江苏省灌云高级中学2013-2014学年度高三数学(文科)第一学期期中考试答题纸
江苏省灌云高级中学高三数学第三次学情调研考试试题
江苏省灌云高级中学2014届高三数学第三次学情调研考试(文科)数学试卷一、填空题:本大题共14小题,每小题5分,共70分. 1. 集合{1,0,1}-的所有子集个数为_________. 2. 复数z 满足(12)5i z +=,则z = 。
3.函数()sin cos f x x x =-的最小值是 。
4. 函数11()2x y -=的值域是_________.5. 如图,程序执行后输出的结果为_________.6. 某公司生产三种型号的轿车,产量分别为1200辆,6000辆和2000辆.为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取______________辆 7. 已知n m ,是两条不同的直线,βα,为两个不同的平面, 有下列四个命题:①若βα⊥⊥n m ,,m ⊥n ,则βα⊥; ②若n m n m ⊥,//,//βα,则βα//; ③若n m n m ⊥⊥,//,βα,则βα//; ④若βαβα//,//,n m ⊥,则n m ⊥.其中正确的命题是(填上所有正确命题的序号)_______________.8. 在△ABC 中,AB =2,AC =1,D 为BC 的中点,则AD BC ⋅u u u r u u u r=_________. 9. 直线x +ay +3=0与直线ax +4y +6=0平行的充要条件是_________. 10.椭圆2214x y m+=的一条准线方程为m y =,则=m ________.11.已知函数()x x mx x f 2ln 2-+=在定义域内是增函数,则实数m 的取值范围为_________.12、已知函数x x f y sin )(=的一部分图象如右图所示,则函数)(x f 可以是________13.已知函数()c f x x x =+,若对任意*x N ∈,都有()(3)f x f ≥,则实数c 的取值范围是14、已知点Q b a p 与点),((1,0)在直线0132=+-y x 的两侧,则下列说法 (1)0132>+-b a (2)0≠a 时,ab有最小值,无最大值 (3)M b a R M >+∈∃+22,使恒成立 (4)且0>a 1≠a ,时0>b , 则1-a b 的取值范围为(-),32()31,∞+⋃-∞ 其中正确的是 (把你认为所有正确的命题的序号都填上) 二、解答题:本大题共6小题,共计90分. 15.已知函数21()cos ,()1sin 22f x xg x x ==+. (1)若点A (,)y α([0,]4πα∈)为函数()f x 与()g x 的图象的公共点,试求实数α的值; (2)求函数()()(),[0,]4h x f x g x x π=+∈的值域.16、如图,在四棱锥ABCD P -中,底面为直角梯形,//,90AD BC BAD ︒∠=,PA 垂直于底面ABCD ,N M BC AB AD PA ,,22====分别为PB PC ,的中点。
灌云高级中学2014
灌云高级中学2014-2015学年度高一年级第一次阶段测试生物试卷满分:100 时间:45分钟命题:王余永第Ⅰ卷(选择题:共75分)一.单项选择题(每小题只有一个正确答案,请将你认为正确的答案代号填涂在答题卡上,本题共25小题,每小题3分共75分)1.在组成人体的各种化学元素中,最基本元素、活细胞中含量最多的元素、占细胞干重最多的元素依次是()A.C、O、C B.C、H、O C.C、O、N D.C、O、O2.广告语“聪明妈妈会用心(锌)”道出了锌的重要性。
研究发现生物体内有七十多种酶的活性与Zn2+有关,这说明无机盐()A.对维持酸碱平衡有重要作用B.对维持细胞形态有重要作用C.对维持生物体的生命活动有重要作用D.对调节细胞内溶液的浓度有重要作用3、人类的克山病可能与缺少下列哪元素有关A.Fe B. Ca C. Zn D. Se4. 下列生物不具有细胞结构的是A.酵母菌B.放线菌C.艾滋病病毒D.蘑菇5. 细胞学说被恩格斯列为19世纪自然科学的“三大发现”之一,下列有关它的建立和发展说法错误的是:A.第一个命名细胞的学者是胡克B.细胞学说的主要建立者是施旺和施莱登C.魏尔肖对细胞学说进行了补充D.细胞学说的内容是一切生物体都是由细胞构成的6. 组成核酸和核糖核酸的核苷酸的种类分别有()A.8种和2种B.4种和4种C.5种和4种D.8种和4种7、人体的肌肉主要由蛋白质构成,但平滑肌和骨胳肌的功能不同,其原因是()A、属于不同系统B、所含蛋白质分子结构不同C、氨基酸排列顺序不同D、蛋白质的组成元素不同8、生物新陈代谢旺盛、生长迅速时,生物体内的结合水与自由水的比值()A.不变B.升高C.下降D.变化与此无关9. 一条含有6个肽键的多肽,组成它的氨基酸以及至少应有的氨基和羧基的数目分别是()A.6、1、1B.7、1、1C.6、6、6D.7、6、610、下列物质属于固醇类的一组是A.核酸和脂肪B.磷脂和性激素C.性激素和维生素DD.磷脂和维生素11. 下列物质中,不是构成生物体蛋白质的氨基酸是A BC D12. 谷氨酸的R基为C3H5O2,1分子谷氨酸含有的C、H、O、N原子数依次是:A.5、9、4、1B.4、8、5、1C.5、8、4、1D.4、9、4、113、用斐林试剂鉴定还原性糖时,溶液的颜色变化过程是()A、浅蓝色棕色砖红色B、无色浅蓝色棕色C、砖红色浅蓝色棕色D、棕色绿色无色14、在生物组织中,还原性糖、脂肪、蛋白质的鉴定实验中,对实验材料的叙述错误的是()A、甘蔗茎的薄壁组织、甜菜的块根都含有较多的糖,可用于鉴定还原糖B、花生种子含脂肪多,子叶肥厚,是鉴定脂肪的理想材料C、大豆种子蛋白质含量高,是进行蛋白质鉴定的理想材料D、鸡蛋清含蛋白质多,是进行蛋白质鉴定的理想材料15、下列关于蛋白质功能的举例合理的是()A、催化——抗体B、运输——唾液淀粉酶C、调节——胰岛素D、免疫——血红蛋白16、在观察装片时,由低倍镜换成高倍镜,细胞大小、细胞数目、视野亮度的变化()A.变大、变少、变暗B.变大、变多、变亮C.变小、变多、变暗D.变小、变多、变亮17、下列关于组成细胞的化合物的叙述,错误的是A.有些固醇类物质是构成细胞膜的成分B.有些脂质能激发和维持动物第二性征C.某些蛋白质在生命活动中能够传递信息D.所有糖类在细胞中的作用都是为细胞供能18、在生物体内含量极少,但对维持生物体的正常生命活动必不可少的微量元素有()A、Fe、Mn、Zn、KB、Mn、Zn、Cu、CaC、Mn、Zn、Cu、BD、Mn、Mo、Cu、Mg19、生活在水中的鲤鱼和生活在沙漠中的仙人掌,这两种生物细胞中含量最多的有机化合物是()A.水B.脂肪C.蛋白质D.糖类20、糖原、核酸、淀粉、蛋白质的基本单位(单体)分别是A.单糖、碱基、单糖、氨基酸 B.葡萄糖、核苷酸、葡萄糖、氨基酸C.葡萄糖、核苷酸、麦芽糖、氨基酸 D.单糖、碱基、葡萄糖、氨基21、生物学实验中常用显微镜,一个细小物体若被显微镜放大50倍,这里“被放大50倍”是指该细小物体的()A、体积B、表面积C、像的面积D、长度或宽度22、用一个放大倍数为10×的目镜分别与4个不同倍数的物镜组合,观察植物细胞的吸水和失水。
2014届高三名校数学(文)试题分省分项汇编 专题04 三角函数与三角形
一.基础题组1. 【江苏省灌云高级中学2013-2014学年度高三第一学期期中考试】已知4cos()65πα-=,则sin()3πα+= .2. 【江苏省兴化市安丰高级中学2014届高三】已知)0,2(πα-∈,53cos =α,则=+)4tan(πα .3.【江苏省兴化市安丰高级中学2014届高三】在ABC ∆中,若2,60,a B b =∠=︒=则c = .4. 【江苏省兴化市2013~2014学年度第一学期期中考试高三】在ABC ∆中,已知0sin sin sin sin sin 222=---C B C B A ,则A ∠的大小为 .5. 【江苏省扬州中学2013—2014期中考试模拟】设向量(cos ,sin )a αα=,(cos ,sin )b ββ= ,其中πβα<<<0,若|2||a b a b +=- ,则βα-= .6. 【盐城市2014届高三年级第一学期期中考试】函数2cos y x =的最小正周期为 .7. 【金陵中学2013-2014学年度第一学期高三期中试卷数学】已知f (x )=3sin(2x -π6),若存在α∈(0,π),使f (α+x )= f (α-x )对一切实数x 恒成立,则α= .8. 【江苏省徐州市2013-2014第一学期高三期中试题】已知△ABC 中,c b a ,,分别是角A ,B ,C 的对边,2=a ,A = 45°,B = 60°,那么△ABC 的面积=∆ABC S .9.【江苏省灌云高级中学2013-2014学年度高三第一学期期中考试】已知ABC ∆的周长为1,且sin sin A B C +=(1)求边AB 的长;(2)若ABC ∆的面积为1sin 6C ,求角C .10.【江苏省兴化市安丰高级中学2014届高三】已知(cos ,sin ),(cos ,sin )a b ααββ==. (1)若67πβα=-,求a b ⋅ 的值; (2)若4,58a b πα⋅== ,且⎪⎭⎫⎝⎛-∈-0,2πβα,求tan()αβ+的值.【答案】(1)2-;(2)7. 【解析】11.【江苏省扬州中学2013—2014期中考试模拟】已知函数2()2sin cos 1f x x x x =-++ ⑴求()f x 的最小正周期及对称中心; ⑵若[,]63x ππ∈-,求()f x 的最大值和最小值.12.【盐城市2014届高三年级第一学期期中考试】已知函数()2sin(2)f x x ϕ=+,其中角ϕ的终边经过点P ,且0ϕπ<<. (1)求ϕ的值;(2)求()f x 在[0,]π上的单调减区间.考点:三角函数的定义、()sin()f x A x ωϕ=+的单调性.二.能力题组1.【江苏启东中学2014届上学期期中模拟高三数学】将函数()2sin()3f x x πω=-(0ω>)的图象向左平移3πω个单位,得到函数()y g x =的图象,若()y g x =在[0,]4π上为增函数,则ω的最大值为2. 【江苏省灌云高级中学2013-2014学年度高三第一学期期中考试】求值:002cos10sin 20cos 20-= .3. 【江苏省徐州市2013-2014第一学期高三期中试题】方程0cos 3sin =++a x x 在)2,0(π内有相异两解βα,,则=+βα .【答案】3π或37π【解析】4. 【盐城市2014届高三年级第一学期期中考试】在ABC ∆中,若22()||5C A C B A B A B+⋅= ,则tan tan AB= .5. 【江苏省兴化市安丰高级中学2014届高三】在锐角△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且 .3tan )(222bc A a c b =-+(1)求角A ;(2)若2a =,求ABC ∆面积S 的最大值.6. 【江苏省兴化市2013~2014学年度第一学期期中考试高三】在△ABC 中,内角,,A B C所对的边分别为,,a b c ,已知m ()A A sin 3,cos 2=,n ()A A cos 2,cos -=,m·n 1-=.(1)求A ∠的大小;(2)若32=a ,2=c ,求△ABC 的面积.7. 【江苏省徐州市2013-2014第一学期高三期中试题】设向量)sin ,2(θ=,)cos ,1(θ= ,θ为锐角.(1)若136a b ⋅= ,求θθcos sin +的值;(2)若a b ,求)32sin(πθ+的值.8.【江苏省通州高级中学2013-2014学年度秋学期期中考试高三数学试卷】在△ABC中,内角A,B,C所对边长分别为a,b,c, =8,∠BAC=θ,a=4,(1)求b·c的最大值及θ的取值范围;(2)求函数f(θ)=23sin2(π4+θ)+2cos2θ-3的最值.9. 【盐城市2014届高三年级第一学期期中考试】在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,设(1,1)m = ,(cos ,sin )n A A =- ,记()f A m n =⋅.(1)求()f A 的取值范围;(2)若m 与n 的夹角为3π,3C π=,c =,求b 的值.10. 【金陵中学2013-2014学年度第一学期高三期中试卷数学】 已知向量a =(2cos x ,2sin x ) ,b =(3cos x , cos x ),设函数f (x )=a •b -3, 求: (1) f (x )的最小正周期和单调递增区间;(2)若()()26212f f απαπ--+=, 且α∈(π2,π). 求α. 【答案】(1) 22T ππ== , 函数()f x 的单调递增区间为5[,]()1212k k k Z ππππ-+∈ ;(2) 712πα=或1112π.【解析】三.拔高题组1. 【江苏启东中学2014届上学期期中模拟高三数学】已知)2sin ,2(),sin ,1(2x b x a ==,其中()0,x π∈,若a b a b ⋅=⋅,则tan x =2. 【江苏省通州高级中学2013-2014学年度秋学期期中考试高三数学试卷】 已知ααcos 21s in +=,且)2,0(πα∈,则)4sin(2cos παα-的值为__ ____.3. 【江苏启东中学2014届上学期期中模拟高三数学】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sin sin tan cos cos A B C A B+=+.(1)求角C 的大小;(2)若△ABC 的外接圆直径为1,求22a b +的取值范围. 【答案】(1)3C π=;(2)223342a b <+≤;【解析】试题分析:(1)sin sin tan cos cos A B C A B +=+中有正切和正弦、余弦,这样的问题一般是“切化弦”,统一为同名三角函数后再利用三角函数的相关公式进行变形解答;(2)利用正弦定理,22a b +可化为角,A B 的三角函数,再利用3C π=,可消去一元,问题于是就转化为三角函数的值域问题.试题解析:(1)因为sin sin tan cos cos A B C A B +=+,即sin sin sin cos cos cos C A B C A B+=+,所以sin cos sin cos cos sin cos sin C A C B C A C B +=+, 即 sin cos cos sin cos sin sin cos C A C A C B C B -=-,得 sin()sin()C A B C -=-. …………………………………………………4分 所以C A B C -=-,或()C A B C π-=--(不成立). 即 2C A B =+, 得 3C π=. ………………………………7分(2)由3C π=,设,33A B ππαα=+=-,2πππ0,,333A B α<<<<知-.因2sin sin ,2sin sin a R A A b R B B ====, ………………………………………8分 故22221cos 21cos 2sin sin 22A B a b A B --+=+=+=12π2π11cos(2)cos(2)1cos 22332⎡⎤-++-=+⎢⎥⎣⎦ααα. …………………12分ππ2π2π,2,3333αα<<<<由-知-1cos 212α-<≤,故223342a b <+≤.…………14分考点:两角和与差的三角函数、正弦定理.4. 【江苏省灌云高级中学2013-2014学年度高三第一学期期中考试】如图,两座建筑物AB ,CD 的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是9m 和15m ,从建筑物AB 的顶部A 看建筑物CD 的张角045CAD ∠=. (1)求BC 的长度;(2)在线段BC 上取一点P (点P 与点B ,C 不重合),从点P 看这两座建筑物的张角分别为APB α∠=,DPC β∠=,问点P 在何处时,tan()αβ+最小?BC的长度是18 m.………………………7分。
13-14高三数学期中(文科)答案
2013-2014学年度第一学期高三级数学科(文科)期中试题答案一、选择题:1-10:BABCD CDABD ;二、填空题: 11、]1,1[-;12、4;13、4;14、1;15、21; 三、解答题:16、解:(1)由图像知2A =,2284T T ωπ=⇒==,∴4ωπ=,得()2sin()4f x x ϕπ=+.……………4分,将最高点(1,2)代入,得1424ϕϕπππ⨯+=⇒=.……………5分∴()2sin()44f x x ππ=+;…………6分 (2)2sin()2sin[(2)]2sin()2cos()44444444y x x x x ππππππππ=++++=+++=sin()424x x πππ+=,……………9分∵2[6,]3x ∈--,∴3[,]426x πππ∈--,………………10分∴当46x ππ=-,即23x =-时,y 当4x π=-π,即4x =-时,y 的最小值-14分17.(1)由频率分布条形图知,抽取的学生总数为51000.05=人. ………………2分 ∵各班被抽取的学生人数成等差数列,设其公差为d , 由51810d ⨯+=100, ………………5分 解得1d =.………………6分∴各班被抽取的学生人数分别是18人,19人,20人,21人,22人. ………………8分(2)在抽取的学生中,任取一名学生, 则分数不小于90分的概率为 0.35+0.25+0.1+0.05=0.75. ………………12分18.解:(1)因为四棱柱ABCD -A 2B 2C 2D 2的侧面是全等的矩形,所以AA 2⊥AB ,AA 2⊥AD ,又因为AB ∩AD =A ,所以AA 2⊥平面ABCD . 连接BD ,因为BD ⊂平面ABCD ,所以AA 2⊥BD . 因为底面ABCD 是正方形,所以AC ⊥BD . 根据棱台的定义可知,BD 与B 1D 1共面.又已知平面ABCD ∥平面A 1B 1C 1D 1,且平面BB 1D 1D ∩平面ABCD =BD , 平面BB 1D 1D ∩平面A 1B 1C 1D 1=B 1D 1,所以B 1D 1∥BD .于是由AA 2⊥BD ,AC ⊥BD ,B 1D 1∥BD ,可得AA 2⊥B 1D 1,AC ⊥B 1D 1,又因为AA 2∩AC =A ,所以B 1D 1⊥平面ACC 2A 2.(2)因为四棱柱ABCD -A 2B 2C 2D 2的底面是正方形,侧面是全等的矩形,所以S 1=S 四棱柱上底面+S 四棱柱侧面=(A 2B 2)2+4AB ·AA 2=1021 300(cm 2).又因为四棱台A 1B 1C 1D 1-ABCD 的上、下底面均是正方形,侧面是全等的等腰梯形.所以S 2=S四棱台下底面+S 四棱台侧面=(A 1B 1) 2+4×12(AB +A 1B 1)h 等腰梯形的高=202+4×12(10+20)132-⎣⎢⎡⎦⎥⎤12-2 =1 120(cm 2).于是该实心零部件的表面积为S =S 1+S 2=1 300+1 120=2 420(cm 2), 故所需加工处理费为0.2S =0.2×2 420=484(元). 19. (本小题满分14分)(1)解:设(,)P x y ,则(2,0)MN =,(1,)NP x y =-,(1,)MP x y =+.………2分 由||||MN NPMN MP ⋅=⋅,得2(1)x =+,…………………………………………………………4分化简得24y x =.所以动点P 的轨迹方程为24y x =.……………………………………………………5分(2)解:由(),4A t 在轨迹24y x =上,则244t =,解得4t =,即()4,4A .…………………6分当4m =时,直线AK 的方程为4x =,此时直线AK 与圆22(2)4x y +-=相离.……………7分 当4m ≠时,直线AK的方程为4()4y x m m=--,即4(4)x m y m +--=.………………8分圆22(2)4x y +-=的圆心(0,2)到直线AK 的距离d=,令2d =<,解得1m <;令2d ==,解得1m =;令2d =>,解得1m >.综上所述,当1m <时,直线AK 与圆22(2)4x y +-=相交;当1m =时,直线AK 与圆22(2)4x y +-=相切; 当1m >时,直线AK与圆22(2)4x y +-=相离.……………………………………14分 20(1)由n n n a a p a 212++⋅=,得nn n n a a p a a 112+++⋅=. ……………1分 令1n n na c a +=,则1c a =,1n n c pc +=.0≠a ,10c ∴≠,p c cnn =+1(非零常数), ∴数列}{1nn a a+是等比数列. ……………………………………………………3分(2)数列{}n c 是首项为a ,公比为p 的等比数列,∴111n n n c c p a p --=⋅=⋅,即11n n naap a -+=. ……………………………4分当2n ≥时,230121121()()()1n n n n n n n a a aa a ap ap ap a a a -----=⋅⋅⋅⋅=⨯⨯⨯⨯23212n n n a p-+-=, ………………………………………………6分1a 满足上式, 2321*2,N n n n n a a pn -+-∴=∈. …………………………7分(3)12212211()()n n n n n n n n na a a ap ap a p a a a --++++=⋅=⨯=, ∴当1=a 时,212n n n nna b np pa -+==. …………………………………………8分 132112n n S p p n p -∴=⨯+⨯++⨯, ① 232121 1(1)n n n p S p n p n p -+=⨯++-⨯+⨯ ②∴当21p ≠,即1p ≠±时,①-②得:22132121212(1)(1)1n n n n n p p p S p p pnpnp p-++--=+++-=--, 即221222(1),1(1)1n n n p p np S p p p +-=-≠±--. …………………………11分 而当1p =时,(1)122n n n S n +=+++=, …………………………12分 当1p =-时,(1)(1)(2)()2n n n S n +=-+-++-=-.………………………13分综上所述,221222(1),1,2(1),1,2(1), 1.(1)1nn n n n p n n S p p p np p p p +⎧+=⎪⎪+⎪=-=-⎨⎪⎪--≠±⎪--⎩ ………………14分【说明】考查了等比数列的通项公式、等比数列求和公式、简单递推数列求通项、错位求和等知识,考查了学生的运算能力,以及化归与转化、分类讨论的思想.20. 解:(1)依题可设1)1()(2-++=m x a x g (0≠a ),则a ax x a x g 22)1(2)('+=+=; 又()g x '的图像与直线2y x =平行 22a ∴= 1a =m x x m x x g ++=-++=∴21)1()(22, ()()2g x mf x x x x==++, 设(),o o P x y ,则202020202)()2(||x m x x y x PQ ++=-+= m m m m m x m x 2||2222222220220+=+≥++=当且仅当202202x m x =时,2||PQ 取得最小值,即||PQ 取得最小值2当0>m 时,2)222(=+m 解得12-=m 当0<m 时,2)222(=+-m 解得12--=m(2)由()()120my f x k x k x x =-=-++=(0≠x ),得()2120k x x m -++= ()* 当1k =时,方程()*有一解2m x =-,函数()y f x kx =-有一零点2mx =-;当1k ≠时,方程()*有二解()4410m k ⇔∆=-->,若0m >,11k m>-, 函数()y f xk x =-有两个零点)1(2)1(442k k m x ---±-=,即1)1(11---±=k k m x ;若0m <,11k m<-, 函数()y f xk x =-有两个零点)1(2)1(442k k m x ---±-=,即1)1(11---±=k k m x ; 当1k ≠时,方程()*有一解()4410m k ⇔∆=--=, 11k m=-, 函数()y f x kx =-有一零点m k x -=-=11综上,当1k =时, 函数()y f x kx =-有一零点2m x =-; 当11k m >-(0m >),或11k m<-(0m <)时, 函数()y f x kx =-有两个零点1)1(11---±=k k m x ;当11k m =-时,函数()y f x kx =-有一零点m k x -=-=11.。
2014届高三名校数学(理)试题分省分项汇编 专题04 三角函数与三角形
一.基础题组1. 【江苏省灌云高级中学2013-2014学年度高三第一学期期中考试】已知4cos()65πα-=,则sin()3πα+= .2. 【江苏省灌云高级中学2013-2014学年度高三第一学期期中考试】求值:002cos10sin 20cos 20-= .3. 【江苏省灌云高级中学2013-2014学年度高三第一学期期中考试】已知向量(sin ,1),(1,cos ),22a b ππθθθ==-<< .(1) 若a b ⊥,求θ;(2) 求a b +的最大值.【答案】(1)4πθ=【解析】试题分析:(1)由向量垂直的充要条件:11221212(,y ),(,y ),0y y 0a x b x a b a b x x ==⊥⇔⋅=⇔+=,这样4. 【江苏省灌云高级中学2013-2014学年度高三第一学期期中考试】已知ABC ∆的周长1,且sin sin A B C + (1)求边AB 的长; (2)若ABC ∆的面积为1sin 6C ,求角C .试题解析:解:(1)由题意及正弦定理得:1AB BC AC ++=,BC AC +=,两式相减得1AB =.…………(6分)5. 【江苏省灌云高级中学2013-2014学年度高三第一学期期中考试】如图,两座建筑物AB ,CD 的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是9m 和15m ,从建筑物AB 的顶部A 看建筑物CD 的张角045CAD ∠=. (1)求BC 的长度;(2)在线段BC 上取一点P (点P 与点B ,C 不重合),从点P 看这两座建筑物的张角分别为APB α∠=,DPC β∠=,问点P 在何处时,tan()αβ+最小?试题解析:解:(1)如图作AN CD ⊥ 于N .91569AB CD AB CD DN EC ∴ ,=,=,=,= .设AN x DAN θ∠=,= ,4545CAD CAN θ∠︒∴∠︒ =,=- . 在Rt ANC ∆ 和Rt AND ∆ 中,069tan ,tan(45-)=x x θ ………………………4分()91tan 451tan tan x θθθ-∴︒+=-= 化简整理得215540x x --= , 解得12)183(x x =,=-舍去 .BC 的长度是18 m . ………………………7分6. 【南京市、盐城市2014届高三第一次模拟考试】在ABC ∆中,2BC =,23A π=,则AB AC ⋅的最小值为 .7. 【南京市、盐城市2014届高三第一次模拟考试】 在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,已知2c =,3C π=.(1)若ABC ∆a ,b ;(2)若sin sin()2sin 2C B A A +-=,求ABC ∆的面积.8. 【江苏省通州高级中学2013-2014学年度秋学期期中考试】已知ααcos 21sin +=,且)2,0(πα∈,则)4sin(2cos παα-的值为__ ▲____.【答案】214- 【解析】9. 【江苏省通州高级中学2013-2014学年度秋学期期中考试】 在△ABC 中,内角A ,B ,C 所对边长分别为a ,b ,c , AC AB ∙=8,∠BAC =θ,a =4, (1)求b ·c 的最大值及θ的取值范围;(2)求函数f (θ)=23sin 2(π4+θ)+2cos 2θ-3的最值.当2+62ππθ=,即=6πθ时,max f()3θ=.考点:1.余弦定理;2.三角函数的图象;3.基本不等式10. 【江苏省扬州中学2013—2014学年第一学期月考】若动直线)(R a a x ∈=与函数()3sin()()cos()66f x xg x x ππ=+=+与的图象分别交于N M ,两点,则||MN 的最大值为 .11. 【江苏省扬州中学2013—2014学年第一学期月考】设向量),cos ,(sin x x a =),sin 3,(sin x x b =x ∈R ,函数)2()(b a a x f +⋅=.(1)求函数)(x f 的单调递增区间;(2)求使不等式()2f x '≥成立的x 的取值集合.试题解析:(1) )2()(x f +⋅=222sin cos 2(sin 3sin cos )x x x x x =++ 3111cos 23222(sin 2cos 2)2x x x x =+-=+⋅22(sin 2coscos 2sin )22sin(2)666x x x πππ=+-=+-. …………5′ 由222262k x k πππππ-≤-≤+,得63k x k ππππ-≤≤+()k ∈Z ,∴()f x 的单调递增区间为[,]63k k ππππ-+()k ∈Z . …………8′12. 【苏北四市2014届高三第一次质量检测】 在△ABC 中,已知3AB =,o 120A =,且ABC ∆,则BC 边长为 .13. 【苏北四市2014届高三第一次质量检测】已知函数()2sin(2)(0)4f x x ωωπ=->的最大值与最小正周期相同,则函数()f x 在[11]-,上的单调增区间为 . 【答案】13[,]44- 【解析】试题分析:由题意可知,函数()2sin()4f x x ππ=-,令22242k x k ππππππ-+≤-≤+,解得1322,44k x k k Z -+≤≤+∈,又[1,1]x ∈-,所以1344x -≤≤,所以函数()f x 在[1,1]-上的单调递增区间为13[,]44-.考点:三角函数的图象与性质.14. 【苏北四市2014届高三第一次质量检测】已知向量(cos ,sin )θθ=a ,(2,1)=-b .(1)若⊥a b ,求sin cos sin cos θθθθ-+的值;(2)若2-=a b ,(0,)2θπ∈,求sin()4θπ+的值.15. 【苏州市2014届高三调研测试】 若函数()sin()f x x θ=+(π02θ<<)的图象关于直线π6x =对称,则θ = ▲ .【答案】3π16. 【苏州市2014届高三调研测试】已知π3sin()45x +=,π4sin()45x -=,则tan x = ▲ .17. 【苏州市2014届高三调研测试】 在△ABC 中,设角A ,B ,C 的对边分别为a ,b ,c ,且1cos 2a C c b +=.(1)求角A 的大小;(2)若a =4b =,求边c 的大小.试题解析:(1)用正弦定理,由1cos ,2a C cb +=得1sin cos sin sin .2A C C B +=………2分sin sin()sin cos cos sin ,B A C A C A C =+=+1sin cos sin .2C A C ∴=………4分 1sin 0,cos .2C A ≠∴= ………6分0,.3A A ππ<<∴=………8分18. 【江苏省兴化市安丰高级中学2014届高三12月月考】已知)0,2(πα-∈,53cos =α,则=+)4tan(πα .19.【江苏省兴化市安丰高级中学2014届高三12月月考】在ABC ∆中,若2,60,a B b =∠=︒=,则c = .20.二.能力题组1. 【江苏省诚贤中学2014届高三数学月考试题】在△ABC ,已知.sin sin 3)sin sin )(sin sin sin (sin C B A C B C B A =-+++(1)求角A 值;(2)求C B cos sin 3-的最大值.2. 【江苏省兴化市安丰高级中学2014届高三12月月考】已知(cos ,sin ),(cos ,sin )a b ααββ==.(1)若67πβα=-,求a b ⋅ 的值; (2)若4,58a b πα⋅== ,且⎪⎭⎫⎝⎛-∈-0,2πβα,求tan()αβ+的值.3. 【江苏省兴化市安丰高级中学2014届高三12月月考】 在锐角△ABC 中,角A 、B 、C的对边分别为a 、b 、c ,且 .3tan )(222bc A a c b =-+ (1)求角A ;(2)若2a =,求ABC ∆面积S 的最大值. 【答案】(1)60A ︒=;(2)3. 【解析】试题分析:(1)由式子.3tan )(222bc A a c b =-+的结构特征,很自然联想到余弦定理,将其化为关于角A 的三角函数,由其函数值则可求出角A ;(2)由第(1)题的结果,可知1sin 2S bc A ==,再由条件可得,224b c bc +=+,利用基本不等式可求出bc 的最大值,进一步可得三角形面积的最大值.三.拔高题组1. 【江苏省诚贤中学2014届高三数学月考试题】如图,两座建筑物CD AB ,的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是9cm 和15cm ,从建筑物AB 的顶部A 看建筑物CD 的视角︒=∠45CAD .求BC 的长度;在线段BC 上取一点(P 点P 与点C B ,不重合),从点P 看这两座建筑物的视角分别为,,βα=∠=∠DPC APB 问点P 在何处时,βα+最小?【答案】⑴18m ;⑵当BP 为27)m 时,αβ+取得最小值. 【解析】+取得最小值.……………………………14分答:当BP为27)m时,αβ考点:1.两角和差的正切公式;2.直角三角形中正切的表示;3.导数在函数中的运用。
江苏省连云港市东海县高级中学2013—2014学年度第一学期高一年级数学期中试卷
5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
我们只说喜欢,就算喜欢也是偷偷摸摸的。
”6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。
”7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。
8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。
9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。
遗憾,每个遗憾都有它的青春美。
4.方茴说:“可能人总有点什么事,是想忘也忘不了的。
” 5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
我们只说喜欢,就算喜欢也是偷偷摸摸的。
” 6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。
” 7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。
8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。
9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。
2013—2014学年度第一学期高一年级数学学科期中考试试题考生注意:1.本试卷共4页,包括填空题(第1题—第14题)、解答题(第15题—第20题)两部分。
本试卷满分160分,考试时间120分钟。
2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色字迹的签字笔填写在试卷的指定位置。
3.作答各题时,必须用书写黑色字迹的0.5毫米签字笔写在试卷的指定位置,在其它位置作答一律无效。
一.填空题(本大题共14小题,每小题5分,共70分。
请把答案填写在答题卡相应位置上。
2014届高三名校数学(文)试题分省分项汇编 专题01 集合与常用逻辑用语
12.【盐城市2014届高三年级第一学期期中考试】设命题 ;命题 ,那么 是 的条件(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”).
13.【江苏省兴化市2013~2014学年度第一学期期中考试高三】已知集合 ,集合 ,则 .
一.基础题组
1.【金陵中学2013-2014学年度第一学期高三期中试卷数学】设集合A={x|-<x<2},B={x|x2≤1},则A∪B=.
2.【金陵中学2013-2014学年度第一学期高三期中试卷数学】命题“ x∈R,x2+ax+1<0”的否定是
3.【江苏省灌云高级中学2013-2014学年度高三第一学期期中考试】“ 为真命题”是“ 为假命题”成立的条件.
14.【江苏省兴化市2013~2014学年度第一学期期中考试高三】已知集合 , ,若 ,则实数 的取值范围为.
二.能力题组
1.【江苏省兴化市安丰高级中学2014届高三】设等比数列 的公比为 ,前 项和为 .则“ ”是“ ”的条件.
2.【江苏省兴化市2013~2014学年度第一学期期中考试高三】(1)解不等式: 三第一学期期中考试】若集合 , ,则集合 .
5.【江苏省兴化市安丰高级中学2014届高三】设集合 , , ,则 .
6.【江苏省扬州中学2013—2014期中考试模拟】已知全集 ,集合 ,则 .
7.【江苏省扬州中学2013—2014期中考试模拟】“ ”是“ ”的条件.(填“充分不必要”、“必要不充分”、“充分必要”、“既不充分也不必要”之一)
(2)已知集合 , .若 ,求实数 的取值组成的集合.
3.【盐城市2014届高三年级第一学期期中考试】设集合 , .
江苏省连云港市灌云高中2014-2015学年高一上学期期中数学试卷(Word
2014-2015学年江苏省连云港市灌云高中高一(上)期中数学试卷一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5分)已知集合A={0,1,2},B={﹣2,0,2},则A∪B=.2.(5分)函数的定义域为.3.(5分)=.4.(5分)已知集合,那么集合M∩N 为.5.(5分)设f(x)=,则f[f()]=.6.(5分)满足不等式的x的取值范围为.7.(5分)对于任意的a∈(1,+∞),函数y=log a(x﹣2)+1的图象恒过点.(写出点的坐标)8.(5分)若函数f(x)=(p﹣2)x2+(p﹣1)x+2是偶函数,则函数f(x)的单调递减区间是.9.(5分)已知a=30.2,b=0.32,c=log0.32,则a,b,c的大小关系为.(用“<”连接)10.(5分)若函数f(x)=x2+4x+5﹣c的最小值为2,则函数f(x﹣2014)的最小值为.11.(5分)若函数y=|log2x|在区间(0,a]上单调递减,则实数a的取值范围是.12.(5分)已知奇函数f(x)的定义域为{x|x≠0,x∈R},在y轴右侧的图象如图,且f(3)=0,则不等式f(x)<0的解集为.13.(5分)过原点O的直线与函数y=2x的图象交于A,B两点,过B作y轴的垂线交函数y=4x的图象于点C,若AC平行于y轴,则点A的坐标是.14.(5分)函数满足对任意x1≠x2都有成立,则a的取值范围是.二、解答题:15.(14分)已知全集U=R,集合A={x|x>1},B={x|﹣1<2x+1≤5},求:(1)A∩B;(2)A∪B;(3)(∁U A)∩(∁U B).16.(14分)若函数f(x)为定义在R上的奇函数,且x∈(0,+∞)时,f(x)=2x(1)求f(x)的表达式;(2)若|f(m)|≤2恒成立,求m的取值范围.17.(14分)设函数y=f(x)是定义在(0,+∞)上的增函数,并满足f(xy)=f(x)+f(y),f(4)=1(1)求f(1)的值;(2)若存在实数t,使f(t)=2,求t的值;(3)如果f(4x﹣5)<2,求x的取值范围.18.(16分)经市场调查,某城市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t(天)的函数,且销售量近似满足g(t)=80﹣2t(件),价格近似满足于(元).(Ⅰ)试写出该种商品的日销售额y与时间t(0≤t≤20)的函数表达式;(Ⅱ)求该种商品的日销售额y的最大值与最小值.19.(16分)已知函数.(1)判断并证明f(x)的奇偶性;(2)判断并证明f(x)的单调性;(3)已知a,b∈(﹣1,1),且满足,若,,求f(a),f(b)的值.20.(16分)设函数f(x)=x2﹣2tx+2,其中t∈R.(1)若t=1,求函数f(x)在区间[0,4]上的取值范围;(2)若t=1,且对任意的x∈[a,a+2],都有f(x)≤5,求实数a的取值范围.(3)若对任意的x1,x2∈[0,4],都有|f(x1)﹣f(x2)|≤8,求t的取值范围.2014-2015学年江苏省连云港市灌云高中高一(上)期中数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5分)已知集合A={0,1,2},B={﹣2,0,2},则A∪B={﹣2,0,1,2}.考点:并集及其运算.专题:集合.分析:直接利用并集运算得答案.解答:解:∵A={0,1,2},B={﹣2,0,2},则A∪B={0,1,2}∪{﹣2,0,2}={﹣2,0,1,2}.故答案为:{﹣2,0,1,2}.点评:本题考查了并集及其运算,是基础的会考题型.2.(5分)函数的定义域为(0,1].考点:对数函数的定义域;函数的定义域及其求法.专题:计算题.分析:根据偶次根式下大于等于0,对数的真数大于0建立不等式组,解之即可求出所求.解答:解:要使函数有意义则由⇒0<x≤1故答案为:(0,1].点评:本题主要考查了对数函数的定义域,以及根式函数的定义域和不等式组的解法,属于基础题.3.(5分)=103.考点:有理数指数幂的化简求值.专题:函数的性质及应用.分析:对每一项分别化简,利用指数幂与根式的互化,然后化简根式.解答:解:原式===103;故答案为:103.点评:本题考查了有理数指数幂的化简求值,关键是将幂的形式化为根式的形式,然后化简求值.4.(5分)已知集合,那么集合M∩N 为[﹣2,3].考点:二次函数的性质;交集及其运算;函数的定义域及其求法.专题:计算题.分析:先化简集合M和N,然后再根据两个集合的交集的意义求解.解答:解:∵M={y|y=﹣x2+2x+2,x∈R}={y|y≤3|},={x|x≥﹣2},那么集合M∩N={y|﹣2≤y≤3}=[﹣2,3],故答案为:[﹣2,3].点评:本题考查了根式函数的定义域,二次函数的值域,以及交集的运算,属基础题.5.(5分)设f(x)=,则f[f()]=.考点:函数的值域;函数的值.专题:计算题.分析:先由计算,然后再把与0比较,代入到相应的函数解析式中进行求解.解答:解:∵∴故答案为:.点评:本题主要考查了分段函数的函数值的求解,解题的关键是计算出后,代入到函数的解析式时,要熟练应用对数恒等式.6.(5分)满足不等式的x的取值范围为(﹣4,+∞).考点:指数函数的单调性与特殊点;其他不等式的解法.专题:计算题.分析:直接利用指数函数的单调性,化简不等式,求出x的范围即可.解答:解:因为y=2x是单调增函数,所以不等式,可得x+1>﹣3,解答x>﹣4.所以不等式的解集为(﹣4,+∞),故答案为:(﹣4,+∞).点评:本题考查指数函数的单调性,不等式的解法,考查计算能力.7.(5分)对于任意的a∈(1,+∞),函数y=log a(x﹣2)+1的图象恒过点(3,1).(写出点的坐标)考点:对数函数的单调性与特殊点.专题:计算题.分析:由于对于任意的a∈(1,+∞),函数y=log a x过定点(1,0),可得y=log a(x﹣2)+1的图象恒过点(3,1).解答:解:由于对于任意的a∈(1,+∞),函数y=log a x过定点(1,0),故函数y=log a(x﹣2)+1的图象恒过点(3,1),故答案为(3,1).点评:本题主要考查对数函数的单调性和特殊点,属于基础题.8.(5分)若函数f(x)=(p﹣2)x2+(p﹣1)x+2是偶函数,则函数f(x)的单调递减区间是(0,+∞).考点:奇偶性与单调性的综合;二次函数的性质.专题:计算题.分析:由f(x)=(p﹣2)x2+(p﹣1)x+2是偶函数,可求p,结合二次函数的性质可求函数的单调递减区间解答:解:∵函数f(x)=(p﹣2)x2+(p﹣1)x+2是偶函数,∴p﹣1=0即p=1∴函数f(x)=﹣x2+2函数的单调递减区间是(0,+∞)故答案为(0,+∞)点评:本题主要考查了偶函数的对称性的应用,及二次函数的单调区间的求解,属于基础试题9.(5分)已知a=30.2,b=0.32,c=log0.32,则a,b,c的大小关系为c<b<a.(用“<”连接)考点:对数值大小的比较;指数函数的单调性与特殊点.专题:探究型.分析:借助于中间量0,1,确定a,b,c与0,1的大小关系,即可得到结论.解答:解:∵a=30.2>30=1,0<b=0.32<0.30=1,c=log0.32<log0.31=0∴c<b<a故答案为:c<b<a点评:本题考查大小比较,解题的关键是利用指数函数、对数函数的单调性,确定a,b,c与0,1的大小关系.10.(5分)若函数f(x)=x2+4x+5﹣c的最小值为2,则函数f(x﹣2014)的最小值为2.考点:二次函数的性质.专题:函数的性质及应用.分析:先将函数进行配方,求出c的值,从而表示出f(x﹣2014),进而求出函数的最小值.解答:解:∵函数f(x)=x2+4x+5﹣c的最小值为2,∴f(x)=(x+2)2+1﹣c=2,∴c=﹣1,∴f(x﹣2014)=(x﹣2014+2)2+2,∴函数f(x﹣2014)的最小值为2,故答案为:2.点评:本题考查了二次函数的性质,函数的最值问题,是一道基础题.11.(5分)若函数y=|log2x|在区间(0,a]上单调递减,则实数a的取值范围是(0,1].考点:对数函数的单调性与特殊点.专题:规律型.分析:确定函数y=|log2x|的单调减区间、单调增区间,根据函数y=|log2x|在区间(0,a]上单调递减,即可求得实数a的取值范围.解答:解:函数y=|log2x|的单调减区间为(0,1],单调增区间为[1,+∞)∵函数y=|log2x|在区间(0,a]上单调递减,∴0<a≤1∴实数a的取值范围是(0,1]故答案为:(0,1]点评:本题考查函数的单调性,考查求参数的取值范围,解题的关键是确定函数的单调区间.12.(5分)已知奇函数f(x)的定义域为{x|x≠0,x∈R},在y轴右侧的图象如图,且f(3)=0,则不等式f(x)<0的解集为(﹣∞,﹣3)∪(0,3).考点:函数的图象.专题:函数的性质及应用.分析:由已知,y=f(x)是奇函数,由它们在x∈(0,+∞]上的图象,结合奇函数的图象关于原点对称,我们可以判断出函数y=f(x)在区间(﹣∞,0)中的符号,进而得到不等式f(x)<0的解集解答:解:结合图象可知,当x>0时,f(x)<0时,可得0<x<3,由奇函数的图象关于原点对称可知,x<﹣3,故答案为:(﹣∞,﹣3)∪(0,3).点评:本题考查的知识点是函数奇偶性,函数的单调性,其中根据已知条件结合奇函数的图象关于原点对称,判断出函数y=f(x)在区间(﹣∞,0)中的符号,是解答本题的关键.13.(5分)过原点O的直线与函数y=2x的图象交于A,B两点,过B作y轴的垂线交函数y=4x的图象于点C,若AC平行于y轴,则点A的坐标是(1,2).考点:指数函数的图像与性质.专题:计算题.分析:先设A(n,2n),B(m,2m),则由过B作y轴的垂线交函数y=4x的图象于点C 写出点C的坐标,再依据AC平行于y轴得出m,n之间的关系:n=,最后根据A,B,O三点共线.利用斜率相等即可求得点A的坐标.解答:解:设A(n,2n),B(m,2m),则C(,2m),∵AC平行于y轴,∴n=,∴A(,2n),B(m,2m),又A,B,O三点共线.∴k OA=k OB即⇒n=m﹣1又n=,n=1,则点A的坐标是(1,2)故答案为:(1,2).点评:本题主要考查了指数函数的图象与性质、直线的斜率公式、三点共线的判定方法等,属于基础题.14.(5分)函数满足对任意x1≠x2都有成立,则a的取值范围是[﹣1,3).考点:函数的连续性;函数单调性的性质.专题:计算题;转化思想.分析:函数满足对任意x1≠x2都有成立,由增函数的定义知,此函数是一个增函数,由此关系得出a的取值范围解答:解:根据题意,由增函数的定义知,此函数是一个增函数;故有,解得﹣1≤a<3则a的取值范围是[﹣1,3)故答案为[﹣1,3)点评:本题考查函数的连续性,解题本题关键是根据题设中的条件得出函数是一个增函数,再有增函数的图象特征得出参数所满足的不等式,这是此类题转化常的方式,本题考查了推理论证的能力及转化的思想二、解答题:15.(14分)已知全集U=R,集合A={x|x>1},B={x|﹣1<2x+1≤5},求:(1)A∩B;(2)A∪B;(3)(∁U A)∩(∁U B).考点:交、并、补集的混合运算.专题:集合.分析:(1)求出B中不等式的解集确定出B,找出A与B的交集即可;(2)由A与B,求出两集合的并集即可;(3)由全集U=R,求出A的补集与B的补集,找出两补集的交集即可.解答:解:(1)由B中不等式解得:﹣1<x<2,即B={x|﹣1<x<2},∵A={x|x>1},∴A∩B={x|1<x<2};(2)∵A={x|x>1},B={x|﹣1<x<2},∴A∪B={x|x>﹣1};(3)∵全集U=R,A={x|x>1},B={x|﹣1<x<2},∴∁U A={x|x≤1},∁U B={x|x≤﹣1或x≥2},则(∁U A)∩(∁U B)={x|x≤﹣1}.点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.16.(14分)若函数f(x)为定义在R上的奇函数,且x∈(0,+∞)时,f(x)=2x(1)求f(x)的表达式;(2)若|f(m)|≤2恒成立,求m的取值范围.考点:函数恒成立问题;函数解析式的求解及常用方法.专题:函数的性质及应用.分析:(1)直接利用函数的奇偶性,求出求f(x)的表达式;(2)通过|f(m)|≤2恒成立,通过分段函数化简转化不等式即可求m的取值范围.解答:解:(1)当x∈(﹣∞,0)时,则﹣x∈(0,+∞)所以f(﹣x)=2﹣x=﹣f(x),f(x)=﹣2﹣x当x=0时,f(﹣0)=﹣f(0),所以f(0)=0所以(2)由|f(m)|≤2,即﹣2≤f(m)≤2m>0,f(m)=2m≤2,m≤1;m=0,f(m)=0;m<0,f(m)=﹣2﹣m≥﹣2,m≥﹣1所以﹣1≤m≤1点评:本题考查函数的恒成立,分段函数的应用,函数的解析式的求法,考查计算能力.17.(14分)设函数y=f(x)是定义在(0,+∞)上的增函数,并满足f(xy)=f(x)+f(y),f(4)=1(1)求f(1)的值;(2)若存在实数t,使f(t)=2,求t的值;(3)如果f(4x﹣5)<2,求x的取值范围.考点:抽象函数及其应用.专题:函数的性质及应用.分析:(1)利用赋值法,x=y=1,即可求f(1)的值;(2)利用已知条件转化f(16)=2,即可由f(t)=2,求出t的值;(3)利用函数的单调性转化f(4x﹣5)<2,即可求x的取值范围.解答:解:(1)令x=y=1,则f(1)=f(1)+f(1),所以f(1)=0;(2)由f(4)=1,所以f(4)+f(4)=2,即f(16)=2,且f(x)在(0,+∞)上是增函数,所以t=16;(3)由(2)知,f(16)=2,所以f(4x﹣5)<2=f(16),0<4x﹣5<16,.点评:本题考查抽象函数的应用,赋值法以及函数的单调性的应用,考查计算能力以及转化思想的应用.18.(16分)经市场调查,某城市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t(天)的函数,且销售量近似满足g(t)=80﹣2t(件),价格近似满足于(元).(Ⅰ)试写出该种商品的日销售额y与时间t(0≤t≤20)的函数表达式;(Ⅱ)求该种商品的日销售额y的最大值与最小值.考点:函数最值的应用.专题:应用题;函数的性质及应用.分析:(Ⅰ)由已知,由价格乘以销售量可得该种商品的日销售额y与时间t(0≤t≤20)的函数表达式;(Ⅱ)由(Ⅰ)分段求出函数的最大值与最小值,从而可得该种商品的日销售额y的最大值与最小值.解答:解:(Ⅰ)由已知,由价格乘以销售量可得:(Ⅱ)由(Ⅰ)知①当0≤t≤10时y=﹣t2+10t+1200=﹣(t﹣5)2+1225函数图象开口向下,对称轴为t=5,该函数在t∈[0,5]递增,在t∈(5,10]递减∴y max=1225(当t=5时取得),y min=1200(当t=0或10时取得)②当10<t≤20时y=t2﹣90t+2000=(t﹣45)2﹣25图象开口向上,对称轴为t=45,该函数在t∈(10,20]递减,t=10时,y=1200,y min=600(当t=20时取得)由①②知y max=1225(当t=5时取得),y min=600(当t=20时取得)点评:本题考查函数模型的构建,考查函数的最值,考查分类讨论的数学思想,解题的关键是确定函数的解析式.19.(16分)已知函数.(1)判断并证明f(x)的奇偶性;(2)判断并证明f(x)的单调性;(3)已知a,b∈(﹣1,1),且满足,若,,求f(a),f(b)的值.考点:函数单调性的判断与证明;函数的定义域及其求法;函数奇偶性的判断;函数的值.专题:函数的性质及应用.分析:(1)先分析函数的定义域是否关于原点对称,再分析f(﹣x)与f(x)的关系,进而根据函数奇偶性的定义,可得答案.(2)任取x1,x2,且﹣1<x1<x2<1,进而判断f(x1)与f(x2)的大小关系,进而根据函数单调性的定义,可得答案.(3)由(1)中函数的奇偶性,结合,若,,可构造关于f(a),f(b)的方程组,解方程组可得答案.解答:解:(1)若使函数的解析式有意义,自变量x须满足∴﹣1<x<1,函数定义域(﹣1,1)…(2分)∵定义域关于原点对称f(﹣x)==﹣f(x)故f(x)为奇函数…(5分)(2)函数在定义域上单调递增…(7分)证明:任取x1,x2,且﹣1<x1<x2<1∵f(x1)﹣f(x2)=﹣=而∴f(x1)﹣f(x2)<lg1=0即f(x1)<f(x2)故函数f(x)单调递增…(11分)(3)∵,,∴f(a)+f(b)=1…①∴=f(a)﹣f(b)又∵,f(a)﹣f(b)=2…②解得f(a)=,f(b)=﹣点评:本题考查的知识点是函数单调性的定义及证明,函数奇偶性的定义及证明,函数的定义域,函数的值,是函数图象和性质的综合应用,难度中档.20.(16分)设函数f(x)=x2﹣2tx+2,其中t∈R.(1)若t=1,求函数f(x)在区间[0,4]上的取值范围;(2)若t=1,且对任意的x∈[a,a+2],都有f(x)≤5,求实数a的取值范围.(3)若对任意的x1,x2∈[0,4],都有|f(x1)﹣f(x2)|≤8,求t的取值范围.考点:二次函数在闭区间上的最值;二次函数的性质.专题:综合题.分析:(1)若t=1,则f(x)=(x﹣1)2+1,根据二次函数在[0,4]上的单调性可求函数的值域(2)由题意可得函数在区间[a,a+2]上,[f(x)]max≤5,分别讨论对称轴x=t与区间[a,a+2]的位置关系,进而判断函数在该区间上的单调性,可求最大值,进而可求a的范围(3)设函数f(x)在区间[0,4]上的最大值为M,最小值为m,对任意的x1,x2∈[0,4],都有|f(x1)﹣f(x2)|≤8等价于M﹣m≤8,结合二次函数的性质可求解答:解:因为f(x)=x2﹣2tx+2=(x﹣t)2+2﹣t2,所以f(x)在区间(﹣∞,t]上单调减,在区间[t,+∞)上单调增,且对任意的x∈R,都有f(t+x)=f(t﹣x),(1)若t=1,则f(x)=(x﹣1)2+1.①当x∈[0,1]时.f(x)单调减,从而最大值f(0)=2,最小值f(1)=1.所以f(x)的取值范围为[1,2];②当x∈[1,4]时.f(x)单调增,从而最大值f(4)=10,最小值f(1)=1.所以f(x)的取值范围为[1,10];所以f(x)在区间[0,4]上的取值范围为[1,10].…(3分)(2)“对任意的x∈[a,a+2],都有f(x)≤5”等价于“在区间[a,a+2]上,[f(x)]max≤5”.①若t=1,则f(x)=(x﹣1)2+1,所以f(x)在区间(﹣∞,1]上单调减,在区间[1,+∞)上单调增.②当1≤a+1,即a≥0时,由[f(x)]max=f(a+2)=(a+1)2+1≤5,得﹣3≤a≤1,从而0≤a≤1.③当1>a+1,即a<0时,由[f(x)]max=f(a)=(a﹣1)2+1≤5,得﹣1≤a≤3,从而﹣1≤a<0.综上,a的取值范围为区间[﹣1,1].…(6分)(3)设函数f(x)在区间[0,4]上的最大值为M,最小值为m,所以“对任意的x1,x2∈[0,4],都有|f(x1)﹣f(x2)|≤8”等价于“M﹣m≤8”.①当t≤0时,M=f(4)=18﹣8t,m=f(0)=2.由M﹣m=18﹣8t﹣2=16﹣8t≤8,得t≥1.从而t∈∅.②当0<t≤2时,M=f(4)=18﹣8t,m=f(t)=2﹣t2.由M﹣m=18﹣8t﹣(2﹣t2)=t2﹣8t+16=(t﹣4)2≤8,得4﹣2≤t≤4+2.从而4﹣2≤t≤2.③当2<t≤4时,M=f(0)=2,m=f(t)=2﹣t2.由M﹣m=2﹣(2﹣t2)=t2≤8,得﹣2≤t≤2.从而2<t≤2.④当t>4时,M=f(0)=2,m=f(4)=18﹣8t.由M﹣m=2﹣(18﹣8t)=8t﹣16≤8,得t≤3.从而t∈∅.综上,t的取值范围为区间[4﹣2,2].…(10分)点评:本题主要考查了二次函数闭区间上的最值的求解,解题的关键是确定二次函数的对称轴与所给区间的位置关系,体现了分类讨论思想的应用.。
2014届高三名校数学(文)试题分省分项汇编 专题06 数列
一.基础题组1. 【金陵中学2013-2014学年度第一学期高三期中试卷数学】在各项均为正数的等比数列{a n }中,已知a 1+ a 2+ a 3 =2, a 3+ a 4+ a 5 =8,则a 4+ a 5+ a 6 = .2. 【江苏省灌云高级中学2013-2014学年度高三第一学期期中考试】若n S 是等差数列}{n a 的前n 项和,且8320S S -=,则11S 的值为 .3. 【江苏省灌云高级中学2013-2014学年度高三第一学期期中考试】等差数列{}n a 中,公差0d ≠,且2371220a a a -+=,数列{}n b 是等比数列,且77b a =则68b b = .考点:1.等差数列的性质;2.等比中项4. 【江苏省兴化市安丰高级中学2014届高三学】设等比数列{}n a 的公比为q ,前n 项和为n S .则“||q =是“627S S =” 的条件.5.【江苏省兴化市安丰高级中学2014届高三】数列{}n a 是公差不为0的等差数列,且862a a a =+,则=55a S .6. 【江苏省扬州中学2013—2014期中考试模拟】等差数列{}n a 中,若124a a +=,91036a a +=,则10S = .考点:等差数列.7. 【江苏省徐州市2013-2014第一学期高三期中试题】设n S 是等差数列{}n a 的前n 项和,已知32=a ,116=a ,则=7S .8. 【盐城市2014届高三年级第一学期期中考试】在等比数列{}n a 中,22a =,516a =,则10a = .二.能力题组1. 【江苏省通州高级中学2013-2014学年度秋学期期中考试高三数学试卷】 各项均为正数的等比数列{}n a 中,811=a 12...8(2,)m m a a a m m N +⋅⋅⋅=>∈,若从中抽掉一项后,余下的m-1项之积为1m -,则被抽掉的是第 _ 项.2. 【江苏省徐州市2013-2014第一学期高三期中试题】设等比数列{}n a 满足公比*N q ∈,*N a n ∈,且{n a }中的任意两项之积也是该数列中的一项,若8112=a ,则q 的所有可能取值的集合为 .3. 【盐城市2014届高三年级第一学期期中考试】在数列{}n a 中,11a =,2(1)2n n n a a ++-=,记n S 是数列{}n a 的前n 项和,则60S = .4.【盐城市2014届高三年级第一学期期中考试】在数列{}n a 中,10a =,111111n n a a +-=--,设n b =,记n S 为数列{}n b 的前n 项和,则99S = .5.【江苏启东中学2014届上学期期中模拟高三数学】已知数列{}n a 的前n 项和为n S ,常数0λ>,且11n n a a S S λ=+对一切正整数n 都成立。
江苏省灌云高级中学2014届高三上学期期中考试数学(文)试题 含解析
一、填空题(每题5分,满分70分,将答案填在答题纸上)1。
在ABC ∆中,已知︒===60,1,3A c b ,则a = .2。
若复数12429,69z i z i =+=+,其中i 是虚数单位,则复数12()z z i -的实部为 .3。
已知向量a 和向量b 的夹角为30,||2,||3==a b ,则向量a 和向量b 的数量积a •b = .4。
函数32()15336f x x x x =--+的单调减区间为 。
5。
已知函数()x f x a =,)1,0(∈a ,若实数,m n 满足()()f m f n >,则,m n 的大小关系为 。
6.已知等差数列1885015na a a S ﹛﹜中,=,=,则 = .7。
已知集合{}2|log 2A x x =≤,(,)B a =-∞,若A B ⊆,则实数a 的取值范围是 . 【答案】),4(+∞ 【解析】试题分析:由{}{}{}222|log 2|log log 4|4A x x x x x x =≤=≤=≤,又因为A B ⊆,则由数轴得4a > ,即),4(+∞.考点:1.对数不等式;2。
集合运算8。
如果一个正三棱锥的底面边长为6,且侧棱长为15,那么这个三棱锥的体积是。
考点:三棱锥的体积9。
若已知y x,满足4335251x yx yx-≤-⎧⎪+≤⎨⎪≥⎩,,.求yxz+=2的最大值与最小值的差是.。
2014届高三名校数学(理)试题分省分项汇编 专题01 集合与常用逻辑用语
一.基础题组1. 【江苏省灌云高级中学2013-2014学年度高三第一学期期中考试】若集合{23},{14}A x x B x x x =-≤≤=<->或,则集合A B = .2. 【南京市、盐城市2014届高三第一次模拟考试】“p q ∨为真命题”是“p ⌝为假命题”成立的 条件.3. 【江苏省诚贤中学2014届高三数学月考试题】已知集合{}(1)0P x x x =-≥,Q ={})1ln(|-=x y x ,则P Q = .4. 【南京市、盐城市2014届高三第一次模拟考试】已知集合{3,1,1,2}A =--,集合[0,)B =+∞,则______A B = .5. 【江苏省扬州中学2013—2014学年第一学期月考】已知集合⎭⎬⎫⎩⎨⎧∈==R x y y A x ,21|,{}R x x y y B ∈-==),1(log |2,则=⋂B A .6. 【苏州市2014届高三调研测试】已知集合A = { x | x < 2 },B = { -1,0,2,3 },则A∩B = ▲ .7. 【江苏省兴化市安丰高级中学2014届高三12月月考】设集合{}4,3,2,1=U ,{}2,1=A ,{}4,2=B ,则U AB = ()ð .8. 【江苏省扬州中学2013—2014学年第一学期月考】已知命题:p “若=,则||||=”,则命题p 及其逆命题、否命题、逆否命题中,正确命题的个数是 .二.能力题组1. 【江苏省诚贤中学2014届高三数学月考试题】由命题“02,2≤++∈∃m x x R x ”是假命题,求得实数m 的取值范围是),(+∞a ,则实数a 的值是 .2. 【南京市、盐城市2014届高三第一次模拟考试】设函数()cos(2)f x x ϕ=+,则“()f x 为奇函数”是“2πϕ=”的 条件.(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)3. 【江苏省通州高级中学2013-2014学年度秋学期期中考试】已知集合A ={x |x >2,或x <-1},B ={x |a x b ≤≤},若A B R = ,A B ={x |24x <≤},则ba=_ ▲__ .【答案】-4 【解析】试题分析:由{}{}|x 2x 1,|2<x 4A x A B R A B x =><-==≤ 或,可得{}|14B x x =-≤≤ ,则1,4a b =-= ,故4ba=-. 考点:集合的运算4. 【苏北四市2014届高三第一次质量检测】已知集合{2}A a =+,{1,1,3}B =-,且A B ⊆,则实数a 的值是 .5.【江苏省兴化市安丰高级中学2014届高三12月月考】 已知命题:“{}|11x x x ∃∈-<<,使等式20x x m --=成立”是真命题. (1)求实数m 的取值集合M ;(2)设不等式()(2)0x a x a -+-<的解集为N ,若x N ∈是x M ∈的必要条件,求a 的取值范围.试题解析:(1) 由题意知,方程20x x m --=在()1,1-上有解,即m 的取值范围就为函数x x y -=2在()1,1-上的值域,易得124M m m ⎧⎫=-≤<⎨⎬⎩⎭(2) 因为x N ∈是x M ∈的必要条件,所以N M ⊆当1=a 时,解集N 为空集,不满足题意当1>a 时,a a ->2,此时集合{}a x a x N <<-=2|则⎪⎩⎪⎨⎧≥-<-2412a a ,解得49>a当1<a 时,a a -<2,此时集合{}a x a x N -<<=2|。
2014年高考数学二轮复习精品资料-难点突破篇难点07 函数的性质综合运用问题(教学案)
函数性质的综合应用是高考的重点内容之一,考查的内容灵活多样,函数的奇偶性、单调性、周期性、对称性可以单独命题,也可以将它们综合在一起进行考查,很多学生在做题时不能很准确的利用好各个性质的特征进行解题,从而导致正确率很低.同时试题中往往以抽象函数为题根,来考查考生对函数性质的理解和掌握,而抽象函数就是考生的弱点之一,因而这种类型的试题,难度较大.本文就高考中常见考查题型加以总结和方法的探讨. 1函数单调性的判断函数单调性判断的常用方法:(1)利用已知函数的单调性,即转化为已知函数的和、差或复合函数,求单调区间.(2)定义法:先求定义域,再利用单调性定义.(3)图象法:如果()f x 是以图象形式给出的,或者()f x 的图象易作出,可由图象的直观性写出它的单调区间.(4)导数法:利用导数的正负确定函数的单调区间.例1【江苏省灌云高级中学2013-2014学年度高三第一学期期中考试】函数213()log (56)f x x x =-+的单调递增区间为 .2 依据函数单调性求参数范围对于含参函数()f x 在给定区间[,]a b 内单调递减(以递减为例)求参数k 范围,可以根据具体的函数单调性考虑,也可以根据函数求导考虑,然后转化成恒成立问题. 常见的利用导数的方法有:(1)最值法:先对给定函数进行求导,则原题意转化为'()0f x ≤对于一切[,]x a b ∈恒成立,此时只需求出'()f x 在[,]a b 上的最大值max '()f x (max '()f x 是关于k 的表达式),再解不等式max '()0f x ≤,进行得到k 的取值范围.(2)子区间法:先解关于x 的不等式'()0f x ≤,得到用参数k 表示的函数()f x 的单调减区间U ,再令[,]a b U ⊆,从而可以得到关于k 的不等式或不等式组,进而得到k 的取值范围.(3)参数分离法:先对给定函数进行求导,则原题意转化为'()0f x ≤对于一切[,]x a b ∈恒成立,将参数k 分离到不等式的一边,而另一边是一个不含参数k 的函数()g x ,若参数分离后得到不等式()()g x h k ≥,则min ()()g x h k ≥(反之,max ()()g x h k ≤).例2 【安徽省毫州市涡阳四中2014届高三上学期第二次月考数学(理)】已知,(1)()(4)2,(1)2x a x f x a x x ⎧>⎪=⎨-+≤⎪⎩是R 上的单调递增函数,则实数a 的取值范围为 ( ) A .(1,+∞) B .[4,8) C .(4,8) D .(1,8)例3【安徽省合肥市2014届高三第一次质量检测数学(文)】已知函数()log (21)(0x a f x b a =+->且1)a ≠在R 上单调递增,且24a b +≤,则b a的取值范围为( ) A.2[,2)3 B.2[,2]3 C.2(,2]3 D.2(,2)33 抽象函数奇偶性判断抽象函数是指没有具体地给出函数的解析式,只给出它的一些特征或性质.这类问题往往具有抽象性、综合性、技巧性等特点.它既是教学的难点,又是近几年高考中的热点.这类问题常见的思路是根据已知条件,通过恰当的赋值代换,寻求()f x -与()f x 的关系.几个抽象函数的奇偶性及函数模型如下:(1)若函数)(x f y =满足)()()(y f x f y x f +=+,则)(x f 是奇函数;(2)若函数)(x f y = 满足)()(1)()()(y f x f y f x f y x f -+=+,则)(x f 是奇函数;(3)若函数)(x f y =满足)()(2)()(y f x f y x f y x f =-++,)0(f ≠0,则)(x f 是偶函数.例4函数()f x 的定义域为R ,若)1(+x f 与(1)f x -都是奇函数,则( )(A) ()f x 是偶函数 (B) ()f x 是奇函数(C) )2(+x f 是奇函数 (D) (3)f x +是奇函数例5 已知函数f (x )满足:f (1)=14,4f (x )f (y )=f (x +y )+f (x -y )(x ,y ∈R),则f (2 014)=________. 4 依据函数周期性与对称性(奇偶性)求值函数的周期性与对称性(或奇偶性)同时出现,需要能够快速发现他们之间的关系,从而能够准确的解题.他们之间的关系有:(1)若()yf x =关于点(,0),(,0)a b 中心对称(相邻),则()f x 是周期为2b a -的周期函数;()y f x =的图象关于直线,()x a x b a b ==≠周对称(相邻),则函数()y f x =是周期为2b a -的周期函数;(3)如果函数()y f x =的图像有一个对称中心(,0)A a 和一条相邻对称轴()x b a b =≠,则函数()y f x =必是周期函数,且一周期为4||T a b =-.例 6 【广东省中山市一中2014届高三第二次统测】奇函数()f x 满足对任意x R ∈都有()()2f x f x +=-成立,且()18f =,则(2012)(2013)(2014)f f f ++的值为( ) A . 2 B . 4 C . 6D . 85 函数奇偶性与单调性综合解题函数单调性与奇偶性混合时,重在对函数图象的考查及函数性质的应用.此时可先从特殊点——定点,再从单调性——部分定形,最后从奇偶性——定图象,然后根据图象挖掘性质,比较大小或找准最值、单调区间等.例7【安徽省毫州市涡阳四中2014届高三上学期第二次月考数学(理)】若函数x.(3+=对任意的0)f3xxx∈x-ffm恒成立,则∈-mx)2+)(([<2,2],6.函数奇偶性、单调性、周期性综合解题单调性、奇偶性和周期性是函数最重要、最基本的性质.注意单调性是函数在定义域内局部区间上的性质(即函数可以在定义域的一部分上单调),而奇偶性和周期性是函数在定义域上的整体性质(即对定义域内任意自变量都成立的性质).例8 【山西省大同一中2013-2014学年上学期期中考试试题】已知定义域为R 的函数()f x 在区间(8, +∞)上为减函数,且函数(8)yf x =+为偶函数,则( ) A. f (6)> f (7)B. f (6)> f (9)C. f (7)> f (9)D. f (7)> f (10)点评:本题考查的是函数的奇偶性与周期性,重点是要掌握(8)yf x =+是偶函数,应该是(8)(8)f x f x -+=+(关于8x =对称),而不是(8)(8)f x f x --=+(此时的情况是()f x 是偶函数). 例9 如图放置的边长为1的正方形PABC 沿x 轴滚动,点B 恰好经过原点.设顶点(,)P x y 的轨迹方程是()y f x =,则对函数()y f x =有下列判断:①函数()y f x =是偶函数;②对任意的x R ∈,都有(2)(2)f x f x +=-;③函数()y f x =在区间[2,3]上单调递减;④函数()y f x =在区间[4,6]上是减函数.其中判断正确的序号是 .。
2014届高三名校数学(文)试题分省分项汇编 专题04 三角函数与三角形
一.基础题组1. 【江苏省灌云高级中学2013-2014学年度高三第一学期期中考试】已知4cos()65πα-=,则sin()3πα+= .2. 【江苏省灌云高级中学2013-2014学年度高三第一学期期中考试】求值:002cos10sin 20cos 20-= .3. 【江苏省灌云高级中学2013-2014学年度高三第一学期期中考试】已知向量(sin ,1),(1,cos ),22a b ππθθθ==-<< .(1) 若a b ⊥,求θ;(2) 求a b +的最大值.4. 【江苏省灌云高级中学2013-2014学年度高三第一学期期中考试】已知ABC ∆的周长1,且sin sin A B C + (1)求边AB 的长; (2)若ABC ∆的面积为1sin 6C ,求角C .5. 【江苏省灌云高级中学2013-2014学年度高三第一学期期中考试】如图,两座建筑物AB ,CD 的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是9m 和15m ,从建筑物AB 的顶部A 看建筑物CD 的张角045CAD ∠=. (1)求BC 的长度;(2)在线段BC 上取一点P (点P 与点B ,C 不重合),从点P 看这两座建筑物的张角分别为APB α∠=,DPC β∠=,问点P 在何处时,tan()αβ+最小?BC的长度是18 m.………………………7分6. 【南京市、盐城市2014届高三第一次模拟考试】在ABC ∆中,2BC =,23A π=,则AB AC ⋅的最小值为 .7. 【南京市、盐城市2014届高三第一次模拟考试】 在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,已知2c =,3C π=.(1)若ABC ∆a ,b ;(2)若sin sin()2sin 2C B A A +-=,求ABC ∆的面积.【答案】(1)2a =,2b =;(2 【解析】8. 【江苏省通州高级中学2013-2014学年度秋学期期中考试】已知ααcos 21sin +=,且)2,0(πα∈,则)4sin(2cos παα-的值为__ ▲____.【答案】214- 【解析】试题分析:由22sin cos 11sin cos 2αααα⎧+=⎪⎨=+⎪⎩,且02πα<<可解得:1sin 4cos αα⎧=⎪⎪⎨⎪=⎪⎩,则22cos 2cos )sin()422αααπα==+=-考点:三角化简求值9. 【江苏省通州高级中学2013-2014学年度秋学期期中考试】 在△ABC 中,内角A ,B ,C 所对边长分别为a ,b ,c , AC AB ∙=8,∠BAC =θ,a =4, (1)求b ·c 的最大值及θ的取值范围;(2)求函数f (θ)=23sin 2(π4+θ)+2cos 2θ-3的最值.当2+62ππθ=,即=6πθ时,max f()3θ=. 考点:1.余弦定理;2.三角函数的图象;3.基本不等式10. 【江苏省扬州中学2013—2014学年第一学期月考】若动直线)(R a a x ∈=与函数())()cos()66f x xg x x ππ=+=+与的图象分别交于N M ,两点,则||MN 的最大值为 .11. 【江苏省扬州中学2013—2014学年第一学期月考】设向量),cos ,(sin x x a =),sin 3,(sin x x b =x ∈R ,函数)2()(b a a x f +⋅=.(1)求函数)(x f 的单调递增区间;(2)求使不等式()2f x '≥成立的x 的取值集合.12. 【苏北四市2014届高三第一次质量检测】 在△ABC 中,已知3AB =,o 120A =,且ABC ∆,则BC 边长为 .13. 【苏北四市2014届高三第一次质量检测】已知函数()2sin(2)(0)4f x x ωωπ=->的最大值与最小正周期相同,则函数()f x 在[11]-,上的单调增区间为 .14. 【苏北四市2014届高三第一次质量检测】已知向量(cos ,sin )θθ=a ,(2,1)=-b .(1)若⊥a b ,求sin cos sin cos θθθθ-+的值;(2)若2-=a b ,(0,)2θπ∈,求sin()4θπ+的值.15. 【苏州市2014届高三调研测试】 若函数()sin()f x x θ=+(π02θ<<)的图象关于直线π6x =对称,则θ = ▲ .16. 【苏州市2014届高三调研测试】已知π3sin()45x +=,π4sin()45x -=,则tan x = ▲ .17. 【苏州市2014届高三调研测试】 在△ABC 中,设角A ,B ,C 的对边分别为a ,b ,c ,且1cos 2a C c b +=.(1)求角A 的大小;(2)若a =4b =,求边c 的大小.18. 【江苏省兴化市安丰高级中学2014届高三12月月考】已知)0,2(πα-∈,53cos =α,则=+)4tan(πα .19.【江苏省兴化市安丰高级中学2014届高三12月月考】在ABC ∆中,若2,60,7a Bb =∠=︒,则c = .20.二.能力题组1. 【江苏省诚贤中学2014届高三数学月考试题】在△ABC ,已知.sin sin 3)sin sin )(sin sin sin (sin C B A C B C B A =-+++(1)求角A 值;(2)求C B cos sin 3-的最大值. 【答案】⑴3A π=;⑵ 1. 【解析】试题分析:⑴根据题意观察所给代数式特点可见此式中全为角的正弦,结合正弦定理可化角为边转化为()()3a b c b c a bc +++-=,可将此式变形为222b c a bc +-=,根据特征可联想到余弦定理2.【江苏省兴化市安丰高级中学2014届高三12月月考】已知(c o s ,s i n ),(c os a b ααββ==. (1)若67πβα=-,求a b ⋅ 的值; (2)若4,58a b πα⋅== ,且⎪⎭⎫⎝⎛-∈-0,2πβα,求tan()αβ+的值.3. 【江苏省兴化市安丰高级中学2014届高三12月月考】 在锐角△ABC 中,角A 、B 、C的对边分别为a 、b 、c ,且 .3tan )(222bc A a c b =-+ (1)求角A ;(2)若2a =,求ABC ∆面积S 的最大值.4.三.拔高题组1. 【江苏省诚贤中学2014届高三数学月考试题】如图,两座建筑物CD AB ,的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是9cm 和15cm ,从建筑物AB 的顶部A 看建筑物CD 的视角︒=∠45CAD .求BC 的长度;在线段BC 上取一点(P 点P 与点C B ,不重合),从点P 看这两座建筑物的视角分别为,,βα=∠=∠DPC APB 问点P 在何处时,βα+最小?2.。
江苏省2014届高三数学一轮复习考试试题精选(1)分类汇编6:指数函数、对数函数及幂函数
江苏省2014届高三数学一轮复习考试试题精选(1)分类汇编6:指数函数、对数函数及幂函数一、填空题1 .(江苏省兴化市2014届高三第一学期期中调研测试)计算:()=++-3233ln 125.09loge__★__.【答案】112 .(江苏省丰县中学2014届高三10月阶段性测试数学(理)试题)如图,已知过原点O 的直线与函数8log y x =的图像交于A,B 两点,分别过A,B 作y 轴的平行线与函数2log y x =的图像交于C,D 两点;若//BC x 轴,则点A 的坐标为_____________.【答案】213,log 36⎫⎪⎭3 .(江苏省泰州市姜堰区2014届高三上学期期中考试数学试题)=+5lg 2lg ________.【答案】14 .(江苏省兴化市2014届高三第一学期期中调研测试)已知函数()a ax x y3log 221+-=在[)+∞,2上为减函数,则实数a 的取值范围是__★__.【答案】(]4,4-5 .(江苏省宿迁市2014届高三上学期第一次摸底考试数学试卷)已知函数1()log (01)axf x a b x-=+<<为奇函数,当(1]x a ∈-,时,函数()f x 的值域是(1]-∞,,则实数a b +的值为______.【答案】26 .(江苏省诚贤中学2014届高三上学期第一次月考数学试题)已知函数f (x )=log a (x 2-ax +2)在(2,+∞)上为增函数,则实数a 的取值范围为________. 【答案】(1,3]7 .(江苏省梁丰高级中学2014届第一学期阶段性检测一)已知51a -=,函数()log (1)a f x x =-,若正实数m 、n 满足 ()()f m f n >,则m 、n 的大小关系为____【答案】m>n8 .(江苏省灌云县陡沟中学2014届高三上学期第一次过关检测数学试题)若))3((.2),1(1,2,2)(21f f x x g x e x f x 则⎪⎩⎪⎨⎧≥+<=-的值为_______; 【答案】29 .(江苏省苏州市2013-2014学年第一学期高三期中考试数学试卷)已知函数||)(a x ex f -=(a 为常数),若)(x f 在区间),1[+∞上是增函数,则a 的取值范围是 ___.【答案】(]1,∞-10.(江苏省诚贤中学2014届高三上学期第一次月考数学试题)函数224log ([2,4])log y x x x=+∈的最大值是______. 【答案】511.(江苏省梁丰高级中学2014届第一学期阶段性检测一)若函数()xf x a x a =--(a>0且a ≠1)有两个零点,则实数a 的取值范围是___________【答案】}1|{>a a12.(江苏省灌云县陡沟中学2014届高三上学期第一次过关检测数学试题)函数212()log (23)f x x x =--+的单调递增区间是_____________;【答案】(1,1)-13.(江苏省苏州市2014届高三暑假自主学习测试(9月)数学试卷)已知函数nmy x =,其中,m n 是取自集合{1,2,3}的两个不同值,则该函数为偶函数的概率为______.【答案】1314.(江苏省常州市武进区2014届高三上学期期中考试数学(理)试题)若点(,9)a 在函数3x y=的图像上,则6tanπa 的值为______. 【答案】315.(江苏省灌云县陡沟中学2014届高三上学期第一次过关检测数学试题)把函数xy 2=图象上所有点向_____平移一个单位可得12+=x y 的图象;【答案】左。
江苏省灌云高级中学高三数学上学期期中试题 理(含解析
江苏省灌云高级中学2014届高三数学上学期期中试题 理(含解析)新人教A版一、填空题(每题5分,满分70分,将答案填在答题纸上)1.若集合{23},{14}A x x B x x x =-≤≤=<->或,则集合A B =I .2.复数1iZ i=+(i 是虚数单位)的模为 .3.已知向量(1,3),(4,2)a b =-=-r r ,若()//a b b λ+r r r,则λ= .4.已知4cos()65πα-=,则sin()3πα+= .5.“p q ∨为真命题”是 “p ⌝为假命题”成立的 条件.6.函数213()log (56)f x x x =-+的单调递增区间为 .7.若n S 是等差数列}{n a 的前n 项和,且8320S S -=,则11S 的值为 . 【答案】44 【解析】试题分析:由83456786520S S a a a a a a -=++++==,解得64a =,又由611111611211()114422a a a S a ⨯+====考点:1.等差数列的性质;2.等差数列的求和8.求值:002cos10sin 20cos 20-= .10.等差数列{}n a 中,公差0d ≠,且23711220a a a -+=,数列{}n b 是等比数列,且77b a =则68b b = . 【答案】16 【解析】试题分析:在等差数列中,由23711220a a a -+=,得223117772()0,40a a a a a +-=-=,则770,4a a ==,又因{}n b 是等比数列,且77b a =,则770(),4a a ==舍,又由276874,16b b b b ===.考点:1.等差数列的性质;2.等比中项11.已知函数322()3f x x mx nx m =+++在1x =-时有极值0,则m n += .12.若函数1()()n f x xn N +*=∈的图像与直线1x =交于点P ,且在点P 处的切线与x 轴交点的横坐标为n x ,则20131201322013320132012log log log log x x x x ++++L 的值为 .13.设O 是ABC ∆的三边中垂线的交点,,,a b c 分别为角,,A B C 对应的边,已知14.对于函数()y f x =,若其定义域内存在两个实数,m n ()m n <,使得[],x m n ∈时,()f x 的值域也是[,]m n ,则称函数()f x 为“和谐函数”,若函数()2f x k x =++是“和谐函数”,则实数k 的取值范围是 .考点:1.函数的值域;2.方程根的分布二、解答题 (本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.)15.已知向量(sin ,1),(1,cos ),22a b ππθθθ==-<<r r .(1) 若a b ⊥r r,求θ; (2) 求a b +r r的最大值.16.已知ABC ∆21+,且sin sin 2A B C +=(1)求边AB 的长; (2)若ABC ∆的面积为1sin 6C ,求角C . 【答案】(1)1AB = ;(2)C 3π=(2)由11sin sin 26ABC S BC AC C C ∆=⋅⋅=,得13BC AC ⋅=,…………(8分) 由余弦定理得,22222()21cos 222AC BC AB AC BC AC BC AB C AC BC AC BC +-+-⨯-===⨯⨯,又()0,C π∈,3C π∴=…………(14分)考点:1.正弦定理;2.余弦定理;3.三角形面积公式17.已知数列{}n a 满足:121,(0).a a a a ==>数列{}n b 满足1(*)n n n b a a n N +=∈。
【解析版】江苏省连云港市灌南高级中学2013届高三数学上学期期中试题 理 苏教版
2012-2013学年某某省某某市灌南高级中学高三(上)期中数学试卷(理科)一、填空题:本大题共14小题,每小题5分,共70分.不需要写出解答过程,请把答案直接填在答题纸相应位置上.1.(5分)设集合U={1,2,3,4,5},A={1,2},B={2,3},则(∁U A)∩B={3} .考点:交、并、补集的混合运算.专题:计算题.分析:找出U中不属于A的元素,确定出A的补集,找出A补集与B的公共元素,即可求出所求的集合.解答:解:∵U={1,2,3,4,5},A={1,2},∴∁U A={3,4,5},又B={2,3},则(∁U A)∩B={3}.故答案为:{3}点评:此题考查了交、并、补集的混合运算,熟练掌握交、并、补集的定义是解本题的关键.2.(5分)若复数z=(是虚数单位),则复数z的虚部是.考点:复数的基本概念.专题:计算题.分析:利用两个复数代数形式的乘法,虚数单位i的幂运算性质,化简复数z等于+i,由此可得它的虚部.解答:解:∵复数z====+i,故它的虚部等于,故答案为.点评:本题主要考查复数的基本概念,两个复数代数形式的乘法,虚数单位i的幂运算性质,属于基础题.3.(5分)设S n是等差数列{a n}(n∈N+)的前n项和,且a1=1,a4=7,则S5= 25 .考点:等差数列的前n项和.专题:计算题;等差数列与等比数列.分析:先由d=求出公差d,然后代入等差数列的求和公式即可求解解答:解:∵a1=1,a4=7,∴d==2∴=25故答案为:25点评:本题主要考查了等差数列的通项公式及求和公式的简单应用,属于基础试题4.(5分)函数,则f(2)= 1 .考点:函数的值.专题:函数的性质及应用.分析:按照分段函数解析式的特点代入数值计算即可.解答:解:由f(x)解析式得,f(2)=f(2+3)=f(5)=5﹣4=1,故答案为:1.点评:本题考查分段函数求值,属基础题.5.(5分)平面向量与的夹角为60°,=(2,0),||=1,则|+|=.考点:数量积表示两个向量的夹角;向量的模.专题:平面向量及应用.分析:由条件利用两个向量的数量积的定义求出=1,求出=+2+的值,即可求得的值.解答:解:由题意可得||=2,||=1,向量与的夹角为60°,∴=2×1×cos60°=1,∴=+2+=4+2+1=7,∴=,故答案为.点评:本题主要考查两个向量的数量积的定义,求向量的模的方法,属于中档题.6.(5分)已知510°角的始边在x轴的非负半轴上,终边经过点P(m,2),则m= ﹣2.考点:任意角的概念.专题:三角函数的求值.分析:利用诱导公式求得cos510°=﹣,再由任意角的三角函数的定义可得m<0且﹣=,由此求得m的值.解答:解:∵510°=360°+150°,∴cos510°=cos150°=﹣cos30°=﹣.再由510°角的终边经过点P(m,2),可得m<0,且cos510°=﹣=,解得 m=﹣2,故答案为﹣2.点评:本题主要考查任意角的三角函数的定义,诱导公式,终边相同的角的性质,属于基础题.7.(5分)函数的定义域是.考点:对数函数的定义域.专题:计算题.分析:欲求函数的定义域,只需找到使函数解析式有意义的x的取值X围,因为函数中有对数,所以真数大于0,因为函数中有二次根式,所以被开方数大于等于0,解不等式组即可.解答:解:要使函数有意义,需满足,解得∴函数的定义域为故答案为点评:本题主要考察了函数定义域的求法,主要是求使函数成立的x的取值X围.8.(5分)(2012•某某)已知y=f(x)是奇函数,若g(x)=f(x)+2且g(1)=1,则g (﹣1)= 3 .考点:函数奇偶性的性质;函数的值.专题:计算题.分析:由题意y=f(x)是奇函数,g(x)=f(x)+2得到g(x)+g(﹣x)=f(x)+2+f(﹣x)+2=4,再令x=1即可得到1+g(﹣1)=4,从而解出答案解答:解:由题意y=f(x)是奇函数,g(x)=f(x)+2 ∴g(x)+g(﹣x)=f(x)+2+f(﹣x)+2=4又g(1)=1∴1+g(﹣1)=4,解得g(﹣1)=3故答案为3点评:本题考查函数奇偶性的性质,解题的关键是利用性质得到恒成立的等式,再利用所得的恒等式通过赋值求函数值9.(5分)已知函数f(x)=x2+bx的图象在点A(1,f(1))处的切线l与直线3x﹣y+2=0平行,若数列的前n项和为S n,则S2013的值为.考点:利用导数研究曲线上某点切线方程;数列的求和.专题:综合题;导数的概念及应用.分析:对函数求导,根据导数的几何意义可求切线在x=1处的斜率,然后根据直线平行时斜率相等的条件可求b,代入可求f(n),利用裂项求和即可求得结论.解答:解:由f(x)=x2+bx求导得:f′(x)=2x+b,∵函数f(x)=x2+bx的图象在点A(1,f(1))处的切线l与直线3x﹣y+2=0平行,∴f′(1)=2+b=3,∴b=1,∴f(x)=x2+x所以f(n)=n(n+1),∴=∴S2013的值为1﹣+﹣+…+﹣=1﹣=故答案为:点评:本题考查了导函数的几何意义,考查利用利用裂项相消法求数列的前n项和的方法,属于中档题.10.(5分)在锐角△ABC中,若A=2B,则的取值X围是(,).考点:正弦定理.专题:解三角形.分析:利用正弦定理列出关系式,将A=2B代入,利用二倍角的正弦函数公式化简,约分得到结果为2cosB,根据三角形的内角和定理及三角形ABC为锐角三角形,求出B的X 围,进而确定出cosB的X围,即可得出所求式子的X围.解答:解:∵A=2B,∴根据正弦定理=得:====2cosB,∵A+B+C=180°,∴3B+C=180°,即C=180°﹣3B,∵C为锐角,∴30°<B<60°,又0<A=2B<90°,∴30°<B<45°,∴<cosB<,即<2cosB<,则的取值X围是(,).故答案为:(,)点评:此题考查了正弦定理,余弦函数的图象与性质,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.11.(5分)已知函数存在单调递减区间,则实数a 的取值X围为(﹣1,0)∪(0,+∞).考点:利用导数研究函数的单调性.专题:计算题;导数的综合应用.分析:利用导数进行理解,即f'(x)<0在(0,+∞)上有解.可得ax2+2x﹣1>0在正数X围内至少有一个解,结合根的判别式列式,不难得到a的取值X围.解答:解:对函数求导数,得f'(x)=﹣,(x>0)依题意,得f'(x)<0在(0,+∞)上有解.即ax2+2x﹣1>0在x>0时有解.∴△=4+4a>0且方程ax2+2x﹣1=0至少有一个正根.∴a>﹣1,∴a≠0,∴﹣1<a<0,或a>0.故答案为:(﹣1,0)∪(0,+∞).…(5分)点评:本题主要考查函数与导数,以及函数与方程思想,体现了导数值为一种研究函数的工具,能完成单调性的判定和最值的求解方程,同时能结合常用数学思想,来考查同学们灵活运用知识解决问题的能力.12.(5分)(2010•马某某模拟)如图,在平面四边形ABCD中,若AC=3,BD=2,则= 5 .考点:向量在几何中的应用.专题:计算题;转化思想.分析:先利用向量的加法把转化为,再代入原题整理后即可求得结论.解答:解:因为=(+)+(+)=+()=.∴()•()=()•()=﹣=32﹣22=5.故答案为5点评:本题主要考查向量在几何中的应用以及向量的加法运算,是对基础知识的考查,属于基础题目.13.(5分)(2011•某某模拟)已知函数f(x)=|x2﹣6|,若a<b<0,且f(a)=f(b),则a2b的最小值是﹣16 .考点:利用导数求闭区间上函数的最值;二次函数的性质.专题:函数的性质及应用.分析:由题意可得 a2﹣6=6﹣b2,即 a2+b2=12,﹣2<b<0,故g(b)=a2b=(12﹣b2) b=12b ﹣b3.利用导数研究函数的单调性,根据函数的单调性求函数的最小值.解答:解:∵函数f(x)=|x2﹣6|,若a<b<0,且f(a)=f(b),∴a2﹣6=6﹣b2,即a2+b2=12.∴﹣<b<0,∴a2b=(12﹣b2) b=12b﹣b3.设g(b)=12b﹣b3,则 g'(b)=12﹣3b2,令 g'(b)=0,解得b=﹣2,所以,g(b)在(﹣,﹣2)上单调递减,g(b)在[﹣2,0)上单调增,故g(b)最小值是g(﹣2)=﹣24+8=﹣16,故答案为﹣16.点评:本题主要考查二次函数的性质应用,利用导数研究函数的单调性,根据函数的单调性求函数的最小值,属于基础题.14.(5分)(2011•某某模拟)设等差数列{a n}满足:公差d∈N*,a n∈N*,且{a n}中任意两项之和也是该数列中的一项.若a1=35,则d的所有可能取值之和为364 .考点:等差数列的性质.专题:计算题.分析:先求出数列的通项公式,求出数列{a n}中任意两项之和,根据数列{a n}中任意两项之和仍是该数列中的一项求出d=,再结合k,m,n,d∈N*,即可求出d的所有可能取值进而求出结论.解答:解:设等差数列的公差为d,若a1=35,=243,则a n=243+(n﹣1)d.所以数列{a n}中任意两项之和a m+a n=243+(m﹣1)d+243+(n﹣1)d=486+(m+n﹣2)d.设任意一项为a k=243+(k﹣1)d.则由a m+a n=a k可得 243+(m+n﹣k﹣1)d=0,化简可得 d=.再由k,m,n,d∈N*,可得 k+1﹣m﹣n=1,3,9,27,81,243,∴d=243,81,27,9,3,1,则d的所有可能取值之和为 364,故答案为 364.点评:本题主要考查等差数列的性质.解决问题的关键在于利用数列{a n}中任意两项之和仍是该数列中的一项求出d=,属于中档题.二.解答题:本大题共6小题,共90分.请在答题卡指定区域内作答,解答时应写出必要的文字说明,证明过程或演算步骤.15.(14分)(2011•日照模拟)设命题p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x满足.(Ⅰ)若a=1,且p∧q为真,某某数x的取值X围;(Ⅱ)若¬p是¬q的充分不必要条件,某某数a的取值X围.考点:充分条件;命题的真假判断与应用.分析:(1)p∧q为真,即p和q均为真,分别解出p和q中的不等式,求交集即可;(2)﹁p是﹁q的充分不必要条件⇔q是p的充分不必要条件,即q⇒p,反之不成立.即q中的不等式的解集是p中的不等式解集的子集.解答:解:(1)a=1时,命题p:x2﹣4x+3<0⇔1<x<3命题q:⇔⇔2<x≤3,p∧q为真,即p和q均为真,故实数x的取值X围是2<x<3(2)﹁p是﹁q的充分不必要条件⇔q是p的充分不必要条件,即q⇒p,反之不成立.即q中的不等式的解集是p中的不等式解集的子集.由(1)知命题q:2<x≤3,命题p:实数x满足x2﹣4ax+3a2<0⇔(x﹣a)(x﹣3a)<0由题意a>0,所以命题p:a <x<3a,所以,所以1<a≤2点评:本题考查复合命题的真假、充要条件的判断、解二次不等式等知识,考查知识点较多,但难度不大.16.(14分)(2011•某某二模)已知函数,其中=,.(1)求函数f(x )在区间上的单调递增区间和值域;(2)在△ABC中,a、b、c分别是角A、B、C 的对边,f(A)=﹣1,且b=1△ABC的面积,求边a的值.考点:正弦函数的定义域和值域;三角函数中的恒等变换应用;解三角形.专题:计算题.分析(1)利用向量的数量积,二倍角公式两角差的余弦函数化简函数的表达式,然后结合:余弦函数的单调增区间求函数的单调递增区间,确定函数在上的单调增区间,单调减区间,然后求出函数的最大值最小值,即可确定函数的值域.(2))由于f(A)=﹣1,求得又求得c=4最后由余弦定理得a值即可.解答:解:(1)==(2分)由得,又∴单调增区间为.(4分)由∴﹣1≤f(x)≤2∴f(x)∈[﹣1,2](6分)(2)∵f(A)=﹣1,∴,(8分)又,∴c=4(10分)由余弦定理得a2=b2+c2﹣2bccosA=13(12分)点评:本题是基础题,考查向量数量积的应用,三角函数的化简求值,单调区间的求法,最值的求法,考查计算能力,注意函数值域的确定中,区间的讨论,单调性的应用是解题的易错点.17.(15分)设数列{a n}的前n项和为S n,且满足S n=2﹣a n,n=1,2,3,….(1)求数列{a n}的通项公式;(2)若数列{b n}满足b1=1,且b n+1=b n+a n,求数列{b n}的通项公式;(3)设=n (3﹣b n),求数列{}的前n项和为T n.考点:数列的求和;数列的函数特性;等比数列的通项公式.专题:计算题.分析:(1)利用数列中a n与 Sn关系解决.(2)结合(1)所求得出b n+1﹣b n=.利用累加法求b n(3)由上求出=n (3﹣b n)=,利用错位相消法求和即可.解解:(1)因为n=1时,a1+S1=a1+a1=2,所以a1=1.答:因为S n=2﹣a n,即a n+S n=2,所以a n+1+S n+1=2.两式相减:a n+1﹣a n+S n+1﹣S n=0,即a n+1﹣a n+a n+1=0,故有2a n+1=a n.因为a n≠0,所以=( n∈N*).所以数列{a n}是首项a1=1,公比为的等比数列,a n=( n∈N*).(2)因为b n+1=b n+a n( n=1,2,3,…),所以b n+1﹣b n=.从而有b2﹣b1=1,b3﹣b2=,b4﹣b3=,…,b n﹣b n﹣1=( n=2,3,…).将这n﹣1个等式相加,得b n﹣b1=1+++…+==2﹣.又因为b1=1,所以b n=3﹣( n=1,2,3,…).(3)因为=n (3﹣b n)=,所以T n=.①=.②①﹣②,得=﹣.故T n=﹣=8﹣﹣=8﹣( n=1,2,3,…).点评:本题考查利用数列中a n与 Sn关系求数列通项,累加法、错位相消法求和,考查转化、变形构造、计算能力.18.(15分)(2012•某某)海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A处,如图,现假设:①失事船的移动路径可视为抛物线;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t小时后,失事船所在位置的横坐标为7t(1)当t=0.5时,写出失事船所在位置P的纵坐标,若此时两船恰好会合,求救援船速度的大小和方向.(2)问救援船的时速至少是多少海里才能追上失事船?圆锥曲线的综合.考点:专应用题.题:分(1)t=0.5时,确定P的横坐标,代入抛物线方程中,可得P的纵坐标,利析:用|AP|=,即可确定救援船速度的大小和方向;(2)设救援船的时速为v海里,经过t小时追上失事船,此时位置为(7t,12t2),从而可得vt=,整理得,利用基本不等式,即可得到结论.解解:(1)t=0.5时,P的横坐标x P=7t=,代入抛物线方程中,得P的纵坐答:标y P=3.…2分由|AP|=,得救援船速度的大小为海里/时.…4分由tan∠OAP=,得∠OAP=arctan,故救援船速度的方向为北偏东arctan 弧度.…6分(2)设救援船的时速为v海里,经过t小时追上失事船,此时位置为(7t,12t2).由vt=,整理得.…10分因为,当且仅当t=1时等号成立,所以v2≥144×2+337=252,即v≥25.因此,救援船的时速至少是25海里才能追上失事船.…14分点评:本题主要考查函数模型的选择与运用.选择恰当的函数模型是解决此类问题的关键,属于中档题.19.(16分)已知函数.(1)若a=1,求函数f(x)的极值;(2)若函数f(x)在[2,+∞)上是增函数,某某数a的取值X围;(3)若函数f(x)在[1,e]上的最小值为3,某某数a的值.考点:函数模型的选择与应用;利用导数研究函数的单调性;利用导数求闭区间上函数的最值.专题:导数的综合应用.分析:(1)把a=1代入函数解析式,求导后由导函数等于0把定义域分段,判断出各区间段内的导函数的符号,由导函数的符号得到原函数的单调性,从而判断出极值点并求出极值;(2)求出原函数的导函数,由导函数在[2,+∞)大于等于0恒成立得到x﹣2a≥0在[2,+∞)恒成立,分离变量a后即可得到a的取值X围;(3)由原函数的导函数等于0求出导函数的零点,由零点对定义域分段,然后根据原函数的极值点与给出的区间端点值得大小关系分析原函数在区间[1,e]上的单调性,由单调性求得原函数在[1,e]上的最小值,由最小值等于3解得a的值.解答:解:(1)当a=1时,f(x)=lnx+,定义域为(0,+∞),.所以,当x∈(0,2)时,f′(x)<0,f(x)为减函数;当x∈(2,+∞)时,f′(x)>0,f(x)为增函数,所以在(0,+∞)上f(x)有极小值,极小值为f(2)=1+ln2;(2)由,所以.若函数f(x)在[2,+∞)上是增函数,则在[2,+∞)恒成立,即x﹣2a≥0在[2,+∞)恒成立,也就是在[2,+∞)恒成立,所以a≤1.所以使函数f(x)在[2,+∞)上是增函数的实数a的取值X围是(﹣∞,1];(3)由(2)知,以,若a≤0,则f′(x)>0,f(x)在(0,+∞)上为增函数,f(x)在[1,e]上的最小值为f(1)=2a=3,,不合题意;若a>0,由f′(x)=0,得x=2a.当x∈(0,2a)时,f′(x)<0,f(x)为减函数,当x∈(2a,+∞)时,f′(x)>0,f(x)为增函数,所以当2a≤1,即时,f(x)在[1,e]上为增函数,最小值为f(1)=2a=3,,不合题意;当2a≥e,即a≥时,f(x)在[1,e]上为减函数,最小值为f(e)=1+=3,a=e,符合题意;当1<2a<e,即时,f(x)在[1,e]上的最小值为f(2a)=ln2a+1=3,a=不合题意.综上,使函数f(x)在[1,e]上的最小值为3的实数a的值为e.点评:本题考查了利用导数研究函数的单调性,考查了利用导数求函数在闭区间上的最值,考查了分类讨论的数学思想方法,训练了利用分离变量法求参数的X围,解答的关键是会求基本初等函数的导函数和对变量的正确分类,是难题.20.(16分)已知二次函数f(x)=ax2+bx+c.(1)设f(x)在[﹣2,2]上的最大值、最小值分别是M、m,集合{x|f(x)=x}={1},且a≥1,记h(a)=M+m,求h(d)的最小值.(2)当a=2,c=﹣1时,①设A=[﹣1,1],不等式f(x)≤0的解集为C,且C⊆A,某某数b的取值X围;②设g(x)=|x﹣t|﹣x2﹣bx(t∈R),求f(x)+g(x)的最小值.考点:二次函数在闭区间上的最值;集合的包含关系判断及应用;函数的值域.专题:函数的性质及应用.分析:(1)由题意可得方程ax2+bx+c=x存在两等根x1=x2=1,可得 b=1﹣2a,c=a,由此可得f(x)的解析式,可得 h(a)=M+m=f(﹣2)+f(1﹣)=9a﹣﹣1,再利用单调性求出 h(a)的最小值.(2)①由不等式f(x)≤0的解集为C,且C⊆A,可得,由此解得 b的X围.②根据f(x)+g(x)=x2+|x﹣t|﹣1,分t<﹣时、当﹣≤t≤时、t>时三种情况分别求得f(x)+g(x)的最小值.解答:解:(1)由题意可得方程ax2+bx+c=x 存在两等根x1=x2=1,可得 b=1﹣2a,c=a.∴f(x)=a +1﹣,它的对称轴为 x=1﹣∈[,1].∵x∈[﹣2,2],∴h(a)=M+m=f(﹣2)+f(1﹣)=9a﹣﹣1,∵a≥1,故函数 h(a)为增函数,∴函数 h(a)的最小值为 h(1)=.(2)当a=2,c=﹣1时,f(x)=2x2+bx﹣1,①由不等式f(x)≤0的解集为C,且C⊆A,可得,解得 b∈[﹣1,1].②f(x)+g(x)=x2+|x﹣t|﹣1=.当 t<﹣时,最小值为﹣t﹣,当﹣≤t≤时,最小值为 t2﹣1,当t>时,最小值为t﹣.点评:本题主要考查求二次函数在闭区间上的最值,二次函数的性质的应用,集合间的包含关系,体现了分类讨论的数学思想,属于中档题.。
灌云高级中学高三数学试卷
一、选择题(本大题共12小题,每小题5分,共60分)1. 若函数f(x) = ax^2 + bx + c在x=1时取得最小值,则下列说法正确的是()A. a > 0,b = 0,c > 0B. a < 0,b = 0,c < 0C. a > 0,b ≠ 0,c > 0D. a < 0,b ≠ 0,c < 02. 已知等差数列{an}的前n项和为Sn,若S10 = 100,S20 = 200,则数列的公差d等于()A. 1B. 2C. 3D. 43. 下列函数中,在其定义域内单调递增的是()A. y = 2x + 1B. y = x^2C. y = -x + 1D. y = 1/x4. 在△ABC中,若a=3,b=4,c=5,则sinA的值等于()A. 3/5B. 4/5C. 5/4D. 3/45. 已知复数z = a + bi(a,b∈R),若|z| = 1,则下列说法正确的是()A. a^2 + b^2 = 1B. a^2 - b^2 = 1C. a^2 + b^2 = 0D. a^2 - b^2 = 06. 已知数列{an}的通项公式为an = 2n - 1,则数列的前n项和Sn等于()A. n^2B. n^2 - nC. n^2 + nD. n^2 + 2n7. 下列命题中,正确的是()A. 若x > 0,则x^2 > 0B. 若x > 0,则x^3 > 0C. 若x < 0,则x^2 < 0D. 若x < 0,则x^3 < 08. 已知函数f(x) = x^3 - 3x,则f(x)的极值点为()A. x = 0B. x = 1C. x = -1D. x = 29. 若等比数列{an}的首项a1 = 2,公比q = 3,则数列的前n项和Sn等于()A. 3n - 1B. 3^n - 1C. 3^n + 1D. 3^n - 210. 在△ABC中,若角A、B、C的对边分别为a、b、c,且a=3,b=4,cosA = 1/2,则sinB的值等于()A. 3/5B. 4/5C. 5/4D. 3/411. 已知复数z = a + bi(a,b∈R),若z的实部为2,虚部为-3,则|z|的值等于()A. 5B. 7C. 10D. 1312. 下列不等式中,恒成立的是()A. x^2 + y^2 ≥ 0B. x^2 + y^2 ≤ 0C. x^2 - y^2 ≥ 0D. x^2 - y^2 ≤ 0二、填空题(本大题共6小题,每小题5分,共30分)13. 若函数f(x) = ax^2 + bx + c的图像开口向上,且顶点坐标为(1, -2),则a的值为______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 江苏省灌云高级中学高三文科数学答题纸 请在各题的答题区域内作答,超出黑色矩形边框限定区域答案无效 请在各题的答题区域内作答,超出黑色矩形边框限定区域答案无效 请在各题的答题区域内作答,超出黑色矩形边框限定区域答案无效 学校
班级
姓名
考号
…
…
…
…
…
……
…
…
…
…
……
…
装
…………………………………
…
…订………………
…
……
…………
……
线
……
…
…
…
……………………………
…
请在各题的答题区域内作答,超出黑色矩形边框限定区域答案无效请在各题的答题区域内作答,超出黑色矩形边框限定区域答案无效请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效。