2019学年高中一轮复习理数:十七 定积分与微积分基本定理含解析

合集下载

高三数学一轮复习知识点归纳与总结:定积分与微积分的基本定理

高三数学一轮复习知识点归纳与总结:定积分与微积分的基本定理

届高三数学一轮复习(知识点归纳与总结):定积分与微积分的基本定理————————————————————————————————作者:————————————————————————————————日期:第十四节定积分与微积分基本定理[备考方向要明了]考什么怎么考1.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念.2.了解微积分基本定理的含义.1.考查形式多为选择题或填空题.2.考查简单定积分的求解.如2012年江西T11等.3.考查曲边梯形面积的求解.如2012年湖北T3,山东T15,上海T13等.4.与几何概型相结合考查.如2012年福建T6等.[归纳·知识整合]1.定积分(1)定积分的相关概念在∫b a f(x)d x中,a,b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,f(x)叫做被积函数,x叫做积分变量,f(x)d x叫做被积式.(2)定积分的几何意义①当函数f(x)在区间[a,b]上恒为正时,定积分∫b a f(x)d x的几何意义是由直线x=a,x =b(a≠b),y=0和曲线y=f(x)所围成的曲边梯形的面积(左图中阴影部分).②一般情况下,定积分∫b a f(x)d x的几何意义是介于x轴、曲线f(x)以及直线x=a,x=b 之间的曲边梯形面积的代数和(右上图中阴影所示),其中在x轴上方的面积等于该区间上的积分值,在x轴下方的面积等于该区间上积分值的相反数.(3)定积分的基本性质①∫b a kf(x)d x=k∫b a f(x)d x.②∫b a[f1(x)±f2(x)]d x=∫b a f1(x)d x±∫b a f2(x)d x.③∫b a f(x)d x=∫c a f(x)d x+∫b c f(x)d x.[探究] 1.若积分变量为t ,则∫b a f (x )d x 与∫ba f (t )d t 是否相等?提示:相等.2.一个函数的导数是唯一的,反过来导函数的原函数唯一吗?提示:一个函数的导数是唯一的,而导函数的原函数则有无穷多个,这些原函数之间都相差一个常数,在利用微积分基本定理求定积分时,只要找到被积函数的一个原函数即可,并且一般使用不含常数的原函数,这样有利于计算.3.定积分∫b a [f (x )-g (x )]d x (f (x )>g (x ))的几何意义是什么?提示:由直线x =a ,x =b 和曲线y =f (x ),y =g (x )所围成的曲边梯形的面积. 2.微积分基本定理如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么∫b a f (x )d x =F (b )-F (a ),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼兹公式.为了方便,常把F (b )-F (a )记成F (x )|b a ,即∫b a f (x )d x =F (x )|b a =F (b )-F (a ).[自测·牛刀小试]1.∫421xd x 等于( ) A .2ln 2 B .-2ln 2 C .-ln 2D .ln 2解析:选D ∫421xd x =ln x |42=ln 4-ln 2=ln 2. 2.(教材习题改编)一质点运动时速度和时间的关系为V (t )=t 2-t +2,质点作直线运动,则此物体在时间[1,2]内的位移为( )A.176B.143 C.136D.116解析:选A S =∫21(t 2-t +2)d t =⎝⎛⎪⎪⎭⎫13t 3-12t 2+2t 21=176.3.(教材习题改编)直线x =0,x =2,y =0与曲线y =x 2所围成的曲边梯形的面积为________.解析:∫20x 2d x =13x 3 |20=83. 答案:834.(教材改编题)∫101-x 2d x =________.解析:由定积分的几何意义可知,∫101-x 2d x 表示单位圆x 2+y 2=1在第一象限内部分的面积,所以∫101-x 2d x =14π. 答案:14π5.由曲线y =1x ,直线y =-x +52所围成的封闭图形的面积为________.解析:作出图象如图所示.解方程组可得交点为A ⎝⎛⎭⎫12,2,B ⎝⎛⎭⎫2,12,所以阴影部分的面积,212⎰⎝⎛ -x +52-⎭⎫1x d x = ⎝⎛⎭⎫-12x 2+52x -ln x 212=158-2ln 2. 答案:158-2ln 2利用微积分基本定理求定积分[例1] 利用微积分基本定理求下列定积分:(1)∫21(x 2+2x +1)d x ;(2)∫π0(sin x -cos x )d x ;(3)∫20x (x +1)d x ;(4)∫21⎝⎛⎭⎫e 2x +1x d x ; (5)20π⎰sin 2x 2d x .[自主解答](1)∫21(x 2+2x +1)d x =∫21x 2d x +∫212x d x +∫211d x =x 33 |21+x 2 |21+x |21=193. (2)∫π0(sin x -cos x )d x=∫π0sin x d x -∫π0cos x d x =(-cos x ) |π0-sin x |π0=2. (3)∫20x (x +1)d x =∫20(x 2+x )d x=∫20x 2d x +∫20x d x =13x 3 |20+12x 2 |20 =⎝⎛⎭⎫13×23-0+⎝⎛⎭⎫12×22-0=143.(4)∫21⎝⎛⎭⎫e 2x +1x d x =∫21e 2x d x +∫211x d x =12e 2x |21+ln x |21=12e 4-12e 2+ln 2-ln 1 =12e 4-12e 2+ln 2. (5)20π⎰ sin 2x 2d x =20π⎰⎝⎛⎭⎫12-12cos x d x =20π⎰12d x -1220π⎰cos x d x =12x 20π-12sin x 20π=π4-12=π-24. ———————————————————求定积分的一般步骤计算一些简单的定积分,解题的步骤是:(1)把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积的和或差; (2)把定积分用定积分性质变形为求被积函数为上述函数的定积分; (3)分别用求导公式找到一个相应的原函数; (4)利用牛顿—莱布尼兹公式求出各个定积分的值; (5)计算原始定积分的值.1.求下列定积分: (1)∫20|x -1|d x ; (2)20π⎰1-sin 2x d x .解:(1)|x -1|=⎩⎪⎨⎪⎧1-x , x ∈[0,1)x -1, x ∈[1,2]故∫20|x -1|d x =∫10(1-x )d x +∫21(x -1)d x=⎝⎛⎭⎫x -x 22 |10+⎝⎛⎭⎫x 22-x |21 =12+12=1. (2) 20π⎰1-sin 2x d x=20π⎰|sin x -cos x |d x =40π⎰(cos x -sin x )d x +24ππ⎰(sin x -cos x )d x=(sin x+cos x)4π+(-cos x-sin x) 24ππ=2-1+(-1+2)=22-2.利用定积分的几何意义求定积分[例2]∫10-x2+2x d x=________.[自主解答]∫10-x2+2x d x表示y=-x2+2x与x=0,x=1及y=0所围成的图形的面积.由y=-x2+2x得(x-1)2+y2=1(y≥0),又∵0≤x≤1,∴y=-x2+2x与x=0,x=1及y=0所围成的图形为14个圆,其面积为π4.∴∫10-x2+2x d x=π4.在本例中,改变积分上限,求∫20-x2+2x d x的值.解:∫20-x2+2x d x表示圆(x-1)2+y2=1在第一象限内部分的面积,即半圆的面积,所以∫20-x2+2x d x=π2.———————————————————利用几何意义求定积分的方法(1)当被积函数较为复杂,定积分很难直接求出时,可考虑用定积分的几何意义求定积分.(2)利用定积分的几何意义,可通过图形中面积的大小关系来比较定积分值的大小.2.(2013·福建模拟)已知函数f(x)=∫x0(cos t-sin t)d t(x>0),则f(x)的最大值为________.解析:因为f(x)=∫x02sin⎝⎛⎭⎫π4-t d t=2cos⎝⎛⎭⎫π4-t|x0=2cos⎝⎛⎭⎫π4-x-2cosπ4=sin x+cos x-1=2sin⎝⎛⎭⎫x+π4-1≤2-1,当且仅当sin⎝⎛⎭⎫x+π4=1时,等号成立.答案:2-1利用定积分求平面图形的面积[例3] (2012·山东高考)由曲线y =x ,直线y =x -2及y 轴所围成的图形的面积为( ) A.103 B .4 C.163D .6[自主解答] 由y =x 及y =x -2可得,x =4,即两曲线交于点(4,2).由定积分的几何意义可知,由y =x 及y =x -2及y 轴所围成的封闭图形面积为∫40(x -x +2)d x =⎝⎛⎭⎫23x 32-12x 2+2x |40=163. [答案] C若将“y =x -2”改为“y =-x +2”,将“y 轴”改为“x 轴”,如何求解?解:如图所示,由y =x 及y =-x +2可得x =1.由定积分的几何意义可知,由y =x ,y =-x +2及x 轴所围成的封闭图形的面积为∫20f (x )d x =∫1x d x +∫21(-x +2)d x =23x 32 |10+⎝⎛⎭⎫2x -x 22 |21=76.——————————————————— 利用定积分求曲边梯形面积的步骤(1)画出曲线的草图.(2)借助图形,确定被积函数,求出交点坐标,确定积分的上、下限. (3)将“曲边梯形”的面积表示成若干个定积分的和或差. (4)计算定积分,写出答案.3.(2013·郑州模拟)如图,曲线y =x 2和直线x =0,x =1,y =14所围成的图形(阴影部分)的面积为( )A.23B.13C.12D.14解析:选D 由⎩⎪⎨⎪⎧y =14,y =x 2⇒x =12或x =-12(舍),所以阴影部分面积S =120⎰⎝⎛⎭⎫14-x 2d x +112⎰⎝⎛⎭⎫x 2-14d x=⎝⎛⎭⎫14x -13x 3120+⎝⎛⎭⎫13x 3-14x 112=14.定积分在物理中的应用[例4] 列车以72 km/h 的速度行驶,当制动时列车获得加速度a =-0.4 m/s 2,问列车应在进站前多长时间,以及离车站多远处开始制动?[自主解答] a =-0.4 m/s 2,v 0=72 km/h =20 m/s. 设t s 后的速度为v ,则v =20-0.4t . 令v =0,即20-0.4 t =0得t =50 (s). 设列车由开始制动到停止所走过的路程为s ,则s =∫500v d t =∫500(20-0.4t )d t =(20t -0.2t 2) |500=20×50-0.2×502=500(m),即列车应在进站前50 s 和进站前500 m 处开始制动. ———————————————————1.变速直线运动问题如果做变速直线运动的物体的速度v 关于时间t 的函数是v =v (t )(v (t )≥0),那么物体从时刻t =a 到t =b 所经过的路程为∫b a v (t )d t ;如果做变速直线运动的物体的速度v 关于时间t 的函数是v =v (t )(v (t )≤0),那么物体从时刻t =a 到t =b 所经过的路程为-∫b a v (t )d t .2.变力做功问题物体在变力F (x )的作用下,沿与力F (x )相同方向从x =a 到x =b 所做的功为∫b a F (x )d x .4.一物体在力F (x )=⎩⎪⎨⎪⎧10 (0≤x ≤2)3x +4 (x >2)(单位:N)的作用下沿与力F (x )相同的方向运动了4米,力F (x )做功为( )A .44 JB .46 JC .48 JD .50 J解析:选B 力F (x )做功为∫2010d x +∫42(3x +4)d x=10x |20+⎝⎛⎪⎪⎭⎫32x 2+4x 42=20+26=46.1个定理——微积分基本定理由微积分基本定理可知求定积分的关键是求导函数的原函数,由此可知,求导与积分是互为逆运算.3条性质——定积分的性质 (1)常数可提到积分号外; (2)和差的积分等于积分的和差; (3)积分可分段进行.3个注意——定积分的计算应注意的问题(1)若积分式子中有几个不同的参数,则必须分清谁是积分变量; (2)定积分式子中隐含的条件是积分上限不小于积分下限; (3)面积非负, 而定积分的结果可以为负.易误警示——利用定积分求平面图形的面积的易错点[典例] (2012·上海高考)已知函数y =f (x )的图象是折线段ABC ,其中A (0,0),B ⎝⎛⎭⎫12,5,C (1,0).函数y =xf (x )(0≤x ≤1)的图象与x 轴围成的图形的面积为________.[解析] 由题意可得f (x )=⎩⎨⎧10x ,0≤x ≤12,10-10x ,12<x ≤1,所以y =xf (x )=⎩⎨⎧10x 2,0≤x ≤12,10x -10x 2,12<x ≤1,与x 轴围成图形的面积为120⎰10x 2d x +112⎰错误!未找到引用源。

17定积分与微积分基本定理(含答案)

17定积分与微积分基本定理(含答案)

17定积分与微积分基本定理1.定积分的概念如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b 将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式∑ni =1f (ξi )Δx =∑ni =1 b -a nf (ξi ),当n →∞时,上 述和式无限接近某个□01常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作⎠⎛a bf (x )d x ,即⎠⎛abf (x )d x =lim n →∞ ∑ni =1b -an f (ξi ).其中f (x )称为□02被积函数,a 称为积分□03下限,b 称为积分□04上限. 2.定积分的几何意义性质1:⎠⎛a b kf (x )d x =□01k ⎠⎛ab f (x )d x (k 为常数). 性质2:⎠⎛a b [f (x )±g (x )]d x =□02⎠⎛a b f (x )d x ±⎠⎛a b g (x )d x . 性质3:⎠⎛a b f (x )d x =⎠⎛ac f (x )d x +□03⎠⎛c b f (x )d x . 4.微积分基本定理一般地,如果f (x )是在区间[a ,b ]上的连续函数,且F ′(x )=f (x ),那么⎠⎛abf (x )d x =□01F (b )-F (a ).这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.可以把F (b )-F (a )记为F (x )b a ,即⎠⎛abf (x )d x =F (x )b a =□02F (b )-F (a ). 5.定积分与曲边梯形面积的关系设阴影部分的面积为S . (1)S =⎠⎛a b f (x )d x ;(2)S =□01-⎠⎛ab f (x )d x ; (3)S =□02⎠⎛ac f (x )d x -⎠⎛cb f (x )d x ; (4)S =⎠⎛a b f (x )d x -⎠⎛a b g (x )d x =⎠⎛a b [f (x )-g (x )]d x . 6.定积分与函数奇偶性的关系函数f (x )在闭区间[-a ,a ]上连续,则有 (1)若f (x )为偶函数,则⎠⎛a -a f (x )d x =2⎠⎛0a f (x )d x .(2)若f (x )为奇函数,则⎠⎛a -a f (x )d x =0.练习1.如图,指数函数的图象过点E (2,9),则图中阴影部分的面积等于( ) A.8ln 3 B .8 C.9ln 3D .9答案 A解析 设指数函数为y =a x (a >0且a ≠1),因为其过点E (2,9),所以a 2=9,解得a =3,所以图中阴影部分的面积S =⎠⎛023x d x ==8ln 3. 2.已知质点的速率v =10t ,则从t =0 到t =t 0质点所经过的路程是( ) A .10t 20 B .5t 20 C.103t 20 D.53t 20 答案 B 解析3.设f (x )=⎩⎨⎧x 2,x ∈[0,1],2-x ,x ∈1,2],则等于( )A.34B.45C.56 D .不存在答案 C 解析==13x 310+⎝ ⎛⎭⎪⎫2x -12x 221=13+⎝ ⎛⎭⎪⎫2×2-12×22-⎝⎛⎭⎪⎫2-12=13+4-2-2+12=56. 4. =( )A .7 B.223 C.113 D .4答案 C 解析==⎝⎛⎭⎪⎫4x -x 3310=4-13=113.5. 的值为________.答案 2(e -1) 解析=2⎠⎛01e x d x =2·e x 10=2(e -1).6.若f (x )=3+2x -x 2,则=________.答案 π解析 令y =3+2x -x 2,则(x -1)2+y 2=4(y ≥0),所以函数f (x )的图象是以(1,0)为圆心,2为半径的圆在x 轴上方(包括x 轴)的部分,所以=14×π×22=π7.如图,已知点A (0,1),点P (x 0,y 0)(x 0>0)在曲线y =x 2上移动,过P 点作PB垂直x 轴于点B ,若图中阴影部分的面积是四边形AOBP 面积的13,则P 点的坐标为________.答案 (1,1)解析 由题意,点P (x 0,y 0),则梯形AOBP 的面积为12(1+y 0)x 0=12(1+x 20)x 0,且阴影部分的面积为又阴影部分的面积是梯形AOBP 面积的13,∴13x 30=13×12(1+x 20)x 0,解得x 0=0或x 0=±1; 取x 0=1,则y 0=1,∴P 点的坐标为(1,1).8.如图,矩形OABC 中曲线的方程分别是y =sin x ,y =cos x .A ⎝ ⎛⎭⎪⎫π2,0,C (0,1),在矩形OABC 内随机取一点,则此点取自阴影部分的概率为( )A.43-1πB.42-1πC .4(3-1)πD .4(2-1)π答案 B解析 由题可知图中阴影部分的面积故选C.9.如图,点M 在曲线y =x 上,若由曲线y =x 与直线OM 所围成的阴影部分的面积为16,则实数a 等于( )A.12B.13C .1D .2答案 C解析 由题意,M (a ,a ),直线OM 的方程为y =xa,故所求图形的面积为得a =1,故选C.10.若函数f (x )=A sin ⎝ ⎛⎭⎪⎫ωx -π6(A >0,ω>0)的图象如图所示,则图中的阴影部分的面积为________.答案2-32解析 由图可知,A =1,T 2=2π3-⎝ ⎛⎭⎪⎫-π3=π,T =2π,∴ω=1, 则f (x )=sin ⎝ ⎛⎭⎪⎫x -π6,∴图中的阴影部分的面积为=1-32=2-32. 11.一物体做变速直线运动,其 v ­t 曲线如图所示,则该物体在12~6 s 间的运动路程为________ m.答案 494解析由题图可知,v (t )=⎩⎪⎨⎪⎧2t 0≤t <1,21≤t ≤3,13t +13<t ≤6.由变速直线运动的路程公式,可得所以物体在12~6 s 间的运动路程是494m.12.从空中自由下落的一物体,在第一秒末恰经过电视塔顶,在第二秒末物体落地,已知自由落体的运动速度为v =gt (g 为常数),则电视塔高为( )A.12g B .g C.32g D .2g答案 C解析 由题意知电视塔高为=2g -12g =32g .13.若则S 1,S 2,S 3的大小关系为( ) A .S 1<S 2<S 3 B .S 2<S 1<S 3 C .S 2<S 3<S 1 D .S 3<S 2<S 1 答案 B 解析 因为所以,S 2<S 1<S 3.14.如图,阴影部分的面积是( )A .2 3B .5 3 C.323D.353答案 C解析 联立⎩⎨⎧y =2x ,y =3-x 2,解得⎩⎨⎧x =1,y =2或⎩⎨⎧x =-3,y =-6,由图可知,阴影部分的面积可表示为=⎝ ⎛⎭⎪⎫3-13-1-⎣⎢⎡⎦⎥⎤3×-3-13×-33--32=323. 15.在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C 的方程为x 2-y =0)的点的个数的估计值为( )A .5000B .6667C .7500D .7854答案 B解析 图中阴影部分的面积为⎝⎛⎭⎪⎫x -13x 310=23,又正方形的面积为1,则10000个点落入阴影部分个数估计为10000×23≈6667,故选B.16.若=3+ln 2(a >1),则a 的值是( )A .2B .3C .4D .6答案 A解析 ∵(x 2)′=2x ,(ln x )′=1x ,∴⎠⎛1a⎝⎛⎭⎪⎫2x +1x d x ==(a 2-1)+ln a ,由=3+ln 2(a>1),所以(a 2-1)+ln a =3+ln 2,所以a =2.17.已知函数f (x )=-x 3+ax 2+bx (a ,b ∈R )的图象如图所示,它与x 轴相切于原点,且x 轴与函数图象所围成区域(图中阴影部分)的面积为112,则a 的值为( )A .0B .1C .-1D .-2答案 C解析 由f (x )=-x 3+ax 2+bx ,得f ′(x )=-3x 2+2ax +b .∵x =0是原函数的一个极值点,∴f ′(0)=b =0,∴f (x )=-x 3+ax 2,⎠⎛a 0(x 3-ax 2)d x =⎝ ⎛⎭⎪⎫14x 4-13ax 30a=0-a 44+a 43=a 412=112,∴a =±1.函数f (x )与x 轴的交点横坐标一个为0,另一个为a ,根据图形可知a <0,得a =-1.18.如图,由两条曲线y =-x 2,4y =-x 2及直线y =-1所围成的图形的面积为________.答案4 3解析令y=-1得到A(-2,-1),B(-1,-1),C(1,-1),D(2,-1).设围成的图形的面积为S,因为y轴两边的阴影部分关于y轴对称,所以。

高中数学高考高三理科一轮复习资料第2章 2.4 定积分与微积分基本定理

高中数学高考高三理科一轮复习资料第2章 2.4 定积分与微积分基本定理
a
方); (2)如果在[a,b] 上,f(x)≤0,则曲线 y=f(x),x=a,x= b b b(a < b) 和 x 轴围成的曲边梯形的面积为 S = |f(x)|dx =-
a a
f(x)dx(这时曲线全部在 x 轴下方);
(3)如果在[a,b]上,f(x)有正有负,即曲线在 x 轴上方和下 方都有图象,例如:在(a,c)上位于 x 轴上方,在(c,b)上位于 x 轴下方,则曲线 y=f(x),x=a,x=b(a<b)和 x 轴围成的曲 c b 边梯形的面积为 S= f(x)dx+ |f(x)|dx=
b b b 4. f(x)dx, |f(x)|dx, | f(x)dx|三者在几何意义上的不同. 当
i 0 n-1
果和式极限存在,则称和式 In 的极限为函数 f(x)在区间[a,b] b fxdx 上的定积分,记作①______,即 =②________.
a
b (2)在 f(x)dx 中, a 与 b 分别叫做积分下限与积分上限, 区
a
间③________叫做积分区间,函数④________叫做被积函数, ⑤________叫做积分变量,⑥________叫做被积式.
a
曲线 f(x)以及直线 x=a、 x=b 之间的曲边梯形面积的代数和(图 ②中阴影所示),其中在 x 轴上方的面积等于该区间上的积分 值,在 x 轴下方的面积等于该区间上积分值的⑦__________.
3.定积分的基本性质: b (1) kf(x)dx=⑧____________________________.
c a
b f(x)dx- f(x)dx.
c
a

c
2.由曲线 y=f(x),y=g(x)(f(x)>g(x))与直线 x=a,x= b b(a<b)围成的图形的面积为 S= [f(x)-g(x)]dx.

1_定积分与微积分基本定理(理)含答案版

1_定积分与微积分基本定理(理)含答案版

定积分与微积分基本定理(理)基础巩固强化1.求曲线y =x 2与y =x 所围成图形的面积,其中正确的是( ) A .S =⎠⎛01(x 2-x )d x B .S =⎠⎛01(x -x 2)d xC .S =⎠⎛01(y 2-y )d y D .S =⎠⎛01(y -y )d y[答案]B[分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解析]两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x 2,故函数y =x 2与y =x 所围成图形的面积S =⎠⎛01(x -x 2)d x .2.如图,阴影部分面积等于( )A .23B .2- 3 C.323D.353 [答案]C[解析]图中阴影部分面积为S =⎠⎛-31(3-x 2-2x )d x =(3x -13x 3-x 2)|1-3=323. 3.⎠⎛024-x 2d x =( )A .4πB .2πC .π D.π2 [答案]C[解析]令y =4-x 2,则x 2+y 2=4(y ≥0),由定积分的几何意义知所求积分为图中阴影部分的面积,∴S =14×π×22=π.4.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v 甲和v 乙(如图所示).那么对于图中给定的t 0和t 1,下列判断中一定正确的是( )A .在t 1时刻,甲车在乙车前面B .在t 1时刻,甲车在乙车后面C .在t 0时刻,两车的位置相同D .t 0时刻后,乙车在甲车前面 [答案]A[解析]判断甲、乙两车谁在前,谁在后的问题,实际上是判断在t 0,t 1时刻,甲、乙两车行驶路程的大小问题.根据定积分的几何意义知:车在某段时间行驶的路程就是该时间段速度函数的定积分,即速度函数v (t )的图象与t 轴以与时间段围成区域的面积.从图象知:在t 0时刻,v 甲的图象与t 轴和t =0,t =t 0围成区域的面积大于v 乙的图象与t 轴和t =0,t =t 0围成区域的面积,因此,在t 0时刻,甲车在乙车的前面,而且此时乙车的速度刚刚赶上甲车的速度,所以选项C ,D 错误;同样,在t 1时刻,v 甲的图象与t 轴和t =t 1围成区域的面积,仍然大于v 乙的图象与t 轴和t =t 1围成区域的面积,所以,可以断定:在t 1时刻,甲车还是在乙车的前面.所以选A.5.向平面区域Ω={(x ,y )|-π4≤x ≤π4,0≤y ≤1}随机投掷一点,该点落在曲线y =cos2x 下方的概率是( )A.π4B.12C.π2-1D.2π [答案]D[解析]平面区域Ω是矩形区域,其面积是π2,在这个区6.的值是( )A .0 B.π4 C .2 D .-2 [答案]D[解析]2(cos sin )2x x ππ---=2(cos sin )2x x ππ---=-2. 7.⎠⎛02(2-|1-x |)d x =________.[答案]3[解析]∵y =⎩⎨⎧1+x 0≤x ≤13-x 1<x ≤2,∴⎠⎛02(2-|1-x |)d x =⎠⎛01(1+x )d x +⎠⎛12(3-x )d x=(x +12x 2)|10+(3x -12x 2)|21=32+32=3. 9.已知a =20(sin cos )x x dx π+⎰,则二项式(a x -1x)6的展开式中含x 2项的系数是________.[答案]-192 [解析]由已知得a =2(sin cos )x x dx π+⎰=(-cos x +sin x )|π20=(sin π2-cos π2)-(sin0-cos0)=2,(2x -1x)6的展开式中第r +1项是T r +1=(-1)r ×C r 6×26-r×x 3-r ,令3-r =2得,r =1,故其系数为(-1)1×C 16×25=-192.10.有一条直线与抛物线y =x 2相交于A 、B 两点,线段AB 与抛物线所围成图形的面积恒等于43,求线段AB 的中点P 的轨迹方程.[解析]设直线与抛物线的两个交点分别为A (a ,a 2),B (b ,b 2),不妨设a <b ,则直线AB 的方程为y -a 2=b 2-a 2b -a (x -a ),即y =(a +b )x -ab .则直线AB 与抛物线围成图形的面积为S =⎠⎛ab [(a +b )x -ab -x 2]d x=(a +b 2x 2-abx -x 33)|ba =16(b -a )3,∴16(b -a )3=43,解得b -a =2.设线段AB 的中点坐标为P (x ,y ), 其中⎩⎪⎨⎪⎧x =a +b 2,y =a 2+b 22.将b -a =2代入得⎩⎨⎧x =a +1,y =a 2+2a +2.消去a 得y =x 2+1.∴线段AB 的中点P 的轨迹方程为y =x 2+1.能力拓展提升11.等比数列{a n }中,a 3=6,前三项和S 3=⎠⎛034x d x ,则公比q 的值为( )A .1B .-12C .1或-12D .-1或-12 [答案]C [解析]因为S 3=⎠⎛034x d x =2x 2|30=18,所以6q +6q 2+6=18,化简得2q 2-q -1=0,解得q =1或q =-12,故选C.12.已知(x ln x )′=ln x +1,则⎠⎛1e ln x d x =( )A .1B .eC .e -1D .e +1 [答案]A[解析]由(x ln x )′=ln x +1,联想到(x ln x -x )′=(ln x +1)-1=ln x ,于是⎠⎛1e ln x d x =(x ln x -x )|e 1=(e ln e -e )-(1×ln1-1)=1.13.抛物线y 2=2x 与直线y =4-x 围成的平面图形的面积为________.[答案]18[解析]由方程组⎩⎨⎧y 2=2x ,y =4-x ,解得两交点A (2,2)、B (8,-4),选y 作为积分变量x =y 22、x =4-y ,∴S =⎠⎛-42 [(4-y )-y 22]dy =(4y -y 22-y 36)|2-4=18.14.已知函数f (x )=e x -1,直线l 1:x =1,l 2:y =e t -1(t 为常数,且0≤t ≤1).直线l 1,l 2与函数f (x )的图象围成的封闭图形如图中区域Ⅱ所示,其面积用S 2表示.直线l 2,y 轴与函数f (x )的图象围成的封闭图形如图中区域Ⅰ所示,其面积用S 1表示.当t 变化时,阴影部分的面积的最小值为________.[答案](e -1)2[解析]由题意得S 1+S 2=⎠⎛0t (e t -1-e x +1)d x +⎠⎛t1(e x -1-e t +1)d x=⎠⎛0t (e t -e x )d x +⎠⎛t1(e x -e t )d x =(xe t -e x )|t 0+(e x -xe t )|1t =(2t -3)e t +e +1,令g (t )=(2t -3)e t +e +1(0≤t ≤1),则g ′(t )=2e t +(2t -3)e t =(2t -1)e t,令g ′(t )=0,得t =12,∴当t ∈[0,12)时,g ′(t )<0,g (t )是减函数,当t ∈(12,1]时,g ′(t )>0,g (t )是增函数,因此g (t )的最小值为g (12)=e +1-2e 12=(e -1)2.故阴影部分的面积的最小值为(e -1)2.15.求下列定积分. (1)⎠⎛1-1|x |d x; (2)⎠⎛πcos 2x2d x ;(3)∫e +121x -1d x . [解析](1)⎠⎛1-1|x |d x =2⎠⎛1x d x =2×12x 2|10=1.(2)⎠⎛πcos 2x 2d x =⎠⎛0π1+cos x 2d x =12x |π0+12sin x |π0=π2. (3)∫e +121x -1d x =ln(x -1)|e +12=1. 16.已知函数f (x )=-x 3+ax 2+bx (a ,b ∈R )的图象如图所示,它与x 轴在原点处相切,且x 轴与函数图象所围区域(图中阴影部分)的面积为112,求a 的值.[解析]f ′(x )=-3x 2+2ax +b ,∵f ′(0)=0,∴b =0, ∴f (x )=-x 3+ax 2,令f (x )=0,得x =0或x =a (a <0). ∴S 阴影=⎠⎛a0[0-(-x 3+ax 2)]d x=(14x 4-13ax 3)|0a =112a 4=112, ∵a <0,∴a =-1.1.已知函数f (x )=sin 5x +1,根据函数的性质、积分的性质和积分的几何意义,探求22()f x dx ππ-⎰的值,结果是( )A.16+π2 B .π C .1 D .0 [答案]B[解析]22()f x dx ππ-⎰=22ππ-⎰sin 5x d x +22ππ-⎰1d x ,由于函数y =sin 5x 是奇函数,所以22ππ-⎰sin 5x d x =0,而22ππ-⎰1d x =x |π2-π2=π,故选B.2.若函数f (x )=⎩⎨⎧-x -1 (-1≤x <0),cos x (0≤x <π2),的图象与坐标轴所围成的封闭图形的面积为a ,则a 的值为( )A.2+π4B.12 C .1 D.32 [答案]D[解析]由图可知a =12+⎠⎜⎜⎛0π2cos x d x =12+sin x |π20=32.3.对任意非零实数a 、b ,若a ⊗b 的运算原理如图所示,则2⊗⎠⎛0πsin x d x =________.[答案]22[解析]∵⎠⎛0πsin x d x =-cos x |π0=2>2, ∴2⊗⎠⎛0πsin x d x =2⊗2=2-12=22. 4.设函数f (x )=ax 2+c (a ≠0),若⎠⎛01f (x )d x =f (x 0),0≤x 0≤1,则x 0的值为________. [答案]33[解析]⎠⎛01f (x )d x =⎠⎛01(ax 2+c )d x =(ax 33+cx )|10=a 3+c ,故a 3+c =ax 20+c ,即ax 20=a 3,又a ≠0,所以x 20=13,又0≤x 0≤1,所以x 0=33.故填33. 5.设n =⎠⎛12(3x 2-2)d x ,则(x -2x)n 展开式中含x 2项的系数是________.[答案]40[解析]∵(x 3-2x )′=3x 2-2, ∴n =⎠⎛12(3x 2-2)d x =(x 3-2x )|21 =(23-2×2)-(1-2)=5.∴(x -2x )5的通项公式为T r +1=C r 5x 5-r (-2x)r =(-2)r C r 5x 5-3r 2 ,令5-3r2=2,得r =2, ∴x 2项的系数是(-2)2C 25=40.。

高考数学(理)一轮规范练【17】定积分与微积分基本定理(含答案)

高考数学(理)一轮规范练【17】定积分与微积分基本定理(含答案)

课时规范练17定积分与微积分基本定理课时规范练第33页一、选择题1.设函数f(x)=x m+ax的导函数f'(x)=2x+1,则f(-x)d x的值等于( )A. B. C. D.答案:A解析:由于f(x)=x m+ax的导函数为f'(x)=2x+1,所以f(x)=x2+x,于是f(-x)d x=(x2-x)d x=.2.设a=d x,b=1-d x,c=x3d x,则a,b,c的大小关系为( )A.a>b>cB.b>a>cC.a>c>bD.b>c>a答案:A解析:由题意可得a=d x=;b=1-d x=1-=1-;c=x3d x=,综上知a>b>c,故选A.3.设f(x)=f(x)d x的值是( )A.x2d xB.2x d xC.x2d x+2x d xD.2x d x+x2d x答案:D解析:由分段函数的定义及积分运算的性质知,f(x)d x=f(x)d x+f(x)d x=2x d x+x2d x.4.一质点运动时速度与时间的关系为v(t)=t2-t+2,质点做直线运动,则此质点在时间[1,2]内的位移为( )A. B. C. D.答案:A解析:s=(t2-t+2)d t=.5.如图,由函数f(x)=e x-e的图象,直线x=2及x轴所围成的阴影部分面积等于( )A.e2-2e-1B.e2-2eC.D.e2-2e+1答案:B解析:面积S=f(x)d x=(e x-e)d x=(e x-e x)=(e2-2e)-(e1-e)=e2-2e.6.如图所示,在一个边长为1的正方形AOBC内,曲线y=x2和曲线y=围成一个叶形图(阴影部分所示),向正方形AOBC内随机投一点,则所投的点落在叶形图内部的概率是( )A. B. C. D.答案:D解析:由题意知,题中的正方形区域的面积为12=1,阴影区域的面积等于-x2)d x=,因此所投的点落在叶形图内部的概率等于,故选D.二、填空题7.d x=.答案:π解析:设y=,则x2+y2=4(y≥0),由定积分的几何意义知d x的值等于半径为2的圆的面积的.∴d x=×4π=π.8.(2013湖南高考)若x2d x=9,则常数T的值为.答案:3解析:∵'=x2,∴x2d x=x3T3-0=9,∴T=3.9.已知数列{a n}的前n项和为S n,且a n=d x(n∈N*),则S100=.答案:ln101解析:由题意知a n=ln x=ln(n+1)-ln n,故S100=a1+a2+…+a100=(ln2-ln1)+(ln3-ln2)+…+(ln101-ln100)=-ln1+ln101=ln101.三、解答题10.求由曲线y=x2+2x与直线y=x所围成的封闭图形的面积.解:在平面直角坐标系内,画出曲线y=x2+2x和直线y=x围成的封闭图形,如图所示,由得曲线与直线的两个交点的坐标分别为(-1,-1)和(0,0),故封闭图形的面积为S=[x-(x2+2x)]d x==-.11.已知f(x)为二次函数,且f(-1)=2,f'(0)=0,f(x)d x=-2.(1)求f(x)的解析式;(2)求f(x)在[-1,1]上的最大值与最小值.解:(1)设f(x)=ax2+bx+c(a≠0),则f'(x)=2ax+b.因为f(-1)=2,f'(0)=0,f(x)d x=-2,所以即解得所以f(x)=6x2-4.(2)f(x)=6x2-4,x∈[-1,1],当x=0时,f(x)取得最小值-4;当x=1或x=-1,f(x)取得最大值2.12.已知二次函数f(x)=ax2+bx+c,直线l1:x=2,直线l2:y=-t2+8t(其中0≤t≤2,t为常数).若直线l1,l2与函数f(x)的图象以及l2,y轴与函数f(x)的图象所围成的封闭图形如图阴影部分所示.(1)求a,b,c的值;(2)求阴影部分面积S关于t的函数S(t)的解析式.解:(1)由图形可知二次函数的图象过点(0,0),(8,0),并且f(x)的最大值为16,则解得(2)由(1),得f(x)=-x2+8x,由得x2-8x-t(t-8)=0,∴x1=t,x2=8-t.∵0≤t≤2,∴直线l2与f(x)的图象的交点坐标为(t,-t2+8t).由定积分的几何意义知:S(t)=[(-t2+8t)-(-x2+8x)]d x+[(-x2+8x)-(-t2+8t)]d x =-(-t2+8t)x=-t3+10t2-16t+.所以S(t)=-t3+10t2-16t+(0≤t≤2).希望对大家有所帮助,多谢您的浏览!。

专题17 定积分与微积分基本原理-2019年高考数学名师揭秘之一轮总复习 Word版含解析

专题17 定积分与微积分基本原理-2019年高考数学名师揭秘之一轮总复习 Word版含解析

本专题特别注意:1.数形结合求定积分2.分段求定积分3.定积分的几何意义4.含绝对值的定积分求法5.定积分与二项式定理的联系6.定积分与导数的联系7.分段函数定积分的求法8.定积分与概率的联系方法总结:1.定积分计算的关键是通过逆向思维获知被积函数的原函数,即导数运算的逆运算.2.定积分在物理学中的应用必须遵循相应的物理过程和物理原理.3.利用定积分求平面图形面积的步骤:(1)画出草图,在直角坐标系中画出曲线或直线的大致图象;(2)借助图形确定出被积函数,求出交点坐标,确定积分的上、下限;(3)将曲边梯形面积表示成若干个定积分的和;(4)计算定积分,写出答案.高考模拟:一、单选题1)A. C. D.【答案】C【解析】分析:先作出直线和抛物线围成的平面区域,再利用定积分的几何意义进行求解.由定积分的几何意义,得所求部分分面积为点睛:本题考查抛物线的几何性质、定积分的几何意义等知识,意在考查学生的数形结合思想的应用能力和基本计算能力.2)A. B. C.【答案】B故选B.点睛:解答本题时注意两点:①正确写出二项展开式的通项,然后解方程得到的值;②求定积分时要正确得到被积函数的原函数,并准确求出函数值.3)A. B. C. D.【答案】B【解析】分析:先根据定积分求得,求出二项展开式的通项后再求展开式中的常数项.点睛:本题考查用微积分基本定理求定积分和二项展开式的通项的应用,解答的关键式准确写出二项展开式的通项,并根据常数项的特征求解.4)A.【答案】C【解析】分析:由图象求出函数解析式,然后利用定积分求得图中阴影部分的面积.∴图中的阴影部分面积为故选C.点睛:本题考查了导数在求解面积中的应用,关键是利用图形求解的函数解析式,在运用积分求解.定积分的计算一般有三个方法:①利用微积分基本定理求原函数;②利用定积分的几何意义,利用面积求定积分;③利用奇偶性对称求定积分,奇函数在对称区间的定积分值为0.510000个随机数,构成5000,则估计值约为( )A. 3333B. 3000C. 2000D. 1667【答案】A【解析】分析:设事件为”测度为正方形的面积1.,,故选A.点睛:对于曲边梯形的面积,我们可以用定积分来计算.6)A. B. C. D.【答案】B7的展开式中,记()A. B. C. D.【答案】A,由已知有指的系数,指的系数,所以A.8)A. B. C. D.【答案】A可知的周期为,故选9.用S表示图中阴影部分的面积,则S的值是A. B.C. D.【答案】D10)A. 480 B. 160 C. 1280 D. 640【答案】D【解析】故答案为:D.点睛:这个题目考查的是二项式中的特定项的系数问题,在做二项式的问题时,看清楚题目是求二项式系数还是系数,还要注意在求系数和时,是不是缺少首项;解决这类问题常用的方法有赋值法,求导后赋值,积分后赋值等.11.A. B. C. D.【答案】A【解析】.故选A.12.已知函数在上可导,且,则( )A. 1B.C.D.【答案】C13.已知物体运动的速度与事件的关系式为,则落体从到所走的路程为( )A. B. C. D. 【答案】B【解析】由积分的物理意义可知运动从t=0到t=5所走的路程为,故选:B .14.定积分的值为( )A. B. C. D.【答案】A【解析】表示以为圆心,以为半径的圆,定积分等于该圆的面积的四分之一,定积分,故选A.15.设函数f(x)= 则定积分f(x)dx等于()A. B. 2 C. D.【答案】C【解析】,故选C.16.如图所示,在边长为1的正方形中任取一点,则点恰好取自阴影部的概率()A. B. C. D.【答案】C点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.17A. D.【答案】C整数,故n的最小值为5.C点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项..(2)已知展开式的某项,求特定项的系数.后求出其参数.18.若,则()A. B. C. D.【答案】B考点:定积分.19)A. 24B. 32C. 44D. 56【答案】A.20)A. C. D.【答案】B21.如图,在由,,,及围成区域内任取一点,则该点落在,及围成的区域内(阴影部分)的概率为()A. B. C. D.【答案】D故选:D.22)A. B. D.【答案】DD.二、填空题23.【答案】12.【解析】分析:根据定积分的几何意义和函数的奇偶性求解.详解:∵函数为偶函数,函数为奇函数,∴函数的图象关于y轴对称,函数的图象关于原点对称.x梯形的面积,解题时要注意面积非负,而定积分的结果可以为负.24__________.(用数字作答)【答案】84点睛:本题考点是定积分,以及二项展开式的通项公式是解决二项展开式特殊项问题的方法.25的面积最小时,__________.【解析】分析:先根据定积分求出c(为坐标原点)的面积最小,可得切点坐标,利用三角形的面积公式,即可求出,问题得以解决.由椭圆的焦点为,可设椭圆的方程为点睛:本题考查三角形面积的计算,考查直线与椭圆是位置关系,考查余弦定理的运用,基本不等式,椭圆的切线方程,属于难题2660.【答案】4..详解:的通项公式为,,,故答案为.点睛:本题主要考查定积分以及二项展开式定理的通项与系数,属于中档题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.27__________.【答案】-160点睛:本题主要考查定积分的计算,考查利用二项式的展开式求指定项.意在考查学生对这些基础知识的掌握能力和基本运算能力.28__________.【答案】280【解析】分析:利用微积分基本定理,.,展开式的通项为故答案为.点睛:本题主要考查二项展开式定理的通项与系数,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.29__________.30__________.【答案】展开式通项为,∴常数项为.故答案为240.31.【答案】32.欧阳修《卖油翁》中写到:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿.可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为的圆面,中间有边长为的正方形孔,若随机向铜钱上滴一滴油,则油滴整体(油滴是直径为0.2的球)正好落入孔中的概率是__________.【答案】【解析】因为直径为的圆中有边长为的正方形,由几何概型的概率公式,得“正好落入空中”的概率为.33.已知函数,则__________.【答案】点睛:定积分的计算一般有三个方法:(1)利用微积分基本定理求原函数;(2)利用定积分的几何意义,利用面积求定积分;(3)利用奇偶性对称求定积分,奇函数在对称区间的定积分值为034.若,则__________.【答案】3【解析】,,则.35.若,且,则的值为__________.【答案】1点睛:求解这类问题要注意:①区别二项式系数与展开式中项的系数,灵活利用二项式系数的性质;②根据题目特征,恰当赋值代换,常见的赋值方法是使得字母因式的值或目标式的值为1,-1.36.如图所示,在平面直角坐标系内,四边形为正方形且点坐标为.抛物线的顶点在原点,关于轴对称,且过点.在正方形内随机取一点,则点在阴影区域内的概率为_________.【答案】【解析】由抛物线的顶点在原点,关于轴对称,且过点,所以抛物线方程为,阴影区域的面积为,正方形的面积为1,点在阴影区域内的概率为.故答案为:37.计算__________.【答案】4【解析】由题意得,38.如图,在长方形内任取一点,则点落在阴影部分内的概率为__________.【答案】【解析】将代入 ,得 ,所以阴影部分面积为 ,矩形面积为 ,所以点 落在阴影部分内的概率为 ,故答案为 .39.如图所示,由直线,及轴围成的曲边梯形的面积介于小矩形与大矩形的面积之间,即.类比之,若对,不等式恒成立,则实数等于__________.【答案】240.已知函数,则__________;【答案】【解析】,而,表示半圆的面积,即,则.点睛:本题考查微积分基本定理、定积分的几何意义;求定积分的值主要有两种方法:(1)利用微积分基本定理求解,即找出函数的原函数进行求解,即;(2)利用函数的几何意义进行求解,主要涉及的定积分,如表示,即半圆的面积.41.__________.【答案】42.已知实数满足不等式组且的最大值为,则__________.【答案】【解析】作出可行域,目标函数可变为,令,作出,由平移可知直线过时取最大值,则.则.故本题应填.43.我国古代数学家祖暅提出原理:“幂势既同,则积不容异”.其中“幂”是截面积,“势”是几何体的高.原理的意思是:夹在两个平行平面间的两个几何体,被任一平行于这两个平行平面的平面所截,若所截的两个截面的面积恒相等,则这两个几何体的体积相等.如图所示,在空间直角坐标系平面内,若函数的图象与轴围成一个封闭的区域,将区域沿轴的正方向平移4个单位,得到几何体如图一,现有一个与之等高的圆柱如图二,其底面积与区域的面积相等,则此圆柱的体积为__________.【答案】【解析】由题可得:底面面积为,所以圆柱得体积为:44.若正实数满足,则的最小值为_______.【答案】2【解析】因为,所以,即,所以,故,应填答案。

2019高考数学导数及其应用与定积分:定积分与微积分基本定理

2019高考数学导数及其应用与定积分:定积分与微积分基本定理

高中学业水平测试生物知识点归纳——必修2高中学业水平测试生物知识点归纳高中学业水平测试生物知识点归纳——必修21.遗传的基本规律(1)基因分离定律一对相对性状杂交试验——亲本为显性纯合子AA和隐性纯合子aa,杂交后代为杂合子Aa,子一代自交,后代基因型比值为AA:Aa:aa=1:2:1,表现型比值为3:1(如,高茎:矮茎)。

测交:杂合子与隐性纯合子杂交,后代基因型与表现型比值均为1:1。

(2)基因自由组合定律两对相对性状杂交试验——子一代表现型比值为9:3:3:1,若要计算其中一种基因型(如AaBB)所占后代总体的比例,可用棋盘法,或者将两种基因分开,分别根据基因分离定律计算各自比值,再将两结果想乘得出(分离相乘法)。

如AaBB,Aa所占比值为2/4,BB所占比值为1/4,所以AaBB所占后代比值为2/4*1/4=1/8。

测交为两对基因型的杂合子与隐性纯合子杂交,后代基因型与表现型比值均为1:1:1:1。

(3)基因分离定律的实质:在杂合子的细胞中,位于一对同源染色体上的等位基因,具有一定的独立性,生物体在进行减数分裂时,等位基因会随同源染色体的分开而分离,分别进入到两个配子中,独立地随配子遗传给后代。

(4)基因的自由组合定律的实质:位于非同源染色体上的非等位基因的分离或组合是互不干扰的。

在进行减数分裂形成配子的过程中,同源染色体上的等位基因彼此分离,同时非同源染色体上的非等位基因自由组合。

(5)常见组合问题(自由组合定律的解题方法统一用分枝法[先一对一对分析,再进行组合]:都可以简化为用分离定理来解决,即先求一对相对性状的,最后把结果相乘,即进行组合,因此,要熟记分离定理的6种杂交结果)2①配子类型问题如:AaBbCc产生的配子种类数为2x2x2=8种②基因型类型如:AaBbCc×AaBBCc,后代基因型数为多少?先分解为三个分离定律:Aa×Aa后代3种基因型(1AA:2Aa:1aa),Bb×BB后代2种基因型(1BB:1Bb),Cc×Cc后代3种基因型(1CC :2Cc:1cc)所以其杂交后代有3x2x3=18种类型。

(复习指导)3.3 定积分与微积分基本定理含解析

(复习指导)3.3 定积分与微积分基本定理含解析

3.3 定积分与微积分基本定理必备知识预案自诊知识梳理1.定积分的定义如果函数f (x )的图像在区间[a ,b ]上连续,用分点a=x 0<x 1<…<x i-1<x i <…<x n =b 将区间[a ,b ]等分成n 个小区间,在每个小区间[x i-1,x i ]上任取一点ξi (i=1,2,…,n ),作和式∑i=1nf (ξi )Δx=∑i=1n b -a nf (ξi ),当n →+∞时,上述和式无限接近某个常数,这个常数叫作函数f (x )在区间[a ,b ]上的定积分,记作∫baf (x )d x.2.定积分的几何意义(1)当函数f (x )的图像在区间[a ,b ]上连续且恒有f (x )≥0时,定积分∫baf (x )d x 的几何意义是由直线x=a ,x=b (a ≠b ),y=0和曲线y=f (x )所围成的曲边梯形(图①中阴影部分)的面积.图①图②(2)一般情况下,定积分∫baf (x )d x 的几何意义是介于x 轴、曲线y=f (x )以及直线x=a ,x=b之间的曲边梯形(图②中阴影部分)面积的代数和,其中在x 轴上方的面积等于该区间上的积分值,在x 轴下方的面积等于该区间上积分值的相反数.3.定积分的性质(1)∫ba kf (x )d x= (k 为常数); (2)∫ba [f (x )±g (x )]d x= ;(3)∫baf (x )d x= (其中a<c<b ).4.微积分基本定理一般地,如果f (x )是图像在区间[a ,b ]上连续的函数,并且F'(x )=f (x ),那么∫baf (x )d x= .这个结论叫作微积分基本定理,又叫作牛顿—莱布尼茨公式,其中F(x)叫作f(x)的一个原函数.为了方便,我们常把F(b)-F(a)记作,即∫ba f(x)d x=F(x)|a b=F(b)-F(a).5.定积分在物理中的两个应用(1)变速直线运动的路程:如果变速直线运动物体的速度为v=v(t),那么从时刻t=a到t=b所经过的路程s=∫ba v(t)d t.(2)变力做功:某物体在变力F(x)的作用下,沿着与F(x)相同的方向从x=a移动到x=b时,力F(x)所做的功是W=∫baF(x)d x.1.定积分与曲边梯形的面积的关系:设图中阴影部分的面积为S,则(1)如图(1),S=∫baf(x)d x;(2)如图(2),S=-∫baf(x)d x;(3)如图(3),S=∫ca f(x)d x-∫bcf(x)d x;(4)如图(4),S=∫ba[f(x)-g(x)]d x.2.设函数f(x)在闭区间[-a,a]上连续,则有:(1)若f(x)是偶函数,∫a-a f(x)d x=2∫af(x)d x;(2)若f(x)是奇函数,则∫a-af(x)d x=0.考点自诊1.判断下列结论是否正确,正确的画“√”,错误的画“×”.(1)若函数y=f(x)的图像在区间[a,b]上连续,则∫ba f(x)d x=∫b a f(t)d t.()(2)若f(x)是图像连续的偶函数,则∫a-a f(x)d x=2∫af(x)d x;若f(x)是图像连续的奇函数,则∫a-af(x)d x=0.()(3)在区间[a,b]上连续的曲线y=f(x)和直线x=a,x=b(a≠b),y=0所围成的曲边梯形的面积S=∫ba|f(x)|d x.() (4)若∫baf(x)d x<0,则由y=f(x),x=a,x=b以及x轴所围成的图形一定在x轴下方.()(5)已知质点移动的速度v=10t,则质点从t=0到t=t0所经过的路程是∫t010t d t=5t02.()2.已知函数f(x)={√x,1<x≤4,x|x|,-1≤x≤1,则∫4-1f(x)d x=()A.14B.143C.7D.2123.汽车以v=(3t+2)m/s做变速运动时,在第1 s至2 s之间的1 s内经过的路程是()A.5 mB.112mC.6 mD.132m4.(2020湖南师大附中测试)直线y=4x与曲线y=x3在第一象限内围成的封闭图形的面积为()A.2√2B.4√2C.2D.45.(2020江西南昌模拟)设a>0,若曲线y=√x与直线x=a,y=0所围成的封闭图形的面积为a2,则a=.关键能力学案突破考点定积分的计算【例1】计算下列定积分.(1)∫1(-x2+2x)d x;(2)∫π(sin x-cos x)d x;(3)∫21(e2x+1x)d x;(4)∫π2√1-sin2x d x.?解题心得计算定积分的步骤(1)把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积的和或差.(2)把定积分变形为求被积函数为上述函数的定积分.(3)分别用求导公式的逆运算找到一个相应的原函数.(4)利用微积分基本定理求出各个定积分的值,然后求其代数和.对点训练1(1)∫3-1(3x2-2x+1)d x;(2)∫21(x-1x)d x;(3)∫π-π(x3cos x)d x;(4)∫2|1-x|d x.考点利用定积分的几何意义求定积分【例2】已知函数f(x)={-x+2,x≤2,√1-(x-3)2,2<x≤4,则定积分∫412f(x)d x的值为()A.9+4π8B.1+4π4C.1+π2D.3+2π4?解题心得当被积函数的原函数不易求,而被积函数的图像与直线x=a,x=b,y=0所围成的曲边图形形状规则,面积易求时,利用定积分的几何意义求定积分.对点训练2(2020四川成都一中测试)∫1-1(√1-x2+sin x)d x=()A.π4B.π2C.πD.π2+2考点定积分的应用(多考向探究)考向1求曲线围成的平面图形的面积【例3】(1)如图所示,曲线y=x2-1,x=2,x=0,y=0围成的阴影部分的面积为() A.∫2|x2-1|d xB.∫21(1-x2)d x+∫1(x2-1)d xC.∫2(x2-1)d xD.∫21(x2-1)d x+∫1(1-x2)d x(2)(2020云南昆明一中测试)如图是函数y=cos2x-5π6在一个周期内的图像,则阴影部分的面积是()A.34B.5 4C.3 2D.32−√34?2已知曲线围成的面积求参数【例4】(2020安徽合肥摸底)由曲线f(x)=√x与y轴及直线y=m(m>0)围成的图形的面积为83,则m的值为()B.3C.1D.8?3定积分在概率中的应用【例5】(2020山西太原联考)如图,在矩形ABCD中的曲线是y=sin x,y=cos x的一部分,点A(0,0),B(π2,0),D(0,1),在矩形ABCD内随机取一点,则此点取自阴影部分的概率是()A.4π(√3-1) B.4π(√2-1) √3-1)π D.4(√2-1)π?4定积分在物理中的应用【例6】(1)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v(t)=7-3t+251+t(t 的单位:s,v的单位:m/s)行驶至停止.在此期间汽车行驶的距离(单位:m)是()A.1+25ln 5B.8+25ln 113C.4+25ln 5D.4+50ln 2(2)一物体在力F (x )={5,0≤x ≤2,3x +4,x >2(单位:N )的作用下沿与力F 相同的方向从x=0处运动到x=4(单位:m)处,则力F (x )做的功为 J .?解题心得1.对于求平面图形的面积问题,应首先画出平面图形的大致图形,然后根据图形特点,选择相应的积分变量及被积函数,并确定被积区间.2.已知图形的面积求参数,一般是先画出它的草图;然后确定积分的上、下限,确定被积函数,由定积分求出其面积,再应用方程的思想建立关于参数的方程,从而求出参数的值.3.与概率相交汇问题.解决此类问题应先利用定积分求出相应平面图形的面积,再用相应概率公式进行计算.4.利用定积分解决变速运动问题和变力做功问题时,关键是求出物体做变速运动的速度函数和变力与位移之间的函数关系,确定好积分区间,得到积分表达式,再利用微积分基本定理计算即得所求.对点训练3(1)如图,由两条曲线y=-x 2,y=-14x 2及直线y=-1所围成的平面图形的面积为 .(2)已知t>1,若∫t1(2x+1)d x=t 2,则t= .(3)如图所示,在一个边长为1的正方形AOBC 内,曲线y=x 3(x>0)和曲线y=√x 围成一个叶形图(阴影部分),向正方形AOBC 内随机投一点(该点落在正方形AOBC 内任何一点是等可能的),则所投的点落在叶形图内部的概率是( )A.512B.16C.14D.13(4)汽车以36 km/h 的速度行驶,到某处需要减速停车,设汽车以加速度a=-2 m/s 2刹车,则从开始刹车到停车,汽车走的距离是 m .(5)设变力F (x )作用在质点M 上,使M 沿x 轴正向从x=1运动到x=10,已知F (x )=x 2+1,且方向和x 轴正向相同,则变力F (x )对质点M 所做的功为 J(x 的单位:m;力的单位:N).1.求定积分的方法:(1)利用定义求定积分,可操作性不强. (2)利用微积分基本定理求定积分的步骤如下: ①求被积函数f (x )的一个原函数F (x );②计算F (b )-F (a ).(3)利用定积分的几何意义求定积分. 2.定积分∫baf (x )d x 的几何意义是x 轴、曲线f (x )以及直线x=a ,x=b 围成的曲边梯形的面积的代数和.在区间[a ,b ]上连续的曲线y=f (x )和直线x=a ,x=b (a ≠b ),y=0所围成的曲边梯形的面积S=∫ba |f (x )|d x.1.被积函数若含有绝对值号,应去掉绝对值号,再分段积分.2.若积分式子中有几个不同的参数,则必须分清谁是被积变量.3.定积分式子中隐含的条件是积分上限大于积分下限.4.定积分的几何意义是曲边梯形的面积,但要注意:面积非负,而定积分的结果可以为负.3.3 定积分与微积分基本定理必备知识·预案自诊知识梳理3.(1)k ∫ba f (x )d x(2)∫ba f (x )d x ±∫ba g (x )d x (3)∫c af (x )d x+∫bcf (x )d x4.F (b )-F (a ) F (x )|ab 考点自诊1.(1)√ (2)√ (3)√ (4)× (5)√2.B 函数f (x )={√x ,1<x ≤4,x |x |,-1≤x ≤1,则∫4-1f (x )d x=∫1-1x|x|d x+∫41√x d x=0+23x 3214=143.故选B .3.D S=∫21(3t+2)d t=(32t 2+2t) 12=92+2=132.故选D .4.D 由{y =4x ,y =x 3,得x=0或x=2或x=-2(舍),∴S=∫2(4x-x 3)d x=2x 2-14x 402=4.5.49 封闭图形如图阴影部分所示,则∫a√x d x=23x 32 0a =23a 32=a 2,解得a=49.关键能力·学案突破例1解(1)∫1(-x 2+2x )d x=∫1(-x 2)d x+∫12x d x=(-13x 3) 01+(x 2) 01=-13+1=23. (2)∫π0(sinx-cosx )dx=∫π0sinxd x-∫πcos x d x=(-cos x ) π0-sin x π0=2.(3)∫21(e 2x +1x )dx=∫21e 2x dx+∫211x x=12e d 2x12ln x 12=12e+4-12e 2+ln2ln1=e-4-12e 122+ln2. (4)∫π2√1-sin2x dx=∫π2|sinx-cos x|d x=∫π4(cos x-sin x )d x+∫π2π4(sin x-cos x )d x=(sinx+cos x ) 0π4+(-cos x-sin x ) π4π2=√2-1+(-1+√2)=2√2-2.对点训练1解(1)∫3-1(3x 2-2x+1)d x=(x 3-x 2+x )|-13=24. (2)∫21(x -1x )d x=12x 2-ln x 12=32-ln2.(3)因为y=x 3cos x 为奇函数, 所以∫π-π(x 3cos x )d x=0.(4)∫2|1-x|dx=∫1(1-x)dx+∫21(x-1)d x=(x -12x 2) 01+12x 2-x 12=(1-12)-0+12×22-2-12×12-1=1.例2A 因为f (x )={-x +2,x ≤2,√1-(x -3)2,2<x ≤4,所以∫412f (x )dx=∫212(-x+2)dx+∫42√1-(x -3)2d x ,∫212(-x+2)d x=-12x 2+2x122=98. ∫42√1-(x -3)2d x 的几何意义为以(3,0)为圆心,以r=1为半径的圆在x 轴上方的部分,因而S=12×π×12=π2, 所以∫412f (x )d x=98+π2=9+4π8.故选A .对点训练2B ∫1-1(√1-x 2+sin x )d x=∫1-1√1-x 2d x+∫1-1sin x d x ,∵y=sin x 为奇函数,∴∫1-1sin x d x=0. 又∫1-1√1-x 2d x 表示以坐标原点为圆心,以1为半径的圆的上半圆的面积,∴∫1-1√1-x 2d x=π2. ∴∫1-1(√1-x 2+sin x )d x=π2.例3(1)A (2)B (1)由曲线y=x 2-1,直线x=0,x=2和x 轴围成的封闭图形的面积为S=∫1(1-x 2)d x+∫21(x 2-1)d x.根据对称性,它和函数y=|x 2-1|,直线x=0,x=2和x 轴围成的封闭图形的面积相等,如图所示,即S=∫2|x 2-1|d x.(2)阴影部分的面积为S=-∫π6cos 2x-5π6d x+∫2π3π6cos 2x-5π6d x =-12sin 2x-5π60π6+12sin 2x-5π6π62π3= -12sin -π2-12sin -5π6+12sin π2−12sin -π2=14+1=54.故选B .例4A 由题知曲线f (x )=√x 与直线y=m 的交点为(m 2,m ),则∫m 20(m-√x )d x=mx-23x 320m 2=m 3-23m 3=83,解得m=2.例5BS 阴影=2∫π4(cos x-sin x )d x=2[sin x+cos x ] 0π4=2(√2-1),S ABCD =π2×1=π2,由测度比是面积比可得,此点取自阴影部分的概率是P=S 阴影SABCD=2(√2-1)π2=4π(√2-1).故选B .例6(1)C (2)36 (1)由v (t )=7-3t+251+t =0,可得t=4,t=-83(舍去),因此汽车从刹车到停止一共行驶了4s,此期间行驶的距离为∫40v (t )d t=∫47-3t+251+t d t=7t-32t 2+25ln(1+t )04=4+25ln5(m).(2)由题意知,力F (x )所做的功为W=∫42F (x )d x=∫425d x+∫42(3x+4)d x=5×2+32x 2+4x 24=10+32×42+4×4-32×22+4×2=36(J).对点训练3(1)43 (2)2 (3)A (4)25(5)342 (1)由{y =-x 2,y =-1得交点A (-1,-1),B (1,-1).由{y =-14x 2,y =-1得交点C (-2,-1),D (2,-1).所以所求面积S=2∫2(-14x 2+1)−∫1(-x 2+1)=43.(2)∫t1(2x+1)d x=(x 2+x ) 1t =t 2+t-2,从而得方程t 2+t-2=t 2,解得t=2.(3)此题为关于面积的几何概型,边长为1的正方形AOBC 的面积为1,叶形图(阴影部分)的面积S (A )=∫1(√x -x 3)d x=(23x 32-14x 4) 01=512. 所以所求概率P (A )=512.故选A .(4)t=0时,v 0=36km/h=10m/s ,刹车后,汽车减速行驶,速度为v(t)=v 0+at=10-2t ,由v (t )=0得t=5s,所以从刹车到停车,汽车所走过的路程为∫5v(t)dt=∫5(10-2t )d t=(10t-t 2)05=25(m).(5)变力F (x )=x 2+1使质点M 沿x 轴正向从x=1运动到x=10所做的功为W=∫101F (x )d x=∫101(x 2+1)d x=(13x 3+x) 110=342(J).。

【助力高考】2019年高考数学专题复习第17讲《定积分与微积分基本定理》(含详细答案和教师用书)

【助力高考】2019年高考数学专题复习第17讲《定积分与微积分基本定理》(含详细答案和教师用书)

♦♦♦学生用书(后跟详细参考答案和教师用书)♦♦♦把握命题趋势,提高复习效率,提升解题能力,打造高考高分!【助力高考】2019年高考备战数学专题复习精品资料第三章 导数及其应用第17讲 定积分与微积分基本定理★★★核心知识回顾★★★知识点一、定积分的概念如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b ,将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式∑ni =1f (ξi )Δx =∑ni =1b -anf (ξi ),当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作ʃb a f (x )d x ,即ʃba f (x )d x =lim n →∞∑ni =1b -anf (ξi ). 在ʃb a f (x )d x 中, 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数 叫做被积函数, 叫做积分变量, 叫做被积式. 知识点二、定积分的性质(1)ʃb a kf (x )d x =k ʃb a f (x )d x (k 为常数);(2)ʃb a [f 1(x )±f 2(x )]d x =ʃb a f 1(x )d x ±ʃb a f 2(x )d x ;(3)ʃb a f (x )d x =ʃc a f (x )d x +ʃb c f (x )d x (其中a <c <b ).知识点三、微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,且F ′(x )=f (x ),那么ʃb a f (x )d x = ,这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.为了方便,常把F (b )-F (a )记作 ,即ʃb a f (x )d x =F (x )|b a =F (b )-F (a ).★★★高考典例剖析★★★考点一、定积分的计算例1:(2018·唐山调研)定积分ʃ1-1(x 2+sin x )d x =______. 答案 23解析 ʃ1-1(x 2+sin x )d x =ʃ1-1x 2d x +ʃ1-1sin x d x=2ʃ10x 2d x =2·310|3x =23.1.ʃ1-1e |x |d x 的值为( )A .2B .2eC .2e -2D .2e +22.(2017·昆明检测)设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],2-x ,x ∈(1,2],则ʃ20f (x )d x 等于( ) A.34 B.45 C.56D .不存在题型二 定积分的几何意义命题点1 利用定积分的几何意义计算定积分例2: (1)计算:ʃ313+2x -x 2d x =________.(2)若ʃm -2-x 2-2x d x =π4,则m =________. 答案 (1)π (2)-1解析 (1)由定积分的几何意义知,ʃ313+2x -x 2 d x 表示圆(x -1)2+y 2=4和x =1,x =3,y=0围成的图形的面积,∴ʃ313+2x -x 2d x =14×π×4=π. (2)根据定积分的几何意义ʃm -2-x 2-2x d x 表示圆(x +1)2+y 2=1和直线x =-2,x =m 和y =0围成的图形的面积,又ʃm -2-x 2-2x d x =π4为四分之一圆的面积,结合图形知m =-1. 命题点2 求平面图形的面积例3: (2017·青岛月考)由曲线xy =1,直线y =x ,y =3所围成的封闭平面图形的面积为________. 答案 4-ln 3解析 由xy =1,y =3,可得A ⎝⎛⎭⎫13,3.由xy =1,y =x ,可得B (1,1),由y =x ,y =3,得C (3,3),由曲线xy =1,直线y =x ,y =3所围成图形的面积为1131(3)d x x -⎰+ʃ31(3-x )d x =113(3ln )|x x -+2311(3)|2x x -=(3-1-ln 3)+⎝⎛⎭⎫9-92-3+12=4-ln 3.3.定积分ʃ309-x 2d x 的值为________.4.如图所示,由抛物线y =-x 2+4x -3及其在点A (0,-3)和点B (3,0)处的切线所围成图形的面积为______.题型三定积分在物理中的应用例4: 一物体作变速直线运动,其v -t 曲线如图所示,则该物体在12s ~6 s 间的运动路程为____ m. 答案494解析 由题图可知,v (t )=⎩⎪⎨⎪⎧2t ,0≤t <1,2,1≤t ≤3,13t +1,3<t ≤6.由变速直线运动的路程公式,可得611122()d 2d s t t t x ==⎰⎰v +ʃ312d t +ʃ63⎝⎛⎭⎫13t +1d t =2132611321|2|()|6t t t t +++=494(m).所以物体在12 s ~6 s 间的运动路程是494m.5.一物体在变力F (x )=5-x 2(力单位:N ,位移单位:m)作用下,沿与F (x )成30°方向作直线运动,则由x =1运动到x =2时,F (x )做的功为( ) A. 3 J B.233 JC.433J D .2 3 J★★★知能达标演练★★★一、选择题1.直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( ) A .2 2 B .4 2 C .2 D .4 2.π220sin d 2xx ⎰等于( ) A .0 B.π4-12 C.π4-14D.π2-1 3.(2018·东莞质检)ʃ1-1(1-x 2+x )d x 等于( )A .π B.π2 C .π+1D .π-14.已知函数y =f (x )的图象为如图所示的折线ABC ,则ʃ1-1[(x +1)f (x )]d x 等于( ) A .2 B .-2 C .1D .-15.(2018·大连调研)若ʃa 1⎝⎛⎭⎫2x +1x d x =3+ln 2(a >1),则a 的值是( ) A .2 B .3 C .4 D .66.设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],1x ,x ∈(1,e](其中e 为自然对数的底数),则ʃe 0f (x )d x 的值为( )A.43 B.54 C.65D.767.(2017·湖南长沙模拟)设a =ʃ10cos x d x ,b =ʃ10sin x d x ,则下列关系式成立的是( )A .a >bB .a +b <1C .a <bD .a +b =18.定积分ʃ20|x -1|d x 等于( ) A .1 B .-1 C .0 D .29.一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t +251+t(t 的单位:s ,v 的单位:m/s)行驶至停止,则在此期间汽车继续行驶的距离(单位:m)是( ) A .1+25ln 5 B .8+25ln113C .4+25ln 5D .4+50ln 210.由曲线y =x 2和曲线y =x 围成的一个叶形图如图所示,则图中阴影部分的面积为( ) A.13B.310C.14D.1511.(2018·呼和浩特质检)若S 1=ʃ21x 2d x ,S 2=ʃ211xd x ,S 3=ʃ21e xd x ,则S 1,S 2,S 3的大小关系为( ) A .S 1<S 2<S 3 B .S 2<S 1<S 3 C .S 2<S 3<S 1 D .S 3<S 2<S 1二、填空题 12. ʃe +121x -1d x =________. 13.ʃ0-11-x 2d x =________. 14.汽车以v =(3t +2)m/s 作变速直线运动时,在第1 s 至第2 s 间的1 s 内经过的位移是________ m.15.若ʃT 0x 2d x =9,则常数T 的值为________.16.已知f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤0,1,0<x ≤1,则ʃ1-1f (x )d x 的值为________.17.π)d 4x x += ________.18.(2018·太原调研)由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为________.19.(2017·济南模拟)设a >0,若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =________.20.已知二次函数y =f (x )的图象如图所示,则它与x 轴所围成的面积为________.21.(2017·郑州调研)ʃ1-1(1-x2+e x-1)d x=______.22.若函数f(x)在R上可导,f(x)=x3+x2f′(1),则ʃ20f(x)d x=________.♦♦♦详细参考答案♦♦♦把握命题趋势,提高复习效率,提升解题能力,打造高考高分!【助力高考】2019年高考备战数学专题复习精品资料第三章 导数及其应用第17讲 定积分与微积分基本定理★★★核心知识回顾★★★知识点一、定积分的概念如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b ,将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式∑ni =1f (ξi )Δx =∑ni =1b -anf (ξi ),当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作ʃb a f (x )d x ,即ʃba f (x )d x =lim n →∞∑ni =1b -anf (ξi ). 在ʃb a f (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式. 知识点二、定积分的性质(1)ʃb a kf (x )d x =k ʃb a f (x )d x (k 为常数);(2)ʃb a [f 1(x )±f 2(x )]d x =ʃb a f 1(x )d x ±ʃb a f 2(x )d x ;(3)ʃb a f (x )d x =ʃc a f (x )d x +ʃb c f (x )d x (其中a <c <b ).知识点三、微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,且F ′(x )=f (x ),那么ʃb a f (x )d x =F (b )-F (a ),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.为了方便,常把F (b )-F (a )记作F (x )|b a ,即ʃb a f (x )d x =F (x )|b a =F (b )-F (a ).★★★高考典例剖析★★★考点一、定积分的计算 ♦♦♦跟踪训练♦♦♦ 1.答案 C解析 ʃ1-1e |x |d x =ʃ0-1e -x d x +ʃ10e xd x=-e -x |0-1+e x |10=[-e 0-(-e)]+(e -e 0)=-1+e +e -1=2e -2,故选C. 2.答案 C解析 如图,ʃ20f (x )d x =ʃ10x 2d x +ʃ21(2-x )d x=31220111|(2)|32x x x +- =13+⎝⎛⎭⎫4-2-2+12=56. 题型二 定积分的几何意义 ♦♦♦跟踪训练♦♦♦ 3.答案9π4解析 由定积分的几何意义知,ʃ309-x 2d x 是由曲线y =9-x 2,直线x =0,x =3,y =0围成的封闭图形的面积.故ʃ309-x 2d x =π·324=9π4.4.答案 94解析 由y =-x 2+4x -3,得y ′=-2x +4.易知抛物线在点A 处的切线斜率k 1=y ′|x =0=4,在点B 处的切线斜率k 2=y ′|x =3=-2.因此,抛物线在点A 处的切线方程为y =4x -3,在点B 处的切线方程为y =-2x +6. 两切线交于点M ⎝⎛⎭⎫32,3.因此,由题图可知所求的图形的面积是 S =33222302[(43)(43)]d [(26)(43)]d x x x x x x x x ---+-+-+--+-⎰⎰33222302d (69)d x x x x x =+-+⎰⎰33323203211|(39)|33x x x x =+-+ =98+98=94.题型三 定积分在物理中的应用 ♦♦♦跟踪训练♦♦♦ 5.答案 C解析 ʃ21F (x )cos 30°d x =ʃ2132(5-x 2)d x=3211[(5)3x x -=433, ∴F (x )做的功为433 J.★★★知能达标演练★★★一、选择题 1.答案 D解析 如图,y =4x 与y =x 3的交点为A (2,8), 图中阴影部分即为所求图形面积.S 阴=ʃ20(4x -x 3)d x=24201(2)|4x x -=8-14×24=4,故选D.2.答案 B 解析ππ222001cos sin d d 22x x x x -=⎰⎰=π2011(sin )|22x x -=π4-12.3.答案 B解析 ʃ1-1(1-x 2+x )d x =ʃ1-11-x 2d x +ʃ1-1x d x =211π1|22x -+=π2.故选B. 4.答案 D解析 由题图易知f (x )=⎩⎪⎨⎪⎧-x -1,-1≤x ≤0,x -1,0<x ≤1,所以ʃ1-1[(x +1)f (x )]d x =ʃ0-1(x +1)(-x -1)d x + ʃ10(x +1)(x -1)d x =ʃ0-1(-x 2-2x -1)d x +ʃ10(x 2-1)d x=320311011()|()|33x x x x x ----+-=-13-23 =-1,故选D.5.答案 A解析 由题意知ʃa 1⎝⎛⎭⎫2x +1x d x =(x 2+ln x )|a 1 =a 2+ln a -1=3+ln 2,解得a =2. 6.答案 A解析 ʃe 0f (x )d x =ʃ10f (x )d x +ʃe 1f (x )d x =ʃ10x 2d x +ʃe 11xd x =3101|3x +ln x |e 1=13+1=43.故选A. 7.答案 A解析 ∵(sin x )′=cos x ,∴a =ʃ10cos x d x =sin x |10=sin 1.∵(-cos x )′=sin x ,∴b =ʃ10sin x d x =(-cos x )|10=1-cos 1.∵sin 1+cos 1>1,∴sin 1>1-cos 1,即a >b .故选A. 8.答案 A解析 ʃ20|x -1|d x =ʃ10|x -1|d x +ʃ21|x -1|d x =ʃ10(1-x )d x +ʃ21(x -1)d x=221201()|()|22x x x x -+-=⎝⎛⎭⎫1-12+⎝⎛⎭⎫222-2-⎝⎛⎭⎫12-1=1. 9.答案 C解析 令v (t )=0,得t =4或t =-83(舍去),∴汽车行驶距离s =ʃ40⎝⎛⎭⎫7-3t +251+t d t=2403[725ln(1)]|2t t t -++ =28-24+25ln 5=4+25ln 5. 10.答案 A解析 由题意得,所求阴影部分的面积31231200211)d ()|,333S x x x x ==-=⎰ 故选A. 11.答案 B解析 方法一 S 1=3211|3x =83-13=73, S 2=ln x |21=ln 2<ln e =1,S 3=e x |21=e 2-e ≈2.72-2.7=4.59,所以S 2<S 1<S 3.方法二 S 1,S 2,S 3分别表示曲线y =x 2,y =1x ,y =e x 与直线x =1,x =2及x 轴围成的图形的面积,通过作图易知S 2<S 1<S 3. 二、填空题 12.答案 1 解析 ʃe +121x -1d x =ln(x -1)|e +12=ln e -ln 1=1. 13.答案 π4解析 ʃ0-11-x 2d x 表示由直线x =0,x =-1,y =0以及曲线y =1-x 2所围成的图形的面积,∴ʃ0-11-x 2d x =π4. 14.答案132解析 s =ʃ21(3t +2)d t =2213(2)|2t t + =32×4+4-⎝⎛⎭⎫32+2=10-72=132(m). 15.答案 3解析 ∵ʃT 0x 2d x =13x 3|T 0=13T 3=9,∴T =3. 16.答案 43解析 ʃ1-1f (x )d x =ʃ0-1x 2d x +ʃ101d x=30110||3x x -+=13+1=43. 17.答案 2解析 由题意得π)d 4x x +=ππ220(sin cos )d (sin cos )|x+x x x x =-⎰=⎝⎛⎭⎫sin π2-cos π2-(sin 0-cos 0)=2. 18.答案3解析 所求面积ππ33ππ33cos d sin |S x x x --==⎰=sin π3-⎝⎛⎭⎫-sin π3= 3. 19.答案 49解析 封闭图形如图所示,则332220022|0,33ax x a a ==-=⎰解得a =49.20.答案 43解析 根据f (x )的图象可设f (x )=a (x +1)·(x -1)(a <0). 因为f (x )的图象过(0,1)点,所以-a =1,即a =-1. 所以f (x )=-(x +1)(x -1)=1-x 2.所以S =ʃ1-1(1-x 2)d x =2ʃ10(1-x 2)d x=31012()|3x x -=2⎝⎛⎭⎫1-13=43. 21.答案 π2+e -1e-2解析 ʃ1-1(1-x 2+e x-1)d x =ʃ1-11-x 2d x +ʃ1-1(e x -1)d x .因为ʃ1-11-x 2d x 表示单位圆的上半部分的面积,所以ʃ1-11-x 2d x =π2. 而ʃ1-1(e x -1)d x =(e x -x )|1-1=(e 1-1)-(e -1+1)=e -1e -2,所以ʃ1-1(1-x 2+e x-1)d x =π2+e -1e -2. 22.答案 -4解析因为f(x)=x3+x2f′(1),所以f′(x)=3x2+2xf′(1).所以f′(1)=3+2f′(1),解得f′(1)=-3. 所以f(x)=x3-3x2.故ʃ20f(x)d x=ʃ20(x3-3x2)d x=432()|4xx=-4.♦♦♦教师用书♦♦♦把握命题趋势,提高复习效率,提升解题能力,打造高考高分!【助力高考】2019年高考备战数学专题复习精品资料第三章 导数及其应用第17讲 定积分与微积分基本定理★★★核心知识回顾★★★知识点一、定积分的概念如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b ,将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式∑ni =1f (ξi )Δx =∑ni =1b -anf (ξi ),当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作ʃb a f (x )d x ,即ʃba f (x )d x =lim n →∞∑ni =1b -anf (ξi ). 在ʃb a f (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式. 知识点二、定积分的性质(1)ʃb a kf (x )d x =k ʃb a f (x )d x (k 为常数);(2)ʃb a [f 1(x )±f 2(x )]d x =ʃb a f 1(x )d x ±ʃb a f 2(x )d x ;(3)ʃb a f (x )d x =ʃc a f (x )d x +ʃb c f (x )d x (其中a <c <b ).知识点三、微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,且F ′(x )=f (x ),那么ʃb a f (x )d x =F (b )-F (a ),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.为了方便,常把F (b )-F (a )记作F (x )|b a ,即ʃb a f (x )d x =F (x )|b a =F (b )-F (a ).★★★高考典例剖析★★★考点一、定积分的计算例1:(2018·唐山调研)定积分ʃ1-1(x 2+sin x )d x =______. 答案 23解析 ʃ1-1(x 2+sin x )d x =ʃ1-1x 2d x +ʃ1-1sin x d x=2ʃ10x 2d x =2·310|3x =23.1.ʃ1-1e |x |d x 的值为()A .2B .2eC .2e -2D .2e +2答案 C解析 ʃ1-1e |x |d x =ʃ0-1e -x d x +ʃ10e x d x=-e -x |0-1+e x |10=[-e 0-(-e)]+(e -e 0)=-1+e +e -1=2e -2,故选C.2.(2017·昆明检测)设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],2-x ,x ∈(1,2],则ʃ20f (x )d x 等于( ) A.34 B.45 C.56 D .不存在答案 C解析 如图,ʃ20f (x )d x =ʃ10x 2d x +ʃ21(2-x )d x=31220111|(2)|32x x x +- =13+⎝⎛⎭⎫4-2-2+12=56. 题型二 定积分的几何意义命题点1 利用定积分的几何意义计算定积分例2: (1)计算:ʃ313+2x -x 2d x =________.(2)若ʃm -2-x 2-2x d x =π4,则m =________. 答案 (1)π (2)-1解析 (1)由定积分的几何意义知,ʃ313+2x -x 2 d x 表示圆(x -1)2+y 2=4和x =1,x =3,y=0围成的图形的面积,∴ʃ313+2x -x 2d x =14×π×4=π. (2)根据定积分的几何意义ʃm -2-x 2-2x d x 表示圆(x +1)2+y 2=1和直线x =-2,x =m 和y =0围成的图形的面积,又ʃm -2-x 2-2x d x =π4为四分之一圆的面积,结合图形知m =-1. 命题点2 求平面图形的面积例3: (2017·青岛月考)由曲线xy =1,直线y =x ,y =3所围成的封闭平面图形的面积为________. 答案 4-ln 3解析 由xy =1,y =3,可得A ⎝⎛⎭⎫13,3.由xy =1,y =x ,可得B (1,1),由y =x ,y =3,得C (3,3),由曲线xy =1,直线y =x ,y =3所围成图形的面积为1131(3)d x x -⎰+ʃ31(3-x )d x =113(3ln )|x x -+2311(3)|2x x -=(3-1-ln 3)+⎝⎛⎭⎫9-92-3+12=4-ln 3.3.定积分ʃ309-x2d x的值为________.答案9π4解析由定积分的几何意义知,ʃ309-x2d x是由曲线y=9-x2,直线x=0,x=3,y=0围成的封闭图形的面积.故ʃ309-x2d x=π·324=9π4.4.如图所示,由抛物线y=-x2+4x-3及其在点A(0,-3)和点B(3,0)处的切线所围成图形的面积为______.答案94解析由y=-x2+4x-3,得y′=-2x+4.易知抛物线在点A处的切线斜率k1=y′|x=0=4,在点B处的切线斜率k2=y′|x=3=-2.因此,抛物线在点A处的切线方程为y=4x-3,在点B处的切线方程为y=-2x+6.两切线交于点M⎝⎛⎭⎫32,3.因此,由题图可知所求的图形的面积是S=3322232[(43)(43)]d[(26)(43)]dx x x x x x x x---+-+-+--+-⎰⎰3322232d(69)dx x x x x=+-+⎰⎰33323203211|(39)|33x x x x =+-+ =98+98=94. 题型三 定积分在物理中的应用例4: 一物体作变速直线运动,其v -t 曲线如图所示,则该物体在12s ~6 s 间的运动路程为____ m. 答案494解析 由题图可知,v (t )=⎩⎪⎨⎪⎧2t ,0≤t <1,2,1≤t ≤3,13t +1,3<t ≤6.由变速直线运动的路程公式,可得611122()d 2d s t t t x ==⎰⎰v +ʃ312d t +ʃ63⎝⎛⎭⎫13t +1d t =2132611321|2|()|6t t t t +++=494(m).所以物体在12 s ~6 s 间的运动路程是494m.5.一物体在变力F (x )=5-x 2(力单位:N ,位移单位:m)作用下,沿与F (x )成30°方向作直线运动,则由x =1运动到x =2时,F (x )做的功为( ) A. 3 J B.233 JC.433 J D.2 3 J答案 C解析 ʃ21F (x )cos 30°d x =ʃ2132(5-x 2)d x=3211[(5)3x x -=433, ∴F (x )做的功为433 J.★★★知能达标演练★★★一、选择题1.直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( ) A .2 2 B .4 2 C .2 D .4 答案 D解析 如图,y =4x 与y =x 3的交点为A (2,8), 图中阴影部分即为所求图形面积.S 阴=ʃ20(4x -x 3)d x=24201(2)|4x x -=8-14×24=4,故选D.2.π220sin d 2xx ⎰等于( ) A .0 B.π4-12 C.π4-14 D.π2-1 答案 B 解析ππ222001cos sin d d 22x x x x -=⎰⎰=π2011(sin )|22x x -=π4-12.3.(2018·东莞质检)ʃ1-1(1-x 2+x )d x 等于( )A .πB.π2 C .π+1D .π-1答案 B 解析 ʃ1-1(1-x 2+x )d x =ʃ1-11-x 2d x +ʃ1-1x d x =211π1|22x -+=π2.故选B.4.已知函数y =f (x )的图象为如图所示的折线ABC ,则ʃ1-1[(x +1)f (x )]d x 等于( )A .2B .-2C .1D .-1 答案 D解析 由题图易知f (x )=⎩⎪⎨⎪⎧-x -1,-1≤x ≤0,x -1,0<x ≤1, 所以ʃ1-1[(x +1)f (x )]d x =ʃ0-1(x +1)(-x -1)d x +ʃ10(x +1)(x -1)d x =ʃ0-1(-x 2-2x -1)d x +ʃ10(x 2-1)d x =320311011()|()|33x x x x x ----+-=-13-23 =-1,故选D.5.(2018·大连调研)若ʃa 1⎝⎛⎭⎫2x +1x d x =3+ln 2(a >1),则a 的值是( ) A .2 B .3 C .4 D .6答案 A解析 由题意知ʃa 1⎝⎛⎭⎫2x +1x d x =(x 2+ln x )|a 1 =a 2+ln a -1=3+ln 2,解得a =2.6.设f (x )=⎩⎪⎨⎪⎧ x 2,x ∈[0,1],1x,x ∈(1,e](其中e 为自然对数的底数),则ʃe 0f (x )d x 的值为( ) A.43B.54C.65D.76答案 A解析 ʃe 0f (x )d x =ʃ10f (x )d x +ʃe 1f (x )d x =ʃ10x 2d x +ʃe 11x d x=3101|3x +ln x |e 1=13+1=43.故选A. 7.(2017·湖南长沙模拟)设a =ʃ10cos x d x ,b =ʃ10sin x d x ,则下列关系式成立的是( )A .a >bB .a +b <1C .a <bD .a +b =1答案 A 解析 ∵(sin x )′=cos x ,∴a =ʃ10cos x d x =sin x |10=sin 1.∵(-cos x )′=sin x ,∴b =ʃ10sin x d x =(-cos x )|10=1-cos 1.∵sin 1+cos 1>1,∴sin 1>1-cos 1,即a >b .故选A.8.定积分ʃ20|x -1|d x 等于( )A .1B .-1C .0D .2答案 A解析 ʃ20|x -1|d x =ʃ10|x -1|d x +ʃ21|x -1|d x=ʃ10(1-x )d x +ʃ21(x -1)d x =221201()|()|22x x x x -+- =⎝⎛⎭⎫1-12+⎝⎛⎭⎫222-2-⎝⎛⎭⎫12-1=1. 9.一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t +251+t (t 的单位:s ,v 的单位:m/s)行驶至停止,则在此期间汽车继续行驶的距离(单位:m)是( )A .1+25ln 5B .8+25ln 113C .4+25ln 5D .4+50ln 2 答案 C解析 令v (t )=0,得t =4或t =-83(舍去), ∴汽车行驶距离s =ʃ40⎝⎛⎭⎫7-3t +251+t d t =2403[725ln(1)]|2t t t -++ =28-24+25ln 5=4+25ln 5.10.由曲线y =x 2和曲线y =x 围成的一个叶形图如图所示,则图中阴影部分的面积为( )A.13B.310C.14D.15答案 A 解析 由题意得,所求阴影部分的面积31231200211)d ()|,333S x x x x ==-=⎰ 故选A.11.(2018·呼和浩特质检)若S 1=ʃ21x 2d x ,S 2=ʃ211xd x ,S 3=ʃ21e x d x ,则S 1,S 2,S 3的大小关系为( ) A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 3<S 2<S 1 答案 B解析 方法一 S 1=3211|3x =83-13=73, S 2=ln x |21=ln 2<ln e =1,S 3=e x |21=e 2-e ≈2.72-2.7=4.59,所以S 2<S 1<S 3.方法二 S 1,S 2,S 3分别表示曲线y =x 2,y =1x,y =e x 与直线x =1,x =2及x 轴围成的图形的面积,通过作图易知S 2<S 1<S 3.二、填空题12. ʃe +121x -1d x =________. 答案 1解析 ʃe +121x -1d x =ln(x -1)|e +12=ln e -ln 1=1. 13.ʃ0-11-x 2d x =________. 答案 π4解析 ʃ0-11-x 2d x 表示由直线x =0,x =-1,y =0以及曲线y =1-x 2所围成的图形的面积,∴ʃ0-11-x 2d x =π4. 14.汽车以v =(3t +2)m/s 作变速直线运动时,在第1 s 至第2 s 间的1 s 内经过的位移是________ m.答案 132解析 s =ʃ21(3t +2)d t =2213(2)|2t t +=32×4+4-⎝⎛⎭⎫32+2=10-72=132(m). 15.若ʃT 0x 2d x =9,则常数T 的值为________. 答案 3解析 ∵ʃT 0x 2d x =13x 3|T 0=13T 3=9,∴T =3. 16.已知f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤0,1,0<x ≤1,则ʃ1-1f (x )d x 的值为________. 答案 43解析 ʃ1-1f (x )d x =ʃ0-1x 2d x +ʃ101d x =30110||3x x -+=13+1=43.17.π)d 4x x += ________. 答案 2解析 由题意得π)d 4x x + =ππ2200(sin cos )d (sin cos )|x+x x x x =-⎰=⎝⎛⎭⎫sin π2-cos π2-(sin 0-cos 0)=2. 18.(2018·太原调研)由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为________.答案 3解析 所求面积ππ33ππ33cos d sin |S x x x --==⎰ =sin π3-⎝⎛⎭⎫-sin π3= 3. 19.(2017·济南模拟)设a >0,若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =________.答案 49解析 封闭图形如图所示,则332220022|0,33a x x a a ==-=⎰解得a =49.20.已知二次函数y =f (x )的图象如图所示,则它与x 轴所围成的面积为________.答案 43解析 根据f (x )的图象可设f (x )=a (x +1)·(x -1)(a <0).因为f (x )的图象过(0,1)点,所以-a =1,即a =-1.所以f (x )=-(x +1)(x -1)=1-x 2.所以S =ʃ1-1(1-x 2)d x =2ʃ10(1-x 2)d x =31012()|3x x -=2⎝⎛⎭⎫1-13=43.21.(2017·郑州调研)ʃ1-1(1-x 2+e x -1)d x =______.答案 π2+e -1e -2解析 ʃ1-1(1-x 2+e x -1)d x=ʃ1-11-x 2d x +ʃ1-1(e x -1)d x .因为ʃ1-11-x 2d x 表示单位圆的上半部分的面积,所以ʃ1-11-x 2d x =π2.而ʃ1-1(e x -1)d x =(e x -x )|1-1=(e 1-1)-(e -1+1)=e -1e -2,所以ʃ1-1(1-x 2+e x -1)d x =π2+e -1e -2.22.若函数f (x )在R 上可导,f (x )=x 3+x 2f ′(1),则ʃ20f (x )d x =________. 答案 -4解析 因为f (x )=x 3+x 2f ′(1),所以f ′(x )=3x 2+2xf ′(1).所以f ′(1)=3+2f ′(1),解得f ′(1)=-3.所以f (x )=x 3-3x 2.故ʃ20f (x )d x =ʃ20(x 3-3x 2)d x =4320()|4x x =-4.。

2019届高三一轮:2.13《定积分与微积分基本定理》课件

2019届高三一轮:2.13《定积分与微积分基本定理》课件

③□6 __ab_f(_x_)_d_x___=cf(x)dx+bf(x)dx(其中 a<c<b)。
a
c
2.微积分基本定理
如果 f(x)是区间[a,b]上的连续函数,并且 F′(x)=f(x),那么bf(x)dx=□7 a
__F_(b_)_-__F_(_a_) ,这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式。
分区间,函数 f(x)叫做被积函数,□2 ___x___叫做积分变量,□3 _f_(_x_)d_x_____叫做被积
式。
(2)定积分的性质
①bkf(x)dx=□4 _k__ab_f_(x_)_d_x__(k 为常数);
②aab[f1(x)±f2(x)]dx=□5 __ab_f1_(_x_)d_x_±__ab_f2_(_x_)d_x_;
解析:241xdx=lnx|42=ln4-ln2=ln2。 答案:D
2.1(ex+2x)dx 等于( ) 0
A.1
B.e-1
C.e
D.e+1
解析:01(ex+2x)dx=(ex+x2)|10=(e1+1)-e0=e。 答案:C
3.曲线 y=sinx(-π≤x≤2π)与 x 轴所围成的封闭区域的面积为( )
0
0
1
∴2f(x)dx=2f(x)dx-1f(x)dx=-1-1=-2。
1
0
0
答案:-2
5.设 a>0,若曲线 y= x与直线 x=a,y=0 所围成封闭图形的面积为 a2,则 a=__________。
解析:由已知得 S=a 0
xdx=23x
3 2
|a0=23a
3 2
=a2,所以
a
1 2
=23,所以
④S=bf(x)dx-bg(x)dx=□8 __a____________。

2019学年高中一轮复习理数:十七 定积分与微积分基本定理含解析

2019学年高中一轮复习理数:十七 定积分与微积分基本定理含解析

解析:选 D
作出曲线 y=sin x,y=cos x 与两直线 x=0,x=
π 所围成的平面区域,如图. 2
根据对称性可知,曲线 y=sin x,y=cos x 与两直线 x=0,x=
π 所围成的平面区域的面积为曲线 y=sin 2 (cos x-sin x)dx.故选 D.
π x,y=cos x 与直线 x=0,x= 所围成的平面区域的面积的两倍,所以 S= 4
8 2.∵cos 2∈[-1,1],∴1-cos 2∈[0,2],∴1-cos 2< <4,故 c<a<b.故选 D. 3 3.(2018·山西朔州期中)已知分段函数 f(x)= A. 3 + 7 1 C. - 3 e 解析: 选 C 1 e 1+x2,x≤0, e-x,x>0, 则 错误!f(x-2)dx=( )
B.2-e D. 2 - 1 e
-x+2
错误! f(x - 2)dx = 错误! f(x - 2)dx + 错误! f(x - 2)dx = 错误! (x2 - 4x + 5)dx + 错误! e
dx =
1 1 1 3 ×23-2×22+5×2 ×13-2×12+5×1 x -2x2+5x 2 7 -x + 2 3 - + - + - 3 )2= 3 + [( - e 3 2) - (- e 2 2)] = - 3 1+ (- e 3 1 ,故选 C. e 4.(2018·吉林长春调研)若 f(x)=x2+2错误!f(x)dx,则 错误!f(x)dx=( A.-1 C. 1 3 1 B.- 3 D. 1 1 1 1 设 错误!f(x)dx=c,则 f(x)=x2+2c,所以 错误!f(x)dx = x31 0+2cx0= + 2c=c,解得 c=- 3 3 )

2019版高考数学理一轮课时达标17定积分与微积分基本定

2019版高考数学理一轮课时达标17定积分与微积分基本定

课时达标 第17讲[解密考纲]本考点主要考查利用微积分基本定理以及积分的性质求定积分、曲边梯形的面积,常与导数、概率相结合命题,通常以选择题的形式呈现,题目难度中等.一、选择题1.⎠⎛01e x d x 的值等于( C )A .eB .1-eC .e -1D .12(e -1)解析 ⎠⎛01e x d x =e x |10=e 1-e 0=e -1,故选C .2.⎠⎛1e ⎝⎛⎭⎫2x +1x d x =( C ) A .e 2-2 B .e -1 C .e 2D .e +1解析 ⎠⎛1e ⎝⎛⎭⎫2x +1x d x =(x 2+ln x )|e 1=e 2.故选C . 3.求曲线y =x 2与直线y =x 所围成图形的面积,其中正确的是( A ) A .S =⎠⎛01(x -x 2)d xB .S =⎠⎛01(x 2-x )d xC .S =⎠⎛01(y 2-y )d yD .S =⎠⎛01(y -y )d y解析 由图象可得S =⎠⎛01(x -x 2)d x .第3题图 第4题图4.曲线y =2x 与直线y =x -1及直线x =4所围成的封闭图形的面积为( D )A .2ln 2B .2-ln 2C .4-ln 2D .4-2ln 2解析 由曲线y =2x 与直线y =x -1及x =4所围成的封闭图形,如图中阴影部分所示,故所求图形的面积为S =⎠⎛24⎝⎛⎭⎫x -1-2x d x =(12x 2-x -2ln x )|42=4-2ln 2. 5.设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],1x ,x ∈(1,e](其中e 为自然对数的底数),则⎠⎛0e f (x )d x 的值为( A )A .43B .1πC .12D .π-2π解析 ⎠⎛0e f (x )d x =⎠⎛01x 2d x +⎠⎛1e 1xd x =13x 3|10+ln x |e1=13+1=43,故选A . 6.如图,设D 是图中所示的矩形区域,E 是D 内函数y =cos x 图象上方的点构成的区域(阴影部分),向D 中随机投一点,则该点落入E 中的概率为( D)A .2πB .1πC .12D .π-2π解析 因为⎠⎛0π2cos x d x =sin x ⎪⎪⎪π20=1 故所求概率为π-1×2π=π-2π.二、填空题7.⎠⎛0π2 (cos x -sin x )d x =__0__. 解析 ⎠⎛0π2 (cos x -sin x )d x =(sin x +cos x ) ⎪⎪⎪π20=0. 8.若函数f (x )=x +1x ,则⎠⎛1ef (x )d x = e 2+12 .解析 ⎠⎛1e ⎝⎛⎭⎫x +1x d x =⎝⎛⎭⎫x 22+ln x |e 1=e 2+12. 9.由曲线y =sin x ,y =cos x 与直线x =0,x =π2所围成的平面图形(图中的阴影部分)解析 由图可得阴影部分面积S =2⎠⎛0π4(cos x -sin x )d x =2(sin x +cos x ) ⎪⎪⎪π40=2(2-1).三、解答题10.求下列定积分.,(1)⎠⎛12⎝⎛⎭⎫x -x 2+1x d x ;(2)⎠⎛0-π(cos x +e x )d x . 解析 (1)⎠⎛12⎝⎛⎭⎫x -x 2+1x d x =⎠⎛12x d x -⎠⎛12x 2d x +⎠⎛121xd x =x22 21-x 3321+lnx |21=32-73+ln 2=ln 2-56.(2) ⎠⎛-π0(cos x +e x )d x =⎠⎛-π0cos x d x +⎠⎛-πe x d x =sin x |0-π+e x |0-π=1-1e π. 11.已知函数f (x )=x 3-x 2+x +1,求其在点(1,2)处的切线与函数g (x )=x 2围成的图形的面积.解析 ∵(1,2)为曲线f (x )=x 3-x 2+x +1上的点,设过点(1,2)处的切线的斜率为k 则k =f ′(1)=(3x 2-2x +1)|x =1=2∴在点(1,2)处的切线方程为y -2=2(x -1),即y =2x ,y =2x 与函数g (x )=x 2围成的图形如图.,由⎩⎪⎨⎪⎧y =x 2,y =2x 可得交点A (2,4).∴y =2x 与函数g (x )=x 2围成的图形的面积S =⎠⎛02(2x -x 2)d x =⎝⎛⎭⎫x 2-13x 3|20=4-83=43.,12.已知二次函数f (x )=ax 2+bx +c ,直线l 1:x =2,直线l 2:y =-t 2+8t (其中0≤t ≤2,t 为常数),若直线l 1,l 2与函数f (x )的图象以及l 2,y 轴与函数f (x )的图象所围成的封闭图形(阴影部分)如图所示.,(1)求a ,b ,c 的值;,(2)求阴影面积S 关于t 的函数S (t )的解析式.,解析 (1)由图可知二次函数的图象过点(0,0),(8,0),并且f (x )的最大值为16,则⎩⎪⎨⎪⎧c =0,a ·82+b ·8+c =0,4ac -b 24a =16,解得⎩⎪⎨⎪⎧a =-1,b =8,c =0.(2)由(1)知,函数f (x )的解析式为f (x )=-x 2+8x .由⎩⎪⎨⎪⎧y =-t 2+8t ,y =-x 2+8x ,得x 2-8x -t (t -8)=0,∴x 1=t ,x 2=8-t . ∵0≤t ≤2,∴直线l 2与f (x )的图象位于l 1左侧的交点坐标为(t ,-t 2+8t ),由定积分的几何意义知:S (t )=⎠⎛0t [(-t 2+8t )-(-x 2+8x )]d x +⎠⎛t2[(-x 2+8x )-(-t 2+8t )]d x =⎣⎡⎦⎤(-t 2+8t )x -⎝⎛⎭⎫-x 33+4x 2|t 0+⎣⎡⎦⎤⎝⎛⎭⎫-x 33+4x 2-(-t 2+8t )x |2t=-43t 3+10t 2-16t +403.。

2019高考数学理通用一轮课件:第17讲定积分与微积分基本定理

2019高考数学理通用一轮课件:第17讲定积分与微积分基本定理

_f(x)dx 叫做被积式. 积分变量 ,_________ 分区间,函数 f(x)叫做被积函数,x 叫做__________
高考总复习 · 数学(理)
返回导航
第二章 函数、导数及其应用
2.定积分的几何意义
f ( x) f(x)≥0
b a
f(x)dx 的几何意义
x=b(a≠b) x=a 表示由直线__________ , ________________ , y=0 及曲线 y=f(x)
高考总复习 · 数学(理)
返回导航
第二章 函数、导数及其应用
3.微积分的性质
b k f(x)dx b (1) (k 为常数); kf(x)dx=_____________ a
b f1(x)dx± f2(x)dx b a a (2) [ f ( x )± f ( x )]d x = ___________________ ; 1 2
a
b
f(x)dx c b a (3)_____________ = f(x)dx+ f(x)dx(其中 a<c<b).

a
b
a

c
4.微积分基本定理
b 一般地,如果 f(x)是区间[a,b]上的连续函数,并且 F′(x)=f(x),那么 f(x)dx=
返回导航
第二章 函数、导数及其应用
1.思维辨析(在括号内打“√”或“× ”).
b b (1)设函数 y=f(x)在区间[a,b]上连续,则 ) f(x)dx= f(t)dt.( √
a a
(2)定积分一定是曲边梯形的面积.( × )
b (3)若 f(x)dx<0,那么由 y=f(x),x=a,x=b 以及 x 轴所围成的图形一定在 x 轴

专题17 定积分与微积分基本原理()-2019高考数学(理)名师揭秘之一轮

专题17 定积分与微积分基本原理()-2019高考数学(理)名师揭秘之一轮

例2(1)直线 y=4x 与曲线 y=x3 在第一象限内围成
的封闭图形的面积为( D )
A.2 2
B.4 2
C.2 D.4
(2)曲线 y=x3-4x 与 x 轴所围成的封闭图形的面
积是__8__. (3)抛物线 y2=4x 与直线 y=2x-4 围成的平面图
形的面积是__9__.
2019年8月10日
2时,
∵0<t<(2- 2)a⇔f′(t)>0,
∴S=f(t)在(0,(2- 2)a]上是增函数,在((2-
2)a,1]上是减函数,
∴[f(t)]max=f((2- 2)a)=2 23-2a3.
综上所述,[f(t)]max=

a2-a+16, 2 23-2a3,
a≥2+2 2, 2+ 2
2019年8月10日
遇上你是缘分,愿您生活愉快,身体健 康,学业有成,金榜题名!
11
【解析】(1)原式=(x3+x2) 2 =12-2=10. 1
(2)原式=1exdx+12xdx=ex 1 +x2 1 =e-1+1=e.


0
0
0
0
(3)原式=4
xdx+41xdx=23x32
当(2- 2)a≥1 即 a≥2+2 2时,f′(t)≥0 在 t∈(0,
20191年]8上月10恒日 成立,所以
遇S上=你是f(缘t分)在,愿(您0生,活愉1快],上身体为健增函数, 康,学业有成,金榜题名!
21
所以[f(t)]max=f(1)=a2-a+16,
当(2-
2)a<1

2+ 1<a< 2
350(m).
(2)S2=100
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.(2018·福建南平期中)两曲线y=sinx,y=cosx与两直线x=0,x= 所围成的平面区域的面积为()
解析:选D作出曲线y=sinx,y=cosx与两直线x=0,x= 所围成的平面区域,如图.
根据对称性可知,曲线y=sinx,y=cosx与两直线x=0,x= 所围成的平面区域的面积为曲线y=sinx,y=cosx与直线x=0,x= 所围成的平面区域的面积的两倍,所以S= (cosx-sinx)dx.故选D.
则k=f′(1)=(3x2-2x+1) =2,
∴过点(1,2)处的切线方程为y-2=2(x-1),
即y=2x.
y=2x与函数g(x)=x2围成的图形如图.
由 可得交点A(2,4),O(0,0),
故y=2x与函数g(x)=x2围成的图形的面积
S= (2x-x2)dx= =4- = .
2.已知f(x)为二次函数,且f(-1)=2,f′(0)=0, f(x)dx=-2.
课时达标检测(十七)定积分与微积分基本定理
[小题对点练——点点落实]
对点练(一)求定积分
1.(2018·四川双流中学必得分训练)定积分 dx的值为()
A. B.
C.πD.2π
解析:选A dx= dx.令x-1=t,则由定积分几何意义得 dx= dt= ,故选A.
2.(2018·福建连城二中期中)若a= x2dx,b= x3dx,c= sinxdx,则a,b,c的大小关系是()
A.-1B.-
C. D.1
解析:选B设 f(x)dx=c,则f(x)=x2+2c,所以 f(x)dx= x3 +2cx = +2c=c,解得c=- ,故选B.
5.(2018·山东陵县一中月考)定积分 x- dx的值为________.
解析: x- dx= x = -0= .
答案:
6.(2018·安徽蚌埠摸底) -1(|x|+sinx)dx=________.
3.(2018·广东七校联考)由曲线xy=1,直线y=x,y=3所围成的平面图.4-ln3
解析:选DS= dx+ ×2×2=(3x-lnx) 1 +2=4-ln3,故选D.
4.(2018·河南安阳调研)由曲线y=2 ,直线y=x-3及x轴所围成的图形的面积为()
(1)求f(x)的解析式;
(2)求f(x)在[-1,1]上的最大值与最小值.
解:(1)设f(x)=ax2+bx+c(a≠0),则f′(x)=2ax+b.
由f(-1)=2,f′(0)=0,
得 即 ∴f(x)=ax2+2-a.
又 f(x)dx= (ax2+2-a)dx
解析:由题意知所求面积为 (x+1)dx+ exdx= +ex =- +(e-1)=e- .
答案:e-
[大题综合练——迁移贯通]
1.已知函数f(x)=x3-x2+x+1,求其在点(1,2)处的切线与函数g(x)=x2围成的图形的面积.
解:∵(1,2)为曲线f(x)=x3-x2+x+1上的点,
设过点(1,2)处的切线的斜率为k,
A.3+ B.2-e
C. - D.2-
解析:选C f(x-2)dx= f(x-2)dx+ f(x-2)dx= (x2-4x+5)dx+ e-x+2dx= +(-e-x+2) = +[(-e-3+2)-(-e-2+2)]= - ,故选C.
4.(2018·吉林长春调研)若f(x)=x2+2 f(x)dx,则 f(x)dx=()
A.a<c<bB.a<b<c
C.c<b<aD.c<a<b
解析:选Da= x2dx= = ,b= x3dx= =4,c= sinxdx=(-cosx) =1-cos 2.∵cos 2∈[-1,1],∴1-cos 2∈[0,2],∴1-cos 2< <4,故c<a<b.故选D.
3.(2018·山西朔州期中)已知分段函数f(x)= 则 f(x-2)dx=()
A.12B.24
C.16D.18
解析:选D曲线y=2 ,直线y=x-3的交点为(9,6),由定积分的几何意义可知,曲线y=2 与直线y=x-3及x轴围成的面积为 [2 -(x-3)]dx- ×3×3= - =18,故选D.
5.(2018·福建省师大附中等校期中)已知函数f(x)=-x3+ax2+bx(a,b∈R)的图象如图所示,它与x轴相切于原点,且x轴与函数图象所围成区域(图中阴影部分)的面积为 ,则a的值为()
A.0B.1
C.-1D.-2
解析:选Cf′(x)=-3x2+2ax+b.由题意得f′(0)=0,得b=0,∴f(x)=-x2(x-a).由 (x3-ax2)dx= =0- + = = ,得a=±1.函数f(x)与x轴的交点的横坐标一个为0,另一个为a.根据图形可知a<0,即a=-1.
6.从空中自由下落的一物体,在第一秒末恰经过电视塔顶,在第二秒末物体落地,已知自由落体的运动速度为v=gt(g为常数),则电视塔高为()
2.(2018·武汉模拟)设变力F(x)(单位:N)作用在质点M上,使M沿x轴正方向从x=1 m处运动到x=10 m处,已知F(x)=x2+1且方向和x轴正方向相同,则变力F(x)对质点M所做的功为()
A.1 JB.10 J
C.342 JD.432 J
解析:选C变力F(x)=x2+1.使质点M沿x轴正方向从x=1运动到x=10所做的功W=∫ F(x)dx=∫ (x2+1)dx= =342(J).
解析: -1(|x|+sinx)dx= -1|x|dx+ -1sinxdx.根据定积分的几何意义可知,函数y=|x|在[-1,1]上的图象与x轴,直线x=-1,x=1围成的平面区域的面积为1.y=sinx为奇函数,则 -1sinxdx=0,所以 -1(|x|+sinx)dx=1.
答案:1
对点练(二)定积分的应用
A. gB.g
C. gD.2g
解析:选C由题意知电视塔高为 gtdt= gt2 =2g- g= g.
7.(2018·辽宁沈阳阶段性考试)曲线y=x2和曲线y2=x围成的图形面积是()
A. B.
C.1D.
解析:选A由 解得 或 所以所求面积为 ( -x2)dx= = .故选A.
8.(2018·洛阳统考)函数f(x)= 的图象与直线x=1及x轴所围成的封闭图形的面积为________.
相关文档
最新文档