 数乘:向量乘以一个标量得到的是一个新的向量,新向量的大小等于标量与原向量大小的乘积,方向与原向量相同(正向量)或相反(负向量)。

4. 内积:向量的内积是两个向量的大小之积与它们夹角的余弦值之积,可以用于求夹角、判断垂直和平行等。

5. 外积:向量的外积又称为叉乘,结果是一个新的向量,大小等于两个向量的大小之积与它们夹角的正弦值之积,方向垂直于这两个向量构成的平面。

6. 向量的投影:一个向量在另一个向量上的投影是一个新的向量,大小等于原向量与投影方向的夹角的余弦值与原向量大小之积,方向与投影方向相同。

四、平面向量的性质1. 平面向量相等的充要条件是它们大小相等且方向相同。

2. 平面向量相反的充要条件是它们大小相等且方向相反。

3. 平面向量与其负向量的和等于零向量。

4. 平面向量的模可以为零,只有零向量的模为零,其它向量的模都大于零。

5. 平面向量与标量相乘,改变的是向量的大小,不改变其方向。

高中平面向量知识点总结

高中平面向量知识点总结

高中平面向量知识点总结平面向量1、向量的定义:既有大小又有方向的量叫向量2、向量的表示方法(1)几何表示:以A为起点,以B为终点的有向线段记作AB,如果有向线段AB表示一个向量,通常我们就说向量AB.(2)字母表示:印刷时粗黑体字母a,b,c…向量手写时带箭头的小写字母a,b…3、向量点的长度(模)向量的大小叫做向量的长或模,记作|AB|、|a4、零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行a=0|a|=0单位向量:模为1个单位长度的向量向量a0为单位向量|a0|=平行向量(共线向量):方向相同或相反的非零向量记作a∥b5、相等向量:a bx1x2即大小相等,方向相同(x1,y1)(x2,y2)y y2 1a6、对于任意非零向量的单位向量是.|a|7、向量的加法(1)三角形法则设AB a,BC b,则a+b=AB BC=AC对于零向量与任意向量a的和有0a a0 a(2)平行四边形法则已知两个不共线的向量a,b,做AB a,BC b,则A、B、D三点不共线,以AB、AD为邻边作平行四边形ABCD,则对角线上的向量AC=a+b.当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则.向量加法的三角形法则可推广至多个向量相加:.AB BC CD PQ QR AR,但这时必须“首尾相连”8、向量加法的运算律(1)交换律a+b=b+a(2)结合律(a+b)+c=a+(b+c)9、向量的减法a b a(b)即减去一个向量相当于加上这个向量的相反向量图:10、相反向量:与a长度相等、方向相反的向量,叫做a的相反向量.记作 a(1)(a)=a,即a与a互为相反向量;(2)若a、b是互为相反向量,则a=b,b=a,a+b=0;(3)a+(a)=(a)+a=0;(4)零向量的相反向量仍是零向量(5)对于用起点和终点表示的向量,则有AB= —BA,即AB和- BA互为相反向量11、已知向量α,b,则| |α|-|b| |≤ α±α≤|α|±| b|12、向量数乘运算实数λ与向量a的积是一个向量,记作λa,它的长度与方向规定如下:(1)a a;(2)当0时,a与a同向当0时,a与a异向当0或a=0时,a013、向量数乘的运算律(1)λ(μa) =(λμ)a (2)(λ+μ)a=λa+μa(3)λ(a+b)=λa+λb(4)(—λa)= —(λa)=λ(—a)λ(a—b)=λa-λb14、向量共线判定定理当向量a≠0,对于向量b,如果有一个实数,使b=a,那么ab共线.向量b与向量a(a≠0)共线有且只有一个实数,使得b= a.15、向量的加、减、数乘运算统称为向量的线性运算,对于任意向量a、b以及任意实数λ、μ1 、μ2恒有(μ1a±μ2b)=μ1a+μ2b16、平面向量的基本定理如果e1,e2是一个平面θ=0°ab同向图θ=180°ab同向θ=90°ab垂直,记为a┴b18、平面向量的正交分解把一个向量分解成两个互相垂直的向量19、平面向量的坐标表示(1)直角坐标在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为基底,对于平aa,由平面向量基本定理知,有且只有一对实数x,y使=xi+yj,则把有面内的的一个向量a序数对(x,y)叫做向量的坐标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修4 平面向量知识点归纳一.向量的基本概念与基本运算1概念:①向量:既有大小又有方向的量向量一般用c b a,,……来表示,或用有向线段的起点与终点的大写字母表示,如:AB 几何表示法 AB ,a ;坐标表示法),(y x yj xi a =+=向量的大小即向量的模(长度),记作|AB |即向量的大小,记作|a|向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a=0 ⇔|a|= 由于0 的方向是任意的,且规定0 平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别) ③单位向量:模为1个单位长度的向量向量0a 为单位向量⇔|0a|=1④平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直线上方向相同或相反的向量,称为平行向量记作a∥b (即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的.⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为b a=大小相等,方向相同 ),(),(2211y x y x =⎩⎨⎧==⇔2121y y x x2向量加法求两个向量和的运算叫做向量的加法设,AB a BC b == ,则a +b =AB BC +=A C(1)a a a =+=+00;(2)向量加法满足交换律与结合律;向量加法有“三角形法则”与“平行四边形法则”:(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则.向量加法的三角形法则可推广至多个向量相加:AB BC C D PQ Q R AR +++++=,但这时必须“首尾相连”. 3向量的减法① 相反向量:与a 长度相等、方向相反的向量,叫做a的相反向量记作a-,零向量的相反向量仍是零向量关于相反向量有: (i ))(a--=a ; (ii) a +(a -)=(a -)+a =0 ;(iii)若a、b 是互为相反向量,则a =b -,b =a -,a +b =0②向量减法:向量a 加上b 的相反向量叫做a与b 的差,记作:)(b a b a-+=-求两个向量差的运算,叫做向量的减法③作图法:b a -可以表示为从b 的终点指向a 的终点的向量(a、b 有共同起点)4实数与向量的积:①实数λ与向量a 的积是一个向量,记作λa,它的长度与方向规定如下:(Ⅰ)a a⋅=λλ;(Ⅱ)当0>λ时,λa 的方向与a 的方向相同;当0<λ时,λa 的方向与a的方向相反;当0=λ时,0=a λ,方向是任意的②数乘向量满足交换律、结合律与分配律 5两个向量共线定理:向量b 与非零向量a 共线⇔有且只有一个实数λ,使得b =a λ6平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数21,λλ使:2211e e a λλ+=,其中不共线的向量21,e e叫做表示这一平面内所有向量的一组基底 7 特别注意:(1)向量的加法与减法是互逆运算(2)相等向量与平行向量有区别,向量平行是向量相等的必要条件(3)向量平行与直线平行有区别,直线平行不包括共线(即重合),而向量平行则包括共线(重合)的情况(4)向量的坐标与表示该向量的有向线条的始点、终点的具体位置无关,只与其相对位置有关学习本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点例1 给出下列命题:① 若|a |=|b |,则a =b;② 若A ,B ,C ,D 是不共线的四点,则AB DC =是四边形ABCD 为平行四边形的充要条件;③ 若a =b ,b =c ,则a =c,④a =b 的充要条件是|a |=|b |且a//b ; ⑤ 若a //b ,b //c ,则a //c,其中正确的序号是解:①不正确.两个向量的长度相等,但它们的方向不一定相同.② 正确.∵ AB DC = ,∴ ||||A B D C =且//AB DC ,又 A ,B ,C ,D 是不共线的四点,∴ 四边形 ABCD 为平行四边形;反之,若四边形ABCD为平行四边形,则,//AB DC 且||||A B D C =,因此,AB DC =.③ 正确.∵ a =b ,∴ a,b 的长度相等且方向相同;又b =c ,∴ b ,c的长度相等且方向相同,∴ a ,c 的长度相等且方向相同,故a =c .④ 不正确.当a //b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a|=|b |且a //b 不是a =b的充要条件,而是必要不充分条件. ⑤ 不正确.考虑b =0这种特殊情况.综上所述,正确命题的序号是②③.点评:本例主要复习向量的基本概念.向量的基本概念较多,因而容易遗忘.为此,复习一方面要构建良好的知识结构,另一方面要善于与物理中、生活中的模型进行类比和联想. 例2 设A 、B 、C 、D 、O 是平面上的任意五点,试化简: ①AB BC CD ++ ,②DB AC BD ++ ③OA OC OB CO --+-解:①原式= ()AB BC C D AC C D AD ++=+=②原式= ()0D B BD AC AC AC ++=+=③原式= ()()()0O B O A O C C O AB O C C O AB AB -+--=-+=+=例3设非零向量a 、b 不共线,c =k a +b ,d =a +k b (k ∈R),若c∥d ,试求k解:∵c∥d∴由向量共线的充要条件得:c=λd (λ∈R)即 k a +b =λ(a +k b ) ∴(k -λ) a+ (1-λk ) b = 0 又∵a、b 不共线∴由平面向量的基本定理 1010±=⇒⎩⎨⎧=-=-k k k λλ二.平面向量的坐标表示1平面向量的坐标表示:在直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量,i j作为基底由平面向量的基本定理知,该平面内的任一向量a 可表示成a xi yj =+,由于a与数对(x,y)是一一对应的,因此把(x,y)叫做向量a 的坐标,记作a =(x,y),其中x 叫作a在x 轴上的坐标,y 叫做在y 轴上的坐标(1)相等的向量坐标相同,坐标相同的向量是相等的向量(2)向量的坐标与表示该向量的有向线段的始点、终点的具体位置无关,只与其相对位置有关2平面向量的坐标运算:(1) 若()()1122,,,a x y b x y == ,则()1212,a b x x y y ±=±±(2) 若()()2211,,,y x B y x A ,则()2121,AB x x y y =--(3) 若a =(x,y),则λa=(λx, λy)(4) 若()()1122,,,a x y b x y == ,则1221//0a b x y x y ⇔-=(5) 若()()1122,,,a x y b x y == ,则1212a b x x y y ⋅=⋅+⋅若a b ⊥,则02121=⋅+⋅y y x x3向量的运算向量的加减法,数与向量的乘积,向量的数量(内积)及其各运算的坐标表示例1 已知向量(1,2),(,1),2a b x u a b ===+,2v a b =-,且//u v ,求实数x 的值解:因为(1,2),(,1),2a b x u a b ===+,2v a b =-所以(1,2)2(,1)(21,4)u x x =+=+ ,2(1,2)(,1)(2,3)v x x =-=-又因为//u v所以3(21)4(2)0x x +--=,即105x =解得12x =例2 已知点)6,2(),4,4(),0,4(C B A ,试用向量方法求直线AC 和OB (O 为坐标原点)交点P 的坐标解:设(,)P x y ,则(,),(4,)O P x y AP x y ==-因为P 是A C 与O B 的交点所以P 在直线A C 上,也在直线O B 上即得//,//O P O B A P A C由点)6,2(),4,4(),0,4(C B A 得,(2,6),(4,4)A C O B =-=得方程组6(4)20440x y x y -+=⎧⎨-=⎩解之得33x y =⎧⎨=⎩故直线A C 与O B 的交点P 的坐标为(3,3)三.平面向量的数量积1两个向量的数量积:已知两个非零向量a 与b ,它们的夹角为θ,则a ·b =︱a︱·︱b ︱cos θ 叫做a与b 的数量积(或内积) 规定00a ⋅=2向量的投影:︱b ︱cos θ=||a ba ⋅ ∈R ,称为向量b 在a 方向上的投影投影的绝对值称为射影3数量积的几何意义: a ·b 等于a 的长度与b 在a方向上的投影的乘积4向量的模与平方的关系:22||a a a a ⋅==5乘法公式成立:()()2222a b a b a b a b +⋅-=-=- ;()2222a ba ab b ±=±⋅+ 222a a b b =±⋅+6平面向量数量积的运算律:①交换律成立:a b b a ⋅=⋅②对实数的结合律成立:()()()()a b a b a bR λλλλ⋅=⋅=⋅∈③分配律成立:()a b c a c b c ±⋅=⋅±⋅ ()c a b =⋅±特别注意:(1)结合律不成立:()()a b c a b c ⋅⋅≠⋅⋅;(2)消去律不成立a b a c ⋅=⋅ 不能b c =⋅(3)a b ⋅=0不能a =0或b =07两个向量的数量积的坐标运算:已知两个向量1122(,),(,)a x y b x y ==,则a ·b =1212x x y y +8向量的夹角:已知两个非零向量a 与b ,作O A =a, OB =b ,则∠AOB=θ(01800≤≤θ)叫做向量a与b 的夹角cos θ=cos ,a ba b a b∙<>=∙ =当且仅当两个非零向量a 与b 同方向时,θ=00,当且仅当a 与b 反方向时θ=1800,同时0 与其它任何非零向量之间不谈夹角这一问题9垂直:如果a 与b 的夹角为900则称a 与b 垂直,记作a ⊥b10两个非零向量垂直的充要条件:a ⊥b ⇔a·b =O ⇔2121=+y y x x 平面向量数量积的性质例1 判断下列各命题正确与否:(1)00a ⋅=;(2)00a ⋅= ; (3)若0,a a b a c ≠⋅=⋅,则b c = ;⑷若a b a c ⋅=⋅ ,则b c ≠ 当且仅当0a =时成立;(5)()()a b c a b c ⋅⋅=⋅⋅ 对任意,,a b c向量都成立;(6)对任意向量a,有22a a=解:⑴错; ⑵对; ⑶错; ⑷错; ⑸ 错;⑹对例2已知两单位向量a 与b 的夹角为0120,若2,3c a b d b a =-=- ,试求c 与d 的夹角解:由题意,1a b ==,且a 与b 的夹角为0120,所以,01cos 1202a b a b ⋅==- ,2c c c =⋅= (2)(2)a b a b -⋅-22447a a b b =-⋅+= ,c ∴=同理可得d ∴=而c d ⋅= 2217(2)(3)7322a b b a a b b a -⋅-=⋅--=- ,设θ为c与d 的夹角,则1829117137217cos -==θ 1829117arccos-=∴πθ点评:向量的模的求法和向量间的乘法计算可见一斑例3 已知()4,3a = ,()1,2b =- ,,m a b λ=-2n a b =+ ,按下列条件求实数λ的值(1)m n ⊥ ;(2)//m n;(3)m n = 解:()4,32,m a b λλλ=-=+- ()27,8n a b =+=∴(1)m n ⊥ ()()082374=⨯-+⨯+⇒λλ952-=⇒λ; (2)//m n ()()072384=⨯--⨯+⇒λλ21-=⇒λ;(3)m n = ()()088458723422222=--⇒+=-++⇒λλλλ=⇒λ点评:此例展示了向量在坐标形式下的基本运算。

相关文档
最新文档