最新北师大版数学八年级上册期末试卷(含答案)

合集下载

北师大版八年级(上)期末数学试卷(含答案) (共四套)

北师大版八年级(上)期末数学试卷(含答案) (共四套)

北师大版八年级上期末测试卷(1)一、选择题:(每小题3分,共18分。

) 1、下列命题是真命题的是( )A;如果a 2=b 2,则a=b B:两边一角对应相等的两个三角形全等。

C ;81的算术平方根是9 D:x=2 y=1是方程2x-y=3的解。

2、414 ,226 15三个数的大小关系是( ) A: 414<`15<`226 B:226<`15<`414C: 414<`226<15 D:15< 226 <4143、以方程组{12+=+-=x y x y 的解为坐标的点在( )A 第一象限B 第二象限C 第三象限D 第四象限 4、如图,AD ⊥ BC,三角形ABD 和三角形CDE都是等腰三角形 , 且BC=17,DE=5 那么线段AC=( )A:5, B:7, C:12, D:135、在平面直角坐标系中,O 为原点,直线y=kx+b 交 X 轴于A (-2,0),交y 轴于B ,且三角形AOB 的面积为8,则k=( ) A:1 B: 2 C: -2或4, D:-4或46、某班七个合作学习小组人数如下,4, 5, 5, x , 6, 7, 8, 已知这组数据的平均数为6,则这组数据的中位数和众数是( )A :5, 5B :6, 5C :6, 5和6,D :6, 5和7二填空题(每小题3分,共24分。

)7、在△ABC 中,如果BC :AC :AB=1:3:2,则∠A :∠B :∠C=……………… 8、直线y=ax-2与直线y=bx+1的交点在x 轴上,则a:b=……………9、已知实数x y 满足y=xx 221616---+2,则x-y=…………----------10、已知A (m,-2) B (3, m-1)且AB ∥x 轴,则线段AB= ---------11、函数y=-3x+2的图象上有一点P,且P 点到x 轴的距离为3,则P 点坐标为… 12、等边△ABC 的两个顶点为A (2,0) B(-4,0)则顶点C 坐标为………13、已知直线y=mx-1上有一点P (1,n)到原点的距离为10,则直线与两轴所围成的三角形面积为………………14、在y=kx+b 中,当x=5时y=6,当x=-1时y=-2,当x=2时y=……… 三、简答题15(10分)解方程组(1) ⎩⎨⎧=-=+②①7211y x y x (2)⎩⎨⎧=+=.13y 2x 11,3y -4x .16.化简:(10分) (1)31318)62(-⨯-.(2)计算: 34827++)32)(32(-+17(6分)如图,将一副直角三角尺如图放置,已知AE ∥BC ,试求∠AFD 的度数。

北师大版八年级(上)期末数学试卷(含解析)

北师大版八年级(上)期末数学试卷(含解析)

北师大版八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡的相应位置填涂1.下列实数中,无理数是()A.3.14B.2.12122C.D.2.下列四组数据,能作为直角三角形的三边长的是()A.2、4、6B.2、3、4C.5、7、12D.8、15、173.根据下列表述,能确定一个点位置的是()A.北偏东40°B.某地江滨路C.光明电影院6排D.东经116°,北纬42°4.下列代数式能作为二次根式被开方数的是()A.3﹣πB.a C.a2+1D.2x+45.已知一次函数y=kx+3的图象经过点A,且函数值y随x的增大而增大,则点A的坐标不可能是()A.(2,4)B.(﹣1,2)C.(5,1)D.(﹣1,﹣4)6.老师随机抽查了学生读课外书册数的情况,绘制成两幅统计图,其中条形统计图被遮盖了一部分,则被遮盖的数是()A.5B.9C.15D.227.方程组的解为,则a、b的值分别为()A.1,2B.5,1C.2,1D.2,38.下列四个命题中,真命题的是()A.同角的补角相等B.相等的角是对顶角C.三角形的一个外角大于任何一个内角D.两条直线被第三条直线所截.内错角相等9.已知m=,则以下对m的值估算正确的()A.2<m<3B.3<m<4C.4<m<5D.5<m<610.如图,直线y1=ax(a≠0)与y2=x+b交于点P,有四个结论:①a<0;②b<0;③当x>0时,y1>0;④当x<﹣2时,y1>y2,其中正确的是()A.①②B.①③C.①④D..②③二、填空题(本大题共6小题,每小题4分,共24分,请将答案填入答题卡的相应位置11.16的平方根是.12.若y=3x n﹣1是正比例函数,则n=.13.若P(a﹣2,a+1)在x轴上,则a的值是.14.计算5个数据的方差时,得s2=[(5﹣)2+(8﹣)2+(7﹣)2+(4﹣)2+(6﹣)2],则的值为.15.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,则∠1+∠2的度数为.16.双察下列等式:,,,…则第n个等式为.(用含n的式子表示)三、解答题[本大题共9小题,共86分.请在答题卡的相应位置解答17.(8分)解二元一次方程组:18.(8分)计算:.19.(8分)我国古代数学著作《增删算法统宗》记载“官兵分布”问题:“一千官军一千布,一官四疋无零数,四军才分布一疋,请问官军多少数.”其大意为:今有1000官兵分1000匹布,1官分4匹,4兵分1匹.问官和兵各几人?20.(8分)求证:三角形三个内角的和等于180°.21.(8分)某种优质蜜柚,投入市场销售时,经调查,该蜜柚每天销售量y(千克)与销售单价x (元/千克)之间符合一次函数关系,如图所示.(1)求y与x的函数关系式;(2)某农户今年共采摘该蜜柚4500千克,其保质期为40天,若以18元/千克销售,问能否在保质期内销售完这批蜜柚?请说明理由.22.(10分)如图,把△ABC放置在每个小正方形边长为1的网格中,点A,B,C均在格点上,建立适当的平面直角坐标系xOy,使点A(1,4),△ABC与△A'B'C'关于y轴对称.(1)画出该平面直角坐标系与△A'B'C';(2)在y轴上找点P,使PC+PB'的值最小,求点P的坐标与PC+PB'的最小值.23.(10分)每年4月23日是世界读书日,某校为了解学生课外阅读情况,随机抽取20名学生,对每人每周用于课外阅读的平均时间(单位:min)进行调查,过程如下:收集数据:30608150401101301469010060811201407081102010081整理数据:课外阅读平均时间x(min)0≤x<4040≤x<8080≤x<120120≤x<160等级D C B A人数3a8b分析数据:平均数中位数众数80m n请根据以上提供的信息,解答下列问题:(1)填空:a=,b=;m=,n=;(2)已知该校学生500人,若每人每周用于课外阅读的平均时间不少于80min为达标,请估计达标的学生数;(3)设阅读一本课外书的平均时间为260min,请选择适当的统计量,估计该校学生每人一年(按52周计)平均阅读多少本课外书?24.(12分)如图,在△ABC中,∠ACB=90°,点E,F在边AB上,将边AC沿CE翻折,使点A落在AB上的点D处,再将边BC沿CF翻折,使点B落在CD的延长线上的点B'处.(1)求∠ECF的度数;(2)若CE=4,B'F=1,求线段BC的长和△ABC的面积.25.(14分)已知等边△AOB的边长为4,以O为坐标原点,OB所在直线为x轴建立如图所示的平面直角坐标系.(1)求点A的坐标;(2)若直线y=kx(k>0)与线段AB有交点,求k的取值范围;(3)若点C在x轴正半轴上,以线段AC为边在第一象限内作等边△ACD,求直线BD的解析式.参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡的相应位置填涂1.下列实数中,无理数是()A.3.14B.2.12122C.D.【分析】根据无理数的三种形式,结合选项找出无理数的选项.【解答】解:无理数是,故选:C.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.2.下列四组数据,能作为直角三角形的三边长的是()A.2、4、6B.2、3、4C.5、7、12D.8、15、17【分析】分别求每个选项中数字的平方,根据其中两个数字的平方和等于第三个数字即可解题.【解答】解:22+42≠62,故A错误;22+32≠42,故B错误;52+72≠122,故C错误;82+152=172,故D正确;故选:D.【点评】本题考查了勾股数的计算,其中2个数字的平方和等于第三个数字的平方,则这3个数字为勾股数.3.根据下列表述,能确定一个点位置的是()A.北偏东40°B.某地江滨路C.光明电影院6排D.东经116°,北纬42°【分析】根据各个选项中的语句可以判断哪个选项是正确的,本题得以解决.【解答】解:根据题意可得,北偏东40°无法确定位置,故选项A错误;某地江滨路无法确定位置,故选项B错误;光明电影院6排无法确定位置,故选项C错误;东经116°,北纬42°可以确定一点的位置,故选项D正确,故选:D.【点评】本题考查坐标位置的确定,解题的关键是明确题意,可以判断选项中的各个语句哪一个可以确定一点的位置.4.下列代数式能作为二次根式被开方数的是()A.3﹣πB.a C.a2+1D.2x+4【分析】直接利用二次根式的定义分别分析得出答案.【解答】解:A、3﹣π<0,则3﹣a不能作为二次根式被开方数,故此选项错误;B、a的符号不能确定,则a不能作为二次根式被开方数,故此选项错误;C、a2+1一定大于0,能作为二次根式被开方数,故此选项正确;D、2x+4的符号不能确定,则a不能作为二次根式被开方数,故此选项错误;故选:C.【点评】此题主要考查了二次根式的定义,正确把握二次根式的定义是解题关键.5.已知一次函数y=kx+3的图象经过点A,且函数值y随x的增大而增大,则点A的坐标不可能是()A.(2,4)B.(﹣1,2)C.(5,1)D.(﹣1,﹣4)【分析】先根据一次函数的增减性判断出k的符号,再对各选项进行逐一分析即可.【解答】解:∵一次函数y=kx+2(k≠0)的函数值y随x的增大而增大,∴k>0.A、∵当x=2,y=4时,2k+3=4,解得k=0.5>0,∴此点符合题意,故本选项错误;B、∵当x=﹣1,y=2时,﹣k+3=2,解得k=1>0,∴此点符合题意,故本选项错误;C、∵当x=5,y=1时,5k+3=1,解得k=﹣0.4<0,∴此点不符合题意,故本选项正确;D、∵当x=﹣1,y=﹣4时,﹣k+3=﹣4,解得k=7>0,∴此点符合题意,故本选项错误.故选:C.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数的增减性是解答此题的关键.6.老师随机抽查了学生读课外书册数的情况,绘制成两幅统计图,其中条形统计图被遮盖了一部分,则被遮盖的数是()A.5B.9C.15D.22【分析】求出确定总人数,再求出被遮盖的数即可.【解答】解:由题意,总人数=6÷25%=24(人),∴被遮盖的数=24﹣5﹣6﹣4=9(人),故选:B.【点评】本题考查条形统计图,扇形统计图等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.方程组的解为,则a、b的值分别为()A.1,2B.5,1C.2,1D.2,3【分析】把代入方程组,即可解答.【解答】解:把代入方程组得:解得:故选:B.【点评】本题主要考查了二元一次方程组的解,解题的关键是用代入法进行求解.8.下列四个命题中,真命题的是()A.同角的补角相等B.相等的角是对顶角C.三角形的一个外角大于任何一个内角D.两条直线被第三条直线所截.内错角相等【分析】根据补角的性质、对顶角的概念、三角形的外角的性质、平行线的性质判断即可.【解答】解:同角的补角相等,A是真命题;相等的角不一定是对顶角,B是假命题;三角形的一个外角大于任何一个与它不相邻的内角,C是假命题;两条平行线被第三条直线所截.内错角相等,D是假命题;故选:A.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9.已知m=,则以下对m的值估算正确的()A.2<m<3B.3<m<4C.4<m<5D.5<m<6【分析】估算确定出m的范围即可.【解答】解:m=+=2+,∵1<3<4,∴1<<2,即3<2+<4,则m的范围为3<m<4,故选:B.【点评】此题考查了估算无理数的大小,弄清估算的方法是解本题的关键.10.如图,直线y1=ax(a≠0)与y2=x+b交于点P,有四个结论:①a<0;②b<0;③当x>0时,y1>0;④当x<﹣2时,y1>y2,其中正确的是()A.①②B.①③C.①④D..②③【分析】根据正比例函数和一次函数的性质判断即可.【解答】解:因为正比例函数y1=ax经过二、四象限,所以a<0,①正确;一次函数y2=x+b经过一、二、三象限,所以b>0,②错误;由图象可得:当x>0时,y1<0,③错误;当x<﹣2时,y1>y2,④正确;故选:C.【点评】此题考查一次函数与一元一次不等式,关键是根据正比例函数和一次函数的性质判断.二、填空题(本大题共6小题,每小题4分,共24分,请将答案填入答题卡的相应位置11.16的平方根是±4.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.若y=3x n﹣1是正比例函数,则n=2.【分析】根据正比例函数的定义可以列出关于n是方程n﹣1=1,据此可以求得n的值.【解答】解:∵y=3x n﹣1是正比例函数,∴n﹣1=1,∴n=2,故答案是:2.【点评】本题考查了正比例函数的定义.正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.13.若P(a﹣2,a+1)在x轴上,则a的值是﹣1.【分析】直接利用x轴上点的坐标特点得出a+1=0,进而得出答案.【解答】解:∵P(a﹣2,a+1)在x轴上,∴a+1=0,解得:a=﹣1.故答案为:﹣1.【点评】此题主要考查了点的坐标,正确掌握x轴上点的坐标特点是解题关键.14.计算5个数据的方差时,得s2=[(5﹣)2+(8﹣)2+(7﹣)2+(4﹣)2+(6﹣)2],则的值为6.【分析】根据平均数的定义计算即可.【解答】解:==6故答案为6.【点评】本题考查方差,平均数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,则∠1+∠2的度数为45°.【分析】首先过点B作BD∥l,由直线l∥m,可得BD∥l∥m,由两直线平行,内错角相等,可得出∠2=∠3,∠1=∠4,故∠1+∠2=∠3+∠4,由此即可得出结论.【解答】解:过点B作BD∥l,∵直线l∥m,∴BD∥l∥m,∴∠4=∠1,∠2=∠3,∴∠1+∠2=∠3+∠4=∠ABC,∵∠ABC=45°,∴∠1+∠2=45°.故答案为:45°.【点评】此题考查了平行线的性质.此题难度不大,注意辅助线的作法,注意掌握两直线平行,内错角相等定理的应用.16.双察下列等式:,,,…则第n个等式为=.(用含n的式子表示)【分析】探究规律后,写出第n个等式即可求解.【解答】解:,,,…则第n个等式为=.故答案为:=.【点评】本题考查算术平方根的定义,解题的关键是探究规律,利用规律解决问题,属于中考常考题型.三、解答题[本大题共9小题,共86分.请在答题卡的相应位置解答17.(8分)解二元一次方程组:【分析】利用加减消元法求解可得.【解答】解:①+②,得:5x=5,解得:x=1,将x=1代入①,得:3+y=6,解得y=3,所以方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(8分)计算:.【分析】先根据二次根式的除法法则运算,再利用平方差公式计算,然后合并即可.【解答】解:原式=﹣+4﹣5=﹣﹣1=﹣1.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.19.(8分)我国古代数学著作《增删算法统宗》记载“官兵分布”问题:“一千官军一千布,一官四疋无零数,四军才分布一疋,请问官军多少数.”其大意为:今有1000官兵分1000匹布,1官分4匹,4兵分1匹.问官和兵各几人?【分析】设官有x人,兵有y人,根据1000官兵正好分1000匹布,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设官有x人,兵有y人,依题意,得:,解得:.答:官有200人,兵有800人.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.(8分)求证:三角形三个内角的和等于180°.【分析】画出图形,写出已知,求证,过点A作直线MN∥BC,根据平行线性质得出∠MAB=∠B,∠NAC=∠C,代入∠MAB+∠BAC+∠NAC=180°即可求出答案.【解答】已知:△ABC,如图:求证:∠A+∠B+∠C=180°证明:过点A作直线MN∥BC,∵MN∥BC,∴∠MAB=∠B,∠NAC=∠C(两直线平行,同位角相等),∵∠MAB+∠BAC+∠NAC=180°(平角的定义),∴∠B+∠BAC+∠C=180°(等量代换),即:三角形三个内角的和等于180°.【点评】本题考查了平行线性质的应用,主要考查学生的推理能力,关键是正确作出辅助线.21.(8分)某种优质蜜柚,投入市场销售时,经调查,该蜜柚每天销售量y(千克)与销售单价x (元/千克)之间符合一次函数关系,如图所示.(1)求y与x的函数关系式;(2)某农户今年共采摘该蜜柚4500千克,其保质期为40天,若以18元/千克销售,问能否在保质期内销售完这批蜜柚?请说明理由.【分析】(1)根据题意和函数图象中的数据,可以求得y与x的函数关系式;(2)将x=18代入(1)的函数解析式,求出相应的y的值,从而可以求得40天的销售量,然后与4500比较大小即可解答本题.【解答】解:(1)设y与x的函数关系式为y=kx+b,,得,即y与x的函数关系式为y=﹣10x+300;(2)能在保质期内销售完这批蜜柚,理由:将x=18代入y=﹣10x+300,得y=﹣10×18+300=120,∵120×40=4800>4500,∴能在保质期内销售完这批蜜柚.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.22.(10分)如图,把△ABC放置在每个小正方形边长为1的网格中,点A,B,C均在格点上,建立适当的平面直角坐标系xOy,使点A(1,4),△ABC与△A'B'C'关于y轴对称.(1)画出该平面直角坐标系与△A'B'C';(2)在y轴上找点P,使PC+PB'的值最小,求点P的坐标与PC+PB'的最小值.【分析】(1)直接利用A点坐标画出平面直角坐标系进而利用关于y轴对称点的性质得出答案;(2)直接利用轴对称求最短路线的方法以及勾股定理得出答案.【解答】解:(1)如图所示:△A'B'C',即为所求;(2)如图所示:点P,即为所求,点P的坐标为:(0,1),PC+PB'的最小值为:=2.【点评】此题主要考查了轴对称变换以及勾股定理,正确得出对应点位置是解题关键.23.(10分)每年4月23日是世界读书日,某校为了解学生课外阅读情况,随机抽取20名学生,对每人每周用于课外阅读的平均时间(单位:min)进行调查,过程如下:收集数据:30608150401101301469010060811201407081102010081整理数据:课外阅读平均时间x(min)0≤x<4040≤x<8080≤x<120120≤x<160等级D C B A人数3a8b 分析数据:平均数中位数众数80m n 请根据以上提供的信息,解答下列问题:(1)填空:a=5,b=4;m=81,n=81;(2)已知该校学生500人,若每人每周用于课外阅读的平均时间不少于80min为达标,请估计达标的学生数;(3)设阅读一本课外书的平均时间为260min,请选择适当的统计量,估计该校学生每人一年(按52周计)平均阅读多少本课外书?【分析】(1)根据统计表收集数据可求a,b,再根据中位数、众数的定义可求m,n;(2)达标的学生人数=总人数×达标率,依此即可求解;(3)本题需先求出阅读课外书的总时间,再除以平均阅读一本课外书的时间即可得出结果.【解答】解:(1)由统计表收集数据可知a=5,b=4,m=81,n=81;(2)500×=300(人).答:估计达标的学生有300人;(3)80×52÷260=16(本).答:估计该校学生每人一年(按52周计算)平均阅读16本课外书.【点评】此题主要考查数据的统计和分析的知识.准确把握三数(平均数、中位数、众数)和理解样本和总体的关系是关键.24.(12分)如图,在△ABC中,∠ACB=90°,点E,F在边AB上,将边AC沿CE翻折,使点A落在AB上的点D处,再将边BC沿CF翻折,使点B落在CD的延长线上的点B'处.(1)求∠ECF的度数;(2)若CE=4,B'F=1,求线段BC的长和△ABC的面积.【分析】(1)由折叠可得,∠ACE=∠DCE=∠ACD,∠BCF=∠B'CF=∠BCB',再根据∠ACB=90°,即可得出∠ECF=45°;(2)在Rt△BCE中,根据勾股定理可得BC==,设AE=x,则AB=x+5,根据勾股定理可得AE2+CE2=AB2﹣BC2,即x2+42=(x+5)2﹣41,求得x=,即可得出S△ABC =AB×CE=.【解答】解:(1)由折叠可得,∠ACE=∠DCE=∠ACD,∠BCF=∠B'CF=∠BCB',又∵∠ACB=90°,∴∠ACD+∠BCB'=90°,∴∠ECD+∠FCD=×90°=45°,即∠ECF=45°;(2)由折叠可得,∠DEC=∠AEC=90°,BF=B'F=1,∴∠EFC=45°=∠ECF,∴CE=EF=4,∴BE=4+1=5,∴Rt△BCE中,BC==,设AE=x,则AB=x+5,∵Rt△ACE中,AC2=AE2+CE2,Rt△ABC中,AC2=AB2﹣BC2,∴AE2+CE2=AB2﹣BC2,即x2+42=(x+5)2﹣41,解得x=,∴S=AB×CE=(+5)×4=.△ABC【点评】本题主要考查了折叠问题,解题时常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.25.(14分)已知等边△AOB的边长为4,以O为坐标原点,OB所在直线为x轴建立如图所示的平面直角坐标系.(1)求点A的坐标;(2)若直线y=kx(k>0)与线段AB有交点,求k的取值范围;(3)若点C在x轴正半轴上,以线段AC为边在第一象限内作等边△ACD,求直线BD的解析式.【分析】(1)如下图所示,过点A作AD⊥x轴于点D,则AD=OA sin∠AOB=4sin60°=2,同理OA=2,即可求解;(2)若直线y=kx(k>0)与线段AB有交点,当直线过点A时,将点A坐标代入直线的表达式得:2k=2,解得:k=,即可求解;(3)证明△ACO≌△ADB(SAS),则OB=BD=4,而∠DBC=180°﹣∠ABO﹣∠ABD=180°﹣60°﹣60°=60°,即可求解.【解答】解:(1)如下图所示,过点A作AD⊥x轴于点D,则AD=OA sin∠AOB=4sin60°=2,同理OA=2,故点A的坐标为(2,2);(2)若直线y=kx(k>0)与线段AB有交点,当直线过点A时,将点A坐标代入直线的表达式得:2k=2,解得:k=,直线OB的表达式为:y=0,而k>0,故:k的取值范围为:0<k≤;(3)如下图所示,连接BD,∵△OAB是等边三角形,∴AO=AB,∵△ADC为等边三角形,∴AD=AC,∠OAC=∠OAB+∠CAB=60°+∠CAB=∠DAC+∠CAB=∠DAB,∴△ACO≌△ADB(SAS),∴OB=BD=4,∴∠AOB=∠ABD=60°,∴∠DBC=180°﹣∠ABO﹣∠ABD=180°﹣60°﹣60°=60°,故直线BD表达式的k值为tan60,设直线BD的表达式为:y=x+b,将点B(4,0)代入上式并解得:b=﹣4,故:直线BD的表达式为:y=x﹣4.【点评】本题考查的是一次函数的综合运用,涉及到三角形全等、解直角三角形等知识,其中(3)利用三角形全等,确定直线BD的倾斜角本题的难点.。

最新北师大版八年级数学(上册)期末测试卷含答案

最新北师大版八年级数学(上册)期末测试卷含答案

新北师大版八年级数学(上册)期末测试卷含答案八年级数学试卷命题:双柏县教研室 郎绍波 一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,满分24分)1.计算- )A .-3B .3C .-9D .9 2.下列几组数能作为直角三角形的三边长的是( ) A .1,2,3 B .2,3,4 C .3,4,5 D .4,5,6 3.下列说法正确的是( )A .所有无限小数都是无理数B .所有无理数都是无限小数C .有理数都是有限小数D .不是有限小数的不是有理数 4.已知一组数据:12,5,9,5,14,下列说法不正确的是( ) A .平均数是9 B .中位数是9 C .众数是5 D .极差是55.在平面直角坐标系中,已知点P 的坐标是(-1,-2),则点P 关于x 轴对称的点的坐标是( )A .(-1,2)B .(1,-2)C .(1,2)D .(2,1) 6.如图,AB ∥CD,∠D =∠E =35°,则∠B 的度数为( )A .60°B .65°C .70°D .75° 7.一次函数y kx b =-,当k <0,b <0时的图象大致位置是( )B ACD EA .B .C .D .8.下列计算正确的是( )A. BC.2+ D.49-二、填空题(本大题共6个小题,每小题3分,满分18分)9.25的算术平方根是 .10.化简:= . 11.某水池有水15m 3,现打开进水管进水,进水速度5m 3/ h ;x h 后这个水池内有水y m 3,则y 关于x 的关系式为 . 12.命题“对顶角相等”的条件是 ,结论是 .13.如果a 、b 同号,则点P (a ,b )在 象限.14.方程组521x y x y +=⎧⎨-=⎩的解是 .三、解答题(本大题共有9个小题,满分58分)15.(本小题4分)计算:)16.(本小题5分)已知13x y =⎧⎨=⎩ 和02x y =⎧⎨=-⎩都是方程ax -y=b 的解,求a 与b 的值.O ABD F3 4 1 2 C E17.(本小题6分)如图,直线CD 、EF 被直线OA 、OB 所截,∠1 +∠2 =180°.求证:∠3=∠4.18.(本小题5分)长方形的两条边长分别为4,6,建立适当的直角坐标系,使它的一个顶点的坐标为(-2,-3).请你写出另外三个顶点的坐标.19.(本小题5分)某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.请问榕树和香樟树的单价各多少?20.(本小题6分)已知直线y=2x与y=-x+b的交点为(1,a),试确定方程组2y0+y0xx b-=⎧⎨-=⎩的解和a、b的值.21.(本小题9分)已知一次函数y=kx-3的图象与正比例函数12y x=的图象相交于点(2,a).(1)求a的值.(2)求一次函数的表达式.(3)在同一坐标系中,画出这两个函数的图象.x22.(本小题9分)甲、乙两名工人同时加工同一种零件,现根据两人7天产品中每天出现的次品数情况绘制成如下不完整的统计图和表,依据图、表信息,解答下列问题: 相关统计量表:众数 中位数 平均数 方差甲 2 107 乙11147次品数量统计表: 第1天 第2天 第3天 第4天 第5天 第6天 第7天 甲(件) 2 2 0 3 1 2 4 乙(件)1211(1)补全图、表.(2)判断谁出现次品的波动小.(3)估计乙加工该种零件30天出现次品多少件?甲 乙数量23.(本小题9分)汽车出发前油箱有油50L,行驶若干小时后,在加油站加油若干升.图象表示的是从出发后,油箱中剩余油量y(L)与行驶时间t(h)之间的关系.(1)汽车行驶h后加油,中途加油L;(2)求加油前油箱剩余油量y与行驶时间t的函数关系式;(3)已知加油前、后汽车都以70km/h匀速行驶,如果加油站距目的地210km,那么要到达目的地,油箱中的油是否够用?请说明理由.O 2 4 6 8 t/hOABDF342C E1 52013-2014学年上学期末综合素质测评八年级数学 参考答案一、选择题(每小题只有一个正确的选项,每小题3分,共24分)1.A 2.C 3.B 4.D 5.A 6.C 7.C 8.A二、填空题(每小题3分,共18分)9.5 10.2 11.y=5x +15 12.如果两个角是对顶角,那么它们相等13.一或三 14.2y 3x =⎧⎨=⎩ 三、解答题(共58分)15.(每小题4-×(-= -616.(本小题5分)解:因为13x y =⎧⎨=⎩ 和02x y =⎧⎨=-⎩都是方程ax -y=b 的解 所以,35,22a b a b b -==⎧⎧⎨⎨==⎩⎩解得 17.(本小题6分)证明:∵∠2与∠5是对顶角∴∠2=∠5∵∠1 +∠2 =180° ∴∠1 +∠5 =180° ∴CD ∥EF ∴∠3=∠4 18.(本小题5分)解:如图建立直角坐标系, 因为长方形的一个顶点的 坐标为A (-2,-3)所以长方形的另外三个顶点 的坐标分别为:B (2,-3),C (2,3),D (-2,3) (答案不唯一)19.(本小题5分)解:设榕树的单价为x 元/棵,香樟树的单价是y 元/棵,则:y 203+2y 340x x =-⎧⎨=⎩,解得60y 80x =⎧⎨=⎩ 答:榕树和香樟树的单价分别是60元/棵,80元/棵 20.(本小题6分)解:因为直线y=2x 与y=-x +b 的交点为(1,a ),所以221+3a a ab b ==⎧⎧⎨⎨=-=⎩⎩,解得 则有 2y 02y 01,,+y 30+y 3y 2x x x x x -=-==⎧⎧⎧⎨⎨⎨-===⎩⎩⎩即解得 因此,方程组2y 0+y 0x x b -=⎧⎨-=⎩ 的解是1y 2x =⎧⎨=⎩,a 、b21.(本小题9分) 解:(1)∵ 正比例函数12y x =的图象过点(2,a ) ∴ a =1(2)∵一次函数y=kx -3的图象经过点(2,1)∴1=2k -3 ∴k =2∴y=2x -3 (3)函数图像如右图22.(本小题9分)解:(1)补全的图如下.(2)从表(2)可以看出,甲的第一天、第二天、都六天都是是2, 则2出现了3次,出现的次数最多,因此,甲的众数是2,把这组数据从小到大排列为0,1,2,2,2,3,4,最中间的数是2,则甲的中位数是2, 因为乙的平均数是1,则乙的第7天的数量是1×7﹣1﹣0﹣2﹣1﹣1﹣0=2; (2)∵S 甲2=107,S 乙2=47, ∴S 甲2>S 乙2,∴乙出现次品的波动小.(3)∵乙的平均数是1,∴30天出现次品是1×30=30(件).x甲 乙数量23.(本小题9分) 解:(1)从图象中可以看出,汽车行驶3小时后加油,中途加油45-14=31升 (2)因为函数图象过点(0,50)和(3,14) 所以设函数关系式为y=kt +b ,则5012143+50b t t b b ==-⎧⎧⎨⎨==⎩⎩,解得 因此,y= -12t +50(3)油箱中的油够用.因为汽车加油前行驶了3小时,行驶了3×70=210(km ),用去了50-14=36升油,而目的地距加油站还有210 km,所以要达到目的地还需36升油,而中途加油31升后有油45升,即油箱中的剩余油量是45升,所以够用.因此,要到达目的地油箱中的油够用.。

北师大版八年级上册数学期末考试试题及答案

北师大版八年级上册数学期末考试试题及答案

北师大版数学八年级上册期末考试试卷亲爱的同学,时间过得真快啊!转眼又一个学期了,相信你在原有的基础上又掌握了许多新的数学知识与能力,变得更加聪明了,更加懂得应用数学来解决实际问题了。

现在让我们一起走进考场,仔细思考,认真作答,成功将属于你——数学学习的主人!本试题分第I 卷(选择题)和第II 卷(非选择题)两大部分,全卷满分100分,考试时间90分钟。

第I 卷(选择题 共30分)一、 精心选一选:(只有一个答案正确,每题3分,共30分)1、 1、如右图,如果半圆的直径恰为直角三角形的一条直角边,那么半圆的面积为( )A.24cm πB.26cm πC.212cm πD.24π2、下列说法正确的个数( )①②③的倒数是()3316251625451273333-=---=--=--ππ④⑤的平方根是23544+=--2()A. 0个B. 1个C. 2个D. 3个3、已知点P 关于y 轴的对称点P 1的坐标是(2,3),则点P 关于原点的对称点P 2的坐标为( )A. ()2,3-B. ()3,2--C. ()2,3-D. ()2,3-- 4、下列图案既是中心对称图形,又是轴对称图形的是( )A. B. C. D.5、已知点(-4,y 1),(2,y 2)都在直线y=- 12 x+2上,则y 1 与y 2的大小关系是( )A.y 1 <y 2B.y 1 =y 2C. y 1 >y 2D.不能比较bc<0, 则一次函数bc b a--)CD7、若方程组⎩⎨⎧=--=+8)1(534y k kx y x 的解中的x 值比y 值的相反数大1,则k 为( )A.3B.-3C.2D.-28、小王利用计算机设计了一个计算程序,输入和输出的数据如下表:那么,当输入数据是8时,输出的数据是( )A 、618B 、638C 、658D 、6789、在梯形ABCD 中,若AD//BC ,则∠A:∠B:∠C:∠D 的值只能等于 ( ) A. 6:5:4:3 B.3:5:6:4 C.4:5:6:3 D.3:4:5:610、如右图,在矩形ABCD 中,AB=8,BC=6,E 、F 是AC 的三等分点.则△BEF 的面积为( )A. 12B.8C.6D.无法计算BC第II 卷(非选择题 共70二:耐心填一填(每小题题3分,共24分)11、写出两个无理数,使这两个无理数的积为有理数,那么这两个无理数可以是 和 。

北师大版八年级上册期末考试数学试卷(共5套,含参考答案)

北师大版八年级上册期末考试数学试卷(共5套,含参考答案)

初二上学期期末考试数学试卷选择题(每小题3分,共30分)1.下列各数:1.414,2,31-,0,其中是无理数的为( ) A. 1.414 B. 2 C. 31- D. 0 2.下列二次根式中,不是最简二次根式的是( ) A.10 B.8 C.6 D.23.今年5月1日~7日,威海地区每天最高温度(单位:℃)情况如图1所示,则表示最高温度的这组数据的中位数是( )A. 24B. 25C. 26D. 27① ②图1 图2 图34. 下列选项中,可以用来说明命题“两个锐角的和是锐角”是假命题的反例是( )A. ∠A =30°,∠B =40°B. ∠A =30°,∠B =110°C. ∠A =30°,∠B =70°D. ∠A =30°,∠B =90°5.如图2,给出下列条件:①∠3=∠4;②∠1=∠2;③EF ∥CD ,且∠D =∠4;④∠3+∠5=180°. 其中,能推出AD ∥BC 的条件为( )A. ①②③B. ①②④C. ①③④D. ②③④6.小亮解方程组651x y x y -=∙⎧⎨+=-⎩,的解为1x y =-⎧⎨=*⎩,,由于不小心,滴上了两滴墨水,刚好遮住了•和*处的两个数,则点(•,*)所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.设0<k <2,关于x 的一次函数y =kx +2(1-x ),当1≤x≤2时的最大值是( )A. 2k -2B. k -1C. kD. k +18. 对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分和4分四个等级,将调查结果绘制成条形统计图(如图3-①)和扇形统计图(如图3-②).根据图中信息,这些学生的平均分数是( )A. 2.25B. 2.5C. 2.95D. 39.若一次函数y 1=k 1x +b 1与y 2=k 2x +b 2,满足b 1<b 2,且已知21k k 没有意义,则能大致表示这两个函数图象的是( )最高温度日期A B C D 图410.如图4,在长方形纸片ABCD中,AB=5 cm,BC=10 cm,CD上有一点E ,ED=2 cm,AD上有一点P,PD=3 cm,过点P作PF⊥AD,交BC于点F,将纸片折叠,使点P与点E重合,折痕与PF交于点Q,则PQ的长是()A.134cm B. 3 cm C. 2 cm D.72cm二、填空题(每小题4分,共32分)11. 如图5,点A表示的实数是____________.图5 图6 图7 图812.已知函数23(1)my m x-=+是正比例函数,且图象在第二、四象限内,则m的值是.13.如图6,在方格纸中有三个点A,B,C,若点A的位置记为(0,1),点B的位置记为(2,-1),则点C 的位置应记为________________.14.方程组4123x yy x-=⎧⎨=+⎩,的解是____________,则一次函数y=4x-1与y=2x+3的图象的交点坐标为________________.15.一副三角尺如图7所示叠放在一起,则图中∠α的度数是___________.16.(2016年大庆)甲、乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是_______________.(填“甲”或“乙”)17.如图8,已知A点坐标为(2,0),点B在直线y=x上运动,当线段AB长度最短时,直线AB的表达式为_____________.18.如图9,BA1和CA1分别是△ABC的内角平分线和外角平分线,BA2是∠A1BD的平分线,CA2是∠A1CD的平分线,BA3是∠A2BD的平分线,CA3是∠A2CD的平分线,…若∠A1=α,则∠A2016的度数为.图9三、解答题(共58分)19.(每小题5分,共10分)计算:(1()20161-;(2)()()()2227373-++-.y=x20.(8分)一次函数y=kx+b的图象经过点A(-1,3),B(2,-3).(1)求这个一次函数的表达式;(2)求直线AB与坐标轴围成的三角形的面积.21.(8分)食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输. 为提高质量,做进一步研究,某饮料加工厂需生产A,B 两种饮料共100瓶,需加入同种添加剂270克,其中A饮料每瓶添加2克,B饮料每瓶需加添加剂3克,饮料加工厂生产了A,B两种饮料各多少瓶?22.(10分)某中学举行“中国梦·校园好声音”歌手大赛,初中部与高中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛. 两个队各选出的5名选手的决赛成绩(满分100分)如图10所示:(1)根据图示填写下表;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差,并判断哪一个代表队选手成绩较为稳定.图1023.(10分)在平面直角坐标系xOy中,A,B两点分别在x轴,y轴的正半轴上,且OB=OA=3.(1)求点A,B的坐标;(2)已知点C(-2,2),求△BOC的面积;(3)若P是第一象限角平分线上一点,且S△ABP=332,求点P的坐标.100 95 90 85 80 75 70O24.(12分)平面内不重合的两条直线有相交和平行两种位置关系.(1)如图12-①,若AB∥CD,点P在AB,CD的同侧,则有∠B=∠BOD,∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.将点P移到AB,CD的异侧,如图12-②,结论∠BPD=∠B-∠D是否成立?若成立,说明理由;若不成立,则∠BPD,∠B,∠D之间有何数量关系?请证明你的结论;(2)在图12-②中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图12-③,则∠BPD,∠B,∠D,∠BQD之间有何数量关系?并证明你的猜想;(3)设BF交AC于点M,AE交DF于点N,已知∠AMB=140°,∠ANF=105°.利用(2)中的结论直接写出∠B+∠E+∠F的度数为_____________度,∠A比∠F大_______________度.①②③图12期末模拟测试题 参考答案一、1. B 2. B 3. B 4. C 5. C 6. B 7. C 8. C 9. D 10. A二、11.5 12. -2 13. (-3,-2) 14. 2,7x y =⎧⎨=⎩ (2,7) 15. 75° 16. 甲 17. y =-x +2 18. 20152α 三、19. 解:(1)原式=-3+21-1=-72. (2)原式=9-7+22-2=2+22-2=22.20. 解:(1)依题意,得323k b k b -+=⎧⎨+=-⎩,,解得21.k b =-⎧⎨=⎩,所以所求一次函数的表达式是y=-2x+1. (2)令x=0,由y=-2x+1,得y=1;令y=0,由y=-2x+1,得x=21. 所以直线AB 与坐标轴的交点坐标分别是(0,1)和(21,0).所以围成的三角形的面积为21×21×1=14. 21. 解:设A 种饮料生产了x 瓶,B 种饮料生产了y 瓶.根据题意,得方程组10023270.x y x y +=⎧⎨+=⎩,解得3070.x y =⎧⎨=⎩,答:A 种饮料生产了30瓶,B 种饮料生产了70瓶.22. 解:(1)初中部决赛成绩的平均数为15(75+80+85+85+100)=85(分),众数85分,高中部决赛成绩的中位数80分.(2)初中部成绩好些.因为两个队的平均数都相同,初中部的中位数高,所以在平均数相同的情况下中位数高的初中部成绩好些.(3)因为2s 初=15[(75-85)2+(80-85)2+(85-85)2+(85-85)2+(100-85)2]=70,2s 高=15[(70-85)2+(100-85)2+(100-85)2+(75-85)2+(80-85)2]=160,所以2s初<2s 高. 所以初中代表队选手的成绩较为稳定.23.解:(1)由OB=OA=3,A ,B 两点分别在x 轴、y 轴的正半轴上,得A (3,0),B (0,3).(2)画图形如图1所示,知点C 到OB 的距离为点C 的横坐标的绝对值,则S △BOC =2321⨯⨯=3.(3)由点P 在第一象限的角平分线上,可设P 的坐标为(a ,a ).由S △AOB =12OA·OB=92<S △ABP ,知点P 在AB 的右侧,则S △ABP =S △PAO +S △PBO -S △AOB=12×3a+12×3a-12×3×3,即12×3a+12×3a-12×3×3=233. 整理,得293-a =233,解得7=a .所以P 的坐标为(7,7). 24. 解:(1)不成立.应为∠BPD=∠B+∠D.证明:如图2,延长BP 交CD 于点E.∵AB ∥CD ,∴∠B=∠BED. 又∵∠BPD=∠BED+∠D ,∴∠BPD=∠B+∠D.(2)∠BPD=∠BQD+∠B+∠D.证明:如图3所示,连接QP 并延长.利用“三角形的一个外角等于和它不相邻的两个内角的和”,得∠BPD=(∠BQP+∠B )+(∠DQP+∠D )=∠BQD+∠B+∠D .(3)75 65提示:由(2)的结论,得∠ENF=∠B+∠E+∠F ,∠AMB=∠B+∠E+∠A.因为∠ANF=105°,所以∠B+∠E+∠F=180°-∠ANF=180°-105°=75°.因为∠A=∠AMB-∠B-∠E ,∠F=∠ENF-∠B-∠E ,所以∠A-∠F=∠AMB-∠ENF=140°-75°=65°.图2 图3北师大版八年级上学期期末测试题数学一、选择题(每小题3分,共30分)1.下列四组线段中,能构成直角三角形的是( )A .1,2,3B .13 C .2,3,4 D .1,12.下列计算正确的是( )A5 B12= C=1D3.一组数据2,7,6,3,4,7的众数和中位数分别是( )A .7,4.5B .4,6C .7,4D .7,54.如图1,已知函数y=ax+b 和y=kx 的图象交于点P ,则根据图象可得,关于x ,y 的二元一次方程组y ax b y kx=+⎧⎨=⎩,的解是( ) A .31x y =⎧⎨=-⎩, B .31x y =-⎧⎨=-⎩, C .31x y =-⎧⎨=⎩, D .31x y =⎧⎨=⎩,图1 图2 图3 图4 5.一次函数y=6x+1的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限6. 点M 关于y 轴对称的点为M 1(3,–5),则点M 关于x 轴对称的点M 2的坐标为( )A .(–3,5)B .(–3,–5)C .(3,5)D .(3,–5)7.如图2,能判定EC ∥AB 的条件是( )A .∠B=∠ACEB .∠A=∠ECDC .∠B=∠ACBD .∠A=∠ACE8=0,则x 2015+y 2016的值为( )A .0B .1C .﹣1D .29.图3所示是三个等边三角形随意摆放的图形,则∠1+∠2+∠3等于( )A .90°B .120°C .150°D .180°10. 甲、乙两车从A 地匀速驶向B 地,甲车比乙车早出发2 h ,并且甲车图中休息了0.5 h 后仍以原速度驶向B 地,图4所示是甲、乙两车行驶的路程y (km )与行驶的时间x (h )之间的函数图象.下列说法:①m=1,a=40;②甲车的速度是40 km/h ,乙车的速度是80 km/h ;③当甲车距离A 地260 km 时,甲车所用的时间为7 h ;④当两车相距20 km 时,则乙车行驶了3 h 或4 h.其中正确的个数是( )32 1A .1个B .2个C .3个D .4个二、填空题(每小题4分,共32分)11.已知正比例函数y=kx (k≠0)的图象经过点(1,﹣2),则正比例函数的表达式为 .12.若7在两个连续整数a ,b 之间,即a <7<b ,则=+b a .13.若一组数据2,4,x ,6,8的平均数是6,则这组数据的极差为 ,方差为 .14.若点P 的坐标为(a 2+1,–6+2),则点P 在第_________象限.15. 如图5,点D ,B ,C 在同一直线上,∠A=75°,∠C=55°,∠D=20°,则∠1的度数是_______________.图5 图6 图7 图816.若m ,n 为实数,且,则(m+n )2017的值为____________.17.在Rt △ABC 中,∠C=90°,AB=AC+BC=6,则△ABC 的面积为 .18.如图6,直线y=x+1分别与x 轴、y 轴相交于点A ,B ,以点A 为圆心,AB 长为半径画弧交x 轴于点A 1,再过点A 1作x 轴的垂线交直线y=x+1于点B 1,以点A 为圆心,AB 1长为半径画弧交x 轴于点A 2,…,按此作法进行下去,则点A 8的坐标是 .三、解答题(共58分)19. (每小题6分,共12分)(1) 计算:2+(2)解方程组:230311.x y x y +=⎧⎨-=⎩, 20. (6分) 如图7,AB ∥CD ,∠A=75°,∠C=30°,求∠E 的度数.21. (8分)目前节能灯在城市已基本普及,今年广东省面向农村地区推广,为响应号召,某商场计划用3800元购进节能灯120个,这两种节能灯的进价、售价如下表:进价(元/个) 售价(元/个)甲 型25 30 乙 型45 60 (1)求甲、乙两种节能灯各购进多少个?(2)全部售完120个节能灯后,该商场获利润多少元?22. (10分)如图8,在平面直角坐标系中,△ABC 各顶点的坐标分别为A (4,0),B (﹣1,4),C (﹣3,1).(1)在图中作△A′B′C′与△ABC 关于x 轴对称;(2)写出点A′,B′,C′的坐标.23.(10分)甲、乙两人参加理化实验操作测试,学校进行了6次模拟测试,成绩如表所示:第1次第2次第3次第4次第5次第6次平均数众数甲7 9 9 9 10 10 9 9乙7 8 9 10 10 10 _______ _______(1)根据图表信息,补全表格;(2)已知甲的成绩的方差等于1,请计算乙的成绩的方差;(3)从平均数和方差相结合看,分析谁的成绩好些?24.(12分)甲、乙两人沿同一路线登山,图中线段OC,折线OAB分别是甲、乙两人登山的路程y(米)与登山时间x(分)之间的函数图象(如图9所示).请根据图象所提供的信息,解答下列问题:(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量x的取值范围;(2)求乙出发后多长时间追上甲?此时乙所走的路程是多少米?图9期末测试题参考答案一、1. D 2. C 3. D 4. C 5. D 6. A 7. D 8. D 9. D 10. C二、11. y=﹣2x 12. 5 13. 8 8 14. 四15. 30°16. -1 17. 4 18.(15,0)三、19. (1) 原式=2+3﹣.(2)方程组230 311x yx y+=⎧⎨-=⎩,②,①②×3+①,得11x=33,解得x=3.把x=3代入②,得y=﹣2.则原方程组的解是32. xy=⎧⎨=-⎩,20. 解:如图1所示.∵AB∥CD,∠A=75°,∴∠1=∠A=75°. ∵∠C=30°,∴∠E=∠1-∠C=75°-30°=45°.图1 图2 图321. 解:(1)设商场购进甲型节能灯x个,则购进乙型节能灯y个.由题意,得25453800120.x yx y+=⎧⎨+=⎩,解得8040.xy=⎧⎨=⎩,答:甲型节能灯购进80个,乙型节能灯购进40个.(2)由题意,得80×5+40×15=1000(元).答:全部售完120个节能灯后,该商场获利润1000元.22. 解:(1)如图所示.(2)点A′的坐标为(4,0),点B′的坐标为(﹣1,﹣4),点C′的坐标为(﹣3,﹣1).23. 解:(1)乙的平均数是(7+8+9+10+10+10)÷6=9;因为10出现了3次,出现的次数最多,所以乙的众数是10.(2)乙的方差是16[(7﹣9)2+(8﹣9)2+(9﹣9)2+3×(10﹣9)2]=43.(3)甲的成绩好些,因为两个人的平均成绩都是9分,但甲的方差小,所以成绩更稳定.24. 解:(1)设甲登山的路程y与登山时间x之间的函数表达式为y=kx.∵点C(30,600)在函数y=kx的图象上,∴30k=600,解得k=20.∴y=20x(0≤x≤30).(2)设乙在AB段登山的路程y与登山时间x之间的函数表达式为y=ax+b(8≤x≤20).将点A(8,120),B(20,600)代入,得812020600a ba b+=⎧⎨+=⎩,.解得40200.ab=⎧⎨=-⎩,所以y=40x﹣200.联立方程,得2040200.y xy x=⎧⎨=-⎩,解得10200.xy=⎧⎨=⎩,故乙出发后10分钟追上甲,此时乙所走的路程是200米.北师大版八年级上册数学期末考试试卷一、选择题(每小题3分,共30分。

北师大版数学八年级上册期末考试试卷及答案

北师大版数学八年级上册期末考试试卷及答案

北师大版数学八年级上册期末考试试题一、选择题(共12小题,每小题3分,共36分)1.在平面直角坐标系中,下列各点属于第四象限的是()A.(1,2)B.(﹣3,8)C.(﹣3,﹣5)D.(6,﹣7)2.下列交通标志是轴对称图形的是()A.B.C.D.3.一次函数y=﹣3x+2的图象经过()A.第一、二、三象限B.第一、三、四象限C.第二、三、四象限D.第一、二、四象限4.三角形的重心是三角形三条()的交点.A.中线B.高C.角平分线D.垂直平分线5.在△ABC和△ABD中,已知AC=AD,BC=BD,则能说明△ABC≌△ABD的依据是A.SAS B.ASA C.SSS D.HL6.点A(﹣1,2)到x轴的距离是()A.﹣1B.1C.﹣2D.27.如果将一副三角板按如图方式叠放,那么∠1的度数是()A.90°B.100°C.105°D.135°8.已知函数y=,当x=2时,函数值y为()A.5B.6C.7D.89.下列命题中,是假命题的是()A.能够完全重合的两个图形全等B.两边和一角对应相等的两个三角形全等C.三个角都相等的三角形是等边三角形D.等腰三角形的两底角相等10.如图所示是函数y=kx+b与y=mx+n的图象,则方程组的解是()A.x=4,y=3B.x=﹣4,y=﹣3C.x=3,y=4D.x=﹣3,y=﹣4 11.如图,在Rt△ABC中,∠B=90°,AD平分∠BAC,DE垂直平分AC,若△ADC的面积等于2,则△ABC的面积为()A.2B.3C.4D.612.如图,在△ABC中,AB=AC=8厘米,BC=6厘米,点D为AB的中点.如果点P 在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上,由C 点向A点运动,为了使△BPD≌△CPQ,点Q的运动速度应为()A.1厘米/秒B.2厘米/秒C.3厘米/秒D.4厘米/秒二、填空题(本大题共6小题,每小题3分,共18分.)13.函数y=的自变量x的取值范围是.14.已知点M(m+1,m+3)在x轴上,则m等于.15.小芳有两根长度为5cm和10cm的木条,她想钉一个三角形木框,她应该再选择一根长度为cm的木条.(只需写出其中一种)16.已知一次函数y=﹣x+6的图象上有两点A(﹣1,y1),A(2,y2),则y1与y2的大小关系是.17.如图1所示的是一张直角△ABC纸片(∠C=90°),其中∠BAC=30°,如果用两张完全相同的这种纸片恰好能拼成如图2所示的△ABD,若BC=2,则△ABD的周长为.18.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置,点A1,A2,A3…和点C1,C2,C3…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),按此规律,则B4的坐标是.三、解答题(本大题共66分)19.已知在平面直角坐标系中,△ABC三个顶点的坐标分别为:A(﹣3,﹣1),B(﹣2,﹣4),C(1,﹣3).(1)作出△ABC;(2)若将△ABC向上平移3个单位后再向右平移2个单位得到△A1B1C1,请作出△A1B1C1.20.已知:一次函数y=kx+b的图象经过M(0,2),N(1,3)两点.(1)求一次函数的解析式,并画出此一次函数的图象;(2)求当x取何值时,函数值y>0.21.如图,AB=AC,DB=DC,E是AD上的一点,求证:BE=CE.22.尺规作图:某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵桂花树.如图,要求桂花树的位置(视为点P),到花坛的两边AB、BC的距离相等,并且点P到点A、D的距离也相等.请用尺规作图作出栽种桂花树的位置点P(不写作法,保留作图痕迹).23.如图所示,在△ABC中,AD⊥BC于D,CE⊥AB于E,AD与CE交于点F,且AD =CD.(1)求证:△ABD≌△CFD;(2)已知BC=7,AD=5,求AF的长.24.已知△ABC中,∠BAC=90°,∠C=30°,点D为BC边上一点,连接AD,作DE ⊥AB于点E,DF⊥AC于点F.(1)若AD为△ABC的角平分线(如图1),图中∠1、∠2有何数量关系?为什么?(2)若AD为△ABC的高(如图2),求图中∠1、∠2的度数.25.D县举办运动会需购买A,B两种奖品,若购买A种奖品5件和B种奖品2件,共需80元;若购买A种奖品3件和B种奖品3件,共需75元.(1)求A、B两种奖品的单价各是多少元?(2)大会组委会计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.26.已知正比例函数y=x与一次函数y=3x﹣5的图象交于点A,且OA=OB.(1)求A点坐标;(2)求△AOB的面积;(3)已知在x轴上存在一点P,能使△AOP是等腰三角形,请直接写出所有符合要求的点P的坐标.参考答案一、选择题1.在平面直角坐标系中,下列各点属于第四象限的是()A.(1,2)B.(﹣3,8)C.(﹣3,﹣5)D.(6,﹣7)解:A、点(1,2)在第一象限,故本选项不合题意;B、点(﹣3,8)在第二象限,故本选项不合题意;C、点(﹣3,﹣5)在第三象限,故本选项不合题意;D、点(6,﹣7)在第四象限,故本选项符合题意;故选:D.2.下列交通标志是轴对称图形的是()A.B.C.D.解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、是轴对称图形,故正确;D、不是轴对称图形,故错误.故选:C.3.一次函数y=﹣3x+2的图象经过()A.第一、二、三象限B.第一、三、四象限C.第二、三、四象限D.第一、二、四象限解:∵一次函数y=﹣3x+2,k=﹣3<0,b=2>0,∴一次函数y=3x+2的图象经过第一、二、四象限,故选:D.4.三角形的重心是三角形三条()的交点.A.中线B.高C.角平分线D.垂直平分线解:三角形的重心是三角形三条中线的交点.故选:A.5.如图,在△ABC和△ABD中,已知AC=AD,BC=BD,则能说明△ABC≌△ABD的依据是()A.SAS B.ASA C.SSS D.HL解:在△ABC和△ABD中,,∴△ABC≌△ABD(SSS).故选:C.6.点A(﹣1,2)到x轴的距离是()A.﹣1B.1C.﹣2D.2解:点P(﹣1,2)到x轴的距离是2.故选:D.7.如果将一副三角板按如图方式叠放,那么∠1的度数是()A.90°B.100°C.105°D.135°解:如图所示:由题意可得,∠2=90°﹣45°=45°,则∠1=∠2+60°=45°+60°=105°.故选:C.8.已知函数y=,当x=2时,函数值y为()A.5B.6C.7D.8解:∵x≥0时,y=2x+1,∴当x=2时,y=2×2+1=5.故选:A.9.下列命题中,是假命题的是()A.能够完全重合的两个图形全等B.两边和一角对应相等的两个三角形全等C.三个角都相等的三角形是等边三角形D.等腰三角形的两底角相等解:A、能够完全重合的两个图形全等,是真命题;B、两边和其夹角对应相等的两个三角形全等,原命题是假命题;C、三个角都相等的三角形是等边三角形,是真命题;D、等腰三角形的两底角相等,是真命题;故选:B.10.如图所示是函数y=kx+b与y=mx+n的图象,则方程组的解是()A.x=4,y=3B.x=﹣4,y=﹣3C.x=3,y=4D.x=﹣3,y=﹣4解:∵函数y=kx+b与y=mx+n的图象交于点(3,4),∴方程组的解是.故选:C.11.如图,在Rt△ABC中,∠B=90°,AD平分∠BAC,DE垂直平分AC,若△ADC的面积等于2,则△ABC的面积为()A.2B.3C.4D.6解:∵DE垂直平分AC,∴DE⊥AC,AE=CE,∵∠B=90°,∴DB⊥AB,∵AD平分∠BAC,∴DB=DE,在Rt△ABD和Rt△AED中,,∴Rt△ABD≌Rt△AED(HL),∴AB=AE=CE,∴S△ACD=AC•DE=×2AB•BD=2S△ABD=2,∴S△ABD=1,∴S△ABC=S△ACD+S△ABD=3,故选:B.12.如图,在△ABC中,AB=AC=8厘米,BC=6厘米,点D为AB的中点.如果点P 在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上,由C 点向A点运动,为了使△BPD≌△CPQ,点Q的运动速度应为()A.1厘米/秒B.2厘米/秒C.3厘米/秒D.4厘米/秒解:当△BPD≌△CPQ时,BD=CQ=4厘米,BP=CP=3厘米,∴点P运动的时间为3÷3=1(秒),∴点Q的运动速度为4÷1=4(厘米/秒).故选:D.二、填空题(本大题共6小题,每小题3分,共18分.)13.函数y=的自变量x的取值范围是x≠3的一切实数.解:x﹣3≠0,解得:x≠3.14.已知点M(m+1,m+3)在x轴上,则m等于﹣3.解:由题意得:m+3=0,解得m=﹣3,故答案为:﹣3..15.小芳有两根长度为5cm和10cm的木条,她想钉一个三角形木框,她应该再选择一根长度为8cm的木条.(只需写出其中一种)解:设木条的长度为xcm,则10﹣5<x<10+5,即5<x<15.故答案为8(答案不唯一).16.已知一次函数y=﹣x+6的图象上有两点A(﹣1,y1),A(2,y2),则y1与y2的大小关系是y1>y2.解:∵k=﹣1<0,y将随x的增大而减小,又∵﹣1<2,∴y1>y2.故答案为y1>y2.17.如图1所示的是一张直角△ABC纸片(∠C=90°),其中∠BAC=30°,如果用两张完全相同的这种纸片恰好能拼成如图2所示的△ABD,若BC=2,则△ABD的周长为12.解:在Rt△ABC中,∵∠BAC=30°,∠ACB=90°,∴∠B=90°﹣∠BAC=60°,AB=2BC=4,∵△ABD是用两张Rt△ABC拼成的图形,∴∠D=∠B=60°,∠DAC=∠BAC=30°,∠ACD=∠ACB=90°,∴∠BAD=60°,∠BCD=180°,∴B、C、D在一条直线上,∴△ABD是等边三角形,∴AB=BC=AD,∴AB+BC+AD=12,∴△ABD的周长为12,故答案为12.18.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置,点A1,A2,A3…和点C1,C2,C3…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),按此规律,则B4的坐标是(15,8).解:∵B1的坐标为(1,1),点B2的坐标为(3,2),∴正方形A1B1C1O边长为1,正方形A2B2C2C1边长为2,∴A1的坐标是(0,1),A2的坐标是:(1,2),代入y=kx+b得,解得:.则直线的解析式是:y=x+1.∵A1B1=1,点B2的坐标为(3,2),∴A1的纵坐标是:1=20,A1的横坐标是:0=20﹣1,∴A2的纵坐标是:1+1=21,A2的横坐标是:1=21﹣1,∴A3的纵坐标是:2+2=4=22,A3的横坐标是:1+2=3=22﹣1,∴A4的纵坐标是:4+4=8=23,A4的横坐标是:1+2+4=7=23﹣1,据此可以得到A n的纵坐标是:2n﹣1,横坐标是:2n﹣1﹣1.∵点B1的坐标为(1,1),点B2的坐标为(3,2),∴点B3的坐标为(7,4),∴Bn的横坐标是:2n﹣1,纵坐标是:2n﹣1,即B n的坐标是(2n﹣1,2n﹣1).∴B4的坐标是(15,8).故答案是:(15,8).三、解答题(本大题共8小题,共66分.解答题应写出必要的文字说明、证明过程或演算步骤)19.已知在平面直角坐标系中,△ABC三个顶点的坐标分别为:A(﹣3,﹣1),B(﹣2,﹣4),C(1,﹣3).(1)作出△ABC;(2)若将△ABC向上平移3个单位后再向右平移2个单位得到△A1B1C1,请作出△A1B1C1.解:(1)如图,△ABC即为所求作.(2)如图,△A1B1C1即为所求作.20.已知:一次函数y=kx+b的图象经过M(0,2),N(1,3)两点.(1)求一次函数的解析式,并画出此一次函数的图象;(2)求当x取何值时,函数值y>0.解:(1)由题意得:,解得,∴一次函数的解析式为y=x+2;画出函数图象如图:(2)由图象可知,当x>﹣2时,y>0.21.如图,AB=AC,DB=DC,E是AD上的一点,求证:BE=CE.【解答】证明:在△ABD与△ACD中,,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,在△ABE与△ACE中,,∴△ABE≌△ACE(SAS),∴BE=CE22.尺规作图:某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵桂花树.如图,要求桂花树的位置(视为点P),到花坛的两边AB、BC的距离相等,并且点P到点A、D的距离也相等.请用尺规作图作出栽种桂花树的位置点P(不写作法,保留作图痕迹).解:如图所示:点P即为所求.23.如图所示,在△ABC中,AD⊥BC于D,CE⊥AB于E,AD与CE交于点F,且AD =CD.(1)求证:△ABD≌△CFD;(2)已知BC=7,AD=5,求AF的长.【解答】(1)证明:∵AD⊥BC,CE⊥AB,∴∠ADB=∠CDF=∠CEB=90°,∴∠BAD+∠B=∠FCD+∠B=90°,∴∠BAD=∠FCD,在△ABD和CFD中,,∴△ABD≌△CFD(ASA),(2)解:∵△ABD≌△CFD,∴BD=DF,∵BC=7,AD=DC=5,∴BD=BC﹣CD=2,∴AF=AD﹣DF=5﹣2=3.24.已知△ABC中,∠BAC=90°,∠C=30°,点D为BC边上一点,连接AD,作DE ⊥AB于点E,DF⊥AC于点F.(1)若AD为△ABC的角平分线(如图1),图中∠1、∠2有何数量关系?为什么?(2)若AD为△ABC的高(如图2),求图中∠1、∠2的度数.解:(1)∠1=∠2,理由如下:∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=∠BAC=90°,∴DE∥AC,DF∥AB,∴∠1=∠DAC,∠2=∠DAB,∵AD平分∠BAC,∴∠DAC=∠DAB,∴∠1=∠2;(2)∵DE⊥AB,DF⊥AC,AD⊥BC,∴∠ADB=∠ADC=∠DEB=∠DFC=∠BAC=90°,∴DE∥AC,∴∠BDE=∠C=30°,∴∠1=∠ADB﹣∠BDE=60°,∵∠FDC=180°﹣∠DFC﹣∠C=60°,∴∠2=∠ADC﹣∠FDC=30°.25.D县举办运动会需购买A,B两种奖品,若购买A种奖品5件和B种奖品2件,共需80元;若购买A种奖品3件和B种奖品3件,共需75元.(1)求A、B两种奖品的单价各是多少元?(2)大会组委会计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.解:(1)设A、B两种奖品的单价分别为x、y元,则,解得:;(2)设购买A种奖品m件,则B为(100﹣m)件,由题意得:,解得:70≤m≤75,W=10m+15(100﹣m)=1500﹣5m,当m=75时,W有最小值为:1125,答:最少费用为1125.26.已知正比例函数y=x与一次函数y=3x﹣5的图象交于点A,且OA=OB.(1)求A点坐标;(2)求△AOB的面积;(3)已知在x轴上存在一点P,能使△AOP是等腰三角形,请直接写出所有符合要求的点P的坐标.解:(1)由题意得:,解得:,∴A(3,4);(2)在y=3x﹣5中,令x=0,得y=﹣5,∴B(0,﹣5),∴OB=5,∴S△AOB=×5×3=;(3)设P(m,0),∵OA=OB,∴OA=5,∵△AOP是等腰三角形,∴分三种情况:OA=OP或OA=AP或OP=AP,①当OA=OP时,∴|m|=5,解得:m=﹣5或5,∴P1(5,0),P2(﹣5,0);②当OA=AP时,点O与点P关于直线x=3对称,∴P(6,0);③当OP=AP时,点P为线段OA的垂直平分线与x轴的交点,OA的中点坐标为(,2),设过OA中点且与OA垂直的直线解析式为y=﹣x+b,将(,2)代入,得:2=﹣×+b,解得:b=,∴y=﹣x+,令y=0,得0=﹣x+,解得:x=,∴P(,0),综上所述,点P的坐标为(5,0)或(﹣5,0)或(6,0)或(,0).。

最新北师大版八年级上册数学《期末测试题》及答案解析

最新北师大版八年级上册数学《期末测试题》及答案解析
【解析】
试题分析:(1)用学生数除以相对应百分比即可,进而可求圆心角;
(2)先求偶尔使用的人数,再根据数据画图;
15.若 ,则 ______________.
16.如图,在 中, ,AD是 的平分线, 于点E,点F在AC上, ,若 , ,则DE的长为_____________.
三、解答题(本大题6个小题,共56分.)
17.(1)计算: ;(2)因式分解:
18.先化简,再求值: ,其中 满足
19 已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.
(3)已知全校共3000名学生,请估计经常使用“共享单车” 学生大约有多少名?
22.在 中, ,将 绕点A顺时针旋转到 的位置,点E在斜边AB上,连结BD,过点D作 于点F.
(1)如图1,若点F与点A重合.①求证: ;②若 ,求出 ;
(2)若 ,如图2,当点F在线段CA的延长线上时,判断线段AF与线段AB的数量关系.并说明理由.
【答案】B
【解析】
∵BF∥AC,
∴∠C=∠CBF,
∵BC平分∠ABF,
∴∠ABC=∠CBF,
∴∠C=∠ABC,
∴AB=,故①正确;
∵AD是△ABC的角平分线,
∴BD=CD,AD⊥BC,故②正确,
在△CDE与△DBF中,∠C=∠CBF,CD=BD,∠EDC=∠BDF,
∴△CDE≌△DBF,
∴DE=DF,CE=BF,故③正确;
故选B.
10.如图是一块长,宽,高分别是6cm,4cm和3cm的长方体纸盒子,一只老鼠要从长方体纸盒子的一个顶点A处,沿着长方体的表面到长方体上和A相对的顶点B处吃食物,那么它需要爬行的最短路径的长是()
A. B.
C. D.

北师大版八年级(上)期末数学试卷(含答案)

北师大版八年级(上)期末数学试卷(含答案)

图1AB C D3412图2B CBC北师大版八年级(上)期末数学试卷及答案一选择题。

(每小题3分,共24分)下列各小题均有四个选项,其中只有一项符合题目要求,将符合题目要求的选项前面字母填入题后括号内。

1、下列式子正确的是()A. 1)1(33-=- B. 525±= C. 9)9(2-=- D. 2)2(2-=-2、二元一次方程12=-yx有无数多个解,下列四组值中不是..该方程的解是()A.⎩⎨⎧==11yxB.⎩⎨⎧-=-=21yxC.⎩⎨⎧-=-=31yxD.⎩⎨⎧==32yx3、如图1,相对灯塔O而言,小岛A的位置是()A. 北偏东60 °B. 距灯塔2km处C. 北偏东30°且距灯塔2km处D. 北偏东60°且距灯塔2km处4、下列说法正确的是()A. 数据0,5,-7,-5,7的中位数和平均数都是0;B. 数据0,1,2,5,a的中位数是2;C. 一组数据的众数和中位数不可能相等;D. 数据-1,0,1,2,3的方差是4。

5、已知正比例函数kxy=的函数值xy随的增大而减小,则一次函数kkxy+=的图象大致是()6、如图2在△ABC中,∠1=∠2,∠3=∠4,若∠D=25°,则∠A等于()A. 25°B. 50°C. 65°D. 75°7、小强每天从家到学校上学行走的路程为900m,某天他从家去上学时以每分30m的速度行走了450m,为了不迟到他加快了速度,以每分45m的速度行走完剩下的路程,那么小强离学校的路D程s (m)与他行走的时间t (min)之间的函数关系用图象表示正确的是( )8、如图3,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则 ∠ABC 的度数为( )A. 90°B. 60°C. 45°D. 30° 二、填空题(每小题3分,共21分) 9、64的算术平方根是___________。

最新北师大版数学八年级上册期末试卷(含答案)

最新北师大版数学八年级上册期末试卷(含答案)

最新北师大版数学八年级上册期末试卷(含答案)最新北师大版数学八年级上册期末试卷(含答案)说明:本卷共七大题,全卷共24题,满分120分,考试时间为100分钟。

一、选择题(本大题共6小题;每小题3分;共18分)1.16的平方根是A。

2B。

4C。

±2D。

±42.P1 (x1.y1);P2 (x2.y2)是正比例函数y=-x图象上的两点;下列判断中,正确的是A。

y1.y2B。

y1 < y2C。

当x1 < x2时,y1 < y2D。

当x1.y23.在某次体育测试中,九(1)班6位同学的立定跳远成绩(单位:m)分别为:1.71;1.85;1.85;1.95;2.10;2.31;则这组数据的众数是A。

1.71B。

1.85C。

1.90D。

2.314.下列长度的各组线段能组成一个直角三角形的是A。

4cm;6cm;11cmB。

4cm;5cm;1cmC。

3cm;4cm;5cmD。

2cm;3cm;6cm5.如图AB=AC,则数轴上点C所表示的数为A。

5+1B。

5-1C。

-5+1D。

-5-16.XXX去距县城28千米的旅游点游玩,先乘车,后步行。

全程共用了1小时。

已知汽车速度为每小时36千米,步行的速度每小时4千米,则XXX乘车路程和步行路程分别是A。

26千米,2千米B。

27千米,1千米C。

25千米,3千米D。

24千米,4千米二、填空题(本大题共8小题;每小题3分;共24分)7.计算:8-2=6.8.已知点A(l,-2),若A、B两点关于x轴对称,则B点的坐标为(l,2)。

9.若a<1,则(a-1)-1=1-a。

10.某校八年级(1)班共有男生30名,女生20名,若测得全班平均身高为1.56米,其中男生平均身高为1.6米,则女生平均身高为1.48米。

11.若一次函数y=2x+6与y=kx图象的交点到x轴的距离为2,则k的值为4.12.若关于x,y的方程组2x-y=mx+my=n的解是(x。

(完整版)北师大版初二数学上册期末试卷及答案

(完整版)北师大版初二数学上册期末试卷及答案

初级中学2010-11 年秋季八年级( 上) 数学综合测试一、选择题(每小题 3 分,共30 分)下列各小题都给出了四个选项,其中只有一项是符合题目要求的,前面的字母填写在Ⅱ卷上指定的位置.请把符合要求的选项1.在如图 1 所示的四个图案中,既可以由旋转形成,又可以由轴对称形成的是()2.有四个三角形,分别满足下列条件:①一个内角等于另外两个内角之和;②三个内角之比为3;4:5;③三边长分别为9,40,41;④三边之比为8:15:17.其中,能构成直角三角形的个数有()D.4 个A .1 个B .2 个C.3 个3.如图2,用8 块相同的长方形地砖刚好拼成一个宽为20 cm 的矩形图案(地砖间的缝隙忽略不计),则每块长方形地砖的面积是()A .20 cm2 B.40 cm2 C.60 cm2 D.75 cm24、如图,两条直线y与y=bx+a 在同一直角坐标系中的图像位置可能是()y=ax+by y yo x o x o x o xA5、一个正方形的边长如果增加B2cm,面积则增加C D32cm,则这个正方形的边长为()(A )6cm (B )5cm(C)8cm (D )7cm6、若点P(a ,A 、a <4a )是第二象限的点,则 a 必须满足()4B 、a >4 C、a <0 D、0<a <47.某校学生体验完后,抽查了 6 名男学生的身高(单位:厘米):151,151,151,152,152,154;给出下列结论:①众数是152 厘米;②众数是151 厘米;③中位数是151 厘米;④平均数是152.其中正确的个数有()D.4 个A .1 个B .2 个C.3 个8.下列说法正确的是()A .有两边相等的平行四边形是菱形C.四个角相等的菱形是正方形B .有一个角是直角的四边形是矩形D .任何正多边形都可以密铺9、某粮食生产专业户去年计划生产水稻和小麦共15 吨,实际生产 17 吨,其中水稻超产 10%, 小麦超产 15%,设该专业户去年实际生产水稻 x 吨,生产小麦 y 吨,则依据题意列出方程 组是()x y 15 15%y x y 17 15%y A 、B 、10%x 17 10%x 15 x y 15x (1 y 17C 、D 、(1 10%)x (1 15%) y 1710%)x (1 15%) y 1510、某储运部紧急调拨一批物资,调进物资共用4小时,调S(吨)进物资 2 小时后开始调出物资(调进物资与调出物资的速度均 30保持不变).储运部库存物资 S(吨 )与时间 t( 小时 )之间的函数关 系如图所示,这批物资从开始调进到全部调出需要的时间是( ) 10 A . 4 小时C .4.8 小时 B . 4.4 小时D . 5 小时O 2第 10 t( 时)4题图二、填空题(每小题3 分,共 15 分)将答案填写在Ⅱ卷上指定的位置.211、如果 (x-4) =25,那么 x 的值是12、已知 a 、b 为两个连续整数,且 7 a < <b ,则 a b = .x 的值为3 ,则输出的数值为 13、下图是一个简单的数值运算程序,若输入.x2减 1输出输入 x图 6a.14、表 2 是从表 1 中截取的一部分,则 15. 用同样大小的黑色棋子按下图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子枚(用含 n 的代数式表示) .第 1 个图 第 2 个图 第 3 个图数Ⅱ卷学试题共75 分)(解答题题号一二三四五总分得分一、选择题答案栏(30 分)请将Ⅰ卷中的选择题答案的字母填写在下表中.得分题号12345678910 评卷人答案二、填空题答案栏(15 分)请将Ⅰ卷中的填空题的答案填写在下表中.15得分题号11 12 13 14评卷人答案得分三、解答题(每题 6 分,共24 分)评卷人16、2(a - b - 7) + 2 a+ b - 8 =0,求a+b-(-22) 的平方根17、若.18.(08 河北)(本小题满分9 分)W 的台风在某海岛(设为点O )的南偏东45 方气象台发布的卫星云图显示,代号为向的B 点生成,测得OB 经5h 后到达海面上的点100 6km .台风中心从点 B 以40km/h 的速度向正北方向移动,C 处.因受气旋影响,台风中心从点 C 开始以30km/h 的速度向北60 方向继续移动.以O 为原点建立如图偏西12 所示的直角坐标系.(1)台风中心生成点(结果保留根号)(2)已知距台风中心B 的坐标为,台风中心转折点 C 的坐标为;A )位20km 的范围内均会受到台风的侵袭.如果某城市(设为点于点O 的正北方向且处于台风中心的移动路线上,那么台风从生成到最初多长时间?..侵袭该城要经过北y/kmA东60Cx/kmO45B图1219、如图,在△ ABC 中,点O 是AC 边上的一个动点,过点O 作直线MN∥BC,设MN 交∠ BCA 的角平分线于点(1)求证:EO=FO;E,交∠ BCA 的外角平分线于点F.A(2)当点O 运动到何处时,四边形并证明你的结论.AECF 是矩形?NM O FEB C(第19题图)得分四、解答题(每小题7 分,共21 分)评卷人20.20XX 年8 月8 日,第29 届奥运会将在北京举行.现在,奥运会门票已在世界各地开始销售,下图是奥运会部分项目的门票价格:北京20XX 年奥运会部分项目门票价格统计图价格(元)1200 1000 800 600 400 200 01000800 800 800800最低价最高价500605050 40 5030项目田径篮球跳水足球游泳乒乓球(1)从以上统计图可知,同一项目门票价格相差很大,分别求出篮球项目门票价格的极差和跳水项目门票价格的极差.(2)求出这 6 个奥运会项目门票最高价的平均数、中位数和众数.(3)田径比赛将在国家体育场“鸟巢”进行,“鸟巢”内共有观众座位9.1 万个.从安全角度考虑,正式比赛时将留出0.6 万个座位.某场田径赛,组委会决定向奥运赞助商和相关部门赠送还 1.5 万张门票,其余门票全部售出.若售出的门票中最高价门票占10%至15%,其他门票的平均价格是300 元,你估计这场比赛售出的门票收入约是多少万元?请说明理由.21、为迎接年奥运会,某工艺厂准备生产奥运会标志“中国印”和奥运会吉祥物“福20XX娃”.该厂主要用甲、乙两种原料,已知生产一套奥运会标志需要甲原料和乙原料分别为 4 盒和3 盒,生产一套奥运会吉祥物需要甲原料和乙原料分别为 5 盒和10 盒.该厂求该厂能生购进甲、乙原料的量分别为20000 盒和30000 盒,如果所进原料全部用完,产奥运会标志和奥运会吉祥物各多少套?△ ABC 22、将一张透明的平行四边形胶片沿对角线剪开,得到图①中的两张三角形胶片和△DEF △DEF B 与顶点 E 重合,把 绕点 B 顺时针方向.将这两张三角形胶片的顶点 旋转,这时 AC DF O .与 相交于点 AACA E F OO F B DC B(E)B(E)FDC 图②D图①图③( 1)当△ D E F B(E ) ,C ,D AFD DCA旋转至如图②位置, 点 在同一直线上时, 与 的数量关系是.2 分( 2)当 △ DEF 继续旋转至如图③位置时, ( 1)中的结论还成立吗?请说明理由. ( 3)在图③中,连接 BO , AD ,探索 BO 与 AD 之间有怎样的位置关系,并证明.五、解答题(每小题10 分,共30 分)得分23.20XX 年5 月12 日14 时28 分四川汶川发生里氏8.0 级强力地震。

北师大版八年级(上)期末数学试卷(含答案)

北师大版八年级(上)期末数学试卷(含答案)

北师大版八年级(上)期末数学试卷及答案一、选择题(每小题3分,共18分)1.(3分)﹣的倒数是()A.B.3C.﹣3D.﹣2.(3分)在直角三角形中,斜边与较小直角边的和、差分别为8、2,则较长直角边长为()A.5B.4C.3D.23.(3分)已知点P(m,n)在第四象限,则直线y=nx+m图象大致是下列的()A.B.C.D.4.(3分)若方程(a+3)x+3y|a|﹣2=1是关于x,y的二元一次方程,则a的值为()A.﹣3B.±2C.±3D.35.(3分)如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为()A.31°B.28°C.62°D.56°6.(3分)已知关于x、y的方程组,则下列结论中正确的是()①当a=1时,方程组的解也是方程x+y=2的解;②当x=y时,a=﹣;③不论a取什么实数,2x+y的值始终不变.A.①②B.①②③C.②③D.②二、填空题。

(每小题3分,共18分)7.(3分)函数中,自变量x的取值范围是.8.(3分)的平方根是.9.(3分)若a,b,c分别是△ABC的三条边长,且a2﹣6a+b2﹣10c+c2=8b﹣50,则这个三角形的形状是.10.(3分)的整数部分是,小数部分是.11.(3分)如果二元一次方程组的解适合方程3x+y=﹣8,则k=.12.(3分)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间(t)分之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了30分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有360米.其中正确的结论有.(填序号)三、解答题。

(5×6分+3×8分+2×9分+12分=84分)13.(6分)计算:(1);(2).14.(6分)(1)已知点P(2m﹣6,m+2),若点P在y轴上,求点P的坐标.(2)已知点Q,若点Q在过点A(2,3)且与x轴平行的直线上,AQ=3,求点Q的坐标.15.(6分)解方程组.16.(6分)如图,在平面直角坐标系xOy中,一次函数y=﹣x+5的图象l1分别与x轴、y轴交于A、B两点,若正比例函数的图象l2与l1交于点C(m,4).(1)求m的值;(2)求△AOC的面积;(3)一次函数y=kx+1的图象为l3,且l1、l2、l3不能围成三角形,请写出k的值.17.(6分)如图在平面直角坐标系中,△ABC各顶点的坐标分别为:A(4,0),B(﹣1,4),C(﹣3,1)(1)在图中作△A′B′C′使△A′B′C′和△ABC关于x轴对称;(2)写出点A′,B′,C′的坐标.18.(8分)如图,在平面直角坐标系中,一次函数y=2x﹣3的图象分别交x轴,y轴于点A、B,将直线AB绕点B 顺时针方向旋转45°,交x轴于点C,求直线BC的函数表达式.19.(8分)如图,圆柱形容器的高为120cm,底面周长为100cm,在容器内壁离容器底部40cm的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿40cm与蚊子相对的点A处,求壁虎捕捉蚊子的最短距离.20.(8分)某学校在体育周活动中组织了一次体育知识竞赛,每班选25名同学参加比赛,成绩分别为A、B、C、D四个等级,其中相应等级的得分依次记为100分、90分、80分、70分,学校将八年级一班和二班的成绩整理并绘制成统计图,如图所示:(1)把八年级一班竞赛成绩统计图补充完整;(2)求出下表中a、b、c的值:平均数/分中位数/分众数/分方差一班a b90106.24二班87.680c138.24(3)根据上面图表数据,请你对这次竞赛成绩的结果进行分析.(至少写两条)21.(9分)材料阅读:如图(1)所示的图形,像我们常见的学习用品—圆规,我们常把这样的图形叫做“规形图”.(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的数量关系,并说明理由;(2)请你利用此结论,解决以下两个问题:Ⅰ.如图(2),把一个三角尺DEF放置在△ABC上,使三角尺的两条直角边DE,DF恰好经过点B,C,若∠A =30°,则∠ABD+∠ACD=.Ⅱ.如图(3),BD平分∠ABP,CD平分∠ACP,若∠A=50°,∠BPC=130°,求∠BDC的度数.22.(9分)在《二元一次方程组》这一章的复习课上,王老师让同学们根据下列条件探索还能求出哪些量:在我市“精准扶贫”工作中,甲、乙两个工程队先后接力为扶贫村庄修建条335米长的公路,甲队每天修建20米,乙队每天修建25米,一共用15天完成.(1)小红同学根据题意,列出了一个尚不完整的方程组请写出小红所列方程组中未知数x,y表示的意义:x表示,y表示;并写出该方程组中?处的数应是,*处的数应是;(2)小芳同学的思路是想设甲工程队一共修建了x米公路,乙工程队一共修建了y米公路.下面请你按照小芳的设想列出方程组,并求出乙队修建了多少天?23.(12分)6月份以来,猪肉价格一路上涨,为平抑猪肉价格,某省积极组织货源,计划由A、B、C三市分别组织10辆,10辆和8辆运输车向D、E两市运送猪肉,现决定派往D、E两地的运输分别是18辆、10辆.已知一辆运输车从A市到D、E两市的运费分别为200元和800元,从B市到D、E两市的运费分别为300元和700元,从C市到D、E两市的运费分别为400元和500元.若从A、B两市都派x辆车到D市,当这28辆运输车全部派出时,①求总运费W(元)与x(辆)之间的关系式,并写出x的取值范围;②求总运费W最低时的车辆派出方案.参考答案与试题解析一、选择题。

最新北师大版八年级数学上册期末测试卷及答案

最新北师大版八年级数学上册期末测试卷及答案

最新北师大版八年级数学上册期末测试卷及答案班级___________ 姓名___________ 成绩_______本试题分试卷和答题卡两部分.第1卷共2页,满分为48分;第1I 卷共4页,满分为 102分.本试题共6页,满分为150分.考试时间为120分钟. 第I 卷(选择题共48分)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1. 25的平方根是A .5B .-5C .± 5D .±5 2.下列图形中,是中心对称图形的是3.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数 据的众数和中位数分别是 A. 7, 7 B. 8, 7.5 C. 7, 7.5 D. 8, 6.54.如图,两个较大正方形的面积分别为225、289,则字母A 所代表的正方形的面积为 A .4 B .8 C .16 D .645.化简2x 2-1÷1x -1的结果是A .2x -1 B.2x C.2x +1D. 2(x +1)6.不等式组⎩⎨⎧x -1≤02x +4>0的解集在数轴上表示为7.如果关于x 的不等式(a +1)x >a +1的解集为x <1,则a 的取值范围是 A.a <0 B.a <-1 C.a >1 D.a >-18.实数a 在数轴上的位置如图所示,则(a -4)2+(a -11)2化简后为A . 7B . -7C .2a -15D .无法确定9.若方程A x -3+Bx +4=2x +1(x -3)(x +4)那么A 、B 的值A.2,1B.1,2C.1,1D.-1, -110.已知长方形ABCD 中,AB =3,AD =9,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为A .6B .8C .10D .1211.如图,△ABC 绕点A 顺时针旋转45°得到△AB ′C ′,若∠BAC =90°,AB =AC =2,则图中阴影部分的面积等于 A .2- 2 B.1 C . 2 D. 2-l12.如图,△ABC 中,∠ACB =90°,AC >BC ,分别以△ABC 的边AB 、BC 、CA 为一边内△ABC 外作正方形ABDE 、BCMN 、CAFG ,连接EF 、GM 、ND ,设△AEF 、△BND 、△CGM 的面积分别为S 1、S 2、S 3,则下列结论正确的是A.S l=S2=S3B.S1=S2<S3C.S l=S3<S2D.S2=S3<S l第II卷(非选择题共102分)二、填空题(本大题共6个小题.每小题4分,共24分.把答案填在答题卡的横线上.)13.计算:8一2=______________.14.分解因式:a2-6a+9=______________.15.当x=______时,分式x2-9(x-1)(x-3)的值为0.16.已知a+b=3,a2b+ab2=1,则ab=____________·17.如图,一只蚂蚁沿着边长为2的正方体表面从点4出发,经过3个面爬到点B,如果它运动的路径是最短的,则最短路径的是长为__________________.18.如图,在四边形ABCD中,AD=4,CD=3, ∠ABC=∠ACB=∠ADC=45°,则BD的长为______________.三、解答题(本大题共9个小厦,共78分,解答应写出文字说明,证明过程或演算步骤.)19.(本小题满分6分)计算:(1)18+22-3 (2)a +2a -2÷1a 2—2a20.(本小题满分6分)(1)因式分解:m 3n ―9mn .(2)求不等式x -22≤7-x3的正整数解21.(本小题满分8分) (1)解方程:1-2x x -2=2+32-x(2)解不等式组⎩⎨⎧4x ―3>xx +4<2x 一1,并把解集在数轴上表示出来22.(本小题满分10分)(1)如图1,△ABC 是边长为2的等边三角形,将△ABC 沿直线BC 向右平移,使点B 与点C 重合,得到△DCE ,连接BD ,交AC 于点F .求线段BD 的长.(2)一次环保知识竞赛共有25道题,规定答对一道题得4分,答错或不答一道题扣1分.在这次竞赛中,小明被评为优秀(85分或85分以上),小明至少答对了几道题?23.(本小题满分8分)济南与北京两地相距480千米,乘坐高铁列车比乘坐普通快车能提前4小时到达.已知高铁列车的平均行驶速度是普通快车的3倍,求高铁列车的平均行驶速度. 24.(本小题满分6分)先化简再求值:(x+1一3x-1)×x-1x-2,其中x=-22+225.(本小题满分10分)某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核,甲、乙、丙各项得分如下表:(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分,根据规定,请你说明谁将被录用.26.(本小题满分12分)如图,在四边形ABCD中,对角线AC,BD交于点E,∠BAC=90°,∠CED=45°,∠DCE=30°,DE=2,BE=22.(1)求CD的长:(2)求四边形ABCD的面积27.(本小题满分12分)已知,点D是等边△ABC内的任一点,连接OA,OB,OC.(1)如图1,己知∠AOB=150°,∠BOC=120°,将△BOC绕点C按顺时针方向旋转60°得△ADC.①∠DAO的度数是_______________②用等式表示线段OA,OB,OC之间的数量关系,并证明;(2)设∠AOB=α,∠BOC=β.①当α,β满足什么关系时,OA+OB+OC有最小值?请在图2中画出符合条件的图形,并说明理由;②若等边△ABC的边长为1,直接写出OA+OB+OC的最小值.参考答案一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案 D B C D C B B A C A D A二、填空题214. ( a-3) 215. -316.1317.18.三.解答题: 19.解:(1)3- 3- ··················································································· 1分 = 3- ························································································ 2分 =1 ··································································································· 3分(2)22122a a a a+÷-- =2(2)21a a a a +-⋅- ················································································· 5分 =22a a + ·························································································· 6分20.解:(1) m 3n -9mn .=2(9)mn m - ······················································································ 1分 =22(3)mn m - ····················································································· 2分 =(3)(3)mn m m +- ··············································································· 3分(2)解:3(x -2)≤2(7-x ) ·································································· 4分3x -6≤14-2x 5x ≤20x ≤4 ············································································· 5分 ∴这个不等式的正整数解为1、2、3、4. ················································· 6分 21.(1)123222x x x -=+-- 122(2)3x x -=--····································································· 1分 12243x x -=--······································································· 2分48x -=-2x = ················································································ 3分经检验2x =是增根,原方程无解 ····················································· 4分(2)43421x xx x-⎧⎨+-⎩><,解:解不等式①得:x>1, ·································································· 5分解不等式②得:x>5, ········································································ 6分∴不等式组的解集为x>5, ································································· 7分在数轴上表示不等式组的解集为:.············································· 8分22. (1)解:∵正△ABC沿直线BC向右平移得到正△DCE∴BE=2BC=4, BC=CD,DE=AC=2,∠E=∠ACB=∠DCE=∠ABC=60°················· 2分∴∠DBE=12∠DCE =30°······································································ 3分∴∠BDE=90° ···················································································· 4分在Rt△BDE中,由勾股定理得22224223BD BE DE=--······················································· 5分(2)解:设小明答对了x道题,······························································· 6分4x-(25-x) ≥85 ··············································································· 8分x≥22 ················································································ 9分所以,小明至少答对了22道题. ····························································10分23. 解:设普通快车的速度为x km/h,由题意得: ····································· 1分48048043x x-=···················································································· 3分4801604x x-=320x=4 ····························································································· 4分x=80 ································································································ 5分经检验x=80是原分式方程的解······························································ 6分3x=3×80=240 ···················································································· 7分答:高铁列车的平均行驶速度是240km/h.·············································· 8分24.解:31 112xxx x-⎛⎫+-⋅⎪--⎝⎭=(1)(1)31[]112x x xx x x+---⨯---························································· 1分=24112x xx x--⨯--············································································ 2分=(2)(2)2x xx+--············································································ 3分=2x + ······················································································ 4分当x ==2=时 ··········································· 5分原式22+········································································· 6分 25. 解:(1)x 甲 =(83+79+90)÷3=84, x 乙=(85+80+75)÷3=80, x 丙=(80+90+73)÷3=81. ·································································· 3分 从高到低确定三名应聘者的排名顺序为:甲,丙,乙; ······························ 4分 (2)∵该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分, ∴甲淘汰, ······················································································ 5分 乙成绩=85×60%+80×30%+75×10%=82.5, ··············································· 7分 丙成绩=80×60%+90×30%+73×10%=82.3, ·············································· 9分 ∴乙将被录取. ············································································· 10分 26解: (1)过点D 作DH ⊥AC , ···························································· 1分 ∵∠CED =45°, ∴∠EDH =45°, ∴∠HED =∠EDH , ∴EH =DH , ······················································································ 3分 ∵EH 2+DH 2=DE 2,DE∴EH 2=1, ∴EH =DH =1, ··················································································· 5分 又∵∠DCE =30°,∠DHC =90°, ∴DC =2 ·························································································· 6分 (2)∵在Rt △DHC 中,222DH HC DC +=················································· 7分 ∴12+HC 2=22,∴HC ······················································································ 8分∵∠AEB =∠CED=45°,∠BAC =90°,BE∴AB =AE =2, ···················································································· 9分 ∴AC ····································································· 10分∴S 四边形ABCD=S △BAC +S △DAC ··················································································· 11分 =12×2×(3+12×1×(3 339+ ························································································· 12分27. 解:(1)①90°. ··········································································· 2分 ②线段OA ,OB ,OC 之间的数量关系是222OA OB OC +=. ························· 3分 如图1,连接OD . ··············································································· 4分 ∵△BOC 绕点C 按顺时针方向旋转60°得△ADC , ∴△ADC ≌△BOC ,∠OCD=60°. ∴CD = OC ,∠ADC =∠BOC =120°,AD= OB . ∴△OCD 是等边三角形, ···································································· 5分 ∴OC =OD =CD ,∠COD =∠CDO =60°, ∵∠AOB =150°,∠BOC =120°, ∴∠AOC =90°, ∴∠AOD =30°,∠ADO =60°. ∴∠DAO =90°. ··················································································· 6分 在Rt △ADO 中,∠DAO =90°, ∴222OA AD OD +=.∴222OA OB OC +=. ·············································································· 7分(2)①如图2,当α=β=120°时,OA +OB +OC 有最小值. ······························· 8分 作图如图2, ····················································································· 9分 如图2,将△AOC 绕点C 按顺时针方向旋转60°得△A ’O ’C ,连接OO ’. ∴△A ′O ′C ≌△AOC ,∠OCO ′=∠ACA ′=60°. ∴O ′C = OC , O ′A ′ = OA ,A ′C = BC , ∠A ′O ′C =∠AOC .D AB CO 图1。

最新北师大版八年级上册数学期末测试试题以及答案

最新北师大版八年级上册数学期末测试试题以及答案

最新八年级上册数学期末考试试题
本试卷分第I卷(选择题)和第II卷(非选择题)两部分.第I卷1至2页,第II卷3至8页.共150分.考试时间120分钟.
第I卷(选择题共48分)
注意事项:
1.数学考试中不允许使用计算器.
2.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.
3.选择题为四选一题目,每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案.不能答在考试卷上.
4.考试结束后,监考教师将本试卷和答题卡一并收回.
一、选择题。

第Ⅱ卷(非选择题共72分)
注意事项:
1.第Ⅱ卷共6页.用蓝、黑钢笔或圆珠笔直接答在考试卷上.2.答卷前将密封线内的项目填写清楚.
二、填空题。

三、解答题。

北师大版八年级数学上册期末试卷及参考答案

北师大版八年级数学上册期末试卷及参考答案

北师大版八年级数学上册期末试卷一、选择题(每小题3分,共18分) 下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内。

1.的相反数是( )A .5B .5-C .5±D .25 2. 如图,将边长为2个单位的等边△ABC 沿边BC 向右平移1个单位得到△DEF,则四边形ABFD 的周长为( ) A .6 B . 8 C .10 D .123. 为了让居民有更多休闲和娱乐的地方,政府又新建了几处广场,工人师傅在铺设地面时,准备选用同一种正多边形地砖.现有下面几种形状的正多边形地砖,其中不能..进行平面镶嵌的是( ) A .正三角形B .正方形C .正五边形D .正六边形4. 在平面直角坐标系中,点(12)P -,的位置在( )A .第一象限B .第二象限C .第三象限D .第四象限 5. 在一组数据3,4,4,6,8中,下列说法正确的是( )A .平均数小于中位数B .平均数等于中位数C .平均数大于中位数D .平均数等于众数 6.). A.6到7之间 B.7到8之间 C.8到9之间D.9到10之间二、填空题(每小题3分,共27分) 7.x 应满足的条件是 .8. 若一个多边形的内角和等于720,则这个多边形是 边形.9. 随着海拔高度的升高,空气中的含氧量含氧量3(g /m )y 与大气压强(kPa)x 成正比例函数关系.当36(kPa)x =时,3108(g /m )y =,请写出y 与x 的函数关系式 . 10. 如图,点A B ,在数轴上对应的实数分别为m n ,, 则A B ,间的距离是 .(用含m n ,的式子表示)11. 边长为5cm 的菱形,一条对角线长是6cm ,则另一条对角线的长是 . 12.写出满足14<a <15的无理数a 的两个值为 . 13. 如图,有一圆柱体,它的高为20cm ,底面半径为7cm .在圆柱的下底面A 点处有一个蜘蛛,它想吃到上底面上与A 点相对的B点处的苍蝇,BFE D CB A 2题需要爬行的最短路径是 cm (结果用带根号和π的式子表示).14. 直线y kx b =+经过点(20)A -,和y 轴正半轴上的一点B ,如果ABO △(O 为坐标原点)的面积为2,则b 的值为 .15. 若等腰梯形ABCD 的上、下底之和为4,并且两条对角线所夹锐角为60,则该等腰梯形的面积为 (结果保留根号的形式). 三、解答题(本大题8个小题,共75分)16.(8分)(1.(2)解方程组:425x y x y -=⎧⎨+=⎩, . ①②17.(9分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC △的顶点均在格点上,点C 的坐标为(41)-,.①把ABC △向上平移5个单位后得到对应的111A B C △,画出111A B C △的图形并写出点1C 的坐标;②以原点O 为对称中心,再画出与111A B C △关于原点O 对称的222A B C △,并写出点2C 的坐标.18.(9分)某水果种植场今年收获的“妃子笑”和“无核Ⅰ号”两种荔枝共3200千克,全部售出后卖了30400元.已知“妃子笑”荔枝每千克售价8元,“无核Ⅰ号”荔枝每千克售价12元,问该种植场今年这两种荔枝各收获多少千克?l9.(9分)如图,已知一等腰三角形的周长是16,底边上的高是4.求这个三角形各边的长.20.(9分) 如图:在平面直角坐标系中,有A (0,1),B (1-,0),C (1,0)三点. (1)若点D 与A B C ,,三点构成平行四边形,请写出所有符合条件的点D 的坐标; (2)选择(1)中符合条件的一点D ,求直线BD 的解析式.21. (10分) 某中学数学活动小组为了调查居民的用水情况,从某社区的1500户家庭中随月用水量(吨) 3 4 5 7 8 9 10户数 4 3 5 11 4 2 1 (1)求这30户家庭月用水量的平均数、众数和中位数; (2)根据上述数据,试估计该社区的月用水量;(3)由于我国水资源缺乏,许多城市常利用分段计费的办法引导人们节约用水,即规定每y xAC B21 121- 2- O1- 2-个家庭的月基本用水量为m (吨),家庭月用水量不超过m (吨)的部分按原价收费,超过m (吨)的部分加倍收费.你认为上述问题中的平均数、众数和中位数中哪一个量作为月基本用水量比较合理?简述理由. 22. (10分) 康乐公司在A B ,两地分别有同型号的机器17台和15台,现要运往甲地18台,乙地14台,从A B ,两地运往甲、乙两地的费用如下表:甲地(元/台)乙地(元/台)A 地 600 500B 地 400 800(1)如果从A 地运往甲地x 台,求完成以上调运所需总费用y (元)与x (台)之间的函数关系式;(2)请你为康乐公司设计一种最佳调运方案,使总费用最少,并说明理由。

北师大版数学八年级上册期末考试试卷及答案

北师大版数学八年级上册期末考试试卷及答案

北师大版数学八年级上册期末考试试题一、选择题(共10小题).1.三个正方形的面积如图所示,则S的值为()A.3B.4C.9D.122.下列图象中,表示y是x的函数的是()A.B.C.D.3.在平面直角坐标系中,点A(1,﹣2)关于x轴对称的点的坐标是()A.(1,﹣2)B.(1,2)C.(﹣1,2)D.(﹣1,﹣2)4.如图,数轴上有M,N,P,Q四点,则这四点中所表示的数最接近﹣的是()A.点M B.点N C.点P D.点Q5.下列计算正确的是()A.=2B.=3C.•=D.2+=36.如图,AB∥CD,BE交AD于点E,若∠B=18°,∠D=32°,则∠BED的度数为()A.18°B.32°C.50°D.60°7.我们把形如a+b(a,b为有理数,为最简二次根式)的数叫做型无理数,如3+1是型无理数,则()2是()A.型无理数B.型无理数C.型无理数D.型无理数8.已知等腰三角形的两边长分别为a,b,且a,b满足+|b﹣4|=0,则此等腰三角形的周长为()A.7B.10C.11D.10或119.如图,一次函数y=2x和y=ax+4的图象相交于点A(m,3),则关于x,y的方程组的解为()A.B.C.D.10.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1,图2所示,图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1表示的算筹图用我们现在所熟悉的方程组形式表述出来,就是.类似地,图2所示的算筹图我们可以表述为()A.B.C.D.二、填空题(共4个小题,每小题4分,共16分)11.25的算术平方根是.12.如果方程组的解为,那么“*”表示的数是.13.如图,在平面直角坐标系xOy中,以点A(﹣5,0)为圆心,13为半径作弧,交y轴的正半轴于点B,则点B的坐标为.14.武侯区某中学选拔一名学生参加区运动会的跳高项目,在10次测试中,甲、乙、丙、丁四名学生的跳高成绩的平均数均为1.6m,方差分别为:S=0.48,S=0.56,S=0.52,S=0.58,则这四名学生中成绩最稳定的是.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.计算:(1)(π﹣2020)0﹣2++|1﹣|.(2)﹣(﹣)(+).16.解方程组:.17.在平面直角坐标系xOy中,一次函数y=﹣x+6的图象分别交y轴和x轴于点A,B,交一次函数y=2x的图象于点C.(1)求点C的坐标;(2)求△OBC的面积.18.如图,在平面直角坐标系xOy中,已知点A(﹣1,5),B(1,0),C(3,1),连接BC.(1)在图中画出点A关于y轴的对称点A′,连接A′B,A'C,并直接写出点A′的坐标;(2)在(1)的基础上,试判断△A′BC的形状,并说明理由.19.第31届世界大学生夏季运动会计划于2021年8月在成都举行,武侯区某学校开展“爱成都,迎大运”活动的小主持人选拔赛,对A,B,C,D四名候选人进行了笔试和面试(各项成绩满分均为100分),他们的各项成绩如表所示:学生笔试成绩/分面试成绩/分A9086B8490C x88D8684(1)填空:这四名候选人的面试成绩的中位数是分;(2)学校按笔试成绩占60%、面试成绩占40%的方式确定候选人的综合成绩(满分为100分),若候选人C的综合成绩为86.2分,求表中x的值;(3)在(2)的条件下,分别求其余三名候选人的综合成绩,如果学校将根据综合成绩遴选两名小主持人,试问哪两名候选人将被录取?20.[阅读理解]如图,在△ABC中,AB=4,AC=6,BC=7,过点A作直线BC的垂线,垂足为D,求线段AD的长.解:设BD=x,则CD=7﹣x.∵AD⊥BC,∴∠ADB=∠ADC=90°.在Rt△ABD中,AD2=AB2﹣BD2,在Rt△ACD中,AD2=AC2﹣CD2,∴AB2﹣BD2=AC2﹣CD2.又∵AB=4,AC=6,∴42﹣x2=62﹣(7﹣x)2.解得x=,∴BD=.∴AD==.[知识迁移](1)在△ABC中,AB=13,AC=15,过点A作直线BC的垂线,垂足为D.i)如图1,若BC=14,求线段AD的长;ii)若AD=12,求线段BC的长.(2)如图2,在△ABC中,AB=,AC=,过点A作直线BC的垂线,交线段BC于点D,将△ABD沿直线AB翻折后得到对应的△ABD′,连接CD′,若AD =,求线段CD′的长.四、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.已知x=+2,y=﹣2,则x2+y2+2xy=.22.已知直线y=kx﹣3与y=(3k﹣1)x+2互相平行,则直线y=kx﹣3不经过第象限.23.现将一支长20cm的金属筷子(粗细忽略不计)放入一个长和宽分别为8cm,6cm的长方体水槽中,要使水完全淹没筷子,则水槽中的水深至少为cm.24.如图,在平面直角坐标系xOy中,点A的坐标为(0,6),点B为x轴上一动点,以AB为边在直线AB的右侧作等边三角形ABC.若点P为OA的中点,连接PC,则PC 的长的最小值为.25.在Rt△ACB中,∠ACB=90°,点D在边AB上,连接CD,将△ADC沿直线CD翻折,点A恰好落在BC边上的点E处,若AC=3,BE=1,则DE的长是.五、解答题(共3个小题,共30分,解答过程写在答题卡上)26.春节即将来临,抗击新冠疫情防控工作至关重要,某公司加紧生产酒精消毒液与额温枪两种抗疫物质,其两种物资的生产成本和销售单价如表所示:种类生产成本(元/件)销售单价(元/件)酒精消毒液5662额温枪84100(1)若该公司2020年12月生产两种物资共100万件,生产总成本为7280万元,请用列二元一次方程组的方法,求该月酒精消毒液和额温枪两种物资各生产了多少万件?(2)该公司2021年1月生产两种物资共150万件,根据市场需求,该月将举办迎新年促销活动,其中酒精消毒液的销售单价降低2元,额温枪打9折销售.若设该月生产酒精消毒液x万件,该月销售完这两种物资的总利润为y万元,求y与x之间的函数关系式.27.在等腰直角三角形ABC中,∠ACB=90°,CD⊥AB于点D,点E是平面内任意一点,连接DE.(1)如图1,当点E在边BC上时,过点D作DF⊥DE交AC于点F.i)求证:CE=AF;ii)试探究线段AF,DE,BE之间满足的数量关系.(2)如图2,当点E在△BDC内部时,连接AE,CE,若DB=5,DE=3,∠AED =45°,求线段CE的长.28.在平面直角坐标系xOy中,已知点M(﹣2,﹣2),过点M作直线AB,交x轴负半轴于点A,交y轴负半轴于点B(0,m).(1)如图1,当m=﹣6时.i)求直线AB的函数表达式;ii)过点A作y轴的平行线l,点N是l上一动点,连接BN,MN,若S△MBN=S△ABO,求满足条件的点N的坐标.(2)如图2,将直线AB绕点B顺时针旋转45°后,交x轴正半轴于点C,过点C作CD⊥BC,交直线AB于点D.试问:随着m值的改变,点D的横坐标是否发生变化?若不变,求出点D的横坐标;若变化,请说明理由.参考答案一、选择题1.三个正方形的面积如图所示,则S的值为()A.3B.4C.9D.12解:如图,由题意可得:AB=4,AC=5,∵AC2=AB2+BC2,∴BC2=25﹣16=9,∴S=9,故选:C.2.下列图象中,表示y是x的函数的是()A.B.C.D.解:根据函数的定义可知,每给定自变量x一个值,都有唯一的函数值y与之相对应,所以B、C、D不合题意.故选:A.3.在平面直角坐标系中,点A(1,﹣2)关于x轴对称的点的坐标是()A.(1,﹣2)B.(1,2)C.(﹣1,2)D.(﹣1,﹣2)解:点A(1,﹣2)关于x轴对称的点的坐标为:(1,2).故选:B.4.如图,数轴上有M,N,P,Q四点,则这四点中所表示的数最接近﹣的是()A.点M B.点N C.点P D.点Q解:因为9<10<16,所以3<<4.所以﹣4<<﹣3.所以,这四点中所表示的数最接近﹣的是点N.故选:B.5.下列计算正确的是()A.=2B.=3C.•=D.2+=3解:A、=,故此选项错误;B、无法化简,故此选项错误;C、•=,故此选项错误;D、2+=3,故此选项正确;故选:D.6.如图,AB∥CD,BE交AD于点E,若∠B=18°,∠D=32°,则∠BED的度数为()A.18°B.32°C.50°D.60°解:如图,∵AB∥CD,∠D=32°,∴∠A=∠D=32°,∵∠B=18°,∴∠BED=∠A+∠B=18°+32°=50°.故选:C.7.我们把形如a+b(a,b为有理数,为最简二次根式)的数叫做型无理数,如3+1是型无理数,则()2是()A.型无理数B.型无理数C.型无理数D.型无理数解:()2=2++10=,所以()2是型无理数,故选:C.8.已知等腰三角形的两边长分别为a,b,且a,b满足+|b﹣4|=0,则此等腰三角形的周长为()A.7B.10C.11D.10或11解:∵+|b﹣4|=0,∴a﹣3=0,b﹣4=0,解得:a=3,b=4,∵等腰三角形的两边长分别为a,b,∴当a为腰长时,∴等腰三角形的周长为:3+3+4=10,当b为腰长时,等腰三角形的周长为:3+4+4=11,故此等腰三角形的周长为10或11.故选:D.9.如图,一次函数y=2x和y=ax+4的图象相交于点A(m,3),则关于x,y的方程组的解为()A.B.C.D.解:把A(m,3)代入y=2x得:3=2m,解得:m=,∴A(,3),则关于x,y的方程组的解为.故选:A.10.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1,图2所示,图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1表示的算筹图用我们现在所熟悉的方程组形式表述出来,就是.类似地,图2所示的算筹图我们可以表述为()A.B.C.D.解:图2所示的算筹图我们可以表述为:.故选:A.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.25的算术平方根是5.解:∵52=25,∴25的算术平方根是5.故答案为:5.12.如果方程组的解为,那么“*”表示的数是2.解:将x=6代入2x﹣y=16,得12﹣y=16,解得y=﹣4,∴x+y=6﹣4=2.故答案为:2.13.如图,在平面直角坐标系xOy中,以点A(﹣5,0)为圆心,13为半径作弧,交y轴的正半轴于点B,则点B的坐标为(0,12).解:连接AB,∵A(﹣5,0),半径为13,∴OA=5,AB=13,在Rt△AOB中,根据勾股定理得:OB===12,则B的坐标为(0,12).故答案为:(0,12).14.武侯区某中学选拔一名学生参加区运动会的跳高项目,在10次测试中,甲、乙、丙、丁四名学生的跳高成绩的平均数均为1.6m,方差分别为:S=0.48,S=0.56,S=0.52,S=0.58,则这四名学生中成绩最稳定的是甲.解:∵S=0.48,S=0.56,S=0.52,S=0.58,∴S甲2<S丙2<S乙2<S丁2,∴成绩最稳定的是甲,故答案为:甲.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.计算:(1)(π﹣2020)0﹣2++|1﹣|.(2)﹣(﹣)(+).解:(1)原式=1﹣﹣2+﹣1=﹣2;(2)原式=+﹣(3﹣2)=2+3﹣1=4.16.解方程组:.解:方程组整理得:,①﹣②得:4y=24,解得:y=6,把y=6代入①得:3x﹣6=4,解得:x=,则方程组的解为.17.在平面直角坐标系xOy中,一次函数y=﹣x+6的图象分别交y轴和x轴于点A,B,交一次函数y=2x的图象于点C.(1)求点C的坐标;(2)求△OBC的面积.解:(1)由题意可得,,解得,∵一次函数y=﹣x+6的图象交一次函数y=2x的图象于点C,∴点C的坐标为(2,4);(2)∵一次函数y=﹣x+6的图象分别交y轴和x轴于点A,B,∴当y=0时,x=6,∴点B的坐标为(6,0),∴OB=6,∵点C(2,4),∴△OBC的面积是:=12,即△OBC的面积是12.18.如图,在平面直角坐标系xOy中,已知点A(﹣1,5),B(1,0),C(3,1),连接BC.(1)在图中画出点A关于y轴的对称点A′,连接A′B,A'C,并直接写出点A′的坐标;(2)在(1)的基础上,试判断△A′BC的形状,并说明理由.解:(1)如图所示:∴点A'(1,5);(2)△A'BC是直角三角形,理由如下:∵点A'(1,5),B(1,0),C(3,1),∴A'B=5,AC==2,BC==,∵A'B2=25,A'C2=20,BC2=5,∴A'B2=A'C2+BC2,∴△A'BC是直角三角形.19.第31届世界大学生夏季运动会计划于2021年8月在成都举行,武侯区某学校开展“爱成都,迎大运”活动的小主持人选拔赛,对A,B,C,D四名候选人进行了笔试和面试(各项成绩满分均为100分),他们的各项成绩如表所示:学生笔试成绩/分面试成绩/分A9086B8490C x88D8684(1)填空:这四名候选人的面试成绩的中位数是87分;(2)学校按笔试成绩占60%、面试成绩占40%的方式确定候选人的综合成绩(满分为100分),若候选人C的综合成绩为86.2分,求表中x的值;(3)在(2)的条件下,分别求其余三名候选人的综合成绩,如果学校将根据综合成绩遴选两名小主持人,试问哪两名候选人将被录取?解:(1)由表格可得,面试成绩按照从小到大排列是:84,86,88,90,∴这四名候选人的面试成绩的中位数是(86+88)÷2=87(分),故答案为:87;(2)由题意可得,60%x+88×40%=86.2,解得x=85,即表中x的值是85;(3)由题意可得,A学生的综合成绩是90×60%+86×40%=88.4(分),B学生的综合成绩是84×60%+90×40%=86.4(分),D学生的综合成绩是86×60%+84×40%=85.2(分),∵88.4>86.4>86.2>85.2,∴A和B两名候选人将被录取.20.[阅读理解]如图,在△ABC中,AB=4,AC=6,BC=7,过点A作直线BC的垂线,垂足为D,求线段AD的长.解:设BD=x,则CD=7﹣x.∵AD⊥BC,∴∠ADB=∠ADC=90°.在Rt△ABD中,AD2=AB2﹣BD2,在Rt△ACD中,AD2=AC2﹣CD2,∴AB2﹣BD2=AC2﹣CD2.又∵AB=4,AC=6,∴42﹣x2=62﹣(7﹣x)2.解得x=,∴BD=.∴AD==.[知识迁移](1)在△ABC中,AB=13,AC=15,过点A作直线BC的垂线,垂足为D.i)如图1,若BC=14,求线段AD的长;ii)若AD=12,求线段BC的长.(2)如图2,在△ABC中,AB=,AC=,过点A作直线BC的垂线,交线段BC于点D,将△ABD沿直线AB翻折后得到对应的△ABD′,连接CD′,若AD =,求线段CD′的长.解:(1)i)设BD=x,则CD=14﹣x,∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD中,AD2=AB2﹣BD2,在Rt△ACD中,AD2=AC2﹣CD2,∴AB2﹣BD2=AC2﹣CD2,∵AB=13,AC=15,∴132﹣x2=152﹣(14﹣x)2,∴x=5,∴BD=5,∴AD===12;ii)在Rt△ABD中,BD===5,在Rt△ACD中,CD===9,当∠ABC为锐角时,如图1﹣1,BC=BD+CD=5+9=14,当∠ABC为钝角时,如图1﹣2,BC=BD﹣CD=9﹣5=4;(2)如图2,连接DD'交AB于点N,则DD'⊥AB,过点D'作D'H⊥BD于H,在Rt△ABD中,BD===;在Rt△ACD中,CD===5,∵AB垂直平分DD',∴D'B=DB=,D'D=2DN,=AD•BD=,∵S△ABD∴=•DN,∴DN=,∴D'D=2DN=5,设HB=m,则HD=HB+BD=m+,∵D'H2=D'D2﹣HD2=D'B2﹣HB2,∴(5)2﹣(m+)2=()2﹣x2,∴x=,∴HB=,∴HC=HB+BD+CD=++4=15,D'H===5,∴D'C===5.四、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.已知x=+2,y=﹣2,则x2+y2+2xy=20.解:∵x=+2,y=﹣2,∴x+y=+2+﹣2=2,则原式=(x+y)2=20.故答案为:20.22.已知直线y=kx﹣3与y=(3k﹣1)x+2互相平行,则直线y=kx﹣3不经过第二象限.【解答】∵y=kx﹣3与y=(3k﹣1)x+2互相平行,∴k=(3k﹣1),解得k=,∴y=kx﹣3=x﹣3,它经过一、三、四象限,不经过第二象限,故答案为二.23.现将一支长20cm的金属筷子(粗细忽略不计)放入一个长和宽分别为8cm,6cm的长方体水槽中,要使水完全淹没筷子,则水槽中的水深至少为10cm.解:由题意可得,底面长方形的对角线长为:=10(cm),故水槽中的水深至少为:=10(cm),故答案为:10.24.如图,在平面直角坐标系xOy中,点A的坐标为(0,6),点B为x轴上一动点,以AB为边在直线AB的右侧作等边三角形ABC.若点P为OA的中点,连接PC,则PC的长的最小值为.解:如图,以AP为边作等边三角形APE,连接BE,过点E作EF⊥AP于F,∵点A的坐标为(0,6),∴OA=6,∵点P为OA的中点,∴AP=3,∵△AEP是等边三角形,EF⊥AP,∴AF=PF=,AE=AP,∠EAP=∠BAC=60°,∴∠BAE=∠CAP,在△ABE和△ACP中,,∴△ABE≌△ACP(SAS),∴BE=PC,∴当BE有最小值时,PC有最小值,即BE⊥x轴时,BE有最小值,∴BE的最小值为OF=OP+PF=3+=,∴PC的最小值为,故答案为.25.在Rt△ACB中,∠ACB=90°,点D在边AB上,连接CD,将△ADC沿直线CD翻折,点A恰好落在BC边上的点E处,若AC=3,BE=1,则DE的长是.解:如图,过点D作DH⊥AC于H,DF⊥BC于F,∵将△ADC沿直线CD翻折,∴AC=CE=3,∠ACD=∠BCD=45°,∴BC=4,∵DH⊥AC,DF⊥BC,∠ACD=∠BCD=45°,∴DF=DH,∠DCF=∠FDC=45°,∴DF=CF,∵AB2=AC2+BC2=9+16=25,∴AB=5,=×AC×BC=×AC×DH+×BC×DF,∵S△ABC∴12=7DF,∴DF=,∴DF=CF=,EF=,∴DE===,故答案为:.五、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.春节即将来临,抗击新冠疫情防控工作至关重要,某公司加紧生产酒精消毒液与额温枪两种抗疫物质,其两种物资的生产成本和销售单价如表所示:种类生产成本(元/件)销售单价(元/件)酒精消毒液5662额温枪84100(1)若该公司2020年12月生产两种物资共100万件,生产总成本为7280万元,请用列二元一次方程组的方法,求该月酒精消毒液和额温枪两种物资各生产了多少万件?(2)该公司2021年1月生产两种物资共150万件,根据市场需求,该月将举办迎新年促销活动,其中酒精消毒液的销售单价降低2元,额温枪打9折销售.若设该月生产酒精消毒液x万件,该月销售完这两种物资的总利润为y万元,求y与x之间的函数关系式.解:(1)设该月酒精消毒液生产了a万件,额温枪生产了b万件,依题意得:,解得:.答:该月酒精消毒液生产了40万件,额温枪生产了60万件.(2)设该月生产酒精消毒液x万件,该月销售完这两种物资的总利润为y万元,则该月生产额温枪(150﹣x)万件,依题意得:y=(62﹣56﹣2)x+(100×0.9﹣84)(150﹣x)=﹣2x+900.答:y与x之间的函数关系式为y=﹣2x+900.27.在等腰直角三角形ABC中,∠ACB=90°,CD⊥AB于点D,点E是平面内任意一点,连接DE.(1)如图1,当点E在边BC上时,过点D作DF⊥DE交AC于点F.i)求证:CE=AF;ii)试探究线段AF,DE,BE之间满足的数量关系.(2)如图2,当点E在△BDC内部时,连接AE,CE,若DB=5,DE=3,∠AED =45°,求线段CE的长.【解答】证明:(1)i)∵∠ACB=90°,AC=BC,CD⊥AB,∴∠ACD=∠BCD=∠A=45°,∴CD=AD,∵DF⊥DE,CD⊥AB,∠ADF+∠CDF=∠CDE+∠CDF=90°,∴∠ADF=∠CDE,在△ADF与△CDE中,,∴△ADF≌△CDE(ASA),∴CE=AF;ii)连接EF,∵△ADF≌△CDE,∴DE=DF,∵DF⊥DE,∴△DEF是等腰直角三角形,∴EF2=DE2+DF2=2DE2,∵AF=CE,AC=BC,∴CF=BE,在Rt△CEF中,EF2=CE2+CF2,∴AF2+BE2=CE2+CF2=EF2=2DE2.(2)过点D作DH⊥AE于H,过点D作DG⊥DE交AE于G,∵∠ACB=90°,AC=BC,CD⊥AB,∴∠ACD=∠BCD=∠A=45°,∴CD=AD,∵DG⊥DE,CD⊥AB,∠ADG+∠CDG=∠CDE+∠CDG=90°,∴∠ADG=∠CDE,∵DG⊥DE,∠AED=45°,∴∠DGE=45°=∠AED,∴DG=DE,在△CDE与△ADG中,∴△CDE≌△ADG(SAS),∴CE=AG,在Rt△DEG中,DE=DG=3,∴EG=6,∵DH⊥AE,∴DH=GH=EH=3,在Rt△ADH中,AD=5,∴AH=,∴CE=AG=AH﹣GH=1.28.在平面直角坐标系xOy中,已知点M(﹣2,﹣2),过点M作直线AB,交x轴负半轴于点A,交y轴负半轴于点B(0,m).(1)如图1,当m=﹣6时.i)求直线AB的函数表达式;ii)过点A作y轴的平行线l,点N是l上一动点,连接BN,MN,若S△MBN=S△ABO,求满足条件的点N的坐标.(2)如图2,将直线AB绕点B顺时针旋转45°后,交x轴正半轴于点C,过点C作CD⊥BC,交直线AB于点D.试问:随着m值的改变,点D的横坐标是否发生变化?若不变,求出点D的横坐标;若变化,请说明理由.解:(1)i)、∵m=﹣6,∴B(0,﹣6),∴设直线AB的表达式为y=kx﹣6,∵点M(﹣2,﹣2)在直线AB上,∴﹣2=﹣2k﹣6,∴k=﹣2,∴直线AB的表达式为y=2x﹣6;ii)、如图1,由i)知,直线AB的表达式为y=﹣2x﹣6,令y=0,则﹣2x﹣6=0,∴x=﹣3,∴A(﹣3,0),∴直线l为x=﹣3,∴设N(﹣3,t),∴AN=|t|,∵A(﹣3,0),B(0,﹣6),∴OA=3,OB=6,=OA•OB=×3×6=9,∴S△AOB=S△ABO,∵S△MBN=S△ABO=,∴S△MBN过点M作MF⊥AN于F,过点B作ME⊥AN于E,∴MF=1,BE=3,=S△MAN﹣S△AMN=AN•BE﹣AN•FM=(BE﹣MF)=|t|(3﹣1)=|t|∴S△MBN=,∴t=±,∴N(﹣3,)或(﹣3,﹣);(2)如图2,∵∠ABC=45°,∠BCD=90°,∴∠ADC=45°=∠ABC,∴CD=CB,∴△BDC是等腰直角三角形,∵M(﹣2,﹣2),B(0,m),∴直线AB的表达式为y=x+m,设点C(a,0),分别过点D,B作y轴的垂线,过点C作x的垂线,交前两条直线和y 轴于点G,H,L,则∠H=∠G=∠OCH=∠OBH=90°,∴四边形OBHC是矩形,∴OC=BH,∵∠G=∠BCD=90°,∴∠CDG+∠DCG=∠DCG+∠BCH=90°,∴∠CDG=∠BCH,∴△DCG≌△CBH(AAS),∴BH=OC=CG=|a|,CH=DG=|m|,∴D(m+a,a),∴a=•(m+a)+m,∴m2+mt+4m=0,∵m≠0,∴m+a=﹣4,即点D的横坐标为﹣4,保持不变.。

北师大版八年级数学上册期末测试卷含答案

北师大版八年级数学上册期末测试卷含答案

北师大版数学八年级上册期末考试试卷(总分:100分时间:50分钟)一、选择题(每小题4分,共计48分)1.下列各数中最小的是( )A.π-B.1 C.D.02.下列语言叙述是命题的是( )A.画两条相等的线段B.等于同一个角的两个角相等吗?C.延长线段AO到C,使OC=OA D.两直线平行,内错角相等3.点P(3,-5)关于x轴对称的点的坐标为( )A.(3,5) B.(3,-5) C.(-3,5) D.(-3,-5) 4.如图,雷达探测器测得六个目标A,B,C,D,E,F出现,按照规定的目标表示方法,目标E,F的位置表示为E(3,300°),F(5,210°),按照此方法在表示目标A,B,D,E的位置时,其中表示不正确的是( )A.A(4,30°) B.B(2,90°) C.C(6,120°) D.D(3,240°)第4题图第5题图5.如图,阴影部分是一个长方形,它的面积是( )A.3cm2B.4cm2C.5cm2D.6cm26.某班为筹备元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是( )A.中位数B.平均数C.方差D.众数7.下列各式计算正确的是( )A.2=- B.2(4=3=-4=8.在△ABC中,∠A=∠B+∠C,∠B=2∠C-6°,则∠C的度数为( )A.90°B.58°C.54°D.32°9.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵. 设男生有x人,女生有y人,根据题意,列方程组正确的是( )A.523220x yx y+=⎧⎨+=⎩B.522320x yx y+=⎧⎨+=⎩C.202352x yx y+=⎧⎨+=⎩D.203252x yx y+=⎧⎨+=⎩10.已知直线2y x =与y x b =-+的交点的坐标为(1,a ),则方程组的解是( ) A.12x y =⎧⎨=⎩B.21x y =⎧⎨=⎩C.23x y =⎧⎨=⎩D.13x y =⎧⎨=⎩11.关于一次函数y=-2x+b(b 为常数),下列说法正确的是( ) A. y 随x 的增大而增大B.当b=4时,直线与坐标轴围成的面积是4C.图象一定过第一、三象限D.与直线y=-2x+3相交于第四象限内一点 12.一次长跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之是的函数关系如图,则这次长跑的全程为( )米。

北师大版数学八年级上册期末考试试卷带答案

北师大版数学八年级上册期末考试试卷带答案

北师大版数学八年级上册期末考试试题一、选择题(每小题3分,共30分,每小题只有一个正确答案)1.下列各组数是勾股数的是()A.1,,B.0.6,0.8,1C.3,4,5D.5,11,12 2.下列计算正确的是()A.=4B.=3C.4﹣=3D.3.已知点A(3,5)和点B在直角坐标平面内关于y轴对称,则点B的坐标是()A.(5,﹣3)B.(﹣3,5)C.(3,﹣5)D.(﹣3,﹣5)4.下列命题中,真命题的是()A.同旁内角互补,两直线平行B.相等的角是对顶角C.同位角相等D.直角三角形两个锐角互补5.若m>n,则下列不等式一定成立的是()A.2m<3n B.2+m>2+n C.2﹣m>2﹣n D.<6.下列四组数值是二元一次方程2x﹣y=6的解的是()A.B.C.D.7.如图,直线l1∥l2,CD⊥AB于点D,∠1=50°,则∠BCD的度数为()A.50°B.45°C.40°D.30°8.某百货商场的女装专柜对上周女装的销售情况进行了统计,销售情况如下表所示:颜色黄色绿色白色紫色红色数量(件)10018022080550百货商场经理根据上周销售情况的统计表,决定本周多进一些红色的女装,可用来解释这一现象的统计知识是()A.方差B.平均数C.众数D.中位数9.点M(﹣1,a)和点N(﹣3,b)是一次函数y=﹣2x+m图象上的两点,则()A.a>b B.a=b C.a<b D.无法确定10.一次函数y=ax﹣a(a≠0)的大致图象是()A.B.C.D.二、填空题(每小题4分,共16分)11.函数y=的自变量x的取值范围是.12.若一次函数y=2x+b的图象经过点(1,﹣3),则b=.13.已知:如图,∠1=∠2=∠3=54°,则∠4的度数是.14.在Rt△ABC中,斜边BC=,则AB2+AC2+BC2的值为.三.解答题(共54分)15.计算:(1)+|2﹣|﹣(π+2021)0;(2)(3+)2+(1+)(1﹣).16.解方程组或不等式组:(1);(2).17.如图AB∥CD,∠B=62°,EG平分∠BED,EG⊥EF,求∠CEF的度数.18.如图所示,在平面直角坐标系xOy中,已知△AOC的顶点坐标分别是A(﹣2,2)、C (3,3).(1)作出△AOC关于x轴对称的△DOE,其中点A的对应点是D,点C的对应点是E,并直接写出D和E的坐标;(2)若P为x轴上一点,若OP=OA,求点P的坐标.19.某校八年级(1)班的同学积极响应校团委号召,每位同学都向学校对口帮扶的贫困地区捐赠了图书.全班捐书情况如图,请你根据图中提供的信息解答以下问题:(1)该班共有名学生;(2)本次捐赠图书册数的中位数为册,众数为册;(3)该校八年级共有320名学生,估计该校八年级学生本次捐赠图书为7册的学生人数.20.如图,在平面直角坐标系xOy中,直线l1:y=﹣x+3与x轴交于点A,点P(a,4)在直线l1上,过点P的直线l2交x轴于点B(﹣3,0).(1)求△PAB的面积;(2)求直线l2的解析式:(3)以PA为腰作等腰直角△QPA,请直接写出满足条件的点Q的坐标.B卷四、填空题(每小题4分,共20分)21.若实数x、y满足:y=++,则xy=.22.的整数部分为a,的小数部分为b,那么(b+2)2﹣a的值是.23.若关于x、y的二元一次方程组的解满足x+y<1,则a的取值范围为.24.如图,长方形ABCD中,AD=4,AB=3,点P是AB上一点,AP=1,点E是BC上一动点,连接PE,将△BPE沿PE折叠,使点B落在B',连接DB',则PB'+DB'的最小值是.25.已知:k为正数,直线l1:y=kx+k﹣1与直线l2:y=(k+1)x+k及x轴围成的三角形的面积为S k,则S2=,S1+S2+S3+…+S2020的值为.五、解答题(共30分)26.学校准备租用一批汽车,现有甲、乙两种大客车,甲种客车每辆载客量45人,乙种客车每辆载客量30人.已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车共8辆,送330名师生集体外出活动,最节省的租车费用是多少?27.已知:等边三角形ABC,直线l过点C且与AB平行,点D是直线l上不与点C重合的一点,连接线段DB,并将射线DB绕点D顺时针转动60°,与直线AC交于点E(即∠BDE=60°).(1)如图1,点E在AC的延长线上时,求证:DE=DB;(2)如图2,AB=2,CD=4,依题意补全图2,试求出DE的长.(3)当点D在点C右侧时,直接写出线段CE、BC和CD之间的数量关系.28.如图,直线y=kx+2(k<0)与x轴、y轴分别交于点A、B.(1)如图1,点P(﹣1,3)在直线y=kx+2(k<0)上,求点A、B坐标;(2)在(1)的条件下,如图2,点A'是点A关于x轴的对称点,点Q是第二象限内一点,连结AQ、PQ、QA'和PA',如果△PQA'和△AA'Q面积相等,且∠PAQ=∠APA',求点Q的坐标;(3)如图3,点C和点D是该直线在第一象限内的两点,点C在点D左侧,且两点的横坐标之差为1,且CD=k+2,作CE⊥x轴,垂足为点E,连结DE,若∠OAB=2∠DEB,求k的值.参考答案与试题解析一.选择题(共10小题)1.下列各组数是勾股数的是()A.1,,B.0.6,0.8,1C.3,4,5D.5,11,12【分析】三个正整数,其中两个较小的数的平方和等于最大的数的平方,则这三个数就是勾股数,据此判断即可.【解答】解:A、、不是正整数,不是勾股数,此选项不合题意;B、0.6、0.8不是正整数,不是勾股数,此选项不合题意;C、是勾股数,因为32+42=52,此选项符合题意;D、不是勾股数,因为112+52≠122,此选项不合题意;故选:C.2.下列计算正确的是()A.=4B.=3C.4﹣=3D.【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以判断哪个选项中的式子是正确的.【解答】解:=2,故选项A错误;=2,故选项B错误;4﹣=3,故选项C错误;×=,故选项D正确;故选:D.3.已知点A(3,5)和点B在直角坐标平面内关于y轴对称,则点B的坐标是()A.(5,﹣3)B.(﹣3,5)C.(3,﹣5)D.(﹣3,﹣5)【分析】根据关于y轴对称的点得坐标特点直接得到答案.【解答】解:∵点A(3,5)与点B关于y轴对称,∴B点坐标为(﹣3,5).故选:B.4.下列命题中,真命题的是()A.同旁内角互补,两直线平行B.相等的角是对顶角C.同位角相等D.直角三角形两个锐角互补【分析】根据平行线的性质、对顶角、直角三角形的性质判断解答即可.【解答】解:A、同旁内角互补,两直线平行,是真命题;B、相等的角不一定是对顶角,原命题是假命题;C、两直线平行.同位角相等,原命题是假命题;D、直角三角形两个锐角互余,原命题是假命题;故选:A.5.若m>n,则下列不等式一定成立的是()A.2m<3n B.2+m>2+n C.2﹣m>2﹣n D.<【分析】根据不等式的性质解答.【解答】解:A、若m=3,n=﹣2,则2m>3n,故不符合题意.B、若m>n,则2+m>2+n,故符合题意.C、若m>n,则2﹣m<2﹣n,故不符合题意.D、若m>n,则>,故不符合题意.故选:B.6.下列四组数值是二元一次方程2x﹣y=6的解的是()A.B.C.D.【分析】把各项中x与y的值代入方程检验即可.【解答】解:A、把代入方程得:左边=2﹣5=﹣3,右边=6,∵左边≠右边,∴不是方程的解,不符合题意;B、把代入方程得:左边=8﹣2=6,右边=6,∵左边=右边,∴是方程的解,符合题意;C、把代入方程得:左边=4﹣4=0,右边=6,∵左边≠右边,∴不是方程的解,不符合题意;D、把代入方程得:左边=4﹣3=1,右边=6,∵左边≠右边,∴不是方程的解,不符合题意.故选:B.7.如图,直线l1∥l2,CD⊥AB于点D,∠1=50°,则∠BCD的度数为()A.50°B.45°C.40°D.30°【分析】先依据平行线的性质可求得∠ABC的度数,然后在直角三角形CBD中可求得∠BCD的度数.【解答】解:∵l1∥l2,∴∠1=∠ABC=50°.∵CD⊥AB于点D,∴∠CDB=90°.∴∠BCD+∠DBC=90°,即∠BCD+50°=90°.∴∠BCD=40°.故选:C.8.某百货商场的女装专柜对上周女装的销售情况进行了统计,销售情况如下表所示:颜色黄色绿色白色紫色红色数量(件)10018022080550百货商场经理根据上周销售情况的统计表,决定本周多进一些红色的女装,可用来解释这一现象的统计知识是()A.方差B.平均数C.众数D.中位数【分析】百货商场经理最值得关注的应该是爱买哪种颜色女装的人数最多,即众数.【解答】解:由于销售最多的颜色为红色,且远远多于其他颜色,所以选择多进红色女装主要根据众数.故选:C.9.点M(﹣1,a)和点N(﹣3,b)是一次函数y=﹣2x+m图象上的两点,则()A.a>b B.a=b C.a<b D.无法确定【分析】直接利用一次函数增减性分析得出答案.【解答】解:y=﹣2x+m,k=﹣2<0,故y随x的增大而减小,∵﹣1>﹣3,∴a<b,故选:C.10.一次函数y=ax﹣a(a≠0)的大致图象是()A.B.C.D.【分析】因为a的符号不确定,故应分两种情况讨论,再找出符合任一条件的函数图象即可.【解答】解:分两种情况:(1)当a>0时,一次函数y=ax﹣a经过第一、三、四象限,选项A符合;(2)当a<0时,一次函数y=ax﹣a图象经过第一、二、四象限,无选项符合.故选:A.二.填空题(共4小题)11.函数y=的自变量x的取值范围是x≥1.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:根据题意得,x﹣1≥0,解得x≥1.故答案为x≥1.12.若一次函数y=2x+b的图象经过点(1,﹣3),则b=﹣5.【分析】直接利用一次函数图象上点的坐标特点得出答案.【解答】解:∵一次函数y=2x+b的图象经过点(1,﹣3),∴﹣3=2+b,解得:b=﹣5.故答案为:﹣5.13.已知:如图,∠1=∠2=∠3=54°,则∠4的度数是126°.【分析】根据平行线的判定得出l1∥l2,根据平行线的性质解答即可.【解答】解:∵∠1=∠2=∠3=54°,∵∠1=∠5,∴∠5=∠2,∴l1∥l2,∴∠6=∠3,∴∠4=180°﹣∠6=180°﹣54°=126°,故答案为:126°.14.在Rt△ABC中,斜边BC=,则AB2+AC2+BC2的值为10.【分析】由直角三角形的性质可得AB2+AC2=BC2=5,即可求解.【解答】解:∵在Rt△ABC中,斜边BC=,∴AB2+AC2=BC2=5,∴AB2+AC2+BC2=5+5=10,故答案为10.三.解答题(共5小题)15.计算:(1)+|2﹣|﹣(π+2021)0;(2)(3+)2+(1+)(1﹣).【分析】(1)根据绝对值、零指数幂和二次根式的加减法可以解答本题;(2)根据完全平方公式、平方差公式可以解答本题.【解答】解:(1)+|2﹣|﹣(π+2021)0=3+2﹣1=2+1;(2)(3+)2+(1+)(1﹣)=9+6+2+(1﹣2)=9+6+2+(﹣1)=10+6.16.解方程组或不等式组:(1);(2).【分析】(1)根据加减消元法可以解答本题;(2)根据解一元一次不等式组的方法可以解答本题.【解答】解:(1),①+②×2,得5x=15,解得x=3,将x=3代入①,得y=2,故原方程组的解是;(2),由不等式①,得x>4,由不等式②,得x≤6,故原不等式组的解集是4<x≤6.17.如图AB∥CD,∠B=62°,EG平分∠BED,EG⊥EF,求∠CEF的度数.【分析】求出∠DEG,证明∠DEG+∠CEF=90°即可解决问题.【解答】解:∵AB∥CD,∠B=62°,∴∠BED=∠B=62°,∵EG平分∠BED,∴∠DEG=∠BED=31°,∵EG⊥EF,∴∠FEG=90°,∴∠DEG+∠CEF=90°,∴∠CEF=90°﹣∠DEG=90°﹣31°=59°.18.如图所示,在平面直角坐标系xOy中,已知△AOC的顶点坐标分别是A(﹣2,2)、C (3,3).(1)作出△AOC关于x轴对称的△DOE,其中点A的对应点是D,点C的对应点是E,并直接写出D和E的坐标;(2)若P为x轴上一点,若OP=OA,求点P的坐标.【分析】(1)分别作出A,C的对应点D,E即可.(2)利用勾股定理求出OA即可解决问题.【解答】解:(1)如图,△ODE即为所求作.D(﹣2,﹣2),E(3,﹣3).(2)∵A(﹣2,2),∴OA==2,∵OA=OP=2,点P在x轴上,∴P(2,0)或(﹣2,0).19.2020年为“扶贫攻坚”决胜之年.某校八年级(1)班的同学积极响应校团委号召,每位同学都向学校对口帮扶的贫困地区捐赠了图书.全班捐书情况如图,请你根据图中提供的信息解答以下问题:(1)该班共有40名学生;(2)本次捐赠图书册数的中位数为7册,众数为8册;(3)该校八年级共有320名学生,估计该校八年级学生本次捐赠图书为7册的学生人数.【分析】(1)由捐书7册的人数及其所占百分比可得总人数;(2)先用总人数乘以捐书4册和8册对应的百分比求出其人数,再根据中位数和众数的概念求解即可;(3)用总人数乘以样本中捐书7册人数所占百分比即可.【解答】解:(1)该班学生总人数为12÷30%=40(人),故答案为:40;(2)捐书4册的人数为40×10%=4(人),捐书8册的人数为40×35%=14(人),∵中位数是第20、21个数据的平均数,而第20、21个数据均为7册,∴这组数据的中位数为7册,∵数据8出现的次数最多,有14个,∴众数为8册,故答案为:7、8;(3)估计该校八年级学生本次捐赠图书为7册的学生人数320×30%=96(人).20.如图,在平面直角坐标系xOy中,直线l1:y=﹣x+3与x轴交于点A,点P(a,4)在直线l1上,过点P的直线l2交x轴于点B(﹣3,0).(1)求△PAB的面积;(2)求直线l2的解析式:(3)以PA为腰作等腰直角△QPA,请直接写出满足条件的点Q的坐标.【分析】(1)利用解析式y=﹣x+3确定A(3,0),再把P(a,4)代入y=﹣x+3求出a得到P(﹣1,4),然后根据三角形面积公式计算△PAB的面积;(2)利用待定系数法求直线l2的解析式;(3)讨论:当P为直角顶点,则PQ⊥PA,PQ=PA=4,利用两直线垂直,一次项系数互为负倒数可设PQ的解析式为y=x+b,再把把P点坐标代入求出b得到PQ的解析式为y=x+5,设Q(x,x+5),利用两点间的距离公式得到(x+1)2+(x+5﹣4)2=(4)2,解方程得到此时Q点的坐标;当A为直角顶点时利用同样的方法确定Q点的坐标.【解答】解:(1)当y=0时,﹣x+3=0,解得x=3,则A(3,0),把P(a,4)代入y=﹣x+3得﹣a+3=4,解得a=﹣1,∴P(﹣1,4),∵B(﹣3,0),∴△PAB的面积=×(3+3)×4=12;(2)设直线l2的解析式为y=kx+b,把B(﹣3,0),P(﹣1,4)分别代入得,解得,∴直线l2的解析式为y=2x+6:(3)当P为直角顶点,则PQ⊥PA,PQ=PA==4,∵PA的解析式为y=﹣x+3,∴PQ的解析式为y=x+b,把P(﹣1,4)代入得﹣1+b=4,解得b=5,∴PQ的解析式为y=x+5,设Q(x,x+5),∴(x+1)2+(x+5﹣4)2=(4)2,解得x1=﹣5,x2=3,此时Q点的坐标为(﹣5,0)或(3,0);当A为直角顶点,则AQ⊥AP,AQ=PA=4,∵PA的解析式为y=﹣x+3,∴PQ的解析式为y=x+m,把A(3,0)代入得3+m=0,解得m=﹣3,∴AQ的解析式为y=x﹣3,设Q(x,x﹣3),∴(x﹣3)2+(x﹣3)2=(4)2,解得x1=﹣1,x2=7,此时Q点的坐标为(﹣1,﹣4)或(7,4);综上所述,Q点的坐标为(﹣5,0)或(3,0)或(﹣1,﹣4)或(7,4).一.填空题(共5小题)21.若实数x、y满足:y=++,则xy=2.【分析】根据二次根式有意义的条件求出x的值,进而求出y,计算即可.【解答】解:由题意得,x﹣4≥0,4﹣x≥0,解得,x=4,则y=,∴xy=4×=2,故答案为:2.22.的整数部分为a,的小数部分为b,那么(b+2)2﹣a的值是11﹣2.【分析】求出a、b的值,代入计算即可.【解答】解:因为3<<4,的整数部分为a,的小数部分为b,所以a=3,b=﹣3,所以(b+2)2﹣a=(﹣3+2)2﹣3=14﹣2﹣3=11﹣2,故答案为:11﹣2.23.若关于x、y的二元一次方程组的解满足x+y<1,则a的取值范围为a <﹣4.【分析】将方程两个方程相加可得3x+3y=7+a,由x+y<1知3x+3y<3,据此可得7+a <3,解之即可.【解答】解:,①+②,得:3x+3y=7+a,∵x+y<1,∴3x+3y<3,则7+a<3,解得a<﹣4,故答案为:a<﹣4.24.如图,长方形ABCD中,AD=4,AB=3,点P是AB上一点,AP=1,点E是BC上一动点,连接PE,将△BPE沿PE折叠,使点B落在B',连接DB',则PB'+DB'的最小值是.【分析】连接DP.利用勾股定理求出DP,根据DB′+PB'≥DP,由此可得结论.【解答】解:如图,连接DP.∵四边形ABCD是矩形,∴∠A=90°,∵AP=1,AD=4,∴DP===,∵PB'+DB′≥DP,∴PB'+DB′≥,∴PB'+DB′的最小值为.25.已知:k为正数,直线l1:y=kx+k﹣1与直线l2:y=(k+1)x+k及x轴围成的三角形的面积为S k,则S2=,S1+S2+S3+…+S2020的值为.【分析】利用一次函数图象上点的坐标特征可求出直线l1、l2与x轴的交点坐标,联立两函数解析式成方程组,通过解方程组可求出两直线的交点坐标,利用三角形的面积公式可得出S k=S k=(﹣),将其代入S1+S2+S3+…+S2020中即可求出结论.【解答】解:当y=0时,有kx+k﹣1=0,解得:x=,∴直线l1与x轴的交点坐标为(,0);当y=0时,有(k+1)x+k=0,解得:x=﹣,∴直线l2与x轴的交点坐标为(﹣,0).联立两直线解析式成方程组,,解得:,∴两直线的交点坐标为(﹣1,﹣1).∴S k=×|﹣﹣|×|﹣1|==(﹣),∴S2=(﹣)=×(﹣)=,∴S1+S2+S3+…+S2020=×(1﹣)+×(﹣)+×(﹣)+…+×(﹣),=×(1﹣+﹣+﹣+…+﹣),=×(1﹣),=×,=.故答案为:,.二.解答题(共3小题)26.学校准备租用一批汽车,现有甲、乙两种大客车,甲种客车每辆载客量45人,乙种客车每辆载客量30人.已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车共8辆,送330名师生集体外出活动,最节省的租车费用是多少?【分析】(1)可设1辆甲种客车的租金是x元,1辆乙种客车的租金是y元,根据等量关系:①1辆甲种客车和3辆乙种客车共需租金1240元,②3辆甲种客车和2辆乙种客车共需租金1760元,列出方程组求解即可;(2)由于求最节省的租车费用,可知租用甲种客车6辆,租用乙客车2辆,进而求解即可.【解答】解:(1)设1辆甲种客车的租金是x元,1辆乙种客车的租金是y元,依题意有,解得.故1辆甲种客车的租金是400元,1辆乙种客车的租金是280元;(2)方法1:租用甲种客车6辆,租用乙客车2辆是最节省的租车费用,400×6+280×2=2400+560=2960(元).方法2:设租用甲种客车x辆,依题意有45x+30(8﹣x)≥330,解得x≥6,租用甲种客车6辆,租用乙客车2辆的租车费用为:400×6+280×2=2400+560=2960(元);租用甲种客车7辆,租用乙客车1辆的租车费用为:400×7+280=2800+280=3080(元);2960<3080,故最节省的租车费用是2960元.27.已知:等边三角形ABC,直线l过点C且与AB平行,点D是直线l上不与点C重合的一点,连接线段DB,并将射线DB绕点D顺时针转动60°,与直线AC交于点E(即∠BDE=60°).(1)如图1,点E在AC的延长线上时,求证:DE=DB;(2)如图2,AB=2,CD=4,依题意补全图2,试求出DE的长.(3)当点D在点C右侧时,直接写出线段CE、BC和CD之间的数量关系.【分析】(1)过点D作DF∥AC,交CB的延长线于点F,证明△CDF为等边三角形,由等边三角形的性质得出∠CDF=60°,CD=DF,证明△CDE≌△FDB(ASA),由全等三角形的性质得出DE=DB;(2)分两种情况:当点D在点C的右侧时,当点D在点C左侧时,作DF∥BC,交CA 的延长线于点F,由全等三角形的性质及勾股定理可得出答案;(3)分两种情况:当点E在AC的延长线上时,当点E在线段AC上时,过点D作DF ∥AC,交CB于点F,由全等三角形的性质可得出答案.【解答】解:(1)过点D作DF∥AC,交CB的延长线于点F,∵AB∥直线l,DF∥AC,∴∠ABC=∠BCD=60°,∠ACB=∠CFD=60°,∴△CDF为等边三角形,∴∠CDF=60°,CD=DF,∵∠BDE=60°,∴∠BDF=∠EDC,又∵∠BFD=∠ECD=60°,CD=DF,∴△CDE≌△FDB(ASA),∴DE=DB;(2)∵∠ADE<∠BDE,∴∠ADE不可能是直角,当点D在点C的右侧时,在四边形BCED中,∠BCE=120°,∠BDE=60°,∴∠CBD=90°,在Rt△BCD中,BC=2,CD=4,∴BD===2,由(1)可知DE=BD=2,当点D在点C左侧时,作DF∥BC,交CA的延长线于点F,∵AB∥直线l,DF∥BC,∴∠BAC=∠DCF=60°,∠BCA=∠DFC=60°,∴△CDF为等边三角形,∴∠CDF=60°,CD=DF=CF,∵∠BDE=60°,∴∠BDC=∠EDF,又∵∠DFE=∠DCB=120°,CD=DF,∴△BDC≌△EDF(ASA),∴EF=BC=2,∵CD=CF=4,∴AE=CE﹣AC=EF+CF﹣AC=4,在Rt△ACD中,AD==2,在Rt△ADE中,DE==2.综合以上可得,DE=2或2.(3)①如图3,当点E在AC的延长线上时,过点D作DF∥AC,交CB的延长线于点F,由(1)可知△CDE≌△FDB,∴CE=BF,CD=DF,∴CD=BC+BF=BC+CE;②如图4,当点E在线段AC上时,过点D作DF∥AC,交CB于点F,由(1)可知△CDE≌△FDB,∴CD=DF,CE=BF,∴CD=CF=BC﹣BF=BC﹣CE.28.如图,直线y=kx+2(k<0)与x轴、y轴分别交于点A、B.(1)如图1,点P(﹣1,3)在直线y=kx+2(k<0)上,求点A、B坐标;(2)在(1)的条件下,如图2,点A'是点A关于x轴的对称点,点Q是第二象限内一点,连结AQ、PQ、QA'和PA',如果△PQA'和△AA'Q面积相等,且∠PAQ=∠APA',求点Q的坐标;(3)如图3,点C和点D是该直线在第一象限内的两点,点C在点D左侧,且两点的横坐标之差为1,且CD=k+2,作CE⊥x轴,垂足为点E,连结DE,若∠OAB=2∠DEB,求k的值.【分析】(1)由直线y=kx+2(k<0),当x=0时,y=2,得A(0,2),把点P(﹣1,3)代入y=kx+2(k<0)得k=﹣1,则y=﹣x+2,当y=0时,x=2,则B(2,0);(2)过点A'作A'Q∥AB,设AQ与A'P交点为M,延长QP交y轴于点N,先证△PQA'≌△AA'Q(SAS),得∠PQA'=∠AA'Q,PQ=AA',再由得出的性质得PQ=AA'=4,然后证∠QNO=90°,即可解决问题;(3)过D作DF⊥CE于F,先证CE=CD=k+2,再求出点C(1,k+2),D(2,2k+2),则DF=1,CF=﹣k,CE=k+2,然后在Rt△CDF中,由勾股定理得出方程,解方程即可.【解答】解:(1)当x=0时,y=2,∴A(0,2),把点P(﹣1,3)代入直线y=kx+2(k<0)得:﹣k+2=3,解得:k=﹣1,∴直线AB的解析式为y=﹣x+2,当y=0时,﹣x+2=0,解得:x=2,∴B(2,0);(2)过点A'作A'Q∥AB,设AQ与A'P交点为M,延长QP交y轴于点N,如图2所示:∵平行线间的距离处处相等,且QA'为公共底边,∴△PQA'和△AA'Q面积相等,∵∠PAQ=∠APA',∴MA=MP,∵A'Q∥AB,∴∠PAQ=∠AQA',∠APA'=∠PA'Q,∴∠AQA'=∠PA'Q,∴A'M=QM,∴AQ=A'P,∴△PQA'≌△AA'Q(SAS),∴∠PQA'=∠AA'Q,PQ=AA',∵点A'是点A关于x轴的对称点,A(0,2),∴A'(0,﹣2),∴PQ=AA'=2+2=4,由(1)可知OA=OB,∴∠BAO=45°,∵A'Q∥AP,∴∠PQA'=∠AA'Q=45°,∴∠QNO=90°,∴QN⊥y轴,∵P(﹣1,3),∴PN=1,ON=3,∴QN=PQ+PN=5,∴Q(﹣5,3);(3)过D作DF⊥CE于F,如图3所示:∵∠CEB=90°,∴∠CED=90°﹣∠DEB,∵CE∥OA,∴∠OAB=∠ECD,∵∠OAB=2∠DEB,∴∠ECD=2∠DEB,∴∠CDE=180°﹣∠ECD﹣∠CED=180°﹣2∠DEB﹣(90°﹣∠DEB)=90°﹣∠DEB,∴∠CDE=∠CED,∴CE=CD=k+2,∵点C在直线y=kx+2上,∴当y=k+2时,有k+2=kx+2,∴x=1,∴点C(1,k+2),D(2,2k+2),∴DF=1,CF=﹣k,CE=k+2,在Rt△CDF中,由勾股定理得:CF2+DF2=CD2,∴CF2+DF2=CE2,即(﹣k)2+12=(k+2)2,解得:k=﹣.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013-2014学年度山东省宁阳市第一学期八年级期末检测数学试题说 明:本卷共七大题,全卷共24题,满分120分,考试时间为100分钟. 一、选择题(本大题共6小题,每小题3分,共18分)1( )A .2B .4C .±2D .±42.P 1(x 1,y 1),P 2(x 2,y 2)是正比例函数12y x =-图象上的两点,下列判断中,正确的是( ) A .y 1>y 2, B .y 1<y 2 C .当x 1<x 2时,y 1<y 2, D .当x 1<x 2时,y 1>y 23.在某次体育测试中,九(1)班6位同学的立定跳远成绩(单位:m )分别为:1.71,1.85,1.85,1.95,2.10,2.31,则这组数据的众数是( )A .1.71,B .1.85,C .1.90,D .2.31 4.下列长度的各组线段能组成一个直角三角形的是( ) A .4cm ,6cm ,11cm, B .4cm ,5cm ,1cm C .3cm ,4cm ,5cm, D .2cm ,3cm ,6cm 5.如图AB=AC,则数轴上点C 所表示的数为( )A .5+1B .5-1C .-5+1D .-5-16.小刚去距县城28千米的旅游点游玩,先乘车,后步行.全程共用了1小时,已知汽车速度为每小时36千米,步行的速度每小时4千米,则小刚乘车路程和步行路程分别是( ) A .26千米, 2千米 B .27千米, 1千米C .25千米, 3千米D .24千米, 4千米二、填空题(本大题共8小题,每小题3分,共24分) 7.计算:8-2 = .8.已知点A (l ,-2),若A 、B 两点关于x 轴对称,则B 点的坐标为_______ 9.若a <1,化简1)1(2--a 是 .10.某校八年级(1)班共有男生30名,女生20名,若测得全班平均身高为1.56米,其中男生平均身高为1.6米,则女生平均身高为 米.11.若一次函数62+=x y 与kx y =图象的交点到x 轴的距离为2,则k 的值为 . 12.若关于x y ,的方程组2x y mx my n -=⎧⎨+=⎩的解是21x y =⎧⎨=⎩,则||m n -= .13.将一张等宽的直条型纸片按图中方式折叠,若∠1 = 50°, 则∠2的度数为 .14.在平面直角坐标系中, 已知点 A ( , 0), B , 0), 点C 在x 轴上, 且AC +BC = 6, 写出满足条件的所有点C 的坐标 . 三、(本大题共2小题,每小题5分,共10分) 15.解方程组⎩⎨⎧=+=.13y 2x 11,3y -4x . 16.化简: 31318)62(-⨯-.四、大题共2小题,每小题6分,共12分)17.已知在平面直角坐标系中有三点A (-2,1)、B (3,1)、C (2,3).请回答如下问题:(1)在坐标系内描出点A 、B 、C 的位置,并求△ABC 的面积;(2)在平面直角坐标系中画出△'''A B C ,使它与△ABC 关于x 轴对称,并写出△'''A B C 三顶点的坐标. (3)若M (x,y )是△ABC 内部任意一点,请直接写出这点在△'''A B C 内部的对应点M '的坐标. 18.一辆汽车的油箱中现有汽油40升,如果不再加油,那么油箱中的油量y (单位:升)随行驶里程x (单位:千米)的增加而减少,若这辆汽车平均耗油量为0.2升/千米. (1)求y 与x 之间的函数关系式;(2)设景德镇到骛源两地的里程约为95 千米,当油箱中余油量少于3升时,汽车将自动报警,则这辆汽车在往返途中是否会报警?五、(本大题共2小题,每小题8分,共16分)19.如图,含有30°角的直角三角板EFG 的直角顶点放在宽为2cm 的直尺ABCD 的BC 边上,并且三角板的直角边EF 始终经过点A ,直角边EG 与AD 交于点H ;∠G =30° (1)当∠1=36°时,求∠2的度数.(2)当∠1为多少度时,AH ∥FG , 并求此时AH 的长度.(提示:在直角三角形中,30°角所对的直角边等于斜边的一半)20.在平面直角坐标系xOy 中,我们把横 、纵坐标都是整数的点叫做整点.已知点()04A ,,点B 是x 轴正半轴上的整点,记AOB △内部(不包括边界)的整点个数为m . (1)当3m =时,求点B 坐标的所有可能值;(2)当点B 的横坐标为4n (n 为正整数)时,用含n 的代数式表示m .六、(本大题共2小题,每小题9分,共18分)21.某校对学生的数学学习成绩进行综合评价,学期最后得分由完成学习任务的基本得分和学期课堂总体表现得分乘以考试成绩平均分两部分组成(即:学期最后得分=基本得分+学期课堂总体表现得分×考试平均分).下表是甲、乙两同学本学期的考试成绩平均分与最后得分的情况. 学生 甲 乙 考试平均分 80 90 学期最后得分700780若两同学的基本得分与学期课堂总体表现得分相同,求此基本得分和学期课堂总体表现得分. 22.一日雾霾天气重新出现在某市城区,某市记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表.请根据图表中提供的信息解答下列问题;(1)填空:m =________,n =_______,扇形统计图中E 组所占的百分比为_________%. (2)若该市人口约有100万人,请你估计其中持D 组“观点”的市民人数;(3)若在这次接受调查的市民中,随机抽查一人,则此人持C 组“观点”的概率是多少? 七、(本大题共2小题,第23题10分,第24题12分,共22分)23.如图,在△ABC 中,AB=AC ,AB 的垂直平分线交AB 于N ,交AC 于M . (1)若∠B=70°,则∠NMA 的度数是 ; (2)探究∠B 与∠NMA 的关系,并说明理由;(3)连接MB ,若AB =8 cm ,△MBC 的周长是14 cm . ①求BC 的长;②在直线MN 上是否存在点P ,使PB+CP 的值最小,若存在,标出点P 的位置并求PB+CP 的最小值,若不存在,说明理由.24.如图,平面直角坐标系中,直线AB :b x y +-=31交y 轴于点A (0,1),交x 轴于点B .直线1=x 交AB 于点D ,交x 轴于点E , P 是直线1=x 上一动点,且在点D 的上方,设P (1,n ). (1)求直线AB 的解析式和点B 的坐标; (2)求△ABP 的面积(用含n 的代数式表示);(3)当2=∆ABP S 时,以PB 为边在第一象限作等腰直角三角形BPC ,求出点C 的坐标.2013-2014学年度山东省宁阳市第一学期八年级期末检测数学试题参考答案1.C 2.D 3.C 4.D 5.B 6.B7.2 8.B (l ,2) 9.- a 10.1.5米 11.-1 或2112.2 13.65°, 14.( 3, 0), (- 3, 0)15.解: ⎩⎨⎧=+=②.13y 2x ①11,3y -4x①+②×3,得10x=50, x=5,把x=5代入②,得2×5+y=13,解得y=3. ∴方程组的解为⎩⎨⎧==3y 5x .16.解:原式=3366182-⨯⨯-⨯ =6-336- =6-7317.解:(1)描点如图依题意,得AB ∥x 轴,且AB=3-(-2)=5,∴S △ABC =12×5×2=5; (2)如图;A′(-2,-1)、B′(3,-1)、C′(2,-3). (3)M '(x , -y )18.解:(1)根据题意,每行驶x ,耗油0.2x ,即总油量减少0.2x , 则油箱中的油剩下40-0.2x ,∴y 与x 的函数关系式为:y=40-0.2x ; (2)当y=3时,40-0.2x =3, 解得x=185所以汽车最多可行驶185千米.就会报警,而往返两地95×2=190千米,汽车会报警。

19.解:根据题意,∠1+∠EAH =90° ∠AHE+∠EAH =90° ∠1=∠AHE ∠AHE =∠2 ∠1=∠2(1)当∠1=36°时∠2=∠1=36°(2)当∠1=30°时,AH ∥FG 理由如下:(不写理由,只写结果给1分) ∠1=30°∠2=∠AHE =∠1=30° ∠G =30° ∠G =∠2 AH ∥FG 设AH =x在Rt △AEH 中,∠AHE =30°所以AE =21AH =21x 在Rt △ABE 中,∠1=30° 所以BE =21AE =41AH =41x由勾股定理:338364421631614122222222=====-=-=x x x x x BE AE AB AH=338cm 20.解:(1)当B 点的横坐标为3或者4时,即B (3,0)或(4,0)如下图所示,只有3个整点,坐标分别为(1,1),(1,2),(2,1);(2)当n =1时,即B 点的横坐标为4,如上图,此时有3个整点; 当n =2时,即B 点的横坐标为8,如下图,此时有9个整点; 当n =3时,即B 点的横坐标为12,如下图,此时有15个整点; 根据上面的规律,即可得出3,9,15…, ∴m =6n –3.当点B 的横坐标为4n (n 为正整数)时,∵以OB 为长OA 为宽的矩形内(不包括边界)的整点个数为(4n -1)×3=12 n -3,对角线AB 上的整点个数总为3,∴△AOB 内部(不包括边界)的整点个数m=(12 n -3-3)÷2=6n -3。

21..解:设基本得分为x ,两同学的学期课堂总体表现得分都是y , 则可列方程组为⎩⎨⎧=+=+,78090,70080y x y x解得⎩⎨⎧==.8,60y x∴基本得分为60分,两同学的学期课堂总体表现得分都是8分. 22.解:(1)总人数是:80÷20%=400(人),则m=400×10%=40(人), C 组的频数n=400-80-40-120-60=100, E 组所占的百分比是:60400×100%=15%; (2)持D 组观点的市民人数约为100×(万人)30601201004080120=++++.(3)持C 组观点的概率为41400100=. 23.解:(1) 50°.(2)猜想的结论为:∠NMA= 2∠B -90°. 理由:因AB=AC ,所以∠B=∠C , ∴∠A= 180°-2∠B, 又因MN 垂直平分AB,∴∠NMA=90°-∠A =90°-(180°-2∠B )=2∠B -90°.(3)①因MN 垂直平分AB ,所以MB =MA ,又因△MBC 的周长是14 cm , 故AC+BC =14 cm ,所以BC =6 cm .②当点P 与点M 重合时,PB+CP 的值最小,最小值是8cm .24.解:(1)∵b x y +-=31经过A (0,1), ∴1=b ,∴直线AB 的解析式是131+-=x y .当0=y 时,1310+-=x ,解得3=x ,∴点B (3,0).(2)过点A 作AM ⊥PD ,垂足为M ,则有AM=1,∵1=x 时,131+-=x y =32,P 在点D 的上方,∴PD=n -32,3121)32(12121-=-⨯⨯=⋅=∆n n AM PD S APD 由点B (3,0),可知点B 到直线1=x 的距离为2,即△BDP 的边PD 上的高长为2,∴32221-=⨯=∆n PD S BPD ,∴123323121-=-+-=+=∆∆∆n n n S S S BPD APD PAB ; (三角形ABP 的面积可以用三角形PDB 的面积+梯形AODP 的面积—三角形AOB 的面积。

相关文档
最新文档