沈阳数学代数式单元测试题(Word版 含解析)
代数式单元测试卷(解析版)
一、初一数学代数式解答题压轴题精选(难)1.任何一个整数N,可以用一个的多项式来表示:N= .例如:325=3×102+2×10+5.一个正两位数的个位数字是x,十位数字y.(1)列式表示这个两位数;(2)把这个两位数的十位上的数字与个位上的数字交换位置得到一个新的两位数,试说明新数与原数的和能被11整除.(3)已知是一个正三位数.小明猜想:“ 与的差一定是9的倍数。
”请你帮助小明说明理由.(4)在一次游戏中,小明算出、、、与等5个数和是3470,请你求出这个正三位数.【答案】(1)解:10y+x(2)解:根据题意得:10y+x+10x+y=11(x+y),则所得的数与原数的和能被11整除(3)解:∵ - =100a+10b+c-(100b+10c+a)=99a-90b-9c =9(11a-10b-c),∴与的差一定是9的倍数(4)解:∵ + + + + + =3470+ ∴222(a+b+c)=222×15+140+ ∵100<<1000,∴3570<222(a+b+c)<4470,∴16<a+b+c≤20.尝试发现只有a+b+c=19,此时 =748成立,这个三位数为748.【解析】【分析】(1)由已知一个正两位数的个位数字是x,十位数字y ,因此这个两位数是:十位上的数字×10+个位数的数字。
(2)根据题意将新的两位数和原两位数相加,再化简,即可得出结果。
(3)分别表示出两个三位数,再求出它们的差,就可得出它们的差是否为9的倍数。
(4)根据题意求出a+b+c的取值范围,再代入数据进行验证即可。
2.为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收贵的价目表如下(注:水费按月份结算,m3表示立方米)价目表每月用水量价格不超过6m3的部分2元/m3超出6m3不超出10m3的部分4元/m3超出10m3的部分6元/m35m3和8m3,则应收水费分别是________元和________元.(2)若该户居民3月份用水量am3(其中6<a≤10),则应收水费多少元?(用含a的式子表示,并化简)(3)若该户层民4、5两个月共用水14m3(5月份用水量超过4月份),设4月份用水xm3,求该户居民4、5两个月共交水费多少元?(用含x的式子表示,并化简)【答案】(1)10;20(2)解:由依题意得:6×2+(a﹣6)×4=4a﹣12(元)答:应收水费(4a﹣12)元。
代数式单元测试卷(含答案解析)
一、初一数学代数式解答题压轴题精选(难)1.如图所示,在边长为a米的正方形草坪上修建两条宽为b米的道路.(1)为了求得剩余草坪的面积,小明同学想出了两种办法,结果分别如下:方法①:________ 方法②:________请你从小明的两种求面积的方法中,直接写出含有字母a,b代数式的等式是:________(2)根据(1)中的等式,解决如下问题:①已知:,求的值;②己知:,求的值.【答案】(1)(a-b)2;a2-2ab+b2;(a-b)2=a2-2ab+b2(2)解:①把代入∴,∴②原式可化为:∴∴∴【解析】【解答】解:(1)方法①:草坪的面积=(a-b)(a-b)= .方法②:草坪的面积= ;等式为:故答案为:,;【分析】(1)方法①是根据已知条件先表示出矩形的长和宽,再根据矩形的面积公式即可得出答案;方法②是正方形的面积减去两条道路的面积,即可得出剩余草坪的面积;根据(1)得出的结论可得出;(2)①分别把的值和的值代入(1)中等式,即可得到答案;②根据题意,把(x-2018)和(x-2020)变成(x-2019)的形式,然后计算完全平方公式,展开后即可得到答案.2.先阅读下面文字,然后按要求解题.例:1+2+3+…+100=?如果一个一个顺次相加显然太繁,我们仔细分析这100个连续自然数的规律和特点,可以发现运用加法的运算律,是可以大大简化计算,提高计算速度的.因为1+100=2+99=3+98=…=50+51=101,所以将所给算式中各加数经过交换、结合以后,可以很快求出结果.解:1+2+3+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)= =5050.(1)补全例题解题过程;(2)计算a+(a+b)+(a+2b)+(a+3b)+…+(a+99b).【答案】(1)解:101×50(2)解:原式=50×(2a+99b)=100a+4950b.【解析】【分析】(1)根据算式可得共有50个101,据此解答即可.(2)仿照(1)利用加法的交换律和结合律进行计算即可.3.请观察图形,并探究和解决下列问题:(1)在第n个图形中,每一横行共有________个正方形,每一竖列共有________个正方形;(2)在铺设第n个图形时,共有________个正方形;(3)某工人需用黑白两种木板按图铺设地面,如果每块黑板成本为8元,每块白木板成本6元,铺设当n=5的图形时,共需花多少钱购买木板?【答案】(1)(n+3);(n+2)(2)(n+2)(n+3)(3)解:当n=5时,有白木板5×(5+1)=30块,黑木板7×8-30=26块,共需花费26×8+30×6=388(元).【解析】【解答】⑴第n个图形的木板的每行有(n+3)个,每列有n+2个,故答案为:(n+3)、(n+2);⑵所用木板的总块数(n+2)(n+3),故答案为:(n+2)(n+3);【分析】本题主要考查的是探索图形规律,并根据所找到的规律求值;根据所给图形找出正方形个数的规律是解决问题的关键.4.用正方形硬纸板做三棱柱盒子,每个盒子的侧面为长方形,底面为等边三角形.(1)每个盒子需________个长方形,________个等边三角形;(2)硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).现有相同规格的 19 张正方形硬纸板,其中的 x 张按方法一裁剪,剩余的按方法二裁剪.①用含 x 的代数式分别表示裁剪出的侧面个数,底面个数;②若裁剪出的侧面和底面恰好全部用完,求能做多少个盒子.【答案】(1)3;2(2)解:①∵裁剪x张时用方法一,∴裁剪(19−x)张时用方法二,∴侧面的个数为:6x+4(19−x)=(2x+76)个,底面的个数为:5(19−x)=(95−5x)个;②由题意,得解得:x=7,经检验,x=7是原分式方程的解,∴盒子的个数为:答:裁剪出的侧面和底面恰好全部用完,能做30个盒子.【解析】【解答】(1)由图可知每个三棱柱盒子需3个长方形,2个等边三角形;故答案为3,2.【分析】(1)由图可知两个底面是等边三角形,侧面是长方形,所以需要2个等边三角形和3个长方形。
代数式单元测试卷(含答案)
代数式单元测试卷(含答案)第三章代数式综合测试卷一、选择题1.2014年我国启动“家电下乡”工程,国家对购买家电补贴13%。
若某种品牌彩电每台售价a元,则购买时国家需要补贴( B )。
A。
XXXB。
13%a元C。
(1-13%)a元D。
(1+13%)a元2.代数式2(y-2)的正确含义是 ( C )。
A。
2乘y减2B。
2与y的积减去2C。
y与2的差的2倍D。
y的2倍减去23.下列代数式中,单项式共有 ( D )。
312322,x+y,x+y,-1,abcx2A。
2个B。
3个C。
4个D。
5个4.下列各组代数式中,是同类项的是 ( A )。
1121A。
5xy与xyB。
-5xy与XXXC。
5ax与XXXD。
8与x5.下列式子合并同类项正确的是 ( C )。
22A。
3x+5y=8xyB。
3y-y=3C。
15ab-15ba=0D。
7x-6x=x6.同时含有字母a、b、c且系数为1的五次单项式有( C )。
A。
1个B。
3个C。
6个D。
9个7.右图中表示阴影部分面积的代数式是 ( B )。
A。
ab+bcB。
c(b-d)+d(a-c)C。
ad+c(b-d)D。
ab-cd8.圆柱底面半径为3 cm,高为2 cm,则它的体积为( B )。
2222A。
97πcmB。
18πcmC。
3πcmD。
18πcm9.下面选项中符合代数式书写要求的是 ( D )。
a2b12A。
2cbaB。
ay·3C。
D。
a×b+c4310.下列去括号错误的共有 ( B )。
①a+(b+c)=ab+c②a-(b+c-d)=a-b-c+d③a+2(b-c)=a+2b-c④a-[-(-a+b)]=a-a-bA。
1个B。
2个C。
3个D。
4个11.a、b互为倒数,x、y互为相反数,且y≠,则(a+b)(x+y)-ab-ax的值是 ( A )。
A。
B。
1C。
-1D。
不确定12.随着计算机技术的迅速发展,电脑价格不断降低。
某品牌电脑按原价降低m元后,又降价20%,现售价为n元,那么该电脑的原价为 ( D )。
第四单元《代数式》单元测试卷(困难)(含解析)
浙教版初中数学七年级上册第四单元《代数式》单元测试卷考试范围:第四章;考试时间:120分钟;总分:120分第I卷(选择题)一、选择题(本大题共12小题,共36分。
在每小题列出的选项中,选出符合题目的一项)1.一个两位数x和一个三位数y,若将两位数x放在三位数y的左边组成一个五位数,则组成的这个五位数表示为( )A. xyB. 10000x+yC. 100x+1000yD. 1000x+y2.有12米长的木料,要做成一个窗框(如图).如果假设窗框横档的长度为x米,那么窗框的面积是( )A.x(6−x)米 2B. x(12−x)米 2C. x(6−3x)米 2D. x(6−32x)米 23.某商店经销一批衬衣,每件进价为a元,零售价比进价高m%,后因市场变化,该商店把零售价调整为原来零售价的n%出售.那么调整后每件衬衣的零售价是( )A. a(1+m%)(1−n%)元B. a(1+m%)n%元C. a⋅m%(1−n%)元D. a(1+m%⋅n%)元4.观察如图图形,它们是按一定规律排列的,依照此规律,第n个图形中的小点一共有( )A. 3n24个 B. 3n2+32个 C. 3n2+n4个 D. 3n2+3n2个5.由梅州到广州的某一次列车,运行途中停靠的车站依次是:梅州−兴宁−华城−河源−惠州−东莞−广州.那么要为这次列车制作的火车票有( )A. 6种B. 12种C. 21种D. 42种6.当x=2时,代数式ax3+bx+1值为3,那么当x=−2时,代数式ax3+bx+1的值是( )A. −3B. 1C. −1D. 27.我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如1,3,6,10…)和“正方形数”(如1,4,9,16…),在小于200的数中,设最大的“三角形数”为m,最大的“正方形数”为n,则m+n的值为( )A. 33B. 301C. 386D. 5718.下列代数式中,哪个不是整式( )A. x2+1B. −2C. 1xD. π9.在73x2−x、2πx3y、1x、−4、a中单项式的个数是( )A. 1B. 2C. 3D. 410.若单项式a m−2b2与−3ab n的和仍是单项式,则n m的值是( )A. 3B. 9C. 6D. 811.已知数a,b,c的大小关系如图所示,则下列各式:①abc>0;②a+b−c>0;③a|a|+b |b|+|c|c=1;④bc−a>0;⑤|a−b|−|c+a|+|b−c|=−2a,其中正确的有个.( )A. 1B. 2C. 3D. 412.多项式8x2−3x+5与3x3−4mx2−5x+7多项式相加后,不含二次项,则m的值是( )A. 2B. 4C. −2D. −4第II卷(非选择题)二、填空题(本大题共4小题,共12分)13.某企业今年3月份产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是____________万元.14.如图是在正方形网格中按规律填成的阴影,根据此规律,第n个图形中阴影部分小正方形的个数是.15.已知代数式x2−4x−2的值为5,则代数式2x2−8x−5的值为______ .16.如果数轴上表示a,b两数的点的位置如图所示,那么|a−b|+|a+b|的计算结果是______.三、解答题(本大题共9小题,共72分。
第四单元《代数式》单元测试卷(较易)(含解析)
浙教版初中数学七年级上册第四单元《代数式》单元测试卷 考试范围:第四章;考试时间:120分钟;总分:120分 第I 卷(选择题) 一、选择题(本大题共12小题,共36分。
在每小题列出的选项中,选出符合题目的一项)1. 下列各式中,书写规范的是( )A. −216PB. a ×14 C. 73x 2 D. 2y ÷z2. 一个两位数的个位数字是b ,十位数字是a ,那么能正确表示这个两位数的式子是.( )A. abB. baC. 10a +bD. 10b +a3. 对x 2−1y 的解释正确的是( )A. x 与y 的倒数的差的平方B. x 的平方与y 的倒数的差C. x 的平方与y 的差的倒数D. x 的平方与y 的倒数的和4. 在1,x 2−2,S =12ab ,nm 中,代数式的个数是( )A. 1B. 2C. 3D. 45. 当m = −1时,代数式2m +3的值是( )A. −1B. 0C. 1D. 26. 当a =2,b =13时,下列代数式的求值中,错误的是( )A. a(a +b)=2×(2+13)=423B. a 2+b =22+13=413C. a +ab =2+2×13=223D. (a +b)(a −b)=(2+13)×(2−13)=3137. 若x 是2的相反数,|y|=3,则x −y 的值为( )A. −5B. 1C. 5或−1D. −5或18. 下列说法中,正确的是( )A. x 2−3x 的项是x 2,3xB. a+b3是单项式C. 12,πa ,a 2+1都是整式 D. 3a 2bc −2是二次多项式9.下列单项式按一定规律排列:x3,−x5,x7,−x9,x11,⋯,其中第n个单项式为( )A. (−1)n+1x2n−1B. (−1)n x2n−1C. (−1)n+1x2n+1D. (−1)n x2n+110.下列各式中,与2a2b为同类项的是( )A. −2a 2bB. −2abC. 2ab 2D. 2a 211.下列算式中正确的是( )A. 4x−3x=1B. 2x+3y=3xyC. 3x2+2x3=5x5D. x2−3x2=−2x212.下列去括号的过程中,正确的是( )A. −(a+b−c)=−a+b−cB. −2(a+b−3c)=−2a−2b+6cC. −(−a−b−c)=−a+b+cD. −(a−b−c)=−a+b−c第II卷(非选择题)二、填空题(本大题共4小题,共12分)13.如图,用20m长的铝合金做一个长方形的窗框.设长方形窗框的三根横条长为a(m),则长方形窗框的竖条长为m(用含a的代数式表示).14.已知x−2y=2,则−x+2y+6的值为.15.若a3b m与−2a n b是同类项,则n m=______.16.七年级某班有(3a−b)名男生和(2a+b)名女生,则男生比女生多___________名.三、解答题(本大题共9小题,共72分。
第四章 代数式单元测试题A卷(含答案)
第四章 代数式单元测试题(A 卷)一、选择题(每小题3分,共30分) 1.下列代数式中不是单项式的是( ) (A )3a (B )πx3 (C ) a 3 (D )0 2. 下列各单项式中,与b 2a 是同类项的是( )(A )3a 2b (B )3a 3b (C )2a 2b 2 (D )-2ab 23.当2-=x 时,代数式2321x x --的值是( )(A )-7 (B )+9 (C ) -15 (D )-9 4.单项式b a 245-的次数是 ( ) (A )1 (B ) 2 (C ) 3 (D ) 4 5.下列说法错误的是( )(A )多项式是整式,整式不一定都是多项式;(B )多项式是由几个单项式相加组成的. (C )单独的一个字母或数字是单项式; (D )多项式的次数是由字母的最高次数决定的. 6.化简2(2x -3)+4(3-2x )结果为( )(A )2x -3 (B )-4x +6 (C )8x -3 (D )18x -3 7.有a 、b 两实数,现规定一种新运算“*”,即a*b=-2ab ,则5*(-3)的值为( ) (A )30 (B )-20 (C )-30 (D )-5 8.某同学在计算a +15的值时,把中间的运算符号“+”看成“-”,从而得出其值为7, 那么它的正确值应为( )(A ) 19 (B ) 23 (C ) 27 (D) 309. 已知a -b=2,-c=21,那么代数式2(a -c )-2(b -c )的是( ) (A )23- (B ) 23 (C ) 0 (D ) 410.用18米长的铝合金做成一个长方形的窗框(如图),设长方形 窗框的横条长度为x 米,则该窗框的面积是( )(A ))18(x x -平方米 (B ))9(x x -平方米(C ))239(x x -平方米 (D ))329(x x -平方米 二、填空题(每题3分,共30分)11.秋天,一个多变的季节,早晚温差特别大.某天傍晚,温度从中午的25℃下降了t ℃后 是 ℃.12.去括号:﹣2(3x ﹣1)=____________.13.根据你学习的数学知识,写出一个运算结果为2a 的算式 . 14.单项式23ab -的系数是________,次数是________. 15.计算3a •(2b )的结果是 . 16.多项式222123a b a b ab -+次数最高的项是__________,它是_______次多项式. 17.已知a +b =2,ab =-1,则a +ab +b =18.如果单项式2y x a 与3b2x y 是同类项,那么ba = .19.根据下图所示程序计算函数值,若输入的x 的值为-52,则输出代数式的值为 .20.读一读:式子“1+2+3+4+…+100”表示从1开始的100个连续自然数的和,由于式子比较长,书写不方便,为了简便起见,我们将其表示为1001n n =∑,这里“∑”是求和符号,通过对以上材料的阅读,计算)111(1001+-∑=n nn =___________. 三、解答题(每题8分,共40分) 21.用代数式表示:(1)比a 的4倍小2;(2)x 的平方与y 的5倍的差;(3)比a 与b 的差的一半小1;(4)a 与 b 的和乘以a 与b 的差的积.22. 合并同类项:(1)x y y x 235++- (2)222453x x x x ++--23.去括号,合并同类项:(1)87)32(3++--x x (2))34(21)21(32222y x y x ---24.一根弹簧未挂物体时长为10厘米,则挂上物体后,弹簧长度与所挂物体质量的关系如下表:1所挂物体的质量(千克)1 2 3 4 5 弹簧总长度(厘米)1214161820则根据表中信息回答:(1)当挂上10千克物体时,弹簧总长度为多少厘米? (2)当挂上x 千克物体时,弹簧总长度为多少厘米?25.2012年平湖西瓜灯节,小明刻了的西瓜灯数是小聪的1.5倍,小慧刻的比小明少2个,设小明刻了x 个,(1)问他们一共刻了几个?(用含有x 的代数式表示)(2)当3=x 时,若刻一个西瓜灯得到的费用为50元,则他们共得到的费用为多少元?参考答案一、选择题(1——10):CDACD BABDC 二、填空题11.(25-t ) 12.-6x +2 13.3a -a (答案不唯一) 14.32-, 2 15.6ab 16.b a 2231-17. 1 18. 9 19. 6 20. 1-1001三、解答题:2121.(1)42;(2)5;(3)()1;(4)()()2a x y ab a b a b ----+-222.(1)32;(2)434x y x x --- 223.(1)17;(2)x x +24.(1)30;(2)102x +2825.(1)22;(2)30033x x x x ++-=-。
代数式单元测试卷(初中数学)附答案
代数式单元测试卷一.选择题(共10小题共20分)1.计算-3(x -2y )+4(x -2y )的结果是( )A .x -2yB .x+2yC .-x-2yD .-x+2y2.若2y m+5x n+3与-3x 2y 3是同类项,则m n =( )A .21B .21- C .1 D .-2 3.下列各式中,是3a 2b 的同类项的是( )A .2x 2yB .-2ab 2C .a 2bD .3ab4.若-x 3y m 与x n y 是同类项,则m+n 的值为( )A .1B .2C .3D .45.下列计算正确的是( )A .3a -2a =1B .x 2y-2xy 2=-xy 2C .3a 2+5a 2=8a 4D .3ax-2xa=ax6.若单项式2x n y m-n 与单项式3x 3y 2n 的和是5x n y 2n ,则m 与n 的值分别是( )A .m =3,n =9B .m =9,n =9C .m =9,n =3D .m =3,n =37.下列判断错误的是( )A .若x <y ,则x +2010<y +2010B .单项式7432y x -的系数是-4 C .若|x -1|+(y -3)2=0,则x =1,y =3 D .一个有理数不是整数就是分数8.化简m-n-(m+n )的结果是( )A .0B .2mC .-2nD .2m -2n 9.已知a ,b 两数在数轴上对应的点的位置如图所示,则化简代数式|a+b|-|a-2|+|b+2|的结果是( )A .2a+2bB .2b +3C .2a -3D .-110.若x-y =2,x-z =3,则(y-z )2-3(z-y )+9的值为( )A .13B .11C .5D .7 二.填空题(共10小题共30分)11.如果单项式-xy b+1与21x a-2y 3是同类项,那么(a-b )2015= . 12.若单项式2x 2y m 与331y x n -的和仍为单项式,则m+n 的值是 .13.若-2x 2y m 与6x 2n y 3是同类项,则mn = .14.单项式-4x 2y 3的系数是 ,次数 .15.单项式322y x -的系数与次数之积为 . 16.多项式 与m 2+m-2的和是m 2-2m .17.多项式-2m 2+3m -21的各项系数之积为 . 18.在代数式3xy 2,m ,6a 2-a +3,12,22514xy yz x -,ab 32中,单项式有 个,多项式有 个.19.单项式-2πa 2bc 的系数是 .20.观察一列单项式:x ,3x 2,5x 3,7x ,9x 2,11x 3…,则第2013个单项式是 .三.解答题(共6小题共70分21题每小题4分、每题6分、27与28题各8分21.(每小题4分)合并同类项①3a-2b-5a+2b②(2m+3n-5)-(2m-n-5)③2(x 2y+3xy 2)-3(2xy 2-4x 2y )22.(每小题4分)化简:(1)16x-5x+10x(2)7x-y+5x-3y+3(3)a 2+(2a 2-b 2)+b 2(4)6a 2b+(2a+1)-2(3a 2b-a )23.(6分)已知|a-2|+(b+1)2=0,求5ab2-[2a2b-(4ab2-2a2b)]的值。
新人教版初中数学七年级上册第三单元《代数式》单元测试卷(解析版)
新⼈教版初中数学七年级上册第三单元《代数式》单元测试卷(解析版)⼀⼆三四总分⼀、选择题(每题3分,共30分)(共10题;共30分)1.(3分)(2024七上·曲阳期末)代数式a−b2的意义表述正确的是( )A.a减去b的平方的差B.a与b差的平方C.a、b平方的差D.a的平方与b的平方的差2.(3分)(2023七上·槐荫期中)下列各式符合代数式书写规范的是( )A.a9B.x﹣3元C.st D.227x3.(3分)(2021七上·永州月考)下列式子不是代数式的是( )A.xy+4B.a+bx C.-8+2=-6D.1x+54.(3分)(2023七上·雁峰月考)按如图所示的程序计算,若开始输入的值为x=3,则最后输出的结果是( )A.156B.231C.6D.215.(3分)(2023九上·大埔期末)十八世纪伟大的数学家欧拉最先用记号f(x)的形式来表示关于x的多项式,把x等于某数n时一的多项式的值用f(n)来表示.例如x=1时,多项式f(x)=2x2−x+3的值可以记为f(1),即f(1)=4.我们定义f(x)=ax3+3x2−2bx−5.若f(3)=18,则f(−3)的值为( )A.−18B.−22C.26D.326.(3分)(2023七上·高州期中)按如图所示的运算程序,若开始输入x的值为343,则第2023次输出的结果为( )A.7B.1C.343D.497.(3分)(2023八上·开州期中)若x+2y=6,则多项式2x+4y−5的值为( )A.5B.6C.7D.88.(3分)(2019七上·高县期中)“a与b两数平方的和”的代数式是( )A.a2+b2;B.a+b2;C.a2+b;D.(a+b)2;9.(3分)﹣|﹣a|是一个( )A.正数B.正数或零C.负数D.负数或零10.(3分)(2024·常州模拟)当x=2时,代数式ax3+bx+1的值为6,那么当x=−2时,这个代数式的值是( )A.1B.−5C.6D.−4⼆、填空题(每题3分,共15分)(共5题;共15分)11.(3分)(2017七上·黄陂期中)笔记本每本a元,圆珠笔每本b元,买5本笔记本和8支圆珠笔共需 元12.(3分)(2022七上·江油月考)若x−1与2−y互为相反数,则(x−y)2022= .13.(3分)父亲的年龄比儿子大28岁.如果用×表示儿子现在的年龄,那么父亲现在的年龄为 岁.14.(3分)(2024八下·兴国期末)当x=1 .15.(3分)一组按规律排列的代数式:a+2b,a2−2b3,a3+2b5,a4−2b7,⋯,则第n个代数式为 .三、解答题(共5题,共37分)(共5题;共37分)16.(6分)若x+y=1,求x3+y3+3xy的值.17.(6分)(2020七上·增城期中)已知a,b互为相反数,c,d互为倒数,|m|=6,求a+b3﹣5cd+m的值.18.(6分)(2024七下·西城期末)将非负实数x“四舍五入”到个位的值记为x,当n为非负整数时,①若n−12≤x<n+12,则x=n:②若x=n,则n−12≤x<n+12.如0=0.49=0,0.64=1.49=1,2=2.(1)(1分)π=;(2)(1分)若t+1=32t,则满足条件的实数t的值是.18.(6分)如果四个不同的整数a,b,c,d满足(10-a)×(10-b)×(10-c)×(10-d)= 121,求a+b+c+d的值.19.(13分)(2023七下·顺义期中)已知x−y=3,求代数式(−x+y)(−x−y)+(y−1)2−x(x−2)的值.四、实践探究题(共3题,共38分)(共3题;共13分)21.(2分)(2024七下·陕西期中)在“趣味数学”的社团活动课上,学生小白给大家分享了一个自己发现的关于8的倍数和最近学习的平方差公式之间的有趣关系.小白同学的具体探究过程如下,请你根据小白同学的探究思路,解决下面的问题:(1)(4分)观察下列各式并填空:8×1=32−12;8×2=52−32;8×3=72−52;8×4=92−72;8×5= −92;8× =132−112;…(2)(4分)通过观察、归纳,请你用含字母n(n为正整数)的等式表示上述各式所反映的规律;(3)(4分)请验证(2)中你所写的规律是否正确.22.(9分)(2023七上·安吉期中)探索代数式a2-2ab+b2与代数式(a-b)2的关系.(1)(4.5分)当a=2,b=1时分别计算两个代数式的值.(2)(4.5分)当a=3,b=-2时分别计算两个代数式的值.(3)(1分)你发现了什么规律?(4)(1分)利用你发现的规律计算:20232-2×2023×2022+20222.23.(2分)(2023七上·宁江期中)某中学附近的水果超市新进了一批百香果,为了促销这种百香果,特推出两种销售方式方式一:购买不超过5斤百香果,每斤12元,超出5斤的部分,每斤打8折;方式二:每斤售价10元.(1)(4.5分)顾客买a(a>5)斤百香果,则按照方式一购买需要 元;按照方式二购买需要 元(请用含a的代数式表示).(2)(4.5分)于老师决定买35斤百香果,通过计算说明用哪种方式购买更省钱.答案解析部分1.【答案】A【知识点】代数式的实际意义2.【答案】C【知识点】代数式的书写规范【解析】【解答】A:a9 应写成9a,选项错误,不合题意;B:x-3元应写成(x-3)元,选项错误,不合题意;C:st符合代数式书写要求,选项正确,符合题意;D:227x中带分数应写成假分数,选项错误,不合题意;故答案为:C.【分析】本题考查代数式的书写要求:(1)数与字母,字母与字母相乘,乘号可以省略,也可写成“.”;(2)数字要写在前面;(3)带分数一定要写成假分数;(4)在含有字母的除法中,一般不用“÷”号,而写成分数的形式;(5)式子后面有单位时,和差形式的代数式要在单位前把代数式括起来。
代数式单元测试卷(含答案解析)
一、初一数学代数式解答题压轴题精选(难)1.民谚有云:“不到庐山辜负目,不食螃蟹辜负腹.”,又到了食蟹的好季节啦!某经销商去水产批发市场采购太湖蟹,他看中了A、B两家的某种品质相近的太湖蟹.零售价都为60元/千克,批发价各不相同.A家规定:批发数量不超过100千克,按零售价的92%优惠;批发数量超过100千克但不超过200千克,按零售价的90%优惠;超过200千克的按零售价的88%优惠.B家的规定如下表:数量范围(千克)0~50部分(含50)50以上~150部分(含150,不含50)150以上~250部分(含250,不含150)250以上部分(不含250)价格(元)零售价的95%零售价的85%零售价的75%零售价的70%________元;(2)如果他批发x千克太湖蟹(150<x<200),则他在A家批发需要________元,在B 家批发需要________元(用含x的代数式表示);(3)现在他要批发170千克太湖蟹,你能帮助他选择在哪家批发更优惠吗?请说明理由.【答案】(1)4968;4890(2)54x;45x+1200(3)解:当x=170时,54x=54×170=9180,45x+1200=45×170+1200=8850,因为9180>8850,所以他选择在B家批发更优惠【解析】【解答】解:(1)A:90×60×92%=4968(元),B:50×60×95%+40×60×85%=4890(元)。
( 2 )A:60×90%x=54x,B:50×60×95%+100×60×85%+(x-150)×60×75%=45x+1200.【分析】(1)根据A、B两家的优惠办法分别列式求出在两家批发需要的费用。
(2)根据题意列式分别表示出在A、B两家批发x千克太湖蟹(150<x<200)所需的费用。
代数式(提升篇)(Word版 含解析)
一、初一数学代数式解答题压轴题精选(难)1.双11购物节期间,某运动户外专营店推出满500送50元券,满800送100元券活动,先领券,再购物。
某校准备到此专营店购买羽毛球拍和羽毛球若干.已知羽毛球拍60元1个,羽毛球3元一个,买一个羽毛球拍送3个羽毛球.(1)如果要购买羽毛球拍8个,羽毛球50个,要付多少钱?(2)如果购买羽毛球拍x个(不超过16个),羽毛球50个,要付多少钱?用含x的代数式表示.(3)该校买了羽毛球50个若干个羽毛球拍,共花费712元,请问他们买了几个羽毛球拍.【答案】(1)解:60×8+(50-8×3)×3-50=508(元)(2)解:x≤6时,60x+(50-3x)×3=150+51x; 7≤x≤12时,60x+(50-3x)×3-50=100+51x; 13≤x≤16时,60x+(50-3x)×3-100=50+51x(3)解:设共买了x个羽毛球拍,根据题意得,60x+(50-3x)×3-50=712,解得,x=12. 答:共买了12个羽毛球拍.【解析】【分析】(1)根据题意直接列式计算。
(2)根据满500送50元券,满800送100元券活动,分三种情况讨论:x≤6时;7≤x≤12时;13≤x≤16时,分别用含x的代数式表示出要付的费用。
(3)根据一共花费712元,列方程求解即可。
2.用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C 型钢板和3块D型钢板.现购买A、B型钢板共100块,并全部加工成C、D型钢板.设购买A型钢板x块(x为整数)(1)可制成C型钢板块(用含x的代数式表示);可制成D型钢板块[用含x的代数式表示).(2)出售C型钢板每块利润为100元,D型钢板每块利润为120元.若将C、D型钢板全部出售,通过计算说明此时获得的总利润.(3)在(2)的条件下,若20≤x≤25,请你设计购买方案使此时获得的总利润最大,并求出最大的总利润.【答案】(1)解:设购买A型钢板x块(x为整数),则购买B型钢板(100﹣x)块,根据题意得:可制成C型钢板2x+(100﹣x)=(x+100)块,可制成D型钢板x+3(100﹣x)=(﹣2x+300)块.故答案为:x+100;﹣2x+300(2)解:设获得的总利润为w元,根据题意得:w=100(x+100)+120(﹣2x+300)=﹣140x+46000(3)解:∵k=﹣140<0,∴w值随x值的增大而减小,又∵20≤x≤25,∴当x=20时,w取最大值,最大值为43200,∴购买A型钢板20块、B型钢板80块时,可获得的总利润最大,最大的总利润为43200元.【解析】【分析】(1)设购买A型钢板x块(x为整数),则购买B型钢板(100﹣x)块,根据“ 用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C型钢板和3块D型钢板”从而用含x的代数式表示出可制成C型钢板及D型钢板的数量.(2)设获得的总利润为w元,根据总利润=100×制成C型钢板的数量+120×制成D型钢板的数量,从而得出结论.(3)利用一次函数的性质求出最大利润及购买方案即可.3.为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收贵的价目表如下(注:水费按月份结算,m3表示立方米)5m3和8m3,则应收水费分别是________元和________元.(2)若该户居民3月份用水量am3(其中6<a≤10),则应收水费多少元?(用含a的式子表示,并化简)(3)若该户层民4、5两个月共用水14m3(5月份用水量超过4月份),设4月份用水xm3,求该户居民4、5两个月共交水费多少元?(用含x的式子表示,并化简)【答案】(1)10;20(2)解:由依题意得:6×2+(a﹣6)×4=4a﹣12(元)答:应收水费(4a﹣12)元。
代数式基础测试题含解析
代数式基础测试题含解析一、选择题1.下列运算中正确的是( )A .2235a a a +=B .222(2)4a b a b +=+C .236236a a a ⋅=D .()()22224a b a b a b -+=- 【答案】D【解析】【分析】根据多项式乘以多项式的法则,分别进行计算,即可求出答案.【详解】A 、2a+3a=5a ,故本选项错误;B 、(2a+b )2=4a 2+4ab+b 2,故本选项错误;C 、2a 2•3a 3=6a 5,故本选项错误;D 、(2a-b )(2a+b )=4a 2-b 2,故本选项正确.故选D .【点睛】本题主要考查多项式乘以多项式.注意不要漏项,漏字母,有同类项的合并同类项.2.下列运算正确的是()A .336a a a +=B .632a a a ÷=C .()235a a a -⋅=-D .()336a a = 【答案】C【解析】【分析】分别求出每个式子的值,3332a a a +=,633a a a ÷=,()235aa a -⋅=-,()339a a =再进行判断即可.【详解】解:A: 3332a a a +=,故选项A 错;B :633a a a ÷=,故选项B 错;C :()235a a a -⋅=-,故本选项正确;D.:()339a a =,故选项D 错误. 故答案为C.【点睛】本题考查了同底数幂的乘除,合并同类项,幂的乘方和积的乘方的应用;掌握乘方的概念,即求n 个相同因数的乘积的运算叫乘方,乘方的结果叫做幂;分清()22n n a a -=,()2121n n a a ++-=-.3.将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示9,则表示58的有序数对是()A.(11,3)B.(3,11)C.(11,9)D.(9,11)【答案】A【解析】试题分析:根据排列规律可知从1开始,第N排排N个数,呈蛇形顺序接力,第1排1个数;第2排2个数;第3排3个数;第4排4个数根据此规律即可得出结论.解:根据图中所揭示的规律可知,1+2+3+4+5+6+7+8+9+10=55,所以58在第11排;偶数排从左到右由大到小,奇数排从左到右由小到大,所以58应该在11排的从左到右第3个数.故选A.考点:坐标确定位置.4.观察下列图形:()它们是按一定规律排列的,依照此规律,那么第7个图形中共有五角星的个数为() A.20B.21C.22D.23【答案】C【解析】【分析】设第n个图形共有a n(n为正整数)个五角星,根据各图形中五角星个数的变化可找出变化规律“a n=3n+1(n为正整数)”,再代入n=7即可得出结论.【详解】解:设第n个图形共有a n(n为正整数)个五角星,∵a1=4=3×1+1,a2=7=3×2+1,a3=10=3×3+1,a4=13=3×4+1,…,∴a n=3n+1(n为正整数),∴a7=3×7+1=22.故选:C.【点睛】本题考查了规律型:图形的变化类,根据各图形中五角星个数的变化,找出变化规律“a n =3n +1(n 为正整数)”是解题的关键.5.下列运算正确的是( )A .2235a a a +=B .22224a b a b +=+()C .236a a a ⋅=D .2336()ab a b -=- 【答案】D【解析】【分析】根据合并同类项法则、完全平方公式、同底数幂乘法法则、积的乘方法则逐一进行计算即可得.【详解】A. 235a a a +=,故A 选项错误;B. 222244a b a ab b +=++(),故B 选项错误;C. 235a a a ⋅=,故C 选项错误;D. 2336()ab a b -=-,正确,故选D.【点睛】本题考查了整式的运算,涉及了合并同类项、完全平方公式、积的乘方等运算,熟练掌握各运算的运算法则是解题的关键.6.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把最后一项染黑了,得到正确的结果变为2412a ab -+( ),你觉得这一项应是( )A .23bB .26bC .29bD .236b 【答案】C【解析】【分析】根据完全平方公式的形式(a±b )2=a 2±2ab+b 2可得出缺失平方项.【详解】根据完全平方的形式可得,缺失的平方项为9b 2故选C .【点睛】本题考查了整式的加减及完全平方式的知识,掌握完全平方公式是解决本题的关键.7.若35m =,34n =,则23m n -等于( ) A .254 B .6C .21D .20【答案】A【解析】【分析】根据幂的运算法则转化式子,代入数值计算即可.【详解】解:∵35m =,34n =, ∴222233(3)3253544-==÷÷÷==m n m n m n , 故选:A .【点睛】 本题考查了同底数幂的除法和幂的乘方的逆用,熟练掌握同底数幂的除法和幂的乘方的运算法则是解题的关键.8.5. 某企业今年3月份产值为万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A .(-10%)(+15%)万元B .(1-10%)(1+15%)万元C .(-10%+15%)万元D .(1-10%+15%)万元【答案】B【解析】列代数式.据3月份的产值是a 万元,用a 把4月份的产值表示出来a (1-10%),从而得出5月份产值列出式子a 1-10%)(1+15%).故选B .9.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;已知按一定规律排列的一组数:250、251、252、、299、2100,若250=a ,用含a 的式子表示这组数的和是( )A .2a 2-2aB .2a 2-2a -2C .2a 2-aD .2a 2+a【答案】C【解析】【分析】由等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2,得出规律:2+22+23+…+2n =2n+1-2,那么250+251+252+…+299+2100=(2+22+23+…+2100)-(2+22+23+…+249),将规律代入计算即可.【详解】解:∵2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;…∴2+22+23+…+2n =2n+1-2,∴250+251+252+…+299+2100=(2+22+23+...+2100)-(2+22+23+ (249)=(2101-2)-(250-2)=2101-250,∵250=a ,∴2101=(250)2•2=2a 2,∴原式=2a 2-a .故选:C .【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n =2n+1-2.10.已知单项式2m 13a b -与n 7a b -互为同类项,则m n +为( )A .1B .2C .3D .4【答案】D【解析】【分析】根据同类项的概念求解.【详解】解:Q 单项式2m 13a b -与7a b n -互为同类项, n 2∴=,m 11-=,n 2∴=,m 2=.则m n 4+=.故选D .【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.11.如图1,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a >b ),把余下的部分剪拼成如图2所示的长方形.通过计算剪拼前后阴影部分的面积,验证了一个等式,这则个等式是( )A .(a +b )(a ﹣b )=a 2﹣b 2B .(a +b )2=a 2+2ab +b 2C .(a ﹣b )2=a 2﹣2ab +b 2D .a (a ﹣b )=a 2﹣ab【答案】A【解析】【分析】分别计算出两个图形中阴影部分的面积即可.【详解】图1阴影部分面积:a2﹣b2,图2阴影部分面积:(a+b)(a﹣b),由此验证了等式(a+b)(a﹣b)=a2﹣b2,故选:A.【点睛】此题主要考查了平方差公式的几何背景,运用几何直观理解、解决平方差公式的推导过程,通过几何图形之间的数量关系对平方差公式做出几何解释.12.有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B的面积之和为()A.7 B.12 C.13 D.25【答案】C【解析】【分析】设正方形A的边长为a,正方形B的边长为b,根据图形列式整理得a2+b2−2ab=1,2ab =12,求出a2+b2即可.【详解】解:设正方形A的边长为a,正方形B的边长为b,由图甲得:a2−b2−2(a−b)b=1,即a2+b2−2ab=1,由图乙得:(a+b)2−a2−b2=12,即2ab=12,所以a2+b2=13,即正方形A,B的面积之和为13,故选:C.【点睛】本题主要考查了完全平方公式在几何图形中的应用,解题的关键是根据图形列出算式.13.已知多项式x-a与x2+2x-1的乘积中不含x2项,则常数a的值是()A.-1 B.1 C.2 D.-2【答案】C【解析】分析:先计算(x﹣a)(x2+2x﹣1),然后将含x2的项进行合并,最后令其系数为0即可求出a的值.详解:(x ﹣a )(x 2+2x ﹣1)=x 3+2x 2﹣x ﹣ax 2﹣2ax +a=x 3+2x 2﹣ax 2﹣x ﹣2ax +a=x 3+(2﹣a )x 2﹣x ﹣2ax +a令2﹣a =0,∴a =2.故选C .点睛:本题考查了多项式乘以多项式,解题的关键是熟练运用运算法则,本题属于基础题型.14.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是 ( )A .30B .20C .60D .40【答案】A【解析】【分析】 设大正方形的边长为x ,小正方形的边长为y ,表示出阴影部分的面积,结合大正方形与小正方形的面积之差是60即可求解.【详解】设大正方形的边长为x ,小正方形的边长为y ,则2260x y -=,∵S 阴影=S △AEC +S △AED =11()()22x y x x y y -+-g g =1()()2x y x y -+g =221()2x y - =1602⨯ =30.故选A.【点睛】 此题主要考查了平方差公式的应用,读懂图形和熟练掌握平方差公式是解此题的关键.15.计算(0.5×105)3×(4×103)2的结果是( )A .13210⨯B .140.510⨯C .21210⨯D .21810⨯【答案】C【解析】 根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质进行计算.解:(0.5×105)3×(4×103)2=0.125×1015×16×106=2×1021.故选C .本题考查同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.16.下列算式能用平方差公式计算的是( )A .(2)(2)a b b a +-B .11(1)(1)22x x +-- C .(3)(3)x y x y --+D .()()m n m n ---+ 【答案】D【解析】【分析】利用平方差公式的结构特征判断即可.【详解】(-m-n )(-m+n )=(-m )2-n 2=m 2-n 2,故选D .【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.17.下面的图形都是由同样大小的棋子按照一定的规律组成,其中第①个图形有1颗棋子,第②个图形有6颗棋子,第③个图形有15颗棋子,第④个图中有28颗棋子,…,则第6个图形中棋子的颗数为( )A .63B .64C .65D .66【答案】D【解析】【分析】 根据图形中棋子的个数找到规律,从而利用规律解题.【详解】解:∵通过观察可以发现:第1个图形中棋子的个数为()11211=⨯⨯-;第2个图形中棋子的个数为()62221=⨯⨯-;第3个图形中棋子的个数为()153231=⨯⨯-;第4个图形中棋子的个数为()284241=⨯⨯-;L L第n 个图形中棋子的个数为()21n n -∴第6个图形中棋子的个数为()626166⨯⨯-=.故选:D【点睛】本题考查了图形变化规律的问题,能找出第n 个图形棋子的个数的表达式是解题的关键.18.下列运算中,正确的是( )A .236x x x ⋅=B .333()ab a b =C .33(2)6a a =D .239-=-【答案】B【解析】【分析】分别根据同底数幂的乘法法则,积的乘方法则以及负整数指数幂的运算法则逐一判断即可.【详解】x 2•x 3=x 5,故选项A 不合题意;(ab )3=a 3b 3,故选项B 符合题意;(2a )3=8a 6,故选项C 不合题意; 3−2=19,故选项D 不合题意. 故选:B .【点睛】 此题考查同底数幂的乘法,幂的乘方与积的乘方以及负整数指数幂的计算,熟练掌握幂的运算法则是解题的关键.19.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b )n 的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b )20的展开式中第三项的系数为( )A .2017B .2016C .191D .190【答案】D【解析】试题解析:找规律发现(a+b )3的第三项系数为3=1+2;(a+b )4的第三项系数为6=1+2+3;(a+b )5的第三项系数为10=1+2+3+4;不难发现(a+b )n 的第三项系数为1+2+3+…+(n ﹣2)+(n ﹣1),∴(a+b )20第三项系数为1+2+3+…+20=190,故选 D .考点:完全平方公式.20.下列计算正确的是( )A .2571a a a -÷=B .()222a b a b +=+C .2222+=D .()235a a =【答案】A【解析】 分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A 、2571a a a-÷=,正确; B 、(a+b )2=a 2+2ab+b 2,故此选项错误;C 、2,无法计算,故此选项错误;D 、(a 3)2=a 6,故此选项错误;故选:A .点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.。
第4章 代数式单元测试卷(原卷)
第4章代数式单元测试卷满分120分,时间120分钟一.选择题(共10小题,满分30分,每小题3分)1.(3分)以下各式不是代数式的是()A.0B.C.D.2.(3分)在式子,﹣4x,abc,π,,0.81,,0中,单项式共有()A.5个B.6个C.7个D.8个3.(3分)某品牌彩电原价为m元,第一次降价10%,第二次降价100元,那么该品牌彩电的现价()A.10%(m﹣100)元B.90%(m﹣100)元C.(10%m﹣100)元D.(90%m﹣100)元4.(3分)下列说法正确的是()A.是单项式B.πr2的系数是1C.5a2b+ab﹣a是三次三项式D.xy2的次数是25.(3分)当x=1时,2ax2+bx的值为5,则当x=2时,ax2+bx的值为()A.5B.6C.7D.106.(3分)若3a2+m b3和(n﹣2)a4b3是同类项,且它们的和为0,则mn的值是()A.﹣2B.﹣1C.2D.17.(3分)下列各式中,去括号或添括号正确的是()A.a2﹣(2a﹣b+c)=a2﹣2a﹣b+cB.﹣2x﹣t﹣a+1=﹣(2x﹣t)+(a﹣1)C.3x﹣[5x﹣(2x﹣1)]=3x﹣5x﹣2x+1D.a﹣3x+2y﹣1=a+(﹣3x+2y﹣1)8.(3分)若代数式k2x+y﹣x+ky+10的值与x,y无关,则k的值为()A.0B.±1C.1D.﹣19.(3分)已知m﹣n=100,x+y=﹣1,则代数式(n+x)﹣(m﹣y)的值是()A.99B.101C.﹣99D.﹣101 10.(3分)如果A是3m2﹣m+1,B是2m2﹣m﹣7,且A﹣B+C=0,那么C是()A.﹣m2﹣8B.﹣m2﹣2m﹣6C.m2+8D.5m2﹣2m﹣6二.填空题(共6小题,满分24分,每小题4分)11.(4分)﹣的系数是,次数是.12.(4分)苏宁公司在5月5日这一天,某品牌的手机十分畅销,上午卖出75部,下午卖出100部,已知每部手机a元,这一天一共卖出元.13.(4分)多项式﹣3x+7是关于x的四次三项式,则m的值是.14.(4分)若多项式2x2+3x+7的值为10,则多项式6x2+9x﹣7的值为.15.(4分)若关于x、y的代数式mx3﹣3nxy2+2x3﹣xy2+y中不含三次项,则(m﹣3n)2018=.16.(4分)对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是.三.解答题(共8小题,满分66分)17.(6分)计算:4xy+3y2﹣3x2+2xy﹣5xy﹣2x2﹣4y2.18.(6分)先化简,再求值:8a2﹣10ab+2b2﹣(2a2﹣10ab+8b2),其中a=,b=﹣.19.(8分)已知m是绝对值最小的有理数,且﹣2a2b y+1与3a x b3是同类项,试求多项式2x2﹣3xy+6y2﹣3mx2+mxy﹣9my2的值.20.(8分)(3m﹣4)x3﹣(2n﹣3)x2+(2m+5n)x﹣6是关于x的多项式.(1)当m、n满足什么条件时,该多项式是关于x的二次多项式;(2)当m、n满足什么条件时,该多项式是关于x的三次二项式.21.(8分)七年级学生在4名数学老师的带领下去公园游玩,公园的门票为每人20元,现有两种优惠方案,甲方案:师生都按7.5折收费.乙方案:带队老师免费,学生按8折收费.(1)如有a名学生,用代数式表示两种优惠方案各需多少元?(2)当a=50时,采用哪种方案优惠?(3)当a=120时,采用哪种方案优惠?22.(10分)观察下列一串单项式的特点:xy,﹣2x2y,4x3y,﹣8x4y,16x5y,…(1)按此规律写出第9个单项式;(2)试猜想第n个单项式为多少?它的系数和次数分别是多少?23.(10分)某学校把一块长为m米,宽为a米的长方形的花园的长、宽分别增加n米和b米,请你用两种方法表示增加后花园的面积.(1);(2)从(1)中,你发现了等式;(3)利用(2)的等式计算:(x+3)(x﹣2).24.(10分)已知A=3a2b﹣2ab2+abc,小明同学错将“2A﹣B“看成”2A+B“,算得结果C=4a2b﹣3ab2+4abc.(1)计算B的表达式;(2)求出2A﹣B的结果;(3)小强同学说(2)中的结果的大小与c的取值无关,对吗?若a=,b=,求(2)中式子的值.。
代数式单元测试卷(解析版)
一、初一数学代数式解答题压轴题精选(难)1.如图,在数轴上点A表示数a,点C表示数c,且多项式x3﹣3xy29﹣20的常数项是a,次数是c.我们把数轴上两点之间的距离用表示两点的大写字母一起标记,比如,点A与点B之间的距离记作AB.(1)求a,c的值;(2)若数轴上有一点D满足CD=2AD,则D点表示的数为________;(3)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度.同时点A,C在数轴上运动,点A,C的速度分别为每秒2个单位长度,每秒3个单位长度,运动时间为t 秒.①若点A向右运动,点C向左运动,AB=BC,求t的值;②若点A向左运动,点C向右运动,2AB-m×BC的值不随时间t的变化而改变,直接写出m的值.【答案】(1)解:∵多项式x3﹣3xy29﹣20的常数项是a,次数是c.∴a=-20,c =30(2)-70或(3)解:①如下图所示:当t=0时,AB=21,BC=29. 下面分两类情况来讨论: a.点A,C在相遇前时,点A,B之间每秒缩小1个单位长度,点B,C每秒缩小4个单位长度. 在t=0时,BC -AB=8, 如果AB=BC,那么AB-BC=0,此时t= 秒, b.点A,C在相遇时,AB=BC,点A,C之间每秒缩小5个单位长度,在t=0时,AC=50,秒, c.点A,C在相遇后,BC 大于AC,不符合条件. 综上所述,t= ②当时间为t时,点A表示得数为-20+2t,点B表示得数为1+t,点C表示得数为30+3t,2AB-m×BC=2[(1+t)-(-20+2t)]-m[(30+3t)-(1+t)],=(6-2m)t+(42-29m),当6-2m=0时,上式的值不随时间t的变化而改变,此时m=3.【解析】【解答】解:(2)分三种情况讨论,•当点D在点A的左侧,∵CD=2AD,∴AD=AC=50,点C点表示的数为-20-50=-70,‚当点D在点A,C之间时,∵CD=2AD,∴AD= AC= ,点C点表示的数为-20+ =- ,ƒ当点D在点C的右侧时,AD>CD与条件CD=2AD相矛盾,不符合题意,综上所述,D点表示的数为-70或 ;【分析】(1)根据多项式 x3﹣3xy29﹣20的常数项是a,次数是c.就可得出a、c的值。
最新代数式单元测试卷 (word版,含解析)
一、初一数学代数式解答题压轴题精选(难)1.从2开始,连续的偶数相加时,它们的和的情况如下表:S和n之间有什么关系?用公式表示出来,并计算以下两题:(1)2a+4a+6a+…+100a;(2)126a+128a+130a+…+300a.【答案】(1)解:依题可得:S=n(n+1).2a+4a+6a+…+100a,=a×(2+4+6+…+100),=a×50×51,=2550a.(2)解:∵2a+4a+6a+…+126a+128a+130a+…+300a,=a×(2+4+6+…+300),=a×150×151,=22650a.又∵2a+4a+6a+…+124a,=a×(2+4+6+…+124),=a×62×63,=3906a,∴126a+128a+130a+…+300a,=22650a-3906a,=18744a.【解析】【分析】(1)根据表中规律可得出当n个连续偶数相加时,它们的和S=n(n+1);由此计算即可得出答案.(2)根据(1)中公式分别计算出2a+4a+……+300a和2a+4a+……+124a的值,再用前面代数式的值减去后面代数式的值即可得出答案.,2.某商场将进货价为40元的台灯以50元的销售价售出,平均每月能售出800个.市场调研表明:当销售价每上涨1元时,其销售量就将减少10个.若设每个台灯的销售价上涨元.(1)试用含的代数式填空:①涨价后,每个台灯的销售价为________元;②涨价后,商场的台灯平均每月的销售量为________台;③涨价后,商场每月销售台灯所获得总利润为________元.(2)如果商场要想销售总利润平均每月达到20000元,商场经理甲说“在原售价每台50元的基础上再上涨40元,可以完成任务”,商场经理乙说“不用涨那么多,在原售价每台50元的基础上再上涨30元就可以了”,试判断经理甲与乙的说法是否正确,并说明理由.【答案】(1);;(2)解:甲与乙的说法均正确,理由如下:依题意可得该商场台灯的月销售利润为:(600﹣10a)(10+a);当a=40时,(600﹣10a)(10+a)=(600﹣10×40)(10+40)=10000(元);当a=10时,(600﹣10a)(10+a)=(600﹣10×10)(10+10)=10000(元);故经理甲与乙的说法均正确【解析】【解答】解:(1)①涨价后,每个台灯的销售价为50+a(元);②涨价后,商场的台灯平均每月的销售量为800-10a(元);③涨价后,商场的台灯台每月销售台灯所获得总利润为( 10 + a ) ( 800 − 10 a );故答案为:50+a,800-10a,( 10 + a ) ( 800 − 10 a ).【分析】(1)根据题意由每个台灯的销售价上涨a元,得到每个台灯的销售价为50+a;商场的台灯平均每月的销售量为800-10a;商场每月销售台灯所获得总利润为( 10 + a ) ( 800 − 10 a );(2)根据题意商场每月销售台灯所获得总利润为( 10 + a ) ( 800 − 10 a ),把a=40时和a=10时代入,求出月销售利润的值,判断即可.3.已知(其中是各项的系数,是常数项),我们规定的伴随多项式是,且. 如,则它的伴随多项式.请根据上面的材料,完成下列问题:(1)已知,则它的伴随多项式 ________.(2)已知,则它的伴随多项式 ________;若,x=________(3)已知二次多项式,并且它的伴随多项式是,若关于的方程有正整数解,求的整数值.【答案】(1)5x4(2)10x-27;x=4;(3)解:∵∴g(x)=2(a+3)x+16=(2a+6)x+16,由g(x)=-2x,得(2a+6)x+16=-2x,化简整理得:(2a+8)x=-16,∵方程有正整数解,,∴,∵a为整数,∴a+4=-1或-2或-4或-8,∴a=-5或-6或-8或-12.【解析】【解答】解:(1)∵,∴g(x)=5x4;故答案为:5x4;( 2 )解:∵ = ,∴g(x)=10x-27,由g(x)=13,得10x-27=13,解得:x=4;故答案为:10x-27;x=4;【分析】(1)由题意可知n=5,根据题中的新定义确定出g(x)即可;(2)先变形为 = ,再根据题中的新定义确定出g(x),并求出所求x的值即可;(3)确定出f(x)的伴随多项式g(x)=(2a+6)x+16,由g(x)=-2x得,再根据方程有正整数解,确定出整数a的值即可.4.小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤,下面是爸爸妈妈的对话:妈妈:“上个月萝卜的单价是元/斤,排骨的单价比萝卜的7倍还多2元”;爸爸:“今天,报纸上说与上个月相比,萝卜的单价上涨了25%,排骨的单价上涨了20%”请根据上面的对话信息回答下列问题:(1)请用含的式子填空:上个月排骨的单价是________元/斤,这个月萝卜的单价是________元/斤,排骨的单价是________元/斤。
第四单元《代数式》单元测试卷(标准难度)(含解析)
浙教版初中数学七年级上册第四单元《代数式》单元测试卷考试范围:第四章;考试时间:120分钟;总分:120分第I卷(选择题)一、选择题(本大题共12小题,共36分。
在每小题列出的选项中,选出符合题目的一项)1.如图,A,B两地之间有一条东西走向的道路.在A地的东边5km处设置第一个广告牌,之后每往东12km就设置一个广告牌.一辆汽车从A地的东边3km处出发,沿此道路向东行驶.当经过第n个广告牌时,此车所行驶的路程为( )A. (12n+5)kmB. (12n+2)kmC. (12n−7)kmD. (12n−10)km2.为了贯彻“房住不炒”要求,加快回笼资金,我市甲、乙、丙三家原售价相同的楼盘在年终前搞促销活动,甲楼盘售楼处打出在原价基础上先降价15%,再降价15%;乙楼盘打出一次性降价30%;丙楼盘打出先九折,再降价20%,如果此时小容的父亲想在上述三家楼盘中选择每平米实际售价最低的一处购买,他应选择的楼盘是( )A. 甲B. 乙C. 丙D. 都一样3.某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是( )A. 先打九五折,再打九五折B. 先提价50%,再打六折C. 先提价30%,再降价30%D. 先提价25%,再降价25%4.如图,A,B两地之间有一条东西走向的道路.在A地的东边5km处设置第一个广告牌,之后每往东12km就设置一个广告牌.一辆汽车从A地的东边3km处出发,沿此道路向东行驶.当经过第n个广告牌时,此车所行驶的路程为( )A. (12n+5)kmB. (12n+2)kmC. (12n−7)kmD. (12n−10)km5.按如图所示的运算程序,能使输出y的值为1的是( )A. m=1,n=1B. m=1,n=0C. m=1,n=2D. m=2,n=16.当x=1时,代数式4−3x的值是( )A. 1B. 2C. 3D. 47.多项式12x|m|−(m−4)x+7是关于x的四次三项式,则m的值是( )A. 4B. −2C. −4D. 4或−48.在代数式:34x2,3ab,x+5,y5x,−1,y3,a2−b2,a中,整式有( )A. 5个B. 6个C. 7个D. 8个9.合并同类项m−3m+5m−7m+⋯+2013m的结果为( )A. 0B. 1007mC. mD. 以上答案都不对10.单项式−12a2n−1b4与3ab8m是同类项,则(1+n)5(m−1)7=( )A. 14B. −14C. 4D. −411.如图①,将一个边长为a的正方形纸片剪去两个小长方形,得到一个“”的图案,如图②所示,再将剪下的两个小长方形拼成一个新的长方形,如图③所示,则新长方形的周长可表示为( )A. 2a−3bB. 4a−8bC. 3a−4bD. 4a−10b12.对多项式x−y−z−m−n任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:(x−y)−(z−m−n)=x−y−z+m+n,x−y−(z−m)−n=x−y−z+m−n,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果. 以上说法中正确的个数为( )A. 0B. 1C. 2D. 3第II 卷(非选择题)二、填空题(本大题共4小题,共12分)13. 为了表述方便,本题取0.ba 表示小数.其中a 、b 只在1、2、3、…、9这9个数字中选取,例如当a 取2,b 取3时,0.ba 就表示0.32.我们知道无限循环小数可以化为分数,一般地,0.a ⋅=a9,那么0.32⋅=______,0.ba ⋅=______. 14. 已知非零实数x ,y 满足y =xx+1,则x−y+3xyxy的值等于______ . 15. 写出两个多项式,使它们的和为4ab ,这两个多项式分别为________、________. 16. 小宇在计算A −B 时,误将A −B 看成A +B ,得到的结果为4x 2−2x +1,已知B =2x 2+1,则A −B 的正确结果为 .三、解答题(本大题共9小题,共72分。
第4章 代数式单元测试卷A(含解析)
绝密★启用前第四章代数式单元测试卷A题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共10小题,3*10=30)1.代数式a2﹣的正确解释是()A.a与b的倒数的差的平方B.a的平方与b的差的倒数C.a的平方与b的倒数的差D.a与b的差的平方的倒数2.某商品打九折后价格为a元,则原价为()A.90%a元B.元C.10%a元D.元3.若a=2,b=﹣,则代数式2a+8b﹣1的值为()A.5 B.3 C.1 D.﹣14.下列运算正确的是()A.5a2﹣3a2=2 B.2x2+3x2=5x4C.3a+2b=5ab D.7ab﹣6ba=ab5.如果单项式x2y m+2与x n y的和仍然是一个单项式,则m、n的值是()A.m=2,n=2 B.m=﹣1,n=2 C.m=﹣2,n=2 D.m=2,n=﹣16.在式子,0,2x2﹣x,π,,x+中,是整式的有()个.A.3 B.4 C.5 D.67.一组按规律排列的式子“a2,,,,…”.按照上述规律,它的第n个式子(n≥1且n为整数)是()A.B.C.D.(﹣1)n+18.当x=1时,代数式px3+qx+1的值为2018,则当x=﹣1时,代数式px3+qx+1的值为()A.2017 B.﹣2016 C.2018 D.﹣20189.已知x﹣2y=3,那么代数式3﹣2x+4y的值是()A.﹣3 B.0 C.6 D.910.如图是一个运算程序的示意图,若开始输入x的值为81,则第2014次输出的结果为()A.3 B.27 C.9 D.1第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共8小题,3*8=24)11.如果单项式﹣xy b+1与x a﹣2y3是同类项,那么(a﹣b)2015=.12.在代数式,+3,﹣2,,,中,单项式有个,多项式有个,整式有个,代数式有个.13.若多项式2x2+3x+7的值为10,则多项式6x2+9x﹣7的值为.14.长方形的长是3a,宽是2a﹣b,则长方形的周长是.15.下面是按一定规律排列的代数式:a2,3a4,5a6,7a8,…则第8个代数式是.16.我国古代典籍《庄子•天下篇》中有这样一句话:“一尺之棰,日取其半,万世不竭.”意思是说:即使是一尺长的木棍,第一天截取它的一半,以后每天截取剩下部分的一半,那么世世代代也截取不尽.按此做法,第n天后“一尺之棰”剩余的长度为尺(用含n的式子表示).17.如图.在正方形ABCD的边长为3,以A为圆心,2为半径作圆弧.以D为圆心,3为半径作圆弧.若图中阴影部分的面积分为S1、S2.则S1﹣S2=.18.对于整式6x5+5x4+4x3+3x2+2x+2002,给定x的一个数值后,如果小颖按四则运算的规则计算该整式的值,需算15次乘法和5次加法.小明说:“有另外一种算法,只要适当添加括号,可以做到加法次数不变,而乘法只算5次”.小明同学的说法是的.(填“对”或“错”)评卷人得分三.解答题(共7小题,66分)19.(9分)计算:(1)3a2+2a﹣4a2﹣7a(2)2(a﹣2b)﹣3(2a﹣b)(3)5x2﹣[2x﹣3(x+2)+4x2].20.(8分)已知:A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7.(1)求A等于多少?(2)若|a+1|+(b﹣2)2=0,求A的值.21.(8分)某同学做一道数学题:“两个多项式A、B,B=3x2﹣2x﹣6,试求A+B”,这位同学把“A+B”看成“A﹣B”,结果求出答案是﹣8x2+7x+10,那么A+B的正确答案是多少?22.(8分)如果关于x的多项式5x2﹣(2y n+1﹣mx2)﹣3(x2+1)的值与x的取值无关,且该多项式的次数是三次.求m,n的值.23.(10分)有这样一道题:“当a=2,b=﹣时,求代数式7a3﹣6a3b+3a2b﹣10a3+3的值”.有一位同学指出,题目中给出的条件a=2,b=﹣是多余的,他的说法有道理吗?24.(11分)阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的结果是.(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;拓广探索:(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.25.(12分)问题背景:小红同学在学习过程中遇到这样一道计算题“计算4×3.142﹣4×3.14×3.28+3.282”,他觉得太麻烦,估计应该有可以简化计算的方法,就去请教崔老师.崔老师说:你完成下面的问题后就可能知道该如何简化计算啦!获取新知:请你和小红一起完成崔老师提供的问题:(1)填写下表:x=﹣1,y=1x=1,y=0x=3,y=2x=1,y=1x=5,y=3 A=2x﹣y﹣32417B=4x2﹣4xy+y294(2)观察表格,你发现A与B有什么关系?解决问题:(3)请结合上述的有关信息,计算4×3.142﹣4×3.14×3.28+3.282.参考答案与试题解析1.解:代数式a2﹣表示a的平方与b的倒数的差,故选:C.2.解:由题意可得,原价为:a÷90%=a÷=a×元,故选:B.3.解:当a=2、b=﹣时,原式=2×2+8×(﹣)﹣1=4﹣2﹣1=1,故选:C.4.解:A、合并同类项系数相加字母及指数不变,故A错误;B、合并同类项系数相加字母及指数不变,故B错误;C、不是同类项不能合并,故C错误;D、合并同类项系数相加字母及指数不变,故D正确;故选:D.5.解:由同类项的定义,可知2=n,m+2=1,解得m=﹣1,n=2.故选:B.6.解:在式子,0,2x2﹣x,π,,x+中,是整式的有,0,2x2﹣x,π这4个,故选:B.7.解:由题意可得:分子可表示为:a n+1,分母为:2n﹣1,其系数为:(﹣1)n+1,故第n个式子(n≥1且n为整数)是:(﹣1)n+1×.故选:D.8.解:将x=1代入px3+qx+1,可得p+q+1=2018,∴p+q=2017,将x=﹣1代入px3+qx+1,可得﹣p﹣q+1=﹣(p+q)+1=﹣2017+1=﹣2016,故选:B.9.解:∵x﹣2y=3,∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×3=﹣3;故选:A.10.解:第1次,×81=27,第2次,×27=9,第3次,×9=3,第4次,×3=1,第5次,1+2=3,第6次,×3=1,…,依此类推,偶数次运算输出的结果是1,奇数次运算输出的结果是3,∵2014是偶数,∴第2014次输出的结果为1.故选:D.11.解:由同类项的定义可知a﹣2=1,解得a=3,b+1=3,解得b=2,所以(a﹣b)2015=1.故答案为:1.12.解:根据整式,单项式,多项式的概念可知,单项式有,﹣2,共2个;多项式有+3,,共2个,整式有4个,代数式有6个.故本题答案为:2;2;4;6.13.解:由题意得:2x2+3x=36x2+9x﹣7=3(2x2+3x)﹣7=2.14.解:根据题意得:2(3a+2a﹣b)=2(5a﹣b)=10a﹣2b,则长方形的周长为10a﹣2b.故答案为:10a﹣2b15.解:∵a2,3a4,5a6,7a8,…∴单项式的次数是连续的偶数,系数是连续的奇数,∴第8个代数式是:(2×8﹣1)a2×8=15a16.故答案为:15a16.16.解:由题意可得:第一次剩下尺,第二次剩下×=尺,第三次剩下××=尺,则第n天后“一尺之棰”剩余的长度为:.故答案为:.17.解:∵S正方形=3×3=9,S扇形ADC==,S扇形EAF==π,∴S1﹣S2=S扇形EAF﹣(S正方形﹣S扇形ADC)=π﹣(9﹣)=﹣9.故答案为:﹣9.18.解:原式=({[(6x+5)x+4]x+3}x+2)x+2002,计算6x的值1次乘法,计算(6x+5)x的值1次乘法,计算((6x+5)x+4)x的值1次乘法,计算({[(6x+5)x+4]x+3}x的值1次乘法,计算{[(6x+5)x+4]x+3}x+2)x的值1次乘法,共5次乘法.∴小明说法是正确的.19.解:(1)原式=(3﹣4)a2+(2﹣7)a=﹣a2﹣5a;(2)原式=2a﹣4b﹣6a+3b=﹣4a﹣b;(3)原式=5x2﹣(2x﹣x﹣6+4x2)=5x2﹣2x+x+6﹣4x2=x2﹣x+6.20.解:(1)∵A﹣2B=A﹣2(﹣4a2+6ab+7)=7a2﹣7ab,∴A=(7a2﹣7ab)+2(﹣4a2+6ab+7)=﹣a2+5ab+14;(2)依题意得:a+1=0,b﹣2=0,a=﹣1,b=2.原式A=﹣(﹣1)2+5×(﹣1)×2+14=3.21.解:∵A﹣B=﹣8x2+7x+10,B=3x2﹣2x﹣6,∴A=(﹣8x2+7x+10)+(3x2﹣2x﹣6)=﹣8x2+7x+10+3x2﹣2x﹣6=﹣5x2+5x+4,∴A+B=(﹣5x2+5x+4)+(3x2﹣2x﹣6)=﹣5x2+5x+4+3x2﹣2x﹣6=﹣2x2+3x﹣2.22.解:5x2﹣(2y n+1﹣mx2)﹣3(x2+1)=5x2﹣2y n+1+mx2﹣3x2﹣3=(5+m﹣3)x2﹣2y n+1﹣3=(2+m)x2﹣2y n+1﹣3由题意得,2+m=0,n+1=3,解得,m=﹣2,n=2.23.解:原式=﹣3a3﹣6a3b+3a2b+3,当a=2,b=﹣时,原式=﹣24+16﹣4+3=﹣9,其值与a,b有关,他的说法没有道理.24.解:(1)∵3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2=(3﹣6+2)(a﹣b)2=﹣(a﹣b)2;故答案为:﹣(a﹣b)2;(2)∵x2﹣2y=4,∴原式=3(x2﹣2y)﹣21=12﹣21=﹣9;(3)∵a﹣2b=3,2b﹣c=﹣5,c﹣d=10,∴a﹣c=﹣2,2b﹣d=5,∴原式=﹣2+5﹣(﹣5)=8.25.解:(1)当x=3,y=2时,B=4x2﹣4xy+y2=4×32﹣4×3×2+22=16;当x=1,y=1时,B=4x2﹣4xy+y2=4×12﹣4×1×1+12=1;当x=5,y=3时,B=4x2﹣4xy+y2=4×52﹣4×5×3+32=49.故答案为16,1,49;(2)B=A2;(3)4×3.142﹣4×3.14×3.28+3.282=(2×3.14﹣3.28)2=9.。
最新七年级数学代数式单元测试卷 (word版,含解析)
一、初一数学代数式解答题压轴题精选(难)1.(1)一个两位正整数,a表示十位上的数字,b表示个位上的数字(a≠b,ab≠0),则这个两位数用多项式表示为(含a、b的式子);若把十位、个位上的数字互换位置得到一个新两位数,则这两个两位数的和一定能被整除,这两个两位数的差一定能被整除.(2)一个三位正整数F,各个数位上的数字互不相同且都不为0.若从它的百位、十位、个位上的数字中任意选择两个数字组成6个不同的两位数.若这6个两位数的和等于这个三位数本身,则称这样的三位数F为“友好数”,例如:132是“友好数”.一个三位正整数P,各个数位上的数字互不相同且都不为0,若它的十位数字等于百位数字与个位数字的和,则称这样的三位数P为“和平数”;①直接判断123是不是“友好数”?②直接写出共有个“和平数”;③通过列方程的方法求出既是“和平数”又是“友好数”的数.【答案】(1)解:这个两位数用多项式表示为10a+b,(10a+b)+(10b+a)=10a+b+10b+a=11a+11b=11(a+b),∵11(a+b)÷11=a+b(整数),∴这个两位数的和一定能被数11整除;(10a+b)﹣(10b+a)=10a+b﹣10b﹣a=9a﹣9b=9(a﹣b),∵9(a﹣b)÷9=a﹣b(整数),∴这两个两位数的差一定能被数9整除,故答案为:11,9(2)解:①123不是“友好数”.理由如下:∵12+21+13+31+23+32=132≠123,∴123不是“友好数”;②十位数字是9的“和平数”有198,297,396,495,594,693,792,891,一个8个;十位数字是8的“和平数”有187,286,385,584,682,781,一个6个;十位数字是7的“和平数”有176,275,374,473,572,671,一个6个;十位数字是6的“和平数”有165,264,462,561,一个4个;十位数字是5的“和平数”有154,253,352,451,一个4个;十位数字是4的“和平数”有143,341,一个2个;十位数字是3的“和平数”有132,231,一个2个;所以,“和平数”一共有8+(6+4+2)×2=32个.故答案为32;③设三位数既是“和平数”又是“友好数”,∵三位数是“和平数”,∴y=x+z.∵是“友好数”,∴10x+y+10y+x+10x+z+10z+x+10y+z+10z+y=100x+10y+z,∴22x+22y+22z=100x+10y+z,∴12y=78x﹣21z.把y=x+z代入,得12x+12z=78x﹣21z,∴33z=66x,∴z=2x,由②可知,既是“和平数”又是“友好数”的数是396,264,132.【解析】【分析】(1)分别求出两数的和与两数的差即可求解;(2)①根据“友好数”的定义即可判断求解;②根据“和平数”的定义列举出所有的“和平数”即可求解;③设三位数既是“和平数”又是“友好数”,根据“和平数”的定义,得出y=x+z.再由“友好数”的定义,得出10x+y+10y+x+10x+z+10z+x+10y+z+10z+y=100x+10y+z,化简即为12y=78x−21z.把y=x+z代入,整理得出z=2x,然后从②的数字中挑选出符合要求的数即可.2.已知A=2x2+3xy-2x-1,B=x2-xy-1(1)化简:4A-(2B+3A),将结果用含有x、y的式子表示(2)若式子4A-(2B+3A)的值与字母x的取值无关,求的值【答案】(1)解:∵A=2x2+3xy-2x-1,B=x2-xy-1,∴4A-(2B+3A)=A-2B=2x2+3xy-2x-1-2(x2-xy-1)=5xy-2x+1(2)解:根据(1)得4A-(2B+3A)= 5xy-2x+1;∵4A-(2B+3A)的值与字母x的取值无关,∴4A-(2B+3A)=5xy-2x+1=(5y-2)x+1,5y-2=0,则y= .则y3+ A- B= y3+ (A-2B)= y3+ ×1= + = = .【解析】【分析】(1)先将4A-(2B+3A)化简,再将A,B的值分别代入代数式,去括号合并同类项化为最简形式即可;(2)根据(1)化简的结果,由4A-(2B+3A)的值与字母x的取值无关,得出5y-2=0,求解得出y的值,再将代数式中含A,B的项,逆用乘法分配律最后整体代入即可算出代数式的值。
第3章代数式单元测试卷+2024-2025学年苏科版(2024)数学七年级上册
第3章代数式单元测试卷(时间:90分钟,满分:120分)一、选择题(每小题3 分,共30分)1.下列各式中,不是代数式的是( )B.5+1=6A 18C.3.14D.a+b2−2表示的数量关系中,表达不正确的是( )2.用语言叙述1aA.比a的倒数小2的数B.比a的倒数大2的数C. a的倒数与2 的差D.1除以a的商与2 的差3.(南昌中考)在下列表述中,不能表示代数式“4a”的意义的是( )A.4的a倍B. a的4倍C.4个a相加D.4个a相乘4.在一个长方形中,它的长和宽分别为a,b,则这个长方形的周长c=2(a+b),若a是定长,则此关系式中( )A. c,a,b是变量B. a,b是变量C. c,b是变量D. 以上均不正确5.(2018·重庆中考)如图5-2,图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3 张黑色正方形纸片,第②个图中有5 张黑色正方形纸片,第③个图中有7张黑色正方形纸片……按此规律排列下去第⑥个图中黑色正方形纸片的张数为( )A.11B.13C.15D.176.已知x-2y=-2,则3-x+2y的值是( )A.0B.1C.3D.57.一辆汽车以平均60 千米/时的速度在公路上行驶,则它所走的路程s(千米)与所用的时间t(时)的关系表达式为( )A. s=60+tB.s=60tC.s=t60D. s=60t8.百货大楼进了一批花布,出售时要在进价(进货价格)的基础上加一定的利润,其数量x 与售价y如下表:A. y=8x+0.3B. y=(8+0.3)xC. y=8+0.3xD. y=8+0.3+x9.已知圆柱的高为3,当圆柱的底面半径r由小变大时,圆柱的体积 V 随之变化,则V 与 r 的关系式是( )A.V=πr²B.V=3πr²C.V=13πr2D.V=9πr²10.弹簧挂上物体后会伸长,已知一弹簧的长度(厘米)与所挂物体的质量(千克)之间的关系如下表:物体的质量/千克 0 1 2 3 4 5弹簧的长度/厘米 12 12.5 13 13.5 14 14.5下列说法错误的是( )A.弹簧的长度随物体的质量的变化而变化,物体的质量是自变量,弹簧的长度是因变量B.如果物体的质量为x千克,那么弹簧的长度y厘米可以表示为y=12+0.5xC.在弹簧能承受的范围内,当物体的质量为7 千克时,弹簧的长度为16 厘米D.在没挂物体时,弹簧的长度为12 厘米二、填空题(每小题4 分,共24分)11.某商品原价为a元,如果按原价的八折销售,那么售价是元(用含字母a的代数式表示).12.一列数1,4,7,10,13,…,按此规律排列,第n个数是 .13.若a-2b=3,则2a--4b-5= .14若( (x₁,y₁)⋅(x₂,y₂)=x₁x₂+y₁y₂,则(4,5)·(6,8)= .15.当a+1a =5时,代数式(a+1a)2+a−3+1a的值为 .16.如图5-3,观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2018个图形共有个○.三、计算题(共66 分)17. (12分)正确叙述下列代数式的意义: (1)2a+3; (2)2(a+3);(3)cab ;(4)a−cb.18.(10分)当x=−3,y=35时,求下列各代数式的值:(1)x²−5xy+25y²;(2)10y4x+3.19.(10分)用同样大小的蓝色棋子按如图5-4所示的规律摆放:(1)第5 个图形有多少颗蓝色棋子?(2)第几个图形有2019 颗蓝色棋子? 请说明理由.20.(10 分)将长为30 厘米、宽为10 厘米的长方形白纸,按如图5-5所示的方法黏合起来,黏合部分宽为3 厘米.(1)求5张白纸黏合的长度;(2)设x张白纸黏合后的长度为y厘米,写出y与x之间的关系式,并求出x=20 时的值.21.(12 分)如图5-6,某长方形广场的四个角都有一块半径相同的四分之一圆形的草地,若圆形的半径为r米,长方形长为a米,宽为b米.(1)分别用代数式表示草地和空地的面积;(2)若长方形的长为300米,宽为200 米,圆形的半径为10米,求广场空地的面积(计算结果保留整数).22.(12分)某影碟出租店开设两种租碟方式:一种是零星租碟,每张收费1元;另一种是会员卡租碟,办卡费每月 12 元,租碟费每张0.4元. 小彬经常来该店租碟,若每月租碟数量为x张.(1)写出零星租碟方式应付金额 y₁(元)与租碟数量x(张)之间的关系式.(2)写出会员卡租碟方式应付金额y₂(元)与租碟数量x(张)之间的关系式.(3)小彬本月租碟25 张,选取哪种租碟方式更合算?。
七年级上数学第二章代数式单元测试题一(含答案)
七年级上数学第二章代数式测试题(时限:100分钟、选择题(每小题3分,共30分) 1.代数式-x 3 2x 24是()3. -[a -(b - c)]去括号后应为(5. 用代数式表示x 与5的差的2倍,正确的是()A. x -5 2B. x 5 2C. 2(x-5)D. 2(x+5)6. 买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需 要()元.A. 4m+7 nB. 28mnC. 7m+4 nD. 11m n7. 原产量n 吨,增产30%之后的产量应为( ). A. (1-30%) n 吨 B. (1+30%) n 吨 C. n+30%吨D. 30%n 吨8. 某市出租车收费标准为:起步价 4元,2千米后每千米a 元,李老师 乘车x(x > 2)千米,应付费( )A. (4+ax)元B.(4+a)x 元C.[4+a(x- 2)]元D. (ax- 4)元9. 若代数式2x 2+3x+7的值是8,则代数式4x 2+6x+15的值是()A.多项式B.三次多项式C.三次三项式D.四次三项2.下列代数式中单项式共有( )个. x 3, -xy 3, 一0.5,-53ax 2bx c, abA. 2B. 3C. 4D. 5 总分:120分)A. 「a 「b cB.「a b 「c 4.下列说法正确的是( A. 1n x 2的系数为133C.D. -a b cB. i xy 2的系数为C.-5x 2的系数为5D. 3x 2的系数为3A. 2 B . 17 C. 3 D . 16 10、有理数a、b在数轴上的位置如图,化简I a | - | a-b | + | b-a |的结果是( )a 0 bA. -3a+2bB. 2b-aC. a- 2bD. - a二、填空题(每小题3分,共30分)11. 0.4xy3的次数为_______________ .112. 多项式2b -ab2 -5ab -1的次数为_______________________ .413. 写出-5x3y2的一个同类项 ______________________ .1 1 114. 化简:一a ——(a+1) * — (a — 1)= .6 2 315. 把(x-1)当作一个整体,合并3(x —1)4—2(x—1)3—5(1 —x)4 +4(1—x)3的结果是_____________ .16. 三个连续奇数,中间一个是n,则这三个数的和为_______________ .17. 当2x-1与3互为相反数时,-3-7x的值是_________________ .18. _______________________________________________________________ 若a、b互为相反数,c、d互为倒数,x的绝对值是2,则2a+2b-3cd+x2= ________ .19. 七年级(1)班同学参加数学课外活动小组的有x人,参加合唱队的有y人,而参加合唱队人数是参加篮球队人数的5倍,且每位同学至多只参加一项活动,则三个课外小组的人数共 ___________ 人.20. 观察下列算式:12 _02 =1 o =1;22 -12=2 1 =3 ; 32 -22=3 2 = 5 ;42 -32 =4 3 = 7 ; 52 -42 = 5 • 4 = 9 ; ……若字母表示正整数,请把第n个等式用含n的式子表示出来:____________ .三、解答题(共60分)21 .用代数式表示:(每小题3分,共9分)(1)m的倒数的3倍与m的平方差的50%;(2)x的1与y的差的1 ;4 4(3)甲数a与乙数b的差除以甲、乙两数的积.22、计算:(每小题4分,共20分)1(1)st -3st 6 ;(2) 8a - a3 a2 4a3 - a2 - 7a - 6 ;2(3) 7xy • xy3 4 6x 2xy3 _5yx (4) 2(2a-3b) 3(2b-3a);5(5) 2(x2一xy) —3(2x2一3xy) 一2[x2一(2x2一xy y2)].(按x 降幕排列)23. 先化简,再求值:(本小题共5分)2x3 4x - 1 x2 - (x 3x2 -2x3),其中x = -3 ;324. (本小题共5分)若-0.3m x n3与1m4n y是同类项,求下列式子的值22 ,3小2^3 3 5 2 3 3 2、(_5x y _4y - 2xy 3x ) _ 2(x xy y - x y).2 225. (本小题共5分)有四个数,第一个数是a2 b,第二个数比第一个数的2倍少3,第三个数是第一个数与第二个数的差,第四个数是第一个数加上-b,再减去-b2 2a2,当a = = b = -1时,求这四个数的和.2 326. (8分)学校组织羽毛球比赛,七(1)班准备购买羽毛球拍和羽毛球用于训练。
专题03 代数式单元测试(解析版)
2021-2022学年七年级数学上册同步课堂专练(苏科版)专题03代数式单元测试【挑战满分】一、单选题1.购买1个单价为a元的面包和2瓶单价为b元的饮料,所需钱数为()A.(a+b)元B.2(a+b)元C.(a+2b)元D.(2a+b)元【答案】C【详解】买1个面包和2瓶饮料所用的钱数:(a+2b)元;故选:C.、对应的数分别为1 和0.若正方形ABCD绕着点C 2.正方形ABCD在数轴上的位置如图所示,点B C顺时针方向在数轴上翻转,翻转1次后,点D所对应的数为1;绕点D翻转第2次;继续翻转,则翻转2020次后,数轴上数2020所对应的点是()A.点A B.点B C.点C D.点D【答案】C【详解】解:由题意可得:点C对应0,点D对应1,点A对应2,点B对应3,点C对应4,...,∵每4次翻转为一个循环组依次循环,∵2020÷4=505,∵翻转2020次后,数轴上数2020所对应的点是点C .故选:C .3.当2x =时,代数式31px qx ++的值为2020,则当2x =-时,代数式31px qx ++的值为( ) A .2020-B .2019C .2019-D .2018-【答案】D【详解】解:当x =2时,代数式px 3+qx +1的值为2020,即8p +2q =2019.当x =-2时,代数式的px 3+qx +1=-8p -2q +1=-(8p +2q )+1=-2019+1=-2018.故选:D .4.下列化简正确的是( )A .87x y xy -=B .2222a b ab ab -=-C .541m m -=D .222945a b ba a b -=【答案】D【详解】解:A 、8x 与-7y 不是同类项,所以不能合并,故本选项不合题意;B 、a 2b 与-2ab 2不是同类项,所以不能合并,故本选项不合题意;C 、5m -4m =m ,故本选项不合题意;D 、9a 2b -4ba 2=5a 2b ,正确,故本选项符合题意.故选:D .5.下列计算正确的是( )A .2233x x -=B .22232a a a --=-C .2(1)22x x -+=--D .3(1)31a a -=-【答案】C【详解】A. 222323x x x -=≠,故错误;B. 2222325a a a a --=-≠-,故错误;C. 2(1)22x x -+=--,故正确;D. 3(1)3331a a a -=-≠-,故错误,故选:C .6.有理数,a b 在数轴上的位置如图所示,则化简代数式3a b a --的结果是()A .2a b -+B .4a b -+C .4a b --D .2b a--【答案】B【详解】解:由数轴可得:0,0a b <>,∵0a b -<, ∵334a b a b a a b a --=--=-;故选B .7.如果长方形的一边长为(3a+2b),另一边长比它短(a -b)(a>b),那么这个长方形的周长为()A .5a+5bB .10a+10bC .10a+6bD .14a+6b【答案】B【详解】长方形的一边长为3a+2b, 另一边长比它短a -b,则另一边为3a 2b a b 2a 3b +-+=+.长方形的周长为:()()23222364461010a b a b a b a b a b +++=+++=+故选B8.下列去括号正确的是( )A .()a b c a b c +-+=++B .()a b c a b c +-+=-+-C .()a b c a b c --+=-+=D .()a b c a b c --+=-++【答案】C【详解】解:A 、为a -b+c ,错误;B 、为a -b+c ,错误;C 、正确;D 、为a -b+c ,错误,故选:C.二、填空题9.由于受H7N9禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/千克,设3月份鸡的价格为m 元/千克,则m=_________.【答案】24(1%)(1%)m a b =--【详解】已知1月份鸡的价格为24元/千克,2月份鸡的价格比1月份下降a%,则二月份鸡蛋价格为()241%a -,3月份比2月份下降b%,则三月份鸡蛋价格为()()241%1%a b --,故答案为()()241%1%a b --10.如图,它是由,,,A B E F 四个正方形,,C D 两个长方形拼成的大长方形,已知正方形F 的边长为8,大长方形周长为___________.【答案】64【详解】解:设A 正方形边长为a ,E 正方形边长为x则正方形F 的边长为a +x ,大长方形长为2x +3a ,宽为2x +a则大长方形周长为8x +8a ,因为a +x =8,所以8x +8a =8(a +x )=64.故答案为:64.11.单项式245a b -的系数是________,次数是__________;若1247m n a b -+与245a b -是同类项,则m n -=________. 【答案】45-3 4 【详解】 解:单项式245a b -的系数是45-,次数是3, ∵1247m n a b -+与245a b -是同类项, ∵m -1=2,n +2=1,∵m =3,n =-1,∵m -n =4, 故答案为:45-,3,4. 12.观察下列图形:它们是按一定规律排列的,依照此规律,第19个图形共有_____个∵.【答案】58【详解】解:观察发现,第1个图形∵的个数是,1+3=4,第2个图形∵的个数是,1+3×2=7,第3个图形∵的个数是,1+3×3=10,第4个图形∵的个数是,1+3×4=13,…依此类推,第n 个图形∵的个数是,1+3×n =3n+1,故当n =19时,3×19+1=58,故答案为58.三、解答题13.公园内有一半径为R 的圆形花坛,里面不重叠地摆放9个半径为r 的小圆形花盆,其余地方铺上草坪.(1)请用关于R r ,的多项式表示草坪的面积(阴影部分),并将结果分解因式.(2)当8.5R =米,0.5r =米,求草坪的面积(结果保留π)【答案】(1)()()33R r R r π+-;(2)70π平方米.【详解】解:(1)由题意可得:草坪的面积为:229R r ππ-=()()33R r R r π+-;(2)将8.5R =米,0.5r =代入,原式=()()8.5 1.58.5 1.5π+-=70π平方米,∵草坪的面积为70 平方米.14.小方家住房户型呈长方形,平面图如下(单位:米),现准备铺设地面,三间卧室铺设木地板,其它区域铺设地砖.(1)a的值为_______.(2)铺设地面需要木地板和地砖各多少平方米(用含x的代数式表示)?(3)已知卧室2的面积为21平方米,按市场价格,木地板单价为400元/平方米,地砖单价为10元/平方米,求铺设地面总费用.【答案】(1)3;(2)木地板(75-7x)平方米;地砖(7x+53)平方米;(3)25070元【详解】解:(1)根据题意得a+5=4+4,解得a=3;(2)铺设地面需要木地板:4×2x+a[10+6-(2x-1)-x-2x]+6×4=8x+3(17-5x)+24=(75-7x)平方米;铺设地面需要地砖:16×8-(75-7x)=128-75+7x=(7x+53)平方米;(3)∵卧室2的面积为21平方米,∵3[10+6-(2x-1)-x-2x]=21,∵3(17-5x)=21,∵x=2,∵铺设地面需要木地板:75-7x =75-7×2=61,铺设地面需要地砖:7x +53=7×2+53=67.铺设地面的总费用:61×400+67×10=25070(元).故铺设地面的总费用为25070元.15.下列图形是由一些小正方形和实心圆按一定规律排列而成的,如图所示,124,6K K ==,……按此规律排列下去,第n 个图形中实心圆的个数表示为Kn .(1)n K =______(用n 表示):100K =_______(2)我们在用“*”定义一种新运算:对于任意有理数a 和正整数n . 规定*2n n a K a K a n -++=, 例如:223336|36|(3)*2322K K --+-+--+-+-===-. ∵计算:(26.6)*10-的值;∵比较:3*n 与(3)*n -的大小.【答案】(1)2(n +1),202;(2)∵-22;∵3∵n >(-3)∵n【详解】解:(1)第1个图形中有4个实心圆,第2个图形中有6个实心圆,第3个图形中有8个实心圆,⋯ 2(1)n K n ∴=+;1002(1001)202K =⨯+=;(2)∵(26.6)-*10101026.6|26.6|2K K --+-+= 26.6(2102)|26.6(2102)|2--⨯++-+⨯+= 22=-; ∵n 是正整数, 224n K n ∴=+; 3∴*n 3|3|2n n K K -++= 332n n K K -++= 3=, (3)-*n 3|3|2n n K K --+-+= 332n n K K ---+= 3=-. 所以3*(3)n >-*n .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学代数式解答题压轴题精选(难)1.任何一个整数N,可以用一个的多项式来表示:N= .例如:325=3×102+2×10+5.一个正两位数的个位数字是x,十位数字y.(1)列式表示这个两位数;(2)把这个两位数的十位上的数字与个位上的数字交换位置得到一个新的两位数,试说明新数与原数的和能被11整除.(3)已知是一个正三位数.小明猜想:“ 与的差一定是9的倍数。
”请你帮助小明说明理由.(4)在一次游戏中,小明算出、、、与等5个数和是3470,请你求出这个正三位数.【答案】(1)解:10y+x(2)解:根据题意得:10y+x+10x+y=11(x+y),则所得的数与原数的和能被11整除(3)解:∵ - =100a+10b+c-(100b+10c+a)=99a-90b-9c =9(11a-10b-c),∴与的差一定是9的倍数(4)解:∵ + + + + + =3470+ ∴222(a+b+c)=222×15+140+ ∵100<<1000,∴3570<222(a+b+c)<4470,∴16<a+b+c≤20.尝试发现只有a+b+c=19,此时 =748成立,这个三位数为748.【解析】【分析】(1)由已知一个正两位数的个位数字是x,十位数字y ,因此这个两位数是:十位上的数字×10+个位数的数字。
(2)根据题意将新的两位数和原两位数相加,再化简,即可得出结果。
(3)分别表示出两个三位数,再求出它们的差,就可得出它们的差是否为9的倍数。
(4)根据题意求出a+b+c的取值范围,再代入数据进行验证即可。
2.根据数轴和绝对值的知识回答下列问题(1)一般地,数轴上表示数m和数n两点之间的距离我们可用│m-n│表示。
例如,数轴上4和1两点之间的距离是________.数轴上-3和2两点之间的距离是________.(2)数轴上表示数a的点位于-4与2之间,则│a+4│+│a-2│的值为________.(3)当a为何值时,│a+5│+│a-1│+│a-4│有最小值?最小值为多少?【答案】(1)3;5(2)6(3)解:①a≤1时,原式=1-a+2-a+3-a+4-a=10-4a,则a=1时有最小值6;②1≤a≤2时,原式=a-1+2-a+3-a+4-a=8-2a,则a=2时有最小值4③2≤a≤3时,原式=a-1+a-2+3-a+4-a=4④3≤a≤4时,原式=a-1+a-2+a-3+4-a=2a-2;则a=3时有最小值4⑤a≥4时,原式=a-1+a-2+a-3+a-4=4a-10;则a=4时有最小值6综上所述,当a=2或3时,原式有最小值4.故答案为:(1)3;5;(2)6;(3)当a=2或3时,原式有最小值4.【解析】【解答】(1)解:数轴上表示1和4的两点之间的距离是3;表示-3和2的两点之间的距离是5( 2 )解:根据题意得:-4<a<2,即a+4>0,a-2<0则原式=a+4+2-a=6.【分析】(1)根据数轴上任意两点间的距离等于这两点所表示的数的差的绝对值即可直接算出答案;(2)根据数轴上所表示的数的特点得出-4<a<2,进而根据有理数的加减法法则得出a+4>0,a-2<0,然后根据绝对值的意义去绝对值符号,再合并同类项即可;(3)分①a≤1时,②1≤a≤2时,③2≤a≤3时,④3≤a≤4时,⑤a≥4时,五种情况,根据绝对值的意义分别取绝对值符号,再合并同类项得出答案,再比大小即可.3.已知x1, x2, x3,…x2016都是不等于0的有理数,若y1= ,求y1的值.当x1>0时,y1= = =1;当x1<0时,y1= = =﹣1,所以y1=±1(1)若y2= + ,求y2的值(2)若y3= + + ,则y3的值为________;(3)由以上探究猜想,y2016= + + +…+ 共有________个不同的值,在y2016这些不同的值中,最大的值和最小的值的差等于________.【答案】(1)解:∵ =±1, =±1,∴y2= + =±2或0(2)±1或±3(3)2017;4032【解析】【解答】解:(2)∵ =±1, =±1, =±1,∴y3= + + =±1或±3.故答案为±1或±3,( 3 )由(1)(2)可知,y1有两个值,y2有三个值,y3有四个值,…,由此规律可知,y2016有2017个值,最大值为2016,最小值为﹣2016,最大值与最小值的差为4032.故答案分别为2017,4032.【分析】(1)根据题意先求出=±1,=±1,就可求出y2的3个值。
(2)根据题意先求出=±1,=±1,=±1,分情况讨论求出y3的4个值。
(3)根据(1)(2)的规律,可知y2016就有2017个不同的值,最大值的和是2016个1相加,最小值的和是2016个-1相加,再求出它们的差即可。
4.已知A,B在数轴上分别表示的数为m、n.(1)对照数轴完成下表:m 5﹣3﹣4﹣4n 2 0 3﹣2A、B两点间的距离________ 3________________(3)已知A,B在数轴上分别表示的数为x和﹣2,则A、B两点的距离d可表示为d=|x+2|,如果d=3,求x的值.(4)若数轴上表示数m的点位于﹣5和3之间,求|m+5|+|m﹣3|的值.【答案】(1)3;7;2(2)解:d=|m﹣n|,文字描述为:数轴上两点间的距离d等于表示两点数之差的绝对值(3)解:d=|x+2|根据题意得出:d=|x﹣(﹣2)|=|x+2|,如果d=3,那么3=|x+2|,解得x=1或﹣5(4)解:根据题意得出:∵﹣5<m<3,∴|m+5|+|m﹣3|=|5+3|=8【解析】【解答】解:(1)填表如下:m 5﹣3﹣4﹣4n 2 0 3﹣23 372A、B两点间的距离【分析】(1)结合数轴,得出两点间的距离公式,即可求解。
若A,B在数轴上分别表示的数为m、n,A,B两点间的距离为d,则d=|m﹣n|,根据此公式即可求解。
(2)根据(1)可得出结论。
(3)将d=3代入d=|x+2|,建立方程求解。
(4)根据已知可知﹣5<m<3,得出m+5>0,m-3<0,则|m+5|=m+5,|m﹣3|=-(m-3),就可得出结果。
5.阅读:将代数式x2+2x+3转化为(x+m)2+k的形式(其中m,k为常数),则x2+2x+3=x2+2x+1﹣1+3=(x+1)2+2,其中m=1,k=2.(1)仿照此法将代数式x2+6x+15化为(x+m)2+k的形式,并指出m,k的值.(2)若代数式x2﹣6x+a可化为(x﹣b)2﹣1的形式,求b﹣a的值.【答案】(1)解:∵ x2+6x+15=x2+6x+32+6=(x+3)2+6,∴m=3.k=6;(2)解:∵x2﹣6x+a=x2﹣6x+9﹣9+a=(x﹣3)2+a﹣9=(x﹣b)2﹣1,∴b=3,a﹣9=﹣1,即a=8,b=3,∴b﹣a=﹣5.【解析】【分析】(1)根据完全平方公式的结构,按照要求x2+6x+15=x2+6x+32+6=(x+3)2+6,可知m=3.k=6,从而得出答案.(2)根据完全平方公式的结构,按照要求x2-6x+a=x2-6x+9-9+a=(x-3)2+a-9=(x-b)2-1,即可知b=3,a-9=-1,然后将求得的a、b的值代入b-a,并求值即可.注意完全平方公式:(a±b)2=a2±2ab+b26.已知:a是﹣1,且a、b、c满足(c﹣6)2+|2a+b|=0,请回答问题:(1)请直接写出b、c的值:b=________,c=________(2)在数轴上,a、b、c所对应的点分别为A、B、C,点P为易动点,其对应的数为x,①当点P在AB间运动(不包括A、B),试求出P点与A、B、C三点的距离之和.②当点P从A点出发,向右运动,请根据运动的不同情况,化简式子:|x+1|﹣|x﹣2|+2|x﹣6|(请写出化简过程)【答案】(1)2;6(2)解:①∵PA=x﹣(﹣1)=x+1,PB=2﹣x,PC=6﹣x,∴PA+PB+PC=x+1+2﹣x+6﹣x=9﹣x;|x+1|﹣|x﹣2|+2|x﹣6|②当﹣1≤x<2时,原式=x+1+x﹣2﹣2(x﹣6)=11;当2≤x<6时,原式=x+1﹣(x﹣2)﹣2(x﹣6)=﹣2x+15;当x≥6时,原式=x+1﹣(x﹣2)+2(x﹣6)=2x﹣9【解析】【解答】解:(1)∵(c﹣6)2+|2a+b|=0,∴c=6,2a+b=0,即b=﹣2a,又∵a=﹣1,∴b=2,故答案为:2,6;【分析】(1)根据非负数的性质可得;(2)①根据两点间距离公式列出算式,化简可得;②分别根据﹣1≤x<2、2≤x<6、x≥6结合绝对值性质,去绝对值符号后化简可得.7.阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为∣AB∣。
当A、B两点中有一点在原点时,不妨设点A在原点,如图1,∣AB∣=∣OB∣=∣b∣=∣a-b∣;当A、B两点都不在原点时,如图2,点A、B都在原点的右边∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=b-a=∣a-b∣;如图3,点A、B都在原点的左边,∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=-b-(-a)=∣a-b∣;如图4,点A、B在原点的两边,∣AB∣=∣OB∣+∣OA∣=∣a∣+∣b∣= a +(-b)=∣a-b∣;回答下列问题:(1)数轴上表示2和5的两点之间的距离是________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示1和-3的两点之间的距离是________;(2)数轴上表示x和-1的两点A和B之间的距离是________,如果∣AB∣=2,那么x为________(3)当代数式∣x+1∣+∣x-2∣+∣x+3∣取最小值时,相应的x的值是________;此时代数式∣x+1∣+∣x-2∣+∣x+3∣的值是________.【答案】(1)3;3;4(2);1或-3(3)-1;5【解析】【解答】解:(1)数轴上表示2和5的两点之间的距离是|2-5|=3,数轴上表示-2和-5的两点之间的距离是|-2-(-5)|=3.数轴上表示1和-3的两点之间的距离是|1-(-3)|=4.(2)数轴上表示x和-1的两点A和B之间的距离是|x-(-1)|=|x+1|,如果|AB|=2,那么x为1或-3.(3)当代数式∣x+1∣+∣x-2∣+∣x+3∣取最小值时,,∴x+1≥0,x-2≤0,x+3≥0,∴-1≤x≤2.即当x取=-1时为最小值,此时代数式值为5【分析】(1)数轴上表示2和5的两点之间的距离是|2-5|,数轴上表示-2和-5的两点之间的距离是|-2-(-5)|;数轴上表示1和-3的两点之间的距离是|1-(-3)|;(2)数轴上表示x和-1的两点A和B之间的距离是|x-(-1)|=|x+1|,求出x的值;(3)当代数式∣x+1∣+∣x-2∣+∣x+3∣取最小值时,得到-1≤x≤2;求出代数式的值.8.用如图所示的甲、乙、丙木板做一个长、宽、高分别为a厘米,b厘米,h厘米的长方体有盖木箱(a>b),其中甲刚好能做成箱底和一个长侧面,乙刚好能做成一个长侧面和一个短侧面,丙刚好能做成箱盖和一个短侧面。