高等数学练习题(附答案)
高等数学练习题(附答案)
《高等数学》专业年级学号姓名一、判断题.将√或×填入相应的括号内.(每题2分,共20分)()1.收敛的数列必有界.()2.无穷大量与有界量之积是无穷大量.()3.闭区间上的间断函数必无界.()4.单调函数的导函数也是单调函数.()5.若f (x )在x 0点可导,则f (x )也在x 0点可导.()6.若连续函数y =f (x )在x 0点不可导,则曲线y =f (x )在(x 0,f (x 0))点没有切线.()7.若f (x )在[a ,b ]上可积,则f (x )在[a ,b ]上连续.()8.若z =f (x ,y )在(x 0,y 0)处的两个一阶偏导数存在,则函数z =f (x ,y )在(x 0,y 0)处可微.()9.微分方程的含有任意常数的解是该微分方程的通解.()10.设偶函数f (x )在区间(-1,1)内具有二阶导数,且f ''(0)=f '(0)+1,则f (0)为f (x )的一个极小值.二、填空题.(每题2分,共20分)1.设f (x -1)=x ,则f (x +1)=.22.若f (x )=2-12+11x1x,则lim +=.x →03.设单调可微函数f (x )的反函数为g (x ),f (1)=3,f '(1)=2,f ''(3)=6则---------------------------------------------------------------------------------------------------------------------------------g '(3)=.4.设u =xy +2x,则du =.y35.曲线x =6y -y 在(-2,2)点切线的斜率为.6.设f (x )为可导函数,f '(1)=1,F (x )=f ()+f (x ),则F '(1)=.7.若1x2⎰f (x )0t 2dt =x 2(1+x ),则f (2)=.8.f (x )=x +2x 在[0,4]上的最大值为.9.广义积分⎰+∞0e -2x dx =.2210.设D 为圆形区域x +y ≤1,⎰⎰y D1+x 5dxdy =.三、计算题(每题5分,共40分)111+Λ+).1.计算lim(2+22n →∞n (n +1)(2n )2.求y =(x +1)(x +2)(x +3)ΛΛ(x +10)在(0,+∞)内的导数.23103.求不定积分⎰1x (1-x )dx .4.计算定积分⎰πsin 3x -sin 5xdx .3225.求函数f (x ,y )=x -4x +2xy -y 的极值.6.设平面区域D 是由y =x ,y =x 围成,计算⎰⎰Dsin ydxdy .y7.计算由曲线xy =1,xy =2,y =x ,y =3x 围成的平面图形在第一象限的面积.---------------------------------------------------------------------------------------------------------------------------------8.求微分方程y '=y -2x的通解.y四、证明题(每题10分,共20分)1.证明:arc tan x=arcsinx 1+x 2(-∞<x <+∞).2.设f (x )在闭区间[a ,b ]上连续,且f (x )>0,F (x )=⎰f (t )dt +⎰x xb1dt f (t )证明:方程F (x )=0在区间(a ,b )内有且仅有一个实根.《高等数学》参考答案一、判断题.将√或×填入相应的括号内(每题2分,共20分)1.√;2.×;3.×;4.×;5.×;6.×;7.×;8.×;9.√;10.√.二、填空题.(每题2分,共20分)21.x +4x +4; 2.1; 3.1/2;4.(y +1/y )dx +(x -x /y )dy ;25.2/3;6. 1;7.336;8.8;9.1/2;10.0.三、计算题(每题5分,共40分)n +1111n +1<++L +<1.解:因为(2n )2n 2(n +1)2(2n )2n 2且lim 由迫敛性定理知:lim(n →∞n +1n +1=0lim ,=0n →∞(2n )2n →∞n 2111++Λ+)=0222n (n +1)(2n )2.解:先求对数ln y =ln(x +1)+2ln(x +2)Λ+10ln(x +10)---------------------------------------------------------------------------------------------------------------------------------∴11210y '=++Λ+y x +1x +2x +10∴y '=(x +1)Λ(x +10)(3.解:原式=21210++Λ+)x +1x +2x +10⎰11-xd x =2⎰11-(x )2d x=2arcsin4.解:原式=x +c⎰πsin 3x cos 2xdxπ32=⎰π2020cos x sin xdx -⎰cos x sin xdx232ππ32=⎰sin xd sin x -⎰ππ2sin xd sin x32222-[sin 2x ]π=[sin 2x ]0π552=4/525.解:f x'=3x -8x -2y =0f y'=2x -2y =05π5故⎨⎧x =0⎧x =2或⎨⎩y =0⎩y =2当⎨⎧x =0''(0,0)=-2,f xy ''(0,0)=2''(0,0)=-8,f yy 时f xx⎩y =0---------------------------------------------------------------------------------------------------------------------------------Θ∆=(-8)⨯(-2)-22>0且A=-8<0∴(0,0)为极大值点且f (0,0)=0当⎨⎧x =2''(2,2)=-2,f xy ''(2,2)=2''(2,2)=4,f yy 时f xxy =2⎩Θ∆=4⨯(-2)-22<0∴无法判断6.解:D=(x ,y )0≤y ≤1,y 2≤x ≤y{}∴⎰⎰D1y sin y 1sin y sin y dxdy =⎰dy ⎰2dx =⎰[x ]y dyy 20y 0y y y =⎰(sin y -y sin y )dy1=[-cos y ]+10⎰1yd cos y 1=1-cos1+[y cos y ]0-⎰cos ydy 01=1-sin17.解:令u =xy ,v =y;则1≤u ≤2,1≤v ≤3x1x uJ =yuxv =2uv y vv-u 2v v =12v u2u v231dv =ln 3∴A =⎰⎰d σ=⎰du ⎰112v D8.解:令y =u ,知(u )'=2u -4x由微分公式知:u =y =e ⎰22dx 2(⎰-4xe ⎰-2dx dx +c )---------------------------------------------------------------------------------------------------------------------------------=e 2x (⎰-4xe -2x dx +c )=e 2x (2xe -2x +e -2x +c )四.证明题(每题10分,共20分)1.解:设f (x )=arctan x -arcsinx 1+x 221Θf '(x )=-21+x 1x 1-1+x 221+x -⋅1+x 2x 21+x 2=0∴f (x )=c-∞<x <+∞令x =0Θf (0)=0-0=0∴c =0即:原式成立。
高等数学练习题及答案
一、单项选择题1.0lim()x x f x A →=,则必有( ).(A )()f x 在0x 点的某个去心邻域内有界. (B) ()f x 在0x 点的任一去心邻域内有界.(C)()f x 在0x 点的某个去心邻域内无界. (D) ()f x 在0x 点的任一去心邻域内无界.2.函数⎩⎨⎧≥+<=0)(x x a x e x f x ,要使()f x 在0x =处连续,则a =( ).(A) 2. (B) 1. (C) 0. (D) -1.3.若()()F x f x '=,则()dF x =⎰( ).(A )()f x . (B) ()F x . (C) ()f x C +. (D) ()F x C +4.方程 410xx --=至少有一根的区间是( ).(A ) 10,2⎛⎫ ⎪⎝⎭. (B )1,12⎛⎫⎪⎝⎭. (C )(2,3). (D )(1,2).二、填空题1. 设()f x 在0x x =处可导,则0lim x x y →∆= .2. 某需求曲线为1002000Q P =-+,则当10P =时的弹性为 .3. 曲线3267yx x =+-在0x =处的法线方程为 .4.2sin 2x t d e dt dx⎰= . 三、求下列极限(1)2211lim 21x x x x →---.(2)1lim(1)2x x x→∞-.(3) 0sin 2lim ln(1)x xx →+. 四、求下列导数和微分(1)已知3cos x y x=, 求dy . (2)求由方程l n2xyy e =+所确定的函数()y f x =的导数dy dx .五、求下列积分(1)221(sec )1x dx x++⎰.(2)20⎰ . (3)sin ⎰. 六、求函数()x f x xe -=的单调区间和极值.七、求由直线2yx =和抛物线2y x =所围成的平面图形的面积.八、证明:当0x >时,(1)l n (1)x x x++>.九、某种商品的成本函数23()200030.010.0002c x x x x =+++(单位:元),求生产100件产品时的平均成本和边际成本.一、 A . B . D . D . 二、(1)0. (2)-1. (3)0x=. (4)] 2sin cos x e x ⋅.三、求极限(1)解:原式=11(1)(1)12limlim (21)(1)213x x x x x x x x →→-++==+-+ (2)解:原式= 111222220011lim[(1)][lim(1)]22x xx x e x x -----→→-=-= (3)解:这是未定型,由洛必达法则原式=00cos 22limlim2(1)cos 2211x x x x x x →→⋅=+=+四、求导数和微分(1)解:23l n3c os 3sin(c os )x xx xy x +'=,23ln3cos 3sin (cos )x x x x dy dx x += (2)解:方程两边对x 求导,()xyy e y xy ''=+, 1xyxyye y xe '=-五、积分1.原式=221sec xdx dx +⎰⎰=tan arctan x x c ++ 2.原式=220118(4)x --=-=⎰3.t =,2,2x t dx tdt ==原式=sin 22(cos )2cos 2cos t tdt td t t t tdt⋅=-=-+⎰⎰⎰2c o s 2s in 2int t t C C=-++=-六、解: 函数定义域为(),-∞+∞,()(1)x x x f x e xe e x ---'=-=- 1x =是驻点 可列表讨论:单调增区间(,1)-∞单调减区间(1,)+∞极大值1(1)f e=. 七、解:解方程组22y x y x =⎧⎨=⎩得交点坐标(0,0) (2,4) 23222004(2)33x A x x dx x ⎡⎤=-=-=⎢⎥⎣⎦⎰ 八、 证明:设 ()(1)ln(1)f x x x x =++- 当0>x 时,()l n (1)11l n (1)0f x x x '=++-=+>故原函数是增函数,0>x ,即()(0)0f x f >= 即(1)ln(1)0x x x ++-> 故 当0x >时,(1)l n (1)x x x++>.九、解:23200030.010.0002()x x x c x x+++=, 23200031000.011000.0002100(100)100c +⨯+⨯+⨯==262'()30.020.0006c x x x =++ 2'(100)30.021000.000610011c =+⨯+⨯=一、单项选择题1. 无穷小量是( ). (A )比零稍大一点的一个数. (B )一个很小很小的数.(C )以零为极限的一个变量. (D )数零.2.下列函数中当0x +→时为无穷大的函数是( ). (A) 21x--. (B) sin 1sec x x+. (C) xe -. (D) 1x e .3.()f x x =在点0x =处的导数( ). (A)1 . (B) 0. (C) -1.. (D) 不存在.4. x 0为驻点是可导函数f x ()在x 0处取得极值的( ). (A) 充要条件. (B) 充分条件. (C) 必要条件. (D) 即非充分又非必要.二、填空题1.0x =是函数1,10(),01x x f x x ⎧--≤<⎪=≤<的第 类间断点.2.设某种商品的需求函数为220Q P =-,则5P =时的边际需求为 . 3.已知曲线3223x y x =-+,则其上切线平行于x 轴的点的坐标为 .4.1-=⎰ . 三、求下列极限1.1lim x →23321x x x +++. 2.23lim(1)x x x →∞-.3.00lim sin xtx e dt x -→⎰. 四、求下列导数和微分1.已知ta n c o s2y x x =⋅, 求dy .2.求由参数方程233cos 2sin x ty t⎧=⎪⎨=⎪⎩所确定的函数()y f x =的导数 dy dx .五、求下列积分1.32x x e dx ⎰. 2.3(dxx +⎰. 3.21ln x xdx ⎰. 六、求函数arctan yx =的凹凸区间和拐点.七、求由抛物线 2x y=与直线22y x =-所围成平面图形的面积.八、证明:当0x >时,2ln(1)2x x x -<+.九、某商品每月销售x 件的收入函数为100()1000,xR x xe-=问每月销售多少件商品时,可使收入最大?一、C. D . D . C . 二、(1)一. (2)—10 . (3)()0,2、22,3⎛⎫⎪⎝⎭.(4)0. 三、求极限 (1)解:因为函数()f x =23321x x x +++在点1x =处连续,故1lim x →2332132(1)3111x x f x ++++===++(2) 原式=(3)2663333lim[1()][lim(1)]xxx x e xx --⋅---→∞→∞+-=-= (3)解: 这是一个未定型,由洛必达法则原式=000lim lim 1cos limcos xxx x x e ex x--→→→== 四、求导数和微分(1)解:22seccos2tan (sin 2)2sec cos22tan sin 2y x x x x x x x x '=+-⋅=-2sec cos 22tan sin 2dy x x x x dx ⎡⎤=-⎣⎦(2)解:2236sin ,6cos dx dy t t t t dt dt=-=,233226cos cos 6sin sin dy t t t t dx t t t ==--五、积分1.原式=33311()33x x e d x e C =+⎰ 2.原式=1323ln 2arcsin dx x x C x +=++⎰3.原式=222222211111ln ln ()ln 222x x x x xdx xd x dx x ⎡⎤==-⋅⎢⎥⎣⎦⎰⎰⎰=22132ln 22ln 244x ⎡⎤-=-⎢⎥⎣⎦六、解:函数定义域为(,)-∞+∞,211y x '=+,222(1)xy x -''=+,令0y ''=得0x =,0x =把定义区间分成两部分(,0)(0,)-∞⋃+∞.可表示为:凹区间(,0)-∞,凸区间(0,)+∞,拐点(0,0).七、解:222y x y x⎧=⎪⎨=-⎪⎩交点()1,1-,()1,1 由定积分的几何意义可得1122210(2))4(1)A x x dx x dx -⎡⎤=--=-⎣⎦⎰⎰1308433x x ⎡⎤=-=⎢⎥⎣⎦八、证:设2()ln(1)2x f x x x =+-+当0x > 21()1011x f x x x x'=-+=>++ 故)(x f 在定义域内单增,即()(0)0f x f >=2ln(1)02x x x +-+>,即当0x >时,2ln(1)2x x x -<+ 九、解:1001001'()1000()100x xR x e xe --⎡⎤=+⋅-⎢⎥⎣⎦=1001000(1)100x x e --令'()0R x =,得驻点x=100 由于收入的最大值存在,而收入函数的驻点仅有一个,故函数在驻点x=100处取得最大值,最大值为:R(100)=1005100101000100e e-⨯⨯=36862≈ 即每月销售100件商品时,可使收入最大为36862.一、单项选择题 1.任意给定0M>,总存在着0X >,当x X<-时,()f x M<-,则( ).(A )lim ()x f x →-∞=-∞ . (B )lim ()x f x →∞=-∞.(C )lim ()x f x →-∞=∞.(D )lim ()x f x →+∞=∞.2.点1x =是函数31,1()1,13,1x x f x x x x ⎧-<⎪==⎨⎪->⎩ 的( ). (A) 连续点. (B) 第一类非可去间断点. (C) 可去间断点. (D) 第二类间断点. 3.设0()2f x '=,则000()()limh f x h f x h →--= ( ).(A )-2. (B )4. (C )2. (D )12.4.罗尔定理中的条件:()f x 在[],a b 上连续,在(,)a b 内可导,且()()f a f b =,是()f x 在(,)a b 内至少存在一点ξ,使得()0f ξ'=成立的( ).(A)必要条件. (B) 充分条件. (C)充要条件. (D)无关条件.二、填空题1.0x →时,2352x x -是x 的 阶无穷小. 2.设某种商品的成本函数C(x)= 210004x ++x=100件产品的边际成本是 . 3.()f x dx '=⎰=. 4.2cos x d tdt dx =⎰.三、求下列极限1.sin lim n xx →∞. 2.[]lim ln(2)ln x x x x →∞+-. 3.201lim cos31x x e x →--. 四、求下列导数和微分(1)已知ln(y x =, 求dy .(2)求由方程cos sin y y x =+所确定的函数()y f x =的导数dydx. 五、求下列积分(1)()xxeex dx --⎰.(2)2. (3)1ln 1e x dx x +⎰. 六、求函数32231214y x x x =+-+的单调区间和极值.七、求由直线x y =和曲线y =所围成的平面图形绕x 轴旋转所得旋转体的体积.八、证明:当1x>时,2(1)2x e e x >+.(7分)九、设某商品的需求函数为402Q p =-,其中p 为价格,试求:(1)需求量对价格的弹性;(2)价格p=15元时需求量对价格的弹性,此时是提价还是降价会使收入增加。
高等数学习题集及答案
D. 无关条件
A. 若 { un} 有界,则 { un} 发散 C. 若 { un} 单调,则 { un} 收敛
B. 若 {un} 有界,则 { un} 收敛 D. 若 { un} 收敛,则 { un} 有界
22. 下面命题错误的是 【 】
A. 若 { un} 收敛,则 { un} 有界
C. 若 { un} 有界,则 { un} 收敛
A. y arcsin x
B. y arccosx
C. y arctan x
D. y arccot x
7. 已知函数 y arcsin( x 1) ,则函数的定义域是 【 】
A. ( , )
B. [ 1,1]
C. ( , )
D. [ 2,0]
8. 已知函数 y arcsin( x 1) ,则函数的定义域是 【 】
A. 连续点
B. 可去间断点
C.跳跃间断点
47. lim xsin 1 的 值为 【
x0
x
A. 1
B.
】 C. 不存在
D. 0
48. 当 x
时下列函数是无穷小量的是 【 】
x cos x
A.
sin x
x2
B.
C.
sin x D. (1 1) x
x
x
x
x
x2 1 x 0
49. 设 f ( x)
, 则下列结论正确的是 【 】
C. e 3
】
D. e3
4
A. e
B. 1
2
C. e
D.
4
e
26. x 1是函数 f ( x)
x x3 的 【 x2 x 2
】
A. 连续点
高等数学练习题(附答案)
高等数学练习题(附答案)高等数学一、判断题(每题2分,共20分)1.√2.√3.×4.√5.×6.√7.×8.√9.√ 10.√二、填空题(每题2分,共20分)1.f(x+2)=x+12.03.g'(3)=1/64.du=ydx+xdy5.-1/26.5/47.9/48.69.-2 10.π/2三、计算题(每题5分,共40分)1.1/42.y'=(∑(i=1 to 10) i/(x+i))^23.ln|x-1|+ln|x|+C4.2π5.(2,2)6.1-cos(1)7.ln3/28.y=e^x-x-1/2x^2+C一、判断题1.√2.×3.×4.×5.×二、填空题1.22.13.14.15.1三、改写后的文章2.根据函数的定义,f(x)在点x处有定义是指该点的函数值存在,而f(x)在点x处连续是指当x在该点附近时,函数值的变化趋势与x的变化趋势一致。
因此,f(x)在点x处有定义是f(x)在点x处连续的充分条件,但不是必要条件。
3.若y=f(x)在点x不可导,则曲线y=f(x)在(x,f(x))处可能有切线,也可能没有切线。
因此,该说法是错误的。
4.若f(x)在[a,b]上可积,g(x)在[a,b]上不可积,则f(x)+g(x)在[a,b]上可能可积,也可能不可积。
因此,该说法是错误的。
=0和x+y+z=0在空间直角坐标系中分别表示一个坐标轴和一个平面,而不是三个坐标轴和一个点。
因此,该说法是错误的。
四、证明题1.设f(x)=arctanx-arcsin(x/(1+x^2)^(1/2)),则f'(x)=1/(1+x^2)-x/(1+x^2)(1-x^2/(1+x^2))=0.化简可得x^2=1,即x=±1.因此,f(x)在(-∞,1)和(1,+∞)上单调递减,故在(-∞,+∞)上存在唯一实根。
(完整版)高等数学测试题及解答(分章)
第一单元 函数与极限一、填空题1、已知x x f cos 1)2(sin +=,则=)(cos x f 。
2、=-+→∞)1()34(lim22x x x x 。
3、0→x 时,x x sin tan -是x 的 阶无穷小。
4、01sinlim 0=→xx kx 成立的k 为 。
5、=-∞→x e xx arctan lim 。
6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。
7、=+→xx x 6)13ln(lim0 。
8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。
9、函数)2ln(1++=x y 的反函数为_________。
10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。
11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。
12、函数xxx f +=13arcsin )(的定义域是__________。
13、____________22lim22=--++∞→x x n 。
14、设8)2(lim =-+∞→xx ax a x ,则=a ________。
15、)2)(1(lim n n n n n -++++∞→=____________。
二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。
(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。
2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。
(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~。
高等数学试题(含答案)
高等数学试题(含答案)高等数学试题(含答案)一、选择题1.已知函数f(x)=x^2+3x+2,下列哪个选项是f(x)的导数?A. 2x+3B. 2x+2C. x^2+3D. 3x+22.若函数f(x)=e^x,那么f'(x)等于:A. e^-xB. e^xC. ln(x)D. e^x+13.设函数y=f(x)在点x=2处可导,且f'(2)=3,则曲线y=f(x)在点(2,f(2))处的切线斜率为:A. 2B. 3C. 1D. 6二、计算题1.计算极限lim(x→1) [(x-1)/(x^2-1)]答案:1/22.计算积分∫(0 to 1) (2x+1) dx答案:3/23.设曲线C的方程为y=x^3,计算曲线C的弧长。
答案:∫(0 to 1) √(1+9x^4) dx三、证明题证明:若函数f(x)在区间[a,b]上连续,且在(a,b)可导,那么必然存在c∈(a,b),使得 f'(c) = [f(b)-f(a)] / (b-a)。
证明过程:由于f(x)在区间[a,b]上连续,根据连续函数的介值定理,f(x)在[a,b]上会取到最大值M和最小值m。
设在点x=c处取得最大值M(即f(c)=M)。
根据费马定理,如果f(x)在点x=c处可导,并且f'(c)存在,那么f'(c)=0。
由于f(x)在(a,b)可导,故f'(c)存在。
那么,根据导数的定义,f'(c)=[f(c)-f(a)]/(c-a)。
又因为f(c)=M,将其代入上式得到f'(c)=(M-f(a))/(c-a)。
同理,根据费马定理,如果f(x)在点x=d处取得最小值m(即f(d)=m),那么f'(d)也等于0。
将f(d)=m代入上式得到f'(d)=(m-f(a))/(d-a)。
由于f(x)是连续函数,故在区间[a,b]上必然存在一个点c∈(a,b),使得它处于最大值M和最小值m之间,即m<f(c)<M。
完整)高等数学练习题附答案
完整)高等数学练习题附答案第一章自测题一、填空题(每小题3分,共18分)1.lim (sinx-tanx)/(3xln(1+2x)) = 1/22.lim (2x^2+ax+b)/(x-1) =3.a = 5.b = 123.lim (sin2x+e^(2ax)-1)/(x+1) = 2a4.若f(x)在(-∞,+∞)上连续,则a=05.曲线f(x) = (x-1)/(2x-4x+3)的水平渐近线是y=1/2,铅直渐近线是x=3/26.曲线y=(2x-1)/(x+1)的斜渐近线方程为y=2x-3二、单项选择题(每小题3分,共18分)1.“对任意给定的ε∈(0,1),总存在整数N,当n≥N时,恒有|x_n-a|≤2ε”是数列{x_n}收敛于a的充分条件但非必要条件2.设g(x)={x+2,x<1.2-x^2,1≤x<2.-x,x≥2},f(x)={2-x,x<1.x^2,x≥1},则g(f(x))=2-x^2,x≥13.下列各式中正确的是 lim (1-cosx)/x = 04.设x→0时,e^(tanx-x-1)与x^n是等价无穷小,则正整数n=35.曲线y=(1+e^(-x))/(1-e^(-x^2))没有渐近线6.下列函数在给定区间上无界的是 sin(1/x),x∈(0,1]三、求下列极限(每小题5分,共35分)1.lim (x^2-x-2)/(4x+1-3) = 3/42.lim x+e^(-x)/(2x-x^2) = 03.lim (1+2+3+。
+n)/(n^2 ln n) = 04.lim x^2sin(1/x) = 01.设函数$f(x)=ax(a>0,a\neq1)$,求$\lim\limits_{n\to\infty}\frac{1}{\ln\left(\frac{f(1)f(2)\cdotsf(n)}{n^2}\right)}$。
2.求$\lim\limits_{4x\to1}\frac{x^2+e\sin x+6}{1+e^x-\cosx}$。
高等数学试题及答案解析
高等数学试题及答案解析一、选择题1. 函数f(x) = x^2 - 4x + 3在区间[0, 5]上的最大值是:A. 3B. 5C. 7D. 9答案:D解析:首先求导f'(x) = 2x - 4,令f'(x) = 0得到x = 2,这是函数的极值点。
计算f(2) = 2^2 - 4*2 + 3 = -1。
接下来检查区间端点,f(0) = 3,f(5) = 5^2 - 4*5 + 3 = 9。
因此,最大值为f(5) = 9。
2. 若f(x) = sin(x) + cos(x),则f'(x)等于:A. cos(x) - sin(x)B. cos(x) + sin(x)C. -sin(x) + cos(x)D. -sin(x) - cos(x)答案:A解析:根据导数的基本公式,sin(x)的导数是cos(x),cos(x)的导数是-sin(x)。
因此,f'(x) = cos(x) - sin(x)。
二、填空题1. 求不定积分∫(2x + 1)dx = __________。
答案:x^2 + x + C解析:根据不定积分的基本公式,∫x^n dx = (x^(n+1))/(n+1) + C,其中n ≠ -1。
将n = 1代入公式,得到∫(2x + 1)dx = ∫2x dx + ∫1 dx = x^2 + x + C。
2. 若y = ln(x),则dy/dx = __________。
答案:1/x解析:对自然对数函数求导,根据对数函数的导数公式,ln(x)的导数是1/x。
三、解答题1. 求函数f(x) = x^3 - 6x^2 + 9x - 2的极值点。
答案:极值点为x = 3。
解析:首先求导f'(x) = 3x^2 - 12x + 9。
令f'(x) = 0,解得x = 1 和 x = 3。
计算二阶导数f''(x) = 6x - 12,代入x = 1得到f''(1) = -6 < 0,说明x = 1是极大值点;代入x = 3得到f''(3) = 18 > 0,说明x = 3是极小值点。
高等数学试题及答案大全
高等数学试题及答案大全一、选择题1. 下列函数中,不是周期函数的是()。
A. y = sin(x)B. y = cos(x)C. y = e^xD. y = tan(x)2. 函数f(x) = x^2 + 3x - 2在区间[-5, 2]上的最大值是()。
A. 0B. 3C. 4D. 5二、填空题1. 若函数f(x) = 2x - 3在x = 1处的导数为5,则原函数在x = 1处的值为______。
2. 曲线y = x^3 - 2x^2 + x在x = 2处的切线斜率为______。
三、解答题1. 求函数f(x) = ln(x) + 1的导数,并说明其在x = e处的导数值。
2. 已知函数f(x) = x^3 - 6x^2 + 11x - 6,求其极值点。
四、证明题1. 证明函数f(x) = x^3在R上的单调性。
2. 证明等差数列的前n项和公式S_n = n(a_1 + a_n)/2。
五、应用题1. 某工厂生产一种产品,其成本函数为C(x) = 3x + 200,销售价格为P(x) = 50 - 0.05x,其中x表示产品数量。
求该工厂的盈利函数,并求出其盈利最大时的产品数量。
2. 一个圆的半径为r,求其面积与周长的比值。
答案:一、选择题1. C解析:函数y = e^x不是周期函数,其他选项都是周期函数。
2. D解析:函数f(x) = x^2 + 3x - 2的导数为f'(x) = 2x + 3,令其等于0,解得x = -3/2,但x = -3/2不在区间[-5, 2]内。
检查区间端点,f(-5) = -8,f(2) = 5,因此最大值为5。
二、填空题1. -1解析:由f'(x) = 2,且f'(1) = 5,可得f(1) = f'(1) * (1 - 0) + f(0) = 5 + f(0),又因为f(0) = -3,所以f(1) = 5 - 3 = 2。
2. -4解析:由y' = 3x^2 - 4x + 1,代入x = 2,得y' = 3 * 2^2 - 4 * 2 + 1 = 12 - 8 + 1 = 5。
(完整word版)高等数学试题及答案.docx
高学试题及答案选择题(本大题共40 小题,每小题 2.5 分,共 100 分)1.设 f(x)=lnx,且函数 (x) 的反函数1(x)= 2(x+1) ,则 f(x)( B)x-2 x+22-xx-1 x+2lnlnlnlnA. x+2B.x-2C. x+2D. 2-xe t2 dt2. lime tx1 cosx(A )x 0A . 0B . 1C .-1D .3.设y f ( x 0 x) f ( x 0 ) 且函数 f (x) 在 x x 0 处可导,则必有( A)A. lim y 0B. y 0C.dy 0D. y dyx 04.设函数 f(x)=2x 2, x 1,则 f(x) 在点 x=1处( C)3x1,x 1A. 不连续B. 连续但左、右导数不存在C.连续但不可导D.可导5.设 xf(x)dx=e-x 2C ,则 f(x)= ( D)A.xe6. 设 I-x 2B.-xe -x 2C.2e -x 2D.-2e-x 2( x2y 2 ) dxdy,其中 D 由 x 2y 2 a 2 所围成,则 I =( B ).D(A)2 a 2rdra4(B)2 a 2rdr1 a4dadr22 a 2dr2 a 32a2adr2 a4(C)dr (D)da37. 若 L 是上半椭圆x a cost ,ydxxdy 的值为 ( C ).y 取顺时针方向 , 则b sin t ,L(A)0(B)ab (C)ab(D)28. 设 a 为非零常数 , 则当 ( B )时 , 级数a 收敛 .n 1 rnab(A) | r | | a |(B)| r | | a | (C) | r | 1(D)| r | 19. lim u n 0 是级数u n 收敛的 ( D )条件 .nn 1(A) 充分 (B) 必要 (C) 充分且必要 (D) 既非充分又非必要10. 微分方程 y y0 的通解为 ____B______.(A)y cos x c(B) y c 1 cos x c 2(C) y c 1 c 2 sin x(D) yc 1 cos x c 2 sin x11. 若 a , b 为共线的单位向量,则它们的数量积a b( D ).( A ) 1(B ) -1( C ) 0( D ) cos(a, b)12. 设平面方程为 Bx Cz D 0 ,且 B , C , D 0 , 则平面(C ).( A )平行于 x 轴( B )垂直于 x 轴( C )平行于 y 轴( D )垂直于 y 轴13. 设 f ( x, y)( x 2y 2 ) sin x 2 1 y 2,x 2 y 20 , 则在原点 (0,0) 处 f (x, y) ( D ).0, x 2y 2(A) 不连续 (B)偏导数不存在(C)连续但不可微 (D)可微14. 二元函数 z 3( x y)x 3 y 3 的极值点是 ( D ).(A) (1,2)(B) (1, -2 ) (C) (1,-1)(D) (-1,-1)15. 设 D 为 x 2y 2 1,则11 dxdy=(C ).Dx 2 y 2(A) 0(B)(C) 2(D) 416.1 1 x)0 dxf ( x, y ) dy =( C1 x 11 1 xf ( x , y ) dx (A)0 dyf ( x , y ) dx(B) 0dy11 y f ( x , y ) dx11f ( x , y ) dx(C)dy(D) dy17.x a cost ,ydxxdy 的值为 ( C ).若 L 是上半椭圆取顺时针方向 , 则Lyb sin t ,(A) 0(B)ab(C)ab(D)ab218. 下列级数中 , 收敛的是 ( B ).(A)(5 )n1(B)( 4 ) n 1(C)( 1) n 1( 5) n 1(D)(54)n 1n 1 4n 1 5n 1 4 n 1 4519. 若幂级数a n x n 的收敛半径为 R 1 : 0R 1,幂级数b n x n 的收敛半径为 R 2 : 0 R 2,n 0n 0则幂级数(a nb n ) x n 的收敛半径至少为 ( D )n 0(A) R1R2(B)R1 R2(C)max R1, R2(D)min R1 , R220.下列方程为线性微分方程的是( A )(A)y(sin x) y e x(B)y x sin y e x(C)y sin x e y(D)xy cos y11x21. a b a b 充分必要条件是( B )(A) a ×0(B) a b0(C)a b 0(D) a b 0 b22. 两平面x 4 y z50与 2x 2 y z 30的夹角是( C )(A)6(B)3(C)4(D)223. 若f y(a, b) 1 ,则 lim f a, b y f a,b y=( A )y 0y(A)2(B)1(C)4(D)024.若 f x ( x0 , y0 ) 和 f y ( x0 , y0 ) 都存在,则 f ( x, y) 在 (x 0 , y 0 ) 处( D )(A)连续且可微(C)可微但不一定连续(B)连续但不一定可微(D)不一定连续且不一定可微25.下列不等式正确的是( B )(A)(x3y3 )d0(B)(x2y2 ) d0x 2y 21x2 y 2 1(C)x 2y2(x y)d0(D)x2 y 2( x y)d0 1126.11xf (x, y)dy =( C) dx(A)1 xdy1(B)1 1 x f ( x, y) d x 0f ( x, y)d x dy0011y11f (x, y)d x(C)dy0f (x, y)d x(D)dy00027. 设区域 D 由分段光滑曲线L 所围成, L 取正向, A 为区域 D 的面积,则( B )(A)11 Aydx xdy(B) A xdy ydx2 L 2 L(C) A1xdy ydx(D) Axdy ydx2LLn28. 设a n 是正项级数,前 n 项和为 s na k ,则数列 s n 有界是a n 收敛的( C )n 1k 1n 1(A) 充分条件(B) 必要条件(C) 充分必要条件(D) 既非充分条件,也非必要条件29. 以下级数中,条件收敛的级数是( D )(A)( 1) Nn (B)( 1) n11N 12n10n 1n 3(C)( 1) n 1 ( 1 )n (D)( 1) n13 n12 n 1n30.设 xf(x)dx=e-x 2C ,则 f(x)= (D )A.xe -x 2B.-xe -x 2C.2e -x 2D.-2e-x 231、已知平面: x2 y z4 0 与直线 L :x1y2 z 1 的位置关系是( D )31 1( A )垂直(B )平行但直线不在平面上( C )不平行也不垂直 ( D )直线在平面上 32、 lim3xy( B)x 02xy 1 1y 0( A )不存在 ( B ) 3( C ) 6( D )33、函数 z2 z及2 zD 内f ( x, y) 的两个二阶混合偏导数在区域 D 内连续是这两个二阶混合偏导数在x y y x相等的( B )条件 .( A )必要条件( B )充分条件( C )充分必要条件 ( D )非充分且非必要条件34、设d4 ,这里 a0 ,则 a =( A)x 2y 2a( A ) 4( B )2 ( C ) 1( D ) 035、已知 xay dxydy为某函数的全微分,则 a ( C)x y 2( A ) -1 (B ) 0( C ) 2( D ) 136、曲线积分ds(C ),其中y 2 Lx 2 z 2( A )( B )2( C )x 2 y 2 z 210L :1.z3(D )4555537、数项级数a n 发散,则级数ka n ( k 为常数)( B)n 1n 1(A )发散( B )可能收敛也可能发散( C )收敛 ( D )无界38、微分方程xy y 的通解是( C )(A )y C1x C2(B )y x2C( C)y C1x2 C 2( D)y 1 x2C2。
(完整word版)高等数学练习题(附答案)
《高等数学》专业 年级 学号 姓名一、判断题. 将√或×填入相应的括号内.(每题2分,共20分)( )1. 收敛的数列必有界.( )2. 无穷大量与有界量之积是无穷大量. ( )3. 闭区间上的间断函数必无界. ( )4. 单调函数的导函数也是单调函数.( )5. 若)(x f 在0x 点可导,则)(x f 也在0x 点可导.( )6. 若连续函数)(x f y =在0x 点不可导,则曲线)(x f y =在))(,(00x f x 点没有切线.( )7. 若)(x f 在[b a ,]上可积,则)(x f 在[b a ,]上连续.( )8. 若),(y x f z =在(00,y x )处的两个一阶偏导数存在,则函数),(y x f z =在(00,y x )处可微.( )9. 微分方程的含有任意常数的解是该微分方程的通解.( )10. 设偶函数)(x f 在区间)1,1(-内具有二阶导数,且 1)0()0(+'=''f f , 则)0(f 为)(x f 的一个极小值.二、填空题.(每题2分,共20分)1. 设2)1(x x f =-,则=+)1(x f .2. 若1212)(11+-=xxx f ,则=+→0lim x .3. 设单调可微函数)(x f 的反函数为)(x g , 6)3(,2)1(,3)1(=''='=f f f 则=')3(g .4. 设yxxy u +=, 则=du .5. 曲线326y y x -=在)2,2(-点切线的斜率为 .6. 设)(x f 为可导函数,)()1()(,1)1(2x f xf x F f +==',则=')1(F .7. 若),1(2)(02x x dt t x f +=⎰则=)2(f .8. x x x f 2)(+=在[0,4]上的最大值为 . 9. 广义积分=-+∞⎰dx e x 20.10. 设D 为圆形区域=+≤+⎰⎰dxdy x y y x D5221,1 . 三、计算题(每题5分,共40分)1. 计算))2(1)1(11(lim 222n n n n ++++∞→Λ. 2. 求1032)10()3()2)(1(++++=x x x x y ΛΛ在(0,+∞)内的导数.3. 求不定积分dx x x ⎰-)1(1.4. 计算定积分dx x x ⎰-π53sin sin .5. 求函数22324),(y xy x x y x f -+-=的极值. 6. 设平面区域D 是由x y x y ==,围成,计算dxdy yyD⎰⎰sin . 7. 计算由曲线x y x y xy xy 3,,2,1====围成的平面图形在第一象限的面积.8. 求微分方程yxy y 2-='的通解. 四、证明题(每题10分,共20分)1. 证明:2tan arcsin1x arc x x=+ )(+∞<<-∞x .2. 设)(x f 在闭区间[],b a 上连续,且,0)(>x fdt t f dt t f x F x xb⎰⎰+=0)(1)()( 证明:方程0)(=x F 在区间),(b a 内有且仅有一个实根.《高等数学》参考答案一、判断题. 将√或×填入相应的括号内(每题2分,共20分)1.√ ;2.× ;3.×;4.× ;5.×;6.× ;7.× ;8.× ;9.√ ;10.√.二、 填空题.(每题2分,共20分)1.442++x x ; 2. 1; 3. 1/2; 4.dy y x x dx y y )/()/1(2-++;5. 2/3 ;6. 1 ;7.336 ; 8. 8 ; 9. 1/2 ; 10. 0.三、计算题(每题5分,共40分)1.解:因为 21(2)n n +222111(1)(2)n n n <+++<+L 21n n+ 且 21lim 0(2)n n n →∞+=,21lim n n n →∞+=0由迫敛性定理知: ))2(1)1(11(lim 222n n n n ++++∞→Λ=0 2.解:先求对数)10ln(10)2ln(2)1ln(ln +++++=x x x y Λ101022111++++++='∴x x x y y Λ )(10()1(++='∴x x y Λ)10102211++++++x x x Λ 3.解:原式=⎰-x d x112=⎰-x d x 2)(112=2c x +arcsin4.解:原式=dx x x ⎰π23cos sin=⎰-2023sin cos πxdx x ⎰ππ223sin cos xdx x=⎰-2023sin sin πx xd ⎰ππ223sin sin x xd=2025][sin 52πx ππ225][sin 52x -=4/55.解: 02832=--='y x x f x 022=-='y x f y故 ⎩⎨⎧==00y x 或⎩⎨⎧==22y x当 ⎩⎨⎧==0y x 时8)0,0(-=''xxf ,2)0,0(-=''yy f ,2)0,0(=''xy f 02)2()8(2>--⨯-=∆Θ 且A=08<-∴ (0,0)为极大值点 且0)0,0(=f当 ⎩⎨⎧==22y x 时4)2,2(=''xxf , 2)2,2(-=''yy f ,2)2,2(=''xy f 02)2(42<--⨯=∆Θ ∴无法判断6.解:D={}y x y y y x ≤≤≤≤2,10),(⎰⎰⎰⎰=∴102sin sin y y Ddx y y dy dxdy y y=dy x y y y y 2][sin 10⎰=dy y y y )sin (sin 1⎰-=⎰+-110cos ]cos [y yd y=⎰-+-110cos ]cos [1cos 1ydy y y=1sin 1- 7.解:令xy u =,xyv =;则21≤≤u ,31≤≤v v vuu vv v uuv y y x x J v uvu 212221=-==∴ 3ln 212131===⎰⎰⎰⎰Ddv v du d A σ 8.解:令 u y =2,知x u u 42)(-=' 由微分公式知:)4(222c dx xe e y u dxdx+⎰-⎰==⎰-)4(22c dx xe e x x +-=⎰-)2(222c e xe e x x x ++=--四.证明题(每题10分,共20分)1.解:设 21arcsinarctan )(xx x x f +-=222222211111111)(xx x x x x xx f ++-+⋅+--+='Θ=0c x f =∴)( +∞<<∞-x令0=x 0000)0(=∴=-=c f Θ 即:原式成立。
高数试题及答案
高数试题及答案一、选择题1. 下列函数中,哪一个是周期函数?A. y = x^2B. y = sin(x)C. y = e^xD. y = ln(x)答案:B2. 函数f(x) = 2x^3 - 5x^2 + 7在x=1处的导数是:A. -1B. 1C. 3D. 5答案:B二、填空题1. 若f(x) = 3x - 2,求f'(x) = __________。
答案:32. 曲线y = x^3在点(1,1)处的切线斜率是 __________。
答案:3三、解答题1. 求函数f(x) = x^2 + 3x - 5的极值点。
解:首先求导数f'(x) = 2x + 3。
令f'(x) = 0,解得x = -3/2。
将x = -3/2代入原函数,得到f(-3/2) = -11/4。
由于f'(x)在x < -3/2时为负,在x > -3/2时为正,所以x = -3/2是函数的极小值点,对应的极小值为-11/4。
2. 证明函数f(x) = x^3 - 6x^2 + 9x + 8在区间[1,3]上是单调递增的。
证明:首先求导数f'(x) = 3x^2 - 12x + 9。
观察导数,可以发现f'(x) = 3(x - 1)(x - 3)。
由于1 ≤ x ≤ 3,所以(x - 1)和(x - 3)的符号相同,即f'(x) ≥ 0。
因此,函数f(x)在区间[1,3]上是单调递增的。
四、计算题1. 计算定积分∫(0,1) (2x - 1)dx。
解:首先求出被积函数的原函数F(x) = x^2 - x。
然后根据定积分的定义,计算F(1) - F(0) = 1^2 - 1 - (0^2 - 0) = 1 - 1 = 0。
2. 计算二重积分∬(0,1)(0,1) xy dA。
解:由于积分区域是一个单位正方形,我们可以将二重积分分解为两个定积分的乘积。
首先计算内层定积分∫(0,1) y dy = [1/2 *y^2](0,1) = 1/2。
高等数学练习题(含答案)
1.求抛物线2x y =与直线02=--y x 之间的最短距离。
2.求点)8,2(到抛物线x y 42=的最短距离。
3.求过点)31,1,2(的平面,使它与三个坐标面在第一卦限内所围成的立体体积最小。
4.计算二重积分dxdy xy I D⎰⎰=2,其中D 是由直线2,==x x y 及双曲线1=xy 所围成的区域。
5.计算二重积分dxdy e I D y ⎰⎰-=2,其中区域D 由y 轴,直线x y y ==,1所围成。
6.求dxdy y xy I D⎰⎰+=31,其中D 由2,1,0x y y x ===所围成。
7.求dy e dx x I x y ⎰⎰-=11022。
8.求dxdy y x I D ⎰⎰+=)(,其中D 为224,x y x y ==及1=y 所围成的区域。
9.求σd y x I D⎰⎰+=)|(|,其中D 为:1||||≤+y x 。
10.求dxdy y x I D ⎰⎰--=221,其中D :y y x ≤+22。
11.求dxdy y x x I D⎰⎰--=)2(22,其中D :1)1(22≤+-y x 。
12.设{}x y x y x D ≤+=22),(,求dxdy x D ⎰⎰。
13.计算二重积分dxdy yx y x D ⎰⎰++--222211,其中D 是由圆周122=+y x 及坐标轴所围成的在第一卦限内的闭区域。
14.求ds y x c ⎰+)(,其中c 是以)0,0(O ,)0,1(A ,)1,0(B 为顶点的三角形边界。
15.设L 是半圆周24y x -=上由点)2,0(A 到点)2,0(-B 之间的一段弧。
计算⎰++Lds y x )1(。
16.计算ds y x L ⎰+22,其中L 为圆周222a y x =+(0>a )。
17.计算曲线积分⎰+L ds y x 22,其中L 为圆周x y x =+22。
18.计算曲线积分:dy y x dx y x I L)653()42(-++--=⎰,其中L 是从点)0,0(O 到点)2,3(A 再到点)0,4(B 的折线段。
《高等数学》练习题及答案解析
《高等数学》练习题及答案解析第一课时一、单选题1、函数4()31f x x =+,则f(1)的值为:(D )A 、0B 、1C 、3D 、4解析:采用代入法,将x=1代入原函数,可得f(1)的值为:/*4*/2、函数y =的定义域为:(D )A 、(-∞,-2]B 、[2,+∞)C 、[-∞,+∞]D 、(-∞,-2]U[2,+∞)解析:根据幂函数性质,要使得该函数有意义,该函数的定义域为:/*(-∞,-2]U[2,+∞)*/。
3、下列函数不是周期函数的是:(c )A 、y=cos(x -2)B 、y=1+sin πxC 、y=xsinxD 、y=2tan3x解析:根据周期函数的定义,可计算得知,/*y=xsinx*/不是周期函数4、指出函数y=lgx 在(0,+∞)的区间内的单调性:(A )A 、单调递增B 、单调递减C 、没有单调性D 、无法确定解析:根据函数单调性的性质,y=lgx 是以10为底的对数函数,在其定义域内是递增的。
因此是/*单调递增*/。
5、设函数f(x)=lnx ,则f(x)-f(y)=(D )A 、f(x+y)B 、f(x -y)C 、f(xy)D 、f(x/y)解析:根据对数函数的运算法则,f(x)-f(y)=lnx -lny=ln(x/y)=f(x/y),因此,f(x)-f(y)的值为:/*f(x/y)*/。
二、判断题1、函数y=sinx 是以2π为周期的函数(A )A 、正确B 、错误解析:函数y=sinx 是周期函数,以2π为周期。
因此该表述是/*正确*/的2、函数y=cosx 是奇函数(B )A 、正确B 、错误解析:函数y=cosx 关于Y 轴对称,因此,函数y=cosx 是偶函数,所以原题的表达是/*错误*/的。
3、函数1()f x x =在开区间(0,1)内无界。
(A )A 、正确B 、错误解析:根据函数的有界性,可知该函数在指定区间内无界。
因此该表述是/*正确*/的三、多选题1、函数的表达法有:(A 、B 、C )A 、解析法B 、列表法C 、图形法D 、反函数法解析:函数的表达法有:/*解析法、列表法、图形法*/等三种。
《高等数学》练习题库及答案,DOC
《高等数学》练习测试题库及答案一.选择题1.函数y=112+x 是() A.偶函数B.奇函数C 单调函数D 无界函数2.设f(sin 2x )=cosx+1,则f(x)为() A2x 2-2B2-2x 2C1+x 2D1-x 23A .C .4.A C.5A C 6.→lim 1x7.设x 8.当x A.x 2A.必要条件B.充分条件C.充分必要条件D.无关条件10、当|x|<1时,y=()A 、是连续的B 、无界函数C 、有最大值与最小值D 、无最小值11、设函数f (x )=(1-x )cotx 要使f (x )在点:x=0连续,则应补充定义f (0)为()A 、B 、eC 、-eD 、-e -112、下列有跳跃间断点x=0的函数为()A、xarctan1/xB、arctan1/xC、tan1/xD、cos1/x13、设f(x)在点x0连续,g(x)在点x不连续,则下列结论成立是()A、f(x)+g(x)在点x必不连续B、f(x)×g(x)在点x必不连续须有C、复合函数f[g(x)]在点x必不连续f(x)=0 14、设1516、函数17AC18、AC、充要条件D、无关条件19、下列函数中能在区间(0,1)内取零值的有()A、f(x)=x+1B、f(x)=x-1C、f(x)=x2-1D、f(x)=5x4-4x+120、曲线y=x2在x=1处的切线斜率为()A、k=0B、k=1C、k=2D、-1/221、若直线y=x与对数曲线y=logax相切,则()A、eB、1/eC、e xD、e1/e22、曲线y=lnx平行于直线x-y+1=0的法线方程是()A、x-y-1=0B、x-y+3e-2=0C、x-y-3e-2=0D、-x-y+3e-2=023、设直线y=x+a与曲线y=2arctanx相切,则a=()A、±1B、±л/2C、±(л/2+1)D、±(л/2-1)24、设f(x)为可导的奇函数,且f`(x0)=a,则f`(-x)=()A、aB、-aC、|a|D、025、设26、设27、设28、已知29、已知30A、3132、圆A、-1B、0C、1D、233、函数f(x)在点x0连续是函数f(x)在x可微的()A、充分条件B、必要条件C、充要条件D、无关条件34、函数f(x)在点x0可导是函数f(x)在x可微的()A、充分条件B、必要条件C 、充要条件D 、无关条件35、函数f(x)=|x|在x=0的微分是()A 、0B 、-dxC 、dxD 、不存在36、极限)ln 11(lim 1xx x x --→的未定式类型是() A 、0/0型B 、∞/∞型C 、∞-∞D 、∞型37、极限012)sin lim(→x x x x 的未定式类型是() A 、00型38、极限A 39、x x A C 40A C 41、曲线A 42A 、0B 、43A 44、若∫f(x)dx=2e x/2+C=()A 、2e x/2B 、4e x/2C 、e x/2+CD 、e x/245、∫xe -x dx=(D )A 、xe -x -e -x +CB 、-xe -x +e -x +CC 、xe -x +e -x +CD 、-xe -x -e -x +C46、设P(X)为多项式,为自然数,则∫P(x)(x-1)-n dx()A、不含有对数函数B、含有反三角函数C、一定是初等函数D、一定是有理函数47、∫-10|3x+1|dx=()A、5/6B、1/2C、-1/2D、148、两椭圆曲线x2/4+y2=1及(x-1)2/9+y2/4=1之间所围的平面图形面积等于()A、лB、2лC、4лD、6л49、曲线A50、点(A51A、52、平面A53、方程AC54、方程A55、方程A56AC、两发散数列之和必发散D、两收敛数列之和必收敛57.f(x)在点x=x0处有定义是f(x)在x=x处连续的()A、.必要条件B、充分条件C、充分必要条件D、无关条件58函数f(x)=tanx能取最小最大值的区间是下列区间中的()A、[0,л]B、(0,л)C、[-л/4,л/4]D、(-л/4,л/4)59下列函数中能在区间(0,1)内取零值的有()A、f(x)=x+1B、f(x)=x-1C 、f(x)=x 2-1D 、f(x)=5x 4-4x+160设y=(cos)sinx ,则y’|x=0=()A 、-1B 、0C 、1D 、不存在二、填空题1、求极限1lim -→x (x 2+2x+5)/(x 2+1)=() 2、求极限0lim →x [(x 3-3x+1)/(x-4)+1]=() 3、求极限2lim →x x-2/(x+2)1/2=() 456、已知78、已知910、函数11、函数12、函数13、函数14、函数15、点(16、∫xx 17、若18、若∫19、d/dx ∫a b arctantdt =()20、已知函数f(x)=⎪⎩⎪⎨⎧=≠⎰-0,0,022)1(1x a x x t dt e x 在点x=0连续,则a=() 21、∫02(x 2+1/x 4)dx =()22、∫49x 1/2(1+x 1/2)dx=()23、∫031/2a dx/(a 2+x 2)=()1dx/(4-x2)1/2=()24、∫25、∫л/3лsin(л/3+x)dx=()9x1/2(1+x1/2)dx=()26、∫49x1/2(1+x1/2)dx=()27、∫49x1/2(1+x1/2)dx=()28、∫49x1/2(1+x1/2)dx=()29、∫49x1/2(1+x1/2)dx=()30、∫49x31、∫9x32、∫43334、设35、函数36、37、383940()41424344、通过45lim[x/(x+1)]x=()46求极限∞x→47函数y=x2-2x+3的极值是y(1)=()9x1/2(1+x1/2)dx=()48∫449y=sinx,y=cosx直线x=0,x=л/2所围成的面积是()50求过点(3,0,-1),且与平面3x-7y+5z-12=0平行的平面方程是()三、解答题1、设Y=2X-5X2,问X等于多少时Y最大?并求出其最大值。
高等数学试题及答案(可编辑修改word版)
n →∞⎰ x 高等数学试题一、单项选择题(本大题共 5 小题,每小题 2 分,共 10 分)1.设f ( x) =l nx ,且函数( x) 的反函数-1( x) = 2( x+1),则f [( x)] = ()x- 1A .l n x- 2B .l n x+2C .l n 2- xD .l n x+2x+2x- 2 x+2 2- x⎰0(e t + e -t - 2)dt2. lim xx →01- cos x= () A .0B .1C .-1D . ∞3. 设∆y =f (x 0 + ∆x ) - f (x 0 ) 且函数 f (x ) 在 x = x 0 处可导,则必有()A. lim ∆y = 0∆x →0B. ∆y = 0⎧ 2x 2, x ≤ 1C. dy = 0D. ∆y = dy4. 设函数f ( x) =⎨ ⎩3x -1, x > 1 ,则f ( x) 在点x=1处()A. 不连续B .连续但左、右导数不存在C .连续但不可导D . 可导5.设⎰xf ( x) dx=e - x 2+ C ,则f ( x) = ()A. xe - x 2B. - x e - x 2C. 2e - x 2D. - 2e - x 2二、填空题(本大题共 10 小题,每空 3 分,共 30 分) 请在每小题的空格中填上正确答案。
错填、不填均无分。
1 16.设函数 f(x)在区间[0,1]上有定义,则函数 f(x+ )+f(x- )的定义域是.4 47. lim (a + aq + aq 2 + + aq n )( q < 1) =8. lim arctan x =x →∞ xg29. 已知某产品产量为 g 时,总成本是C( g) =9+800,则生产 100 件产品时的边际成本M C g =100 =10.函数 f (x ) = x 3+ 2x 在区间[0,1]上满足拉格朗日中值定理的点ξ是 .11.函数 y = 2x 3 - 9x 2 +12x - 9 的单调减少区间是 .12.微分方程 xy '- y = 1+ x 3 的通解是.2ln 2dt13. 设 a,则a = .6 14. 设 z = cos x y则 dz= .15.设 D = {(x , y ) 0 ≤ x ≤ 1, 0 ≤ y ≤ 1},则⎰⎰ xe -2 y dxdy =.D三、计算题(一)(本大题共 5 小题,每小题 5 分,共 25 分) ⎛ 1 ⎫x16.设 y = ⎪ ⎝ ⎭,求 dy.e t -1 =1+ x 2 ⎰x y x ⎢ ⎥ 17. 求极限 lim ln cot xx →0+ln x18. 求不定积分19. 计算定积分I= aa 2 - x 2 dx ..20.设方程 x 2 y - 2xz + e z= 1确定隐函数 z=z(x,y),求 z ' , z ' 。
《高等数学》练习题库及答案
《高等数学》练习测试题库及答案一.选择题1.函数y=112+x 是( )A.偶函数B.奇函数 C 单调函数 D 无界函数2.设f(sin 2x)=cosx+1,则f(x)为( )A 2x 2-2B 2-2x 2C 1+x 2D 1-x 23.下列数列为单调递增数列的有( )A . ,,,B .23,32,45,54C .{f(n)},其中f(n)=⎪⎩⎪⎨⎧-+为偶数,为奇数n n nn n n1,1 D. {n n 212+}4.数列有界是数列收敛的( )A .充分条件 B. 必要条件C.充要条件 D 既非充分也非必要5.下列命题正确的是( )A .发散数列必无界B .两无界数列之和必无界C .两发散数列之和必发散D .两收敛数列之和必收敛6.=--→1)1sin(lim 21x x x ( ).0 C 27.设=+∞→x x x k)1(lim e 6 则k=( ).2 C 68.当x →1时,下列与无穷小(x-1)等价的无穷小是( )2 B. x 3-1 C.(x-1)2 (x-1) (x)在点x=x 0处有定义是f(x)在x=x 0处连续的( )A.必要条件B.充分条件C.充分必要条件D.无关条件10、当|x|<1时,y= ( )A 、是连续的B 、无界函数C、有最大值与最小值D、无最小值11、设函数f(x)=(1-x)cotx要使f(x)在点:x=0连续,则应补充定义f(0)为()A、B、e C、-e D、-e-112、下列有跳跃间断点x=0的函数为()A、 xarctan1/xB、arctan1/xC、tan1/xD、cos1/x13、设f(x)在点x0连续,g(x)在点x0不连续,则下列结论成立是()A、f(x)+g(x)在点x0必不连续B、f(x)×g(x)在点x0必不连续须有C、复合函数f[g(x)]在点x0必不连续D、在点x0必不连续14、设f(x)= 在区间(- ∞,+ ∞)上连续,且f(x)=0,则a,b满足()A、a>0,b>0B、a>0,b<0C、a<0,b>0D、a<0,b<015、若函数f(x)在点x0连续,则下列复合函数在x0也连续的有()A、 B、C、tan[f(x)]D、f[f(x)]16、函数f(x)=tanx能取最小最大值的区间是下列区间中的()A、[0,л]B、(0,л)C、[-л/4,л/4]D、(-л/4,л/4)17、在闭区间[a ,b]上连续是函数f(x)有界的()A、充分条件B、必要条件C、充要条件D、无关条件18、f(a)f(b) <0是在[a,b]上连续的函f(x)数在(a,b)内取零值的()A、充分条件B、必要条件C、充要条件D、无关条件19、下列函数中能在区间(0,1)内取零值的有()A、f(x)=x+1B、f(x)=x-1C、f(x)=x2-1D、f(x)=5x4-4x+120、曲线y=x2在x=1处的切线斜率为()A、k=0B、k=1C、k=2D、-1/2x相切,则()21、若直线y=x与对数曲线y=logaA、eB、1/eC、e xD、e1/e22、曲线y=lnx平行于直线x-y+1=0的法线方程是()A、x-y-1=0B、x-y+3e-2=0C、x-y-3e-2=0D、-x-y+3e-2=023、设直线y=x+a与曲线y=2arctanx相切,则a=()A、±1B、±л/2C、±(л/2+1)D、±(л/2-1)24、设f(x)为可导的奇函数,且f`(x0)=a,则f`(-x0)=()A、aB、-aC、|a|D、025、设y=㏑,则y’|x=0=()A、-1/2B、1/2C、-1D、026、设y=(cos)sinx,则y’|x=0=()A、-1B、0C、1D、不存在27、设yf(x)= ㏑(1+X),y=f[f(x)],则y’|x=0=()A、0B、1/ ㏑2C、1D、㏑228、已知y=sinx,则y(10)=()A、sinxB、cosxC、-sinxD、-cosx29、已知y=x㏑x,则y(10)=()A、-1/x9B、1/ x9C、x9D、 x930、若函数f(x)=xsin|x|,则()A、f``(0)不存在B、f``(0)=0C、f``(0) =∞D、 f``(0)= л31、设函数y=yf(x)在[0,л]内由方程x+cos(x+y)=0所确定,则|dy/dx|x=0=()A、-1B、0C、л/2D、 232、圆x2cos θ,y=2sin θ上相应于θ=л/4处的切线斜率,K=( )A 、-1B 、0C 、1D 、 233、函数f(x)在点x 0连续是函数f(x)在x 0可微的( )A 、充分条件B 、必要条件C 、充要条件D 、无关条件34、函数f(x)在点x 0可导是函数f(x)在x 0可微的( )A 、充分条件B 、必要条件C 、充要条件D 、无关条件35、函数f(x)=|x|在x=0的微分是( )A 、0B 、-dxC 、dxD 、 不存在36、极限)ln 11(lim 1xx x x --→的未定式类型是( ) A 、0/0型 B 、∞/∞型 C 、∞ -∞ D 、∞型37、极限 012)sin lim(→x x x x 的未定式类型是( )A 、00型B 、0/0型C 、1∞型D 、∞0型38、极限 x x x x sin 1sinlim 20 =( ) A 、0 B 、1 C 、2 D 、不存在39、x x 0时,n 阶泰勒公式的余项Rn(x)是较x x 0 的( )A 、(n+1)阶无穷小B 、n 阶无穷小C 、同阶无穷小D 、高阶无穷小40、若函数f(x)在[0, +∞]内可导,且f`(x) >0,xf(0) <0则f(x)在[0,+ ∞]内有( )A 、唯一的零点B 、至少存在有一个零点C 、没有零点D 、不能确定有无零点41、曲线y=x 2-4x+3的顶点处的曲率为( )A 、2B 、1/2C 、1D 、042、抛物线y=4x-x 2在它的顶点处的曲率半径为( )A 、0B 、1/2C 、1D 、243、若函数f(x)在(a,b )内存在原函数,则原函数有( )A、一个B、两个C、无穷多个D、都不对44、若∫f(x)dx=2e x/2+C=()A、2e x/2B、4 e x/2C、e x/2 +CD、e x/245、∫xe-x dx =( D )A、xe-x -e-x +CB、-xe-x+e-x +CC、xe-x +e-x +CD、-xe-x -e-x +C46、设P(X)为多项式,为自然数,则∫P(x)(x-1)-n dx()A、不含有对数函数B、含有反三角函数C、一定是初等函数D、一定是有理函数47、∫-10|3x+1|dx=()A、5/6B、1/2C、-1/2D、148、两椭圆曲线x2/4+y2=1及(x-1)2/9+y2/4=1之间所围的平面图形面积等于()A、лB、2лC、4лD、6л49、曲线y=x2-2x与x轴所围平面图形绕轴旋转而成的旋转体体积是()A、лB、6л/15C、16л/15D、32л/1550、点(1,0,-1)与(0,-1,1)之间的距离为()A、 B、2 C、31/2 D、 21/251、设曲面方程(P,Q)则用下列平面去截曲面,截线为抛物线的平面是()A、Z=4B、Z=0C、Z=-2D、x=252、平面x=a截曲面x2/a2+y2/b2-z2/c2=1所得截线为()A、椭圆B、双曲线C、抛物线D、两相交直线53、方程=0所表示的图形为()A、原点(0,0,0)B、三坐标轴C、三坐标轴D、曲面,但不可能为平面54、方程3x2+3y2-z2=0表示旋转曲面,它的旋转轴是()A、X轴B、Y轴C、Z轴D、任一条直线55、方程3x2-y2-2z2=1所确定的曲面是()A、双叶双曲面B、单叶双曲面C、椭圆抛物面D、圆锥曲面56下列命题正确的是()A、发散数列必无界B、两无界数列之和必无界C、两发散数列之和必发散D、两收敛数列之和必收敛(x)在点x=x0处有定义是f(x)在x=x0处连续的()A、.必要条件B、充分条件C、充分必要条件D、无关条件58函数f(x)=tanx能取最小最大值的区间是下列区间中的()A、[0,л] B、(0,л)C、[-л/4,л/4]D、(-л/4,л/4)59下列函数中能在区间(0,1)内取零值的有()A、f(x)=x+1B、f(x)=x-1C、f(x)=x2-1D、f(x)=5x4-4x+160设y=(cos)sinx ,则y’|x=0=( ) A 、-1 B 、0 C 、1 D 、 不存在二、填空题1、求极限1lim -→x (x 2+2x+5)/(x 2+1)=( )2、求极限 0lim →x [(x 3-3x+1)/(x-4)+1]=( )3、求极限2lim →x x-2/(x+2)1/2=( )4、求极限∞→x lim [x/(x+1)]x =( )5、求极限0lim →x (1-x)1/x = ( )6、已知y=sinx-cosx ,求y`|x=л/6=( )7、已知ρ=ψsin ψ+cos ψ/2,求d ρ/d ψ| ψ=л/6=( ) 8、已知f(x)=3/5x+x 2/5,求f`(0)=( )9、设直线y=x+a 与曲线y=2arctanx 相切,则a=( ) 10、函数y=x 2-2x+3的极值是y(1)=( ) 11、函数y=2x 3极小值与极大值分别是( ) 12、函数y=x 2-2x-1的最小值为( )13、函数y=2x-5x 2的最大值为( )14、函数f(x)=x 2e -x 在[-1,1]上的最小值为( )15、点(0,1)是曲线y=ax 3+bx 2+c 的拐点,则有b=( ) c=( ) 16、∫xx 1/2dx= ( )17、若F`(x)=f(x),则∫dF(x)= ( ) 18、若∫f(x)dx=x 2e 2x +c ,则f(x)= ( ) 19、d/dx ∫a b arctantdt=( )20、已知函数f(x)=⎪⎩⎪⎨⎧=≠⎰-0,0,022)1(1x a x x t dte x在点x=0连续, 则a=( ) 21、∫02(x 2+1/x 4)dx=( ) 22、∫49 x 1/2(1+x 1/2)dx=( ) 23、∫031/2a dx/(a 2+x 2)=( ) 24、∫01 dx/(4-x 2)1/2=( ) 25、∫л/3лsin(л/3+x)dx=( )26、∫49 x1/2(1+x1/2)dx=( )27、∫49 x1/2(1+x1/2)dx=()28、∫49 x1/2(1+x1/2)dx=()29、∫49 x1/2(1+x1/2)dx=()30、∫49 x1/2(1+x1/2)dx=()31、∫49 x1/2(1+x1/2)dx=()32、∫49 x1/2(1+x1/2)dx=()33、满足不等式|x-2|<1的X所在区间为 ( )34、设f(x) = [x] +1,则f(л+10)=()35、函数Y=|sinx|的周期是()36、y=sinx,y=cosx直线x=0,x=л/2所围成的面积是()37、 y=3-2x-x2与x轴所围成图形的面积是()38、心形线r=a(1+cosθ)的全长为()39、三点(1,1,2),(-1,1,2),(0,0,2)构成的三角形为()40、一动点与两定点(2,3,1)和(4,5,6)等距离,则该点的轨迹方程是()41、求过点(3,0,-1),且与平面3x-7y+5z-12=0平行的平面方程是()42、求三平面x+3y+z=1,2x-y-z=0,-x+2y+2z=0的交点是( )43、求平行于xoz面且经过(2,-5,3)的平面方程是()44、通过Z轴和点(-3,1,-2)的平面方程是()45、平行于X轴且经过两点(4,0,-2)和(5,1,7)的平面方程是()46求极限lim [x/(x+1)]x=()∞x→47函数y=x2-2x+3的极值是y(1)=()48∫49 x1/2(1+x1/2)dx=()49y=sinx,y=cosx直线x=0,x=л/2所围成的面积是()50求过点(3,0,-1),且与平面3x-7y+5z-12=0平行的平面方程是()三、解答题1、设Y=2X-5X2,问X等于多少时Y最大并求出其最大值。
高数考试试题及答案
高数考试试题及答案一、选择题(每题3分,共30分)1. 函数\( f(x) = x^2 \)在区间[-1, 2]上的最大值是:A. 1B. 2C. 4D. 32. 微分方程\( y'' - y' - 6y = 0 \)的特征方程是:A. \( r^2 - r - 6 = 0 \)B. \( r^2 - 6 = 0 \)C.\( r^2 + r - 6 = 0 \) D. \( r^2 + 6 = 0 \)3. 若\( \lim_{x \to 0} \frac{f(x)}{x} = 1 \),则\( f(0) \)的值是:A. 0B. 1C. 无法确定D. 无穷大4. 曲线\( y = x^3 \)在点(1, 1)处的切线斜率是:A. 3B. 1C. 0D. -35. 函数\( f(x) = \ln(x) \)的原函数是:A. \( x^2 \)B. \( x^3 \)C. \( e^x \)D. \( x \ln(x) - x \)6. 定积分\( \int_{0}^{1} x^2 dx \)的值是:A. \( \frac{1}{3} \)B. \( \frac{1}{4} \)C.\( \frac{1}{2} \) D. 17. 无穷级数\( \sum_{n=1}^{\infty} \frac{1}{n^2} \)的和是:A. \( \frac{\pi^2}{6} \)B. \( \frac{\pi^2}{4} \)C.\( e \) D. \( \ln(2) \)8. 若\( \lim_{n \to \infty} a_n = 0 \),则级数\( \sum_{n=1}^{\infty} a_n \):A. 一定收敛B. 一定发散C. 可能收敛也可能发散D. 无法判断9. 函数\( f(x) = \sin(x) + \cos(x) \)的周期是:A. \( \pi \)B. \( 2\pi \)C. \( \frac{\pi}{2} \)D. \( \pi/4 \)10. 函数\( f(x) = x^3 - 3x \)的极值点是:A. \( x = 1 \)B. \( x = -1 \)C. \( x = 0 \)D.\( x = \pm 1 \)二、填空题(每题4分,共20分)1. 函数\( g(x) = 3x - 5 \)的反函数是 \( g^{-1}(x) = ______ \)。
高等数学练习册及答案
x,− ∞ < x < 1;
4、 设f
(x)
=
x
2,1 ≤
x
≤
4;
则f
( x)的反函数φ ( x)=
2 x,4 < x < +∞.
解: 当 − ∞ < x < 1时,y = x,即x = y −∞ < y < 1
当1 ≤ x ≤ 4时,y = x 2 , ∴ x = y 1 ≤ y ≤ 16.
12; C.1; D.e−
1
2.
§7 无穷小的比较
一、单项选择题
1、x→0 时,1—cosx 是 x2 的 B
。
(A)高阶无穷小 (B)同阶无穷小,但不等价 (C)等价无穷小 (D)低阶无穷小
2、当 x→0 时,(1—cosx)2 是 sin2x 的 A
。
(A)高阶无穷小 (B)同阶无穷小,但不等价 (C)等价无穷小 (D)低阶无穷小
xn
=
0;
(B) lim n→∞
xn
= 10−7 ;
0, n为奇数,
(C) lim n →∞
xn
=
10
−7
,
; n为偶数
(D)
lim
n→∞
xn不存在
3、数列有界是数列收敛的 B
。
(A)充分条件;
(B)必要条件;
(C)充分必要条件; (D)既非充分又非必要条件。
4、下列数列 xn 中,收敛的是 B
6
7、设f
(x)
=
tan kx x
,x
>
0,且 lim
f
( x)存在,则k的值为[
高等数学练习题附答案
第一章自测题一、填空题(每小题3分,共18分)1.lim sin x -tan x= .3x →0ln (1+2x )3-x -1+x= .2x +x -22.limx →12x 2+ax +b=3,其中为a ,b 常数,则a =,b = .3.已知limx →-1x +1⎧sin 2x +e 2ax -1,x ≠0⎪4.若f (x )=⎨在(-∞,+∞)上连续,则a = .x⎪a ,x =0⎩5.曲线f (x )=x -1的水平渐近线是,铅直渐近线是 .2x -4x +31e x6.曲线y =(2x -1)的斜渐近线方程为 .二、单项选择题(每小题3分,共18分)1.“对任意给定的ε∈(0,1),总存在整数N ,当n ≥N 时,恒有x n-a ≤2ε”是数列{x n}收敛于a 的 .A.充分条件但非必要条件B.必要条件但非充分条件C.充分必要条件D.既非充分也非必要条件⎧x 2,⎧2-x ,x ≤02.设g (x )=⎨,f (x )=⎨⎩x +2,x >0⎩-x ,x <0则g ⎡f (x )⎤= .⎣⎦x ≥0⎧2+x 2,x <0⎧2-x 2,x <0⎧2-x 2,x <0⎧2+x 2,x <0A.⎨B.⎨C.⎨D.⎨⎩2-x ,x ≥0⎩2+x ,x ≥0⎩2-x ,x ≥0⎩2+x ,x ≥03.下列各式中正确的是 .⎛1⎫⎛1⎫A.lim 1-⎪=e B.lim 1+⎪=e+ x →0x →0x ⎝x ⎭⎝⎭+x x⎛1⎫⎛1⎫ C.lim 1-⎪=-e D.lim 1+⎪x →∞x →∞⎝x ⎭⎝x ⎭4.设x →0时,e tan x x -x=e -1-1与x n 是等价无穷小,则正整数n = .A. 1 B. 2 C. 3 D. 45.曲线y =1+e -x 1-e2-x 2.A.没有渐近线B.仅有水平渐近线C.仅有铅直渐近线D.既有水平渐近线又有铅直渐近线6.下列函数在给定区间上无界的是 .A.11sin x ,x ∈(0,1] B.sin x ,x ∈(0,+∞)x x 111C.sin ,x ∈(0,1]D.x sin ,x ∈(0,+∞)x x x三、求下列极限(每小题5分,共35分)x 2-x -21.limx →24x +1-32.lim x +ex →0(12x -x)3.lim 1+2+3n →∞(n1n n)x 2sin4.x →+∞lim 1x 2x 2-15.设函数f (x )=a x (a >0,a ≠1),求lim1ln ⎡⎣f (1)f (2)n →∞n 2f (n )⎤⎦.1⎛⎫x 2+e sin x ⎪+6.lim 4x →0x ⎪ 1+e x ⎪⎝⎭7.lim+x →01-cos x1-cos x四、确定下列极限中含有的参数(每小题5分,共10分)ax 2-2x +b=-21.lim2x →1x +x -22.lim x +ax 2+bx -2=1x →-∞()⎧a x -b x,x ≠0⎪五、讨论函数f (x )=⎨x (a >0,b >0,a ≠1,b ≠1)在x =0处的连续性,⎪0,x =0⎩若不连续,指出该间断点的类型.(本题6分)⎛sin t ⎫六、设f (x )=lim ⎪t →x sin x ⎝⎭x sin t -sin x,求f (x )的间断点并判定类型.(本题7分)⎡1⎤七、设f (x )在[0,1]上连续,且f (0)=f (1).证明:一定存在一点ξ∈⎢0,⎥,使得⎣2⎦1⎫⎛f (ξ)=f ξ+⎪.(本题6分)2⎭⎝第二章自测题一、填空题(每小题3分,共18分)1.设f (x )在x 0可导,且f (x 0)=0,f '(x 0)=1,则lim hf x 0-h →∞⎛⎝1⎫⎪= .h ⎭2.设f x ⎛1⎫2'd x =d .=cos x ,则 . 3.f (x )=⎪2x ⎝⎭1-x sin x 4.设y =f (e ),其中f (x )可导,则d y = .5.设y =arccos x ,则y ' ⎛1⎫⎪= .⎝2⎭⎛1⎫,π⎪的切线方程为 .π⎝⎭6.曲线xy =1+x sin y 在点 二、单项选择题(每小题3分,共15分)1.下列函数中,在x =0处可导的是 .A.y =|x |B.y =|sin x |C.y =ln xD.y =|cos x |2.设y =f (x )在x 0处可导,且f '(x 0)=2,则limf (x 0+2x )-f (x 0-x )= .x →0x 11A.6B.-6C.D.-6623.设函数f (x )在区间(-δ,δ)内有定义,若当x ∈(-δ,δ)时恒有|f (x )|≤x ,则x =0是f (x )的 .A.间断点B.连续而不可导的点C.可导的点,且f '(0)=0D.可导的点,且f '(0)≠0⎧sin x ,x <04.设f (x )=⎨2,则在x =0处f (x )的导数 .x ,x ≥0⎩A.0 B.1 C.2 D.不存在5.设函数f (u )可导,y =f (x )当自变量x 在x =-1处取得增量x =-0.1时,相应的函数增量y 的线性主部为0.1,则f '(1)= .A.-1B.0.1C.1D.0.52三、解答题(共67分)1.求下列函数的导数(每小题4分,共16分)(1)y =ln e +1+e(2)y =a x a (3)y =x +a +a a a x(x2x)(⎛1⎫x +1 -1⎪⎝x ⎭)(4)y =(sin x )cos x2.求下列函数的微分(每小题4分,共12分)(1)y =x ln x +sin x (2)y =ecot 21x2(3)y =x 21-x1+x3.求下列函数的二阶导数(每小题5分,共10分)(1)y =cos x ln x(2)y =21-x1+x⎧e x ,x ≤14.设f (x )=⎨在x =1可导,试求a 与b .(本题6分)⎩ax +b ,x >15.设f (x )=⎨⎧sin x ,x <0',求f (x ).(本题6分)⎩ln(1+x ),x ≥0x 2-xy 2=1所确定,求d y .(本题6分)6.设函数y =y (x )由方程ln y⎧t ⎛⎫x =a ln tan +cos t ⎪d y d 2y ⎪ 7.设y =y (x )由参数方程⎨2⎝⎭,求,2.(本题6分)d x d x ⎪y =a sin t ⎩1+t ⎧x =⎪⎪t 38.求曲线⎨在t =1处的切线方程和法线方程.(本题5分)31⎪y =+⎪2t 22t ⎩第三章自测题一、填空题(每小题3分,共15分)1.若a >0,b >0均为常数,则lim ⎛a +b ⎫= .⎪x →0⎝2⎭x x 3x2.lim 1⎫⎛1-⎪= .2x →0x x tan x ⎝⎭3.limx →0arctan x -x= .3ln(1+2x )2-x 4.曲线y =e 的凹区间,凸区间为 .5.若f (x )=x e ,则f x (n )(x )在点x =处取得极小值.二、单项选择题(每小题3分,共12分)1.设a ,b 为方程f (x )=0的两根,f (x )在[a ,b ]上连续,(a ,b )内可导,则f '(x )=0在(a ,b )内 .A.只有一个实根B.至少有一个实根C.没有实根D.至少有两个实根2.设f (x )在x 0处连续,在x 0的某去心邻域内可导,且x ≠x 0时,(x -x 0)f '(x )>0,则f (x 0)是 .A.极小值B.极大值C.x 0为f (x )的驻点 D.x 0不是f (x )的极值点3.设f (x )具有二阶连续导数,且f '(0)=0,lim x →0f ''(x )=1,则 .|x |A.f (0)是f (x )的极大值 B.f (0)是f (x )的极小值C.(0,f (0))是曲线的拐点D.f (0)不是f (x )的极值,(0,f (0))不是曲线的拐点4.设f (x )连续,且f '(0)>0,则∃δ>0,使 .A.f (x )在(0,δ)内单调增加.B.f (x )在(-δ,0)内单调减少.C.∀x ∈(0,δ),有f (x )>f (0)D.∀x ∈(-δ,0),有f (x )>f (0).三、解答题(共73分)1.已知函数f (x )在[0,1]上连续,(0,1)内可导,且f (1)=0,证明在(0,1)内至少存在一点ξ使得f '(ξ)=-2.证明下列不等式(每小题9分,共18分)(1)当0<a <b 时,(2)当0<x <f (ξ).(本题6分)tan ξb -a b b -a.<ln <b a aπ2时,2πx <sin x <x .3.求下列函数的极限(每小题8分,共24分)e x -e -x -2x(1)limx →0x -sin x1(2)lim(cos x )x →0sin 2x(3)limx →01x(1+x )-ex 4.求下列函数的极值(每小题6分,共12分)(1)f (x )=x (1-x )1323⎧x 2x ,x >0(2)f (x )=⎨⎩x +1,x <05.求y =2x的极值点、单调区间、凹凸区间和拐点.(本题6分)ln x6.证明方程x ln x +第一章自测题一、填空题(每小题3分,共18分)1=0只有一个实根.(本题7分)e1. 2. 3.,铅直渐近线是, 4.6.5.水平渐近线是二、单项选择题(每小题3分,共18分)1. C2. D3. D4. A5. D 6.C 三、求下列极限(每小题5分,共35分)解:1..2..3.,又.4.. 5.. 6.,,所以,原式.7.四、确定下列极限中含有的参数(每小题5分,共10分).解:1.据题意设,令得,则,故.,令得2.左边故,则.,右边五、解:,故在处不连续,所以为得第一类(可去)间断点.六、解:,而,故,都是的间断点,,故为的第一类(可去)间断点,均为的第二类间断点.七、证明:设,显然在上连续,而,,,故由零点定理知:一定存在一点,使,即.第二章自测题一、填空题(每小题3分,共18分)1. 2. 3. 4.5. 6.或二、单项选择题(每小题3分,共15分)1. D2. A3. C4. D5. D三、解答题(共67分)解:1.(1)..(2)(3).(4)两边取对数得,两边求导数得.,2.求下列函数的微分(每小题4分,共12分)(1).(2)..(3)3.求下列函数的二阶导数(每小题5分,共10分)(1),.(2),.4.首先在处连续,故,故,其次,,,由于在处可导,故,故,.5.,,故,由于在,时均可导,故,两边求微分得.6.方程可变形为,故.7.,.8.,故.当时,.故曲线在处的切线方程为,即,法线方程为,即.第三章自测题一、填空题(每小题3分,共15分)1. 2. 3. 4., 5.二、单项选择题(每小题3分,共12分)1.B 2.A3.B,提示:由题意得,,当时,,当时,,从而在;即当取得极小值时,4. C,提示:由定义,由极限的保号性得,当时,三、解答题(共73分)证明:1.令,即,则在,使得上连续,,内可导,且;由罗尔定理知,至少存在一点故,即.2.(1)令,则在区间上满足拉格朗日中值定理的条件.由拉格朗日中值定理得,至少存在一点,使得即,又,得到,从而.(2)令,则,从而当时单调递增,即,故;令,则,即当时单调递减,即,故;从而当时,.解:3.(1).(2).(3).4.⑴函数的定义域为;,令得驻点,不可导点;当时,;当时,;当时,;当小值点,极小值为时,.;故为极大值点,极大值为;为极⑵,令得驻点,为不可导点.当时,;当时,;当时,;故为极大值点,极大值为;为极小值点,极小值为.5.定义域为得;;列表得:,,令得驻点,令---++极小值点++++-拐点单减凸单减凹单增凹单增凸6.证明:令,显然,;令得唯一驻点,且;故在上当时取得极小值;当时,,所以方程只有一个实根.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《高等数学》专业 年级 学号 姓名一、判断题. 将√或×填入相应的括号内.(每题2分,共20分)( )1. 收敛的数列必有界.( )2. 无穷大量与有界量之积是无穷大量. ( )3. 闭区间上的间断函数必无界. ( )4. 单调函数的导函数也是单调函数.( )5. 若)(x f 在0x 点可导,则)(x f 也在0x 点可导.( )6. 若连续函数)(x f y =在0x 点不可导,则曲线)(x f y =在))(,(00x f x 点没有切线.( )7. 若)(x f 在[b a ,]上可积,则)(x f 在[b a ,]上连续.( )8. 若),(y x f z =在(00,y x )处的两个一阶偏导数存在,则函数),(y x f z =在(00,y x )处可微.( )9. 微分方程的含有任意常数的解是该微分方程的通解.( )10. 设偶函数)(x f 在区间)1,1(-内具有二阶导数,且 1)0()0(+'=''f f , 则)0(f 为)(x f 的一个极小值.二、填空题.(每题2分,共20分)1. 设2)1(x x f =-,则=+)1(x f .2. 若1212)(11+-=xxx f ,则=+→0lim x .3. 设单调可微函数)(x f 的反函数为)(x g , 6)3(,2)1(,3)1(=''='=f f f 则=')3(g .4. 设yxxy u +=, 则=du . 5. 曲线326y y x -=在)2,2(-点切线的斜率为 .6. 设)(x f 为可导函数,)()1()(,1)1(2x f xf x F f +==',则=')1(F . 7. 若),1(2)(02x x dt t x f +=⎰则=)2(f .8. x x x f 2)(+=在[0,4]上的最大值为 . 9. 广义积分=-+∞⎰dx e x 20.10. 设D 为圆形区域=+≤+⎰⎰dxdy x y y x D5221,1 . 三、计算题(每题5分,共40分)1. 计算))2(1)1(11(lim 222n n n n ++++∞→Λ. 2. 求1032)10()3()2)(1(++++=x x x x y ΛΛ在(0,+∞)内的导数.3. 求不定积分dx x x ⎰-)1(1.4. 计算定积分dx x x ⎰-π53sin sin .5. 求函数22324),(y xy x x y x f -+-=的极值. 6. 设平面区域D 是由x y x y ==,围成,计算dxdy yyD⎰⎰sin . 7. 计算由曲线x y x y xy xy 3,,2,1====围成的平面图形在第一象限的面积.8. 求微分方程yxy y 2-='的通解. 四、证明题(每题10分,共20分)1. 证明:2tan arcsin1x arc x x=+ )(+∞<<-∞x .2. 设)(x f 在闭区间[],b a 上连续,且,0)(>x fdt t f dt t f x F x xb⎰⎰+=0)(1)()( 证明:方程0)(=x F 在区间),(b a 内有且仅有一个实根.《高等数学》参考答案一、判断题. 将√或×填入相应的括号内(每题2分,共20分)1.√ ;2.× ;3.×;4.× ;5.×;6.× ;7.× ;8.× ;9.√ ;10.√.二、 填空题.(每题2分,共20分)1.442++x x ; 2. 1; 3. 1/2; 4.dy y x x dx y y )/()/1(2-++;5. 2/3 ;6. 1 ;7.336 ; 8. 8 ; 9. 1/2 ; 10. 0.三、计算题(每题5分,共40分)1.解:因为 21(2)n n +222111(1)(2)n n n <+++<+L 21n n + 且 21lim 0(2)n n n →∞+=,21limn n n →∞+=0 由迫敛性定理知: ))2(1)1(11(lim 222n n n n ++++∞→Λ=0 2.解:先求对数)10ln(10)2ln(2)1ln(ln +++++=x x x y Λ101022111++++++='∴x x x y y Λ )(10()1(++='∴x x y Λ)10102211++++++x x x Λ 3.解:原式=⎰-x d x112=⎰-x d x 2)(112=2c x +arcsin4.解:原式=dx x x ⎰π23cos sin=⎰-2023sin cos πxdx x ⎰ππ223sin cos xdx x=⎰-2023sin sin πx xd ⎰ππ223sin sin x xd=2025][sin 52πx ππ225][sin 52x -=4/55.解: 02832=--='y x x f x 022=-='y x f y故 ⎩⎨⎧==00y x 或⎩⎨⎧==22y x当 ⎩⎨⎧==0y x 时8)0,0(-=''xxf ,2)0,0(-=''yy f ,2)0,0(=''xy f 02)2()8(2>--⨯-=∆Θ 且A=08<-∴ (0,0)为极大值点 且0)0,0(=f当 ⎩⎨⎧==22y x 时4)2,2(=''xxf , 2)2,2(-=''yy f ,2)2,2(=''xy f 02)2(42<--⨯=∆Θ ∴无法判断6.解:D={}y x y y y x ≤≤≤≤2,10),(⎰⎰⎰⎰=∴102sin sin y y Ddx y y dy dxdy y y=dy x y y y y 2][sin 10⎰ =dy y y y )sin (sin 1⎰-精选文库=⎰+-110cos ]cos [y yd y=⎰-+-110cos ]cos [1cos 1ydy y y=1sin 1- 7.解:令xy u =,xyv =;则21≤≤u ,31≤≤v v vuu vv v uuv y y x x J v uvu 212221=-==∴ 3ln 212131===⎰⎰⎰⎰Ddv v du d A σ 8.解:令 u y =2,知x u u 42)(-=' 由微分公式知:)4(222c dx xe e y u dxdx+⎰-⎰==⎰-)4(22c dx xe e x x +-=⎰-)2(222c e xe e x x x ++=--四.证明题(每题10分,共20分)1.解:设 21arcsinarctan )(xx x x f +-=222222211111111)(xx x x x x xx f ++-+⋅+--+='Θ=0c x f =∴)( +∞<<∞-x令0=x 0000)0(=∴=-=c f Θ 即:原式成立。
2.解: ],[)(b a x F 在Θ上连续且 dt t f a F ab⎰=)(1)(<0,dt t f b F b a ⎰=)()(>0故方程0)(=x F 在),(b a 上至少有一个实根.又 )(1)()(x f x f x F +=' 0)(>x f Θ 2)(≥'∴x F即 )(x F 在区间],[b a 上单调递增∴)(x F 在区间),(b a 上有且仅有一个实根.《高等数学》专业 学号 姓名一、判断题(对的打√,错的打×;每题2分,共10分)1.)(x f 在点0x 处有定义是)(x f 在点0x 处连续的必要条件.2. 若)(x f y =在点0x 不可导,则曲线)(x f y =在))(,(00x f x 处一定没有切线.3. 若)(x f 在],[b a 上可积,)(x g 在],[b a 上不可积,则)()(x g x f +在],[b a 上必不可积.4. 方程0=xyz 和0222=++z y x 在空间直角坐标系中分别表示三个坐标轴和一个点. 5. 设*y 是一阶线性非齐次微分方程的一个特解,y 是其所对应的齐次方程的通解,则*y y y +=为一阶线性微分方程的通解.二、填空题(每题2分,共20分)1. 设,5)(,12)3(=+=a f x x f 则=a .2. 设xx x f 3arcsin )21ln()(+=,当=)0(f 时,)(x f 在点0=x 连续.3. 设xtt tx x f 2)11(lim )(+=∞→,则)(x f '' .4. 已知)(x f 在ax =处可导,且Aa f =')(,则=--+→hh a f h a f h )3()2(lim.5. 若2)]([cos )(2x f dxdx x f =,并且1)0(=f ,则)(x f . 6. 若)(),(x g x f 在点b 左连续,且)()(),()(x g x f b g b f '>'= )(b x a <<, 则)(x f 与)(x g 大小比较为)(x f ).(x g7. 若2sin x y =,则=)(2x d dy ;=dxdy.8. 设⎰=xx tdt x f 2ln )(,则=')21(f . 9. 设yx ez 2=,则=)1,1(dz.10. 累次积分dy y x f dx x R R )(202022-⎰⎰-化为极坐标下的累次积分为 .三、计算题(前6题每题5分,后两题每题6分,共42分)1. ⎰⎰+→xx tx dtt t dtt 0sin 010sin )1(lim; 2. 设1ln 22-=xxe e y ,求y '; 3. dx x x x ⎰+-2sin 1cos sin ;4.⎰-20224dx x x; 5. 设22yx xz +=, 求 y x z y z ∂∂∂∂∂2,. 6. 求由方程)ln()(2y x y x x y --=-所确定的函数)(x y y =的微分dy . 7. 设平面区域D 是由x y x y ==,围成,计算dxdy yyD⎰⎰sin . 8. 求方程0)ln (ln =-+dy y x ydx y 在初始条件e yx ==1下的特解.四、(7分)已知bx ax x x f ++=23)(在1=x 处有极值2-,试确定系数a 、b ,并求出所有的极大值与极小值.五、应用题(每题7分,共14分)1. 一艘轮船在航行中的燃料费和它的速度的立方成正比. 已知当速度为)/(10h km 时,燃料费为每小时6元,而其它与速度无关的费用为每小时96元. 问轮船的速度为多少时, 每航行km 1所消耗的费用最小?2. 过点)0,1(向曲线2-=x y 作切线,求:(1)切线与曲线所围成图形的面积;(2)图形绕y轴旋转所得旋转体的体积.六、证明题(7分)设函数)(x f 在a x <≤0上的二阶导数存在,且0)0(=f , 0)(>''x f . 证明xx f x g )()(=在a x <<0上单调增加.高等数学参考答案一、判断题 1.√; 2.×; 3.√ ; 4.× ; 5.√.二、填空题1. 36 ;2. 32 ; 3. xe x 2)1(4+ ; 4. A 5 ; 5. x sin 1+; 6.<; 7. 22cos 2,cos x x x ; 8. 2ln ; 9. dy dx +2 ;10.⎰⎰20)2cos (πθθRrdr r f d .三、计算题1. 原式xxxx xx sin cos )sin 1(limsin 10+=→e e==12.2222222222)1(2)1(212111-⋅--⋅-⋅-='x xx x x xxxxe e e e e e e e e y 22222)1(221--⋅-=xxx x e e e e xe 211-=3.原式=dx x x xx ⎰+-2)cos (sin cos sin )cos (sin )cos (sin 12x x d x x ++-=⎰C xx ++=cos sin 14.设 t x sin 2= 则tdt dx cos 2= 原式=⎰⋅⋅202cos 2cos 2sin 4πtdt t t⎰⋅=2022cos sin 16πtdt t⎰⎰-==20202)4cos 1(22sin 4ππdt t tdtππ=-=20)4sin 41(2t t 5.23222222)(22y x xy y x y x y x yz +-=++⋅-=∂∂322212223222)(2)(23)(y x x y x xy y x y y x z +⋅+⋅-+-=∂∂∂精选文库3222232)()2(y x y x y y x ++-=6.两边同时微分得:)(1)()ln()(2dy dx yx y x y x dy dx dx dy ---+--=- 即 )()ln()ln(2dy dx dy y x dx y x dx dy -+---=-故 dx y x y x dy )ln(3)ln(2-+-+=(本题求出导数后,用dx y dy '=解出结果也可)7.⎰⎰⎰⎰=102sin sin y y Ddx y y dy dxdy y y⎰-=1)sin (sin dy y y y⎰-+-=11010cos cos cos ydy y y y10sin 1cos 1cos 1y -+-=1sin 1-=8.原方程可化为yx y y dy dx 1ln 1=+ 通解为 ]1[ln 1ln 1C dy ye ex dy y y dyy y +⋅⎰⎰=⎰-]1[ln ln ln ln C dy ye ey y+⋅=⎰-]ln 1[ln 1C ydy y y +=⎰])(ln 21[ln 12C y y += yC y ln ln 21+=e y x ==1代入通解得 1=C故所求特解为: 01ln 2)(ln 2=+-y x y精选文库四、解: b ax x x f ++='23)(2因为)(x f 在1=x 处有极值2-,所以1=x 必为驻点 故 023)1(=++='b a f 又 21)1(-=++=b a f 解得: 3,0-==b a于是 x x x f 3)(3-= )1(3)(2-='x x f x x f 6)(-='' 由0)(='x f 得 1±=x ,从而06)1(>=''f , 在1=x 处有极小值2)1(-=f 06)1(<-=-''f ,在1-=x 处有极大值2)1(=-f五、1.解:设船速为)/(h km x ,依题意每航行km 1的耗费为)96(13+=kx xy 又10=x 时,6103=⋅k 故得006.0=k , 所以有)96006.0(13+=x xy ,),0(∞+∈x 令 0)8000(012.032=-='x xy , 得驻点20=x 由极值第一充分条件检验得20=x 是极小值点.由于在),0(∞+上该函数处处可导,且只有唯一的极值点,当它为极小值点时必为最小值点,所以求得船速为)/(20h km 时,每航行km 1的耗费最少,其值为2.7209620006.02min =+⨯=y (元) 2.解:(1)设切线与抛物线交点为),(00y x ,则切线的斜率为100-x y , 又因为22-=x y 上的切线斜率满足12='⋅y y ,在),(00y x 上即有120='y y 所以112000=-⋅x y y ,即1200-='x y 又因为),(00y x 满足2020-=x y ,解方程组精选文库⎪⎩⎪⎨⎧-=-=212020020x y x y 得 ⎩⎨⎧==1300y x所以切线方程为 )1(21-=x y 则所围成图形的面积为: 61)]12(2[102=+-+=⎰dy y y S (2)图形绕x 轴旋转所得旋转体的体积为:6)2()1(4132102πππ=---=⎰⎰dx x dx x V六、证: 22)]0()([)()()(])([xf x f x f x x x f x f x x x f --'=-'=' 在],0[x 上,对)(x f 应用拉格朗日中值定理,则存在一点),0(x ∈ξ,使得 )()0()(ξf x f x f '=-代入上式得 2)()(])([xf x f x x x f ξ-'=' 由假设0)(>''x f 知)(x f '为增函数,又ξ>x ,则)()(ξf x f '>',于是0)()(>'-'ξf x f ,从而0])([>'xx f ,故x x f )(在),0(a 内单调增加.《高等数学》试卷专业 学号 姓名一、填空题(每小题1分,共10分)1.函数221arcsin 11y x x=-+-的定义域为_______________。