巧求分式的值
阶段拔尖专训14 巧用分式方程的解求字母的值或取值范围-人教版数学八年级上册期末复习
6
7
8
9
10
11
12
13
14
15
16
利用分式方程的解求字母的取值范围
4.
[2023广州南沙区期末]若关于 x 的方程
+
=4的解
−
−
为正数,则 a 的取值范围是( B )
A. a <8且 a ≠2
B. a <8且 a ≠4
C. a <8且 a ≠1
D. a <8
【点拨】
-
=4,化简得4- a =4 x -
B. m ≥-1
C. m ≤-1且 m ≠-2
D. m ≥-1且 m ≠0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
【点拨】
+
−
=1,2 x + m = x -1,∴ x =- m -1.∵方程
的解是非负数,∴- m -1≥0.∴ m ≤-1.∵ x -1≠0,
∴- m -1≠1.∴ m ≠-2.∴ m 的取值范围是 m ≤-1且
+
+
=1无
−
−
)
A. m =2或 m =6
B. m =2
C. m =6
D. m =2或 m =-6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
【点拨】
去分母得- x - m + x ( x +2)=( x +2)( x -2),解
得 x = m -4.由分式方程无解,得到 x =2或 x =-2.当
巧用分式方程的解求字母的值或取值范围
(1)若整式方程无实根,则 m+3=0 且 4m+8≠0,此时 m =- 3. (2) 若整式方程的解是原方程的增根,则 4 m+ 8 =3,解得 m=1. m+ 3 4 m+ 8 经检验,m=1 是方程 =3 的解. m+ 3 综上所述,m=-3 或 1.
返回
2
6 6 48 2 -2m=7 -2× =-49. 7
返回
技巧
2 巧用分式方程有解求字母的取值范围
x-2 m 2.若关于 x 的方程 = +2 有解,求 m 的取值范围. x-3 x-3
解:去分母并整理,得x+m-4=0,解得x=4-m, ∵分式方程有解,∴x=4-m不能为增根. 又∵原方程若有增根,则增根为x=3, ∴4-m≠3, 解得m≠1.
解得m=6;
当x=-3时,m+2×(-3-3)=-3+3,
解得m=12.
综上所述,当原方程的增根是x=3时,m=6; 当原方程的增根是x=-3时,m=12.
返回
技巧
4 巧用分式方程无解求字母的值
x-4 m 4.已知关于 x 的方程 -m-4= 无解,求 m 的值. x-3 3-x
解:原方程可化为(m+3)x=4m+8.由于原方程无解, 故有以下两种情形:
∴当m≠1时,原分式方程有解.
返回
技巧
3 巧用分式方程有增根求字母的值
m 2 1 3.若关于 x 的方程 2 + = 有增根,则增根是多 x -9 x+3 x-3 少?并求方程产生增根时 m 的值.
解:∵原方程有增根, 且增根必定使最简公分母(x+3)(x-3)=0, ∴x=3或x=-3是原方程的增根. 原方程两边同乘(x+3)(x-3), 得m+2(x-3)=x+3. 当x=3时,m+2×(3-3)=3+3,
裂项拆分法巧算
在对有理分式函数求不定积分之前,通常都要对分式进行分解。
因为目前比较常用的分式不定积分公式,只有分母是一次整式的幂,或二次整式的幂两种形式的真分式的不定积分公式。
因此我们要把那些分母在三次以上的分式,分解成一系列符合上面两种形式的真分式的和。
这就是对分式裂项分解的一个过程。
或称为部分分式分解。
为此,我们要先明确有理函数的概念:由两个多项式函数的商所表示的函数,其一般形式为:R(x)=(P(x))/(Q(x))=(α0 x^n+α1 x^(n-1)+…+αn)/(β0 x^m+β1 x^(m-1)+…+βm),其中n,m∈N,α0,α1,…αn与β0,β1,…βm都是常数,且α0β0≠0.即分子是一个n次多项式P(x),分母是一个m次多项式Q(x),构成的函数,就是有理函数R(x)。
如果m>n,即分母的次数更高,就称它为真分式,如果m<=n,即分母的次数不高于分子,就称为假分式。
这两个概念可以类比真分数和假分数。
因此,和分数类似的,假分式可化为整式与真分式的和。
所以我们在进行分式部分分解时,如果原分式是假分式,就要先把这个假分式化为整式与一个真分式的和。
因为我们主要关注的是那些最简的真分式。
即无法继续约分的真分式。
真分式表示为若干个部分分式之和,这个过程就称为部分分式分解。
下面我们来了解一下真分式部分分式分解的一般步骤:第一步:对分母Q(x)在实系数内作标准分解:(分解前先化β0=1)Q(x)=(x-a1)^λ1*(x-a2)^λ2…(x-as)^λs)(x^2+p1x+q1)^μ1…(x^2+ptx+qt)^μt,其中λi,μj(i=1,2,…,s;j=1,2,…,t)均为自然数,【即s个一次整式的幂积,乘以t个二次整式的幂积。
不过并不是所有整式,都可以分解成这样的形式的。
如果分解不了,就不属于这里讨论的范围】而且∑(i=1->s)λi+2∑(j=1->t)μj=m;【只有最高次数保持不变,才能保证分解之后结果恒等】pj^2-4qj<0, j=1,2,…,t.【即每一个二次整式因式都无法继续分解】第二步:根据分母各因式分别写出与之相应的部分分式:(1)对每个形如(x-a)k的因式,对应的部分分式是:A1/(x-a)+A2/(x-a)^2 +…+Ak/(x-a)^k.(2)形如(x2+px+q)k的因式,对应:(B1x+C1)/(x^2+px+q)+(B2 x+C2)/(x^2+px+q)^2+…+(Bkx+Ck)/(x^2+px+q)^k .第三步:运用待定系数法确定系数.下面看一道例题:对R(x)=(2x^4-x^3+4x^2+9x-10)/(x^5+x^4-5x^3-2x^2-4x-8)作部分分式分解.解:Q(x)=x^5+x^4-5x^3-2x^2+4x-8=(x-2)(x+2)^2(x^2-x+1),R(x)=A0/(x-2)+A1/(x+2)+A2/(x+2)^2+(Bx+C)/(x^2-x+1).【通分相加之后,分子恒等】P(x)≡A0(x+2)^2(x^2-x+1)+A1(x-2)(x+2)(x^2-x+1)+A2(x-2)(x^2-x+1)+(Bx+C)(x-2)(x+2)^2=(A0+A1+B)x^4+(3A0-A1+A2+2B+C)x^3+(A0-3A1-3A2-4B+2C)x^2+(4A1+3A2-8B-4C)x+4A0-4A1-2A2-8C.根据分子恒等,列方程组{A0+A1+B=2;3A0-A1+A2+2B+C=-1;A0-3A1-3A2-4B+2C=-1;4A0+3A1-8B-4C=9;4A0-4A1-2A2-8C=-10.解得:(A0=1; A1=2; A2=-1; B=-1; C=1.∴R(x)=1/(x-2)+2/(x+2)-1/(x+2)^2-(x-1)/(x^2-x+1).有时在通分得到分子恒等式之后,可以利用特值法来解决,往往都会比较简便,但不是一定会简便的。
分式通分的技巧
分式通分的技巧一、分组通分例1、计算:xy x y x y x y x y x y x y x --+-----+-24352 分析:如果我们将四个分式同时通分,运算量较大且容易出错,仔细观察会发现第一、三项,第二、四项分别为同分母分式,因此先将同分母分式相加减,然后再通分,能简化运算。
解:原式)23(452yx x y x y x y x y x y x y x ---+-+--+-= 222244xy xy y x xy y x y x y x y x -=--=-+-+-= 反思:当遇到的分式较多时可以观察是否有相同分母的分式适当分组结合,先将同分母分式相加减,再通分,可以使计算更加简便。
二、先约分再求值例2、计算:969362222++-+++x x x x x x x 分析:我们观察到两个分式都不是单项式,看起来很复杂,计算起来肯定不会很轻松,应首先想到运用约分化简后再计算。
解:原式3323336)3()3(3()3()6(2++=+-+++=+-++++=x x x x x x x x x x x x x 反思:在进行分式加减运算时,不能简单的盲目进行通分,首先要根据题目自身的特点,选用合适的方法,以使运算过程适当简化,本题中利用公式因式分解后,先约分再进行计算就比较简单。
三、逐步通分法例3、计算:4214121111xx x x ++++++- 分析:我们在计算时,会发现计算的分式较长,不知如何下手,但我们仔细观察各个分式的特点,会发现可以巧妙运用平方差公式逐步通分,会得到想要的结果.解:原式844422181414141212xx x x x x -=++-=++++-= 反思:本题如果用常规方法进行计算太繁琐,根据题目特点巧用平方差公式,采用逐步通分法,从而使运算简便。
四、整体通分法例4、计算y x yx x +-+2分析:我们看到题目中既有分式又有整式,不相统一,我们可以寻求到可以做为整体的部分,那么计算起来就可以简便一些.解:原式yx y y x y x y x x y x y x x +=+--+=--+=22222)( 反思:将后两项看作一个分母为“1”的整体可使运算简便。
常用的巧算和速算方法
巧算和速算方法,包括:九九乘法口诀:通过记忆乘法口诀表格,可以快速算出两个数的积。
平方差公式:对于两个整数 $a$ 和 $b$,可以快速计算 $(a+b)^2$ 和$(a-b)^2$,分别为 $a^2+2ab+b^2$ 和 $a^2-2ab+b^2$。
除法倒数法:通过求出某个数的倒数,然后用这个倒数乘以需要除的数,可以快速计算除法结果。
11乘法口诀:对于两位数相乘,可以通过将这两个数字的和放在中间,例如$24 \times 11$ 可以计算为 $2$ 和 $4+2$ 和 $4$,得到 $264$。
规律判断法:在一些数列中,如果存在规律,可以通过观察规律推算出下一个数字。
四舍五入法:在进行精确计算不必要的时候,可以使用四舍五入法,保留一定的有效数字即可。
近似取整法:在进行大致计算的时候,可以使用近似取整法,将一个数字取整到最接近的整数,例如 $23.6$ 取整到 $24$。
连加连乘法:对于一些需要进行连加或连乘的数列,可以通过提取公因子,将计算过程简化。
小数移位法:在对小数进行计算时,可以通过移位小数点来将小数转换为整数,然后进行整数运算,最后再将小数点移回原位。
分式化简法:在进行分式运算时,可以通过化简分数,将分式化为最简形式,简化运算。
凑整法:将一个数凑整为最近的整数或10的倍数,然后再进行计算,最后再进行减法运算补回凑整时的误差。
差积因式法:在进行乘法或除法时,将数字拆分为其因子的乘积,然后再进行计算。
近似数法:在进行加减运算时,将数近似为离它最近的10、100、1000等倍数,然后再进行计算。
最后,再将结果还原为原数的近似值。
线性加减法:对于两个数 $a$ 和 $b$,如果它们的差为 $k$,那么 $a\pmb$ 就等于 $a\pm k\pm (b-k)$,其中 $k$ 是某个整数,使得 $b-k$ 或$a-k$ 是一个整数。
平方法:在进行乘法时,如果两个数都离平方数的差不远,那么可以利用公式$(a+b)^2=a^2+2ab+b^2$ 来简化计算。
(完整word版)分式求值中的一些解题技巧
分式求值中的一些解题技巧一、本章知识框架图建立本章知识框架图,形成本章知识体系:二、分式的基本知识点回顾1、分式的定义:一般地,如果A 、B 表示两个 ,并且 中含有字母,那么代数式 叫做分式。
注意分式中字母代表什么数或者式子是有条件的:.0 .⎧⎨⎩分式有意义的条件:分式为的条件:2、分式的基本性质:分式的 都乘以(或除以) . 式子:MB A B A B M A B A ÷÷=⋅⋅=)(,) ((其中,M 是 ) 3、分式的运算 Ⅰ、乘法 :分式乘分式, 做积的分子, 做积的分母. Ⅱ、除法:分式除以分式,把分式的 颠倒位置后再与被除式 .Ⅲ、加减:⎩⎨⎧. , . , 后先异分母的分式相加减:分子分母同分母的分式相加减:路曼曼其修远兮,吾将上下而求索专题 典例引路—分式运算的常用技巧分式运算的一般方法就是按分式运算法则和运算顺序进行运算。
但对某些较复杂的题目,使用一般方法有时计算量太大,导致出错,有时甚至算不出来,这节课我们来学习运用数学思想和方法技巧来对分式进行运算。
1、整体例1 计算(1)242++-a a (2)1132+--+x x x x观察归纳丰富的问题情景分式的概念分式方程的概念分式方程的解法 分式方程的应用分式的基本性质通分约分分式的运算分式的乘除法分式的加减法 分式的混合运算 分式的化简求值例2 .3353,511)1(的值求若yxy x yxy x y x ---+=-.111,1)2(的值求已知++++++++=c ac cb bc b a ab a abc.3515x 5,411x )3(224242的值求如果xx x x +-=++整体思想就是考虑数学问题时,不是着眼于它的局部特征,而是把注意和着眼点放在问题的整体结构上,通过对其全面深刻的观察,从宏观整体上认识问题的实质,把一些彼此独立但实质上又相互紧密联系着的量作为整体来处理的思想方法。
整体思想在处理数学问题时,有广泛的应用。
初中数学 人教版八年级上册分式的化简 求值 与证明讲义
分式的化简 求值 与证明考点•方法•破译1. 分式的化简、求值先化简,后代入求值是代数式化简求值问题的基本策略,有条件的化简求值题,条件可直接使用,变形使用,或综合使用,要与目标紧紧结合起来;无条件的化简求值题,要注意挖掘隐含条件,或通过分式巧妙变形,使得分子为0或分子与分母构成倍分关系特殊情况,课直接求出结果.2. 分式的证明证明恒等式,没有统一的方法,具体问题还要具体分析,一般分式的恒等式证明分为两类:一类是有附加条件的,另一类是没有附加条件的,对于前者,更要善于利用条件,使证明简化.经典•考题•赏析【例1】先化简代数式(11x x -++221x x -)÷211x -,然后选取一个使原式有意义的x 的值代入求值.【解法指导】本题化简并不难,关键是x 所取的值的选择,因为原式的分母为:x +1,x 2-1,要是原式有意义,则x +1≠0且x 2-1≠0故x ≠1,因而x 可取的值很多,但不能取x ≠1解:(11x x -++221x x -)÷211x - =[2(1)(1)(1)x x x -+-+2(1)(1)x x x +-]·(x +1)(x -1)=(x -1)2+2x =x 2+1 当x =0时,原式=1. 【变式题组】01.先化简,再求值222366510252106a a a a a a a a--+÷•++++,其中a =.02.已知x =2,y =22211x y x y x y x y xy ⎛⎫⎛⎫+--•- ⎪ ⎪-+⎝⎭⎝⎭的值03.先化简:222a b a ab --÷(a +22ab b a+),当b =-1时,请你为a 任选一个适当的数代入求值.04.先将代数式(x -1x x +)÷(1+211x -)化简,再从-3<x <3的范围内选取一个合适的整数x 代入求值.【例2】已知1x+1y =5,求2322x xy y x xy y -+++的值.【解法指导】解法1:由已知条件115x y+=,知xy ≠0.将所求分式分子、分母同除以xy ,用整体代入法求解.解法2:由已知条件1x+1y =5,求得x +y =5xy ,代入求值. 解:方法1:∵1x+1y =5,,∴x ≠0,y ≠0,xy ≠0将待求分式的分子、分母同除以xy . 原式=(232)(2)x xy y xy x xy y xy -+÷++÷=112()311()2x y x y+-++=2552⨯+=1.方法2:由1x+1y =5知x ≠0,y ≠0,两边同乘以xy ,得x +y =5xy 故2322x xy y x xy y -+++=2()()2x y x y xy +++=25352xy xy xy xy ⨯-⨯+=77xy xy=1.【变式题组】 01.(天津)已知1a -1b =4,则2227a ab ba b ab---+的值等于( ) A .6 B .-6 C . 215 D . 27-02.若x +y =12,xy =9,求的22232x xy yx y xy+++值.03.若4x -3y -6z =0,x +2y -7z =0,求22222223657x y z x y z ++++的值.【例3】(广东竞赛)已知231xx x -+=1,求24291x x x -+的值. 【解法指导】利用倒数有时会收到意外的效果.解:∵2131x x x =-+∴231x x x -+=1∴x -3+1x =1∴x +1x =4. 又∵42291x x x -+=x 2-9+21x =(x -1x )2-11=16-11=5. ∴24291x x x -+=15. 【变式题目】01.若x +1x=4,求2421x x x ++的值.02.若a 2+4a +1=0,且4232133a ma a ma a++++=5求m .【例4】已知ab a b +=13,bc b c +=14,ac a c +=15,求abcab ac bc++的值. 【解法指导】将已知条件取倒数可得a b ab +=3,b c bc +=4,a cac+=5,进而可求111a b c++的值,将所求代数式也取倒数即可求值. 解:由已知可知ac 、bc 、ab 均不为零,将已知条件分别取倒数,得345a babb c bca cac+⎧=⎪⎪+⎪=⎨⎪+⎪=⎪⎩,即113114115a b c b a c ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩ 三式相加可得1a +1b +1c =6,将所求代数式取倒数得ab ac bc abc ++=1a +1b +1c =6,∴abc ab ac bc ++=16.【变式题组】 01.实数a 、b 、c 满足:ab a b +=13,bc b c +=14,ac a c +=15,则ab +bc +ac = . 02.已知xy x y +=2,xzx z+=3,yz y z +=4,求7x +5y -2z 的值.【例5】若a b c +=c b a +=a c b +,求()()()a b c b a c abc+++的值. 【解法指导】观察题目易于发现,条件式和所求代数式中都有a +b ,c +b ,a +c 这些比较复杂的式子,若设a b c +=c b a +=a cb+=k ,用含k 的式子表示a +b ,c +b ,a +c 可使计算简化. 解:设a b c +=c b a +=a c b+=k ,则a +b =ck ,c +b =ak ,a +c =bk ,三式相加,得2(a+b +c )=(a +c +b )k .当a +b +c ≠0时,k =2;当a +b +c =0时,a +b =-c ,1a bc+=-,∴k =-1.∴当k =2时,()()()a b c b a c abc +++=k 3=8;当k =-1时,()()()a b c b a c abc+++=k3=-1.【变式题组】01.已知x 、y 、z 满足2x=3y z -=5z x +,则52x y y z -+的值为( ) A .1 B . 13 C . 13- D . 1202.已知a 、b 、c 为非零实数,且a +b +c ≠0,若a b c c +-=a b c b -+=a b ca-++,求()()()a b b c c a abc+++的值.【例6】已知abc =1,求证:1a ab a +++1b bc b +++1cac c ++=1【解法指导】反复整体利用,选取其中一个的分母不变,将另外两个的分母化为与它的分母相同再相加.证明:∵1a ab a ++=a ab a abc ++=11b bc ++1c ac c ++=c ac c abc ++=11a ab ++=abc a abc ab ++=1cbbc b++∵1a ab a +++1b bc b +++1c ac c ++=11bc b +++1b bc b +++1bc bc b ++=1 【变式题组】01.已知1a b +=1b c +=1c a+,a ≠b ≠c 则a 2+b 2+c 2=( ) A .5 B . 72 C .1 D . 1202.已知不等于零的三个数a b c 、、满足1111a b c a b c++=++.求证:a 、b 、c 中至少有两个数互为相反数.03.若:a 、b 、c 都不为0,且a +b +c =0,求222222222111b c a c a b a b c+++-+-+-的值.演练巩固 反馈提高01.已知x -1x=3,那么多项式x 3-x 2-7x +5的值是( ) A .11 B .9 C .7 D . 5 02.若M =a +b ,N =a -b ,则式子M N M N +--M NM N-+的值是( )A . 22a b ab -B . 222a b ab -C . 22a b ab+ D . 003.已知5x 2-3x -5=0,则5x 2-2x -21525x x --= . 04.设a >b >0,a 2+b 2-6ab =0,则a b b a+-= .05.已知a =1+2n ,b =1+12n ,则用含a 的式子表示b 是 .06. a +b =2,ab =-5,则b aa b+= .07.若a =534-⎛⎫- ⎪⎝⎭,b =-534⎛⎫ ⎪⎝⎭,c =534-⎛⎫⎪⎝⎭,试把a 、b 、c 用“<”连接起来为 .08.已知1n m -⎛⎫⎪⎝⎭=53,求的222m m n m n m n m n +-+--值为 . 09.若2x =132,13y⎛⎫⎪⎝⎭=81,则x y 的值为 .10.化简24322242c b c b a b a ca -⎛⎫⎛⎫⎛⎫•-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭为 .11.先化简,再求值:221122x y x y x x y x +⎛⎫--+ ⎪+⎝⎭,其中x,y =3.12.求代数式的值:222222144x x x x x x -++÷--,其中x =2.13.先化简,再求值:22121124x x x x ++⎛⎫-÷⎪+-⎝⎭,其中x =-3.14.已知:2352331x A Bx x x x -=+---+,求常数A 、B 的值. 15.若a +1a =3,求2a 3-5a 2-3+231a +的值.培优升级 奥赛检测01.若a b =20,b c =10,则a b b c++的值为( ) A . 1121 B . 2111C . 11021D . 2101102.已知x +y =x -1+y -1≠0,则xy 的值为( )A . -1B . 0C . 1D . 203.已知x +1x =7(0<x <1)的值为( ) A . -7 B .-5 C . 7 D . 5 04.已知正实数a 、b 满足ab =a +b ,则b aab a b+-=( ) A . -2 B .12 C . 12- D . 2 05.已知1a -a =1,则1a+a 的值为( )A .B .C .D .1 06.已知abc ≠0,并且a +b +c =0,则a (1b +1c )+b (1a +1c )+c (1b +1a)的值为( ) A . 0 B . 1 C . -1 D .-3 07.设x 、y 、z 均为正实数,且满足z x y x y y z z x<<+++,则x 、y 、z 三个数的大小关系是( )A . z <x <yB . y <z <xC . x <y <zD . z <y <x08.如果a 是方程x 2-3x +1=0的根,那么分式543226213a a a a a-+--的值是 .09.甲乙两个机器人同时按匀速进行100米速度测试,自动记录表表明:当甲距离终点差1米,乙距离终点2米;当甲到达终点时,乙距离终点1.01米,经过计算,这条跑道长度不标准,则这条跑道比100米多 . 10.若a +1b =1,b +1a =1,求c +1a的值.11.已知a 、b 、c 、x 、y 均为实数,且满足ab +a b =341-x y ,+bc b c =31x ,+cac a=341+x y ,++abc ab bc ca =112(y )(其中)求x 的值.12.当x 分别取值12009,12008,12007, (1)2,1,2,……2007,2008,2009时,分别计算代数式221-1+x x的值,将所得的结果相加,其和是多少?13.在一列数x 1,x 2,x 3…中,已知x 1=1,且当k ≥2时,x k =x k -1+1-4([14k --24k -])(取整符号[a ]表示不超过实a 数的最大整数,例如[2.6]=2,[0.2]=0)求x 2010的值.14. 已知对于任意正整数n ,都有a 1+a 2+…+a n =n 3,求211a -+311a -+…+10011a -的值.。
巧求分式的值
式都是形如 nD 的代数式. #
解: 赋 + ( 。
—
≠ 的代数式化为形如旱± 导的代数式.
这种将 一个分式变 成两个分式 的和差 , 或一 个
分 式 变 成 另 一 个 分 式 与 一 个 整 式 的 和 差 的 思
= ( ( - z + x y x ) - ) :( + ‘
fx 4 — =0, 3- y
.
2 已 号= ÷≠, 代 式 .知 号= 0 求 数
x+ y- z -
一
的值 .
—
I +y z 0 2 一8= . x
解 得 =3 ,=2. zy z
V十 Z
3已 知 口 b b=2 ( . =3 , c c≠0 , 代 数 式 )求
所原 = 以式
一 z一 _ :1
:
‘
_ +
的值.
参 答 : 2 ;. . 考 寨1 . 3 . 0 导 ;
点评 : 已知等式 中含有 多个未 知 数 ( 当 一
翁
一
再 将 待 求 式 变 形 为 3x y +5 y ( ) x
一
,
、
。
,
把 一
\ — )) 3x, x— 一 l
值就简单多了.
解: 因为 。 + : 5 所 以 ( , + ) : z
2 + 5, =2. 3
) - x代人, , 5 =- y 即可求出答案孚.
) . :0
。(-x (-y ’ z )z )
分析 :每个分式 的分母是 两个 因式 的积 ,
例 2
若 ≥0 M = x4 2 x , 3 x+ +1 一 - -
且这两个 因式的和正好 等于分子 , 么每个分 那
分式求值五技巧
分式求值五技巧求分式的值这种题型在《分式》一章中经常出现有些求值题用一般方法直接可以解答,但有些求值题用一般的方法解起来很困难所以我们要善于总结,寻找技巧,这样才能顺利解题以下向同学们介绍了几种常用的技巧一、巧用整体代换例1:已知:x 1=2,求221x 的值 分析:用x 1表示221x ,用已知式整体代换所求式 解:由x 1=2可得 ⎝⎛⎪⎭⎫+21x x =4所以221x = ⎝⎛⎪⎭⎫+21x x -2••x 1=4-2=2二、巧用变形代入:例2:已知:n m =4求2222n mn m mn m +--的值分析:先将求值式化简,再把已知条件变形代入解:由n m=4可得m=4n 代入原式,原式=)()(2n m n m m --=n m m -=n n n -44=n n 34=34 三、巧设比值代入例3:已知:2a =3b =4c 求分式222cb a ac bc ab ++++的值 分析:已知条件2a =3b =4c 为等比形式时,常设比值为,把a ,b ,c 都用K 来表示,这样就可以求值了 解:设2a =3b =4c =则a=2b=3c=4代入求值式:原式=2221694424332k k k k k k k k k ++•+•+•=222926k k =2926 四、巧用倒数:例4:已知:a a1=5则1242++a a a 为________ 分析:由a a 1=5求出a 的值式代入1242++a a a 明显比较复杂,对求值式取倒数,并向已知条件靠拢有下列解法 解:把1242++a a a 的分子、分母倒过来即2241a a a ++=24a a 22a a 21a=a 221a 1 = ⎝⎛⎪⎭⎫+21a a -21 = ⎝⎛⎪⎭⎫+21a a -1 =52-1=24 所以,原式1242++a a a =241 五、巧选特殊值代入:例5:若x 1-y 1=31,求yxy x y xy x ---+3232的值 分析:通过条件式的一组特殊值来计算求值式的值这种特殊的方法计算起来简单快捷,但是条件中字母不能任意取值,要受限制所以我们在选值时要让它符合两个条件:(1)代入条件式和求值式中都有意义(2)尽量找整数,利于求值计算解:令=2代入已知等式得,y=6把=2,y=6代入求值式,得y xy x y xy x ---+3232=662326262322-••-•-••+•=636212364---+ 原式=4028-=-107 以上例5题还有其它的巧解方法,希望同学们在今后的学习中多找技巧,提高数学的学习兴趣,丰富自己的生活。
专题09 分式方程(归纳与讲解)(解析版)
专题09 分式方程【专题目录】技巧1:分式的意义及性质的四种题型 技巧2:分式运算的八种技巧技巧3:巧用分式方程的解求字母的值或取值范围 技巧4:分式求值的方法 【题型】一、分式有意义的条件 【题型】二、分式的运算 【题型】三、分式的基本性质 【题型】四、解分式方程 【题型】五、分式方程的解 【题型】六、列分式方程 【考纲要求】1、理解分式、最简分式、最简公分母的概念,掌握分式的基本性质,能熟练地进行约分、通分.2、能根据分式的加、减、乘、除的运算法则解决计算、化简、求值等问题,并掌握分式有意义、无意义和值为零的约束条件.3、理解分式方程的概念,会解可化为一元一次(二次)方程的分式方程(方程中的分式不超过两个)。
4、了解解分式方程产生增根的原因,会检验和对分式方程出现的增根进行讨论. 【考点总结】一、分式形如AB(A 、B 是整式,且B 中含有字母,B ≠0)的式子叫做分式.A A【考点总结】二、分式方程【注意】1.约分前后分式的值要相等.2.约分的关键是确定分式的分子和分母的公因式.3.约分是对分子、分母的整体进行的,也就是分子的整体和分母的整体都除以同一个因式 分式混合运算的运算运算顺序:1.先把除法统一成乘法运算;2.分子、分母中能分解因式的多项式分解因式;3.确定分式的符号,然后约分;4.结果应是最简分式.【技巧归纳】分式乘以分式,用分子的积做积的分子,分母的积做积的分母,即a b ·c d =acbd .分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,即a b ÷c d =a b ·d c =adbc在分式的加减乘除混合运算中,应先算乘除,进行约分化简后,再进行加减运算,遇到有括号的,先算括号里面的.运算结果必须是最简分式或整式.技巧1:分式的意义及性质的四种题型 【类型】一、分式的识别1.在3x 4x -2,-5x 2+7,4x -25,2m ,x 2π+1,2m 2m中,不是分式的式子有( )A .1个B .2个C .3个D .4个2.从a -1,3+π,2,x 2+5中任选2个构成分式,共有________个. 【类型】二、分式有无意义的条件3.若代数式1a -4在实数范围内有意义,则实数a 的取值范围为( )A .a =4B .a>4C .a<4D .a≠4 4.当x =________时,分式x -1x 2-1无意义. 5.已知不论x 为何实数,分式3x +5x 2-6x +m 总有意义,试求m 的取值范围.【类型】三、分式值为正、负数或0的条件6.若x +2x 2-2x +1的值为正数,则x 的取值范围是( )A .x <-2B .x <1C .x >-2且x≠1D .x >1 7.若分式3x -42-x 的值为负数,则x 的取值范围是________.8.已知分式a -1a 2-b 2的值为0,求a 的值及b 的取值范围.【类型】四、分式的基本性质及其应用 9.下列各式正确的是( )A .a b =a 2b 2B .a b =ab a +bC .a b =a +c b +cD .a b =ab b 2 10.要使式子1x -3=x +2x 2-x -6从左到右的变形成立,x 应满足的条件是( ) A .x >-2 B .x =-2 C .x <-2 D .x≠-2 11.已知 x 4=y 6=z7≠0,求 x +2y +3z 6x -5y +4z 的值.12.已知x +y +z =0,xyz≠0,求x |y +z|+y |z +x|+z|x +y|的值. 参考答案1.C 点拨:4x -25,2m ,x 2π+1不是分式.2.6 点拨:以a -1为分母,可构成3个分式;以x 2+5为分母,可构成3个分式,所以共可构成6个分式. 3.D 4.±15.解:x 2-6x +m =(x -3)2+(m -9).因为(x -3)2≥0,所以当m -9>0,即m >9时,x 2-6x +m 始终为正数,分式总有意义.6.C 点拨:x 2-2x +1=(x -1)2.因为分式的值为正数,所以x +2>0且x -1≠0.解得x >-2且x≠1. 7.x >2或x <438.解:因为分式a -1a 2-b 2的值为0,所以a -1=0且a 2-b 2≠0.解得a =1且b≠±1.9.D 10.D11.解:设x 4=y 6=z7=k(k≠0),则x =4k ,y =6k ,z =7k.所以x +2y +3z 6x -5y +4z =4k +2×6k +3×7k 6×4k -5×6k +4×7k =37k 22k =3722.12.解:由x +y +z =0,xyz≠0可知,x ,y ,z 必为两正一负或两负一正.当x ,y ,z 为两正一负时,不妨设x >0,y >0,z <0,则原式=x |-x|+y |-y|+z|-z|=1+1-1=1;当x ,y ,z 为两负一正时,不妨设x >0,y <0,z <0,则原式=x |-x|+y |-y|+z|-z|=1-1-1=-1.综上所述,所求式子的值为1或-1. 值的分式消元求值. 技巧2:分式运算的八种技巧 【类型】一、约分计算法 1.计算:a 2+6a a 2+3a -a 2-9a 2+6a +9.【类型】二、整体通分法 2.计算:a -2+4a +2.【类型】三、顺次相加法3.计算:1x -1+1x +1+2x x 2+1+4x 3x 4+1.【类型】四、换元通分法4.计算:(3m -2n)+(3m -2n )33m -2n +1-(3m -2n)2+2n -3m3m -2n -1.【类型】五、裂项相消法⎝⎛⎭⎫即1n (n +1)=1n -1n +15.计算:1a (a +1)+1(a +1)(a +2)+1(a +2)(a +3)+…+1(a +99)(a +100).【类型】六、整体代入法6.已知1a +1b =16,1b +1c =19,1a +1c =115,求abcab +bc +ac 的值.【类型】七、倒数求值法7.已知 x x 2-3x +1=-1,求x 2x 4-9x 2+1的值.【类型】八、消元法8.已知4x -3y -6z =0,x +2y -7z =0,且xyz≠0,求5x 2+2y 2-z 22x 2-3y 2-10z 2的值.参考答案1.解:原式=a (a +6)a (a +3)-(a +3)(a -3)(a +3)2=a +6a +3-a -3a +3=9a +3. 点拨:在分式的加减运算中,若分式的分子、分母是多项式,则首先把能因式分解的分子、分母分解因式,其次把分子、分母能约分的先约分,然后再计算,这样可简化计算过程. 2.解:原式=a -21+4a +2=a 2-4a +2+4a +2 =a 2a +2. 点拨:整式与分式相加减时,可以先将整式看成分母为1的式子,然后通分相加减. 3.解:原式=x +1x 2-1+x -1x 2-1+2x x 2+1+4x 3x 4+1=2x x 2-1+2x x 2+1+4x 3x 4+1=2x (x 2+1)+2x (x 2-1)(x 2-1)(x 2+1)+4x 3x 4+1=4x 3x 4-1+4x 3x 4+1=4x 3(x 4+1)+4x 3(x 4-1)(x 4-1)(x 4+1)=8x 7x 8-1. 点拨:此类题在计算时,采用“分步通分相加”的方法,逐步递进进行计算,达到化繁为简的目的.在解题时既要看到局部特征,又要全局考虑.4.解:设3m -2n =x ,则原式=x +x 3x +1-x 2-x x -1=x (x 2-1)+x 3(x -1)-x 2(x 2-1)-x (x +1)(x +1)(x -1)=-2x(x +1)(x -1)=4n -6m(3m -2n +1)(3m -2n -1).5.解:原式=1a -1a +1+1a +1-1a +2+1a +2-1a +3+…+1a +99-1a +100=1a -1a +100=100a (a +100).点拨:对于分子是1,分母是相差为1的两个整式的积的分式相加减,常用1n (n +1)=1n -1n +1进行裂项,然后相加减,这样可以抵消一些项. 6.解:1a +1b =16,1b +1c =19,1a +1c =115,上面各式两边分别相加,得⎝⎛⎭⎫1a +1b +1c ×2=16+19+115, 所以1a +1b +1c =31180.易知abc≠0,所以abc ab +bc +ac =11c +1a +1b =18031.7.解:由xx 2-3x +1=-1,知x≠0,所以x 2-3x +1x =-1.所以x -3+1x =-1.即x +1x =2.所以x 4-9x 2+1x 2=x 2-9+1x 2=⎝⎛⎭⎫x +1x 2-11=22-11=-7. 所以x 2x 4-9x 2+1=-17.8.解:以x ,y 为主元,将已知的两个等式化为⎩⎪⎨⎪⎧4x -3y =6z ,x +2y =7z.解得x =3z ,y =2z. 因为xyz≠0,所以z≠0.所以原式=5×9z 2+2×4z 2-z 22×9z 2-3×4z 2-10z 2=-13.点拨:此题无法直接求出x ,y ,z 的值,因此需将三个未知数的其中一个作为常数,解关于另外两个未知数的二元一次方程组,然后代入待求值的分式消元求值.技巧3:巧用分式方程的解求字母的值或取值范围 【类型】一、利用分式方程解的定义求字母的值1.已知关于x 的分式方程2x +4=m x 与分式方程32x =1x -1的解相同,求m 2-2m 的值.【类型】二、利用分式方程有解求字母的取值范围2.若关于x 的方程x -2x -3=mx -3+2有解,求m 的取值范围.【类型】三、利用分式方程有增根求字母的值 3.如果解关于x 的分式方程m x -2-2x 2-x=1时出现增根,那么m 的值为( ) A .-2 B .2 C .4 D .-44.若关于x 的方程m x 2-9+2x +3=1x -3有增根,则增根是多少?并求方程产生增根时m 的值.【类型】四、利用分式方程无解求字母的值5.若关于x 的分式方程x -ax +1=a 无解,则a =________.6.已知关于x 的方程x -4x -3-m -4=m3-x 无解,求m 的值.7.已知关于x 的分式方程x +a x -2-5x=1.(1)若方程的增根为x =2,求a 的值; (2)若方程有增根,求a 的值; (3)若方程无解,求a 的值. 参考答案1.解:解分式方程32x =1x -1,得x =3.经检验,x =3是该方程的解. 将x =3代入2x +4=mx ,得27=m 3.解得m =67. ∴m 2-2m =⎝⎛⎭⎫672-2×67=-4849.2.解:去分母并整理,得x +m -4=0.解得x =4-m.∵分式方程有解, ∴x =4-m 不能为增根. ∴4-m≠3.解得m≠1.∴当m≠1时,原分式方程有解. 3.D4.解:因为原方程有增根,且增根必定使最简公分母(x +3)(x -3)=0,所以x =3或x =-3是原方程的增根.原方程两边同乘(x +3)(x -3),得m +2(x -3)=x +3. 当x =3时,m +2×(3-3)=3+3,解得m =6; 当x =-3时,m +2×(-3-3)=-3+3, 解得m =12.综上所述,原方程的增根是x =3或x =-3. 当x =3时,m =6; 当x =-3时,m =12.点拨:只要令最简公分母等于零,就可以求出分式方程的增根,再将增根代入分式方程化成的整式方程,就能求出相应的m 的值.5.1或-16.解:原方程可化为(m +3)x =4m +8.由于原方程无解,故有以下两种情形:(1)若整式方程无实根,则m +3=0且4m +8≠0,此时m =-3;(2)若整式方程的根是原方程的增根,则4m +8m +3=3,解得m =1.经检验,m =1是方程4m +8m +3=3的解.综上所述,m 的值为-3或1.7.解:原方程去分母并整理,得(3-a)x =10.(1)因为原方程的增根为x =2,所以(3-a)×2=10.解得a =-2. (2)因为原分式方程有增根,所以x(x -2)=0.解得x =0或x =2.因为x =0不可能是整式方程(3-a)x =10的解,所以原分式方程的增根为x =2.所以(3-a)×2=10.解得a =-2.(3)①当3-a =0,即a =3时,整式方程(3-a)x =10无解,则原分式方程也无解; ②当3-a≠0时,要使原方程无解,则由(2)知,a =-2.综上所述,a 的值为3或-2.点拨:分式方程有增根时,一定存在使最简公分母等于0的整式方程的解.分式方程无解是指整式方程的解使最简公分母等于0或整式方程无解. 技巧4:分式求值的方法 【类型】一、直接代入法求值 1.先化简,再求值:⎝⎛⎭⎪⎫2a +1+a +2a 2-1÷a a -1,其中a =5.【类型】二、活用公式求值2.已知实数x 满足x 2-5x +1=0,求x 4+1x 4的值.3.已知x +y =12,xy =9,求x 2+3xy +y 2x 2y +xy 2的值.【类型】三、整体代入法求值4.已知x y +z +y z +x +z x +y =1,且x +y +z≠0,求x 2y +z +y 2z +x +z 2x +y 的值.【类型】四、巧变形法求值5.已知实数x 满足4x 2-4x +1=0,求2x +12x 的值.【类型】五、设参数求值6.已知x 2=y 3=z4≠0,求x 2-y 2+2z 2xy +yz +xz 的值.参考答案1.解:原式=[2a +1+a +2(a +1)(a -1)]·a -1a=2(a -1)+(a +2)(a +1)(a -1)·a -1a=3a +1. 当a =5时,3a +1=35+1=12.2.解:由x 2-5x +1=0得x≠0,∴x +1x=5.∴⎝⎛⎭⎫x +1x 2=25.∴x 2+1x 2=23. ∴x 4+1x 4=⎝⎛⎭⎫x 2+1x 22-2=232-2=527 点拨:在求解有关分式中两数(或两式)的平方和问题时,可考虑运用完全平方公式进行解答. 3.解:x 2+3xy +y 2x 2y +xy 2=x 2+2xy +y 2+xy xy (x +y )=(x +y )2+xyxy (x +y ).因为x +y =12,xy =9, 所以(x +y )2+xy xy (x +y )=122+99×12=1712.4.解:因为x +y +z≠0,所以等式的两边同时乘x +y +z ,得x (x +y +z )y +z +y (x +y +z )z +x +z (x +y +z )x +y=x +y +z ,所以x 2y +z +x (y +z )y +z +y 2z +x +y (z +x )z +x +z 2x +y +z (x +y )x +y =x +y +z.所以x 2y +z +y 2z +x +z 2x +y +x +y +z =x +y +z.所以x 2y +z +y 2z +x +z 2x +y=0.点拨:条件分式的求值,如需对已知条件或所求条件分式变形,必须依据题目自身的特点,这样才能收到事半功倍的效果.条件分式的求值问题体现了数学中的整体思想和转化思想. 5.解:∵4x 2-4x +1=0,∴(2x -1)2=0.∴2x =1. ∴2x +12x =1+11=2.6.解:设x 2=y 3=z4=k≠0,则x =2k ,y =3k ,z =4k.所以x 2-y 2+2z 2xy +yz +xz=(2k )2-(3k )2+2(4k )22k·3k +3k·4k +2k·4k=27k 226k 2=2726. 【题型讲解】【题型】一、分式有意义的条件例1x 的取值范围是( ) A .x≥4 B .x >4C .x≤4D .x <4【答案】D【分析】直接利用二次根式有意义的条件分析得出答案.4﹣x >0,解得:x <4 即x 的取值范围是:x <4故选D . 【题型】二、分式的运算 例2、分式222111a a a a++---化简后的结果为( ) A .11a a +-B .31a a +-C .1a a --D .2231a a +--【答案】B【分析】根据异分母分式相加减的运算法则计算即可.异分母分式相加减,先通分,再根据同分母分式相加减的法则计算. 【详解】解:222111a a a a++--- ()()()()()21221111a a a a a a ++=-+--+ ()()()222111a a a a +++=+-()()2222111a a a a a ++++=+-()()()()3111a a a a +=++- 31a a +=- 故选:B .【题型】三、分式的基本性质 例3、若b a b -=14,则ab的值为( ) A .5B .15C .3D .13【答案】A 【解析】因为b a b -=14, 所以4b=a -b .,解得a=5b① 所以a b ①55b b=. 故选A.【题型】四、解分式方程 例4、方程2152x x =+-的解是( ) A .1x =- B .5x =C .7x =D .9x =【答案】D【分析】根据题意可知,本题考察分式方程及其解法,根据方程解的意义,运用去分母,移项的方法,进行求解. 【详解】 解:方程可化简为()225x x -=+ 245x x -=+9x =经检验9x =是原方程的解 故选D【题型】五、分式方程的解 例5、关于x 的分式方程2mx -﹣32x-=1有增根,则m 的值( ) A .m =2 B .m =1C .m =3D .m =﹣3【答案】D【分析】分式方程去分母转化为整式方程,由分式方程有增根,确定出m 的值即可. 【详解】解:去分母得:m +3=x ﹣2, 由分式方程有增根,得到x ﹣2=0,即x =2,把x=2代入整式方程得:m+3=0,解得:m=﹣3,故选:D.【题型】六、列分式方程例6、随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x件,根据题意可列方程为()A.3000420080x x=-B.3000420080x x+=C.4200300080x x=-D.3000420080x x=+【答案】D【分析】设原来平均每人每周投递快件x件,则现在平均每人每周投递快件(x+80)件,根据人数=投递快递总数量÷人均投递数量,结合快递公司的快递员人数不变,即可得出关于x的分式方程,此题得解.【详解】解:设原来平均每人每周投递快件x件,则现在平均每人每周投递快件(x+80)件,根据快递公司的快递员人数不变列出方程,得:3000420080x x=+,故选:D.分式方程(达标训练)一、单选题1.(2022·广西·富川瑶族自治县教学研究室模拟预测)关于x的分式方程3122m xx x++=--有解,则实数m应满足的条件是()A.m=-1B.m≠-1C.m=1D.m≠1【答案】D【分析】解分式方程得:m + x-3=2-x即x=52m,由题意可知x≠2,即可得到m.【详解】解:31 22m xx x++= --方程两边同时乘以2-x得:m+x-3=2-x, 2x=5-m,x=52m①分式方程有解① x ≠2, 即52m≠2, ①m ≠1. 故选D .【点睛】本题主要考查了分式方程的解,熟练掌握分式方程的解法,理解分式方程有意义的条件是解题的关键.2.(2022·海南省直辖县级单位·二模)分式方程211x =+的解为( ) A .1- B .0 C .1 D .2【答案】C【分析】按照分式方程的解法求解判断即可. 【详解】①211x =+, 去分母,得2=x +1, 移项,得 x =2-1=1,经检验,x =1是原方程的根 故选C .【点睛】本题考查了分式方程的解法,熟练掌握分式方程的解法是解题的关键. 3.(2022·天津南开·二模)化简2222432x y x yx y y x -----的结果是( )A .5x y- B .5x y+ C .225x y -D .223x yx y +-【答案】B【分析】利用同分母分式的加法法则计算,约分得到最简结果即可.【详解】解:2222432x y x yx y y x ----- 2222432x y x yx y x y --=+--55()()x yx y x y -=+-5()()()x y x y x y -=+-5x y=+,【点睛】本题主要考查了分式的加减,解题的关键是掌握分式混合运算顺序和运算法则. 4.(2022·贵州贵阳·三模)计算222m m m ---的结果是( ) A .2 B .-2C .1D .-1【答案】C【分析】根据分式减法运算法则进行运算,化简即可. 【详解】解:221222m m m m m --==---, 故选:C .【点睛】本题考查了分式的减法,正确运算是解题关键,注意运算后需要约分化简. 5.(2022·江苏淮安·一模)若分式2xx +有意义,则x 的取值范围是( ) A .0x ≠ B .2x ≠- C .2x >- D .2x ≥-【答案】B【分析】根据分式有意义的条件:分母不为0即可得到. 【详解】要分式2xx +有意义,则20x +≠, 解得:2x ≠-. 故选:B【点睛】本题考查分式有意义的条件,掌握分式有意义的条件是解题的关键.二、填空题6.(2022·四川省遂宁市第二中学校二模)分式方程31311x x x -=-+的解为 ______. 【答案】x =-2【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:去分母得:3x (x +1)-(x -1)=3(x +1)(x -1), 解得:x =-2,经检验x =-2是分式方程的解, 故答案为x =-2.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.7.(2022·湖南怀化·模拟预测)计算52x x ++﹣32x +=_____. 【答案】1【分析】根据同分母分式相加减,分母不变,把分子相加减计算即可. 【详解】解:52x x ++﹣32x +=532122x x x x +-+==++ 故答案为:1.【点睛】本题考查分式的加减,解题关键是熟练掌握同分母分式相加减时分母不变,分子相加减,异分母相加减时,先通分变为同分母分式,再加减.三、解答题8.(2022·浙江丽水·一模)解方程:13233x x-=--. 【答案】=5x【分析】这是一道可化为一元一次方程的分式方程,根据解分式方程的一般步骤:去分母,转化为求解整式方程,然后检验得到的解是否符合题意,最后得出结论. 【详解】两边同时乘以(3)x -,得132(3)x +=-, 去括号,得426x =-, 化简,得=5x ,检验:当=5x 时,30x -≠, ∴原分式方程的解为=5x .【点睛】此题考查可化为一元一次方程的分式方程,熟练掌握解分式方程的方法与步骤是解此题的关键,但是要特别注意:检验是不可少的环节.分式方程(提升测评)一、单选题1.(2022·辽宁葫芦岛·一模)2022年北京冬奥会的吉祥物“冰墩墩”和“雪容融”深受国内外朋友的喜爱.某特许零售店准备购进一批吉祥物销售.已知用600元购进“冰墩墩”的数量与用500元购进“雪容融”数置相同,已知购进“冰墩墩”的单价比“雪容融”的单价多10元,设购进“冰墩墩”的单价为x 元,则列出方程正确的是( )A .60050010x x=+ B .60050010x x =+ C .60050010x x=- D .60050010x x =- 【答案】D【分析】设“冰墩敏”的销售单价为x ,则 “雪容融”的销售单价为(x -10)元,然后根据用600元购进“冰墩墩”的数量与用500元购进“雪容融”数置相同即可列出方程.【详解】解:设“冰墩敏”的销售单价为x ,则 “雪容融”的销售单价为(x -10)元, 根据题意,得60050010x x =-。
求分式函数值域的几种方法
求分式函数值域的几种方法摘要:在高中数学教学、乃至高中毕业会考题和高考中,经常遇到求分式函数值域的问题.关于分式函数的值域的求法,是高中数学教学中的一个难点.通过对分式函数的研究总结了求其值域的常见几种方法:配方法,反函数法,判别式法,单调性法,换元法(根式代换、三角代换等),不等式法,方程法,斜率法等.关键词:分式函数 值域 方法.1 引言求分式函数值域是函数值域问题中的一个重要内容,它不仅是一个难点、重点,而且是解决函数最值问题的一个重要工具.关于求函数值域与最值的方法也是多种多样的,归纳起来,常用的方法有:配方法,反函数法,判别式法,单调性法,换元法(根式代换、三角代换等),不等式法,方程法,斜率法等.本文就中学阶段出现的各种类型的分式函数值域问题运用以上初等方法进行分析.2 求分式函数值域的常见方法 2.1 用配方法求分式函数的值域如果分式函数变形后可以转化为2122ay b a x b x c =+++的形式则我们可以将它的分母配方,用直接法求得函数的值域.例1 求21231y x x =-+的值域. 解:2131248y x =⎛⎫--⎪⎝⎭,因为231248x ⎛⎫-- ⎪⎝⎭≥18-,所以函数的值域为:(],8-∞-∪()0,+∞.例2 求函数221x xy x x -=-+的值域.解:2111y x x -=+-+, 因为22112x x x ⎛⎫-+=- ⎪⎝⎭34+≥34,所以34-≤2101x x -<-+, 故函数的值域为1,13⎡⎫-⎪⎢⎣⎭.先配方后再用直接法求值域的时候,要注意自变量的取值范围.取“=”的条件.2.2 利用判别式法求分式函数的值域我们知道若()200,,ax bx c a a b R ++=≠∈有实根,则24b ac ∆=-≥0常常利用这一结论来求分式函数的值域.例1 求223434x x y x x -+=++的值域.解:将函数变形为()()()2133440y x y x y -+++-=①,当1y ≠时①式是一个关于x 的一元二次方程. 因为x 可以是任意实数, 所以∆≥0,即()()()334144y y y +---7507y y =-+-≥0, 解得,17≤y ≤1或1y <≤7,又当1y =时,0x =,故函数的值域为1,77⎡⎤⎢⎥⎣⎦.例2 函数2221x bx cy x ++=+的值域为[]1,3,求b ,c 的值.解:化为()20y x bx y c --+-=,⑴当2y ≠时()()42x R b y y c ∈⇒∆=---≥0,⇒()224428y c y c b -++-≥0,由已知()2244280y c y c b -++-=的两根为1,3, 由韦达定理得,2c =,2b =±. ⑵当2y =时20cx b-==有解 综上⑴和⑵,2b =±,2c =.由这两个例题我们知道在利用判别式法求分式函数的值域时要注意下列问题: 1、函数定义域为R (即分母恒不为0)时用判别式求出的值域是完备的.2、当x 不能取某些实数时(分母为零),若要用判别式法求它的值域则需要对使()22222111y a x b x c a x b x c ++=++的判别式0∆=的y 值进行检验.3、转换后的一元二次方程若二次项系数中含有字母则需要讨论其是否为0只有在其不为0的情况下才可以使用判别式法.2.3 利用函数单调性求分式函数的值对于求函数的值域问题,我们通常使用能够揭示此类函数本质特征的通性通法即利用函数的单调性来求其值域.例1求函数21(,1)1x y x R x x -=∈≠-+的值域. 解:211x y x -=+=2(1)31x x +-+321x =-+, 当1x >-时,31x +是x 减函数进而y 是x 的增函数,于是(),2y ∈-∞-; 当1x <-时,同样y 是x 的增函数,于是y ∈()2,+∞; 所以211x y x -=+(1)x ≠-的值域为(),2-∞-∪()2,+∞. 在求分式函数时我们常运用函数ay x x=+的单调性的结论: ⑴当0a >时在(-∞和)+∞上增函数,在)⎡⎣和(上是减函数.⑵当0a <时在(),0-∞和()0,+∞上是增函数.例2 求函数24xy x x =-+(1≤x ≤3)的值域. 解:0x ≠所以41xy x x=+-.令4t x x=+在[]1,2上是减函数,在[]2,3是上增函数,所以2x =时,min 4t =;1x =时,max 5t =; 所以[]4,5t ∈,[]13,t t -∈,故值域为11,43⎡⎤⎢⎥⎣⎦.2.4 利用反函数法求分式函数的值域设()y f x =有反函数,则函数()y f x =的定义域是它反函数的值域,函数()y f x =的值域是其反函数的定义域.那么如果一个分式函数的反函数存在,我们就可以通过求反函数的定义域来求其值域.例1求函数251xy x =+的值域. 解:由于函数251x y x =+1()5x ≠-的映射是一一映射因此反函数存在,其反函数为25x y x =- 明显知道该函数的定义域为2|5x x ⎧⎫≠⎨⎬⎩⎭, 故函数的值域为2,5⎛⎫-∞ ⎪⎝⎭∪2,5⎛⎫+∞ ⎪⎝⎭.说明:由于本方法中所具有的某些局限性,一般说来,用此方法求值域只用ax by cx d+=+(c≠0)的函数,并且用此方法求函数的值域,也不是比较理想的方法.我们用这种方法目的是找关于y 的不等式所以反函数求值域的实质是反函数的思想树立这种思想是我们的宗旨.下面这种方法就是利用了反函数的思想比较通用的方法.2.5 利用方程法求分式函数的值域在1999年第2期《数学教学》第38页给出了下面的结论和证明.对函数()y f x =()x D ∈将其视为方程若能通过同解变形得到单值函数()x g y =*()y A ∈即()y f x =()x D ∈⇔()x g y =*()y A ∈则*A 即为()y f x =的值域利用这一结论函数问题转化为方程问题.又在2006年第2期《数学教学》“用方程法求函数值域”一文中给出了这样的引理及其证明.引理:设函数()y f x =的定义域为A 值域为B ,又设关于x 的方程()y f x =在A 中有解的y 的取值集合为C ,则C B =.例1 (2005年全国高考理科卷Ⅲ第22题)已知函数247()2x f x x -=-[]0,1x ∈求函数()f x 的值域解:247()2x f x x-=-,[]0,1x ∈,所以2247y xy x -=-,[]0,1x ∈, 即24(72)0x yx y +-+=,[]0,1x ∈.这样函数的值域即为关于x 的方程24(72)0x yx y +-+=在[]0,1x ∈内有解的y 的取值集.令()g x =24(72)x yx y +-+,[]0,1x ∈,则关于x 的方程24(72)0x yx y +-+=在[]0,1x ∈内有解⇔(0)(1)g g ⋅≤0或(0)0(1)00122444(72)0g g b ya b ac y y >⎧⎪>⎪⎪⎨<-=-<⎪⨯⎪-==⨯--≥⎪⎩⇔72-≤y ≤3-或4-≤y ≤72-⇔4-≤y ≤3, 即所求函数的值域为[]4,3--.2.6 利用换元法求分式函数的值域当题目的条件与结论看不出直接的联系(甚至相去甚远)时,为了沟通已知与未知的联系,我们常常引进一个(或几个)新的量来代替原来的量,实行这种“变量代换”往往可以暴露已知与未知之间被表面形式掩盖着的实质,发现解题方向.换元法是一种重要的数学解题方法,掌握它的关键在于通过观察、联想,发现与构造出变换式(或新元换旧式、或新式换旧元、或新式换旧式).在中学数学问题中,常见的基本换元形式有式代换、三角代换、点代换、参数代换等.例1求函数]0,1[,5444)(22-∈++++=x x x x x x f 的值域. 解:令2+=x t ,则]1,21[1,1111222∈+=+=t t t t y .因为]2,45[112∈+t , 所以函数)x (f 的值域是]54,21[.例2 求函数423(1)x y x =+的值域.解:令tan x θ=,(,)22ππθ∈-, 则44233tan tan (1tan )sec y θθθθ==+=42sin cos θθ =2221sin sin 2cos 2θθθ≤32221sin sin 2cos 23θθθ⎛⎫++ ⎪⎝⎭427=. 当且仅当2tan 2θ=时“=”成立.所以函数423(1)x y x =+的值域为40,27⎡⎤⎢⎥⎣⎦. 在这道例题中不仅用了换元法还用了均值不等式.利用三角函数来代换是我们在用换元法解题最常用的在换元后根据三角函数的有界性求能求出函数的值域 .在用换元法的时候重要的就是要注意换元后的自变量发生了改变,那么它的定义域也就变了.注意到这点才能准确地求出值域.2.6 利用不等式法求分式函数的值域“不等式法”就是通过利用不等式的一些性质和均值不等式来求某些具有一定特性的分式函数的值域.若原函数通过变形后的分子分母符和下列条件①各变数为正;②各变数的和或积为常数.则可以考虑用均值不等式求它的值域.要注意在得到结论之后要说明其中等号能够取到.例1 求函数224(1)(3)x y x +=+(1)x >-的值域.解:224(1)(1)4(1)4x y x x +=++++244(1)41x x =++++. 因为10x +>,所以411x x +++≥4,则41481x x +++≥+,所以0y <≤2438=(当1x =时取等号),故函数的值域为(]0,3. 例2 设123n S n =++++,n N ∈求1()(32)nn S f n n S +=+的最大值.(2000年全国高中数学联赛)解:1()(32)n n S f n n S +=+(1)2(1)(2)(32)2n n n n n +=+++⋅2(32)(2)3464n n n n n n ==++++, 即化为了求分式函数最值的问题1()6434f n n n =++.又因为6434n n++≥34+50=, 当64n n =即8n =时“=”成立,所以对任何n N ∈有()f n ≤150, 故()f n 的最大值为150.例2表面上看是数列的问题而实际是我们可以将其转化为求函数值域的问题在这里我们利用均值不等式的性质来求其值域就使得整个解题过程利用数更简单.2.8 斜率法求分式函数的值域数形结合是中学数学中的一种重要的数学思想方法.数是形的抽象概括,形是数的直观表现.华罗庚先生指出:数缺形时少直觉,形少数时难入微,数形结合百般好,隔离分家万事休.这种方法不仅仅体现在数学的其它领域中,在求函数的值域与最值时也有良好的反映.联想到过11(,)A x y ,22(,)B x y 的直线AB L 的斜率为2121AB y y k x x -=-,我们可以考虑把分式函数化为斜率式并利用数形结合法来求函数的值域.例1 求函数232()()2(32)3t f t t t =>-的最小值. 解:函数()f t 可变形为()f t 23064t t -=-2()3t >,设2(6,3)A t t ,(4,0)B 则()f t 看作是直线AB 的斜率, 令6x t =,23y t =则212(4)x y x =>.在直角坐标系中A 点的轨迹为抛物线的一部分直线与抛物线相切是斜率最小. 过点(4,0)B 直线方程为:(4)y k x =-将它代入212x y =, 有212480x kx k -+=,则0∆=推算出43k =此时8x =, 即8t =时,min 4()3f t =. 例2 求211x x y x +-=+1(2-≤x ≤1)的值域.解:2()1(1)x x y x +-=--,令(1,1)A -,2(,)B x x x +,则AB y k =,点B 的轨迹方程为2y x x =+1(2-≤x ≤1), 111(,)24B --,2(1,2)B ,152AB k =-,212AB k =,所以51,22AB y k ⎡⎤=∈-⎢⎥⎣⎦,即函数的值域为51,22⎡⎤-⎢⎥⎣⎦.斜率法同样可以运用在形如ax by cx d+=+的分式函数中,函数的值域就转化为求直线斜率的范围给出了这样的结论:对于函数ax by cx d+=+22(0,0,0)c a b bc ad ≠+≠-≠,x ∈[],m n ,若记{}1min (),()m f m f n =,{}2max (),()m f m f n =,则当dx c=-(),m n ∈时值域为(]1,m -∞∪[)2,m ∞.当dx c=-∉(),m n 时,值域为[]12,m m .3 结论整篇文章介绍了求分式函数八种比较常用的方法,可以根据题目不同的特点灵活选取不同的方法,而实际上在我们通常遇到的题目中并不是只用一种方法就能解决问题,而是要综合几种方法.当然有一些特殊的分式函数,在求值域的时就会用到特殊的方法.但是最重要的是每种方法都要注意其函数的定义域.参考文献:[1]贾士代.用方程法求函数值域[J] . 数学教学,2006(2):21[2]王习建. 21112222a x b x c y a x b x c ++=++型函数值域的求法[J] .数理化解题研究 ,2003(6):25[3]张莲生.sin sin a x by c x d+=+ 的值域的求法[J] .数理天地(高中版),2001(10):19-20[4]王建海. 活用均值不等是巧解数学题[J] .数学教学通讯,2003(12):17 [5]钟国雄 .一个函数最小值问题的多种解法[J] . 中学生数学,2002(5):23 [6]江思容、望孝明 .求最值问题的若干途径[J] . 中学数学研究,2003(8):35 [7]傅洪海、陈宏. 关于反函数求值域的思考[J] . 数学教学, 1999(2):29-30 [8]陈士明.从求()bf x x x a=++的单调区间谈起[J] . 数学教学,1999(2):27-28。
初中数学分式化简求值的技巧总结
初中数学分式化简求值的技巧总结作者:钱立梅来源:《文理导航》2013年第23期【摘要】在初中数学教学中,分式化简求值是一项重要的学习内容。
但是由于分式化简求值的解法种类比较多,从而导致学生在学习过程中,很难将其不同的解法进行适当的应用。
为了能够帮助学生掌握一定的分式化简求值解法,下面本文就对初中数学分式化简求值技巧进行一定的总结。
【关键词】初中数学;分式化简求值;技巧在数学上,化简是十分重要的概念,一些复杂难辨的式子,很多时候需要依靠化简才能更简单快速地对它们求值成功。
从教材和考试的实际情况来看,初中数学中分式化简求值主要有以下几种题型和技巧。
一、把假分式化成正是和真分式之和= - - +化简求值技巧:遇到这种题型不要直接通分计算,因为过于繁琐。
可以将每个假分式化成整式和真分式之和的形式,之后再进行化简求和将会简便很多。
解:原式:= -- +=(2a+1)+ -(a-3)+-(3a+2)- +(2a-2)-=(2a+1)-(a-3)-(3a+2)+(2a-2)+ - + - = - + -= + ==说明:是否能正确地将假分式写成整式与真分式之和的形式是本题的关键所在。
教师在对这种类型题目进行讲解过程中,首先可以引导学生直接进行通分计算试一下,学生很快就会发现直接通分,几乎上就是无从下手,然后再让学生对各个分式进行变形,化成整式和真分式之和,即可继续进行化简。
这样学生在一拿到题目的时候,就不会先盲目的进行通分,就会先想一下有没有简便的方法,促使学生去学习一定的解题技巧。
这一类型题目在解析过程中,所使用的是逆向思维,其也被称为是求异思维,简单来说,就是已经司空见惯的、形成一定定论的事物或者是观点,从其相反方面进行思考的一种思维方式。
二、对平方差公式进行使用+ + + + + ,求该分式当a=2时的值。
分式化简求值技巧:直接通分比较麻烦,先化简再求值的过程中注意平方差公式:a2-b2=(a+b)(a-b)。
2016巧算分数计算题
2016巧算分数计算题在上一节课中,我们研究了一些分数加减法的巧算方法。
在本节课中,我们将继续研究相关知识。
一)拆分的概念1.什么是拆分?拆分是将一个分数写成几个分数的和或差的形式。
例如:xxxxxxxx学会拆分后,有时就可以不需要通分,也能较简便地解决问题。
2.观察思考当一个分数的分母是两个数的乘积,分子是这两个数的差时,可以将其拆分成这两个数分别作为分母,1作为分子的分数的差。
即:d/(n(n+d)) = 1/n - 1/(n+d) (n≠0.d≠0)例如:xxxxxxxx62××434xxxxxxxx204××656-311426××53547-311213×737二)拆分的方法1.拆数加减在分数加减法运算中,将一个分数拆成两个分数相减或相加,使其中的数量关系明朗化,并抵消其中的一些分数,往往可以地简化运算。
1)拆成两个分数相减例如:计算11111×2×3×4×99×1002)拆成两个分数相加例如:求下面所有分数的和xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx三)练1.计算:2.计算:3.计算:4.计算:5.计算:1×3×5×7×9×1997×1999×20011×3×5×7×9×11×13×15×17×19×211988×1989×1990×1991×1992×1993 3333xxxxxxxxxxxxxxxx42学会了分数的拆分,有时可以不用通分,也能解决问题。
分式的运算技巧
分式概念形如?(A、B是整式,B中含有字母)的式子叫做分式。
其中A叫做分式的分子,B叫做分式的分母。
且当分式的分子的次数低于分母的次数时,我们把这个分式叫做真分式;当分式的分子的次数高于分母的次数时,我们把这个分式叫做假分式。
注意:判断一个式子是否是分式,不要看式子是否是的形式,关键要满足:分式的分母中必须含有字母,分子分母均为整式。
无需考虑该分式是否有意义,即分母是否为零。
由于字母可以表示不同的数,所以分式比分数更具有一般性。
方法:数看结果,式看形。
分式条件:1.分式有意义条件:分母不为0。
2.分式值为0条件:分子为0且分母不为0。
3.分式值为正(负)数条件:分子分母同号得正,异号得负。
4.分式值为1的条件:分子=分母≠0。
5.分式值为-1的条件:分子分母互为相反数,且都不为0。
代数式分类整式和分式统称为有理式。
带有根号且根号下含有字母的式子叫做无理式。
无理式和有理式统称代数式。
分式的基本性质分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。
用式子表示为:?(A,B,C为整式,且B、C≠0)运算法则约分根据分式基本性质,可以把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。
约分的关键是确定分式中分子与分母的公因式。
约分步骤:1.如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去。
2.分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去。
公因式的提取方法:系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式。
最简分式:一个分式不能约分时,这个分式称为最简分式。
约分时,一般将一个分式化为最简分式。
通分:异分母的分式可以化成同分母的分式,这一过程叫做通分。
分式的乘法法则:(1)两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
(2)两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。
分式精题技巧(二)
分式的技巧和精题(二)一.分式的运算和求值的技巧第一招:神奇的倒数法,当分母是多项式,分子式单项式或比它简单,可试用倒数法,也许会出现简单的神奇精题1.已知2115x x x =-+,求2421x x x ++的值 解:神奇的倒数法,已知2115x x x =-+,即215,x x x -+=则115,x x -+=16x x += 两边平方, 221236,x x ++=221135,x x ++= 通分,422135x x x++= 再倒数,得2421135x x x =++精题2已知,,a b c 为实数,且111,,345ab bc ca a b b c c a ===+++,求abcab bc ac++的值 用神奇的倒数法,把已知分式倒数(为什么?因为分子单项式分母多项式)3,4,5a b b c c a ab bc ca +++===,1111113,4,5b a c b a c +=+=+=,三式相加得 1112345a b c ⎛⎫++=++ ⎪⎝⎭,1116a b c ∴++=abc ab bc ac ++倒数为111ab bc ac abc c a b ++=++6=,1,6abc ab bc ac ∴=++ 第二招 ,把已知中繁的,次数高的,用简单的取代 精题3 已知13xy x y =--,求2322x xy yx y xy +---的值,把二次式xy 用一次式()13x y --表示,代入2322x xy yx y xy+---,分子分母都为一次式了 解:2322x xy y x y xy +-=--()()12323123x x y yx y x y ⎡⎤+---⎢⎥⎣⎦⎡⎤----⎢⎥⎣⎦()2223x x y y x y x y -+-=-+-(化去繁分式的分母) =()()332()x y x y x y --+-3()35()5x y x y -==-,第三招:分离分式里的整式:把简化分式为一个整式与一个简化分式的和(拆项法)精题4.计算 2213113a a a a a a +--+-+-。
化简求值的口诀
化简求值的口诀
先分解、再约分。
分式的乘除法运算或化简应该先将能分解因式的分子、分母进行因式分解,然后再进行约分,达到计算或化简的目的。
通过变形,将已知式子转化为所要求值的式子而自然地得到所求分式的值是分式求值题一个重要的解题方法。
化简求值化简求值在数学上是一个非常重要的概念。
复杂的式子,必须通过化简才能简便地求出它的值。
化简是指把复杂式子化为简单式子的过程。
在分式的化简求值过程中,特别应该讲究的是化简求值过程中的方式方法、技能技巧,当然,无论是“方式方法”也好,“技能技巧”也罢,其关键还在于“基础知识”的掌握。
如果“基础知识”的掌握是非常过硬的,那么在分式的化简求值过程中就能够将相关的“方式方法”、“技能技巧”运用自如,自然,在“基础知识”、“方式方法”、“技能技巧”的运用方面有了一定程度的能力的时候,如果能够再通过一定题量来进行训练的话,那么分式化简求值中的“方式方法”、“技能技巧”的运用就“如虎添翼”、“熟能生巧”,反之,一切皆为空谈。
分式的化简求值主要分为三大类1、所给已知值是非常简单的数值,无须化简或变形,但所给的分式却是一个较复杂的式子。
2、所给已知值是一些比较复杂甚至是非常复杂的数值,但所给的分式却是一个非常简单的式子。
3、所给已知值是一些比较复杂甚至是非常复杂的数值,化简或变形后更有利于准确地求出所给分式的值,不仅如此,而且所给的分式也是一个较复杂的式子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分析 由分式专 I 音 D+ ‘ 可化为( + ) , 了 而 而
b a o
由分 式 + 2 + 可 化 为 ( +了 1
两边取倒数 , : — 得 。一 则 问题 迎 刃而 解 .
已知条件 n+6 6 若两边 同除以 8 =。 , 6得 : _ _ 1
所 j—= 一—y 以一V 等 害 l j J
:
1 = 8y ) 孚_(0 业 1 ’≠. …
I 2 二 ±
( 一Y)一3 y x
一
2 .对 已知 条 件 进 行 因式 分 解 .
!二 2±
— —
5x — x y -3 y
侈 已知 一 x 4 0 4 2 4y+ y = ,
… 一
存 分 式 的 求 值 中 , 给 出 分 式 中 具 体 字母 的值 , 若 可
分析
先把 分式 进行 化简 , 再把 具体 的值代 人 , 而求 出分式 的 值. 例如 : 求分式
n — l o
即 一 =0 也 就 是 =2 , 下就 柳 暗 花 明 了. 2 , y以 3 .对 已知 条 件 两边 同 时 平 方.
所 以 : : . + 7
4 .对 已知 条 件 进 行 通 分 . 例 4 已 知 一一 5 求分式塾 1
,
尘 的值
.
— jx 一 y
分析
对 已知 条 件 中等 式 的左 边 进 行 通 分 得 :
例 l 已知 一y , : y 求分 式 ≠0 2 3 ,
毛代 入
一
V
中求 分 的 . ,出 式 值
此 时 , 果 易 求 得. 结 解: 为 1 l 5 因 l l l l
—
,
Y
解: 2 3 由 x= y得 =
 ̄ g y- 5 f 2 x= . f
x y
所 ! 皇: 以 ! ::
,一
=
所 以 Y— = x , Ⅱ — 5 y B Y: 一 x . 5y
;
。.
;
+
。+
。+
。.
。+
。+
。+
。+
。+
;
+
。+
.+
。+
。 +
。+
。+
。+
。.
.
致 掌大世界 _ - 。 。3
.。 。 ; + . . +。 。 。 +.+ 。; 。 ++
巧求分 式的值
恩维创新
蔓盥 _墨 柳煎照_ 山 中 兰 … 至釜
因 为 一 x 4 = , 以 ( 一 y 。 0 4y+ 0 所 2)= .
z+2 + :9
,
而有 些 分 式 的求 值 题 , 已知 条 件 中没 有 给 n 分 式 中 { 字母 的具 体 值 , 而 不 能 直 接 代 人 求 值 , 时 就 得 另 寻 从 这 途 径 , 可 以 把 已 知 条 件 或 对 所 求 分 式 进 行 适 当变 形 , 如
这 就 达 到 了化 繁 为 简 、 难 为 易 的 目的 , 举 例 如 下 : 化 现 1 .对 已知 条 件 进 行 变 形 , 一 个 字 母 表 示 另 一 个 由 字母.
一
l ( + 。9 :。 丢)一 2
:
=
[ 。一 ) + ] 9 ( 。 4 .
『 +4] 3 。一9: 1 0 6.
(+ ) ÷ 。 ÷
:
( 上接 2 0页 )
此告诉大家一个极简单 义省力 的方法. 帮助大家 越过 障
0 生
5
8
碍 。 利求解. 顺 我们仍 以上述 三例 为蓝本 , 谈谈具 体操作
方法.
显然二者无公共部 分 , 故原不 等式 组 的解集应 为空
集( 即无 解 ) .
由例 l得原不等 式组 的解集 为 x> 2
.
我们将 此处
的 大 于 号 “>” 作 省 略 了 箭 尾 的 箭 头 , 此 , 指 明 的 看 因 它 方 向便 是 “ ” 据 此 可 画 出 如 下 图 形 , 一 , 即
再例得等组解为 啬 由s 式的 { 不 集
由不等式①知 , 的解集所 标 明的方 向为 “ ” 而 它 一 , 不等式② 的解集所表 明的方 向应为 “ . 一 ” 由此可得如下
则问题得到解决.
解 : 为 a+ a , a , ≠O , 因 b: b ( ≠0 b )
所 以 + b .I
ab n0
,
1 =1
解冈 = , : 为 ÷
所 以 n≠0,
所 以
:2 .
即 _ + 1
b a
:
1.
ห้องสมุดไป่ตู้
所 以 。一三 =3 .
所 以 + 2 + 1 所 以 a 6 4+ 1
的值 , 中 。: . 其 5
= = .
例 3 已知 +_ : 求 分式 X + 的 值 . l 3 2
.
解: 当 n= 5时
一 一
分析
对 已 知条 件 + :3两 边 吲 时 平 方 得 :
0 +4 —5 +4 — 9 ‘
(+ ) =9 利 用 完 全 平 方 分 式 展 开 得 : ,
的值 .
一
=5 ,所 以 ) = 5 ; 看 所 求 分 式 r— 再
± 二 一 二 2 一 二:± i ± ( 2 !
分析 由已知条件 2 3 x= y变形得 = y 再把 ÷ ,
:
3 y— 一 ( — )一 x 一 ( — )一 x x Y Y 3y y 3 y’
—
零 ) .
,
例 6 已 知 a+ b=a ( b ≠0 6 ) ,≠0 ,
分析 已知条件不能直接代 入求 值 , 不难发 现 a +
1 6
0 1可 转 化 为 用 。一
—
表示 的式 子 , 对 而 3 ・
a
a
‘ 一÷ Zj
=
求 + +的. 古 值 2
= 。 =
5
≠o )
.
求
的值.
盛
…一 …… … 一++一 + 一+一 一………一.
5 .对 已 知 条 件 中的 等 式 两 边 取 倒 数.
6 .对 已 知 条 件 两 边 同 除 以 某 个 式 ( : 瓦 小 为 汪 凼
例 5 已知
4 6 = 1 求 。 1 1的值 . 了