江苏省盐城市2015年中考数学试题及答案(word版)
盐城市盐都区2015届九年级上期末考试数学试题及答案
第 7 题图 第 8 题图 第 9 题图
盘,转盘停止后,指针分别指向一个数字(若指针停止在等份线上,那么重转一次,直到
指针指向某一数字为止).用所指的两个数字相乘,如果积是奇数,则甲获胜;如果积是偶
数,则乙获胜.请你解决下列问题:
(1)用列表格或两人获胜的概率.
则 m、n 的大小关系为 m_ ▲_n.(填“<”,“=”或“>”)
18.已知 Rt△ABC 中,∠C=90°,B C=1,AC=4,如图把边长分别为 x1,x2,x3,…,xn 的 n
个正方形依次放入△ABC 中,则第 2015 个正方形的边长为_▲_.
8.如图 1,在平面内选一定点 O,引一条有方向的射线 Ox,再选定一个单位长度,那么平面上
任一点 M 的位置可由∠MOx 的度数 θ 与 OM 的长度 m 确定,有序数对(θ,m)称为 M 点
的“极坐标”,这样建立的坐标系称为“极坐标系”.在图 2 的极坐标系下,如果正六边形的边
▲ 】
A.x2-x+1 =0 B.x2+x+1=0 C.x2-x-1=0 D.(x-1) 2+1=0
6.将抛物线 y=-x2 向上平移 2 个单位后,得到的函数表达式是 【
x ﹣3 ﹣2 ﹣1 1 2 3 4 5 6
y ﹣14 ﹣7 ﹣2 2 m n ﹣7 ﹣14 ﹣23
7.如图,AB 是⊙O 的直径,C、D 是⊙O 上两点,CD⊥AB.若∠DAB=65°,则∠BOC=【
▲ 】
A. 25° B. 50° C. 130° D . 155°
竿与旗杆的距离 DB=12m,则旗杆 AB 的高为 ▲ _m.
15.请写出一个开口向上,与 y 轴交点的纵坐标为 2 的抛物线的函数表达式 ▲ .
江苏省盐城市2015年中考数学试题及答案(word版)
盐城市二○一五年初中毕业与升学考试数学试题一、选择题:选择题(本大题8小题,每小题3分,共24分) 1. 21的倒数为 A . 2- B .21-C .21D . 2 2.下列四个图形中,是中心对称图形的为C. D.B.A.3.下列运算正确的是A .333)(ab b a =⋅B .632a b a =⋅C .236a b a =÷D .532)(a a =4.在下列四个几何体中,主视图与俯视图都是圆的为C. D.B.A.5.下列事件中,是必然事件的为A .3天内会下雨B .打开电视,正在播放广告C .367人中至少有2人公历生日相同D .某妇产医院里,下一个出生的婴儿是女孩6.将一块等腰直角三角板与一把直尺如图放置,若∠1=60°,则∠2的度数为A .85°B .75°C . 60°D .45° 7.若一个等腰三角形的两边长分别是2和5,则它的周长为A .12B .9C .12或9D .9或7 8.如图,在边长为2的正方形ABCD 中剪去一个边长为1的小正方形CEFG ,动点P 从点A 出发,沿A →D →E →F →G →B 的路线绕多边形的边匀速运动到点B 时停止(不含点A 和点B ),则△ABP 的面积S 随着时间t 变化的函数图像大致为二、填空题(本大题共有10小题,每小题3分,共30分)9.若二次根式1-x 有意义,则x 的取值范围是 .10.分解因式:=-a a 22.11.火星与地球的距离约为00000056千米,这个数据用科学记数法表示为 千米. 第6题图2112.一组数据866878,,,,,的众数是 .13.如图,在△ABC 与△ADC 中,已知AD =AB ,在不添加任何辅助线的前提下,要使△ABC ≌△ADC ,只需要再添加的一个条件可以是 .14.如图,点D 、E 、F 分别是△ABC 各边的中点,连接DE 、EF 、DF ,若△ABC 的周长为10,则△DEF 的周长为 .第17题图第16题图A B C D AB C D 第14题图第13题图E F D CBA 15.若422=-n m ,则代数式22410n m -+的值为 .16.如图,在矩形ABCD 中,AB =4,AD =3,以顶点D 为圆心作半径为r 的圆,若要求另外三个顶点A 、B 、C 中至少有一个点在圆内,且至少有一个点在圆外,则r 的取值范围是 .17.如图,在矩形ABCD 中,AB =4,AD =2,以点A 为圆心,AB 长为半径画圆弧交边DC 于点E ,则弧BE 的长度为 .18.设△ABC 的面积为1,如图①将边BC 、AC 分别2等份,1BE 、1AD 相交于点O ,△AOB 的面积记为1S ;如图②将边BC 、AC 分别3等份,1BE 、1AD 相交于点O ,△AOB 的面积记为2S;……, 依此类推,则n S 可表示为 .(用含n 的代数式表示,其中n 为正整数)第18题图332121图③图②图①D 1三、解答题(本大题共10小题,共96分) 19.(本题满分8分)(1)计算()︒+--602310cos (2)解不等式:4323+<-x x )(20.(本题满分8分)先化简,再求值:)()(131112+÷-+a a a ,其中4=a .21.(本题满分8分)2015年是中国人民抗日战争暨世界反法西斯胜利70周年,9月3日全国各地将举行有关纪念活动.为了解初中学生对二战历史的知晓情况,某初中课外兴趣小组在本校学生中开展了专题调查活动,随机抽取了部分学生进行问卷调查,根据学生答题情况,将结果分为A 、B 、C 、D 四类,其中A 类表示“非常了解”、B 类表示“比较了解”、C 类表示“基本了解”、D 类表示“不太了解”,调查的数据经整理后形成下列尚未完成的条形统计图(如图①)和扇形统计图(如图②):(1)在这次抽样调查中,一共抽查了 名学生;(2)请把图①中的条形统计图补充完整;(3)图②的扇形统计图中D 类部分所对应扇形的圆心角的度数为 °;(4)如果这所学校共有初中学生1500名,请你估算该校初中学生中对二战历史“非常了解”和“比较了解”的学生共有多少名?O 图②类型第21题图图①22. (本题满分8分)有甲、乙两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字1和2-;乙袋中有三个完全相同的小球,分别标有数字1-、0和2.小丽先从甲袋中随机取出一个小球,记下小球上的数字为x ;再从乙袋中随机取出一个小球,记录下小球上的数字为y ,设点P 的坐标为(x ,y ).(1)请用表格或树状图列出点P 所有可能的坐标;(2)求点P 在一次函数1+=x y 图像上的概率.23.(本题满分10分)如图,在△ABC 中,∠CAB =90°,∠CBA =50°,以AB 为直径作⊙O 交BC 于点D ,点E 在边AC 上,且满足ED =EA .(1)求∠DOA 的度数; (2)求证:直线ED 与⊙O 相切.第23题图DO BA E C24.(本题满分10分)如图,在平面直角坐标系xOy 中,已知正比例函数x y 43=与一次函数7+-=x y 的图像交于点A . (1)求点A 的坐标;(2)设x 轴上一点P (a ,b ),过点P 作x 轴的垂线(垂线位于点A 的右侧),分别交x y 43=和7+-=x y 的图像于点B 、C ,连接OC ,若BC =57OA ,求△OBC 的面积.25.(本题满分10分)如图所示,一幢楼房AB 背后有一台阶CD ,台阶每层高2.0米,且AC =2.17米,设太阳光线与水平地面的夹角为α.当︒=60α时,测得楼房在地面上的影长AE =10米,现有一只小猫睡在台阶的MN 这层上晒太阳.(3取73.1)(1)求楼房的高度约为多少米?(2)过了一会儿,当︒=45α时,问小猫能否还晒到太阳?请说明理由.第25题图D BA C26.(本题满分10分)如图,把△EFP 按图所示的方式放置在菱形ABCD 中,使得顶点E 、F 、P 分别在线段AB 、AD 、AC上.已知EP =FP =4,EF =34,∠BAD =60°,且AB 34>.(1)求∠EPF 的大小;(2)若AP =6,求AE +AF 的值;(3)若△EFP 的三个顶点E 、F 、P 分别在线段AB 、AD 、AC 上运动,请直接写出AP 长的最大值和最小值.P第26题图DF B A EC27.(本题满分12分)知识迁移我们知道,函数)(00,02>>≠+-=n ,m a n )m x (a y 的图像是由二次函数2ax y =的图像向右平移m 个单位,再向上平移n 个单位得到.类似地,函数)n m k (n m x k y 0,0,0>>≠+-=的图像是由反比例函数xk y =的图像向右平移m 个单位,再向上平移n 个单位得到,其对称中心坐标为(m ,n ).理解应用函数113+-=x y 的图像可以由函数x y 3=的图像向右平移 个单位,再向上平移 个单位得到,其对称中心坐标为 .灵活运用如图,在平面直角坐标系xOy 中,请根据所给的xy 4-=的图像画出函数224---=x y 的图像,并根据该图像指出,当x 在什么范围内变化时,y ≥1-?实际应用某老师对一位学生的学习情况进行跟踪研究.假设刚学完新知识时的记忆存留量为1.新知识学习后经过的时间为x ,发现该生的记忆存留量随x 变化的函数关系为441+=x y ;若在t x =(t ≥4)时进行一次复习,发现他复习后的记忆存留量是复习前的2倍(复习时间忽略不计),且复习后的记忆存量随x 变化的函数关系为a x y -=82.如果记忆存留量为21时是复习的“最佳时机点”,且他第一次复习是在“最佳时机点”进行的,那么当x 为何值时,是他第二次复习的“最佳时机点”?28.(本题满分12分)如图,在平面直角坐标系xOy 中,将抛物线2x y =的对称轴绕着点P (0,2)顺时针旋转45°后与该抛物线交于A 、B 两点,点Q 是该抛物线上的一点.(1)求直线AB 的函数表达式;AB 第27题。
江苏省盐城市初级中学2015届九年级下学期第二次模拟考试数学试题及答案
盐城市初级中学2014—2015学年度第二次模拟考试初三年级数学试题(考试时间:120分钟 卷面总分:150分)一、选择题(本大题共有8小题.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列四个数中,最小的数是 ( ▲ )A .2B . 2-C .0D . 12- 2.下列运算正确的是 ( ▲ )A5=- B . 21164-⎛⎫-= ⎪⎝⎭ C . 632x x x ÷= D . ()235x x = 3.下列几何体的主视图与众不同的是 ( ▲ )4.据介绍,今年连盐铁路盐城段将完成征地拆迁和工程总投资30亿元.将30亿用科学记数法表示应为 ( ▲ )A .3×109B .3×1010C . 30×108D . 30×1095.下列函数中,y 随x 的增大而减小的是 ( ▲ )A .13y x =; B .13y x =-; C .3y x=; D .3y x =- 6.盐城市亭湖区5月23日至5月29日这7天的日气温最高值统计图如图所示.从统计图看,该地区这7天日气温最高值的中位数是 ( ▲ )A .22B .23C .24D .257.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,该小正方形的序号是 ( ▲ )A .①B .②C .③D .④8.甲、乙两辆摩托车分别从A 、B 两地出发相向而行,图中1l 、2l 分别表示甲、乙两辆摩托车与A 地的距离s (千米)与行驶时间t (小时)之间的函数关系,则下列说法:①A 、B 两地相距24千米; ②甲车比乙车行完全程多用了0.1小时;③甲车的速度比乙车慢8千米/小时;A B C D第7题④两车出发后,经过113小时两车相遇.其中正确的有 ( ▲ ) A .1个 B .2个 C .3个 D .4个二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9.25的平方根是 ▲ .10.在函数11+=x y 中,自变量x 的取值范围是 ▲ .11.抛掷一枚均匀的硬币,前20次都正面朝上,第21次正面朝上的概率为 ▲ .12.对角线互相垂直平分的四边形是 ▲ .13.若两个等边三角形的边长分别为a 与3a ,则它们的面积之比为 ▲ .14.现有人数相等的甲、乙、丙三个旅行团,每个团游客的平均年龄都是32岁,如果这三个团游客年龄的方差分别是2甲S =27,2乙S =19.6,2丙S =1.6.导游小王最喜欢带游客年龄相近的团队,则他应选的团队是 ▲15.如图,圆锥的底面半径OB 长为5cm ,母线AB 长为15cm ,则这个圆锥侧面展开图的圆心角α为 ▲ 度.16.已知正五边形的对称轴是过任意一个顶点与该顶点对边中点的直线.如图所示的正五边形中相邻两条对称轴所夹锐角α的度数为 ▲ .17.如图,在△ABC 中,已知AB=AC ,∠A=45°,BD ⊥AC 于点D .根据该图可以求出tan22.5°= ▲ .18.当-1≤x ≤2时,二次函数y=-(x -m )2+m 2+1有最大值4,则实数m 的值为 ▲ .三、解答题(本大题共有10小题.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(1)计算: 30sin 2)21(8|21|1++--- (2)化简: )1(2)1(2a a -++20.(1) 解方程:x 2-5x -6=0; (2)解不等式组:⎪⎩⎪⎨⎧->-+≥-).12(3121)1(2x x x x21.为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2两幅尚不完整的统计图.第16题 α 0840.60.50.40.30.20.1第8题第15题 A B C D第17题(1)本次抽测的男生有________人,抽测成绩的众数是_________;(2)请你将图2中的统计图补充完整;(3)若规定引体向上5次以上(含5次)为体能达标,则该校1000名九年级男生中估计有多少人体能达标?22.耩(jiǎng )子是一种传统农用播种的工具,大小款式不一,图(1)是改良后有轮子的一种,图(2)是其示意图,现测得AC=40cm ,∠C=30°,∠BAC=45°.为了使耩子更牢固,AB 处常用粗钢筋制成,则制作此耩子时需要准备多长的粗钢筋?(结果保留根号)23.如图,在△ABC 中,∠A =∠B =30°,过点C 作CD ⊥AC ,交AB 于点D .(1)作⊙O ,使⊙O 经过A 、C 、D 三点(尺规作图,保留作图痕迹,不写作法);(2)判断直线 BC 与⊙O 的位置关系,并说明理由.24.张老师让同学们为班会活动设计一个抽奖方案,拟使中奖概率为60%.(1)小明的设计方案:在一个不透明的盒子中,放入黄球和白球共10个,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸到黄球则表示中奖,否则不中奖.如果小明的设计符合老师要求,A B C D 第23题 (图1) (图2)4次20%3次 7次 12% 5次 6次 图1抽测成绩/次图2则盒子中黄球应有_______个,白球应有_______个;(2)小兵的设计方案:在一个不透明的盒子中,放入4个黄球,和1个白球,这些球除颜色外都相同,搅匀后从中任意摸出2个球,摸到的2个球都是黄球则表示中奖,否则不中奖.该设计方案是否符合老师的要求?试说明理由.25.某饮料经营部每天的固定成本为200元,其销售的饮料每瓶进价为5元.销售单价与日平均销(元,则日平均销量为瓶;(2)若要使日均毛利润达到最大,销售单价应定为多少元?最大日均毛利润为多少元?(毛利润=售价-进价-固定成本)(3)若要使日均毛利润达到1400元,且每日销量尽可能大,那么销售单价应定为多少元?26.如图,直线AB分别交反比例函数y=图象于A、B两点,且PB⊥x轴于点C,PA⊥y轴于点D,AB分别与x轴,y轴相交于点F、E.已知点B的坐标为(1,3).(1)若点A到y轴的距离为2,说明:△PCD与△PBA相似;(2)若点A为第三象限内任一点,请判断AB与CD的位置关系并说明理由;(3)说明:AE=BF;27.我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.(1)已知:若四边形ABCD 是“等对角四边形”,∠A=70°,∠B=80°.求∠C 、∠D 的度数.(2)如图1,在Rt △ACB 中,∠C=90°,CD 为斜边AB 边上的中线,过点D 作DE ⊥CD 交AC 于点E ,请说明:四边形BCED 是“等对角四边形” .(3)如图2,在Rt △ACB 中,∠C=90°,AC=4,BC=3,CD 平分∠ACB ,点E 在线段AC 上,四边形BCED 为“等对角四边形“,求线段AE 的长.28. 已知:函数34342+-=x ax y 的图象与x 轴只有一个公共点. (1)求这个函数关系式; (2)如图所示,设二次..函数34342+-=x ax y 图象的顶点为A ,与y 轴的交点为B ,P 为图象上的一点,若以线段PA 为直径的圆与直线AB 相切于点A ,求P 点的坐标; (3)如图,直线3+=kx y 经过点D (3,4),且与x 轴交于点E .将抛物线34342+-=x ax y 沿x 轴作左右平移,记平移后的抛物线为C ,其顶点为M .在抛物线平移过程中,将△MED 沿直线ED 翻折得到△NED ,点N 能否落在抛物线C 上?如能,求出此时抛物线C 顶点M 的坐标;如不能,请说明理由.A B C D E图1 A B C D 图2 AB C D 备用图 备用图。
江苏省盐城市中考数学试卷word解析版
最大最全最精的教育资源网2015 年江苏省盐城市中考数学试卷分析(本试卷满分150 分,考试时间120 分钟)江苏泰州鸣午数学工作室编写一、选择题:选择题(本大题8 小题,每题 3 分,共 24 分)1. (2015年江苏盐城 3 分)1的倒数为【】2A. 2B. 1 1D. 2 2C.2【答案】 D.【考点】倒数 .【剖析】依据两个数乘积是 1 的数互为倒数的定义,所以求一个数的倒数即用 1 除以这个数.所以,1的倒数为 1 1 2 .应选D.2 22. (2015年江苏盐城 3 分)以下四个图形中,是中心对称图形的为【】A. B. C. D.【答案】 C.【考点】中心对称图形 .【剖析】依据中心对称图形的观点,中心对称图形是图形沿对称中心旋转180 度后与原图重合. 所以,所给图形中是中心对称图形的为. 应选 C.3. (2015年江苏盐城3分)以下运算正确的选项是【】A. a3 b3 (ab)3B. a2b3 a6C. a6 b3 a2D.(a2 ) 3 a5【答案】 A.【考点】同底幂乘法和除法;幂的乘方和积的乘方.【剖析】依据同底幂乘法和除法;幂的乘方和积的乘方逐个计算作出判断:A. 依据“积的乘方等于每一个因数乘方的积”的积的乘方法例得a3 b3(ab)3,故本选项正确;B. 根据“同底数幂相乘,底数不变,指数相加”的乘法法则得:a2 a3a2 3a5a6,故本选项错误;C.根据“ 同底数幂相除,底数不变,指数相减” 的除法法则得:a6b3a6 3a3a2a5a6,故本选项错误;D.根据“ 幂的乘方,底数不变,指数相乘” 的幂的乘方法则得(a2 )3a2 3a6a5,故本选项错误.应选 A.4. (2015年江苏盐城 3 分)在以下四个几何体中,主视图与俯视图都是圆的为【】A. B. C. D.【答案】 D.【考点】简单几何体的三视图.【剖析】主视图、左视图、俯视图是分别从物体正面、左面和上边看,所获得的图形.所以,圆柱的主视图与俯视图都是矩形;圆台的主视图与俯视图都是等腰梯形;圆锥的主视图与俯视图都是等腰三角形;球的主视图与俯视图都是圆.【根源: 21·世纪·教育·网】应选 D.5. (2015年江苏盐城 3 分)以下事件中,是必定事件的为【】A. 3 天内会下雨B. 翻开电视,正在播放广告C. 367 人中起码有 2 人阳历诞辰同样D. 某妇产医院里,下一个出生的婴儿是女孩【答案】 C.【考点】必定事件、随机事件和不行能事件.【剖析】依据必定事件、随机事件和不行能事件和意义作出判断:A .“3 天内会下雨” ,是随机事件;B .“翻开电视,正在播放广告”,是随机事件;C.“367 人中起码有 2 人阳历诞辰同样” ,是确立(必定)事件;D.“某妇产医院里,下一个出生的婴儿是女孩”,是随机事件。
江苏省盐城中学2015届中考数学模拟试题(含解析)
江苏省盐城中学2015届中考数学模拟试题一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.﹣的倒数是()A. B.﹣2 C.2 D.﹣2.下列运算正确的是()A.x2+x3=x5B.x4•x2=x6C.x6÷x2=x3D.(x2)3=x83.下面四个几何体中,俯视图为四边形的是()A. B. C. D.4.菱形ABCD的对角线长分别为6和8,则菱形的面积为()A.12 B.24 C.36 D.485.对于反比例函数y=﹣,下列说法正确的是()A.图象经过点(1,1)B.图象位于第一、三象限C.图象是中心对称图形D.当x<0时,y随x的增大而减小)7.已知如图①所示的四张牌,若将其中一张牌旋转180°后得到图②,则旋转的牌是()A. B. C. D.8.已知实数m,n满足m﹣n2=2,则代数式m2+2n2+4m﹣1的最小值等于()A.﹣14 B.﹣6 C.8 D.11二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9.16的平方根是.10.使式子1+有意义的x的取值范围是.11.因式分解:a2+2ab= .12.一种花粉颗粒的直径约为0.0000065米,将0.0000065用科学记数法表示为.13.一元二次方程mx2﹣2x+1=0有两个不相等的实数根,则m应满足的条件是.14.如图所示是一飞镖游戏板,大圆的直径把一组同心圆分成四等份,假设飞镖击中圆面上每一个点都是等可能的,则飞镖落在黑色区域的概率是.15.如图,四边形ABCD的四个顶点都在⊙O上,若∠ABC=80°,则∠ADC的度数为°.16.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=5cm,则EF= cm.17.如图,将边长为2cm的正方形ABCD绕点A顺时针旋转到AB′C′D′的位置,∠B′AD=120°,则C点运动到C′点的路径长为cm.18.如图,第1个图形中一共有1个平行四边形,第2个图形中一共有5个平行四边形,第3个图形中一共有11个平行四边形,…则第n个图形中平行四边形的个数是.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(1)计算:()0﹣()﹣2+sin30°(2)化简:(a﹣b)2+b(2a+b)20.(1)解不等式组:(2)解方程:﹣=2.21.如图,一艘巡逻艇航行至海面B处时,得知正北方向上距B处20海里的C处有一渔船发生故障,就立即指挥港口A处的救援艇前往C处营救.已知C处位于A处的北偏东45°的方向上,港口A位于B的北偏西30°的方向上.求A、C之间的距离.(结果精确到0.1海里,参考数据≈1.41,≈1.73)22.如图所示,可以自由转动的转盘被3等分,指针落在每个扇形内的机会均等.(1)现随机转动转盘一次,停止后,指针指向2的概率为;(2)小明和小华利用这个转盘做游戏,若采用下列游戏规则,你认为对双方公平吗?请用列表或画树状图的方法说明理由.游戏规则:随机转动转盘两次,停止后,指针各指向一个数字,若两数之积为偶数,则小明胜;否则小华胜.23.已知:如图,在▱ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.(1)求证:△DOE≌△BOF;(2)当∠DOE等于多少度时,四边形BFDE为菱形?请说明理由.24.盐城市初级中学为了了解中考体育科目训练情况,从本校九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D 级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是;(2)图1中∠α的度数是,并把图2条形统计图补充完整;(3)该校九年级有学生2500名,如果全部参加这次中考体育科目测试,请估计不及格的人数为.25.如图,AB是⊙O的直径,点E是上的一点,∠DBC=∠BED.(1)请判断直线BC与⊙O的位置关系,并说明理由;(2)已知AD=5,CD=4,求BC的长.26.在购买某场足球赛门票时,设购买门票数为x(张),总费用为y(元).现有两种购买方案:方案一:若单位赞助广告费10000元,则该单位所购门票的价格为每张50元;(总费用=广告赞助费+门票费)方案二:购买门票方式如图所示.解答下列问题:(1)方案一中,y与x的函数关系式为;方案二中,当0≤x≤100时,y与x的函数关系式为,当x>100时,y与x的函数关系式为;(2)甲、乙两单位分别采用方案一、方案二购买本场足球赛门票共600张,花去总费用计48000元,求甲、乙两单位各购买门票多少张.27.某数学活动小组在一次活动中,对一个数学问题作如下探究:问题发现:如图1,在等边三角形ABC中,点M是边BC上任意一点,连接AM,以AM为边作等边三角形AMN,连接CN,证明:BM=CN.变式探究:如图2,在等腰三角形ABC中,BA=BC,∠ABC=∠α,点M为边BC上任意一点,以AM为腰作等腰三角形AMN,MA=MN,使∠AMN=∠ABC,连接CN,请求出的值.(用含α的式子表示出来)解决问题:如图3,在正方形ADBC中,点M为边BC上一点,以AM为边作正方形作AMEF,N为正方形AMEF的中心,连接CN,若正方形AMEF的边长为,CN=,请你求正方形ADBC的边长.28.如图,抛物线y=﹣x2+bx+c经过△ABC的三个顶点,点A坐标为(0,6),点C坐标为(4,6),点B在x轴正半轴上.(1)求该抛物线的函数表达式和点B的坐标.(2)将经过点B、C的直线平移后与抛物线交于点M,与x轴交于点N,当以B、C、M、N为顶点的四边形是平行四边形时,请求出点M的坐标.(3)①动点D从点O开始沿线段OB向点B运动,同时以OD为边在第一象限作正方形ODEF,当正方形的顶点E恰好落在线段AB上时,则此时正方形的边长为.②将①中的正方形ODEF沿OB向右平移,记平移中的正方形ODEF为正方形O′D′E′F′,当点D 与点B重合时停止平移.设平移的距离为x,在平移过程中,设正方形O′D′E′F′与△ABC重叠部分的面积为y,请你画出相对应的图形并直接写出y与x之间的函数关系式.2015年江苏省盐城中学中考数学模拟试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.﹣的倒数是()A. B.﹣2 C.2 D.﹣【考点】倒数.【分析】根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数可得答案.【解答】解:﹣的倒数是﹣2.故选:B.【点评】此题主要考查了倒数,关键是掌握两个倒数之积为1.2.下列运算正确的是()A.x2+x3=x5B.x4•x2=x6C.x6÷x2=x3D.(x2)3=x8【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、x2与x3不是同类项,不能合并,故本选项错误;B、根据同底数幂的乘法,底数不变指数相加得,x4•x2=x6,故本选项正确;C、根据同底数幂的除法,底数不变指数相减得,x6÷x2=x4,故本选项错误;D、幂的乘方,底数不变指数相乘,(x2)3=x6,故本选项错误.故选B.【点评】本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.3.下面四个几何体中,俯视图为四边形的是()A. B. C. D.【考点】简单几何体的三视图.【分析】俯视图是指从物体上面看,所得到的图形.【解答】解:A、圆柱的俯视图是圆;B、三棱锥的俯视图是三角形;C、球的俯视图是圆;D、正方体的俯视图是四边形.故选D.【点评】本题考查了几何体的三种视图,掌握定义是关键.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.4.菱形ABCD的对角线长分别为6和8,则菱形的面积为()A.12 B.24 C.36 D.48【考点】菱形的性质.【分析】由菱形ABCD的对角线长分别为6和8,根据菱形的面积等于对角线积的一半,即可求得答案.【解答】解:∵菱形ABCD的对角线长分别为6和8,∴菱形的面积为:×6×8=24.故选B.【点评】此题考查了菱形的性质.注意掌握菱形的面积等于对角线积的一半是关键.5.对于反比例函数y=﹣,下列说法正确的是()A.图象经过点(1,1)B.图象位于第一、三象限C.图象是中心对称图形D.当x<0时,y随x的增大而减小【考点】反比例函数的性质.【分析】根据反比例函数图象的性质对各选项分析判断后利用排除法求解.【解答】解:A、∵﹣≠1,∴点(1,1)不在它的图象上,故本选项错误;B、k=﹣1<0,∴它的图象在第二、四象限,故本选项错误;C、反比例函数的两个分支关于原点中心对称,故本选项正确;D、k=﹣1<0,当x<0时,y随x的增大而减小,故本选项错误.故选C.【点评】本题考查了反比例函数的性质,对于反比例函数y=(k≠0),(1)k>0,反比例函数图象在一、三象限,在每一个象限内,y随x的增大而减小;(2)k<0,反比例函数图象在第二、四象限内,在每一个象限内,y随x的增大而增大.)【考点】中位数.【分析】根据中位数的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:3000,3000,3000,3200,3200,3200,3400,3400,3400,3600,则中位数为: =3200.故选B.【点评】本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.已知如图①所示的四张牌,若将其中一张牌旋转180°后得到图②,则旋转的牌是()A. B. C. D.【考点】中心对称图形.【专题】常规题型.【分析】根据中心对称的定义,观察四张牌的中间的图形,找出是中心对称的牌就是旋转的牌.【解答】解:观察发现,只有是中心对称图形,∴旋转的牌是.故选A.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合,找出牌中的关键所在是解题的关键.8.已知实数m,n满足m﹣n2=2,则代数式m2+2n2+4m﹣1的最小值等于()A.﹣14 B.﹣6 C.8 D.11【考点】配方法的应用;非负数的性质:偶次方.【分析】已知等式变形后代入原式,利用完全平方公式变形,根据完全平方式恒大于等于0,即可确定出最小值.【解答】解:∵m﹣n2=2,即n2=m﹣2≥0,m≥2,∴原式=m2+2m﹣4+4m﹣1=m2+6m+9﹣14=(m+3)2﹣14,则代数式m2+2n2+4m﹣1的最小值等于(2+3)2﹣14=11.故选:D.【点评】此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9.16的平方根是±4.【考点】平方根.【专题】计算题.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10.使式子1+有意义的x的取值范围是x≥0.【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式即可.【解答】解:由题意得,x≥0.故答案为:x≥0.【点评】本题考查的知识点为:二次根式的被开方数是非负数.11.因式分解:a2+2ab= a(a+2b).【考点】因式分解-提公因式法.【专题】计算题.【分析】原式提取公因式即可得到结果.【解答】解:原式=a(a+2b),故答案为:a(a+2b)【点评】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.12.一种花粉颗粒的直径约为0.0000065米,将0.0000065用科学记数法表示为 6.5×10﹣6.【考点】科学记数法—表示较小的数.【专题】计算题.【分析】根据科学记数法和负整数指数的意义求解.【解答】解:0.0000065=6.5×10﹣6.故答案为6.5×10﹣6.【点评】本题考查了科学记数法﹣表示较小的数:用a×10n(1≤a<10,n为负整数)表示较小的数.13.一元二次方程mx2﹣2x+1=0有两个不相等的实数根,则m应满足的条件是m<1且m≠0.【考点】根的判别式;一元二次方程的定义.【分析】由关于x的一元二次方程mx2﹣2x+1=0有两个不相等的实数根,根据一元二次方程的定义和根的判别式的意义可得m≠0且△>0,即22﹣4•m>0,两个不等式的公共解即为m的取值范围.【解答】解:∵关于x的一元二次方程mx2﹣2x+1=0有两个不相等的实数根,∴m≠0且△>0,即22﹣4•m•>0,解得m<1,∴m的取值范围为m<1且m≠0.故答案为:m<1且m≠0.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根;也考查了一元二次方程的定义.14.如图所示是一飞镖游戏板,大圆的直径把一组同心圆分成四等份,假设飞镖击中圆面上每一个点都是等可能的,则飞镖落在黑色区域的概率是.【考点】几何概率.【分析】首先确定阴影的面积在整个轮盘中占的比例,根据这个比例即可求出飞镖落在阴影部分的概率.【解答】解:∵观察发现:阴影部分面积=圆的面积,∴镖落在黑色区域的概率是,故答案为:.【点评】此题主要考查了几何概率,确定阴影部分的面积与大圆的面积之间的关系是解题的关键.15.如图,四边形ABCD的四个顶点都在⊙O上,若∠ABC=80°,则∠ADC的度数为100 °.【考点】圆内接四边形的性质.【分析】根据圆内接四边形的对角互补计算即可.【解答】解:∵四边形ABCD是圆内接四边形,∴∠ADC+∠ABC=180°,又∠ABC=80°,∴∠ADC=100°,故答案为:100.【点评】本题考查的是圆内接四边形的性质,掌握圆内接四边形的对角互补是解题的关键.16.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=5cm,则EF= 5 cm.【考点】三角形中位线定理;直角三角形斜边上的中线.【分析】首先根据在直角三角形中,斜边上的中线等于斜边的一半可得AB=2CD=10cm,再根据中位线的性质可得EF=AB=5cm.【解答】解:∵∠ACB=90°,D为AB中点,∴AB=2CD,∵CD=5cm,∴AB=10cm,∵E、F分别是BC、CA的中点,∴EF=AB=5cm,故答案为:5.【点评】此题主要考查了三角形中位线的性质以及直角三角形的性质,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.17.如图,将边长为2cm的正方形ABCD绕点A顺时针旋转到AB′C′D′的位置,∠B′AD=120°,则C点运动到C′点的路径长为πcm.【考点】旋转的性质;弧长的计算.【专题】计算题.【分析】连结AC、AC′,如图,先根据正方形的性质得∠BAD=90°,AC=AB=2,则∠B′AB=30°,再利用旋转的性质得∠C′AC=∠B′AB=30°,然后根据弧长公式计算C点运动到C′点的路径长.【解答】解:连结AC、AC′,如图,∵四边形ABCD为正方形,∴∠BAD=90°,AC=AB=2,∵∠B′AD=120°,∴∠B′AB=30°,∵正方形ABCD绕点A顺时针旋转到AB′C′D′的位置,∴∠C′AC=∠B′AB=30°,∴C点运动到C′点的路径长==π(cm).故答案为π.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了弧长的计算.18.如图,第1个图形中一共有1个平行四边形,第2个图形中一共有5个平行四边形,第3个图形中一共有11个平行四边形,…则第n个图形中平行四边形的个数是n2+n﹣1 .【考点】规律型:图形的变化类.【分析】由图形可知:图1平行四边形有1个,图2平行四边形有5=22+2﹣1个,图3平行四边形有11=32+3﹣1个,图4平行四边形有19=42+4﹣1个,…第n个图有n2+n﹣1个.【解答】解:图①平行四边形有1个,图②平行四边形有5=22+2﹣1个,图③平行四边形有11=32+3﹣1个,图④平行四边形有19=42+4﹣1个,…第n个图有n2+n﹣1个平行四边形.故答案为:n2+n﹣1.【点评】考查了规律型:图形的变化类,本题是一道根据图形进行数字猜想的问题,关键是通过归纳与总结,得到其中的规律.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(1)计算:()0﹣()﹣2+sin30°(2)化简:(a﹣b)2+b(2a+b)【考点】实数的运算;整式的混合运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】(1)原式第一项利用零指数幂法则计算,第二项利用负整数指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果;(2)原式利用完全平方公式,以及单项式乘以多项式法则计算,去括号合并即可得到结果.【解答】解:(1)原式=1﹣4+=﹣2;(2)原式=a2﹣2ab+b2+2ab+b2=a2+2b2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(1)解不等式组:(2)解方程:﹣=2.【考点】解一元一次不等式组;解分式方程.【分析】(1)分别求出各不等式的解集,再求出其公共解集即可;(2)先把分式方程化为整式方程求出x的值,再代入最减公分母进行检验即可.【解答】解:(1),由①得x<1,由②得x≥﹣,故不等式组的解集为:﹣≤x<1;(2)去分母得,x+3=2x﹣2,解得x=5,检验:当x=5时,x﹣1≠0,故x=5为原分式方程的根.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.如图,一艘巡逻艇航行至海面B处时,得知正北方向上距B处20海里的C处有一渔船发生故障,就立即指挥港口A处的救援艇前往C处营救.已知C处位于A处的北偏东45°的方向上,港口A位于B的北偏西30°的方向上.求A、C之间的距离.(结果精确到0.1海里,参考数据≈1.41,≈1.73)【考点】解直角三角形的应用-方向角问题.【专题】应用题;数形结合.【分析】作AD⊥BC,垂足为D,设CD=x,利用解直角三角形的知识,可得出AD,继而可得出BD,结合题意BC=CD+BD=20海里可得出方程,解出x的值后即可得出答案.【解答】解:作AD⊥BC,垂足为D,由题意得,∠ACD=45°,∠ABD=30°,设CD=x,在Rt△ACD中,可得AD=x,在Rt△ABD中,可得BD=x,又∵BC=20,即xx=20,解得:∴AC=x≈10.3(海里).答:A、C之间的距离为10.3海里.【点评】此题考查了解直角三角形的应用,解答本题的关键是根据题意构造直角三角形,将实际问题转化为数学模型进行求解,难度一般.22.如图所示,可以自由转动的转盘被3等分,指针落在每个扇形内的机会均等.(1)现随机转动转盘一次,停止后,指针指向2的概率为;(2)小明和小华利用这个转盘做游戏,若采用下列游戏规则,你认为对双方公平吗?请用列表或画树状图的方法说明理由.游戏规则:随机转动转盘两次,停止后,指针各指向一个数字,若两数之积为偶数,则小明胜;否则小华胜.【考点】列表法与树状图法;概率公式.【分析】(1)三个等可能的情况中出现3的情况有一种,求出概率即可;(2)列表得出所有等可能的情况数,求出两人获胜的概率,比较即可得到结果.【解答】解:(1)根据题意得:随机转动转盘一次,停止后,指针指向3的概率为;故答案为:;∴P(小明获胜)=,P(小华获胜)=,∵>,∴该游戏不公平.【点评】此题考查了游戏公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.23.已知:如图,在▱ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.(1)求证:△DOE≌△BOF;(2)当∠DOE等于多少度时,四边形BFDE为菱形?请说明理由.【考点】平行四边形的性质;全等三角形的判定与性质;菱形的判定.【专题】几何综合题.【分析】(1)利用平行四边形的性质以及全等三角形的判定方法得出△DOE≌△BOF(ASA);(2)首先利用一组对边平行且相等的四边形是平行四边形得出四边形EBFD是平行四边形,进而利用垂直平分线的性质得出BE=ED,即可得出答案.【解答】(1)证明:∵在▱ABCD中,O为对角线BD的中点,∴BO=DO,∠EDB=∠FBO,在△EOD和△FOB中,∴△DOE≌△BOF(ASA);(2)解:当∠DOE=90°时,四边形BFDE为菱形,理由:∵△DOE≌△BOF,∴OE=OF,又∵OB=OD∴四边形EBFD是平行四边形,∵∠EOD=90°,∴EF⊥BD,∴四边形BFDE为菱形.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质和菱形的判定等知识,得出BE=DE是解题关键.24.盐城市初级中学为了了解中考体育科目训练情况,从本校九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D 级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是40人;(2)图1中∠α的度数是54°,并把图2条形统计图补充完整;(3)该校九年级有学生2500名,如果全部参加这次中考体育科目测试,请估计不及格的人数为500人.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据B级的人数除以B级所占的百分比,可得答案;(2)根据圆周角乘以A及所占的比例,可得扇形的圆心角;根据抽测人数乘以C及所占的比例,可得答案;(3)利用样本估计总体的方法知,全校总人数乘以D级所占的比例,可得答案.【解答】解:(1)本次抽样测试的学生人数是12÷30%=40(人);(2)图中∠α的度数是360°×=54°,C级的人数为40×35%=14人,;(3)2500×=500(人)答:不及格500人.故答案为:(1)40人;(2)54°;(3)500人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.如图,AB是⊙O的直径,点E是上的一点,∠DBC=∠BED.(1)请判断直线BC与⊙O的位置关系,并说明理由;(2)已知AD=5,CD=4,求BC的长.【考点】切线的判定;相似三角形的判定与性质.【专题】计算题.【分析】(1)根据圆周角定理得∠BAD=∠BED,加上∠DBC=∠BED,所以∠BAD=∠DBC,再由AB为直径得∠ADB=90°,所以∠BAD+∠ABD=90°,于是得到∠DBC+∠ABD=90°,即∠CBO=90°,然后根据切线的判断定理可判断BC为⊙O的切线;(2)证明△CDB∽△CBA,利用相似比可计算出BC.【解答】解:(1)BC与⊙O相切.理由如下:∵∠BAD=∠BED,而∠DBC=∠BED,∴∠BAD=∠DBC,∵AB为直径,∴∠ADB=90°,∴∠BAD+∠ABD=90°∴∠DBC+∠ABD=90°,即∠CBO=90°,∴AB⊥BC,∴BC为⊙O的切线;(2)∵∠ADB=90°,∴∠BDC=90°,∵∠DCB=∠BCA,∴△CDB∽△CBA,∴=,即=,∴BC=6.【点评】本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线;要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了相似三角形的判定与性质.26.在购买某场足球赛门票时,设购买门票数为x(张),总费用为y(元).现有两种购买方案:方案一:若单位赞助广告费10000元,则该单位所购门票的价格为每张50元;(总费用=广告赞助费+门票费)方案二:购买门票方式如图所示.解答下列问题:(1)方案一中,y与x的函数关系式为y=50x+10000 ;方案二中,当0≤x≤100时,y与x的函数关系式为y=100x ,当x>100时,y与x的函数关系式为y=80x+2000 ;(2)甲、乙两单位分别采用方案一、方案二购买本场足球赛门票共600张,花去总费用计48000元,求甲、乙两单位各购买门票多少张.【考点】一次函数的应用.【分析】(1)依题意可得方案一:y与x的函数关系式y=50x+10000;方案二考查了分段函数的有关知识(0≤x≤100;x>100),利用待定系数法即可解答;(2)设设甲购买门票m张,则乙购买门票(600﹣m)张.,分别可采用方案一或方案二购买.【解答】解:(1)由题意得,方案一中,y与x的函数关系式为:y=50x+10000,方案二:当0≤x≤100时,y=100x,当x>100时,设y与x之间的函数关系式为y=kx+b,把(100,10000),(150,14000)代入得:解得:,则y=80x+2000,故答案为:y=50x+10000,y=100x,y=80x+2000.(2)设甲购买门票m张,则乙购买门票(600﹣m)张.①当0≤600﹣m≤100时,10000+500m+100(600﹣m)=4800010000+500m+60000﹣100m=48000﹣50m=﹣22000m=440,∵600﹣m=160>100,∴此法舍去②当600﹣m>100时,10000+50m+80(600﹣m)+2000=4800010000+50m+48000﹣80m+2000=48000﹣30m=﹣1200m=400,600﹣m=200>100.答:甲单位购买门票400张,乙单位购买门票200张.【点评】本题考查了一次函数的应用,解决本题的关键是利用待定系数法确定一次函数的解析式,在(2)中注意分类讨论思想的应用.27.某数学活动小组在一次活动中,对一个数学问题作如下探究:问题发现:如图1,在等边三角形ABC中,点M是边BC上任意一点,连接AM,以AM为边作等边三角形AMN,连接CN,证明:BM=CN.变式探究:如图2,在等腰三角形ABC中,BA=BC,∠ABC=∠α,点M为边BC上任意一点,以AM为腰作等腰三角形AMN,MA=MN,使∠AMN=∠ABC,连接CN,请求出的值.(用含α的式子表示出来)解决问题:如图3,在正方形ADBC中,点M为边BC上一点,以AM为边作正方形作AMEF,N为正方形AMEF的中心,连接CN,若正方形AMEF的边长为,CN=,请你求正方形ADBC的边长.【考点】四边形综合题.【分析】问题发现:根据△ABC,△AMN为等边三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°从而得到∠BAC﹣∠CAM=∠MAN﹣∠CAM,即∠BAM=∠CAN,证明△BAM≌△CAN,即可得到BM=CN.变式探究:根据△ABC,△AMN为等腰三角形,得到=1且∠ABC=∠AMN,证明△ABC~△AMN,得到,利用等腰三角形的性质BA=BC,得到,,证明△ABM~△ACN,得到,作BD⊥AC,如图2,再由AB=BC,得到∠ABD=,根据sin∠ABD=,得到AD=AB•sin,则AC=2AD=2ABsin,从而得到=2sin.解决问题:利用四边形ADBC,AMEF为正方形,得到∠ABC=∠BAC=45°∠MAN=45°,即∠BAM=∠CAN,由,得到,证明△ABM~△ACN,得到,进而得到=cos45°=,求出BM=2,设AC=x,利用勾股定理,在Rt△AMC,AC2+CM2=AM2,即x2+(x﹣2)2=10,解得:x1=3,x2=﹣1(舍去),即可解答.【解答】解:问题发现,∵△ABC,△AMN为等边三角形,∴AB=AC,AM=AN且∠BAC=∠MAN=60°∴∠BAC﹣∠CAM=∠MAN﹣∠CAM,∴∠BAM=∠CAN,在△BAM与△CAN中,,。
江苏省盐城市2015年中考数学试题(word版,含解析)
2015年江苏省盐城市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.的倒数为()A.﹣2 B.﹣C.D.2考点:倒数.分析:根据倒数的意义,乘积是1的两个数叫做互为倒数,据此解答.解答:解:∵,∴的倒数为2,故选:D.点评:本题主要考查倒数的意义,解决本题的关键是熟记乘积是1的两个数叫做互为倒数.2.如图四个图形中,是中心对称图形的为()A.B.C.D.考点:中心对称图形.分析:根据中心对称图形的概念求解.解答:解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、是中心对称图形.故正确;D、是轴对称图形,不是中心对称图形.故错误.故选:C.点评:本题考查了中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.下列运算正确的是()A.a3•b3=(ab)3B.a2•a3=a6C.a6÷a3=a2D.(a2)3=a5考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:A、原式利用积的乘方运算法则变形得到结果,即可做出判断;B、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;C、原式利用同底数幂的除法法则计算得到结果,即可做出判断;D、原式利用幂的乘方运算法则计算得到结果,即可做出判断.解答:解:A、原式=(ab)3,正确;B、原式=a5,错误;C、原式=a3,错误;D、原式=a6,错误,故选A.点评:此题考查了同底数幂的乘法,除法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.4.在如图四个几何体中,主视图与俯视图都是圆的为()A.B.C.D.考点:简单组合体的三视图.分析:分别分析四个选项的主视图、左视图、俯视图,从而得出都是圆的几何体.解答:解:圆柱的主视图、左视图都是矩形、俯视图是圆;圆台的主视图、左视图是等腰梯形,俯视图是圆环;圆锥主视图、左视图都是等腰三角形,俯视图是圆和圆中间一点;球的主视图、左视图、俯视图都是圆.故选D点评:本题考查了三视图,关键是根据学生的思考能力和对几何体三种视图的空间想象能力的培养.5.下列事件中,是必然事件的为()A.3天内会下雨B.打开电视机,正在播放广告C.367人中至少有2人公历生日相同D.某妇产医院里,下一个出生的婴儿是女孩考点:随机事件.分析:根据随机事件和必然事件的定义分别进行判断.解答:解:A、3天内会下雨为随机事件,所以A选项错误;B、打开电视机,正在播放广告,所以B选项错误;C、367人中至少有2人公历生日相同是必然事件,所以C选项正确;D、某妇产医院里,下一个出生的婴儿是女孩是随机事件,所以D选项错误.故选C.点评:本题考查了随机事件:在一定条件下,可能发生也可能不发生的事件,称为随机事件.事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,6.一块等腰直角三角板与一把直尺如图放置,若∠1=60°,则∠2的度数为()A.85°B.75°C.60°D.45°考点:平行线的性质.分析:首先根据∠1=60°,判断出∠3=∠1=60°,进而求出∠4的度数;然后对顶角相等,求出∠5的度数,再根据∠2=∠5+∠6,求出∠2的度数为多少即可.解答:解:如图1,,∵∠1=60°,∴∠3=∠1=60°,∴∠4=90°﹣60°=30°,∵∠5=∠4,∴∠5=30°,∴∠2=∠5+∠6=30°+45°=75°.故选:B.点评:此题主要考查了平行线的性质,要熟练掌握,解答此题的关键是要明确:①定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.②定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.③定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.7.若一个等腰三角形的两边长分别是2和5,则它的周长为()A.12 B.9C.12或9 D.9或7考点:等腰三角形的性质;三角形三边关系.分析:利用等腰三角形的性质以及三角形三边关系得出其周长即可.解答:解:∵一个等腰三角形的两边长分别是2和5,∴当腰长为2,则2+2<5,此时不成立,当腰长为5时,则它的周长为:5+5+2=12.故选:A.点评:此题主要考查了等腰三角形的性质以及三角形三边关系,正确分类讨论得出是解题关键.8.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP 的面积S随着时间t变化的函数图象大致是()A.B.C.D.考点:动点问题的函数图象.分析:根据点P在AD、DE、EF、FG、GB上时,△ABP的面积S与时间t的关系确定函数图象.解答:解:当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP的面积S随着时间t 的增大而增大;当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在EF上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小;当点P在FG上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小;故选:B.点评:本题考查的是动点问题的函数图象,正确分析点P在不同的线段上△ABP的面积S与时间t 的关系是解题的关键.二、填空题(本大题共有10小题,每小题3分,共30分.)9.若二次根式有意义,则x的取值范围是x≥1.考点:二次根式有意义的条件.分析:根据二次根式的性质可知,被开方数大于等于0,列出不等式即可求出x的取值范围.解答:解:根据二次根式有意义的条件,x﹣1≥0,∴x≥1.故答案为:x≥1.点评:此题考查了二次根式有意义的条件,只要保证被开方数为非负数即可.10.因式分解:a2﹣2a=a(a﹣2).考点:因式分解-提公因式法.专题:因式分解.分析:先确定公因式是a,然后提取公因式即可.解答:解:a2﹣2a=a(a﹣2).故答案为:a(a﹣2).点评:本题考查因式分解,较为简单,找准公因式即可.11.(2015•盐城)火星与地球的距离约为56 000 000千米,这个数据用科学记数法表示为 5.6×107千米.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将56 000 000用科学记数法表示为5.6×107.故答案为:5.6×107.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.12.(2015•盐城)一组数据8,7,8,6,6,8的众数是8.考点:众数.分析:根据众数的定义求解即可.解答:解:数据8出现了3次,出现次数最多,所以此数据的众数为8.故答案为8.点评:本题考查了众数:在一组数据中出现次数最多的数叫这组数据的众数.13.(2015•盐城)如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的一个条件可以是DC=BC或∠DAC=∠BAC.考点:全等三角形的判定.专题:开放型.分析:添加DC=BC,利用SSS即可得到两三角形全等;添加∠DAC=∠BAC,利用SAS即可得到两三角形全等.解答:解:添加条件为DC=BC,在△ABC和△ADC中,,∴△ABC≌△ADC(SSS);若添加条件为∠DAC=∠BAC,在△ABC和△ADC中,,∴△ABC≌△ADC(SAS).故答案为:DC=BC或∠DAC=∠BAC点评:此题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解本题的关键.14.(2015•盐城)如图,点D、E、F分别是△ABC各边的中点,连接DE、EF、DF.若△ABC的周长为10,则△DEF的周长为5.考点:三角形中位线定理.分析:由于D、E分别是AB、BC的中点,则DE是△ABC的中位线,那么DE=AC,同理有EF=AB,DF=BC,于是易求△DEF的周长.解答:解:如上图所示,∵D、E分别是AB、BC的中点,∴DE是△ABC的中位线,∴DE=AC,同理有EF=AB,DF=BC,∴△DEF的周长=(AC+BC+AB)=×10=5.故答案为5.点评:本题考查了三角形中位线定理.解题的关键是根据中位线定理得出边之间的数量关系.15.(2015•盐城)若2m﹣n2=4,则代数式10+4m﹣2n2的值为18.考点:代数式求值.分析:观察发现4m﹣2n2是2m﹣n2的2倍,进而可得4m﹣2n2=8,然后再求代数式10+4m﹣2n2的值.解答:解:∵2m﹣n2=4,∴4m﹣2n2=8,∴10+4m﹣2n2=18,故答案为:18.点评:此题主要考查了求代数式的值,关键是找出代数式之间的关系.16.(2015•盐城)如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是3<r<5.考点:点与圆的位置关系.分析:要确定点与圆的位置关系,主要根据点与圆心的距离与半径的大小关系来进行判断.当d>r 时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.解答:解:在直角△ABD中,CD=AB=4,AD=3,则BD==5.由图可知3<r<5.故答案为:3<r<5.点评:此题主要考查了点与圆的位置关系,解决本题要注意点与圆的位置关系,要熟悉勾股定理,及点与圆的位置关系.17.(2015•盐城)如图,在矩形ABCD中,AB=4,AD=2,以点A为圆心,AB长为半径画圆弧交边DC于点E,则的长度为.考点:弧长的计算;含30度角的直角三角形.分析:连接AE,根据直角三角形的性质求出∠DEA的度数,根据平行线的性质求出∠EAB的度数,根据弧长公式求出的长度.解答:解:连接AE,在Rt三角形ADE中,AE=4,AD=2,∴∠DEA=30°,∵AB∥CD,∴∠EAB=∠DEA=30°,∴的长度为:=,故答案为:.点评:本题考查的是弧长的计算和直角三角形的性质,掌握在直角三角形中,30°所对的直角边是斜边的一半和弧长公式是解题的关键.18.(2015•盐城)设△ABC的面积为1,如图①,将边BC、AC分别2等分,BE1、AD1相交于点O,△AOB的面积记为S1;如图②将边BC、AC分别3等分,BE1、AD1相交于点O,△AOB的面积记为S2;…,依此类推,则S n可表示为.(用含n的代数式表示,其中n为正整数)考点:相似三角形的判定与性质.专题:规律型.分析:连接D1E1,设AD1、BE1交于点M,先求出S△ABE1=,再根据==得出S△ABM:S△ABE1=n+1:2n+1,最后根据S△ABM:=n+1:2n+1,即可求出S△ABM.解答:解:如图,连接D1E1,设AD1、BE1交于点M,∵AE1:AC=1:n+1,∴S△ABE1:S△ABC=1:n+1,∴S△ABE1=,∵==,∴=,∴S△ABM:S△ABE1=n+1:2n+1,∴S△ABM:=n+1:2n+1,∴S△ABM=.故答案为:.点评:此题考查了相似三角形的判定与性质,用到的知识点是相似三角形的判定与性质、平行线分线段成比例定理、三角形的面积,关键是根据题意作出辅助线,得出相似三角形.三、解答题(本大题共有10小题,共96分.解答时应写出文字说明、推理过程或演算步骤)19.(8分)(2015•盐城)(1)计算:|﹣1|﹣()0+2cos60°(2)解不等式:3(x﹣)<x+4.考点:实数的运算;零指数幂;解一元一次不等式;特殊角的三角函数值.分析:(1)利用绝对值的求法、0指数幂及锐角三角函数的知识代入求解即可;(2)去括号、移项、合并同类项、系数化为1后即可求得不等式的解集.解答:解:(1)原式=1﹣1+2×=1;(2)原不等式可化为3x﹣2<x+4,∴3x﹣x<4+2,∴2x<6,∴x<3.点评:本题考查了实数的运算、零指数幂、解一元一次不等式的知识,解题的关键是了解不等式的性质等,难度不大.20.(8分)(2015•盐城)先化简,再求值:(1+)÷,其中a=4.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再求出x的值代入进行计算即可.解答:解:原式=•=•=,当a=4时,原式==4.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.21.(8分)(2015•盐城)2015年是中国人民抗日战争暨世界反法西斯战争胜利70周年,9月3日全国各地将举行有关纪念活动.为了解初中学生对二战历史的知晓情况,某初中课外兴趣小组在本校学生中开展了专题调查活动,随机抽取了部分学生进行问卷调查,根据学生的答题情况,将结果分为A、B、C、D四类,其中A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”;D类表示“不太了解”,调查的数据经整理后形成尚未完成的条形统计图(如图①)和扇形统计图(如图②):(1)在这次抽样调查中,一共抽查了200名学生;(2)请把图①中的条形统计图补充完整;(3)图②的扇形统计图中D类部分所对应扇形的圆心角的度数为36°;(4)如果这所学校共有初中学生1500名,请你估算该校初中学生中对二战历史“非常了解”和“比较了解”的学生共有多少名?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)由图①知A类人数30,由图②知A类人数占15%,即可求出样本容量;(2)由(1)可知抽查的人数,根据图②知C类人数占30%,求出C类人数,即可将条形统计图补充完整;(3)求出D类的百分数,即可求出圆心角的度数;(4)求出B类所占的百分数,可知A、B类共占的百分数,用样本估计总体的思想计算即可.解答:解:(1)30÷15%=200,故答案为:200;(2)200×30%=60,如图所示,(3)20÷200=0.1=10%,360°×10%=36°,故答案为:36;(4)B类所占的百分数为:90÷200=45%,该校初中学生中对二战历史“非常了解”和“比较了解”的学生共占15%+45%=60%;故这所学校共有初中学生1500名,该校初中学生中对二战历史“非常了解”和“比较了解”的学生共有:1500×60%=900(名).点评:此题考查了扇形统计图和频数(率)分布表,关键是正确从扇形统计图和表中得到所用的信息.22.(8分)(2015•盐城)有甲、乙两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字1和﹣2;乙袋中有三个完全相同的小球,分别标有数字﹣1、0和2.小丽先从甲袋中随机取出一个小球,记录下小球上的数字为x;再从乙袋中随机取出一个小球,记录下小球上的数字为y,设点P的坐标为(x,y).(1)请用表格或树状图列出点P所有可能的坐标;(2)求点P在一次函数y=x+1图象上的概率.考点:列表法与树状图法;一次函数图象上点的坐标特征.分析:(1)画出树状图,根据图形求出点P所有可能的坐标即可;(2)只有(1,2),(﹣2,﹣1)这两点在一次函数y=x+1图象上,于是得到P(点P在一次函数y=x+1的图象==.上)解答:解:(1)画树状图如图所示:∴点P所有可能的坐标为:(1,﹣1),(1,0),(1,2),(﹣2,﹣1),(﹣2,0),(﹣2,2);(2)∵只有(1,2),(﹣2,﹣1)这两点在一次函数y=x+1图象上,∴P(点P在一次函数y=x+1的图象上)==.点评:本题考查了列表法和树状图法求概率,一次函数图象上点的坐标特征,正确的画出树状图是解题的关键.23.(10分)(2015•盐城)如图,在△ABC中,∠CAB=90°,∠CBA=50°,以AB为直径作⊙O交BC于点D,点E在边AC上,且满足ED=EA.(1)求∠DOA的度数;(2)求证:直线ED与⊙O相切.考点:切线的判定.分析:(1)根据圆周角定理即可得到结论;(2)连接OE,通过△EAO≌△EDO,即可得到∠EDO=90°,于是得到结论.解答:(1)解;∵∠DBA=50°,∴∠DOA=2∠DBA=100°,(2)证明:连接OE.在△EAO与△EDO中,,∴△EAO≌△EDO,∴∠EDO=∠EAO,∵∠BAC=90°,∴∠EDO=90°,∴DE与⊙O相切.点评:本题考查了切线的判定,全等三角形的判定和性质,连接OE构造全等三角形是解题的关键.24.(10分)(2015•盐城)如图,在平面直角坐标系xOy中,已知正比例函数y=x与一次函数y=﹣x+7的图象交于点A.(1)求点A的坐标;(2)设x轴上有一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交y=x和y=﹣x+7的图象于点B、C,连接OC.若BC=OA,求△OBC的面积.考点:两条直线相交或平行问题;勾股定理.分析:(1)联立两一次函数的解析式求出x、y的值即可得出A点坐标;(2)过点A作x轴的垂线,垂足为D,在Rt△OAD中根据勾股定理求出OA的长,故可得出BC 的长,根据P(a,0)可用a表示出B、C的坐标,故可得出a的值,由三角形的面积公式即可得出结论.解答:解:(1)∵由题意得,,解得,∴A(4,3);(2)过点A作x轴的垂线,垂足为D,在Rt△OAD中,由勾股定理得,OA===5.∴BC=OA=×5=7.∵P(a,0),∴B(a,a),C(a,﹣a+7),∴BC=a﹣(﹣a+7)=a﹣7,∴a﹣7=7,解得a=8,∴S△OBC=BC•OP=×7×8=28.点评:本题考查的是两条直线相交或平行问题,根据题意作出辅助线.构造出直角三角形是解答此题的关键.25.(10分)(2015•盐城)如图所示,一幢楼房AB背后有一台阶CD,台阶每层高0.2米,且AC=17.2米,设太阳光线与水平地面的夹角为α,当α=60°时,测得楼房在地面上的影长AE=10米,现有一只小猫睡在台阶的MN这层上晒太阳.(取1.73)(1)求楼房的高度约为多少米?(2)过了一会儿,当α=45°时,问小猫能否还晒到太阳?请说明理由.考点:解直角三角形的应用.分析:(1)在Rt△ABE中,由tan60°==,即可求出AB=10•tan60°=17.3米;(2)假设没有台阶,当α=45°时,从点B射下的光线与地面AD的交点为点F,与MC的交点为点H.由∠BFA=45°,可得AF=AB=17.3米,那么CF=AF﹣AC=0.1米,CH=CF=0.1米,所以大楼的影子落在台阶MC这个侧面上,故小猫仍可以晒到太阳.解答:解:(1)当α=60°时,在Rt△ABE中,∵tan60°==,∴AB=10•tan60°=10≈10×1.73=17.3米.即楼房的高度约为17.3米;(2)当α=45°时,小猫仍可以晒到太阳.理由如下:假设没有台阶,当α=45°时,从点B射下的光线与地面AD的交点为点F,与MC的交点为点H.∵∠BFA=45°,∴tan45°==1,此时的影长AF=AB=17.3米,∴CF=AF﹣AC=17.3﹣17.2=0.1米,∴CH=CF=0.1米,∴大楼的影子落在台阶MC这个侧面上,∴小猫仍可以晒到太阳.点评:本题考查了解直角三角形的应用,锐角三角函数定义,理解题意,将实际问题转化为数学问题是解题的关键.26.(10分)(2015•盐城)如图,把△EFP按图示方式放置在菱形ABCD中,使得顶点E、F、P分别在线段AB、AD、AC上,已知EP=FP=4,EF=4,∠BAD=60°,且AB>4.(1)求∠EPF的大小;(2)若AP=6,求AE+AF的值;(3)若△EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.考点:四边形综合题.分析:(1)过点P作PG⊥EF于G,解直角三角形即可得到结论;(2)如图2,过点P作PM⊥AB于M,PN⊥AD于N,证明△ABC≌△ADC,R t△PME≌R t△PNF,问题即可得证;(3)如图3,当EF⊥AC,点P在EF的右侧时,AP有最大值,当EF⊥AC,点P在EF的左侧时,AP有最小值解直角三角形即可解决问题.解答:解:(1)如图1,过点P作PG⊥EF于G,∵PE=PF,∴FG=EG=EF=,∠FPG=,在△FPG中,sin∠FPG===,∴∠FPG=60°,∴∠EPF=2∠FPG=120°;(2)如图2,过点P作PM⊥AB于M,PN⊥AD于N,∵四边形ABCD是菱形,∴AD=AB,DC=BC,在△ABC与△ADC中,,∴△ABC≌△ADC,∴∠DAC=∠BAC,∴PM=PN,在R t△PME于R t△PNF中,,∴R t△PME≌R t△PNF,∴FN=EM,在R t△PMA中,∠PMA=90°,∠PAM=∠DAB=30°,∴AM=AP•cos30°=3,同理AN=3,∴AE+AF=(AM﹣EM)+(AN+NF)=6;(3)如图3,当EF⊥AC,点P在EF的右侧时,AP有最大值,当EF⊥AC,点P在EF的左侧时,AP有最小值,设AC与EF交于点O,∵PE=PF,∴OF=EF=2,∵∠FPA=60°,∴OP=2,∵∠BAD=60°,∴∠FAO=30°,∴AO=6,∴AP=AO+PO=8,同理AP′=AO﹣OP=4,∴AP的最大值是8,最小值是4.点评:本题考查了菱形的性质,解直角三角形,全等三角形的判定和性质,最值问题,等腰三角形的性质,作辅助线构造直角三角形是解题的关键.27.(12分)(2015•盐城)知识迁移我们知道,函数y=a(x﹣m)2+n(a≠0,m>0,n>0)的图象是由二次函数y=ax2的图象向右平移m个单位,再向上平移n个单位得到;类似地,函数y=+n(k≠0,m>0,n>0)的图象是由反比例函数y=的图象向右平移m个单位,再向上平移n个单位得到,其对称中心坐标为(m,n).理解应用函数y=+1的图象可由函数y=的图象向右平移1个单位,再向上平移1个单位得到,其对称中心坐标为(1,1).灵活应用如图,在平面直角坐标系xOy中,请根据所给的y=的图象画出函数y=﹣2的图象,并根据该图象指出,当x在什么范围内变化时,y≥﹣1?实际应用某老师对一位学生的学习情况进行跟踪研究,假设刚学完新知识时的记忆存留量为1,新知识学习后经过的时间为x,发现该生的记忆存留量随x变化的函数关系为y1=;若在x=t(t≥4)时进行第一次复习,发现他复习后的记忆存留量是复习前的2倍(复习的时间忽略不计),且复习后的记忆存留量随x变化的函数关系为y2=,如果记忆存留量为时是复习的“最佳时机点”,且他第一次复习是在“最佳时机点”进行的,那么当x为何值时,是他第二次复习的“最佳时机点”?考点:反比例函数综合题.分析:理解应用:根据“知识迁移”得到双曲线的图象平移变换的规律:上加下减.由此得到答案:灵活应用:根据平移规律作出图象;实际应用:先求出第一次复习的“最佳时机点”(4,1),然后带入y2,求出解析式,然后再求出第二次复习的“最佳时机点”.解答:解:理解应用:根据“知识迁移”易得,函数y=+1的图象可由函数y=的图象向右平移1个单位,再向上平移1个单位得到,其对称中心坐标为(1,1).故答案是:1,1,(1,1)灵活应用:将y=的图象向右平移2个单位,然后再向下平移两个单位,即可得到函数y=﹣2的图象,其对称中心是(2,﹣2).图象如图所示:由y=﹣1,得﹣2=﹣1,解得x=﹣2.由图可知,当﹣2≤x<2时,y≥﹣1实际应用:解:当x=t时,y1=,则由y1==,解得:t=4,即当t=4时,进行第一次复习,复习后的记忆存留量变为1,∴点(4,1)在函数y2=的图象上,则1=,解得:a=﹣4,∴y2=,当y2==,解得:x=12,即当x=12时,是他第二次复习的“最佳时机点”.点评:本题主要考查了图象的平移,反比例函数图象的画法和性质,及待定系数法求解析式以及反比例函数的实际应用问题,熟悉反比例函数的图象和性质是解决问题的关键.28.(12分)如图,在平面直角坐标系xOy中,将抛物线y=x2的对称轴绕着点P(0,2)顺时针旋转45°后与该抛物线交于A、B两点,点Q是该抛物线上一点.(1)求直线AB的函数表达式;(2)如图①,若点Q在直线AB的下方,求点Q到直线AB的距离的最大值;(3)如图②,若点Q在y轴左侧,且点T(0,t)(t<2)是射线PO上一点,当以P、B、Q为顶点的三角形与△PAT相似时,求所有满足条件的t的值.考点:二次函数综合题.分析:(1)根据题意易得点M、P的坐标,利用待定系数法来求直线AB的解析式;(2)如图①,过点Q作x轴的垂线QC,交AB于点C,再过点Q作直线AB的垂线,垂足为D,构建等腰直角△QDC,利用二次函数图象上点的坐标特征和二次函数最值的求法进行解答;(3)根据相似三角形的对应角相等推知:△PBQ中必有一个内角为45°;需要分类讨论:∠PBQ=45°和∠PQB=45°;然后对这两种情况下的△PAT是否是直角三角形分别进行解答.另外,以P、B、Q 为顶点的三角形与△PA T相似也有两种情况:△Q″PB∽△PAT、△Q″BP∽△PAT.解答:解:(1)如图①,设直线AB与x轴的交点为M.∵∠OPA=45°,∴OM=OP=2,即M(﹣2,0).设直线AB的解析式为y=kx+b(k≠0),将M(﹣2,0),P(0,2)两点坐标代入,得,解得.故直线AB的解析式为y=x+2;(2)如图①,过点Q作x轴的垂线QC,交AB于点C,再过点Q作直线AB的垂线,垂足为D,根据条件可知△QDC为等腰直角三角形,则QD=QC.设Q(m,m2),则C(m,m+2).∴QC=m+2﹣m2=﹣(m﹣)2+,QD=QC=[﹣(m﹣)2+].故当m=时,点Q到直线AB的距离最大,最大值为;(3)∵∠APT=45°,∴△PBQ中必有一个内角为45°,由图知,∠BPQ=45°不合题意.①如图②,若∠PBQ=45°,过点B作x轴的平行线,与抛物线和y轴分别交于点Q′、F.此时满足∠PBQ′=45°.∵Q′(﹣2,4),F(0,4),∴此时△BPQ′是等腰直角三角形,由题意知△PA T也是等腰直角三角形.(i)当∠PTA=90°时,得到:PT=A T=1,此时t=1;(ii)当∠PA T=90°时,得到:PT=2,此时t=0.②如图③,若∠PQB=45°,①中是情况之一,答案同上;先以点F为圆心,FB为半径作圆,则P、B、Q′都在圆F上,设圆F与y轴左侧的抛物线交于另一点Q″.则∠PQ″B=∠PQ′B=45°(同弧所对的圆周角相等),即这里的交点Q″也是符合要求.设Q″(n,n2)(﹣2<n<0),由FQ″=2,得n2+(4﹣n20=22,即n4﹣7n2+12=0.解得n2=3或n2=4,而﹣2<n<0,故n=﹣,即Q″(﹣,3).可证△PFQ″为等边三角形,所以∠PFQ″=60°,又PQ″=PQ″,所以∠PBQ″=∠PFQ″=30°.则在△PQ″B中,∠PQ″B=45°,∠PBQ″=30°.(i)若△Q″PB∽△PA T,则过点A作y轴的垂线,垂足为E.则ET=AE=,OE=1,所以OT=﹣1,解得t=1﹣;(ii)若△Q″BP∽△PAT,则过点T作直线AB垂线,垂足为G.设TG=a,则PG=TG=a,AG=TG=a,AP=,∴a+a=,解得PT=a=﹣1,∴OT=OP﹣PT=3﹣,∴t=3﹣.综上所述,所求的t的值为t=1或t=0或t=1﹣或t=3﹣.点评:本题考查了二次函数综合题.其中涉及到了待定系数法求一次函数解析式,二次函数图象上点的坐标特征,二次函数的最值的求法以及相似三角形的判定与性质,难度比较大.另外,解答(3)题时,一定要分类讨论,做到不重不漏.。
2015年江苏省盐城市中考数学试卷-答案
江苏省盐城市2015年中考数学试卷数学答案解析一、选择题1.【答案】D【解析】∵1212⨯=,∴12的倒数为2,故选D。
【考点】倒数的意义2.【答案】C【解析】A是轴对称图形,不是中心对称图形。
故错误;B是轴对称图形,不是中心对称图形。
故错误;C 是中心对称图形。
故正确;D是轴对称图形,不是中心对称图形。
故错误。
【考点】轴对称图形和中心对称图形的判断3.【答案】A【解析】A有原式=()3ab,正确;B有原式=5a,错误;C有原式=3a,错误;D有原式=6a,错误,故选A。
【考点】整式乘除的运算法则4.【答案】D【解析】圆柱的主视图、左视图都是矩形,俯视图是圆;圆台的主视图、左视图是等腰梯形,俯视图是圆环;圆锥主视图、左视图都是等腰三角形,俯视图是圆和圆中间一点;球的主视图、左视图、俯视图都是圆。
故选D。
【考点】几何体的三视图5.【答案】C【解析】3天内会下雨为随机事件,所以A选项错误;打开电视机,正在播放广告,所以B选项错误;367人中至少有2人公历生日相同是必然事件,所以C选项正确;某妇产医院里,下一个出生的婴儿是女孩是随机事件,所以D选项错误。
故选C。
【考点】随机事件和必然事件6.【答案】B【解析】如图:,∵160∠=︒,∴3160∠=∠=︒,∴4906030∠=︒︒=︒-,∵54∠=∠,∴530∠=︒,∴256304575∠=∠+∠=︒+︒=︒。
故选:B 。
【考点】平行四边形的性质7.【答案】A【解析】∵一个等腰三角形的两边长分别是2和5,∴当腰长为2,则2+2<5,此时不成立,当腰长为5时,则它的周长为:5+5+2=12。
故选:A 。
【考点】等腰三角形的性质,三角形的三边关系,三角形的周长8.【答案】B【解析】当点P 在AD 上时,ABP △的底AB 不变,高增大,所以ABP △的面积S 随着时间t 的增大而增大;当点P 在DE 上时,ABP △的底AB 不变,高不变,所以ABP △的面积S 不变;当点P 在EF 上时,ABP △的底AB 不变,高减小,所以ABP △的面积S 随着时间t 的减小;当点P 在FG 上时,ABP △的底AB 不变,高不变,所以ABP △的面积S 不变;当点P 在GB 上时,ABP △的底AB 不变,高减小,所以ABP △的面积S 随着时间t 的减小;故选:B 。
江苏省盐城市2015届中考数学三模试卷含答案解析
2015年江苏省盐城市中考数学三模试卷一、选择题1.计算的结果是()A.6 B.C.2 D.2.下列图形中,既是轴对称又是中心对称图形的是()A.B.C.D.3.把三张大小相同的正方形卡片A、B、C叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影表示,若按图1摆放时,阴影部分的面积为S1;若按图2摆放时,阴影部分的面积为S2,则S1与S2的大小关系是()A.S1>S2B.S1<S2C.S1=S2D.无法确定4.在“大家跳起来”的学校跳操比赛中,九年级参赛的10名学生成绩统计如图所示,对于这10名学生的参赛成绩,下列说法中错误的是()A.众数是90分B.中位数是90分C.平均数是90分D.极差是15分5.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.abc>0 B.b2﹣4ac<0 C.9a+3b+c>0 D.c+8a<06.方程x2+4x﹣1=0的根可视为函数y=x+4的图象与函数的图象交点的横坐标,那么用此方法可推断出:当m取任意正实数时,方程x3+mx﹣1=0的实根x0一定在()范围内.A.﹣1<x0<0 B.0<x0<1 C.1<x0<2 D.2<x0<37.如图,现有一圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为()A.4cm B.3cm C.2cm D.1cm8.下面的图形是由8个棱长为1个单位的小立方体组成的立体图形,这个立体图形的左视图是()A.B. C.D.9.对于正数x,规定f(x)=,例如f(3)==,f()==,计算f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)…+f(2013)+f(2014)+f(2015)的结果是()A.2014 B.2014.5 C.2015 D.2015.5二、填空题10.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定[]的值为.11.观察分析下列方程:①,②,③;请利用它们所蕴含的规律,求关于x的方程(n为正整数)的根,你的答案是:.12.如图,在10个边长都为1的小正三角形的网格中,点P是网格的一个顶点,以点P为顶点作格点平行四边形(即顶点均在格点上的四边形),请你写出所有可能的平行四边形的对角线的长.13.通用公司生产的09款科鲁兹家庭轿车的车轮直径560mm,当车轮转动120度时,车中的乘客水平方向平移了mm.14.如图,直线y=2x+4与x,y轴分别交于A,B两点,以OB为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C′恰好落在直线AB上,则点C′的坐标为.15.如图,OB是⊙O的半径,弦AB=OB,直径CD⊥AB.若点P是线段OD上的动点,连接PA,则∠PAB的度数可以是(写出一个即可)16.如图,将半径为3的圆形纸片,按下列顺序折叠.若和都经过圆心O,则阴影部分的面积是(结果保留π)三、解答题17.计算:﹣(﹣4)﹣1+﹣2cos30°.18.化简求值:,其中a=.19.我们知道:任意一个有理数与无理数的和为无理数,任意一个不为零的有理数与一个无理数的积为无理数,而零与无理数的积为零.由此可得:如果ax+b=0,其中a、b为有理数,x为无理数,那么a=0且b=0.运用上述知识,解决下列问题:(1)如果,其中a、b为有理数,那么a=,b=;(2)如果,其中a、b为有理数,求a+2b的值.20.小云出黑板报时遇到了一个难题,在版面设计过程中需要将一个半圆面三等分,请帮她设计一个合理的等分方案,要求尺规作图,保留作图痕迹.21.如果二次函数的二次项系数为l,则此二次函数可表示为y=x2+px+q,我们称[p,q]为此函数的特征数,如函数y=x2+2x+3的特征数是[2,3].(1)若一个函数的特征数为[﹣2,1],求此函数图象的顶点坐标.(2)探究下列问题:①若一个函数的特征数为[4,﹣1],将此函数的图象先向右平移1个单位,再向上平移1个单位,求得到的图象对应的函数的特征数.②若一个函数的特征数为[2,3],问此函数的图象经过怎样的平移,才能使得到的图象对应的函数的特征数为[3,4]?22.在不透明的箱子里放有4个乒乓球,每个乒乓球上分别写有数字1、2、3、4,从箱中摸出一个球记下数字后放回箱中,摇匀后再摸出一个记下数字.若将第一次摸出的球上的数字记为点的横坐标,第二次摸出球上的数字记为点的纵坐标.(1)请用列表法或树状图法写出两次摸球后所有可能的结果.(2)求这样的点落在如图所示的圆内的概率(注:图中圆心在直角坐标系中的第一象限内,并且分别于x轴、y轴切于点(2,0)和(0,2)两点).23.(2012•随州)一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动,快车离乙地的路程y1(km)与行使的时间x(h)之间的函数关系,如图中AB所示;慢车离乙地的路程y2(km)与行使的时间x(h)之间的函数关系,如图中线段OC所示,根据图象进行以下研究.解读信息:(1)甲,乙两地之间的距离为km;(2)线段AB的解析式为;线段OC的解析式为;问题解决:(3)设快,慢车之间的距离为y(km),求y与慢车行驶时间x(h)的函数关系式,并画出函数图象.2015年江苏省盐城市中考数学三模试卷参考答案与试题解析一、选择题1.计算的结果是()A.6 B.C.2 D.【考点】二次根式的加减法.【分析】根据二次根式加减的一般步骤,先化简,再合并.【解答】解:=2﹣=,故选:D.【点评】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.2.下列图形中,既是轴对称又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、不是轴对称图形,是中心对称图形.故错误;D、不是轴对称图形,也不是中心对称图形.故错误.故选B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.把三张大小相同的正方形卡片A、B、C叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影表示,若按图1摆放时,阴影部分的面积为S1;若按图2摆放时,阴影部分的面积为S2,则S1与S2的大小关系是()A.S1>S2B.S1<S2C.S1=S2D.无法确定【考点】整式的混合运算.【专题】应用题;压轴题.【分析】根据正方形的性质,可以把两块阴影部分合并后计算面积,然后,比较S1和S2的大小.【解答】解:设底面的正方形的边长为a,正方形卡片A,B,C的边长为b,由图1,得S1=(a﹣b)(a﹣b)=(a﹣b)2,由图2,得S2=(a﹣b)(a﹣b)=(a﹣b)2,∴S1=S2.故选C【点评】本题主要考查了正方形四条边相等的性质,分别得出S1和S2的面积是解题关键.4.在“大家跳起来”的学校跳操比赛中,九年级参赛的10名学生成绩统计如图所示,对于这10名学生的参赛成绩,下列说法中错误的是()A.众数是90分B.中位数是90分C.平均数是90分D.极差是15分【考点】极差;折线统计图;算术平均数;中位数;众数.【分析】根据众数、中位数、平均数、极差的定义和统计图中提供的数据分别列出算式,求出答案.【解答】解:∵90出现了5次,出现的次数最多,∴众数是90;故A正确;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;故B正确;∵平均数是(80×1+85×2+90×5+95×2)÷10=89;故C错误;极差是:95﹣80=15;故D正确.综上所述,C选项符合题意,故选:C.【点评】此题考查了折线统计图,用到的知识点是众数、中位数、平均数、极差,关键是能从统计图中获得有关数据,求出众数、中位数、平均数、极差.5.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.abc>0 B.b2﹣4ac<0 C.9a+3b+c>0 D.c+8a<0【考点】二次函数图象与系数的关系.【专题】压轴题.【分析】根据二次函数的图象求出a<0,c>0,根据抛物线的对称轴求出b=﹣2a>0,即可得出abc <0;根据图象与x轴有两个交点,推出b2﹣4ac>0;对称轴是直线x=1,与x轴一个交点是(﹣1,0),求出与x轴另一个交点的坐标是(3,0),把x=3代入二次函数得出y=9a+3b+c=0;把x=4代入得出y=16a﹣8a+c=8a+c,根据图象得出8a+c<0.【解答】解:A、∵二次函数的图象开口向下,图象与y轴交于y轴的正半轴上,∴a<0,c>0,∵抛物线的对称轴是直线x=1,∴﹣=1,∴b=﹣2a>0,∴abc<0,故本选项错误;B、∵图象与x轴有两个交点,∴b2﹣4ac>0,故本选项错误;C、∵对称轴是直线x=1,与x轴一个交点是(﹣1,0),∴与x轴另一个交点的坐标是(3,0),把x=3代入二次函数y=ax2+bx+c(a≠0)得:y=9a+3b+c=0,故本选项错误;D、∵当x=3时,y=0,∵b=﹣2a,∴y=ax2﹣2ax+c,把x=4代入得:y=16a﹣8a+c=8a+c<0,故选D.【点评】本题考查了二次函数的图象、性质,二次函数图象与系数的关系,主要考查学生的观察图形的能力和辨析能力,题目比较好,但是一道比较容易出错的题目.6.方程x2+4x﹣1=0的根可视为函数y=x+4的图象与函数的图象交点的横坐标,那么用此方法可推断出:当m取任意正实数时,方程x3+mx﹣1=0的实根x0一定在()范围内.A.﹣1<x0<0 B.0<x0<1 C.1<x0<2 D.2<x0<3【考点】反比例函数与一次函数的交点问题.【专题】计算题;压轴题.【分析】根据题意方程x3+mx﹣1=0的根可视为函数y=x2+m的图象与函数的图象交点的横坐标,由于当m取任意正实数时,函数y=x2+m的图象过第一、二象限,函数的图象分别在第一、三象限,得到它们的交点的横坐标为正数,观察函数图象得抛物线顶点越低,与函数的图象的交点的横坐标越大,然后求出当m=0时,y=x2与的交点A的坐标为(1,1),于是得到当m取任意正实数时,方程x3+mx﹣1=0的实根x0一定在0<x0<1的范围内.【解答】解:∵方程x3+mx﹣1=0变形为x2+m﹣=0,∴方程x3+mx﹣1=0的根可视为函数y=x2+m的图象与函数的图象交点的横坐标,∵当m取任意正实数时,函数y=x2+m的图象过第一、二象限,函数的图象分别在第一、三象限,∴它们的交点在第一象限,即它们的交点的横坐标为正数,∵当m取任意正实数时,函数y=x2+m的图象沿y轴上下平移,且总在x轴上方,抛物线顶点越低,与函数的图象的交点的横坐标越大,当m=0时,y=x2与的交点A的坐标为(1,1),∴当m取任意正实数时,方程x3+mx﹣1=0的实根x0一定在0<x0<1的范围内.故选B.【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标满足两函数解析式.也考查了阅读理解能力以及数形结合的思想.7.如图,现有一圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为()A.4cm B.3cm C.2cm D.1cm【考点】弧长的计算.【专题】几何图形问题.【分析】本题考查了圆锥的有关计算,圆锥的表面是由一个曲面和一个圆面围成的,圆锥的侧面展开在平面上,是一个扇形,计算圆锥侧面积时,通过求侧面展开图面积求得,侧面积公式是底面周长与母线乘积的一半,先求扇形的弧长,再求圆锥底面圆的半径,弧长:=4π,圆锥底面圆的半径:r==2(cm).【解答】解:弧长:=4π,圆锥底面圆的半径:r==2(cm).故选:C.【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.8.下面的图形是由8个棱长为1个单位的小立方体组成的立体图形,这个立体图形的左视图是()A.B. C.D.【考点】简单组合体的三视图.【分析】找到从左面看得到的平面图形即可.【解答】解:左视图从左往右2列正方形的个数依次为3,1,故选A.【点评】考查简单组合几何体的三视图知识;用到的知识点为:左视图是从几何体左面看得到的平面图形.9.对于正数x,规定f(x)=,例如f(3)==,f()==,计算f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)…+f(2013)+f(2014)+f(2015)的结果是()A.2014 B.2014.5 C.2015 D.2015.5【考点】分式的加减法.【专题】规律型.【分析】根据题意归纳总结得到f(x)+f()=1,原式结合后,相加即可得到结果.【解答】解:根据题意f(x)=,得到f()==,f(1)==0.5,∴f(x)+f()=1,则原式=f()+f(2015)+f()+f(2014)+…+f()+f(2)+f(1)=2014+0.5=2014.5,故选B.【点评】此题考查了分式的加减法,得出f(x)+f()=1是解本题的关键.二、填空题10.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定[]的值为4.【考点】估算无理数的大小.【专题】压轴题;新定义.【分析】求出的范围,求出+1的范围,即可求出答案.【解答】解:∵3<<4,∴3+1<+1<4+1,∴4<+1<5,∴[+1]=4,故答案为:4.【点评】本题考查了估计无理数的应用,关键是确定+1的范围,题目比较新颖,是一道比较好的题目.11.观察分析下列方程:①,②,③;请利用它们所蕴含的规律,求关于x的方程(n为正整数)的根,你的答案是:x=n+3或x=n+4.【考点】分式方程的解.【专题】压轴题;规律型.【分析】首先求得分式方程①②③的解,即可得规律:方程x+=a+b的根为:x=a或x=b,然后将x+=2n+4化为(x﹣3)+=n+(n+1),利用规律求解即可求得答案.【解答】解:∵由①得,方程的根为:x=1或x=2,由②得,方程的根为:x=2或x=3,由③得,方程的根为:x=3或x=4,∴方程x+=a+b的根为:x=a或x=b,∴x+=2n+4可化为(x﹣3)+=n+(n+1),∴此方程的根为:x﹣3=n或x﹣3=n+1,即x=n+3或x=n+4.故答案为:x=n+3或x=n+4.【点评】此题考查了分式方程的解的知识.此题属于规律性题目,注意找到规律:方程x+=a+b 的根为:x=a或x=b是解此题的关键.12.如图,在10个边长都为1的小正三角形的网格中,点P是网格的一个顶点,以点P为顶点作格点平行四边形(即顶点均在格点上的四边形),请你写出所有可能的平行四边形的对角线的长1或或或2或3.【考点】平行四边形的判定与性质.【专题】计算题;压轴题.【分析】首先确定以P为顶点的平行四边形有哪几个,然后根据勾股定理即可求得对角线的长.【解答】解:平行四边形有:PABD,PACE,PMND,PMQE,APMD,APNE,PQGA.平行四四边形PABD,平行四边形PMND对角线长是1和;平行四边形PACE和PMQE的对角线长是:和;平行四边形APNE的对角线长是:2和;平行四边形PQGA的对角线长是3和.故答案为:1或或或2或3.【点评】本题主要考查了平行四边形的判定,正确找出以P为顶点的平行四边形有哪几个是解题关键.13.通用公司生产的09款科鲁兹家庭轿车的车轮直径560mm,当车轮转动120度时,车中的乘客水平方向平移了mm.【考点】弧长的计算.【专题】计算题.【分析】车中的乘客水平方向平移的距离为圆心角为120°,半径为280mm的弧长.【解答】解:车中的乘客水平方向平移的距离为=mm,故答案为:.【点评】考查弧长公式的应用;用到的知识点为:弧长=.14.如图,直线y=2x+4与x,y轴分别交于A,B两点,以OB为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C′恰好落在直线AB上,则点C′的坐标为(﹣1,2).【考点】一次函数图象上点的坐标特征;等边三角形的性质;坐标与图形变化-平移.【专题】数形结合.【分析】先求出直线y=2x+4与y轴交点B的坐标为(0,4),再由C在线段OB的垂直平分线上,得出C点纵坐标为2,将y=2代入y=2x+4,求得x=﹣1,即可得到C′的坐标为(﹣1,2).【解答】解:∵直线y=2x+4与y轴交于B点,∴x=0时,得y=4,∴B(0,4).∵以OB为边在y轴右侧作等边三角形OBC,∴C在线段OB的垂直平分线上,∴C点纵坐标为2.将y=2代入y=2x+4,得2=2x+4,解得x=﹣1.故答案为:(﹣1,2).【点评】本题考查了一次函数图象上点的坐标特征,等边三角形的性质,坐标与图形变化﹣平移,得出C点纵坐标为2是解题的关键.15.如图,OB是⊙O的半径,弦AB=OB,直径CD⊥AB.若点P是线段OD上的动点,连接PA,则∠PAB的度数可以是70°(写出一个即可)【考点】圆周角定理;等腰三角形的性质;垂径定理.【专题】开放型.【分析】当P点与D点重合是∠DAB=75°,与O重合则OAB=60°,∠OAB≤∠PAB≤∠DAB,所以∠PAB的度数可以是60°﹣﹣75°之间的任意数.【解答】解:连接DA,OA,则△OAB是等边三角形,∴∠OAB=∠AOB=60°,∵DC是直径,DC⊥AB,∴∠AOC=∠AOB=30°,∴∠ADC=15°,∴∠DAB=75°,∵,∠OAB≤∠PAB≤∠DAB,∴∠PAB的度数可以是60°﹣75°之间的任意数.故答案为:70°【点评】本题考查了垂径定理,等边三角形的判定及性质,等腰三角形的判定及性质.16.如图,将半径为3的圆形纸片,按下列顺序折叠.若和都经过圆心O,则阴影部分的面积是3π(结果保留π)【考点】翻折变换(折叠问题).【专题】压轴题;操作型.【分析】作OD⊥AB于点D,连接AO,BO,CO,求出∠OAD=30°,得到∠AOB=2∠AOD=120°,进而求得∠AOC=120°,再利用阴影部分的面积=S求解.扇形AOC【解答】解;如图,作OD⊥AB于点D,连接AO,BO,CO,∵OD=AO,∴∠OAD=30°,∴∠AOB=2∠AOD=120°,同理∠BOC=120°,∴∠AOC=120°,==3π.∴阴影部分的面积=S扇形AOC故答案为:3π.【点评】本题主要考查了折叠问题,解题的关键是确定∠AOC=120°.三、解答题17.计算:﹣(﹣4)﹣1+﹣2cos30°.【考点】特殊角的三角函数值;实数的性质;零指数幂;负整数指数幂.【专题】计算题.【分析】按照实数的运算法则依次计算,注意|﹣|=,(﹣4)﹣1=﹣,()0=1.【解答】解:原式=++1﹣2×=.【点评】本题需注意的知识点是:负数的绝对值是正数;a﹣p=.任何不等于0的数的0次幂是1.18.化简求值:,其中a=.【考点】分式的化简求值;分母有理化.【分析】先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分,最后加减运算,把式子化到最简代值计算.【解答】解:原式====;当a=时,原式==.【点评】分式的混合运算,要特别注意运算顺序,能因式分解的先分解,然后约分.19.我们知道:任意一个有理数与无理数的和为无理数,任意一个不为零的有理数与一个无理数的积为无理数,而零与无理数的积为零.由此可得:如果ax+b=0,其中a、b为有理数,x为无理数,那么a=0且b=0.运用上述知识,解决下列问题:(1)如果,其中a、b为有理数,那么a=2,b=﹣3;(2)如果,其中a、b为有理数,求a+2b的值.【考点】实数的运算;解二元一次方程组.【专题】阅读型.【分析】(1)a,b是有理数,则a﹣2,b+3都是有理数,根据如果ax+b=0,其中a、b为有理数,x为无理数,那么a=0且b=0.即可确定;(2)首先把已知的式子化成ax+b=0,(其中a、b为有理数,x为无理数)的形式,根据a=0,b=0即可求解.【解答】解:(1)2,﹣3;(2)整理,得(a+b)+(2a﹣b﹣5)=0.∵a、b为有理数,∴解得∴a+2b=﹣.【点评】本题考查了实数的运算,正确理解题意是关键.20.小云出黑板报时遇到了一个难题,在版面设计过程中需要将一个半圆面三等分,请帮她设计一个合理的等分方案,要求尺规作图,保留作图痕迹.【考点】作图—应用与设计作图.【分析】应先做线段AB的垂直平分线,得到半圆的圆心;三等分平角,那么平分而成的每个角是60°根据半径相等,可得到相邻两个半径的端点与圆心组成一个等边三角形.以A为圆心,半径长为半径画弧,就可得到一个另一半径的端点所在的位置,连接它与圆心,就得到一条三等分线,同法做到另一三等分线.【解答】解:作法:(1)作AB的垂直平分线CD交AB于点O;(2)分别以A、B为圆心,以AO(或BO)的长为半径画弧,分别交半圆于点M、N;(3)连接OM、ON即可.【点评】本题主要考查了应用设计与作图,用到的知识点为:弦的垂直平分线经过圆心;有一个角是60°的等腰三角形是等边三角形.21.如果二次函数的二次项系数为l,则此二次函数可表示为y=x2+px+q,我们称[p,q]为此函数的特征数,如函数y=x2+2x+3的特征数是[2,3].(1)若一个函数的特征数为[﹣2,1],求此函数图象的顶点坐标.(2)探究下列问题:①若一个函数的特征数为[4,﹣1],将此函数的图象先向右平移1个单位,再向上平移1个单位,求得到的图象对应的函数的特征数.②若一个函数的特征数为[2,3],问此函数的图象经过怎样的平移,才能使得到的图象对应的函数的特征数为[3,4]?【考点】二次函数图象与几何变换;二次函数的性质.【专题】新定义.【分析】(1)根据题意得出函数解析式,进而得出顶点坐标即可;(2)①首先得出函数解析式,进而利用函数平移规律得出答案;②分别求出两函数解析式,进而得出平移规律.【解答】解:(1)由题意可得出:y=x2﹣2x+1=(x﹣1)2,∴此函数图象的顶点坐标为:(1,0);(2)①由题意可得出:y=x2+4x﹣1=(x+2)2﹣5,∴将此函数的图象先向右平移1个单位,再向上平移1个单位后得到:y=(x+2﹣1)2﹣5+1=(x+1)2﹣4=x2+2x﹣3,∴图象对应的函数的特征数为:[2,﹣3];②∵一个函数的特征数为[2,3],∴函数解析式为:y=x 2+2x+3=(x+1)2+2,∵一个函数的特征数为[3,4],∴函数解析式为:y=x 2+3x+4=(x+)2+,∴原函数的图象向左平移个单位,再向下平移个单位得到.【点评】此题主要考查了二次函数的平移以及配方法求函数解析式,利用特征数得出函数解析式是解题关键.22.在不透明的箱子里放有4个乒乓球,每个乒乓球上分别写有数字1、2、3、4,从箱中摸出一个球记下数字后放回箱中,摇匀后再摸出一个记下数字.若将第一次摸出的球上的数字记为点的横坐标,第二次摸出球上的数字记为点的纵坐标.(1)请用列表法或树状图法写出两次摸球后所有可能的结果.(2)求这样的点落在如图所示的圆内的概率(注:图中圆心在直角坐标系中的第一象限内,并且分别于x 轴、y 轴切于点(2,0)和(0,2)两点).【考点】列表法与树状图法.【分析】(1)首先根据题意列出表格,然后由表格即可求得所有等可能的结果;(2)根据(1)中的表格求得这样的点落在如图所示的圆内的情况,然后利用概率公式求解即可求得答案.【解答】解:列表得:则共有16种等可能的结果;(2)∵这样的点落在如图所示的圆内的有:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),∴这样的点落在如图所示的圆内的概率为:.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.23.(2012•随州)一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动,快车离乙地的路程y1(km)与行使的时间x(h)之间的函数关系,如图中AB所示;慢车离乙地的路程y2(km)与行使的时间x(h)之间的函数关系,如图中线段OC所示,根据图象进行以下研究.解读信息:(1)甲,乙两地之间的距离为450km;(2)线段AB的解析式为y1=450﹣150x(0≤x≤3);线段OC的解析式为y2=75x (0≤x≤6);问题解决:(3)设快,慢车之间的距离为y(km),求y与慢车行驶时间x(h)的函数关系式,并画出函数图象.【考点】一次函数的应用.【专题】压轴题.【分析】(1)利用A点坐标为(0,450),可以得出甲,乙两地之间的距离;(2)利用A点坐标为(0,450),B点坐标为(3,0),代入y1=kx+b求出即可,利用线段OC解析式为y2=ax 求出a即可;(3)利用(2)中所求得出,y=|y1﹣y2|进而求出函数解析式,得出图象即可.【解答】解:(1)根据左图可以得出:甲、乙两地之间的距离为450km;故答案为:450km;(2)问题解决:线段AB的解析式为:y1=kx+b,根据A点坐标为(0,450),B点坐标为(3,0),得出:,解得:故y1=450﹣150x(0≤x≤3);将(6,450)代入y2=ax 求出即可:y2=75x,故线段OC的解析式为y2=75x (0≤x≤6);(3)根据(2)得出:y=|y1﹣y2|=|450﹣150x﹣75x|=,∵y1=450﹣150x(0≤x≤3);y2=75x,∴D(2,150),利用函数解析式y=450﹣225x(0≤x≤2),当x=0,y=450,x=2,y=0,画出线段AE,利用函数解析式y=225x﹣450(2≤x<3),当x=2,y=0,x=3,y=225,画出线段EF,利用函数解析式y=75x(3≤x≤6),当x=3,y=225,x=6,y=450,画出线段FC,求出端点,画出图象,其图象为折线图AE﹣EF﹣FC.【点评】此题主要考查了一次函数的应用和待定系数法求解析式,根据已知图象上的点得出函数解析式以及利用分段函数分析是解题关键.。
江苏省盐城市响水县2015届中考数学一模试题(含解析)解读
江苏省盐城市响水县2015届中考数学一模试题一、选择题(共 8小题,每小题3分,共24分)2014-2015学年度第二学期第一次调研考 试九年级数学试题1 •数据1, 3, 3, 4, 5的众数为( )A. 1B. 3C. 4D. 52.0 O 的半径为8,圆心O 到直线I 的距离为4,则直线I 与O O 的位置关系是( )A.相切B .相交C .相离D .不能确定3.—个布袋里装有 5个球,其中3个红球,2个白球,每个球除颜色外其他完全相同,从 中任意摸出一个球,是红球的概率是( )A.B.C. £D.;655 51 : 2,则△ ABC M^ A B ' C'的面积的比为(A. 1 : 2 B . 2: 1 C . 1 : 4 D . 4: 1 5.下列关于x 的方程有实数根的是()2 2 2 2A. x - x+1=0 B . x+x+ 仁0 C. x - x -仁0D. ( x - 1) +1=06.将抛物线y= - x 2向上平移2个单位后,得到的函数表达式是()2 2 2 2A. y= - x +2 B . y=-( x+2) C . y=-( x - 1) D. y= - x - 2&阅读理解:如图1,在平面内选一定点 O,引一条有方向的射线 Ox,再选定一个单位长 度,那么平面上任一点 M 的位置可由/ MOx 的度数0与OM 勺长度m 确定,有序数对(B, m ) 称为M 点的"极坐标”,这样建立的坐标系称为"极坐标系”应用:在图2的极坐标系下,如果正六边形的边长为 2,有一边OA 在射线Ox 上,则正六边形的顶点C 的极坐标应记为()4.若△ AB3A A B' C',相似比为 C, D 是O O 上两点, CD!AB.若/ DAB=65,则/ BOC=(D . 155° 7.如图,AB 是O O 的直径,130 °10. __________________________________________________________________ 在 Rt △ ABC 中,/ C=90°, BC=3, AC=4,那么 cosA 的值等于 ________________________________ . 11.一名射击爱好者5次射击的中靶环数如下:6, 7, 9, 8, 9,这5个数据的中位数 是 ___________ .12 .若关于 x 的一元二次方程 ax 2+bx+5=0 (a 丰0)的一个解是 x=1,贝U a+b+2015的值是 ___________ .13. _________________________ 如果在比例尺为 1: 1 000 000的地图上,A B 两地的图上距离是 3.4厘米,那么 A 、B 两地的实际距离是 千米. 14.如图,小明用长为 3m 的竹竿CD 做测量工具,测量学校旗杆AB 的高度,移动竹竿,使竹竿与旗杆的距离 DB=12m 则旗杆AB 的高为 ________________ mQ6m 12m ~卡15. 请写出一个开口向下,与 _________________________________ y 轴交点的纵坐标为 3的抛物线的函数表达式 ________________________________________________ . 16.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径 r=2cm ,扇形的圆心角0 =120°,则该圆锥的母线长 I 为 _________________ cm.A. ( 60°, 4)B. (45°, 4)C. (60°, 2 匚)D. (50°, 2 匚)二、填空题(共 9•如图,四边形 10小题,每小题3分,共30分) ABCD 内接于O O,/ A=62°,则/ C=17. 在二次函数y=-x2+bx+c中,函数y与自变量x的部分对应值如下表:x - 3 - 2 - 1 1 2 3 4 5 6y - 14 - 7 - 2 2 m n - 7 - 14 - 23贝U m+n=18. 已知Rt△ ABC中,/ C=90°, BC=1, AC=4,如图把边长分别为X1, X2, X3,…,x n 的n个正方形依次放入△ ABC中,则第2015个正方形的边长为_______________ .三、解答题(共10小题,共96分)19. (1 )解方程:x2- x=0 ;(2)计算:(~- 1) 0-( ') - 1+2cos60220. 如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为 A (- 2, 1), B (- 1, 4),C (- 3, 2).(1)以原点O为位似中心,位似比为1: 2,在y轴的左侧,画出△ ABC放大后的图形△ A1B1G, 并直接写出G点坐标;(2)若点D( a, b)在线段AB上,请直接写出经过(1)的变化后点D的对应点D坐标.21. 已知学习小组5位同学参加学业水平测试(满分100分)的平均成绩是80分,其中两位女生的成绩分别为85分,75分,三位男生成绩X1、X2、X3的方差为150 (分2).(1 )学习小组三位男生成绩X1、X2、X3的平均数是_______________ 分;(2)求学习小组5位同学成绩的方差.22. 苏北五市联合通过网络投票选出了一批“最有孝心的美少年”.根据各市的入选结果制作出如下统计表,后来发现,统计表中前三行的所有数据都是正确的,后两行中有一个数据是错误的•请回答下列问题:(1)统计表a= ____________ , b= ___________ ;(2)统计表后三行中哪一个数据是错误的?该数据的正确值是多少?(3)组委会决定从来自宿迁市的4位“最有孝心的美少年”中,任选两位作为苏北五市形象代言人,A、B是宿迁市“最有孝心的美少年” 中的两位,问A、B同时入选的概率是多少?区域频数频率宿迁4A连云港70.175淮安b0.2徐州100.25盐城120.275并请画出树状图或列出表格.23. 如图,在△ ABC中,AD是BC上的高,tan / B=cos / DAC(1)求证:AC=BD(2 )若si nC= I::, BC=36,求AD 的长.1324. 已知二次函数y=- x2+ ( m- 1) x+m.(1)证明:不论m取何值,该函数图象与x轴总有公共点;(2)若该函数的图象与y轴交于点(0, 3),求出顶点坐标并画出该函数图象;(3)在(2)的条件下,观察图象.①不等式-x2+ ( m- 1) x+m> 3的解集是______________ ;②若一元二次方程- x2+ ( m- 1) x+m=k有两个不相等的实数根,则k的取值范围③若一元二次方程-x2+ (m- 1) x+m- t=0在-1v x v 4的范围内有实数根,则t的取值范围是 ____________ .V A25. 如图,在Rt△ ABC中,/ C=90° 点E在斜边AB上,以AE为直径的O O与BC相切于点D,若BE=6 BD=6 二.(1 )求0 O的半径;(2)求图中阴影部分的面积.26. 某商店将成本为30元的文化衫标价50元出售.(1)为了搞促销活动经过两次降价调至每件40.5元,若两次降价的百分率相同,求每次降价的百分率;(2)经调查,该文化衫每降5元,每月可多售出100件,若该品牌文化衫按原标价出售,每月可销售200件,那么销售价定为多少元,可以使该商品获得最大的利润?最大的利润是多少?27. 【问题背景】已知:I 1 // I 2〃I 3〃I 4,平行线l 1与I 2、I 2与I 3、I 3与I 4之间的距离分别为d l、d2、Cb,且d l = d s=1 , d2 = 2,我们把四个顶点分别在I 1、I 2、| 3、| 4这四条平行线上的四边形称为“格线四边形”.图1 图2【问题探究】(1) _____________________________________________________________________ 如图1,正方形ABCD为“格线四边形”,则正方形ABCD勺边长为____________________________(2) 矩形ABCD为“格线四边形”,其长:宽=2: 1,求矩形ABCD勺宽.【问题拓展】(3)如图1, EG过正方形ABCD的顶点D且垂直l 1于点E,分别交I 2, I 4于点F, G,将/ AEG 绕点A 顺时针旋转30°,得到/ AE D'(如图2),点D'在直线I 3上,以AD为边在E' D'左侧作菱形AB' C D',使B' C',分别在直线l2, |4上,求菱形AB' C D'的边长.28. 已知在平面直角坐标系xOy中,0是坐标原点,以P (1, 1)为圆心的O P 与x轴,y轴分别相切于点M和点N,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接PF,过点P作PE! PF交y轴于点E,设点F运动的时间是t秒(t > 0)(2)在点F运动过程中,设OE=a OF=b试用含a的代数式表示b;(3)作点F关于点M的对称的F',经过M E和F'三点的抛物线的对称轴交x轴于点Q 连接QE在点F 运动过程中,当1v t V 2时,若以点Q O E为顶点的三角形与以点P、M F为顶点的三角形相似,求t值.2015年江苏省盐城市响水县中考数学一模试卷 参考答案与试题解析 一、选择题(共 8小题,每小题3分,共24分)2014-2015学年度第二学期第一次调研考 试九年级数学试题 1 •数据1, 3, 3, 4, 5的众数为( )A. 1考点: B. 3C. 4D. 5众数.分析: 根据众数的概念求解. 解答: 解:该组数据中,3出现的次数最多,故3为众数. 故选B.点评: 本题考查了众数的概念:一组数据中出现次数最多的数据叫做众数.2.0 O 的半径为8,圆心O 到直线I 的距离为4,则直线I 与O O 的位置关系是( )A.相切B .相交C .相离D .不能确定 考点: 直线与圆的位置关系.分析: 根据圆O 的半径和圆心 O 到直线L 的距离的大小,相交:d v r ;相切:d=r ;相离: d >r ; 解答: 即可选出答案.解:TO O 的半径为8,圆心O 到直线L 的距离为4, •/ 8>4,即:d v r ,•••直线L 与O O 的位置关系是相交. 故选:B.3.一个布袋里装有 5个球,其中3个红球,2个白球,每个球除颜色外其他完全相同,从 中任意摸出一个球,是红球的概率是( )1193A.B.C.D.6555考点:概率公式.分析:用红球的个数除以球的总个数即可.解答: 解:•••布袋里装有 5个球,其中3个红球,2个白球, •从中任意摸出一个球,则摸出的球是红球的概率是: -5故选:D.点评: 本题考查了概率公式:概率 =所求情况数与总情况数之比.4.若△ AB3A A B' C',相似比为1 : 2,则△ ABC M^ A B ' C'的面积的比为( )A. 1 : 2 B . 2: 1 C . 1 : 4 D . 4: 1 考点: 相似三角形的性质. 分析: 根据相似三角形面积的比等于相似比的平方计算即可得解. 解答:解:•••△ ABC^A A ' B' C',相似比为 1 : 2,•••△ ABC 与△ A B' C'的面积的比为 1 : 4.故选:C.点评:本题考查了相似三角形的性质,熟记相似三角形面积的比等于相似比的平方是解题 的关键. 5.下列关于x 的方程有实数根的是()2 2 2 2A. x - x+1=0B . x+x+ 仁0 C. x - x -仁0 D.( x - 1) +仁0考点:根的判别式.分析:由于一元二次方程的判别式△ =b 2- 4ac ,首先逐一求出△的值,然后根据其正负情况即可判定选择项.解答: 解:A 、A =b 2 - 4ac=1 - 4= - 3 v 0,此方程没有实数根;=b 2 - 4ac=1 - 4= - 3v 0,此方程没有实数根; C 、A =b 2 - 4ac=1+4=5>0,此方程有两个不相等的实数根; □、△ =b 2 - 4ac=4 - 8= - 4v 0,此方程没有实数根. 故选:C.点评:此题主要考查了一元二次方程的判别式,其中△ =b 2- 4ac >0,则方程有两个不相等 的实数根;△ =b 2- 4ac=0,则方程有两个相等的实数根; △ =b 2- 4ac v 0,则方程没有实数根. 6 .将抛物线y= - x 2向上平移2个单位后,得到的函数表达式是()2 2 2 2A. y= - x +2 B . y=-( x+2) C. y=-( x - 1) D. y= - x - 2 考点: 二次函数图象与几何变换. 分析: 先求出平移后的抛物线的顶点坐标,然后利用抛物线顶点式解析式写出即可. 解答:解:T 抛物线y= - x 2的顶点坐标是(0, 0),•平移后的抛物线的顶点坐标是( 0, 2), •••得到的抛物线解析式是 y= - x 2+2. 故选:A.点评:本题考查了二次函数图象与几何变换,利用顶点的变化确定解析式的变化更简便.考点:圆周角定理;垂径定理. 专题:几何图形问题.分析: 由CDLAB.若/ DAB=65,可求得/ D 的度数,又由圆周角定理,即可求得/ AOC的度数,继而求得答案.解答: 解:CD L AB. / DAB=65 ,•••/ ADC=90 -Z DAB=25 ,•••/ AOC=Z ADC=50 , • Z BOC=180 -Z AOC=130 .C, D 是O O 上两点, CDLAB.若/ DAB=65,则/ BOC=(D. 155°7 .如图,AB 是O O 的直径, 130 °故选:C.点评:此题考查了圆周角定理以及直角三角形的性质•此题难度不大,注意掌握数形结合思想的应用.&阅读理解:如图1,在平面内选一定点0,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M的位置可由/ MOX的度数0与0M的长度m确定,有序数对(B , m)称为M点的"极坐标”,这样建立的坐标系称为"极坐标系”应用:在图2的极坐标系下,如果正六边形的边长为2,有一边0A在射线Ox上,则正六边A. (60°, 4)B. (45°, 4)C. (60°, 2 二)D. (50°, 2 二)考点:正多边形和圆;坐标确定位置.专题: 新定义.分析:设正六边形的中心为D,连接AD,判断出△ AOD是等边三角形,根据等边三角形的性质可得OD=OA / AOD=60,再求出OC然后根据“极坐标”的定义写出即可.解答:解:如图,设正六边形的中心为D,连接AD,•••/ ADO=36O - 6=60°, OD=AD•••△ AOD是等边三角形,•••OD=OA=2 / AOD=60 ,•••OC=2OD=2 2=4,•••正六边形的顶点C的极坐标应记为(60°, 4).圏1 图2点评:本题考查了正多边形和圆,坐标确定位置,主要利用了正六边形的性质,读懂题目信息,理解“极坐标”的定义是解题的关键.二、填空题(共10小题,每小题3分,共30分)9. 如图,四边形ABCD内接于O O,Z A=62°,则/ C= 118考点:圆内接四边形的性质.专题:计算题.分析:直接根据圆内接四边形的性质计算.解答:解:•••四边形ABCD内接于O O•••/ A+Z C=180°,•••/ C=180 - 62° =118°.故答案为118.点评:本题考查了圆内接四边形的性质:圆内接四边形的对角互补.10. 在Rt△ ABC中,Z C=90°, BC=3, AC=4,那么cosA 的值等于一考点:锐角三角函数的定义.分析:根据勾股定理求出斜边AB的长,根据余弦的概念求出cosA.解答:解:Z C=90°, BC=3 AC=4,由勾股定理得,AB=5,cosA= ;「=〔,AB 5故答案为:'.5点评:本题考查锐角三角函数的定义及运用,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.11. 一名射击爱好者5次射击的中靶环数如下:6, 7, 9, 8, 9,这5个数据的中位数是8考点:中位数.分析:根据中位数的概念求解.解答:解:这组数据按从小到大的顺序排列为:6, 7, 8, 9, 9,则中位数为:&故答案为:&点评:本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.12. 若关于x的一元二次方程ax2+bx+5=0 (0)的一个解是x=1,贝U a+b+2015的值是2010考点:一元二次方程的解.分析:把x=1代入已知方程求得(a+b )的值,然后将其整体代入所求的代数式并求值即可. 解答: 解:T 关于x 的一元二次方程 ax 2+bx+5=0 (a 丰0)的解是x=1,••• a+b+5=0, 则 a+b= - 5,• a+b+2015= (a+b ) +2015=- 5+2015=2010. 故答案是:2010.点评: 本题考查了一元二次方程的解定义•解题时,利用了 “整体代入”的数学思想.1: 1 000 000的地图上,A B 两地的图上距离是 3.4厘米,那么 A 、B 两地的实际距离是 34 千米. 考点:比例线段. 专题:计算题.分析: 实际距离=图上距离:比例尺,根据题意代入数据可直接得出实际距离. 解答: 解:根据题意,3.4十 _______:____ =3400000厘米=34千米.1000000即实际距离是34千米. 故答案为:34.点评:本题考查了比例线段的知识, 注意掌握比例线段的定义及比例尺,并能够灵活运用,同时要注意单位的转换.14. 如图,小明用长为 3m 的竹竿CD 做测量工具,测量学校旗杆 AB 的高度,移动竹竿,使 竹竿与旗杆的距离 DB=12m 则旗杆AB 的高为 9 m考点:相似三角形的应用. 专题:几何图形问题.分析: 根据△ OCDFHA OAB 相似,利用相似三角形对应边成比例列式求解即可. 解答:解:由题意得,CD// AB, •••△ OCD^ OAB•型=0D•'TT | ■, 即 =,AB 6+12解得AB=9.13.如果在比故答案为:9.点评:本题考查了相似三角形的应用,是基础题,熟记相似三角形对应边成比例是解题的关键. 15. 请写出一个开口向下,与y轴交点的纵坐标为3的抛物线的函数表达式y= -x2+x+3丄匚二"坨)_.考点:二次函数的性质.专题:开放型.分析:首先根据开口向下得到二次项系数小于0,然后根据与y轴的交点坐标的纵坐标为3得到c值即可得到函数的解析式.解答:解::•开口向下,/• y=ax2+bx+c 中a v 0,•••与y轴的交点纵坐标为3,c=3,•••抛物线的解析式可以为:y= - x2+x+3 (答案不唯一).故答案为:y= - x2+x+3 (答案不唯一).点评:本题考查了二次函数的性质,解题的关键是熟知二次函数中各项系数的作用.16. 如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角0 =120°,则该圆锥的母线长I为6 cm.考点:圆锥的计算.分析:易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.解答:解:圆锥的底面周长=2n X 2=4 n cm,设圆锥的母线长为R y::「i'=4n ,180解得R=6.故答案为:6.点评:本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为:—18017. 在二次函数y=-x2+bx+c中,函数y与自变量x的部分对应值如下表:x - 3 - 2 - 1 1 2 3 4 5 6y - 14 - 7 - 2 2 m n - 7 - 14 - 23贝H m+n= — 1 .考点:待定系数法求二次函数解析式;二次函数图象上点的坐标特征.分析:先利用待定系数法求二次函数的解析式为y= - X2+2X+1 ,然后分别把x=2和x=3分别代入y= - X2+2X+1即可计算出m n的值,从而求得m+n的值.解答:解:T X= - 1 时,y= - 2; X=1时,y=2,f - 1 - b+c= - 2 …(b二2•••,解得,。
2015年中考数学试题及答案(Word版)
2015年初中毕业暨升学考试试卷数学本试卷由选择题、填空题和解答题三大题组成,共28小题,满分130分,考试时间120分钟.注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;2.答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.........1.2的相反数是A.2 B.12C.-2 D.-122.有一组数据:3,5,5,6,7,这组数据的众数为A.3 B.5 C.6 D.73.月球的半径约为1 738 000m,1 738 000这个数用科学记数法可表示为A.1.738×106B.1.738×107C.0.1738×107D.17.38×1054.若()2m=-,则有A.0<m<1 B.-1<m<0 C.-2<m<-1 D.-3<m<-2 5.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:则通话时间不超过15min的频率为A.0.1 B.0.4 C.0.5 D.0.96.若点A(a,b)在反比例函数2yx=的图像上,则代数式ab-4的值为A.0 B.-2 C.2 D.-67.如图,在△ABC 中,AB =AC ,D 为BC 中点,∠BAD =35°,则∠C 的度数为 A .35° B .45°C .55°D .60°8.若二次函数y =x 2+bx 的图像的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x的方程x 2+bx =5的解为 A .120,4x x ==B .121,5x x ==C .121,5x x ==-D .121,5x x =-=9.如图,AB 为⊙O 的切线,切点为B ,连接AO ,AO 与⊙O 交于点C ,BD 为⊙O 的直径,连接CD .若∠A =30°,⊙O 的半径为2,则图中阴影部分的面积为 A.43πB.43π-C.πD.23π10.如图,在一笔直的海岸线l 上有A 、B 两个观测站,AB =2km ,从A 测得船C 在北偏东45°的方向,从B 测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为 A .4kmB.(2kmC.D.(4-km二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上......... 11.计算:2a a ⋅= ▲ .12.如图,直线a ∥b ,∠1=125°,则∠2的度数为 ▲ °.DCB A(第7题)(第9题)(第10题)l13.某学校在“你最喜爱的球类运动”调查中,随机调查了若干名学生(每名学生分别选了一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为 ▲ 名. 14.因式分解:224a b -= ▲ .15.如图,转盘中8个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针指向大于6的数的概率为 ▲ .16.若23a b -=,则924a b -+的值为 ▲ .17.如图,在△ABC 中,CD 是高,CE 是中线,CE =CB ,点A 、D 关于点F 对称,过点F作FG ∥CD ,交AC 边于点G ,连接GE .若AC =18,BC =12,则△CEG 的周长为 ▲ .18.如图,四边形ABCD 为矩形,过点D 作对角线BD 的垂线,交BC 的延长线于点E ,取BE 的中点F ,连接DF ,DF =4.设AB =x ,AD =y ,则()224x y +-的值为 ▲ . 三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上........,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.(第17题)GF E D CBA F EDC B A (第18题)ba(第13题)20%10%30%40%其他乒乓球篮球羽毛球(第15题)19.(本题满分5分)(052--. 20.(本题满分5分)解不等式组:()12,31 5.x x x +≥⎧⎪⎨-+⎪⎩>21.(本题满分6分)先化简,再求值:2121122x x x x ++⎛⎫-÷⎪++⎝⎭,其中1x .22.(本题满分6分)甲、乙两位同学同时为校文化艺术节制作彩旗.已知甲每小时比乙多做5面彩旗,甲做60面彩旗与乙做50面彩旗所用时间相等,问甲、乙每小时各做多少面彩旗?23.(本题满分8分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是 ▲ ;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.24.(本题满分8分)如图,在△ABC中,AB=AC.分别以B、C为圆心,BC长为半径在BC下方画弧,设两弧交于点D,与AB、AC的延长线分别交于点E、F,连接AD、BD、CD.(1)求证:AD平分∠BAC;(2)若BC=6,∠BAC=50︒,求 DE、 DF的长度之和(结果保留π).25.(本题满分8分)如图,已知函数kyx=(x>0)的图像经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图像经过点A、D,与x轴的负半轴交于点E.(1)若AC=32OD,求a、b的值;(2)若BC∥AE,求BC的长.(第24题)F EDCBA26.(本题满分10分)如图,已知AD 是△ABC 的角平分线,⊙O 经过A 、B 、D 三点,过点B 作BE ∥AD ,交⊙O 于点E ,连接ED . (1)求证:ED ∥AC ;(2)若BD =2CD ,设△EBD 的面积为1S ,△ADC 的面积为2S ,且2121640S S -+=,求△ABC 的面积.27.(本题满分10分)如图,已知二次函数()21y x m x m =+--(其中0<m <1)的图像与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴为直线l .设P 为对称轴l 上的点,连接P A 、PC ,P A =PC . (1)∠ABC 的度数为 ▲ °;(2)求P 点坐标(用含m 的代数式表示);(3)在坐标轴上是否存在点Q (与原点O 不重合),使得以Q 、B 、C 为顶点的三角形与△P AC 相似,且线段PQ 的长度最小?如果存在,求出所有满足条件的点Q 的坐标;如果不存在,请说明理由.(第26题)28.(本题满分10分)如图,在矩形ABCD 中,AD =a cm ,AB =b cm (a >b >4),半径为2cm的⊙O 在矩形内且与AB 、AD 均相切.现有动点P 从A 点出发,在矩形边上沿着A →B →C →D 的方向匀速移动,当点P 到达D 点时停止移动;⊙O 在矩形内部沿AD 向右匀速平移,移动到与CD 相切时立即沿原路按原速返回,当⊙O 回到出发时的位置(即再次与AB 相切)时停止移动.已知点P 与⊙O 同时开始移动,同时停止移动(即同时到达各自的终止位置).(1)如图①,点P 从A →B →C →D ,全程共移动了 ▲ cm (用含a 、b 的代数式表示); (2)如图①,已知点P 从A 点出发,移动2s 到达B 点,继续移动3s ,到达BC 的中点.若点P 与⊙O 的移动速度相等,求在这5s 时间内圆心O 移动的距离;(3)如图②,已知a =20,b =10.是否存在如下情形:当⊙O 到达⊙O 1的位置时(此时圆心O 1在矩形对角线BD 上),DP 与⊙O 1恰好相切?请说明理由.(第28题)(图②)(图①)2015年苏州市初中毕业暨升学考试数学试题答案一、选择题1.C 2.B 3.A 4.C 5.D6.B 7.C 8.D 9.A 10.B二、填空题11.3a12.55 13.60 14.()()22a b a b+-15.1416.3 17.27 18.16三、解答题19.解:原式=3+5-1 =7.20.解:由12x+≥,解得1x≥,由()315x x-+>,解得4x>,∴不等式组的解集是4x>.21.解:原式=()21122xxx x++÷++=()2121211x xx xx++⨯=+++.当1x===.22.解:设乙每小时做x面彩旗,则甲每小时做(x+5)面彩旗.根据题意,得60505x x=+.解这个方程,得x=25.经检验,x=25是所列方程的解.∴x+5=30.答:甲每小时做30面彩旗,乙每小时做25面彩旗.23.解:(1)1.(2)用表格列出所有可能的结果:由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“两次都摸到红球”有2种可能.∴P(两次都摸到红球)=212=16.24.证明:(1)由作图可知BD =CD .在△ABD 和△ACD 中,,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACD (SSS ).∴∠BAD =∠CAD ,即AD 平分∠BAC .解:(2)∵AB =AC ,∠BAC =50°,∴∠ABC =∠ACB=65°.∵BD = CD = BC ,∴△BDC 为等边三角形. ∴∠DBC =∠DCB=60°. ∴∠DBE =∠DCF=55°. ∵BC =6,∴BD = CD =6.∴ DE的长度= DF 的长度=556111806ππ⨯⨯=. ∴ DE、 DF 的长度之和为111111663πππ+=. 25.解:(1)∵点B (2,2)在ky x=的图像上,∴k =4,4y x=. ∵BD ⊥y 轴,∴D 点的坐标为(0,2),OD =2. ∵AC ⊥x 轴,AC =32OD ,∴AC =3,即A 点的纵坐标为3. ∵点A 在4y x=的图像上,∴A 点的坐标为(43,3).∵一次函数y =ax +b 的图像经过点A 、D , ∴43,3 2.a b b ⎧+=⎪⎨⎪=⎩ 解得3,42.a b ⎧=⎪⎨⎪=⎩ (2)设A 点的坐标为(m ,4m),则C 点的坐标为(m ,0). ∵BD ∥CE ,且BC ∥DE ,∴四边形BCED 为平行四边形. ∴CE = BD =2.∵BD ∥CE ,∴∠ADF =∠AEC .∴在Rt △AFD 中,tan ∠ADF =42AF mDF m -=, 在Rt △ACE 中,tan ∠AEC =42AC mEC =, ∴4422m m m -=,解得m =1.∴C 点的坐标为(1,0),BC26.证明:(1)∵AD 是△ABC 的角平分线, ∴∠BAD =∠DAC .∵∠E=∠BAD ,∴∠E =∠DAC . ∵BE ∥AD ,∴∠E =∠EDA . ∴∠EDA =∠DA C . ∴ED ∥AC .解:(2)∵BE ∥AD ,∴∠EBD =∠ADC .∵∠E =∠DAC ,∴△EBD ∽△ADC ,且相似比2BDk DC==. ··················· ∴2124S k S ==,即124S S =. ∵2121640S S -+=,∴222161640S S -+=,即()22420S -=.∴212S =. ∵233ABC S BC BD CD CD S CD CD CD +==== ,∴32ABC S = . 27.解:(1)45.理由如下:令x =0,则y =-m ,C 点坐标为(0,-m ).令y =0,则()210x m x m +--=,解得11x =-,2x m =.∵0<m <1,点A 在点B 的左侧,∴B 点坐标为(m ,0).∴OB =OC =m .∵∠BOC =90°,∴△BOC 是等腰直角三角形,∠OBC =45°. (2)解法一:如图①,作PD ⊥y 轴,垂足为D ,设l 与x 轴交于点E ,由题意得,抛物线的对称轴为12mx -+=. 设点P 坐标为(12m-+,n ). ∵P A = PC , ∴P A 2= PC 2,即AE 2+ PE 2=CD 2+ PD 2.∴()222211122m m n n m -+-⎛⎫⎛⎫++=++ ⎪ ⎪⎝⎭⎝⎭.解得12m n -=.∴P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭. 解法二:连接PB .由题意得,抛物线的对称轴为12m x -+=. ∵P 在对称轴l 上,∴P A =PB . ∵P A =PC ,∴PB =PC .∵△BOC 是等腰直角三角形,且OB =OC ,∴P 在BC 的垂直平分线y x =-上.∴P 点即为对称轴12mx -+=与直线y x =-的交点. ∴P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭.图①图②(3)解法一:存在点Q 满足题意.∵P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭, ∴P A 2+ PC 2=AE 2+ PE 2+CD 2+ PD 2=222221111112222m m m m m m -+---⎛⎫⎛⎫⎛⎫⎛⎫+++++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. ∵AC 2=21m +,∴P A 2+ PC 2=AC 2.∴∠APC =90°. ∴△P AC 是等腰直角三角形.∵以Q 、B 、C 为顶点的三角形与△P AC 相似, ∴△QBC 是等腰直角三角形.∴由题意知满足条件的点Q 的坐标为(-m ,0)或(0,m ). ①如图①,当Q 点的坐标为(-m ,0)时,若PQ 与x 轴垂直,则12m m -+=-,解得13m =,PQ =13. 若PQ 与x 轴不垂直, 则22222221151521222222510m m PQ PE EQ m m m m --+⎛⎫⎛⎫⎛⎫=+=++=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ .<13, ∴当25m =,即Q 点的坐标为(25-,0)时, PQ 的长度最小.②如图②,当Q 点的坐标为(0,m )时,若PQ 与y 轴垂直,则12m m -=,解得13m =,PQ =13. 若PQ 与y 轴不垂直, 则22222221151521222222510m m PQ PD DQ m m m m --⎛⎫⎛⎫⎛⎫=+=+-=-+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ.<13, ∴当25m =,即Q 点的坐标为(0,25)时, PQ 的长度最小.综上:当Q 点坐标为(25-,0)或(0,25)时,PQ 的长度最小.解法二: 如图①,由(2)知P 为△ABC 的外接圆的圆心. ∵∠APC 与∠ABC 对应同一条弧AC ,且∠ABC =45°, ∴∠APC =2∠ABC =90°.下面解题步骤同解法一.28.解:(1)a +2b .(2)∵在整个运动过程中,点P 移动的距离为()2a b +cm ,圆心O 移动的距离为()24a -cm , 由题意,得()224a b a +=-. ①∵点P 移动2s 到达B 点,即点P 用2s 移动了b cm ,点P 继续移动3s ,到达BC 的中点,即点P 用3s 移动了12a cm .∴1223a b =. ② 由①②解得24,8.a b =⎧⎨=⎩∵点P 移动的速度与⊙O 移动的速度相等,∴⊙O 移动的速度为42b=(cm/s ). ∴这5s 时间内圆心O 移动的距离为5×4=20(cm ). (3)存在这种情形.解法一:设点P 移动的速度为v 1cm/s ,⊙O 移动的速度为v 2cm/s ,由题意,得()()1222021052422044v a b v a ++⨯===--.FE如图,设直线OO 1与AB 交于点E ,与CD 交于点F ,⊙O 1与AD 相切于点G . 若PD 与⊙O 1相切,切点为H ,则O 1G =O 1H . 易得△DO 1G ≌△DO 1H ,∴∠ADB =∠BDP . ∵BC ∥AD ,∴∠ADB =∠CBD . ∴∠BDP =∠CBD .∴BP =DP .设BP =x cm ,则DP =x cm ,PC =(20-x )cm ,在Rt △PCD 中,由勾股定理,可得222PC CD PD +=,即()2222010x x -+=,解得252x =.∴此时点P 移动的距离为25451022+=(cm ). ∵EF ∥AD ,∴△BEO 1∽△BAD . ∴1EO BE AD BA =,即182010EO =. ∴EO 1=16cm .∴OO 1=14cm .①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的距离为14cm , ∴此时点P 与⊙O 移动的速度比为454521428=.∵455284≠, ∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的距离为2×(20-4)-14=18(cm ), ∴此时点P 与⊙O 移动的速度比为45455218364==. ∴此时PD 与⊙O 1恰好相切. 解法二:∵点P 移动的距离为452cm (见解法一), OO 1=14cm (见解法一),1254v v =,∴⊙O 应该移动的距离为4541825⨯=(cm ). ①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的距离为14cm ≠18 cm , ∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的距离为2×(20-4)-14=18(cm ),∴此时PD 与⊙O 1恰好相切.解法三:点P 移动的距离为452cm ,(见解法一) OO 1=14cm ,(见解法一) 由1254v v =可设点P 的移动速度为5k cm/s ,⊙O 的移动速度为4k cm/s , ∴点P 移动的时间为459252k k=(s ).①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的时间为1479422k k k=≠, ∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的时间为2(204)14942k k⨯--=, ∴此时PD 与⊙O 1恰好相切.。
江苏省盐城市初级中学2015届九年级上期中考试数学试题
(考试时间:120分钟卷面总分:150分)一、选择题:1.二次函数y =2(x ﹣1)2+3的图象的顶点坐标是 ( ) A .(1,3) B .(﹣1,3)C .(1,﹣3)D .(﹣1,﹣3)2.若⊙O 的半径为5cm ,点A 到圆心O 的距离为4cm ,那么点A 与⊙O 的位置关系是 ( )A.点A 在圆外B.点A 在圆上C.点A 在圆内D.不能确定3.如图,AB 为⊙O 的直径,点C 在⊙O 上,∠A =40°,则∠B 的度数为 ( ) A .20° B. 40° C. 50° D. 60°4.在二次函数y =-x 2+2x +1的图象中,若y 随x 的增大而增大,则x 的取值范围是 ( ) A. x<1 B. x>1 C. x<-1 D. x >-15.将抛物线23y x =向左平移2个单位,再向下平移1个单位,所得抛物线为 ( ) A.()2321y x =-- B.()2321y x =+-C.()2321y x =-+ D.1)2(32++=x y6. 下列语句中,正确的是 ( ) A.长度相等的弧是等弧. B.同一平面上的三点确定一个圆.C.三角形的内心是三角形三边垂直平分线的交点.D.三角形的外心到三角形三个顶点的距离相等.7. 如图,AB 是⊙O 的直径,弧BC=弧CD=弧DE ,∠COD=34°,则∠AEO 的度数是 ( ) A .51° B. 56° C. 68° D. 78°8. 设a 、b 是任意两个实数,且a ﹤b .我们规定:满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于一个函数,如果它的自变量x 与函数值y 满足:当a ≤x ≤b 时,有a ≤y ≤b ,我们就称此函数是闭区间[a ,b ]上的“闭函数”.若二次函数x x y 2212-=是区间[m ,n ]上的“闭函数”,则实数m 、n 值分别为 ( )A.51,51+=-=n mB.2,1=-=n m 或51,51+=-=n mC.6,2=-=n mD.6,2=-=n m 或51,51+=-=n m二、填空题:9.当x = 时,二次函数x x y 22-=有最小值.10.已知⊙O 的半径为3cm ,圆心O 到直线l 的距离是4cm ,则直线l 与⊙O 的位置关系是_____________.11.已知三角形的三边分别为3cm 、4cm 、5cm ,则这个三角形内切圆的半径是 . 12.如果二次函数y=(2k-1)x 2-3x+1的图象开口向上,那么常数k 的取值范围是 . 13.如果关于x 的二次函数y=ax 2-2x+a2的图象经过点(1,-2),则a 的值为 . 14.若抛物线m x x y --=22的顶点在x 轴上,则m 的值为 .15.将抛物线2)1(22--=x y 绕原点旋转180°,所得抛物线的解析式是 . 16.已知点A (x1,y1),B (x2,y2)在二次函数y=x 2-6x+4的图象上,若x 1<x 2<3,则y 1 y 2(填“>”、“=”或“<”).17.在△ABC 中,AB =AC =5,BC =6,点D 为BC 边上一动点(不与点B 重合),以D 为圆心,DC 的长为半径作⊙D . 当⊙D 与AB 边相切时,半径DC 的长为_________.18.若把边长为1的正方形纸片OABC 放在直线l 上,OA 边与直线l 重合,然后将正方形纸片绕着顶点A 按顺时针方向旋转90°,此时点O 运动到了点O 1处(即点B 处),点C 运动到了点C 1处,点B 运动到了点B 1处;接着,又将正方形纸片AO 1C 1B 1绕顶点B 1按顺时针方向旋转90°,……,按上述方法经过若干次旋转.当顶点O 经过的路程是π)21020(+时,正方形纸片OABC 按上述方法旋转次数为 . 三、解答题:19.如图,在⊙O 中,D 、E 分别为半径OA 、OB 上的点,且AD=BE .点C 为弧AB 中点,连接CD 、CE .求证:CD=CE .第3题图 l第18题图第7题图C第17题图20.已知二次函数23212--=x x y . (1)求它的顶点坐标;(2)在平面直角坐标系中画出它的图象.21. 如图,一个圆锥的侧面展开图是90°的扇形. (1)求圆锥的母线长l 与底面半径r 之比;(2)若底面半径r =2,求圆锥的侧面积(结果保留π).23. 如图,⊙O 是△ACD 的外接圆,AB 是直径,过点D 作直线DE ∥AB ,过点B 作直线BE ∥AD ,两直线交于点E ,如果∠ACD=45°,⊙O 的半径是3cm. (1)请判断DE 与⊙O 的位置关系,并说明理由; (2)求图中阴影部分的面积(结果用π表示).24. 如图,抛物线y =a (x ﹣1)2+4与x 轴交于点A 、B ,与y 轴交于点C ,抛物线的顶点为D ,连接BD 、BC ,已知点A 的坐标为(﹣1,0). (1)求该抛物线的解析式; (2)求△BCD 的面积.25. 如图,已知二次函数y=ax 2+bx+c 的图象过A (2,0),B (0,﹣1)和C (-3,5)三点. (1)求二次函数的关系式;(2)设二次函数的图象与x 轴的另一个交点为D ,求点D 的坐标;(3)在同一坐标系中画出直线y =﹣x +2,并写出当x 在什么范围内时,一次函数的值小于二次函数的值.26. 已知:OA 、OB 是⊙O 的半径,且OA ⊥OB ,P 是射线OA 上一点(点A 除外),直线BP 交⊙O 于点Q ,过Q 作⊙O 的切线交直线OA 于点E .(1)如图1,若点P 在线段OA 上,试说明:∠OBP +∠AQE =45°;(2)若点P 在线段OA 的延长线上,其它条件不变,∠OBP 与∠AQE 之间是否存在某种确定的等量关系?请你完成图2,并写出结论(不需要证明).CA BOP图2AB OP EQ图1A27.在平面直角坐标系中,已知抛物线c bx ax y ++=2经过点A 3(-,0)、B (0,3)、C (1,0)三点.(1) 求抛物线的解析式和它的顶点坐标;(2) 若在该抛物线的对称轴l 上存在一点M ,使MB+MC 的值最小,求点M 的坐标以及MB+MC 的最小值;(3) 若点P 、Q 分别是抛物线的对称轴上l 两动点,且纵坐标分别为m,m+2,当四边形CBQP 周长最小时,求出此时点P 、Q 的坐标以及四边形CBQP 周长的最小值.28.某数学活动小组在一次活动中,对一个数学问题作如下探究:【问题发现】如图1,正方形ABCD 的四个顶点都在⊙O 上,若点E 在弧AB 上,F 是DE 上的一点,且DF=BE .试说明:△ADF ≌△ABE ;【变式探究】如图2,若点E 在弧AD 上,过点A 作AM ⊥BE,请说明线段BE 、DE 、AM 之间满足等量关系:BE-DE=2AM ;【解决问题】如图3,在正方形ABCD 中,CD=22,若点P 满足PD=2,且∠BPD=90°,请直接写出点A 到BP 的距离.图 3图1图2M。
2015年盐城数学中考试卷+答案
盐城市二○一五年初中毕业与升学考试数学试题一、选择题:选择题(本大题8小题,每小题3分,共24分) 1.21的倒数为 A . 2- B .21-C .21D . 2 2.下列四个图形中,是中心对称图形的为3.下列运算正确的是A .333)(ab b a =⋅ B .632a b a =⋅ C .236a b a =÷ D .532)(a a =4.在下列四个几何体中,主视图与俯视图都是圆的为5.下列事件中,是必然事件的为A .3天内会下雨B .打开电视,正在播放广告C .367人中至少有2人公历生日相同D .某妇产医院里,下一个出生的婴儿是女孩 6.将一块等腰直角三角板与一把直尺如图放置,若∠1=60°,则∠2的度数为 A .85° B .75° C . 60° D .45° 7.若一个等腰三角形的两边长分别是2和5,则它的周长为 A .12 B .9 C .12或9 D .9或78.如图,在边长为2的正方形ABCD 中剪去一个边长为1的小正方形CEFG ,动点P 从点A 出发,沿A →D→E →F →G →B 的路线绕多边形的边匀速运动到点B 时停止(不含点A 和点B ),则△ABP 的面积S 随着时间t 变化的函数图像大致为二、填空题(本大题共有10小题,每小题3分,共30分)9.若二次根式1-x 有意义,则x 的取值范围是 .10.分解因式:=-a a 22.11.火星与地球的距离约为00000056千米,这个数据用科学记数法表示为 千米.12.一组数据866878,,,,,的众数是 . 13.如图,在△ABC 与△ADC 中,已知AD =AB ,在不添加任何辅助线的前提下,要使△ABC ≌△ADC ,只需要再添加的一个条件可以是 .14.如图,点D 、E 、F 分别是△ABC 各边的中点,连接DE 、EF 、DF ,若△ABC 的周长为10,则△DEF 的周长为 .C.D.B.A.C.D.B.A.第6题图2115.若422=-n m ,则代数式22410n m -+的值为 .16.如图,在矩形ABCD 中,AB =4,AD =3,以顶点D 为圆心作半径为r 的圆,若要求另外三个顶点A 、B 、C 中至少有一个点在圆内,且至少有一个点在圆外,则r 的取值范围是 .17.如图,在矩形ABCD 中,AB =4,AD =2,以点A 为圆心,AB 长为半径画圆弧交边DC 于点E ,则弧BE 的长度为 . 18.设△ABC 的面积为1,如图①将边BC 、AC 分别2等份,1BE 、1AD 相交于点O ,△AOB 的面积记为1S ;如图②将边BC 、AC 分别3等份,1BE 、1AD 相交于点O ,△AOB 的面积记为2S ;……, 依此类推,则n S 可表示为 .(用含n 的代数式表示,其中n 为正整数)三、解答题(本大题共10小题,共96分) 19.(本题满分8分) (1)计算()︒+--602310cos (2)解不等式:4323+<-x x )(20.(本题满分8分) 先化简,再求值:)()(131112+÷-+a a a ,其中4=a .第17题图第16题图ABCDABCD第14题图第13题图E FDCBA第18题图332121图③图②图①D 121.(本题满分8分)2015年是中国人民抗日战争暨世界反法西斯胜利70周年,9月3日全国各地将举行有关纪念活动.为了解初中学生对二战历史的知晓情况,某初中课外兴趣小组在本校学生中开展了专题调查活动,随机抽取了部分学生进行问卷调查,根据学生答题情况,将结果分为A 、B 、C 、D 四类,其中A 类表示“非常了解”、B 类表示“比较了解”、C 类表示“基本了解”、D 类表示“不太了解”,调查的数据经整理后形成下列尚未完成的条形统计图(如图①)和扇形统计图(如图②): (1)在这次抽样调查中,一共抽查了 名学生; (2)请把图①中的条形统计图补充完整;(3)图②的扇形统计图中D 类部分所对应扇形的圆心角的度数为 °;(4)如果这所学校共有初中学生1500名,请你估算该校初中学生中对二战历史“非常了解”和“比较了解”的学生共有多少名?22. (本题满分8分)有甲、乙两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字1和2-;乙袋中有三个完全相同的小球,分别标有数字1-、0和2.小丽先从甲袋中随机取出一个小球,记下小球上的数字为x ;再从乙袋中随机取出一个小球,记录下小球上的数字为y ,设点P 的坐标为(x ,y ). (1)请用表格或树状图列出点P 所有可能的坐标; (2)求点P 在一次函数1+=x y 图像上的概率.23.(本题满分10分)如图,在△ABC 中,∠CAB =90°,∠CBA =50°,以AB 为直径作⊙O 交BC 于点D ,点E 在边AC 上,且满足ED =EA .(1)求∠DOA 的度数; (2)求证:直线ED 与⊙O 相切.O图②类型第21题图图①第23题图DOBAE C24.(本题满分10分)如图,在平面直角坐标系xOy 中,已知正比例函数x y 43=与一次函数7+-=x y 的图像交于点A . (1)求点A 的坐标;(2)设x 轴上一点P (a ,b ),过点P 作x 轴的垂线(垂线位于点A 的右侧),分别交x y 43=和7+-=x y 的图像于点B 、C ,连接OC ,若BC =57OA ,求△OBC 的面积.25.(本题满分10分)如图所示,一幢楼房AB 背后有一台阶CD ,台阶每层高2.0米,且AC =2.17米,设太阳光线与水平地面的夹角为α.当︒=60α时,测得楼房在地面上的影长AE =10米,现有一只小猫睡在台阶的MN 这层上晒太阳.(3取73.1) (1)求楼房的高度约为多少米?(2)过了一会儿,当︒=45α时,问小猫能否还晒到太阳?请说明理由.26.(本题满分10分)如图,把△EFP 按图所示的方式放置在菱形ABCD 中,使得顶点E 、F 、P 分别在线段AB 、AD 、AC 上.已知EP =FP =4,EF =34,∠BAD =60°,且AB 34>.(1)求∠EPF 的大小; (2)若AP =6,求AE +AF 的值;(3)若△EFP 的三个顶点E 、F 、P 分别在线段AB 、AD 、AC 上运动,请直接写出AP 长的最大值和最小值.第25题图DBAC27.(本题满分12分) 知识迁移我们知道,函数)(00,02>>≠+-=n ,m a n )m x (a y 的图像是由二次函数2ax y =的图像向右平移m 个单位,再向上平移n 个单位得到.类似地,函数)n m k (n m x ky 0,0,0>>≠+-=的图像是由反比例函数x k y =的图像向右平移m 个单位,再向上平移n 个单位得到,其对称中心坐标为(m ,n ). 理解应用函数113+-=x y 的图像可以由函数x y 3=的图像向右平移 个单位,再向上平移 个单位得到,其对称中心坐标为 . 灵活运用如图,在平面直角坐标系xOy 中,请根据所给的xy 4-=的图像画出函数224---=x y 的图像,并根据该图像指出,当x 在什么范围内变化时,y ≥1-?实际应用后经过的时间为x ,发现该生的记忆存留量随x 变化的函数关系为441+=x y ;若在t x =(t ≥4)时进行一次复习,发现他复习后的记忆存留量是复习前的2倍(复习时间忽略不计),且复习后的记忆存量随x 变化的函数关系为ax y -=82.如果记忆存留量为21时是复习的“最佳时机点”,且他第一次复习是在“最佳时机点”进行的,那么当x 为何值时,是他第二次复习的“最佳时机点”?28.(本题满分12分)P第26题图D FBAE C第27题如图,在平面直角坐标系xOy 中,将抛物线2x y 的对称轴绕着点P (0,2)顺时针旋转45°后与该抛物线交于A 、B 两点,点Q 是该抛物线上的一点. (1)求直线AB 的函数表达式;AB PO。
江苏省盐城中学2015届九年级下学期期中考试数学试题苏科版
E
O F
D C
24. (本题满分 10 分 ) 盐城市初级中学为了了解中考体育科目训练情况,
从本校九年级学生中随机抽取了部分学生进行
了一次中考体育科目测试(把测试结果分为四个等级:
A 级:优秀; B 级:良好; C 级:及格; D
级:不及格),并将测试结果绘成了如下两幅不完整的统计图. 请根据统计图中的信息解答下列问题:
▲
.
三、解答题(本大题共有 10 小题,共 96 分.请在答题卡指定区域内作答,解答时应写出文字说明、
证明过程或演算步骤)
19.(本题满分 8 分)
( 1)计算: (
0 1 -2 3 ) - ( 2 ) +sin 30°
20.(本题满分 8 分)
( 2)化简 : ( a b)2 b(2a b)
( 1)解不等式组:
A.5
B. 12
C. 24
D. 48
1 5.对于反比例函数 y =- x ,下列说法正确的是
( ▲)
A .图象经过点( 1, 1)
B.图象位于第一、三象限
(▲)
C .图象是中心对称图形
D.当 x< 0 时, y 随 x 的增大而减小
6.某公司 10 名职工 3 月份工资统计如下,该公司 10 名职工 3 月份工资的中位数是
x+2 3 <1,
2(1- x)≤ 5,
x3
( 2)解方程:
x-1
=2 1- x
21.(本题满分 8 分) 如图,一艘巡逻艇航行至海面 B 处时,得知正北方向上的 C 处有一渔船发生故 障,就立即指挥港口 A 处的救援艇前往 C 处营救.已知 C 处位于 A 处的北偏东 45°的方向,港口 A
2015年江苏省盐城市中考数学试题及解析
2015年江苏省盐城市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)(2015•盐城)的倒数为()A.﹣2B.﹣C.D.22.(3分)(2015•盐城)如图四个图形中,是中心对称图形的为()A.B.C.D.3.(3分)(2015•盐城)下列运算正确的是()A.a3•b3=(ab)3B.a2•a3=a6C.a6÷a3=a2D.(a2)3=a54.(3分)(2015•盐城)在如图四个几何体中,主视图与俯视图都是圆的为()A.B.C.D.5.(3分)(2015•盐城)下列事件中,是必然事件的为()A.3天内会下雨B.打开电视机,正在播放广告C.367人中至少有2人公历生日相同D.某妇产医院里,下一个出生的婴儿是女孩6.(3分)(2015•盐城)将一块等腰直角三角板与一把直尺如图放置,若∠1=60°,则∠2的度数为()A.85°B.75°C.60°D.45°7.(3分)(2015•盐城)若一个等腰三角形的两边长分别是2和5,则它的周长为()A.12B.9C.12或9D.9或78.(3分)(2015•盐城)如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则∠ABP的面积S随着时间t变化的函数图象大致是()A.B.C.D.二、填空题(本大题共有10小题,每小题3分,共30分.)9.(3分)(2015•昆明)若二次根式有意义,则x的取值范围是.10.(3分)(2015•盐城)因式分解:a2﹣2a=.11.(3分)(2015•盐城)火星与地球的距离约为56 000 000千米,这个数据用科学记数法表示为千米.12.(3分)(2015•盐城)一组数据8,7,8,6,6,8的众数是.13.(3分)(2015•盐城)如图,在∠ABC与∠ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使∠ABC∠∠ADC,只需再添加的一个条件可以是.14.(3分)(2015•盐城)如图,点D、E、F分别是∠ABC各边的中点,连接DE、EF、DF.若∠ABC的周长为10,则∠DEF的周长为.15.(3分)(2015•盐城)若2m﹣n2=4,则代数式10+4m﹣2n2的值为.。
盐城市初级中学2015届九年级上期中考试数学试题
(考试时间:120分钟卷面总分:150分)一、选择题:1.二次函数y =2(x ﹣1)2+3的图象的顶点坐标是 ( ) A .(1,3) B .(﹣1,3)C .(1,﹣3)D .(﹣1,﹣3)2.若⊙O 的半径为5cm ,点A 到圆心O 的距离为4cm ,那么点A 与⊙O 的位置关系是 ( )A.点A 在圆外B.点A 在圆上C.点A 在圆内D.不能确定3.如图,AB 为⊙O 的直径,点C 在⊙O 上,∠A =40°,则∠B 的度数为 ( ) A .20° B. 40° C. 50° D. 60°4.在二次函数y =-x 2+2x +1的图象中,若y 随x 的增大而增大,则x 的取值范围是 ( ) A. x<1 B. x>1 C. x<-1 D. x >-15.将抛物线23y x =向左平移2个单位,再向下平移1个单位,所得抛物线为 ( ) A.()2321y x =-- B.()2321y x =+-C.()2321y x =-+ D.1)2(32++=x y6. 下列语句中,正确的是 ( ) A.长度相等的弧是等弧. B.同一平面上的三点确定一个圆.C.三角形的内心是三角形三边垂直平分线的交点.D.三角形的外心到三角形三个顶点的距离相等.7. 如图,AB 是⊙O 的直径,弧BC=弧CD=弧DE ,∠COD=34°,则∠AEO 的度数是 ( ) A .51° B. 56° C. 68° D. 78°8. 设a 、b 是任意两个实数,且a ﹤b .我们规定:满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于一个函数,如果它的自变量x 与函数值y 满足:当a ≤x ≤b 时,有a ≤y ≤b ,我们就称此函数是闭区间[a ,b ]上的“闭函数”.若二次函数x x y 2212-=是区间[m ,n ]上的“闭函数”,则实数m 、n 值分别为 ( )A.51,51+=-=n mB.2,1=-=n m 或51,51+=-=n mC.6,2=-=n mD.6,2=-=n m 或51,51+=-=n m二、填空题:9.当x = 时,二次函数x x y 22-=有最小值.10.已知⊙O 的半径为3cm ,圆心O 到直线l 的距离是4cm ,则直线l 与⊙O 的位置关系是_____________.11.已知三角形的三边分别为3cm 、4cm 、5cm ,则这个三角形内切圆的半径是 . 12.如果二次函数y=(2k-1)x 2-3x+1的图象开口向上,那么常数k 的取值范围是 . 13.如果关于x 的二次函数y=ax 2-2x+a2的图象经过点(1,-2),则a 的值为 . 14.若抛物线m x x y --=22的顶点在x 轴上,则m 的值为 .15.将抛物线2)1(22--=x y 绕原点旋转180°,所得抛物线的解析式是 . 16.已知点A (x1,y1),B (x2,y2)在二次函数y=x 2-6x+4的图象上,若x 1<x 2<3,则y 1 y 2(填“>”、“=”或“<”).17.在△ABC 中,AB =AC =5,BC =6,点D 为BC 边上一动点(不与点B 重合),以D 为圆心,DC 的长为半径作⊙D . 当⊙D 与AB 边相切时,半径DC 的长为_________.18.若把边长为1的正方形纸片OABC 放在直线l 上,OA 边与直线l 重合,然后将正方形纸片绕着顶点A 按顺时针方向旋转90°,此时点O 运动到了点O 1处(即点B 处),点C 运动到了点C 1处,点B 运动到了点B 1处;接着,又将正方形纸片AO 1C 1B 1绕顶点B 1按顺时针方向旋转90°,……,按上述方法经过若干次旋转.当顶点O 经过的路程是π)21020(+时,正方形纸片OABC 按上述方法旋转次数为 . 三、解答题:19.如图,在⊙O 中,D 、E 分别为半径OA 、OB 上的点,且AD=BE .点C 为弧AB 中点,连接CD 、CE .求证:CD=CE .第3题图 l第18题图第7题图C第17题图20.已知二次函数23212--=x x y . (1)求它的顶点坐标;(2)在平面直角坐标系中画出它的图象.21. 如图,一个圆锥的侧面展开图是90°的扇形. (1)求圆锥的母线长l 与底面半径r 之比;(2)若底面半径r =2,求圆锥的侧面积(结果保留π).23. 如图,⊙O 是△ACD 的外接圆,AB 是直径,过点D 作直线DE ∥AB ,过点B 作直线BE ∥AD ,两直线交于点E ,如果∠ACD=45°,⊙O 的半径是3cm. (1)请判断DE 与⊙O 的位置关系,并说明理由; (2)求图中阴影部分的面积(结果用π表示).24. 如图,抛物线y =a (x ﹣1)2+4与x 轴交于点A 、B ,与y 轴交于点C ,抛物线的顶点为D ,连接BD 、BC ,已知点A 的坐标为(﹣1,0). (1)求该抛物线的解析式; (2)求△BCD 的面积.25. 如图,已知二次函数y=ax 2+bx+c 的图象过A (2,0),B (0,﹣1)和C (-3,5)三点. (1)求二次函数的关系式;(2)设二次函数的图象与x 轴的另一个交点为D ,求点D 的坐标;(3)在同一坐标系中画出直线y =﹣x +2,并写出当x 在什么范围内时,一次函数的值小于二次函数的值.26. 已知:OA 、OB 是⊙O 的半径,且OA ⊥OB ,P 是射线OA 上一点(点A 除外),直线BP 交⊙O 于点Q ,过Q 作⊙O 的切线交直线OA 于点E .(1)如图1,若点P 在线段OA 上,试说明:∠OBP +∠AQE =45°;(2)若点P 在线段OA 的延长线上,其它条件不变,∠OBP 与∠AQE 之间是否存在某种确定的等量关系?请你完成图2,并写出结论(不需要证明).CA BOP图2AB OP EQ图1A27.在平面直角坐标系中,已知抛物线c bx ax y ++=2经过点A 3(-,0)、B (0,3)、C (1,0)三点.(1) 求抛物线的解析式和它的顶点坐标;(2) 若在该抛物线的对称轴l 上存在一点M ,使MB+MC 的值最小,求点M 的坐标以及MB+MC 的最小值;(3) 若点P 、Q 分别是抛物线的对称轴上l 两动点,且纵坐标分别为m,m+2,当四边形CBQP 周长最小时,求出此时点P 、Q 的坐标以及四边形CBQP 周长的最小值.28.某数学活动小组在一次活动中,对一个数学问题作如下探究:【问题发现】如图1,正方形ABCD 的四个顶点都在⊙O 上,若点E 在弧AB 上,F 是DE 上的一点,且DF=BE .试说明:△ADF ≌△ABE ;【变式探究】如图2,若点E 在弧AD 上,过点A 作AM ⊥BE,请说明线段BE 、DE 、AM 之间满足等量关系:BE-DE=2AM ;【解决问题】如图3,在正方形ABCD 中,CD=22,若点P 满足PD=2,且∠BPD=90°,请直接写出点A 到BP 的距离.图 3图1图2M。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
盐城市二○一五年初中毕业与升学考试数学试题
一、选择题:选择题(本大题8小题,每小题3分,共24分) 1. 21的倒数为 A . 2- B .21- C .2
1 D .
2 2.
下列四个图形中,是中心对称图形的为
C. D.B.A. 3.下列运算正确的是 A .333)(ab b a =⋅ B .632a b a =⋅ C .236a b a =÷ D .532)(a a =
4.在下列四个几何体中,主视图与俯视图都是圆的为
C. D.B.A.
5.下列事件中,是必然事件的为
A .3天内会下雨
B .打开电视,正在播放广告
C .367人中至少有2人公历生日相同
D .
某妇产医院里,下一个出生的婴儿是女孩
6.将一块等腰直角三角板与一把直尺如图放置,若∠1=60°,则∠2的度数为
A .85°
B .75°
C . 60°
D .45° 7.若一个等腰三角形的两边长分别是2和5,则它的周长为
A .12
B .9
C .12或9
D .9或7 8.如图,在边长为2的正方形ABCD 中剪去一个边长为1的小正方形CEFG ,动点P 从点A 出发,沿A →D →
E →
F →
G →B 的路线绕多边形的边匀速运动到点B 时停止(不含点A 和点B ),则△ABP 的面积S 随着时间t 变化的函数图像大致为
二、填空题(本大题共有10小题,每小题3分,共30分)
9.若二次根式1-x 有意义,则x 的取值范围是 .10.分解因式:=-a a 22
.
11.火星与地球的距离约为00000056千米,这个数据用科学记数法表示为 千米. 12.一组数据866878,,,,,
的众数是 . 13.如图,在△ABC 与△ADC 中,已知AD =AB ,在不添加任何辅助线的前提下,要使△ABC ≌△ADC ,只需要再添加的一个条件可以是 .
14.如图,点D 、E 、F 分别是△ABC 各边的中点,连接DE 、EF 、DF ,若△ABC 的周长为10,则△DEF 的周长为 .
第6题图
21
E B C D A 第17题图第16题图A B C D A
B C D 第14题图第13题图
E F D C
B
A 15.若422=-n m ,则代数式22410n m -+的值为 .
16.如图,在矩形ABCD 中,AB =4,AD =3,以顶点D 为圆心作半径为r 的圆,若要求另外三个顶点A 、B 、C 中至少
有一个点在圆内,且至少有一个点在圆外,则r 的取值范围是 .
17.如图,在矩形ABCD 中,AB =4,AD =2,以点A 为圆心,AB 长为半径画圆弧交边DC 于点E ,则弧BE 的长度
为 .
18.设△ABC 的面积为1,如图①将边BC 、AC 分别2等份,1BE 、1AD 相交于点O ,△AOB 的面积记为1S ;如图
②将边BC 、AC 分别3等份,1BE 、1AD 相交于点O ,△AOB 的面积记为2S ;……, 依此类推,则n S 可表示为 .(用含n 的代数式表示,其中n 为正整数)
第18题图D 3E 3C D 2D 1B O E 2E 1A E 2D 2A B C D 1O E 1图③图②
图①O
E 1
D 1
A
C B
三、解答题(本大题共10小题,共96分) 19.(本题满分8分)
(1)计算()︒+-
-602310cos (2)解不等式:4323+<-x x )(
20.(本题满分8分)
先化简,再求值:)
()(131112+÷-+a a a ,其中4=a .
21.(本题满分8分)
2015年是中国人民抗日战争暨世界反法西斯胜利70周年,9月3日全国各地将举行有关纪念活动.为了解初中学生对二战历史的知晓情况,某初中课外兴趣小组在本校学生中开展了专题调查活动,随机抽取了部分学生进行问卷调查,根据学生答题情况,将结果分为A 、B 、C 、D 四类,其中A 类表示“非常了解”、B 类表示“比较了解”、C 类表示“基本了解”、D 类表示“不太了解”,调查的数据经整理后形成下列尚未完成的条形统计图(如图①)和扇形统计图(如图②):
(1)在这次抽样调查中,一共抽查了 名学生;(2)请把图①中的条形统计图补充完整;
(3)图②的扇形统计图中D 类部分所对应扇形的圆心角的度数为 °;
(4)如果这所学校共有初中学生1500名,请你估算该校初中学生中对二战历史“非常了解”和“比较了解”的学生
共有多少名?
30%O 15%D 图②3090D C 100
2080
60
40
20
类型人数
第21题图A B C A 图①
B
第23题图D O B A E C
22. (本题满分8分)
有甲、乙两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字1和2-;乙袋中有三个完全相同的小球,分别标有数字1-、0和2.小丽先从甲袋中随机取出一个小球,记下小球上的数字为x ;再从乙袋中随机取出一个小球,记录下小球上的数字为y ,设点P 的坐标为(x ,y ).
(1)请用表格或树状图列出点P 所有可能的坐标;
(2)求点P 在一次函数1+=x y 图像上的概率.
23.(本题满分10分) 如图,在△ABC 中,∠CAB =90°,∠CBA =50°,以AB 为直径作⊙O 交BC 于点D ,点E 在边AC 上,且满足ED =EA .(1)求∠DOA 的度数; (2)求证:直线ED 与⊙O 相切.
24.(本题满分10分)
如图,在平面直角坐标系xOy 中,已知正比例函数x y 4
3=
与一次函数7+-=x y 的图像交于点A . (1)求点A 的坐标; (2)设x 轴上一点P (a ,b ),过点P 作x 轴的垂线(垂线位于点A 的右侧),分别交x y 43=
和7+-=x y 的图像于点B 、C ,连接OC ,若BC =5
7OA ,求△OBC 的面积. 25如图所示,一幢楼房AB 背后有一台阶CD ,台阶每层高2.0米,且AC =2.17米,设太阳光线与水平地面的夹
角为α.当︒=60α时,测得楼房在地面上的影长AE =10米,现有一只小猫睡在台阶的MN 这层上晒太阳.(3取73.1)
(1)求楼房的高度约为多少米?
(2)过了一会儿,当︒=45α时,问小猫能否还晒到太阳?请说明理由.
y=
34x y=-x+7x y
第24题图P
O B
A
C
αN 第25题图D M B
A E
C
25.(本题满分10分)
26.(本题满分10分)
如图,把△EFP 按图所示的方式放置在菱形ABCD 中,使得顶点E 、F 、P 分别在线段AB 、AD 、AC 上.已知EP =FP =4,EF =34,∠BAD =60°,且AB 34>.(1)求∠EPF 的大小;
(2)若AP =6,求AE +AF 的值;
(3)若△EFP 的三个顶点E 、F 、P 分别在线段AB 、AD 、AC 上运动,请直接写出AP 长的最大值和最小值.
P
第26题图D
F B A E
C
27.(本题满分12分)
知识迁移
我们知道,函数)(00,02>>≠+-=n ,m a n )m x (a y 的图像是由二次函数2ax y =的图像向右平移m 个单位,再向上平移n 个单位得到.类似地,函数)n m k (n m x k y 0,0,0>>≠+-=
的图像是由反比例函数x k y =的图像向右平移m 个单位,再向上平移n 个单位得到,其对称中心坐标为(m ,n ).
理解应用
函数11
3+-=
x y 的图像可以由函数x y 3=的图像向右平移 个单位,再向上平移 个单位得到,其对称中心坐标为 .
灵活运用
如图,在平面直角坐标系xOy 中,请根据所给的x y 4-=的图像画出函数224---=x y 的图像,并根据该图像指出,当x 在什么范围内变化时,y ≥1-?
第27题-6
O -10-8-6-4-2y x
108642-8
-4-28642
实际应用
某老师对一位学生的学习情况进行跟踪研究.假设刚学完新知识时的记忆存留量为1.新知识学习后经过的时间为
x ,发现该生的记忆存留量随x 变化的函数关系为4
41+=
x y ;若在t x =(t ≥4)时进行一次复习,发现他复习后的记忆存留量是复习前的2倍(复习时间忽略不计),且复习后的记忆存量随x 变化的函数关系为a
x y -=82.如果记忆存留量为2
1时是复习的“最佳时机点”,且他第一次复习是在“最佳时机点”进行的,那么当x 为何值时,是他第二次复习的“最佳时机点”?
28.(本题满分12分)
如图,在平面直角坐标系xOy 中,将抛物线2x y =的对称轴绕着点P (0,2)顺时针旋转45°后与该抛物线交于
A 、
B 两点,点Q 是该抛物线上的一点.
(1)求直线AB 的函数表达式; (2)如图①,若点Q 在直线AB 的下方,求点Q 到直线AB 的距离的最大值;
(3)如图②,若点Q 在y 轴左侧,且点T (0,t )(t <2)是直线PO 上一点,当以P 、B 、Q 为顶点的三角形与△P AT
相似时,求所有满足条件的t 的值.
Q x y B A P T O x O O T P A B y x Q Q y B A P 图① 图② 备注。