人教版2020年七年级数学上册 第二次月考模拟试卷三 学生版

合集下载

人教版七年级数学上册第二次月考卷及答案

人教版七年级数学上册第二次月考卷及答案

人教版七年级数学上册第二次月考卷及答案第二次月考将测试第一章至第三章的内容,考试时间为120分钟,满分为120分。

请填写班级、姓名和得分。

选择题共有10小题,每小题3分。

填空题共有8小题,每小题3分。

选择题:1.正确答案为A,因为两个负数相乘得正数。

2.正确答案为B,因为-a²是二次单项式,次数为2,系数为1.3.正确答案为B,因为只有①和④是一元一次方程。

4.正确答案为B,因为ma-3和mb-3是同一项,所以两边都减去ma得到-3=mb-ma,而ma和mb不一定相等。

5.正确答案为C,因为3(a-1)=3a-3,符合分配律。

6.正确答案为C,将x=-1代入方程可得5(-1)+2m-7=0,解得m=6.7.正确答案为D,将2x³nyⁿm+4和-3x⁹y⁶化简后可得m=3,n=2.8.正确答案为C,设两车相遇时间为x,则慢车行驶距离为75(x+1)千米,快车行驶距离为120x千米,两者之和为270千米,列方程得到120x+75(x+1)=270,解得x=1.5小时。

9.正确答案为C,设成本价为x元,则标价为1.2x元,折扣后售价为1.08(1.2x)=1.296x元,每件服装利润为1.296x-x=0.296x元,根据题意得到0.296x=8,解得x=27.03,约为27.04元,所以每件服装的成本是110元。

10.正确答案为B,①错误,应该是2(-2)=6;②正确;③正确,ab=a(1-b)=a-a*b=a-a*(1-a)=2a-a²;④正确,将1/2代入可得2*(1-1/2)=1,2*1+1=3,3/2=1.5,1.5-2=-0.5,所以x=-2.填空题:11.-1/1112.在搜索“社会主义核心价值观”时,XXX发现相关结果约为4.28×10^6个。

13.若a+=1,则a^3=1.14.若方程(a-2)x|a|+1+3=0是关于x的一元一次方程,则a=2.15.若a,b互为相反数,c,d互为倒数,m的绝对值为2,则2m-2017(a+b)-cd的值为-4034.16.若关于a,b的多项式3(a^2-2ab-b^2)-(a^2+mab+2b^2)中不含有ab项,则m=-1.17.已知一列单项式-x^2.3x^3.-5x^4.7x^5,…,按此规律排列,第9个单项式是-19x^10.18.XXX爷爷的生日是20号。

人教版2020年七年级数学上册 第二次月考模拟试卷一(含答案)

人教版2020年七年级数学上册 第二次月考模拟试卷一(含答案)

人教版2020年七年级数学上册第二次月考模拟试卷一一、填空题1.方程6x+5=3x的解是x= .2.若x=3是方程2x﹣10=4a的解,则a= .3.(1)﹣3x+2x= ;(2)5m﹣m﹣8m= .4.一个两位数,十位数字是9,个位数字是a,则该两位数为.5.一个长方形周长为108cm,长比宽2倍多6cm,则长比宽长cm.6.如果2x﹣1与的值互为相反数,则x= .7.若方程3x2m﹣1+1=6是关于x的一元一次方程,则m的值是.8.写出一个一元一次方程,使它的解为﹣,未知数的系数为正整数,方程为.9.当m值为时,的值为0.10.敌我两军相距14千米,敌军于1小时前以4千米/小时的速度逃跑,现我军以7千米/小时的速度追击小时后可追上敌军.二、选择题11.已知下列方程:①0.3x=1;②=5x+1;③x2﹣4x=3;④x=0;⑤x+2y=﹣1.其中一元一次方程的个数是()A.2 B.3 C.4 D.512.下列四组变形中,变形正确的是()A.由5x+7=0得5x=﹣7 B.由2x﹣3=0得2x﹣3+3=0C.由=2得x=D.由5x=7得x=3513.方程2x﹣1=3的解是()A.﹣1 B.C.1 D.214.若2x+3=5,则6x+10=()A.15 B.16 C.17 D.3415.甲数比乙数的还多1,设乙数为x,则甲数可表示为()A.B.4x﹣1 C.4(x﹣1)D.4(x+1)16.若关于x的一元一次方程的解是x=﹣1,则k的值是()A.B.1 C.D.017.如果|a+b+1|+(b﹣1)2=0,则(a+b)2017的值是()A.0 B.1 C.﹣1 D.±118.解方程去分母正确的是()A.2(x﹣1)﹣3(4x﹣1)=1 B.2x﹣1﹣12+x=1 C.2(x﹣1)﹣3(4﹣x)=6 D.2x﹣2﹣12﹣3x=619.已知﹣25a2m b和7b3﹣n a4是同类项,则m+n的值是()A.2 B.3 C.4 D.620.一条公路甲队独修需24天,乙队需40天,若甲、乙两队同时分别从两端开始修,()天后可将全部修完.A.24 B.40 C.15 D.16三、解方程21.解方程(1)x﹣4=2﹣5x (2)﹣(x﹣3)=3(2﹣5x)(3)4x﹣2(﹣x)=1 (4)﹣1=.22.若关于x的方程2x﹣3=1和=k﹣3x有相同的解,求k的值.23.某校八年级近期实行小班教学,若每间教室安排20名学生,则缺少3间教室;若每间教室安排24名学生,则空出一间教室.问这所学校共有教室多少间?24.一项工程,甲单独完成要20天,乙单独完成要25天,现由甲先做2天,然后甲、乙合做余下的部分还要多少天才能完成这项工程.25.如图,有9个方格,要求每个方格填入不同的数,使得每行、每列、每条对角线上三个数的和相等,问图中的m是多少?参考答案1..2.﹣1.3.﹣4m.4.答案为:90+a.5.22.6.答案为:0.4.7.1.8.x+=0;9.m=.10.6.11.B.12.A.13.D.14.B.15.A.16.B.17.C.18.C.19.C.20.C.21.解:(1)移项合并得:6x=6,解得:x=1;(2)去括号得:﹣x+3=6﹣15x,移项合并得:14x=3,解得:x=;(3)去括号得:4x﹣1+2x=1,移项合并得:6x=2,解得:x=;(4)方程整理得:﹣1=,去分母得:4﹣20x﹣6=3+30x,移项合并得:﹣50x=5,解得:x=﹣0.1.22.解:解方程2x﹣3=1得,x=2,解方程=k﹣3x得,x=k,∵两方成有相同的解,∴k=2,解得k=.23.解:设这所学校共有教室x间,由题意,得20(x+3)=24(x﹣1),解得:x=21.答:这所学校共有教室21间.24.解:设甲、乙合做余下的部分还要x天才能完成这项工程,根据题意得: +(+)x=1,解得:x=10.答:甲、乙合做余下的部分还要10天才能完成这项工程.25.解:如图设相应的方格中数为x1,x2,x3,x4,由已知得:m+x1+x2=x1+x3+13(1),m+x3+x4=x2+x4+19(2)(1)+(2)得:2m+x1+x2+x3+x4=13+19+x1+x2+x3+x4.∴2m=13+19,即m=16.答:图中的m是16.2017年4月18日。

2019-2020年人教版数学七年级上册 阶段综合测试三(月考二)1-3章(含答案)

2019-2020年人教版数学七年级上册 阶段综合测试三(月考二)1-3章(含答案)

阶段综合测试三(月考二)(第一章~第三章)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷30分,第Ⅱ卷70分,共100分,考试时间100分钟.第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.如果收入50元记作+50元,那么支出30元记作()A.+30元B.-30元C.+80元D.-80元2.计算12÷(-3)-2×(-3)的结果是()A.-18B.-10C.2D.183.下列运用等式的性质,变形正确的是()A.如果a=b,那么a+c=b-cB.如果=,那么a=bC.如果a=b,那么=D.如果a2=2a,那么a=24.下列说法正确的是()A.1-xy是单项式B.ab没有系数C.-5是一次一项式D.-a2b+ab-abc2是四次三项式5.若a的倒数是-1,则a2017的值是()A.1B.-1C.2017D.-20176.下面的计算正确的是()A.3x2-x2=3B.-(a+b)=-a-bC.3+x=3xD.-2(a-b)=-2a+b7.若式子x与-x+1的值相等,则x的值是()A.B.2 C.D.-18.已知2x6y2和-x3m y n是同类项,那么2m+n的值是()A.2B.4C.6D.59.将一个底面直径是10厘米,高为36厘米的“瘦长”形圆柱钢锭,锻压成底面直径是20厘米的“矮胖”形圆柱钢锭,设“矮胖”形圆柱钢锭的高为x厘米,则符合题意的方程是()A.π××36=π××xB.π××36=π××xC.π×102×36=π×202×xD.π×202×36=π×102×x10.一个两位数,个位数字与十位数字的和是9,若将个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数为()A.54B.27C.72D.45请将选择题答案填入下表:第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.计算:3(2x+1)-6x=.12.方程--=0的解是.13.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是2亿1千万人一年的口粮.将2亿1千万用科学记数法表示为.图QZ3-114.数轴上点A,B的位置如图QZ3-1所示,则A,B间的距离是.15.若多项式2x2-3(3+y-x2)+mx2的值与x的值无关,则m=.16.一组按规律排列的式子:,,,,…,则第n个式子是(n为正整数).三、解答题(共52分)17.(6分)(1)计算:(-2)3×3-16×3+6÷;(2)化简:3(3x-2y)-5(-4x+y-2).18.(9分)解下列方程:(1)5x-3(20-2x)=7x-6(8-x); (2)---=-1; (3)-=0.5.19.(5分)先化简,再求值:(3a2-ab+7)-(5ab-4a2+7),其中a=2,b=.20.(6分)已知三角形的第一条边长为3a+2b,第二条边比第一条边长a-b,第三条边比第二条边短2a,求这个三角形的周长.21.(6分)一天早上,张老师开车从A地上了高速公路,时速为90千米/时,同时,与张老师相隔200千米的王老师也开车上了同一条公路,时速为60千米/时,且与张老师相向而行.请问:两车相遇的地方离A地多远?22.(6分)某同学在解方程-=-2去分母时,方程右边的-2没有乘6,因而求得的方程的解为x=2,求a的值,并正确地解方程.23.(6分)一家商店因换季将某种服装打折销售,每件服装如果按标价的5折出售将亏20元,而按标价的8折出售将赚40元,问:(1)每件服装的标价是多少元?(2)每件服装的成本是多少元?(3)为保证不亏本,最多能打几折?24.(8分)某牛奶厂现有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元.该工厂的生产能力是:如果制成酸奶,每天可加工3吨;制成奶片,每天可加工1吨,受人员限制,两种加工方式不能同时进行.受气温限制,这批牛奶必须在4天内全部销售或加工完毕.为此,该厂设计了两种方案:方案一:尽可能多地制成奶片,其余的直接销售鲜奶;方案二:将一部分制成奶片,其余的制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利较多.阶段综合测试三(月考二)1.B2.C3.B4.D5.B6.B7.A8.C9.A10.D11.312.x=313.2.1×10814.715.-516.-17.解:(1)原式=-8×3-2+18=-8.(2)原式=9x-6y+20x-5y+10=29x-11y+10.18.解:(1)去括号,得5x-60+6x=7x-48+6x.移项,合并同类项,得2x=-12.系数化为1,得x=-6.(2)去分母,得4(2x-1)-2(10x-1)=3(2x+1)-12.去括号,得8x-4-20x+2=6x+3-12.移项,合并同类项,得-18x=-7.系数化为1,得x=.(3)原方程可化为-=0.5,即-=0.5.去分母,得5x-(1.5-x)=1.去括号,得5x-1.5+x=1.移项,合并同类项,得6x=2.5.系数化为1,得x=.19.解:原式=3a2-ab+7-5ab+4a2-7=7a2-6ab.当a=2,b=时,原式=24.20.解:第一条边长为3a+2b,则第二条边长为(3a+2b)+(a-b)=4a+b,第三条边长为(4a+b)-2a=2a+b,∴这个三角形的周长是(3a+2b)+(4a+b)+(2a+b)=3a+2b+4a+b+2a+b=9a+4b.21.解:设两车相遇的地方离A地x千米,根据题意,得=.解得x=120.答:两车相遇的地方离A地120千米.22.解:将x=2代入2(2x-1)=3(x+a)-2得6=6+3a-2.解得a=.将a=代入2(2x-1)=3(x+a)-12得4x-2=3x+2-12.解得x=-8.23.解:(1)设每件服装的标价为x元,则50%x+20=80%x-40,解得x=200.答:每件服装的标价为200元.(2)成本为50%×200+20=120(元).答:每件服装的成本为120元.(3)设最多打y折,则200·=120,解得y=6.答:为保证不亏本,最多能打6折.24.解:方案一:总获利为4×1×2000+(9-4)×500=10500(元).方案二:设加工奶片x天,则加工酸奶(4-x)天,根据题意,得x+3(4-x)=9.解这个方程得x=1.5.∴4-x=2.5(天),∴方案二的总获利为1.5×1×2000+2.5×3×1200=12000(元).∵12000>10500,∴选择方案二获利较多.。

人教版七年级数学上册第二次月考试卷(含答案)

人教版七年级数学上册第二次月考试卷(含答案)

人教版七年级数学上册第二次月考试卷(含答案)第二次月考测试范围:第一~第三时间:120分钟满分:120分班级:姓名:得分:一、选择题(每小题3分,共30分)1.下列各式结果是负数的是( )A.-(-3)B.-|-3| .3 D.(-3)22.下列说法正确的是( )A.x2+1是二次单项式B.-a2的次数是2,系数是1.-23πab的系数是-23 D.数字0也是单项式3.下列方程:①3x-y=2;②x+1x-2=0;③12x=12;④x2+3x-2=0.其中属于一元一次方程的有( )A.1个B.2个 .3个 D.4个4.如果a=b,那么下列等式中不一定成立的是( )A.a+1=b+1B.a-3=b-3.-12a=-12b D.a=b5.下列计算正确的是( )A.3x2-x2=3B.-3a2-2a2=-a2.3(a-1)=3a-1 D.-2(x+1)=-2x-26.若x=-1是关于x的方程5x+2-7=0的解,则的值是( )A.-1B.1 .6 D.-67.如果2x3ny+4与-3x9y6是同类项,那么,n的值分别为( )A.=-2,n=3B.=2,n=3 .=-3,n=2 D.=3,n =28.甲、乙两地相距270千米,从甲地开出一辆快车,速度为120千米/时,从乙地开出一辆慢车,速度为75千米/时.如果两车相向而行,慢车先开出1小时后,快车开出,那么再经过多长时间两车相遇?若设再经过x小时两车相遇,则根据题意可列方程为( )A.75×1+(120-75)x=270B.75×1+(120+75)x=270.120(x-1)+75x=270 D.120×1+(120+75)x=2709.一家商店将某种服装按成本价提高20%后标价,又以9折优惠卖出,结果每件服装仍可获利8元,则这种服装每件的成本是( )A.100元B.105元.110元 D.115元10.定义运算a b=a(1-b),下列给出了关于这种运算的几个结论:①2 (-2)=6;②2 3=3 2;③若a=0,则ab=0;④若2 x+x -12=3,则x=-2.其中正确结论的序号是( )A.①②③B. ②③④ .①③④ D.①②③④二、填空题(每小题3分,共24分)11.比较大小:-67 -56.12.“社会主义核心价值观”要求我们牢记心间,小明在“百度”搜索“社会主义核心价值观”,找到相关结果约为4280000个,数据4280000用科学记数法表示为.13.若a+12=0,则a3=.14.若方程(a-2)x|a|-1+3=0是关于x的一元一次方程,则a=.15.若a,b互为相反数,,d互为倒数,的绝对值是2,则2-2017(a+b)-d的值是.16.若关于a,b的多项式3(a2-2ab-b2)-(a2+ab+2b2)中不含有ab项,则=.17.已知一列单项式-x2,3x3,-5x4,7x5,…,若按此规律排列,则第9个单项式是.18.爷爷快八十大寿,小明想在日历上把这一天圈起,但不知道是哪一天,于是便去问爸爸,爸爸笑着说:“在日历上,那一天的上下左右4个日期的和正好等于爷爷的年龄.”则小明爷爷的生日是号.三、解答题(共66分)19.(12分)计算及解方程:(1)81÷(-3)2-19×(-3)3; (2)-12-12-23÷13×[-2+(-3)2];(3)4x-3(20-x)=-4; (4)2x-13-5-x6=-1.20.(6分)先化简,再求值:4(xy2+xy)-13×(12xy-6xy2),其中x=1,y=-1.21.(8分)某种商品因换季准备打折出售,如果按照原价的七五折出售,每件将赔10元,而按原价的九折出售,每件将赚38元,求这种商品的原价.22.(8分)一个正两位数的个位数字是a,十位数字比个位数字大2.(1)用含a的代数式表示这个两位数;(2)把这个两位数的十位上的数字与个位上的数字交换位置得到一个新的两位数,试说明新数与原数的和能被22整除.23.(10分)小明解方程2x-13=x+a4-1,去分母时方程右边的-1漏乘了12,因而求得方程的解为x=3,试求a 的值,并正确求出方程的解.24.(10分)用正方形硬纸板做三棱柱盒子,每个盒子由3个长方形侧面和2个正三角形底面组成.硬纸板以如图所示两种方法裁剪(裁剪后边角料不再利用).A方法:剪6个侧面;B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用A方法,其余用B方法.(1)分别求裁剪出的侧面和底面的个数(用含x的代数式表示);(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?25.(12分)阅读下列材料,在数轴上A点表示的数为a,B点表示的数为b,则A,B两点的距离可以用右边的数减去左边的数表示,即AB=b-a.请用这个知识解答下面的问题:已知数轴上A,B两点对应的数分别为-2和4,P为数轴上一点,其对应的数为x.(1)如图①,若P到A,B两点的距离相等,则P点对应的数为;(2)如图②,数轴上是否存在点P,使P点到A,B两点的距离和为10?若存在,求出x的值;若不存在,请说明理由.参考答案与典题详析1.B2.D3.A4.D5.D6. 7.B 8.B 9.A 10.11.<12.4.28×106 13.-18 14.-215.3或-5 16.-6 17.-17x1018.20 解析:设那一天是x号,依题意得x-1+x+1+x-7+x+7=80,解得x=20.19.解:(1)原式=81÷9+3=9+3=12.(3分)(2)原式=-1+16÷13×(-2+9)=-1+12×7=52.(6分)(3)去括号,得4x-60+3x=-4,移项、合并同类项,得7x=56,系数化为1,得x=8.(9分)(4)去分母,得2(2x-1)-(5-x)=-6,去括号,得4x-2-5+x=-6,移项、合并同类项,得5x=1,系数化为1,得x=0.2.(12分)20.解:原式=4xy2+4xy-4xy+2xy2=6xy2.(4分)当x=1,y=-1时,原式=6.(6分)21.解:设这种商品的原价是x元,根据题意得75%x+10=90%x-38,解得x=320.(7分)答:这种商品的原价是320元.(8分)22.解:(1)这个两位数为10(a+2)+a=11a+20.(3分)(2)新的两位数为10a+a+2=11a+2.(5分)因为11a +2+11a+20=22a+22=22(a+1),a+1为整数,所以新数与原数的和能被22整除.(8分)23.解:由题意得x=3是方程12×2x-13=12×x+a4-1的解,所以4×(2×3-1)=3(3+a)-1,解得a=4.(4分)将a=4代入原方程,得2x-13=x+44-1,去分母得4(2x-1)=3(x+4)-12,去括号,得8x-4=3x+12-12,移项、合并同类项得5x=4,解得x=45.(10分)24.解:(1)因为裁剪时x张用A方法,所以裁剪时(19-x)张用B方法.所以裁剪出侧面的个数为6x+4(19-x)=(2x+76)个,裁剪出底面的个数为5(19-x)=(95-5x)个.(4分)(2)由题意得2(2x+76)=3(95-5x),解得x=7.(8分)则2×7+763=30(个).(9分)答:能做30个盒子.(10分)25.解:(1)1(3分)(2)存在.(4分)分以下三种情况:①当点P在点A左侧时,PA=-2-x,PB=4-x.由题意得-2-x+4-x=10,解得x=-4;(6分)②当点P在点A,B之间时,PA=x-(-2)=x+2,PB=4-x.因为PA+PB=x+2+4-x=6≠10,即此时不存在点P到A,B两点的距离和为10;(8分)③当点P 在点B右侧时,PA=x+2,PB=x-4.由题意得x+2+x-4=10,解得x=6.(10分)综上所述,当x=-4或x=6时,点P到A,B两点的距离和为10.(12分)。

人教版七年级数学上学期第二次月考测试卷含答案

人教版七年级数学上学期第二次月考测试卷含答案

人教版七年级数学上学期第二次月考测试卷含答案一、选择题1.任何一个正整数n 都可以进行这样的分解:n=p×q (p ,q 都是正整数,且p≤q ),如果p×q 在n 的所有分解中两个因数之差的绝对值最小,我们就称p×q 是n 的黄金分解,并规定:F(n)=p q ,例如:18可以分解为1×18;2×9;3×6这三种,这时F(18)=3162=,现给出下列关于F(n)的说法:①F(2) =12;② F(24)=38;③F(27)=3;④若n 是一个完全平方数,则F(n)=1,其中说法正确的个数有( ) A .1个 B .2个C .3个D .4个 2.我们规定一种运算“★”,其意义为a ★b =a 2﹣ab ,如2★3=22﹣2×3=﹣2.若实数x 满足(x +2)★(x ﹣3)=5,则x 的值为( )A .1B .﹣1C .5D .﹣5 3.已知280x y -++=,则x y +的值为( ) A .10B .-10C .-6D .不能确定 4.下列各数是无理数的为( )A .-5B .πC .4.12112D .0 5.对于两数a 、b ,定义运算:a*b=a+b —ab ,则在下列等式中,①a*2=2*a ;②(-2)*a=a*(-2);③(2*a )*3=2*(a*3);④0*a=a ,正确的为( )①a*2=2*a ②(-2)*a=a*(-2) ③(2*a )*3=2*(a*3) ④0*a=aA .① ③B .① ② ③C .① ② ③ ④D .① ② ④6.按照下图所示的操作步骤,若输出y 的值为22,则输入的值x 为( )A .3B .-3C .±3D .±9 7.已知122=,224=,328=,4216=,5232=,……,根据这一规律,20192的个位数字是( )A .2B .4C .8D .6 8.27 ) A .2和3之间B .3和4之间C .4和5之间D .5和6之间 9.下列说法中不正确的是( ) A .2-是2的平方根B 22的平方根C .22D .22 10.下列运算中,正确的是( )A 93=±B 382=C |4|2-=-D 2(8)8-=- 二、填空题11.用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b=. 例如:(-3)☆2= 32322-++-- = 2. 从﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a ,b(a≠b)的值,并计算a ☆b ,那么所有运算结果中的最大值是_____.12.若()2320m n ++-=,则m n 的值为 ____.13.对于这样的等式:若(x +1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5的值为_____.14.用⊕表示一种运算,它的含义是:1(1)(1)x A B A B A B ⊕=++++,如果5213⊕=,那么45⊕= __________.15.任何实数a ,可用[a]表示不大于a 的最大整数,如[4]=4,31⎡⎤=⎣⎦,现对72进行如下操作:72→72⎡⎤⎣⎦=8→82⎡⎤=⎣⎦→2⎡⎤⎣⎦=1,类似地:(1)对64只需进行________次操作后变为1;(2)只需进行3次操作后变为1的所有正整数中,最大的是________.16.已知72m =-,则m 的相反数是________. 17.116的算术平方根为_______. 18.已知:103<157464<1003;43=64;53<157<63,则 315746454=,请根据上面的材料可得359319=_________.19.有若干个数,第1个数记作1a ,第2个数记为2a ,第3个数记为3a ,……,第n 个数记为n a ,若1a =13,从第2个数起,每个数都等于1与前面的那个数的差的倒数,则2019a =_____.20.如图所示的运算程序中,若开始输入的x 值为7,我们发现第1次输出的结果为10,第2次输出的结果为5,……,第2019次输出的结果为_____.三、解答题21.如图,长方形ABCD 的面积为300cm 2,长和宽的比为3:2.在此长方形内沿着边的方向能否并排裁出两个面积均为147cm 2的圆(π取3),请通过计算说明理由.22.探究与应用:观察下列各式:1+3= 21+3+5= 21+3+5+7= 21+3+5+7+9= 2……问题:(1)在横线上填上适当的数;(2)写出一个能反映此计算一般规律的式子;(3)根据规律计算:(﹣1)+(﹣3)+(﹣5)+(﹣7)+…+(﹣2019).(结果用科学记数法表示)23.规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(-3)÷(-3)÷(-3)÷(-3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(-3)÷(-3)÷(-3)÷(-3)记作(-3)④,读作“-3的圈4次方”,一般地,把n aa a a a ÷÷÷⋯÷个 (a≠0)记作a ⓝ,读作“a 的圈 n 次方”. (初步探究)(1)直接写出计算结果:2③=___,(12)⑤=___; (2)关于除方,下列说法错误的是___A .任何非零数的圈2次方都等于1;B .对于任何正整数n ,1ⓝ=1;C .3④=4③;D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(-3)④=___; 5⑥=___;(-12)⑩=___. (2)想一想:将一个非零有理数a 的圈n 次方写成幂的形式等于___;(3)算一算:212÷(−13)④×(−2)⑤−(−13)⑥÷33 24.对于实数a ,我们规定:用符号⎡⎣a a ⎡⎣a 为a 的根整数,例如:3=,=3.(1)仿照以上方法计算:=______;=_____.(2)若1=,写出满足题意的x 的整数值______.如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次3=→=1,这时候结果为1. (3)对100连续求根整数,____次之后结果为1.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是____.25.阅读下列材料:()1121230123⨯=⨯⨯-⨯⨯ 123(234123)3⨯=⨯⨯-⨯⨯ ()1343452343⨯=⨯⨯-⨯⨯ 由以上三个等式相加,可得读完以上材料,请你计算下列各题.(1)求1×2+2×3+3×4+…+10×11的值.(2)1×2+2×3+3×4+……+n×(n+1)=___________.26.对于结论:当a+b =0时,a 3+b 3=0也成立.若将a 看成a 3的立方根,b 看成b 3的立方根,由此得出这样的结论:“如果两数的立方根互为相反数,那么这两个数也互为相反数”(1)举一个具体的例子来判断上述结论是否成立;(2x+5的平方根是它本身,求x+y 的立方根.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】将2,24,27,n 分解为两个正整数的积的形式,再找到相差最少的两个数,让较小的数除以较大的数进行排除即可.【详解】解:∵2=1×2,∴F(2)=12,故①正确;∵24=1×24=2×12=3×8=4×6,且4和6的差绝对值最小∴F(24)= 42=63,故②是错误的;∵27=1×27=3×9,且3和9的绝对值差最小∴F(27)=31=93,故③错误;∵n是一个完全平方数,∴n能分解成两个相等的数的积,则F(n)=1,故④是正确的.正确的共有2个.故答案为B.【点睛】本题考查有理数的混合运算与信息获取能力,解决本题的关键是弄清题意、理解黄金分解的定义.2.B解析:B【分析】根据a★b=a2-ab可得(x+2)★(x-3)=(x+2)2-(x+2)(x-3),进而可得方程:(x+2)2-(x+2)(x-3)=5,再解方程即可.【详解】解:由题意得:(x+2)2-(x+2)(x-3)=5,x2+4x+4-(x2-x-6)=5,x2+4x+4-x2+x+6=5,5x=-5,解得:x=-1,故选:B.【点睛】此题主要考查了实数运算,以及解方程,关键是正确理解所给条件a★b=a2-ab所表示的意义.3.C解析:C【分析】根据算术平方根的非负性求出x,y,然后再求x+y即可;【详解】解:由题意得:x-2=0,y+8=0∴x=2,y=-8∴x+y=2+(-8)=-6故答案为C.【点睛】本题考查了算术平方根的非负性,掌握若干个非负数之和为0,则每个非负数都为0是解答本题的关键.4.B解析:B【分析】根据无理数与有理数的概念进行判断即可得.【详解】解:A. -5是有理数,该选项错误;B. π是无理数,该选项正确;C. 4.12112是有理数,该选项错误;D. 0是有理数,该选项错误.故选:B【点睛】本题考查了无理数定义,初中范围内学习的无理数有三类:①π类,如2π,3π等;②开方0.1010010001…,等. 5.C解析:C【分析】原式各项利用题中的新定义计算得到结果,即可作出判断.【详解】解:根据题意得:①a*2=a+2-2a ,2*a=2+a-2a ,成立;②(-2)*a=-2+a+2a ,a*(-2)=a-2+2a ,成立;③(2*a )*3=(2-a )*3=2-a+3-3(2-a )=2-a+3-6+3a=2a-1,2*(a*3)=2*(a+3-3a )=2+a+3-3a-2(a+3-3a )=2a-1,成立;④0*a=0+a-0=a ,成立.故选:C .【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.6.C解析:C【分析】根据操作步骤列出方程,然后根据平方根的定义计算即可得解.【详解】由题意得:23522x -=,∴29x =,∵2(39)±=,∴3x =±,故选:C .【点睛】此题考查平方根的定义,求一个数的平方根,利用平方根的定义解方程,正确理解计算的操作步骤得到方程是解题的关键.7.C解析:C【分析】通过观察122=,224=,328=,4216=,,5232=…知,他们的个位数是4个数一循环,2,4,8,6,…因为2019÷4=504…3,所以20192的个位数字与32的个位数字相同是8.【详解】解:仔细观察122=,224=,328=,4216=,,5232=…;可以发现他们的个位数是4个数一循环,2,4,8,6,…∵2019÷4=504…3,∴20192的个位数字与32的个位数字相同是8.故答案是:8.【点睛】本题考查了尾数特征,解题的关键是根据已知条件,找出规律:2的乘方的个位数是每4个数一循环,2,4,8,6,….8.D解析:D【分析】用平方法进行比较,看27在哪两个整数平方之间即可.【详解】∵252527=<,263627=>∴5<6故选:D【点睛】本题考查比较二次根式的大小,常见方法有2种:(1)将数字平方,转化为不含二次根号的数字比较;(2)将数字都转化到二次根式中,然后进行比较.9.C解析:C【详解】解:A. 是2的平方根,正确;是2的平方根,正确;C. 2的平方根是±,故原选项不正确;D. 2,正确.故选C .10.B解析:B【分析】根据平方根及立方根的定义逐一判断即可得答案.【详解】,故该选项运算错误,2=,故该选项运算正确,2=,故该选项运算错误,8=,故该选项运算错误,故选:B .【点睛】本题考查平方根、算术平方根及立方根,一个正数的平方根有两个,它们互为相反数;其中正的平方根叫做这个数的算术平方根;一个数的立方根只有一个.二、填空题11.8【解析】解:当a >b 时,a☆b= =a,a 最大为8;当a <b 时,a☆b==b,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 解析:8【解析】解:当a >b 时,a ☆b =2a b a b ++- =a ,a 最大为8; 当a <b 时,a ☆b =2a b a b ++-=b ,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.【分析】根据非负数的性质列式求出m 、n 的值,然后代入代数式进行计算即可得解.【详解】由题意得,m+3=0,n-2=0,解得m=-3,n=2,所以,mn=(-3)2=9.故答案为9.【解析:【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.【详解】由题意得,m+3=0,n-2=0,解得m=-3,n=2,所以,m n=(-3)2=9.故答案为9.【点睛】此题考查绝对值和算术平方根非负数的性质,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.13.-1.【分析】根据多项式的乘法得出字母的值,进而代入解答即可.【详解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1,∵(x+1)5=a0x5+a1x4+a2x3+a3x2+解析:-1.【分析】根据多项式的乘法得出字母的值,进而代入解答即可.【详解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1,∵(x+1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,∴a0=1,a1=5,a2=10,a3=10,a4=5,a5=1,把a0=1,a1=5,a2=10,a3=10,a4=5,a5=1代入﹣32a0+16a1﹣8a2+4a3﹣2a4+a5中,可得:﹣32a0+16a1﹣8a2+4a3﹣2a4+a5=﹣32+80﹣80+40﹣10+1=﹣1,故答案为:﹣1【点睛】本题考查了代数式求值,解题的关键是根据题意求得a0,a1,a2,a3,a4,a5的值. 14.【分析】按照新定义的运算法先求出x,然后再进行计算即可.【详解】解:由解得:x=8故答案为.【点睛】本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的 解析:1745【分析】按照新定义的运算法先求出x ,然后再进行计算即可.【详解】 解:由1521=21(21)(11)3x ⊕=++++ 解得:x=8 18181745==45(41)(51)93045⊕=+++++ 故答案为1745. 【点睛】 本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的值.15.255【分析】(1)根据题意的操作过程可直接进行求解;(2)根据题意可得最后取整为1,得出前面的一个数最大是3,再向前推一步取整的最大整数为15,依此可得出答案.【详解】解:(1)解析:255【分析】(1)根据题意的操作过程可直接进行求解;(2)根据题意可得最后取整为1,得出前面的一个数最大是3,再向前推一步取整的最大整数为15,依此可得出答案.【详解】解:(1)由题意得:64→=8→2=→=1,∴对64只需进行3次操作后变为1,故答案为3;(2)与上面过程类似,有256→=16→4=→=2→1=,对256只需进行4次操作即变为1,类似的有255→=15→3=→=1,即只需进行3次操作即变为1,故最大的正整数为255;故答案为255.【点睛】本题主要考查算术平方根的应用,熟练掌握算术平方根是解题的关键.16.【分析】根据相反数的定义即可解答.【详解】解:的相反数是,故答案为:.【点睛】本题考查了求一个数的相反数以及实数,解题的关键是熟知只有符号不同的两个数是相反数.解析:2【分析】根据相反数的定义即可解答.【详解】解:m 的相反数是2)2-=,故答案为:2【点睛】本题考查了求一个数的相反数以及实数,解题的关键是熟知只有符号不同的两个数是相反数.17.【分析】利用算术平方根的定义计算得到的值,求出的算术平方根即可..【详解】∵,,∴的算术平方根为;故答案为:.【点睛】此题考查了算术平方根,熟练掌握平方根的定义是解本题的关键. 解析:12【分析】14=的值,求出14的算术平方根即可..【详解】14=12=,的算术平方根为12; 故答案为:12. 【点睛】此题考查了算术平方根,熟练掌握平方根的定义是解本题的关键.18.【分析】首先根据一个数的立方的个位数就是这个数的个位数的立方的个位数确定个位数,然后一次确定十位数,即可求得立方根.【详解】由103=1000,1003=1000000,就能确定是2位数.由解析:39【分析】首先根据一个数的立方的个位数就是这个数的个位数的立方的个位数确定个位数,然后一次确定十位数,即可求得立方根.【详解】由103=1000,1003=10000002位数.由59319的个位上的数是99,如果划去59319后面的三位319得到数59,而33=27、43=64339. 故答案为:39【点睛】本题主要考查了数的立方,理解一个数的立方的个位数就是这个数的个位数的立方的个位数是解题的关键.19.-2【分析】根据1与它前面的那个数的差的倒数,即,即可求得、、……,然后根据得到结果出现的规律,即可确定.【详解】解:=……所以数列以,,三个数循环,所以==故答案为:.【解析:-2【分析】根据1与它前面的那个数的差的倒数,即111n n a a +=-,即可求得2a 、3a 、4a ……,然后根据得到结果出现的规律,即可确定2019a .【详解】解:1a =13 2131213a ==-312312a ==--411123a ==+ …… 所以数列以13,32,2-三个数循环, 20193673÷=所以2019a =3a =2-故答案为:2-.【点睛】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.20.1【分析】分别求出第1次到第7次的输出结果,发现从第4次输出的结果开始,每三次结果开始循环一次,则可确定第2019次输出的结果与第6次输出的结果相同.【详解】解:x=7时,第1次输出的结果为解析:1【分析】分别求出第1次到第7次的输出结果,发现从第4次输出的结果开始,每三次结果开始循环一次,则可确定第2019次输出的结果与第6次输出的结果相同.【详解】解:x=7时,第1次输出的结果为10,x=10时,第2次输出的结果为1105 2⨯=,x=5时,第3次输出的结果为5+3=8,x=8时,第4次输出的结果为184 2⨯=,x=4时,第5次输出的结果为142 2⨯=,x=2时,第6次输出的结果为121 2⨯=,x=1时,第7次输出的结果为1+3=4,……,由此发现,从第4次输出的结果开始,每三次结果开始循环一次,∵(2019﹣3)÷3=672,∴第2019次输出的结果与第6次输出的结果相同,∴第2019次输出的结果为1,故答案为:1.【点睛】本题考查了程序框图和与实数运算相关的规律题;根据题意,求出一部分输出结果,从而发现结果的循环规律是解题的关键.三、解答题21.不能,说明见解析.【分析】根据长方形的长宽比设长方形的长DC为3xcm,宽AD为2xcm,结合长方形ABCD的面积为300cm2,即可得出关于x的一元二次方程,解方程即可求出x的值,从而得出AB的长,再根据圆的面积公式以及圆的面积147cm2,即可求出圆的半径,从而可得出两个圆的直径的长度,将其与AB的长进行比较即可得出结论.【详解】解:设长方形的长DC为3xcm,宽AD为2xcm.由题意,得3x•2x=300,∵x>0,∴x=∴AB=,BC=cm.∵圆的面积为147cm2,设圆的半径为rcm,∴πr 2=147,解得:r=7cm .∴两个圆的直径总长为28cm .∵382428<=⨯=<,∴不能并排裁出两个面积均为147cm 2的圆.22.(1)2、3、4、5;(2)第n 个等式为1+3+5+7+…+(2n+1)=n 2;(3)﹣1.008016×106.【分析】(1) 根据从1开始连续n 各奇数的和等于奇数的个数的平方即可得到.(2) 根据规律写出即可.(3) 先提取符号,再用规律解题.【详解】解:(1)1+3=221+3+5=321+3+5+7=421+3+5+7+9=52……故答案为:2、3、4、5;(2)第n 个等式为1+3+5+7+…+(2n+1)=2(1)n +(3)原式=﹣(1+3+5+7+9+ (2019)=﹣10102=﹣1.0201×106.【点睛】本题考查数字变化规律,解题的关键是找到第一个的规律,然后加以运用即可.23.初步探究:(1)12,8;(2)C ;深入思考:(1)213,415,82;(2)21n a-;(3)-5.【分析】初步探究:(1)根据除方运算的定义即可得出答案;(2)根据除方运算的定义逐一判断即可得出答案;深入思考:(1)根据除方运算的定义即可得出答案;(2)根据(1)即可总结出(2)中的规律;(3)先按照除方的定义将每个数的圈n 次方算出来,再根据有理数的混合运算法则即可得出答案.【详解】解:初步探究:(1)2③=2÷2÷2=12(12)⑤=11111822222÷÷÷÷= (2)A :任何非零数的圈2次方就是两个相同数相除,所以都等于1,故选项A 错误; B :因为多少个1相除都是1,所以对于任何正整数n ,1ⓝ都等于1,故选项B 错误; C :3④=3÷3÷3÷3=19,4③=4÷4÷4=14,3④≠4③,故选项C 正确; D :负数的圈奇数次方,相当于奇数个负数相除,则结果是负数;负数的圈偶数次方,相当于偶数个负数相除,则结果是正数,故选项D 错误;故答案选择:C.深入思考:(1)(-3)④=(-3)÷(-3)÷(-3) ÷(-3)=213 5⑥=5÷5÷5÷5÷5÷5=415 (-12)⑩=8111111111122222222222⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-÷-÷-÷-÷-÷-÷-÷-÷-÷-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(2)a ⓝ=a÷a÷a…÷a=21n a -(3)原式=()4252621111442711233---÷⨯-÷-⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭ =1144981278⎛⎫÷⨯--÷ ⎪⎝⎭=23--=-5【点睛】本题主要考查了除方运算,运用到的知识点是有理数的混合运算,掌握有理数混合运算的法则是解决本题的关键.24.(1)2;5;(2)1,2,3;(3)3;(4)255【分析】(1(2)根据定义可知x <4,可得满足题意的x 的整数值;(3)根据定义对120进行连续求根整数,可得3次之后结果为1;(4)最大的正整数是255,根据操作过程分别求出255和256进行几次操作,即可得出答案.【详解】解:(1)∵22=4, 62=36,52=25,∴5<6,∴]=[2]=2,]=5,故答案为2,5;(2)∵12=1,22=4,且]=1,∴x=1,2,3,故答案为1,2,3;(3)第一次:,第二次:,第三次:,故答案为3;(4)最大的正整数是255,理由是:∵,,]=1,∴对255只需进行3次操作后变为1,∵,,]=2,]=1,∴对256只需进行4次操作后变为1,∴只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为255.【点睛】本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和猜想能力,同时也考查了一个数的平方数的计算能力.25.(1)440;(2)()()1123n n n ++. 【分析】通过几例研究n(n+1)数列前n 项和,根据题目中的规律解得即可.【详解】.(1)1×2+2×3+3×4+…+10×11 =1(123012)3⨯⨯-⨯⨯+1(234123)3⨯⨯-⨯⨯+1(345234)3⨯⨯-⨯⨯+…+1(10111291011)3⨯⨯-⨯⨯ =1101112=4403⨯⨯⨯.(2)1×2+2×3+3×4+……+n×(n+1)=1(123012)3⨯⨯-⨯⨯+1(234123)3⨯⨯-⨯⨯+1(345234)3⨯⨯-⨯⨯+…+ ()()()()121113n n n n n n ++--+⎡⎤⎣⎦ =()()1123n n n ++. 故答案为:()()1123n n n ++.【点睛】本题考查数字规律问题,读懂题中的解答规律,掌握部分探究的经验,用题中规律进行计算是关键.26.(1)成立,例子见解析;(2)﹣2【分析】(1(2)根据互为相反数的和为0,列等式可得y 的值,根据平方根的定义得:x+5=0,计算x+y 并计算它的立方根即可.【详解】解:(10,则2+(﹣2)=0,即2与﹣2互为相反数;所以“如果两数的立方根互为相反数,那么这两个数也互为相反数”成立;(2=0,∴8﹣y+2y ﹣5=0,解得:y =﹣3,∵x+5的平方根是它本身,∵x+5=0,∴x =﹣5,∴x+y =﹣3﹣5=﹣8,∴x+y 的立方根是﹣2.【点评】本题考查立方根和平方根的知识,难度一般,注意互为相反数的和为0,知道这一知识是本题的关键.。

2020年环湖中学新人教版七年级上学期第二次月考数学试卷及答案

2020年环湖中学新人教版七年级上学期第二次月考数学试卷及答案

环湖中学七年级第二次月考数学试卷(2020.12)(考试时间40分钟)一.选择题(每小题5分,共2020将选择题答案填入括号中)1 下列是一元一次方程的是( )A 32x m +=B 15x= C 2(1)x x =+ D 23x x =- 2 下列哪个一元一次方程的解是2x =( )A 25x =B 325x x +=+C 315x -=D 0.51x =-3 下列方程变形错误的是( )A 方程3x x =移项得30x x -=B 方程24x -=两边同时除以-2,得2x =-C 方程4153x x -=+移项得4513x x -=+D 方程3x x =两边同时除以x 得到3=14 某地举行报告会,设座位有x 排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位.则下列方程正确的是( )A .30x-8=31x+26B .30x+8=31x+26C .30x-8=31x-26D .30x+8=31x-26二 填空题(每空5分 共35分)5 关于x 的方程 385x x t +=+ 的解满足20x -=,则t =6 一份数学试卷共计25道选择题,作对一道得4分,做错一道倒扣一分,某同学做了所有题,得70分,他一共作对了 道题7 图中平面展开图折叠成正方体后,相对面上的两数之和为10,求x= ,y=8 定义一种新运算“⊕”,其运算规则为:a ⊕b= -2a+3b ,如:1⊕5=( -2)×1+3×5=13,则方程x ⊕2=0的解为9 若(m+3)x |m|-2+2=1是关于x 的一元一次方程,则m 的值为10 若2425x x +与互为倒数,则的值为 三 解答题(共45分)11 (本题5分) 上面的平面图形绕轴旋转一周,可得下面的立体图形,请把有对应关系的平面图形与立体图形用直线连起来班级 姓名得分12 (14分)解方程① 2(1)x - =3(12)x -- ② 3t= 12t + - 113 (本题10分) 一件外衣的进价为2020,按标价的8折出售,利润率为10%,求这件外衣的标价为多少元?14 (本题10分) 一艘船从甲地到乙地顺流而行,用了三小时;从乙地到甲地逆流而行,用了四小时。

2020年秋季第二次月考新人教版七年级数学试卷

2020年秋季第二次月考新人教版七年级数学试卷

2020年秋季郊尾、枫江、蔡襄教研小片区第二次月考七年级数学试卷(满分:150分;考试时间:12020)一、精心选一选:本大题共8小题,每小题4分,共32分.每小题给出的四个选项中有且只有一个选项是符合题目要求的.答对的得4分,答错、不答或答案超过一个的一律得O 分.1.下列各数中,最小的数是( )A .-lB .OC .1D .3 2. 在数轴上,原点及原点右边的点表示的数是( ) A.正数 B.负数 C.非正数 D.非负数3. 在数 -(-3), 0 ,(-3)2, |-9|, -14中,正数的有( )个 A .2 B .3 C .4 D .54. 在式子,3,,,8,,32y m n xa b xy n x -+-中,单项式的个数是( ).A 、4B 、5C 、6D 、7 5. 多项式22848x y xy xy -+-的二次项的系数是( ). A 、1 B 、8 C 、-8 D 、4 6. 下列方程中是一元一次方程的是( ).A 、23x y +=-B 、33x x +=-C 、12x= D 、21xo -=7. 实验中学七年级(2)班有学生42人,已知男生人数比女生人数的2倍少3人,求男生和女生各多少人?下面设未知数的方法,合适的是( ). A. 设总人数为x 人B. 设男生比女生多x 人C. 设男生人数是女生人数的x 倍D. 设女生人数为x 人8. 下列说法错误的是( )A. 若a=b 则a+1=b+1B. 若a=b 则a(x ²+1)=b( x ²+1 )C. 若a=b 则2a =2bD. 若a(x-1)=b(x-1) 则a=b二、细心填一填:本大题共8小题,每小题4分,共32分. 9. -8的相反数是_________.10. 12177-÷⨯=___________.11. 用科学记数法表示13040000应记作_______________________. 12.单项式26a bc -的次数为_______.13.当k =________时多项式2174x xy kxy -+-中不含xy 项.14.已知()2130x x y ++-+=,那么2()x y +的值是________.15. 一件运动衣按原价的八折出售时,售价是40元,则原价为_____元.16. 依法纳税是每个公民应尽的义务,新的《中华人民共和国个人所得税法》规定,从2020年9月1日起,公民全月工薪不超过3500元的部分不必纳税,超过3500元的部分应缴纳个人所得税,此项税款按下表分段累进计算. 黄先生4月份缴纳个人所得税税金60元,那么林先生该月的工薪是__________元.三、耐心做一做:本大题共9小题,共86分. 17. (本小题满分6分) 计算:-542332-⨯++18. (本小题满分6分)计算: 22(23)2(41)a a a a -+--+19. (本小题满分12分)解方程: ①7(23)0x x +-= ②1413612=+--x x2020(本小题满分8分)解方程: 1231325453--=+--xx x21. (本小题满分8分)y 的3倍与2之和的二分之一等于y 与1之差的四分之一,求y .全月应纳税所得税额 税率 不超过1500元的部分 3% 超过1500元至4500元的部分10% … …22. (本小题满分10分)已知22,51A a aB a=-=-+.当12a=-时,求31A B-+的值.23. (本小题满分10分) 雅丽服装厂童装车间有40名工人,缝制一种儿童套装(一件上衣和两条裤子配成一套)。

人教版2020年七年级数学上册 第二次月考模拟试卷三(含答案)

人教版2020年七年级数学上册 第二次月考模拟试卷三(含答案)

人教版2020年七年级数学上册第二次月考模拟试卷一、选择题1.绝对值等于7的数是()A.7 B.﹣7 C.±7 D.0和72.如果a﹣b=,那么﹣(a﹣b)的值是()A.﹣3 B.﹣ C.6 D.3.下列说法中正确的是()A.a是单项式 B.2πr2的系数是2C.﹣ abc的次数是1 D.多项式9m2﹣5mn﹣17的次数是44.下列说法:①如果两个数的积为1,则这两个数互为倒数;②如果两个数和为0,则至少有一个数为0;③绝对值是本身的有理数只有1;④倒数是本身的数是﹣1,0,1.⑤零有相反数.其中错误的个数是()A.0个B.1个C.2个D.3个5.已知有理数a,b在数轴上表示的点如图所示,则下列式子中不正确的是()A.B.a﹣b>0 C.a+b>0 D.ab<06.橡皮的单价是x元,钢笔的单价比橡皮的2倍还多2.5元,则钢笔的单价为()A.2.5x元B.2x元C.(2x+2.5)元D.(2x﹣2.5)元7.中国的领水面积约为370000km2,将数370000用科学记数法表示为()A.37×104B.3.7×104C.0.37×106D.3.7×1058.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,…,依此规律,第10个图形圆的个数为()A.114 B.104 C.85 D.76二、填空题9.平方等于16的数有,立方等于﹣1的数是.10.将多项式2x3y﹣4y2+3x2﹣x按x的降幂排列为:.11.比较大小:﹣32(﹣3)2,﹣33(﹣3)3,﹣﹣.12.计算:2﹣3+4﹣5+…+2016﹣2017= .13.某班a名同学参加植树活动,其中男生b名(b<a),若只由男生完成,每人需植树15棵;若只由女生完成,则每人需植树棵.14.当x=1时,代数式px3+qx+1的值为2016,则代数式2p+2q+1的值为.15.数a、b在数轴上的位置如图所示,化简:a+|b|﹣|a|= .16.观察下面一列有规律的数:,,,,,,…,根据规律可知第n个数应是(n为正整数).三、解答题17.计算(1)27﹣18+(﹣7)﹣32;(2);(3);(4).18.已知(x﹣2)2+|y+3|=0,求y x﹣xy的值.19.当a=3,b=﹣1时,(1)求代数式a2﹣b2和(a+b)(a﹣b)的值;(2)猜想这两个代数式的值有何关系?(3)根据(1)(2),你能用简便方法算出a=2016,b=2015时,a2﹣b2的值吗?20.①将下列各数填在相应的集合里.﹣(﹣2.5),(﹣1)2,﹣|﹣2|,﹣22,0;整数集合{ …}分数集合{ …}②把表示上面各数的点画在数轴上,再按从小到大的顺序,用“<“号把这些数连接起来.21.某个体儿童服装店老板以每件32元的价格购进30件连衣裙,针对不同的顾客,30件连衣裙的售价不完全相同,若以50元为标准价,将超过的钱数记为正,不足的钱数记为负,则记录结果如表所示:售出数量(件) 7 6 3 5 4 5售价(元)+3 +2 +1 0 ﹣1 ﹣2问:该服装店在售完这30件连衣裙后,赚了多少钱?22.中国移动开设两种通信业务如下(均指本地通话):“全球通”用户每月交纳50元月租费,然后按每分钟通话收费0.2元;另一种:“神州行”用户不用交纳租费,但每分钟通话收费0.4元,若一个月通话x分钟,“全球通”用户的费用为y1元,“神州行”用户的费用为y2元,(1)试用含x的代数式表示y1和y2;(2)如果某人一个月通话6个小时,那么应选择哪种通话方式比较划算.23.规定一种新运算:a*b=(a+1)﹣(b﹣1),例如5*(﹣2)=(5+1)﹣(﹣2﹣1)=6﹣(﹣3)=9.(1)计算(﹣2)*(﹣1)和100*101的值.(2)试计算:(0*1)+(1*2)+(2*3)+(3*4)+…+的值.参考答案1.C.2.B.3.A.4.D5.C.6.C7.D.8.A.9.答案为:4、﹣4,﹣1.10.答案为:2x3+3x2﹣x﹣4y2.11.答案为:<,=,>.12.答案为:﹣1008.13.答案为:.14.答案为:4031.15.答案为:﹣b16..17.解:(1)27﹣18+(﹣7)﹣32=27﹣18﹣7﹣32=27﹣57=﹣30;(2)=﹣7××=﹣;(3)=﹣×(﹣24)﹣×(﹣24)+×(﹣24)=18+20﹣21=17;(4)=﹣1﹣×(2﹣9)=﹣1﹣×(﹣7)=﹣1+=.18.解:∵(x﹣2)2+|y+3|=0,∴x﹣2=0,x=2;y+3=0,y=﹣3;则y x﹣xy=(﹣3)2﹣2×(﹣3)=9+6=15.故答案为15.19.解:(1)当a=3,b=﹣1时,a2﹣b2=32﹣(﹣1)2=9﹣1=8(a+b)(a﹣b)=(3﹣1)×(3+1)=2×4=8(2)根据(1)中求出的两个算式的结果,猜想这两个代数式的值相等.(3)a=2016,b=2015时,a2﹣b2=(a+b)(a﹣b)=×=4031×1=403120.解:(1)整数集合{ (﹣1)2,﹣|﹣2|,﹣22,0},分数集合{﹣(﹣2.5)};②画数轴表示:﹣22<﹣|﹣2|<0<(﹣1)2<﹣(﹣2.5).21.解:[(50+3)×7+(50+2)×6+(50+1)×3+50×5+(50﹣1)×4+(50﹣2)×5]﹣30×32=[371+312+153+250+196+240]﹣960=1522﹣960=562(元)答:该服装店在售完这30件连衣裙后,赚了562元.22.解:(1)y1=0.2x+50,y2=0.4x;(2)y1=0.2×6×60+50=122元,y2=0.4×6×60=144元,∵122<144,∴“全球通”比较划算23.解:(1)(﹣2)*(﹣1)=(﹣2+1)﹣(﹣1﹣1)=﹣1+2=1100*101==101﹣100=1(2)(0*1)+(1*2)+(2*3)+(3*4)+…+=(0+1)﹣(1﹣1)+(1+1)﹣(2﹣1)+(2+1)﹣(3﹣1)+(3+1)﹣(4﹣1)+…+﹣=1+1+1+1+…+1=2017。

人教版(五四学制)2022-2023学年七年级数学上册第二次月考测试题(附答案)

人教版(五四学制)2022-2023学年七年级数学上册第二次月考测试题(附答案)

2022-2023学年七年级数学上册第二次月考测试题(附答案)一、选择题(共计30分)1.﹣2的倒数是()A.﹣2B.﹣C.D.22.下列计算正确的是()A.2a+3b=5ab B.(﹣a3b4)2=a6b8C.a6÷a2=a3D.(a+b)2=a2+b23.下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.4.如图所示的几何体的左视图是()A.B.C.D.5.方程=的解为()A.x=2B.x=﹣4C.x=4D.x=﹣26.如图,点A,B,C,D都在⊙O上,∠BAC=15°,∠BOD=70°,DE切⊙O于D,则∠CDE的度数是()A.15°B.20°C.25°D.55°7.如图.BC是⊙O的直径,点A、D在⊙O上,P A切⊙O于A,若∠ADC=48°,则∠P AB =()A.42°B.48°C.46°D.50°8.在菱形ABCD中,AB=5,∠BCD=120°,则对角线BD等于()A.20B.C.10D.59.在△ABC中,∠C=90°,a,b,c分别是∠A、∠B、∠C的对边,则有()A.b=a•tan A B.b=c•sin A C.a=c•cos B D.c=a•sin A 10.如图,点D,E,F分别在△ABC的边AB,AC,BC上,连接DE,EF,若DE∥BC,EF∥AB,则下列比例式正确的是()A.=B.=C.=D.=二、填空题(共计30分)11.实数16800000用科学记数法表示为.12.在函数中,自变量x的取值范围是.13.计算:=.14.在实数范围内分解因式:a2m﹣5m=.15.关于x的不等式组的整数解是.16.某种过季绿茶的价格两次大幅下降,原来每袋250元,现在每袋90元,则平均每次下调的百分率是.17.在△ABC中,AB=AC=5,BD是高,且cos∠ABD=,则BC=.18.如图,分别过⊙O上A、B、C三点作⊙O切线,切线两两交于P、M、N,P A=9,则△PMN的周长为.19.在△ABC中,∠ACB=90°,CA=CB,点D为AB边上一点,AD=3BD,CD=2,点E在直线AC上,∠CDE=45°,则AE=.20.如图,△ABC中,AB=AC,AD⊥BC于D,DE平分∠ADC,EF⊥AB交AD于G,AG =1,BC=6,则BF=.三、解答题(共计60分)21.先化简,再求代数式的值,其中a=tan60°﹣6sin30°.22.△ABC在平面直角坐标系中的位置如图所示.(1)将△ABC向右平移5个单位长度,同时向下平移4个单位长度得到△A1B1C1;(2)将△ABC绕点A顺时针旋转90°得到△AB2C2,连接A1C2,直接写出A1C2的长.23.为了丰富同学们的课余生活,某中学开展以“我最喜欢的书籍种类”为主题的调查活动,围绕“在文学类、科普类、艺术类、其它类四类书籍中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图.请根据图中提供的信息回答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)若该中学共有1200名学生,请你估计该中学最喜欢科普类书籍的学生有多少名.24.在▱ABCD中,E,F分别为对角线BD上两点,连接AE、CE、AF、CF,且AE∥CF.(1)如图1,求证:四边形AECF是平行四边形;(2)如图2,若2BE=3EF,在不添加任何字母及辅助线的情况下,请直接写出图2中面积是△ABD面积的的四个三角形.25.某文教店用1200元购进了甲、乙两种钢笔.已知甲种钢笔进价为每支12元,乙种钢笔进价为每支10元.文教店在销售时甲种钢笔售价为每支15元,乙种钢笔售价为每支12元,全部售完后共获利270元.(1)求这个文教店购进甲、乙两种钢笔各多少支?(2)若该文教店以原进价再次购进甲、乙两种钢笔,且购进甲种钢笔的数量不变,而购进乙种钢笔的数量是第一次的2倍,乙种钢笔按原售价销售,而甲种钢笔降价销售.当两种钢笔销售完毕时,要使再次购进的钢笔获利不少于340元,甲种钢笔最低售价每支应为多少元?26.如图,四边形ABCD内接于⊙O,AC平分∠BCD.(1)如图1,求证:AB=AD;(2)如图2,点E在弧AD上,弧CE=弧BC,延长CD、AE交于点F,求证:AF=AD.(3)在(2)的条件下,如图3,连接ED并延长ED交AC延长线于点P,连接PF,若PF=AF=4,PE=10,求⊙O的半径.27.如图,在平面直角坐标系中,O为坐标原点,直线AC的解析式为:y=﹣x+3,点B在x轴负半轴上,且AB=5.(1)求直线BC的解析式;(2)点P从点C出发,沿射线CO方向以每秒1个单位的速度运动,点T在AO上,且BT=CO,连接PT,设点P运动时间为t秒,S△OTP=S,求S与t之间的函数解析式(直接写出自变量t的取值范围);(3)在(2)的条件下,过点T作AB的垂线,交AC于E,连接BE,过点A作CT的平行线AL,将线段BP绕P点顺时针方向旋转得PQ点Q恰好落在直线AL上,若∠BPQ=2∠BET,求t值.参考答案一、选择题(共计30分)1.解:∵﹣2×=1.∴﹣2的倒数是﹣,故选:B.2.解:A、2a与3b不是同类项,不能合并,原计算错误,故此选项不符合题意;B、(﹣a3b4)2=a6b8,原计算正确,故此选项符合题意;C、a6÷a2=a4,原计算错误,故此选项不符合题意;D、(a+b)2=a2+2ab+b2,原计算错误,故此选项不符合题意.故选:B.3.解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选:D.4.解:这个组合体的左视图为:故选:A.5.解:去分母得:5x=8x﹣12,解得:x=4,检验:把x=4代入得:x(2x﹣3)≠0,∴分式方程的解为x=4.故选:C.6.解:连接OC,∵∠BAC=15°,∴∠BOC=2∠BAC=30°,∵∠BOD=70°,∴∠COD=70°﹣30°=40°,∵OC=OD,∴∠ODC=∠OCD=(180°﹣40°)=70°,∵DE切⊙O于D,∴OD⊥DE,∴∠CDE=90°﹣70°=20°,故选:B.7.解:连接OA,∵P A切⊙O于A,∴∠OP A=90°,∵∠ADC=48°,∴∠ABC=∠ADC=48°,∵OA=OB,∴∠OAB=∠ABC=48°,∴∠P AB=90°﹣∠OAB=42°,故选:A.8.解:∵四边形ABCD是菱形,∴∠ACB=∠BCD=×120°=60°,AC⊥BD,OC=AC=×5=2.5,BD=2OB,∴在Rt△OBC中,OB=OC•tan∠ACB=2.5×=,∴BD=2OB=5.故选:B.9.解:在△ABC中,∠C=90°,a,b,c分别是∠A、∠B、∠C的对边,tan A=,则a=b•tan A,A错误;sin A=,则a=c•sin A,B错误;cos B=,则a=c•cos B,C正确;sin A=,则a=c•sin A,D错误;故选:C.10.解:∵DE∥BC,∴△ADE∽△ABC,∴=,∴≠,故A错误;∵EF∥AB,∴∠CEF=∠A,∵∠C=∠AED,∴△CEF∽△EAD,∴=,∵△ADE∽△ABC,∴=,∵四边形BDEF是平行四边形,∴DE=BF,∴=,∵≠,∴≠,故B错误;∵EF∥AB,∴=,故C正确;∵△CEF∽△CAB,∴=,∵DE=BF,∴=,∵≠,∴≠,故D错误,综上所述,C正确,故选:C.二、填空题(共计30分)11.解:16800000=1.68×107.故答案为:1.68×107.12.解:由题意得:x+2>0,解得:x>﹣2,故答案为:x>﹣2.13.解:原式=4×2﹣2=8﹣2=6.故答案为:6.14.解:a2m﹣5m=m(a2﹣5)=m(a+)(a﹣),故答案为:m(a+)(a﹣).15.解:,由①得:x≤2,由②得:x>,∴不等式组的解集为<x≤2,则不等式组的整数解为1,2.故答案为:1,2.16.解:设平均每次下调的百分率为x,依题意得250(1﹣x)2=90,(1﹣x)2=,1﹣x=±,x1=40%,x2=160%(舍去).答:平均每次下调的百分率为40%.故答案为:40%.17.解:分两种情况:①如图一,当△ABC是锐角三角形时,在△ABD中,BD是AC边上的高,AB=5,cos∠ABD=,∴BD=3,∴AD==4,∴CD=AC﹣AD=5﹣4=1,在Rt△BDC中,BC=;②如图二,当△ABC是钝角三角形时,在△ABD中,BD是AC边上的高,AB=5,cos∠ABD=,∴BD=3,∴AD==4,∴CD=AC+AD=5+4=9,在Rt△BDC中,BC==3.故答案为:或3.18.解:∵P A、PB、MN分别与⊙O切于A、B、C,∴P A=PB,MA=MC,NB=NC,∴△PMN的周长=PM+MN+PN=PM+MC+CN+PN=PM+MA+NB+PN=P A+PB=9+9=18,故答案为:18.19.解:①如图,点E在AC上时,在△ABC,∠ACB=90°,CA=CB,∴∠EAD=∠CBA=45°,∵∠CDE=45°,∠CDA=∠CDE+∠ADE=∠B+∠BCD,∴∠ADE=∠BCD,∴△ADE∽△BCD,∴,∴AD=,BD=,∴,∴AE=,∵∠CDE=∠A=45°,∴△CED∽△CDA,∴,∵CD=2,∴AC•CE=40,∴,即AE•CE=15,∵AE+CE=AC,即AE+CE=,∴CE=,∴AE,∴AE=3;②如图,点E在AC的延长线上,∵∠CDE=45°,∠DCM=∠BCD,∴△CDE∽△BCD,∴,∵CD=2,CB=AC,∴BC•CM=40,即AC•CM=40,∵∠EDB=∠A+∠E,∠DCA=∠E+∠CDE,∠A=∠CDE=45°,∴∠EDB=∠DCA,∵∠A=∠B=45°,∴△BDM∽△ACD,∴,∵AC=BC,AB=AC,AD=3BD,∴AD=,BD=,,∴BM=,∵BM+CM=AC,∴CM=,∴AC=8,作DN∥BC,∴,∴DN=BC×=8×=6,AN=AC×=8×=6,∴CN=8﹣6=2,∵CM=,∴,∴,∴CE=10,∴AE=AC+CE=8+10=18,综上,AE=3或18,故答案为:3或18.20.解:如图,连接BG,∵AB=AC,AD⊥BC,∴∠BAD=∠CAD,BD=CD=BC=3,∵EF⊥AB,∴∠AFG=90°,∵∠AFG=∠ADC=90°,∴∠AGF=∠C,∵∠AGF=∠DGE,∴∠DGE=∠C,∵DE平分∠ADC,∴∠CDE=∠EDG,∵DE=DE,∴△CDE≌△GDE(AAS),∴DG=CD=3,∵AG=1,∴AD=AG+DG=1+3=4,由勾股定理得:AB===5,∵S△ABG=•AB•FG=•AG•BD,∴×5FG=×1×3,∴FG=,由勾股定理得:AF===,∴BF=AB﹣AF=5﹣=.故答案为:.三、解答题(共计60分)21.解:原式=÷=﹣•=﹣,当a=tan60°﹣6sin30°=﹣3时,原式=﹣=﹣.22.解:(1)如图,△A1B1C1即为所求;(2)如图,△AB2C2即为所求,A1C2==3.23.解:(1)在这次调查中,一共抽取的学生数是:8÷20%=40(名);(2)其它类的人数有:40﹣8﹣14﹣12=6(名),补全统计图如下:(3)根据题意得:1200×=360(名),答:估计该中学最喜欢科普类书籍的学生有360名.24.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠ABE=∠CDF,∵AE∥CF,∴∠AEF=∠CFE,∴∠AEB=∠CFD,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴AE=CF,又∵AE∥CF,∴四边形AECF是平行四边形;(2)解:△ABE、△CDF、△BCE、△ADF,理由如下:由(1)得:△ABE≌△CDF,∴BE=DF,∵2BE=3EF,∴BE:BD=3:8,∴△ABE的面积=△CDF的面积=△BCE的面积=△ADF的面积=△ABD面积的.25.解:(1)设文具店购进甲种钢笔x支,乙种钢笔y支,由题意,得,解得.答:这个文具店购进甲种钢笔50支,乙种钢笔60支.(2)设甲种钢笔每只的最低售价为m元,由题意,得50(m﹣12)+2×60(12﹣10)≥340,解得:m≥14.故甲种钢笔每只的最低售价为14元.26.(1)证明:∵四边形ABCD内接于⊙O,AC平分∠BCD,∴∠BCA=∠DCA,∴AB=AD;(2)证明:由(1)知,∠BCA=∠DCA,AB=AD,∵弧CE=弧BC,∴∠BAC=∠CAE,在△ABC和△AFC中,,∴△ABC≌△AFC(ASA),∴AB=AF,∵AB=AD,∴AF=AD;(3)解:连接BE、BP,过点E作EG⊥BP于点G,∵PF=AF=4,AF=AB=AD,∴AB=PF=4,∠APF=∠P AF,由(2)知,∠BAP=∠P AF,∴∠BAP=∠APF,∴AB∥PF,又∵AB=PF,∴四边形ABPF是平行四边形,又∵AB=AF,∴四边形ABPF是菱形,∴AF∥BP,BP=AB=4,∴∠AEB=∠EBP,∠FEP=∠EPB,∵点A、C、D、E在⊙O上,∴∠FEP=∠ACD,∵∠AEB=∠ACB,∴∠EBP=∠EPB,∴EB=EP=10,∵EG⊥BP,∴PG=BP=2,在Rt△PEG中,PE=10,∴EG===4,∴AB=EG,又∵EG⊥BP,∴∠ABP=90°,∴菱形ABPF是正方形,∴∠BAE=90°,∴EB是⊙O的直径,∴⊙O的半径是5.27.解:(1)在y=﹣x+3中,令x=0得y=3,令y=0得x=3,∴A(3,0),C(0,3),∴OA=3,OC=3,∵AB=5,∴OB=2,∵B在x轴负半轴上,∴B(﹣2,0),设直线BC解析式为y=kx+b,将B(﹣2,0),C(0,3)代入得:,解得,∴直线BC解析式为y=x+3;(2)∵OC=3,点T在AO上,且BT=CO,B(﹣2,0),∴T(1,0),OT=1,∵点P从点C出发,沿射线CO方向以每秒1个单位的速度运动,点P运动时间为t秒,∴CP=t,当t<3时,如图:∴OP=OC﹣CP=3﹣t,∴S=OT•OP=×1×(3﹣t)=﹣t+,当t>3时,如图:同理可得S=OP•OT=t﹣,∴S=;(3)由(2)知T(1,0),在y=﹣x+3中令x=1得y=2,∴E(1,2),∵B(﹣2,0),∴ET=2,BT=3,由C(0,3),T(1,0)可得直线CT解析式为y=﹣3x+3,由AL∥CT,A(3,0)可得AL解析式为y=﹣3x+9,设Q(m,﹣3m+9),取BQ中点M,∵B(﹣2,0),∴M(,),过M作MN⊥x轴于N,过P作PH⊥MN于H,当P在x轴上方时,如图:∵将线段BP绕P点顺时针方向旋转得PQ,∴BP=PQ,∵M是BQ中点,∴∠BPQ=2∠BPM,∠BMP=90°,∵∠BPQ=2∠BET,∴∠BPM=∠BET,∵∠BMP=∠BTE=90°,∴△BMP∽△BTE,∴==,∵∠PMH=90°﹣∠BMN=∠MBN,∠PHM=∠MNB=90°,∴△PMH∽△MBN,∴===,∴=,解得m=,∴M(,),∴BN=OB+ON=,而=,∴MH=,∴NH=MH+MN=+==OP,∴CP=OC﹣OP=3﹣=,∴t=CP÷1=;当P在x轴下方时,如图:同理可得==,∴=,解得m=4,∴M'(1,﹣),∴BN'=OB+ON'=3,M'H'=2,∴OP=N'H'=M'N'+M'H'=+2=,∴CP=OC+OP=,∴t=CP÷1=,综上所述,t的值为或.。

人教七年级上第二次月考试卷数学试题

人教七年级上第二次月考试卷数学试题

七年级 数 学一、用心选一选.(每小题3分,共30分)1.关于数0,下列几种说法不正确的是 ( )A .0既不是正数,也不是负数B .0的相反数是0C .0的绝对值是0D .0是最小的数2.如图,在数轴上表示到原点的距离为3个单位的点有 ( )A .D 点B .A 点C .A 点和D 点 D .B 点和C 点3.若两个数的和为正数,则这两个数 ( )A .至少有一个为正数B .只有一个是正数C .有一个必为0D .都是正数4.一个两位数的个位数字是a ,十位数字是b ,则这个两位数可表示为 ( )A .abB .a +bC .10a +bD .10b +a5.在222515,1,32,,,1x x x x x x π+--+++中,整式有 ( )A .3个B .4个C .5个D .6个6.多项式2112x x ---的各项分别是 ( )A .21,,12x x -B .21,,12x x ---C .21,,12x xD .21,,12x x -- 7.近似数0.320的有效数字的个数和精确度分别是 ( )A .两个,精确到千分位B .三个,精确到万分位C .三个,精确到千分位D .四个,精确到千分位8.2007年搭载我国首颗探月卫星“嫦娥一号”的长征三号甲运载火箭在西昌卫星发射中心发射,并成功飞向距地球约384400000米的月球.这个数据用科学记数法可表示为( )A .838.4410⨯米B .83.84410⨯米C .93.84410⨯米D .93.810⨯米9.下列各题去括号错误的是 ( )A .11(3)322x y x y --=-+ B .()m n a b m n a b +-+-=-+- C .1(463)2332x y x y --+=-++ D .112112()()237237a b c a b c +--+=++- 10. 下列各组中的两项属于同类项的是 ( )A .25x 2y 与-23xy 3 B .-8a 2b 与5a 2c C .41pq 与-25qp D .19a bc 与-28a b 二、细心填一填.(每小题2分,共30分) 11.如果水位升高4 m 时水位变化记作+4m ,那么水位下降3m 记作______m ,水位不升不降时水位变化记作______m .12.最小的正整数是______;绝对值最小的数是______.13.平方等于1的数是______;立方等于它本身的数是______.14.112-的倒数是________, 112-的绝对值是________. 15.1|()|2---=________,[(2)]---=________. 16.计算:(-1.15)+(+1.12)=________;(-3)-(+7)=________.17. 计算 -22= , (-2)2= 。

重庆市合川区人教版七年级上第二次月考数学模拟试卷(含答案解析)

重庆市合川区人教版七年级上第二次月考数学模拟试卷(含答案解析)

2020学年重庆市合川区七年级(上)第二次月考数学模拟试卷一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在相应的括号内1.(4分)2的相反数是()A.2B.C.﹣D.﹣22.(4分)下列数据中是近似数的是()A.七(2)班有54名学生B.足球比赛开始时每方各有11名球员C.杨老师在交通银行存入1000元D.我国最长的河流是长江,全长6300km3.(4分)下列说法不正确的是()A.0既不是正数,也不是负数B.1是绝对值最小的数C.一个有理数不是整数就是分数D.0的绝对值是04.(4分)根据第六次全国人中普查主要数据公报,某省常住人口约为44560000人;这个数据可以用科学记数法表示为()A.4.456×107人B.4.456×106人C.4456×104人D.4.456×103人5.(4分)下列各式中,去括号正确的是()A.a2﹣(2a﹣b)=a2﹣2a﹣b B.(﹣3x+2y)+a=﹣3x+2y+aC.3x﹣(﹣2x﹣1)=3x﹣2x+1D.﹣(2x﹣y)﹣a=﹣2x﹣y﹣a6.(4分)根据图的流程图中的程序,当输入数据x为﹣2时,输出数值y为()A.4B.6C.8D.107.(4分)已知代数式﹣5x3y n与5x m+1y3是同类项,则m﹣n的值为() A.5B.﹣1C.1D.﹣58.(4分)下列运算正确的是()A.7x﹣(﹣3x)=10B.5a+6b=11abC.ab+2ba=3ab D.﹣(a﹣b)=a+b9.(4分)如图,是某年3月份的日历表,任意圈出一竖列上相邻的三个数,请你运用字母表示数来研究,这三个数的和可能是()A.15B.2020.27D.7510.(4分)将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆…依此规律,第7个图形的小圆个数是()A.41B.45C.50D.6011.(4分)某种商品若按标价的八折出售,可获利2020若按原标价出售,可获利() A.25%B.40%C.50%D.66.7%12.(4分)为了求1+2+22+23+…+22020的值,可令S=1+2+22+23+…+22020,则2S=2+22+23+24+…+22020,因此2S﹣S=22020﹣1,所以1+2+22+23+…+22020=22020﹣1.请仿照以上推理计算出1+4+42+43+44+…+42020的值是()A.42020﹣1B.42020﹣1C.D.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的正确答案填在应的横线上.13.(4分)比较大小:|| ﹣2.(填“<”或“>”或“=”)14.(4分)单项式﹣的系数是.15.(4分)如果x2=4,y=3,那么x+y的值是.16.(4分)如果代数式y2+3y的值是6,求代数式2y2+6y﹣2值是.17.(4分)小红利用计算机设计一个计算程序,输入和输出的数据如表:输入…12345…输出……那么,当输入数据是9时,输出数据是.18.(4分)甲、乙、丙三人分别拿出相同数量的钱,合伙订购某种商品若干件.商品买来后,甲、乙分别比丙多拿了7、11件,最后结算时,三人要求按所得商品的实际数量付钱,进行多退少补.已知甲要付给丙14元,那么乙还应付给丙元.三、解答题:(本大题2个小题,19题6分,2020分,共14分)解答时每小题必须给出必要的演算过程或推理步骤.19.(6分)计算:(1)(﹣2)×7+6÷(﹣3)﹣(﹣5)(2).20208分)化简:(1)3a2﹣8a+5a2+2a+4﹣3a﹣1(2)(﹣2xy+3x)﹣2(2x﹣y)+2xy.四、解答题:(本大题共4个小题,每小题10分,共40分)解答时每小题请给出必要的演算过程或推理步骤.21.(10分)解方程:(1)4y+3(2+y)=20202).22.(10分)先化简,再求值:求代数式x2﹣[2(2x2﹣xy+y2)﹣3(x2+xy﹣2y2)+y2]的值,其中x=﹣2,y=3.23.(10分)在数轴上表示a,b两个实数的点的位置如图所示,化简|b|﹣|b﹣a|+|a+1|.24.(10分)某学校组织部分教师到杭州旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为400元/人,同时两家旅行社都对10人以上的团体推出了优惠举措:甲旅行社对每位游客七五折优惠;而乙旅行社是免去两位带队老师的费用,其余老师八折优惠.(1)若设参加旅游的老师共有x(x>10,含带队老师)人,则甲旅行社的费用为元,乙旅行社的费用为元;(用含x的代数式表示,结果要化简.)(2)当去旅游的教师共有多少人时,两家旅行社的优惠一样?五、解答题:(本大题共2个小题,每小题12分,共24分)解答时每小题请给出必要的演算过程或推理步骤.25.(12分)观察下列等式:(1)根据你发现的规律,写出下一个等式;(2)用含n(n是正整数)等式反应你发现的规律;(3)请利用上述规律计算:11+13+15+…+37+39.26.(12分)《中华人民共和国个人所得税法》规定:公民每月收入不超过3000元,不需交税;如果每月收入超过3000元,超过3000元的部分为全月应纳税所得额,且根据超过部分的多少按不同的税率纳税(如表).例如:某人月收入4500元,他的全月应纳税所得额为1500元,应交个人所得税为500×5%+(1500﹣500)×10%=125(元)全月应纳税所得额税率(%)不超过500元部分510超过500元至2 000元部分15超过2020元至5 000元部分……(1)如果某人月收入是4800元,该月他应交个人所得税是多少元?(2)某公司小王今年11月份应交个人所得税是325元,该月他的收入是多少元?(3)如果明年1月份,小王的月收入在交个人所得税之后还剩6950元,那么他明年1月份的月收入是多少元?(要求:列方程解(2)、(3)小题)2020学年重庆市合川区七间中学七年级(上)第二次月考数学模拟试卷参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在相应的括号内1.(4分)2的相反数是()A.2B.C.﹣D.﹣2【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:2的相反数是﹣2,故选:D.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(4分)下列数据中是近似数的是()A.七(2)班有54名学生B.足球比赛开始时每方各有11名球员C.杨老师在交通银行存入1000元D.我国最长的河流是长江,全长6300km【分析】近似数就是由四舍五入得到,与真实值比较接近的数值,它的概念是与准确值相对的.【解答】解:∵班级人数、比赛的队员、存入的金额都是准确值,∴我国最长的河流是长江,全长6300km是近似数.故选:D.【点评】近似数的概念是与准确数相对的,就是一个估计而不是非常准的数值.3.(4分)下列说法不正确的是()A.0既不是正数,也不是负数B.1是绝对值最小的数C.一个有理数不是整数就是分数D.0的绝对值是0【分析】先根据:0既不是正数,也不是负数;整数和分数统称为有理数;0的绝对值是0;判断出A、C、D正确;再根据绝对值最小的数是0,得出B错误.【解答】解:0既不是正数,也不是负数,A正确;绝对值最小的数是0,B错误;整数和分数统称为有理数,C正确;0的绝对值是0,D正确.故选:B.【点评】本题主要考查正数的绝对值是正数,负数的绝对值是正数,0的绝对值是0,熟练掌握绝对值的性质是解题的关键.4.(4分)根据第六次全国人中普查主要数据公报,某省常住人口约为44560000人;这个数据可以用科学记数法表示为()A.4.456×107人B.4.456×106人C.4456×104人D.4.456×103人【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:44560000人;这个数据可以用科学记数法表示为4.456×107人,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(4分)下列各式中,去括号正确的是()A.a2﹣(2a﹣b)=a2﹣2a﹣b B.(﹣3x+2y)+a=﹣3x+2y+aC.3x﹣(﹣2x﹣1)=3x﹣2x+1D.﹣(2x﹣y)﹣a=﹣2x﹣y﹣a【分析】根据去括号的方法解答即可.【解答】解:A、原式=a2﹣2a+b,故本选项错误;B、原式=﹣3x+2y+a,故本选项正确;C、原式=3x+2x+1,故本选项错误;D、原式=﹣2x+y﹣a,故本选项错误;故选:B.【点评】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.顺序为先大后小.6.(4分)根据图的流程图中的程序,当输入数据x为﹣2时,输出数值y为()A.4B.6C.8D.10【分析】观察图形我们可以得出x和y的关系式为:当x≥1时关系式为,当x<1时,然后将x=﹣2代入,求出结果即可.【解答】解:∵x=﹣2<1,∴=6.故选:B.【点评】解答本题的关键就是弄清楚题图给出的计算程序.由于代入﹣2<1,所以直接代入第二个式子即可,这也是容易出错的地方.此题渗透了分类讨论思想.7.(4分)已知代数式﹣5x3y n与5x m+1y3是同类项,则m﹣n的值为() A.5B.﹣1C.1D.﹣5【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可先求得m和n的值,从而求出它们的差.【解答】解:由题意得:m+1=3,n=3,解得:m=2,n=3.∴m﹣n=﹣1.故选:B.【点评】本题考查同类项的知识,注意掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.8.(4分)下列运算正确的是()A.7x﹣(﹣3x)=10B.5a+6b=11abC.ab+2ba=3ab D.﹣(a﹣b)=a+b【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,判断各个选项即可.【解答】解:A、7x﹣(﹣3x)=10x,故本选项错误;B、5a与6b所含字母不同,无法合并,故本选项错误;C、ab+2ba=3ab,故本选项正确;D、根据去括号的法则,﹣(a﹣b)=﹣a+b,故本选项错误.故选:C.【点评】本题考查合并同类项的知识,注意掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数.9.(4分)如图,是某年3月份的日历表,任意圈出一竖列上相邻的三个数,请你运用字母表示数来研究,这三个数的和可能是()A.15B.2020.27D.75【分析】设第一个数为x,则第二个数为x+7,第三个数为x+14.列出三个数的和的代数式并化简,以选项中的数是3的倍数确定选项.【解答】解:设第二个数为x,则第一个数为x﹣7,第三个数为x+7.三个数字之和是x+x﹣7+x+7=3x.因为x是正正整数,所以三个数的和是3的倍数.选项中的15、27、75都是3的倍数,而20203的倍数,故选项B符合题意.故选:B.【点评】此题主要考查一元一次方程的应用,根据日历表中的数字规律列代数式,解题的关键是:(1)根据竖排“第一数比第二数小7,第三数比第二数大7”列代数式并化简;(2)根据代数式的值是3的整数倍,确定选项.10.(4分)将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆…依此规律,第7个图形的小圆个数是()A.41B.45C.50D.60【分析】分析数据可得:第1个图形中小圆的个数为6;第2个图形中小圆的个数为10;第3个图形中小圆的个数为16;第4个图形中小圆的个数为24;则知第n个图形中小圆的个数为n(n+1)+4.据此可以求得第7个图形小圆的个数即可.【解答】解:由分析知:第7个图形圆的个数为7×8+4=60个.故选:D.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.11.(4分)某种商品若按标价的八折出售,可获利2020若按原标价出售,可获利() A.25%B.40%C.50%D.66.7%【分析】此题文字量虽少,但题目题不简单.用间接设未知数的方法要简单些,把进价设为x,原标价看作单位1,先求出进价,再利用利率求出原获利即可.【解答】解:设进价为x,根据题意得(1+2020x=80%解得x=则按原标价出售,可获利1÷﹣1=50%.故选:C.【点评】此题需要间接方法解决,要注意利率的求法,分清两次售价的不同,原进价是不变的.12.(4分)为了求1+2+22+23+…+22020的值,可令S=1+2+22+23+…+22020,则2S=2+22+23+24+…+22020,因此2S﹣S=22020﹣1,所以1+2+22+23+…+22020=22020﹣1.请仿照以上推理计算出1+4+42+43+44+…+42020的值是()A.42020﹣1B.42020﹣1C.D.【分析】设S=1+4+42+43+…+42020,表示出4S,然后求解即可.【解答】解:设S=1+4+42+43+ (42020)则4S=4+42+43+ (42020)因此4S﹣S=42020﹣1,所以S=.故选:D.【点评】本题考查了有理数的乘方,读懂题目信息,理解求解方法是解题的关键.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的正确答案填在应的横线上.13.(4分)比较大小:|| >﹣2.(填“<”或“>”或“=”)【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:∵|﹣|=,∴||>﹣2,故答案为:>.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.14.(4分)单项式﹣的系数是﹣.【分析】根据单项式系数的定义求解即可.【解答】解:单项式﹣的系数是﹣.故答案为:﹣.【点评】本题考查了单项式系数的定义,单项式中的数字因数叫做单项式的系数.15.(4分)如果x2=4,y=3,那么x+y的值是5或1.【分析】利用平方根定义求出x的值,即可求出所求.【解答】解:∵x2=4,y=3,∴x=±2,y=3,则x+y=5或1,故答案为:5或1【点评】此题考查了有理数的乘方,以及有理数的加法,熟练掌握运算法则是解本题的关键.16.(4分)如果代数式y2+3y的值是6,求代数式2y2+6y﹣2值是10.【分析】原式变形后,将已知代数式的值代入计算即可求出值.【解答】解:∵y2+3y=6,∴原式=2(y2+3y)﹣2=12﹣2=10,故答案为:10【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.17.(4分)小红利用计算机设计一个计算程序,输入和输出的数据如表:输入…12345…输出……那么,当输入数据是9时,输出数据是.【分析】通过观察分析发现,输入1,得到=,输入2得到=,输入3得到=…,由此可知,每次输入的数的2倍减去1即为分子,而分母为输入数的平方+1,据此规律即可求解.【解答】解:由于每次输入的数的2倍减去1即为分子,而分母为输入数的平方+1,则输入9时,可得到=.故答案为:.【点评】此题考查数字的变化规律,通过分析已知数据,找出数表中数据之间的规律及内在联系是完成此类题目的关键.18.(4分)甲、乙、丙三人分别拿出相同数量的钱,合伙订购某种商品若干件.商品买来后,甲、乙分别比丙多拿了7、11件,最后结算时,三人要求按所得商品的实际数量付钱,进行多退少补.已知甲要付给丙14元,那么乙还应付给丙70元.【分析】因为出了同样的钱买所有商品,所以三人在丙买的件数以外还有18件商品的钱也由三个人均摊,就是说又各出了六件的钱.丙出的钱实际上是帮甲垫了一件加帮乙垫了5件,也是甲乙该还的钱.【解答】解:(7+11)÷3=6,甲比丙多拿了一件,所以一件是14元.14×(11﹣6)=70.故乙付给丙70元.【点评】本题主要考查了理解题意的能力,关键知道14元是几件商品的钱,求出乙多拿了几件,从而可求出解.三、解答题:(本大题2个小题,19题6分,2020分,共14分)解答时每小题必须给出必要的演算过程或推理步骤.19.(6分)计算:(1)(﹣2)×7+6÷(﹣3)﹣(﹣5)(2).【分析】(1)先算乘除法,再计算减法即可求解;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:(1)(﹣2)×7+6÷(﹣3)﹣(﹣5)=﹣14﹣2+5=﹣11;(2)=﹣1÷1+×12+9=﹣1+2+9=10.【点评】考查了有理数的混合运算,进行有理数的混合运算时,注意各个运算定律的运用,使运算过程得到简化.20208分)化简:(1)3a2﹣8a+5a2+2a+4﹣3a﹣1(2)(﹣2xy+3x)﹣2(2x﹣y)+2xy.【分析】(1)找出同类项,再合并同类项即可;(2)先去括号,再合并同类项即可.【解答】解:(1)3a2﹣8a+5a2+2a+4﹣3a﹣1=(3+5)a2+(﹣8+2﹣3)a+(4﹣1)=8a2﹣9a+3;(2)(﹣2xy+3x)﹣2(2x﹣y)+2xy=﹣2xy+3x﹣4x+2y+2xy=﹣x+2y.【点评】本题考查了整式的加减,能正确去括号和合并同类项是解此题的关键.四、解答题:(本大题共4个小题,每小题10分,共40分)解答时每小题请给出必要的演算过程或推理步骤.21.(10分)解方程:(1)4y+3(2+y)=20202).【分析】(1)去括号、移项、合并同类项、系数化为1即可解决问题;(2)去分母、去括号、移项、合并同类项、系数化为1即可解决问题;【解答】解:(1)4y+3(2+y)=2020y+6+3y=2020y=14y=2(2)6x﹣2(1﹣x)=x+2﹣6,6x﹣2+2x=x+2﹣6,7x=﹣2x=﹣【点评】本题考查一元一次方程的解,记住一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,解题的关键是灵活应用各种步骤使方程逐渐向x=a形式转化.22.(10分)先化简,再求值:求代数式x2﹣[2(2x2﹣xy+y2)﹣3(x2+xy﹣2y2)+y2]的值,其中x=﹣2,y=3.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=x2﹣4x2+2xy﹣2y2+3x2+3xy﹣6y2﹣y2=5xy﹣9y2,当x=﹣2,y=3时,原式=﹣30﹣81=﹣111.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.(10分)在数轴上表示a,b两个实数的点的位置如图所示,化简|b|﹣|b﹣a|+|a+1|.【分析】根据数轴判断b、b﹣a、a+1与0的大小关系即可化简求值.【解答】解:由数轴可知:b>0,b﹣a>0,a+1<0,∴原式=b﹣(b﹣a)﹣(a+1)=b﹣b+a﹣a﹣1=﹣1【点评】本题考查绝对值的性质,解题的关键是熟练运用绝对值的性质,本题属于基础题型.24.(10分)某学校组织部分教师到杭州旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为400元/人,同时两家旅行社都对10人以上的团体推出了优惠举措:甲旅行社对每位游客七五折优惠;而乙旅行社是免去两位带队老师的费用,其余老师八折优惠.(1)若设参加旅游的老师共有x(x>10,含带队老师)人,则甲旅行社的费用为300x元,乙旅行社的费用为3202032020;(用含x的代数式表示,结果要化简.)(2)当去旅游的教师共有多少人时,两家旅行社的优惠一样?【分析】(1)甲旅行社的费用为:总价×0.75,乙旅行社的费用为(x﹣1)个人的总价×0.8;(2)根据费用相等,构建方程即可解决问题;【解答】解:(1)甲旅行社的费用为:400x×0.75=300x,乙旅行社的费用为(x﹣1)×400×0.8=3202032020故答案为300x,3202032020(2)由题意:300x=3202032020=16答:当去旅游的教师共有16人时,两家旅行社的优惠一样【点评】本题考查列代数式,一元一次方程的应用,解决问题的关键是读懂题意,找到所求的量的等量关系,构建方程解决问题.五、解答题:(本大题共2个小题,每小题12分,共24分)解答时每小题请给出必要的演算过程或推理步骤.25.(12分)观察下列等式:(1)根据你发现的规律,写出下一个等式;(2)用含n(n是正整数)等式反应你发现的规律;(3)请利用上述规律计算:11+13+15+…+37+39.【分析】(1)由等式可知左边是连续奇数的和,右边是数的个数的平方,由此规律解答即可;(2)一共有n个连续奇数相加,所以结果应为n2;(3)让从1加到39这些连续奇数的和,减去从1加到9这些连续奇数的和即可.【解答】解:(1)下一个等式为1+3+5+7+9+11=36=62;(2)1+3+5+7+…+(2n﹣1)=n2;(3)原式=1+3+5+7+...+39﹣(1+3+5+ (9)=202052=375.【点评】考查数字的变化规律的应用;判断出有几个奇数相加是解决本题的易错点;得到从1开始连续奇数的和的规律是解决本题的关键.26.(12分)《中华人民共和国个人所得税法》规定:公民每月收入不超过3000元,不需交税;如果每月收入超过3000元,超过3000元的部分为全月应纳税所得额,且根据超过部分的多少按不同的税率纳税(如表).例如:某人月收入4500元,他的全月应纳税所得额为1500元,应交个人所得税为500×5%+(1500﹣500)×10%=125(元)全月应纳税所得额税率(%)不超过500元部分510超过500元至2 000元部分15超过2020元至5 000元部分……(1)如果某人月收入是4800元,该月他应交个人所得税是多少元?(2)某公司小王今年11月份应交个人所得税是325元,该月他的收入是多少元?(3)如果明年1月份,小王的月收入在交个人所得税之后还剩6950元,那么他明年1月份的月收入是多少元?(要求:列方程解(2)、(3)小题)【分析】(1)分两档进行交税计算即可;(2)由题意小王分3档交税,设该月他的收入是x元.由题意:25+150+(x﹣3000﹣2020)×15%=325,解方程即可;(3)设1月份的月收入是y元.由题意:y﹣6950=25+150+(y﹣3000﹣2020)×15%,解方程即可;【解答】解:(1)500×5%=25(元),(1800﹣500)×10%=130(元),25+130=155(元),答:某人月收入是4800元,该月他应交个人所得税是155元.(2)由题意小王分3档交税,设该月他的收入是x元.由题意:25+150+(x﹣3000﹣2020)×15%=325,解得x=6000答:该月他的收入是6000元.(3)设1月份的月收入是y元.由题意:y﹣6950=25+150+(y﹣3000﹣2020)×15%,解得y=7500答:1月份的月收入是7500元.【点评】本题考查一元一次方程的应用,解题的关键是理解题意,学会设未知数,正确寻找等量关系,列出方程解决问题.。

2020年孝感市年新人教版七年级上学期第二次月考数学试卷【解析版】

2020年孝感市年新人教版七年级上学期第二次月考数学试卷【解析版】

湖北省孝感市2020学年七年级上学期第二次月考数学试卷一、精心选一选,相信自己的判断!(每小题3分,共计36分)1.(3分)3的相反数的倒数是()A.﹣3 B.+3 C.﹣D.2.(3分)用四舍五入法对0.03957(保留到千分位)取近似值为()A.0.039 B.0.040 C.0.0395 D.0.039473.(3分)在﹣(﹣3),﹣|﹣3|,(﹣3)2,﹣32这4个数中,属于负数的个数是()A.1B.2C.3D.44.(3分)0.1252020×(﹣8)2020的结果是()A.0.125 B.﹣0.125 C.1D.﹣15.(3分)方程x﹣=4的解题步骤如下:第一步:3x﹣x﹣4=12;第二步:3x﹣x=12+4;第三步:2x=16;第四步:x=8.错误开始于()A.第一步B.第二步C.第三步D.第四步6.(3分)西瓜每千克1元,买50千克以上按8折优惠,甲、乙两人所买西瓜的重量不同可付的钱相同,若甲买48千克,则乙买的西瓜重量是()A.48千克B.84千克C.64千克D.60千克7.(3分)正方体的棱长为a,当棱长增加x时,体积增加了()A.a3﹣x3B.x3C.(a+x)3﹣a3D.(a+x)3﹣x3 8.(3分)如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量.A.2B.3C.4D.59.(3分)如图,在数轴上有a,b两个实数,则下列结论中,正确的是()A.a>﹣b B.|a|<|b| C.﹣ab>0 D.a+b>010.(3分)有12米长的木料,要做成一个窗框(如图).如果假设窗框横档的长度为x米,那么窗框的面积是()A.x(6﹣x)米2B.x(12﹣x)米2C.x(6﹣3x)米2D.x(6﹣x)米211.(3分)若xy>0,则+的值为()A.﹣2 B.2或﹣2 C.2D.0或212.(3分)当n为正整数时,(﹣1)2n+1+(﹣1)2n的值是()A.﹣2 B.0C.2D.不能确定二、细心填一填,试试自己的身手!(每小题3分,共计18分)13.(3分)若|x﹣2|+(y﹣3)2=0,则x y+(y﹣2x)2020的值是.14.(3分)如图,该图形是立体图形的展开图.15.(3分)某商品原来价格为m元,先降价2020提价a元后的价格为元.16.(3分)从甲站到乙站原需16小时.采用“和谐”号动车组提速后,列车行驶速度提高了176千米/时,从甲站到乙站的时间缩短了11小时,列车提速后的速度为.17.(3分)我们小时候听过龟兔赛跑的故事,都知道乌龟最后战胜了小白兔.如果在第二次赛跑中,小白兔知耻而后勇,在落后乌龟1千米时,以101米/分的速度奋起直追,而乌龟仍然以1米/分的速度爬行,那么小白兔大概需要分钟就能追上乌龟.18.(3分)下面是按一定规律排列的一列数:,,,,…那么第n个数是.三、用心做一做,显显自己的能力!(本大题共7小题,共计46分)19.(6分)计算:(1)﹣32÷3+(﹣)÷×(﹣4)+|﹣2|;(2)(+﹣)×(﹣60).20205分)解方程:=﹣1.21.(5分)若x=是方程=的解,求代数式(﹣4m2+2m﹣8)﹣(m﹣1)的值.22.(6分)如图所示的几何体是由5个相同的正方体搭成的,请画出它的主视图、左视图和俯视图.23.(6分)在暑期社会实践活动中,小明所在小组的同学与﹣家玩具生产厂家联系,给该厂组装玩具,该厂同意他们组装240套玩具.这些玩具分为A、B、C三种型号,它们的数量比例以及每人每小时组装各种型号玩具的数量如图所示:若每人组装同一种型号玩具的速度都相同,根据以上信息,完成下列填空:(1)从上述统计图可知,A型玩具有套,B型玩具有套,C型玩具有套.(2)若每人组装A型玩具16套与组装C型玩具12套所画的时间相同,那么a的值为,每人每小时能组装C型玩具套.24.(8分)某市电话拨号上网有两种收费方式,用户可以任选其一:A、计时制:0.05元/分钟;B、月租制:50元/月(限一部个人住宅电话上网).此外,每种上网方式都得加收通信费0.02元/分钟.(1)小玲说:两种计费方式的收费对她来说是一样的.小玲每月上网多少小时?(2)某用户估计一个月内上网的时间为65小时,你认为采用哪种方式较为合算?为什么?25.(10分)某开发公司要生产若干件新产品,需要精加工后才能投入市场,现有红星和巨星两个工厂都想加工这批产品.已知红星厂单独加工这批产品比巨星厂单独加工这批产品多用2020红星厂每天加工16件产品,巨星厂每天可以加工24件产品,公司需付红星厂每天加工费80元,付巨星厂每天加工费12020(1)这个开发公司要生产多少件新产品?(2)公司制定产品加工方案如下,可以由每个厂家单独完成,也可以由两个厂家同时合作完成,在加工过程中,公司需派一名工程师每天到厂家进行技术指导,并由公司为其提供每天5元的午餐补助,请你帮公司选择一种既省线又省时的加工方案.湖北省孝感市2020学年七年级上学期第二次月考数学试卷参考答案与试题解析一、精心选一选,相信自己的判断!(每小题3分,共计36分)1.(3分)3的相反数的倒数是()A.﹣3 B.+3 C.﹣D.考点: 倒数;相反数.分析: 根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据乘积为1的两个数互为倒数,可得一个数的倒数.解答: 解:3的相反数是﹣3,3的相反数的倒数是﹣,故选:C.点评: 本题考查了倒数,先求相反数再求倒数.2.(3分)用四舍五入法对0.03957(保留到千分位)取近似值为()A.0.039 B.0.040 C.0.0395 D.0.03947考点: 近似数和有效数字.分析: 根据近似数的精确度求解.解答: 解:0.03957≈0.040(保留到千分位).故选B.点评: 本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.3.(3分)在﹣(﹣3),﹣|﹣3|,(﹣3)2,﹣32这4个数中,属于负数的个数是()A.1B.2C.3D.4考点: 正数和负数.分析: 先把各式化简,然后根据负数的定义判断即可.解答: 解:﹣(﹣3)=3,﹣|﹣3|﹣3,(﹣3)2=9,﹣32=﹣9;所以属于负数的有﹣|﹣3|,﹣32;故选B.点评: 判断一个数是正数还是负数,要把它化简成最后形式再判断.概念:用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.4.(3分)0.1252020×(﹣8)2020的结果是()A.0.125 B.﹣0.125 C.1D.﹣1考点: 幂的乘方与积的乘方.分析: 根据幂的乘方和积的乘方的法则求解.解答: 解:0.1252020×(﹣8)2020=0.125×[0.125×(﹣8)]2020=﹣0.125.故选B.点评: 本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.5.(3分)方程x﹣=4的解题步骤如下:第一步:3x﹣x﹣4=12;第二步:3x﹣x=12+4;第三步:2x=16;第四步:x=8.错误开始于()A.第一步B.第二步C.第三步D.第四步考点: 解一元一次方程.专题: 计算题.分析: 方程两边乘以3去分母,去括号,移项合并,把x系数化为1,求出解,错误不为始于第一步.解答: 解:错误始于第一步,原因为:去括号错误,正确步骤为:3﹣(x﹣4)=12,即3﹣x+4=12,故选A点评: 此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.6.(3分)西瓜每千克1元,买50千克以上按8折优惠,甲、乙两人所买西瓜的重量不同可付的钱相同,若甲买48千克,则乙买的西瓜重量是()A.48千克B.84千克C.64千克D.60千克考点: 一元一次方程的应用.分析: 设乙买了x千克西瓜,先求出甲买西瓜的花费,然后根据题意列出买50kg以上西瓜所需花费的代数式,根据所付钱数相等,列方程求解.解答: 解:设乙买了x千克西瓜,由题意得,48×1=1×0.8x,解得:x=60,即乙买了60千克西瓜.故选D.点评: 本题考查了一元一次方程的应用,解答本题的关键是读懂题意,找出等量关系,列方程求解.7.(3分)正方体的棱长为a,当棱长增加x时,体积增加了()A.a3﹣x3B.x3C.(a+x)3﹣a3D.(a+x)3﹣x3考点: 列代数式.分析: 根据正方体的体积公式,用变化后的正方体体积减去原来的正方体体积即得答案.解答: 解:根据题意,正方体的体积增加了(a+x)3﹣a3.故选C.点评: 本题考查正方体的体积公式,是一道简单的基础题.8.(3分)如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量.A.2B.3C.4D.5考点: 等式的性质.专题: 应用题.分析: 根据等式的性质:等式的两边同时乘以或除以同一个不为0的数或字母,等式仍成立,可得答案.解答: 解:一个球等于2.5个长方体,三个球等于个长方体;一个长方体等于正方体,个长方体等于5个正方体,即三个球体的重量等于5个正方体的重量,故选:D.点评: 本题主要考查等式的性质.需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.9.(3分)如图,在数轴上有a,b两个实数,则下列结论中,正确的是()A.a>﹣b B.|a|<|b| C.﹣ab>0 D.a+b>0考点: 实数大小比较;数轴.分析: 由数轴上的数右边的数总是大于左边的数可以知道:a<0,0<b,|a|>|b|,利用a到原点距离大于b到原点距离,再根据有理数的运算法则即可判断.解答: 解:由图示知,a<0,0<b,|a|>b.A、根据a到原点距离大于b到原点距离得到:a<﹣b,故该选项错误;B、根据a到原点距离大于b到原点距离得到:|a|>|b|,故该选项错误;C、根据a<0,0<b得到:﹣ab>0,故该选项正确;D、根据a<0,0<b,得到:a﹣b<0,故该选项错误;故选:C.点评: 此题主要考查的是利用在数轴上数比较大小,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.10.(3分)有12米长的木料,要做成一个窗框(如图).如果假设窗框横档的长度为x米,那么窗框的面积是()A.x(6﹣x)米2B.x(12﹣x)米2C.x(6﹣3x)米2D.x(6﹣x)米2考点: 列代数式.分析: 横档的长度为x米,则竖档的长度=(12﹣3x)÷2=6﹣1.5x,根据窗框的面积=长×宽求出答案.解答: 解:竖档的长度=(12﹣3x)÷2=6﹣1.5x,∴窗框的面积=长×宽=x(6﹣1.5x)=x(6﹣x)米2.故选D.点评: 解决问题的关键是读懂题意,找到所求的量的等量关系.需注意,用字母表示数时,数字通常写在字母的前面,带分数的要写成假分数的形式.11.(3分)若xy>0,则+的值为()A.﹣2 B.2或﹣2 C.2D.0或2考点: 绝对值.分析: 由于xy>0,分x<0,y<0;x>0,y>0;两种情况讨论计算即可求解.解答: 解:∵xy>0,∴x<0,y<0时,+=﹣1﹣1=﹣2;x>0,y>0时,+=1+1=2.∴+的值为2或﹣2.故选:B.点评: 考查了绝对值,本题需要分情况讨论,难度中等.12.(3分)当n为正整数时,(﹣1)2n+1+(﹣1)2n的值是()A.﹣2 B.0C.2D.不能确定考点: 有理数的乘方.分析: ﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1.解答: 解:(﹣1)2n+1+(﹣1)2n=﹣1+1=0.故选B.点评: 本题考查了有理数的乘方,涉及知识点是:﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1.二、细心填一填,试试自己的身手!(每小题3分,共计18分)13.(3分)若|x﹣2|+(y﹣3)2=0,则x y+(y﹣2x)2020的值是7.考点: 代数式求值;非负数的性质:绝对值;非负数的性质:偶次方.专题: 计算题.分析: 利用非负数的性质求出x与y的值,代入原式计算即可得到结果.解答: 解:∵|x﹣2|+(y﹣3)2=0,∴x﹣2=0,y﹣3=0,解得:x=2,y=3,则原式=8﹣1=7.故答案为:7点评: 此题考查了代数式求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.14.(3分)如图,该图形是立体图形三棱柱的展开图.考点: 几何体的展开图.分析: 利用立体图形的展开图特征求解即可.解答: 解:该图形是立体图形三棱柱的展开图.故答案为:三棱柱.点评: 本题主要考查了几何体的展开图,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.15.(3分)某商品原来价格为m元,先降价2020提价a元后的价格为(0.8m+a)元.考点: 列代数式.分析: 降价后的价格是原价×(1﹣2020,即0.8m,再加上提价的a元即可求解.解答: 解:(1﹣2020m+a=0.8m+a(元).答:先降价2020提价a元后的价格为(0.8m+a)元.故答案为:(0.8m+a).点评: 考查了列代数式,列代数式的关键是正确理解文字语言中的关键词,找到其中的数量关系.注意降价的基数是多少.16.(3分)从甲站到乙站原需16小时.采用“和谐”号动车组提速后,列车行驶速度提高了176千米/时,从甲站到乙站的时间缩短了11小时,列车提速后的速度为256千米/小时.考点: 一元一次方程的应用.分析: 设列车提速前的速度是x千米/时,则提速后为(x+176)千米/时,根据提速前的时间与提速后的时间之间的等量关系建立方程求出其解就可以求出提速后的速度.解答: 解:设列车提速前的速度是x千米/时,则提速后为(x+176)千米/时,由题意,得16x=(16﹣11)(x+176),x=80,提速后的速度为:x+176=256.答:列车提速后的速度为256千米/小时.故答案为:256千米/小时.点评: 本题考查了路程=速度×时间的运用,列一元一次方程解实际问题的运用,设间接未知数的运用,在解答时根据时间之间的数量关系建立方程是解答本题的关键.17.(3分)我们小时候听过龟兔赛跑的故事,都知道乌龟最后战胜了小白兔.如果在第二次赛跑中,小白兔知耻而后勇,在落后乌龟1千米时,以101米/分的速度奋起直追,而乌龟仍然以1米/分的速度爬行,那么小白兔大概需要10分钟就能追上乌龟.考点: 一元一次方程的应用.专题: 行程问题.分析: 在追及路程问题中,注意等量关系:小白兔追上乌龟所走的路程=乌龟所走的路程+落后的路程.解答: 解:设小白兔大概需要x分钟就能追上乌龟,根据题意可得101x=x+1000解得x=10那么小白兔大概需要10分钟就能追上乌龟.点评: 在此题中注意单位要统一.18.(3分)下面是按一定规律排列的一列数:,,,,…那么第n个数是.考点: 规律型:数字的变化类.专题: 压轴题.分析: 根据题意,首先从各个数开始分析,n=1时,分子:2=(﹣1)2•21,分母:3=2×1+1;n=2时,分子:﹣4=(﹣1)3•22,分母:5=2×2+1;…,即可推出第n个数为解答: 解:∵n=1时,分子:2=(﹣1)2•21,分母:3=2×1+1;n=2时,分子:﹣4=(﹣1)3•22,分母:5=2×2+1;n=3时,分子:8=(﹣1)4•23,分母:7=2×3+1;n=4时,分子:﹣16=(﹣1)5•24,分母:9=2×4+1;…,∴第n个数为:故答案为:点评: 本题主要考查通过分析数的变化总结归纳规律,解题的关键在于求出分子、分母与n 的关系.三、用心做一做,显显自己的能力!(本大题共7小题,共计46分)19.(6分)计算:(1)﹣32÷3+(﹣)÷×(﹣4)+|﹣2|;(2)(+﹣)×(﹣60).考点: 有理数的混合运算.专题: 计算题.分析: (1)原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可得到结果;(2)原式利用乘法分配律计算即可得到结果.解答: 解:(1)原式=﹣9×+×4×4+2=﹣3+8+2=7;(2)原式=﹣45﹣35+70=﹣10.点评: 此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20205分)解方程:=﹣1.考点: 解一元一次方程.专题: 计算题.分析: 方程去分母,去括号,移项合并,把y系数化为1,即可求出解.解答: 解:去分母得:8(y﹣1)=3(y+2)﹣12,去括号得:8y﹣8=3y+6﹣12,移项合并得:5y=2,解得:y=0.4.点评: 此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.21.(5分)若x=是方程=的解,求代数式(﹣4m2+2m﹣8)﹣(m﹣1)的值.考点: 解一元一次方程;代数式求值.专题: 计算题.分析: 由方程解的定义将x=代入方程求出m的值,原式去括号合并得到最简结果,将m 的值代入计算即可求出值.解答: 解:根据题意将x=代入方程得:=,去分母得:3﹣3m=2﹣4m,解得:m=﹣1,原式=﹣m2+m﹣2﹣m+1=﹣m2﹣1,当m=﹣1时,原式=﹣1﹣1=﹣2.点评: 此题考查了解一元一次方程,以及代数式求值,求出m的值是解本题的关键.22.(6分)如图所示的几何体是由5个相同的正方体搭成的,请画出它的主视图、左视图和俯视图.考点: 作图-三视图.分析: 主视图有3列,每列小正方形数目分别为2,1,1;左视图有2列,每列小正方形数目分别为1,2;俯视图有3列,每行小正方形数目分别为2,1,1.解答: 解:如图所示:.点评: 本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.23.(6分)在暑期社会实践活动中,小明所在小组的同学与﹣家玩具生产厂家联系,给该厂组装玩具,该厂同意他们组装240套玩具.这些玩具分为A、B、C三种型号,它们的数量比例以及每人每小时组装各种型号玩具的数量如图所示:若每人组装同一种型号玩具的速度都相同,根据以上信息,完成下列填空:(1)从上述统计图可知,A型玩具有套,B型玩具有套,C型玩具有套.(2)若每人组装A型玩具16套与组装C型玩具12套所画的时间相同,那么a的值为,每人每小时能组装C型玩具套.考点: 扇形统计图;条形统计图.专题: 压轴题;图表型.分析: (1)扇形统计图中,各部分的数量=总体×所占百分比,据此求得各中型号的数量;(2)由题意得,,求解即可.解答: 解:(1)240×55%=132,240×(1﹣55%﹣25%)=48,240×25%=60.(2)由题意得,,16(2a﹣2)=12×8解之,得a=4,经检验a=4是原分式方程的解.2a﹣2=2×4﹣2=6.点评: 命题立意:考查扇形统计图及综合应用能力.24.(8分)某市电话拨号上网有两种收费方式,用户可以任选其一:A、计时制:0.05元/分钟;B、月租制:50元/月(限一部个人住宅电话上网).此外,每种上网方式都得加收通信费0.02元/分钟.(1)小玲说:两种计费方式的收费对她来说是一样的.小玲每月上网多少小时?(2)某用户估计一个月内上网的时间为65小时,你认为采用哪种方式较为合算?为什么?考点: 一元一次方程的应用.分析: (1)设小玲每月上网x小时,利用A:费用=每分钟的费用×时间;B:费用=包月费+通信费,根据两种计费方式的收费相同列出方程,解方程即可;(2)如果一个月内上网的时间为65小时,根据两种收费方式分别计算费用,比较后即可回答问题.解答: 解:(1)设小玲每月上网x小时,根据题意得(0.05+0.02)×60x=50+0.02×60x,解得x=.答:小玲每月上网小时;(2)如果一个月内上网的时间为65小时,选择A、计时制费用:(0.05+0.02)×60×65=273(元),选择B、月租制费用:50+0.02×60×65=128(元).所以一个月内上网的时间为65小时,采用月租制较为合算.点评: 本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.25.(10分)某开发公司要生产若干件新产品,需要精加工后才能投入市场,现有红星和巨星两个工厂都想加工这批产品.已知红星厂单独加工这批产品比巨星厂单独加工这批产品多用2020红星厂每天加工16件产品,巨星厂每天可以加工24件产品,公司需付红星厂每天加工费80元,付巨星厂每天加工费12020(1)这个开发公司要生产多少件新产品?(2)公司制定产品加工方案如下,可以由每个厂家单独完成,也可以由两个厂家同时合作完成,在加工过程中,公司需派一名工程师每天到厂家进行技术指导,并由公司为其提供每天5元的午餐补助,请你帮公司选择一种既省线又省时的加工方案.考点: 一元一次方程的应用.分析: (1)设这个公司要加工x件新产品,则红星厂单独加工这批产品需天,巨星厂单独加工这批产品需要天,根据题意找出等量关系:红星厂单独加工这批产品需要的天数﹣巨星厂单独加工这批产品需要的天数=2020据此等量关系列出方程求解即可.(2)应分为三种情况讨论:①由红星厂单独加工;②由巨星厂单独加工;③由两场厂共同加工,分别比较三种情况下,所耗时间和花费金额,求出即省钱,又省时间的加工方案.解答: 解:(1)设这个公司要加工x件新产品,由题意得:﹣=2020解得:x=960.答:这个公司要加工960件新产品.(2)①由红星厂单独加工:需要耗时为=60天,需要费用为:60×(5+80)=5100元;②由巨星厂单独加工:需要耗时为=40天,需要费用为:40×(12020)=5000元;③由两场厂共同加工:需要耗时为=24天,需要费用为:24×(80+12020)=492020所以,由两厂合作同时完成时,即省钱,又省时间.点评: 本题主要考查一元一次方程的应用,关键在于理解清楚题意,找出等量关系列出方程.对于要求最符合要求类型的题目,应将所有方案,列出来求出符合题意的那一个即可.。

精品模拟2019-2020学年人教版七年级数学上册第二次月考模拟试卷解析版

精品模拟2019-2020学年人教版七年级数学上册第二次月考模拟试卷解析版

2019-2020学年人教版七年级上册第2次月考数学模拟卷考查范围:第1-3章内容考试时间:90分钟满分:120分一、选择题(10小题,共30分)1.以下比﹣4.5大的负整数是()A.﹣3.5B.0C.﹣5D.﹣12.若数轴上表示﹣1和3的两点分别是点A和点B,则点A和点B之间的距离是()A.﹣4B.﹣2C.2D.43.下列说法正确的是()A.单项式的系数是3B.3x2﹣y+5xy2是三次三项式C.单项式﹣22a4b的次数是7D.单项式b的系数是1,次数是04.若代数式x+4的值是2,则x等于()A.2B.﹣2C.6D.﹣65.下列方程的变形中,正确的是()A.由3+x=5,得x=5+3B.由3x﹣(1+x)=0,得3x﹣1﹣x=0C.由,得y=2D.由7x=﹣4,得6.太阳中心的温度可达15500000℃,这个数用科学记数法表示正确的是()A.0.155×108B.15.5×106C.1.55×107D.1.55×1057.若有理数a、b在数轴上的对应点的位置如图所示,则下列结论中错误的是()A.ab<0B.a<0<b C.a+b<0D.﹣a<08.已知长方形的长是(a+b),宽是a,则长方形的周长是()A.2a+b B.4a+2b C.4a+b D.4a+4b9.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品按220元销售,可获利10%,则这件商品的进价为()A.240元B.200元C.160元D.120元10.如图1是2019年4月份的日历,现用一长方形在日历表中任意框出4个数(如图2),下列表示a,b,c,d之间关系的式子中不正确的是()A.a﹣d=b﹣c B.a+c+2=b+d C.a+b+14=c+d D.a+d=b+c二、填空题(6小题,共24分)11.的相反数是.12.将57000用科学记数法表示为.13.已知有理数x,y满足:x﹣2y﹣3=﹣5,则整式2y﹣x的值为.14.已知2x6y2和﹣x3m y n是同类项,则2m+n的值是.15.点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC 等于.16.观察下列图形:它们是按一定规律排列的,依照此规律,第19个图形共有个★.三、解答题(7小题,共66分)17.(8分)计算:(1)6×(﹣2)+27÷(﹣9)(2)(﹣1)9×3﹣(﹣2)4÷(8)18.(10分)解方程:(1)5x=3(x﹣2)(2)﹣=119.(10分)化简求值:(1)3(2x+1)+(3﹣x),其中x=﹣1(2)(2a2﹣ab+4)﹣2(5ab﹣4a2+2),其中a=﹣1,b=﹣2.20.(8分)某食品厂从生产的袋装食品中抽出样品若干袋,用以检测每袋的质量是否符合标准,超过或不足标准质量的部分用正数或负数来表示(单位:克),记录如下表:(1)若表中的一个数据不小心被墨水涂污了,请求出这个数据;(2)若每袋的标准质量为50克,每克的生产成本2元,求这批样品的总成本.21.(10分)某车间每天能制作甲种零件300只,或者制作乙种零件200只,1只甲种零件需要配2只乙种零件.(1)若制作甲种零件2天,则需要制作乙种零件只,才能刚好配成套.(2)现要在20天内制作最多的成套产品,则甲、乙两种零件各应制作多少天?22.(10分)列方程解应用题:为了参加2019年广州马拉松比赛,爸爸与小明在足球场进行耐力训练,他们在400米的环形跑道上同一起点沿同一方向同时出发进行绕圈跑,爸爸跑完一圈时,小明才跑完半圈,4分钟时爸爸第一次追上小明,请问:(1)小明与爸爸的速度各是多少?(2)再过多少分钟后,爸爸在第二次追上小明前两人相距50米?23.(10分)以下是两张不同类型火车的车票:(“D×××次”表示动车,“G×××次”表示高铁):(1)根据车票中的信息填空:两车行驶方向,出发时刻(填“相同”或“不同”);(2)已知该动车和高铁的平均速度分别为200km/h,300km/h,如果两车均按车票信息准时出发,且同时到达终点,求A,B两地之间的距离;(3)在(2)的条件下,请求出在什么时刻两车相距100km?参考答案及试题解析一、选择题1.【分析】根据题意:设大于﹣4.5的负整数为x,则取值范围为﹣4.5<x<0.根据此范围易求解.【解答】解:符合此两条件:(1)x是负整数,(2)﹣4.5<x<0的数有﹣3.5,﹣1.故大于﹣4.5的负整数有﹣1.故选:D.2.【分析】根据数轴上两点间的距离等于这两个数的差的绝对值列式计算即可得解.【解答】解:AB=|﹣1﹣3|=4.故选:D.3.【分析】直接利用单项式的次数与系数以及多项式的次数确定方法分别判断得出答案.【解答】解:A、单项式的系数是:,故此选项错误;B、3x2﹣y+5xy2是三次三项式,正确;C、单项式﹣22a4b的次数是5,故此选项错误;D、单项式b的系数是1,次数是1,故此选项错误;故选:B.4.【分析】根据已知条件列出关于x的一元一次方程,通过解一元一次方程来求x的值.【解答】解:依题意,得x+4=2移项,得x=﹣2故选:B.5.【分析】根据等式的性质,依次分析各个选项,选出正确的选项即可.【解答】解:A.3+x=5,等式两边同时减去3得:x=5﹣3,A项错误,B.3x﹣(1+x)=0,去括号得:3x﹣1﹣x=0,B项正确,C.y=0,等式两边同时乘以2得:y=0,C项错误,D.7x=﹣4,等式两边同时除以7得:x=﹣,D项错误,故选:B.6.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:15500000=1.55×107,故选:C.7.【分析】根据数轴得出a<0<b,|a|>|b|,进而可得出ab<0,a+b<0,﹣a>0,对比后即可得出选项.【解答】解:从数轴可知:a<0<b,|a|>|b|,∴ab<0,a+b<0,﹣a>0,即选项A,B,C均正确;选项D错误,故选:D.8.【分析】根据长方形的周长=2(长+宽)先列出代数式,再化简即可.【解答】解:∵长方形的周长=2(长+宽)=2[(a+b)+a]=2(2a+b)=4a+2b.故选:B.9.【分析】这件商品的进价为x元,根据利润=销售价格﹣进价,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:这件商品的进价为x元,根据题意得:220﹣x=10%x,解得:x=200.故选:B.10.【分析】观察日历中的数据,用含a的代数式表示出b,c,d的值,再将其逐一代入四个选项中,即可得出结论.【解答】解:依题意,得:b=a+1,c=a+7,d=a+8.A、∵a﹣d=a﹣(a+8)=﹣8,b﹣c=a+1﹣(a+7)=﹣6,∴a﹣d≠b﹣c,选项A符合题意;B、∵a+c+2=a+(a+7)+2=2a+9,b+d=a+1+(a+8)=2a+9,∴a+c+2=b+d,选项B不符合题意;C、∵a+b+14=a+(a+1)+14=2a+15,c+d=a+7+(a+8)=2a+15,∴a+b+14=c+d,选项C不符合题意;D、∵a+d=a+(a+8)=2a+8,b+c=a+1+(a+7)=2a+8,∴a+d=b+c,选项D不符合题意.故选:A.二、填空题11.【分析】根据相反数的定义:只有符号不同的两个数称互为相反数计算即可.【解答】解:+(﹣)=0,故的相反数是﹣,故答案为﹣.12.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将57000用科学记数法表示为:5.7×104.故答案为:5.7×104.13.【分析】由x﹣2y﹣3=﹣5知x﹣2y=﹣2,从而得﹣(x﹣2y)=2,即2y﹣x=2.【解答】解:∵x﹣2y﹣3=﹣5,∴x﹣2y=﹣2,则﹣(x﹣2y)=2,即2y﹣x=2,故答案为:2.14.【分析】根据同类项是字母相同且相同字母的指数也相同,可得m,n的值,根据代数式求值,可得答案.【解答】解:根据题意得6=3m,n=2,解得m=n=2,则2m+n=4+2=6.故答案为:615.【分析】分情况讨论A,B,C三点的位置关系,即点C在线段AB内,点C在线段AB 外.【解答】2或6解:此题画图时会出现两种情况,即点C在线段AB内,点C在线段AB 外,所以要分两种情况计算.点A、B表示的数分别为﹣3、1,AB=4.第一种情况:在AB外,AC=4+2=6;第二种情况:在AB内,AC=4﹣2=2.故答案为2或6.16.【分析】将每一个图案分成两部分,最下面位置处的一个不变,其它的分三条线,每一条线上后一个图形比前一个图形多一个,根据此规律找出第n个图形中★的个数的关系式,然后把n=19代入进行计算即可求解.【解答】解:观察发现,第1个图形★的个数是,1+3=4,第2个图形★的个数是,1+3×2=7,第3个图形★的个数是,1+3×3=10,第4个图形★的个数是,1+3×4=13,…依此类推,第n个图形★的个数是,1+3×n=3n+1,故当n=19时,3×19+1=58,故答案为:58.三、解答题17.【分析】(1)先计算乘法和除法,再计算加减可得;(2)根据有理数的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=﹣12﹣3=﹣15;(2)原式=﹣1×3﹣16÷(﹣8)=﹣3+2=﹣1.18.【分析】(1)依次去括号,移项,合并同类项,系数化为1,即可得到答案,(2)依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:(1)去括号得:5x=3x﹣6,移项得:5x﹣3x=﹣6,合并同类项得:2x=﹣6,系数化为1得:x=﹣3,(2)方程两边同时乘以6得:3(x﹣1)﹣2(3﹣x)=6,去括号得:3x﹣3﹣6+2x=6,移项得:3x+2x=6+6+3,合并同类项得:5x=15,系数化为1得:x=3.19.【分析】(1)首先去括号,合并同类项,将整式化为最简式,然后把x、y的值代入即可求得答案;(2)首先去括号,合并同类项,将整式化为最简式,然后把a、b的值代入即可求得答案.【解答】解:(1)原式=6x+3+3﹣x=5x+6,把x=﹣1代入5x+6=﹣5+6=1;(2)原式=2a2﹣ab+4﹣10ab+8a2﹣4=10a2﹣11ab,把a=﹣1,b=﹣2代入10a2﹣11ab=10×(﹣1)2﹣11×(﹣1)×(﹣2)=10﹣22=﹣1220.【分析】(1)设被墨水涂污了的数据为x,根据题意列方程,即可得到结论;(2)根据题意计算计算即可.【解答】解:(1)设被墨水涂污了的数据为x,则0.5×2+0.8×1+0.6×3+(﹣0.4)×2+(﹣0.7)x=1.4,解得:x=2,故这个数据为2;(2)[50+1.4÷(2+1+3+2+2)]×(2+1+3+2+2)×2=1002.8元,答:这批样品的总成本是1002.8元.21.【分析】(1)由需生产乙种零件的数量=每天生产甲种零件的数量×生产甲种零件的时间×2,即可求出结论;(2)设应制作甲种零件x天,则应制作乙种零件(20﹣x)天,根据生产零件的总量=每天生产的数量×生产天数结合要生产的乙种零件数量是甲种零件数量的2倍,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:(1)300×2×2=1200(只).故答案为:1200.(2)设应制作甲种零件x天,则应制作乙种零件(20﹣x)天,依题意,得:2×300x=200(20﹣x),解得:x=5,∴20﹣x=15.答:应制作甲种零件5天,乙种零件15天.22.【分析】(1)设小明的速度为x米/分,则爸爸的速度为2x米/分,根据距离=速度差×时间即可得出关于x的一元一次方程,解之即可得出结论;(2)设再经过y分钟后,爸爸在第二次追上小明前两人相距50米.分第一次相遇后爸爸比小明多跑50米和350米两种情况考虑,根据距离=速度差×时间即可得出关于y的一元一次方程,解之即可得出结论.【解答】解:(1)设小明的速度为x米/分钟,则爸爸的速度为2x米/分钟,根据题意得:4(2x﹣x)=400,解得:x=100,则2x=200.答:小明的速度为100米/分,爸爸的速度为200米/分.(2)设再经过y分钟后,爸爸在第二次追上小明前两人相距50米,①爸爸第一次追上小明后,在第二次相遇前,爸爸又比小明多跑了50米,根据题意得:200y﹣100y=50,解得y=;②爸爸第一次追上小明后,在第二次相遇前,爸爸又比小明多跑了350米,根据题意得:200y﹣100y=350,解得y=.答:再过或分钟后,爸爸在第二次追上小明前两人相距50米.23.【分析】(1)根据车票中的信息即可看到两张票都是从A地到B地,所以方向相同,但出发时间分别是20:00与21:00,所以出发时刻不同;(2)可设A,B两地之间的距离为s,而两车同时到达终点,于是可列方程﹣1=,解方程即可求出两地距离;(3)两车相距100km可以分追及之前与追及之后两种情况为考虑,但同时也要考虑两种情况的存在性.【解答】解:(1)车票中的信息即可看到两张票都是从A地到B地,所以方向相同;两车出发时间分别是20:00与21:00,所以出发时刻不同;故答案为相同,不同.(2)设A,B两地之间的距离为s,根据题意可得﹣1=解得s=600答:A,B两地之间的距离为600km.(3)设在高铁出发t小时后两车相距100km,分追及前与追及后两种情况①200(t+1)﹣300t=100 解得t=1;②300t﹣200(t+1)=100 解得t=3但是在(2)的条件下,600÷300=2即高铁仅需2小时可到达B地,所以第②种情况不符合实际,应该舍去.答:在(2)的条件下,在高铁出发1h时两车相距100km.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版2020年七年级数学上册
第二次月考模拟试卷
一、选择题
1.绝对值等于7的数是()
A.7 B.﹣7 C.±7 D.0和7
2.如果a﹣b=,那么﹣(a﹣b)的值是()
A.﹣3 B.﹣ C.6 D.
3.下列说法中正确的是()
A.a是单项式 B.2πr2的系数是2
C.﹣ abc的次数是1 D.多项式9m2﹣5mn﹣17的次数是4
4.下列说法:①如果两个数的积为1,则这两个数互为倒数;②如果两个数和为0,则至少有一个数为0;③绝对值是本身的有理数只有1;④倒数是本身的数是﹣1,0,1.⑤零有相反数.其中错误的个数是()
A.0个B.1个C.2个D.3个
5.已知有理数a,b在数轴上表示的点如图所示,则下列式子中不正确的是()
A.B.a﹣b>0 C.a+b>0 D.ab<0
6.橡皮的单价是x元,钢笔的单价比橡皮的2倍还多2.5元,则钢笔的单价为()A.2.5x元B.2x元C.(2x+2.5)元D.(2x﹣2.5)元
7.中国的领水面积约为370000km2,将数370000用科学记数法表示为()
A.37×104B.3.7×104C.0.37×106D.3.7×105
8.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,…,依此规律,第10个图形圆的个数为()
A.114 B.104 C.85 D.76
二、填空题
9.平方等于16的数有,立方等于﹣1的数是.
10.将多项式2x3y﹣4y2+3x2﹣x按x的降幂排列为:.
11.比较大小:﹣32(﹣3)2,﹣33(﹣3)3,﹣﹣.
12.计算:2﹣3+4﹣5+…+2016﹣2017= .
13.某班a名同学参加植树活动,其中男生b名(b<a),若只由男生完成,每人需植树15棵;若只由女生完成,则每人需植树棵.
14.当x=1时,代数式px3+qx+1的值为2016,则代数式2p+2q+1的值为.
15.数a、b在数轴上的位置如图所示,化简:a+|b|﹣|a|= .
16.观察下面一列有规律的数:,,,,,,…,根据规律可知第n个数应是(n为正整数).
三、解答题
17.计算
(1)27﹣18+(﹣7)﹣32;(2);
(3);(4).
18.已知(x﹣2)2+|y+3|=0,求y x﹣xy的值.
19.当a=3,b=﹣1时,
(1)求代数式a2﹣b2和(a+b)(a﹣b)的值;
(2)猜想这两个代数式的值有何关系?
(3)根据(1)(2),你能用简便方法算出a=2016,b=2015时,a2﹣b2的值吗?
20.①将下列各数填在相应的集合里.
﹣(﹣2.5),(﹣1)2,﹣|﹣2|,﹣22,0;
整数集合{ …}
分数集合{ …}
②把表示上面各数的点画在数轴上,再按从小到大的顺序,用“<“号把这些数连接起来.
21.某个体儿童服装店老板以每件32元的价格购进30件连衣裙,针对不同的顾客,30件连衣裙的售价不完全相同,若以50元为标准价,将超过的钱数记为正,不足的钱数记为负,则记录结果如表所示:
售出数量(件) 7 6 3 5 4 5
售价(元)+3 +2 +1 0 ﹣1 ﹣2
问:该服装店在售完这30件连衣裙后,赚了多少钱?
22.中国移动开设两种通信业务如下(均指本地通话):“全球通”用户每月交纳50元月租
费,然后按每分钟通话收费0.2元;另一种:“神州行”用户不用交纳租费,但每分钟通话收费0.4元,若一个月通话x分钟,“全球通”用户的费用为y1元,“神州行”用户的费用为y2元,
(1)试用含x的代数式表示y1和y2;
(2)如果某人一个月通话6个小时,那么应选择哪种通话方式比较划算.
23.规定一种新运算:a*b=(a+1)﹣(b﹣1),例如5*(﹣2)=(5+1)﹣(﹣2﹣1)=6﹣(﹣3)=9.
(1)计算(﹣2)*(﹣1)和100*101的值.
(2)试计算:(0*1)+(1*2)+(2*3)+(3*4)+…+的值.。

相关文档
最新文档