高三物理第一轮复习法拉第电磁感应定律 自感二 新课标 人教版

合集下载

高考物理一轮复习 第十章 第2讲 法拉第电磁感应定律 自感现象教案 新人教版-新人教版高三全册物理教

高考物理一轮复习 第十章 第2讲 法拉第电磁感应定律 自感现象教案 新人教版-新人教版高三全册物理教

第2讲 法拉第电磁感应定律 自感现象考点1 法拉第电磁感应定律的理解和应用1.法拉第电磁感应定律的理解(1)感应电动势的大小由线圈的匝数和穿过线圈的磁通量的变化率ΔΦΔt 共同决定,而与磁通量Φ的大小、变化量ΔΦ的大小没有必然联系.(2)磁通量的变化率ΔΦΔt 对应Φ­t 图线上某点切线的斜率.2.应用法拉第电磁感应定律的三种情况(1)磁通量的变化是由面积变化引起时,ΔΦ=B ·ΔS ,则E =n B ΔSΔt ; (2)磁通量的变化是由磁场变化引起时,ΔΦ=S ·ΔB ,则E =nS ·ΔBΔt; (3)磁通量的变化是由面积和磁场共同变化引起时,则根据定义,ΔΦ=|Φ末-Φ初|,E =n|B 2S 2-B 1S 1|Δt ≠n |ΔB ΔS |Δt.1.(2018·全国卷Ⅲ)(多选)如图甲,在同一平面内固定有一长直导线PQ 和一导线框R ,R 在PQ 的右侧.导线PQ 中通有正弦交流电i ,i 的变化如图乙所示,规定从Q 到P 为电流正方向.导线框R 中的感应电动势( AC )A .在t =T 4时为零B .在t =T 2时改变方向C .在t =T2时最大,且沿顺时针方向D .在t =T 时最大,且沿顺时针方向解析:本题考查楞次定律的应用及法拉第电磁感应定律.由i ­t 图象可知,在t =T4时,Δi Δt =0,此时穿过导线框R 的磁通量的变化率ΔΦΔt=0,由法拉第电磁感应定律可知,此时导线框R 中的感应电动势为0,选项A 正确;同理在t =T 2和t =T 时,Δi Δt 为最大值,ΔΦΔt为最大值,导线框R 中的感应电动势为最大值,不改变方向,选项B 错误;根据楞次定律,t =T2时,导线框R 中的感应电动势的方向为顺时针方向,而t =T 时,导线框R 中的感应电动势的方向为逆时针方向,选项C 正确,选项D 错误.2.如图甲所示,用一根横截面积为S 、电阻率为ρ的硬质导线做成一个半径为r 的圆环,ab 为圆环的直径.在ab 的右侧存在一个足够大的匀强磁场,t =0时刻磁场方向垂直于竖直圆环平面向里,磁场磁感应强度B 随时间t 变化的关系如图乙所示,则0~t 1时间内( D )A .圆环中产生感应电流的方向为逆时针B .圆环中产生感应电流的方向先顺时针后是逆时针C .圆环一直具有扩X 的趋势D .圆环中感应电流的大小为B 0rS4t 0ρ解析:磁通量先向里减小再向外增大,由楞次定律“增反减同”可知,线圈中的感应电流方向为一直为顺时针,故A 、B 错误;由楞次定律的“来拒去留”可知,0~t 0为了阻碍磁通量的减小,线圈有扩X 的趋势,t 0~t 1为了阻碍磁通量的增大,线圈有缩小的趋势,故C 错误;由法拉第电磁感应定律,得E =ΔBS 2Δt =B 0πr 22t 0,感应电流I =E R =B 0πr 22t 0·Sρ×2πr=B 0rS4t 0ρ,故D 正确. 3.(2019·某某某某质检)如图甲所示,导体棒MN 置于水平导轨上,P 、Q 之间有阻值为R 的电阻,PQNM 所围的面积为S ,不计导轨和导体棒的电阻.导轨所在区域内存在沿竖直方向的磁场,规定磁场方向竖直向上为正,在0~2t 0时间内磁感应强度的变化情况如图乙所示,导体棒MN 始终处于静止状态.下列说法正确的是( D )A .在0~t 0和t 0~2t 0内,导体棒受到导轨的摩擦力方向相同B .在t 0~2t 0内,通过电阻R 的电流方向为P 到QC .在0~t 0内,通过电阻R 的电流大小为2B 0SRt 0D .在0~2t 0内,通过电阻R 的电荷量为B 0S R解析:本题考查法拉第电磁感应定律的图象问题,定性分析加定量计算可快速求解.由图乙所示图象可知,0~t 0内磁感应强度减小,穿过回路的磁通量减小,由楞次定律可知,为阻碍磁通量的减少,导体棒具有向右的运动趋势,导体棒受到向左的摩擦力,在t 0~2t 0内,穿过回路的磁通量增加,为阻碍磁通量的增加,导体棒有向左的运动趋势,导体棒受到向右的摩擦力,在两时间段内摩擦力方向相反,故A 错误;由图乙所示图象可知,在t 0~2t 0内磁感应强度增大,穿过闭合回路的磁通量增大,由楞次定律可知,感应电流沿顺时针方向,通过电阻R 的电流方向为Q 到P ,故B 错误;由图乙所示图象,应用法拉第电磁感应定律可得,在0~t 0内感应电动势E 1=ΔΦΔt =S ·ΔB Δt =B 0S t 0,感应电流为I 1=E 1R =B 0S Rt 0,故C 错误;由图乙所示图象,应用法拉第电磁感应定律可得,在0~2t 0内通过电阻R 的电荷量为q 1=N ΔΦR=2B 0S -B 0S R =B 0SR,故D 正确.应用电磁感应定律需注意的三个问题(1)公式E =n ΔΦΔt 求解的是一个回路中某段时间内的平均电动势,在磁通量均匀变化时,瞬时值才等于平均值.(2)利用公式E =nS ΔBΔt 求感应电动势时,S 为线圈在磁场X 围内的有效面积.(3)通过回路截面的电荷量q 仅与n 、ΔΦ和回路电阻R 有关,与时间长短无关,与Φ是否均匀变化无关.推导如下:q =I Δt =n ΔΦΔtR Δt =n ΔΦR.考点2 导体切割磁感线产生的感应电动势考向1 平动切割1.计算公式:E =BLv 或E =BLv sin θ. 2.E =Blv 的三个特性(1)正交性:本公式要求磁场为匀强磁场,而且B 、l 、v 三者互相垂直.(2)有效性:公式中的l 为导体棒切割磁感线的有效长度.下图中,导体棒的有效长度为ab 间的距离.(3)相对性:E =Blv 中的速度v 是导体棒相对磁场的速度,若磁场也在运动,应注意速度间的相对关系.(2019·某某某某统考)(多选)半径为a 右端开小口的导体圆环和长为2a 的导体直杆,单位长度电阻均为R 0.圆环水平固定放置,整个内部区域分布着竖直向下的匀强磁场,磁感应强度为B .杆在圆环上以速度v 平行于直径CD 向右做匀速直线运动,杆始终有两点与圆环良好接触,从圆环中心O 开始,杆的位置由θ确定,如图所示.则( )A .θ=0时,杆产生的电动势为2BavB .θ=π3时,杆产生的电动势为3BavC .θ=0时,杆受的安培力大小为2B 2av(π+2)R 0D .θ=π3时,杆受的安培力大小为3B 2av(5π+3)R 0[审题指导] (1)导体棒长度指处在磁场中的长度,称为有效长度.θ=0和θ=π3时二者不同.(2)先计算感应电动势,再计算感应电流,最后计算安培力.【解析】 当θ=0时,杆产生的电动势E =BLv =2Bav ,故A 正确;当θ=π3时,根据几何关系得出此时导体棒的有效切割长度为a ,所以杆产生的电动势为E =Bav ,故B 错误;当θ=0时,由于单位长度电阻均为R 0,所以电路中总电阻为(2+π)aR 0,所以杆受的安培力大小为F =BIL =B ·2a 2Bav (2+π)aR 0=4B 2av (2+π)R 0,故C 错误;当θ=π3时,电路中总电阻为⎝⎛⎭⎪⎫1+5π3aR 0,所以杆受的安培力大小为F ′=BI ′L ′=3B 2av (3+5π)R 0,故D 正确.【答案】 AD1.(2019·某某某某模拟)如图所示,一对光滑的平行金属导轨(电阻不计)固定在同一水平面内,导轨足够长且间距为L ,左端接有阻值为R 的电阻,一质量为m 、长度为L 的匀质金属棒cd 放置在导轨上,金属棒的电阻为r ,整个装置置于方向竖直向上的匀强磁场中,磁场的磁感应强度为B .金属棒在水平向右的外力作用下,由静止开始做加速度大小为a 的匀加速直线运动,经过的位移为s 时,则( C )A .金属棒中感应电流方向由d 到cB .金属棒产生的感应电动势为BL asC .金属棒中感应电流为BL 2asR +rD .水平拉力F 的大小为B 2L 22asR +r解析:根据楞次定律可知电流I 的方向从c 到d ,故A 错误;设金属棒cd 的位移为s 时速度为v ,则有v 2=2as ,金属棒产生的电动势为E =BLv =BL 2as ,故B 错误;金属棒中感应电流的大小为I =ER +r,解得I =BL 2asR +r,故C 正确;金属棒受到的安培力大小为f =BIL ,根据牛顿第二定律可得F -f =ma ,联立解得F =B 2L 22asR +r+ma ,故D 错误.考向2 导体棒转动切割磁感线当导体棒在垂直于磁场的平面内绕一端以角速度ω匀速转动时,产生的感应电动势为E =Bl v =12Bl 2ω,如图所示.如图,直角三角形金属框abc 放置在匀强磁场中,磁感应强度大小为B ,方向平行于ab 边向上.当金属框绕ab 边以角速度ω逆时针转动时,a 、b 、c 三点的电势分别为U a 、U b 、U c .已知bc 边的长度为l .下列判断正确的是( )A .U a >U c ,金属框中无电流B .U b >U c ,金属框中电流方向沿a —b —c —aC .U bc =-12Bl 2ω,金属框中无电流D .U bc =12Bl 2ω,金属框中电流方向沿a —c —b —a[审题指导] (1)金属框在转动过程中,磁通量不变,无感应电流产生. (2)金属框bc 边和ac 边都在切割磁感线,所以有感应电动势.【解析】 穿过金属框的磁通量始终为零,没有发生变化,故金属框中无电流,B 、D 项错误;bc 边切割磁感线的等效速度为12lω,根据右手定则U b <U c ,故U bc =-12Bl 2ω,C 项正确;ac 边切割磁感线,根据右手定则得U a <U c ,A 项错误.【答案】 C2.(2018·全国卷Ⅰ)如图,导体轨道OPQS 固定,其中PQS 是半圆弧,Q 为半圆弧的中点,O 为圆心.轨道的电阻忽略不计.OM 是有一定电阻、可绕O 转动的金属杆,M 端位于PQS 上,OM 与轨道接触良好.空间存在与半圆所在平面垂直的匀强磁场,磁感应强度的大小为B .现使OM 从OQ 位置以恒定的角速度逆时针转到OS 位置并固定(过程Ⅰ);再使磁感应强度的大小以一定的变化率从B 增加到B ′(过程Ⅱ).过程Ⅰ、Ⅱ中,流过OM 的电荷量相等,则B ′B等于( B )A.54B.32C.74D .2 解析:本题考查法拉第电磁感应定律及电荷量公式.由公式E =ΔΦΔt ,I =ER ,q =It 得q =ΔΦR ,设半圆弧半径为r ,对于过程Ⅰ,q 1=B ·πr 24·R ,对于过程Ⅱ,q 2=(B ′-B )·πr22R ,由q 1=q 2得,B ′B =32,故B 项正确.四种求电动势的方法考点3 自感现象涡流考向1 通电自感与断电自感1.自感现象的四大特点(1)自感电动势总是阻碍导体中原电流的变化.(2)通过线圈中的电流不能发生突变,只能缓慢变化.(3)电流稳定时,自感线圈就相当于普通导体.(4)线圈的自感系数越大,自感现象越明显,自感电动势只是延缓了过程的进行,但它不能使过程停止,更不能使过程反向.2.自感中“闪亮”与“不闪亮”问题电流突然增大,灯泡立刻变亮,然后逐12开关S1瞬间,灯A1突然闪亮,然后逐渐变暗;闭合开关S2,灯A2逐渐变亮,而另一个相同的灯A3立刻变亮,最终A2与A3的亮度相同.下列说法正确的是( C )A.图1中,A1与L1的电阻值相同B.图1中,闭合S1,电路稳定后,A1中电流大于L1中电流C.图2中,变阻器R与L2的电阻值相同D.图2中,闭合S2瞬间,L2中电流与变阻器R中电流相等解析:本题考查自感现象判断.在图1中断开S1瞬间,灯A1突然闪亮,说明断开S1前,L1中的电流大于A1中的电流,故L1的阻值小于A1的阻值,A、B选项均错误;在图2中,闭合S2瞬间,由于L2的自感作用,通过L2的电流很小,D错误;闭合S2后,最终A2与A3亮度相同,说明两支路电流相等,故R与L2的阻值相同,C项正确.2.(2019·某某模拟)在如图所示的电路中,S闭合时流过线圈L的电流是2 A,流过灯泡A的电流是1 A.将S突然断开,则S断开前后,能正确反映流过灯泡的电流I随时间t变化关系的是图中的( D )解析:当电键断开时,由于线圈中自感电动势阻碍电流减小,线圈中的电流逐渐减小,线圈与灯泡A构成回路,所以灯泡中的电流与线圈中电流大小相等,灯泡中电流也逐渐减小,但与断开前方向相反.故D正确,A、B、C错误.分析自感现象的两点注意(1)断电自感现象中灯泡是否“闪亮”的判断:关键在于对电流大小的分析,只有断电瞬间通过灯泡的电流比原来大,灯泡才先闪亮后慢慢熄灭.(2)断电自感现象中电流方向是否改变的判断:与线圈在同一支路的用电器的电流方向不变,与线圈不在同一支路的用电器中的电流方向改变.考向2 对涡流的考查3.(多选)1824年,法国科学家阿拉果完成了著名的“圆盘实验”.实验中将一铜圆盘水平放置,在其中心正上方用柔软细线悬挂一枚可以自由旋转的磁针,如图所示,实验中发现,当圆盘在磁针的磁场中绕过圆盘中心的竖直轴旋转时,磁针也随着一起转动起来,但略有滞后.下列说法正确的是( AB )A.圆盘上产生了感应电动势B.圆盘内的涡电流产生的磁场导致磁针转动C.在圆盘转动的过程中,磁针的磁场穿过整个圆盘的磁通量发生了变化D.圆盘中的自由电子随圆盘一起运动形成电流,此电流产生的磁场导致磁针转动解析:小磁针在圆盘所在处形成的磁场是非匀强磁场,圆盘可以等效为许多环形闭合线圈,圆盘转动过程中,穿过每个环形闭合线圈的磁通量不断地发生变化,在每一环形线圈上产生电动势和涡电流,A正确;环形线圈随圆盘转动,由楞次定律可知,线圈会受到小磁针施加的阻碍相对运动的力,根据牛顿第三定律可知,小磁针会受到与线圈即圆盘转动方向相同的力的作用,此力来源于电磁感应形成的涡电流,而不是自由电子随圆盘转动形成的电流,B正确,D错误.从圆盘的整个盘面上看,圆盘转动过程中穿过整个圆盘的磁通量不变,C 错误.4.扫描隧道显微镜(STM)可用来探测样品表面原子尺度上的形貌.为了有效隔离外界振动对STM的扰动,在圆底盘周边沿其径向对称地安装若干对紫铜薄板,并施加磁场来快速衰减其微小振动,如图所示.无扰动时,按下列四种方案对紫铜薄板施加恒磁场;出现扰动后,对于紫铜薄板上下及左右振动的衰减最有效的方案是( A )解析:本题考查电磁阻尼.若要有效衰减紫铜薄板上下及左右的微小振动,则要求施加磁场后,在紫铜薄板发生上下及左右的微小振动时,穿过紫铜薄板横截面的磁通量都能发生变化.由选项图可知只有A满足要求,故选A.对安培力是动力、阻力的理解技巧电磁阻尼是安培力总是阻碍导体运动的现象,电磁驱动是安培力使导体运动起来的现象,但实质上均是感应电流使导体在磁场中受到安培力.学习至此,请完成课时作业34。

2022届新教材高考物理一轮复习课时练33法拉第电磁感应定律及其应用含解析新人教版

2022届新教材高考物理一轮复习课时练33法拉第电磁感应定律及其应用含解析新人教版

法拉第电磁感应定律及其应用1.(法拉第电磁感应定律的应用)半径为R的圆形线圈共有n匝,总阻值为R0,其中心位置处半径为r的虚线范围内有匀强磁场,磁场方向垂直线圈平面,如图所示,若初始的磁感应强度为B,在时间t内均匀减小为0,则通过圆形线圈的电流为()A.nBπR2B.nBπr2C.πBB2BB0D.BπBB2BB02.(转动切割磁感线)如图所示,金属棒MN以角速度ω绕过O点的竖直轴在水平面内旋转,空间存在竖直向下的匀强磁场。

已知MO>NO,则()A.M点电势高于N点B.N点电势高于O点C.磁感应强度B加倍时M、N两点间电势差也加倍D.角速度ω加倍时M、N两点间电势差变为原来的4倍3.(自感)在生产实际中,有些高压直流电路中含有自感系数很大的线圈,当电路中的开关S由闭合到断开时,线圈会产生很高的自感电动势,使开关S处产生电弧,危及操作人员的人身安全,为了避免电弧的产生,可在线圈处并联一个元件,下列方案可行的是()4.(法拉第电磁感应定律的应用)如图所示,某同学在电磁炉面板上竖直放置一纸质圆筒,圆筒上套一环形轻质铝箱,电磁炉产生的交变磁场的频率、强度及铝箔厚度可以调节。

现给电磁炉通电,发现铝箱悬浮了起来。

若只改变其中一个变量,则()A.增强磁场,铝箔悬浮高度将不变B.铝箔越薄,铝箔中产生的感应电流越大C.增大频率,铝箱中产生的感应电流增大D.在刚断开电源产生如图磁场的瞬间,铝箱中会产生如图所示的电流5.(涡流)电磁炉又名电磁灶,是现代厨房革命的产物,它无需明火或传导式加热而让热直接在锅底产生,因此热效率得到了极大的提高,是一种高效节能厨具。

如图所示是描述电磁炉工作原理的示意图,下列说法正确的是()A.电磁炉通电线圈加直流电,电流越大,电磁炉加热效果越好B.电磁炉原理是通电线圈加交流电后,在锅底产生涡流,进而发热工作C.在锅和电磁炉中间放一绝缘物质,电磁炉不能起到加热作用D.电磁炉的锅不能用陶瓷锅或耐热玻璃锅,主要原因是这些材料的导热性能较差6.(多选)(导体棒切割磁感线产生感应电动势的分析与计算)如图所示,两根足够长、电阻不计且相距l=0.2 m 的平行金属导轨固定在倾角θ=37°的绝缘斜面上,顶端接有一盏额定电压U=4 V 的小灯泡,两导轨间有一磁感应强度B=5 T 、方向垂直斜面向上的匀强磁场。

2020版新一线高考物理(人教版)一轮复习教学案:第10章 第2节 法拉第电磁感应定律 自感 涡流 含答案

2020版新一线高考物理(人教版)一轮复习教学案:第10章 第2节 法拉第电磁感应定律 自感 涡流 含答案

第2节 法拉第电磁感应定律 自感 涡流知识点一| 法拉第电磁感应定律1.感应电动势(1)感应电动势:在电磁感应现象中产生的电动势。

产生感应电动势的那部分导体就相当于电源,导体的电阻相当于电源内阻。

(2)感应电流与感应电动势的关系:遵循闭合电路欧姆定律,即I =E R +r。

2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。

(2)公式:E =n ΔΦΔt,n 为线圈匝数。

3.导体切割磁感线的情形(1)若B 、l 、v 相互垂直,则E =Bl v 。

(2)若B ⊥l ,l ⊥v ,v 与B 夹角为θ,则E =Bl v sin_θ。

[判断正误](1)Φ=0,ΔΦΔt 不一定等于0。

(√) (2)感应电动势E 与线圈匝数n 有关,所以Φ、ΔΦ、ΔΦΔt的大小均与线圈匝数有关。

(×) (3)线圈中磁通量变化越快,产生的感应电动势越大。

(√) (4)法拉第提出了法拉第电磁感应定律。

(×)(5)当导体在匀强磁场中垂直磁场方向运动时(运动方向和导体垂直),感应电动势为E =BL v 。

(√)考法1 对感生电动势E =n ΔΦΔt 的理解与应用1.关于感应电动势的大小,下列说法中正确的是( )A .穿过线圈的磁通量Φ越大,所产生的感应电动势就越大B.穿过线圈的磁通量的变化量ΔΦ越大,所产生的感应电动势就越大C.穿过线圈的磁通量的变化率ΔΦΔt越大,所产生的感应电动势就越大D.穿过线圈的磁通量Φ等于0,所产生的感应电动势就一定为0C[根据法拉第电磁感应定律可知,感应电动势的大小与磁通量的变化率ΔΦΔt成正比,与磁通量Φ及磁通量的变化量ΔΦ没有必然联系。

当磁通量Φ很大时,感应电动势可能很小,甚至为0。

当磁通量Φ等于0时,其变化率可能很大,产生的感应电动势也会很大。

所以只有选项C正确。

]2.(2017·天津高考)如图所示,两根平行金属导轨置于水平面内,导轨之间接有电阻R。

物理学案 人教版高考一轮复习第10章电磁感应学案及实验教学

物理学案 人教版高考一轮复习第10章电磁感应学案及实验教学

第2讲 法拉第电磁感应定律 自感 涡流一、法拉第电磁感应定律 1.感应电动势(1)概念:在电磁感应现象中产生的电动势。

(2)产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关。

(3)方向判断:感应电动势的方向用楞次定律或右手定则判断。

2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小跟穿过这一电路的磁通量的变化率成正比。

(2)公式:E =n ΔΦΔt,其中n 为线圈匝数。

(3)感应电流与感应电动势的关系:遵守闭合电路的欧姆定律,即I =ER +r 。

3.导体切割磁感线的情形(1)若B 、l 、v 相互垂直,则E =Blv 。

(2)v ∥B 时,E =0。

二、自感、涡流 1.自感现象(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感。

(2)自感电动势①定义:在自感现象中产生的感应电动势叫作自感电动势。

②表达式:E =L ΔIΔt。

(3)自感系数L①相关因素:与线圈的大小、形状、匝数以及是否有铁芯有关。

②单位:亨利(H),1 mH =10-3H,1 μH=10-6H 。

2.涡流当线圈中的电流发生变化时,在它附近的任何导体中都会产生感应电流,这种电流像水的漩涡,所以叫涡流。

授课提示:对应学生用书第196页命题点一 对法拉第电磁感应定律的理解及应用 自主探究1.感应电动势的决定因素(1)由E =n ΔΦΔt 知,感应电动势的大小由穿过电路的磁通量的变化率ΔΦΔt 和线圈匝数n 共同决定,磁通量Φ较大或磁通量的变化量ΔΦ较大时,感应电动势不一定较大。

(2)ΔΦΔt 为单匝线圈产生的感应电动势大小。

2.法拉第电磁感应定律的三个特例(1)回路与磁场垂直的面积S 不变,磁感应强度发生变化,则ΔΦ=ΔB·S,E =n ΔBΔt S 。

(2)磁感应强度B 不变,回路与磁场垂直的面积发生变化,则ΔΦ=B·ΔS,E =nB ΔSΔt。

(3)磁通量的变化是由面积和磁场变化共同引起时,则ΔΦ=Φ末-Φ初,E =n B 2S 2-B 1S 1Δt ≠n ΔB·ΔSΔt。

2025届高中物理(人教版)一轮复习课时分层精练五十五:法拉第电磁感应定律 自感现象(含解析)

2025届高中物理(人教版)一轮复习课时分层精练五十五:法拉第电磁感应定律 自感现象(含解析)

课时分层精练(五十五) 法拉第电磁感应定律 自感现象基础落实练1.[2023·重庆卷]某小组设计了一种呼吸监测方案:在人身上缠绕弹性金属线圈,观察人呼吸时处于匀强磁场中的线圈面积变化产生的电压,了解人的呼吸状况.如图所示,线圈P 的匝数为N ,磁场的磁感应强度大小为B ,方向与线圈轴线的夹角为θ.若某次吸气时,在t 时间内每匝线圈面积增加了S ,则线圈P 在该时间内的平均感应电动势为( )A .NBS cos θtB .NBS sin θtC .BS sin θtD .BS cos θt2.(多选)以下哪些现象利用了电磁阻尼规律( )A .图甲中线圈能使上下振动的条形磁铁快速停下来B .图乙中无缺口的铝管比有缺口的铝管能更快使强磁铁匀速运动C .图丙中U 形磁铁可以使高速转动的铝盘迅速停下来D .图丁中转动把手时下面的闭合铜线框会随U 形磁铁同向转动3.[2024·四川成都高三校联考期中]水平放置的光滑平行导轨固定,导轨左侧接有定值电阻R ,导轨间存在垂直于导轨平面向上的匀强磁场,足够长的金属棒ab 置于导轨上且接触良好.如图甲,当金属棒ab 垂直于导轨以速度v 向右匀速运动时,金属棒ab 产生的感应电动势为E 1.如图乙,保持磁感应强度不变,当金属棒ab 倾斜放置,与导轨成θ=30°,仍以速度v 向右匀速运动时,金属棒ab 产生的感应电动势为E 2.不计导轨和金属棒ab 的电阻,则通过金属棒ab 的电流方向及E 1和E 2之比分别为( )A .a →b ,1∶1B .a →b ,1∶2C .b →a ,1∶1D .b →a ,2∶1 4.[2024·宁夏银川六盘山高级中学校考模拟预测]如图所示的电路中,A 1和A 2是完全相同的灯泡,线圈L 的电阻可以忽略,下列说法中正确的是( )A .闭合开关S 接通电路时,A 2始终比A 1亮B .闭合开关S 接通电路时,A 1先亮,A 2后亮,最后一样亮C .断开开关S 切断电路时,A 2先熄灭,A 1过一会儿才熄灭D .断开开关S 切断电路时,A 1和A 2都要过一会儿才熄灭5.如图甲所示,一长为L 的导体棒,绕水平圆轨道的圆心O 匀速顺时针转动,角速度为ω,电阻为r ,在圆轨道空间存在有界匀强磁场,磁感应强度大小为B .半径小于L2 的区域内磁场竖直向上,半径大于L2 的区域磁场竖直向下,俯视如图乙所示,导线一端Q 与圆心O 相连,另一端P 与圆轨道连接给电阻R 供电,其余电阻不计,则( )A .电阻R 两端的电压为BL 2ω4B .电阻R 中的电流方向向上C .电阻R 中的电流大小为BL 2ω4(R +r )D .导体棒的安培力做功的功率为06.[2024·全国高三专题练习]水平桌面上放置着两个用同一根均匀金属丝制成的单匝线圈1和线圈2,半径分别为2R 和R (俯视图如图1所示).竖直方向有匀强磁场,磁感应强度随时间变化的关系如图2所示.线圈中的感应电动势、电流强度、电功率分别用E 、I 、P 表示,不考虑两个线圈间的影响,下列关系正确的是( )A .E 1∶E 2=4∶1,I 1∶I 2=2∶1B .E 1∶E 2=4∶1,P 1∶P 2=2∶1C .E 1∶E 2=2∶1,P 1∶P 2=8∶1D .P 1∶P 2=4∶1,I 1∶I 2=1∶17.如图,一不可伸长的细绳的上端固定,下端系在边长为l =0.40 m 的正方形金属框的一个顶点上.金属框的一条对角线水平,其下方有方向垂直于金属框所在平面的匀强磁场.已知构成金属框的导线单位长度的阻值为λ=5.0×10-3 Ω/m ;在t =0到t =3.0 s 时间内,磁感应强度大小随时间t 的变化关系为B (t )=0.3-0.1t (SI).求:(1)t =2.0 s 时金属框所受安培力的大小(结果保留两位有效数字); (2)在t =0到t =2.0 s 时间内金属框产生的焦耳热.素养提升练8.(多选)[2024·湖南统考模拟预测]如图所示,水平放置的金属导轨由bade 和bcM 两部分组成,bcM 是以O 点为圆心、L 为半径的圆弧导轨,扇形bOc 内存在磁感应强度大小为B 、方向垂直纸面向里的匀强磁场,金属杆OP 的P 端与圆弧bcM 接触良好,O 点与e 点有导线相连,金属杆OP 绕O 点以角速度ω在b 、M 之间做往返运动,已知导轨左侧接有阻值为R 的定值电阻,其余部分电阻不计,∠bOc =∠MOc =90°,下列说法正确的是( )A .金属杆OP 在磁场区域内沿顺时针方向转动时,P 点电势高于O 点电势B .金属杆OP 在磁场区域内转动时,其产生的感应电动势为BL 2ωC .金属杆OP 在磁场区域内转动时,回路中电流的瞬时值为BL 2ω2RD .回路中电流的有效值为2BL 2ω4R9.(多选)[2024·河南校联考二模]如图所示,间距为L 的两条平行光滑竖直金属导轨PQ 、MN (足够长),底部Q 、N 之间连接阻值为R 1的电阻,磁感应强度大小为B 1、范围足够大的匀强磁场与导轨平面垂直.质量为m 、阻值为R 2的金属棒ab 垂直放在导轨上,且棒的两端始终与导轨接触良好.导轨的上端点P 、M 分别与横截面积为S 的n 匝线圈的两端连接,线圈的轴线与磁感应强度大小均匀变化的匀强磁场B 2平行.开关K 闭合后,金属棒ab 恰能保持静止.已知重力加速度大小为g ,其余部分电阻均不计.则由此可知( )A .匀强磁场B 2的磁感应强度均匀减小B .流过电阻R 1的电流为mgR 1B 1LR 2C .匀强磁场B 2的磁感应强度的变化率为mgR 2nB 1LSD .断开K 之后,金属棒ab 下滑的最大速度为mg (R 1+R 2)B 21 L 21.解析:根据法拉第电磁感应定律得E -=N ΔΦΔt =NBS cos θt,A 正确.答案:A2.解析:题图甲中振动的条形磁铁使线圈中产生感应电流,感应电流对磁铁的相对运动有阻碍作用,能使振动的条形磁铁快速停下来,这是利用了电磁阻尼规律,故A 正确;题图乙中磁铁通过无缺口的铝管,在铝管中产生感应电流,感应电流对磁铁的相对运动有阻碍作用,能更快使强磁铁匀速运动,这是利用了电磁阻尼规律,故B 正确;题图丙中U 形磁铁可以在高速转动的铝盘中产生涡电流,涡电流对铝盘与磁铁间的相对运动有阻碍作用,能使铝盘迅速停下来,这是利用了电磁阻尼规律,故C 正确;题图丁中转动把手时下面的闭合铜线框随U 形磁铁同向转动,这是利用了电磁驱动规律,故D 错误.答案:ABC 3.解析:设导轨间的距离为L ,如图甲所示,金属棒ab 产生的感应电动势为E 1=BLv ,根据右手定则可知通过金属棒ab 的电流方向b →a ;如图乙所示,金属棒ab 产生的感应电动势为E 2=BLv ,根据右手定则可知通过金属棒ab 的电流方向b →a ;E 1和E 2之比为E 1∶E 2=1∶1,故选C.答案:C4.解析:闭合开关S 接通电路时,由于线圈的自感作用,A 1灯泡逐渐亮起来,A 2灯泡立即亮起来,稳定后,线圈电阻不计,相当于一根导线,两灯泡亮度相同,A 、B 错误;断开开关S 切断电路时,由于线圈的自感作用,线圈中的电流不能发生突变,其在新的回路中由原来的稳定值逐渐减小为零,即断开开关S 切断电路时,A 1和A 2都要过一会儿才同时熄灭,C 错误,D 正确.故选D.答案:D5.解析:半径小于L 2 的区域内E 1=B L 2 ·ωL 22 =BL 2ω8 ,半径大于L2的区域E 2=B L 2 ·ωL2+ωL 2 =3BL 2ω8 ,根据题意可知,两部分电动势相反,故总电动势E =E 2-E 1=BL 2ω4 ,根据右手定则可知圆心为负极,圆环为正极,电阻R 中的电流方向向下,电阻R 上的电压U =R R +r E =RBL 2ω4(R +r ) ,故A 、B 错误;电阻R 中的电流大小为I =E R +r =BL 2ω4(R +r ) ,故C 正确;回路有电流,则安培力不为零,故导体棒的安培力做功的功率不为零,故D 错误.故选C.答案:C6.解析:由题意可得,两线圈的长度之比为L 1L 2 =2π2R 2πR =21两线圈围成的面积之比为S 1S 2 =π(2R )2πR 2 =41由法拉第电磁感应定律E =n ΔΦΔt =n ΔBΔtS由图可知,线圈中的感应电动势之比为E 1E 2 =S 1S 2 =41由闭合电路的欧姆定律I =ER 总由电阻定律得R 总=ρLS两线圈的电阻之比为R 1R 2 =L 1L 2 =21可得,线圈中的电流强度之比为I 1I 2 =E 1E 2 ·R 2R 1 =41 ×12 =21线圈中的电功率之比为P 1P 2 =E 1E 2 ·I 1I 2 =41 ×21 =81故选A. 答案:A 7.解析:(1)对正方形金属框分析 由法拉第电磁感应定律得E =⎪⎪⎪⎪ΔΦΔt =⎪⎪⎪⎪ΔB ·S Δt =⎪⎪⎪⎪ΔB Δt ×l 22由B (t )=0.3-0.1t (SI ),知⎪⎪⎪⎪ΔB Δt =0.1 T/s I =ER,其中R =4lλ 当t =2.0 s 时,B =0.3-0.1×2.0(T )=0.1 T金属框所受安培力大小F =BIl ′,其中l ′=2 l 代入数据解得F ≈0.057 N.(2)根据焦耳定律有Q =I 2Rt R =4λl =8×10-3 Ω0~2.0 s 内金属框中的电流为I =ER=1 A代入数据解得Q =0.016 J. 答案:(1)0.057 N (2)0.016 J8.解析:金属杆OP 在磁场区域内沿顺时针方向转动时,由右手定则可知,P 点电势高于O 点电势, 故A 正确;金属杆OP 位于磁场区域时,其产生的电动势为E =BL v -=BL 0+Lω2 =12 BL 2ω,故B 错误;金属杆OP 位于磁场区域时,回路中电流的瞬时值为I 1=E R=BL 2ω2R,故C 正确;金属杆OP 运动一个周期T 时,只有一半时间在切割磁感线产生感应电流,根据有效值的定义有I 21 R ·T 2 +0=I 2效 RT ,解得回路中电流的有效值为I 效=I 12=2BL 2ω4R,故D 正确. 答案:ACD9.解析:根据题意可知,开关K 闭合后,金属棒ab 恰能保持静止,则金属棒ab 受竖直向上的安培力,大小等于金属棒的重力,保持不变,由左手定则可知,电流方向由a →b ,且大小不变,则线圈中电流方向为M →P ,由楞次定律可知,B 2的磁感应强度均匀增加,故A 错误;设流过金属棒的电流为I 1,由A 分析可知,B 1I 1L =mg ,解得I 1=mgB 1L,由并联电路的特点可得,流过电阻R 1的电流为I 2=I 1R 2R 1 =mgR 2B 1LR 1,由于线圈电阻不计,则金属棒ab两端电压等于线圈产生的感应电动势,则有n ΔΦΔt =n ΔB 2Δt S =I 1R 2=mgR 2B 1L ,解得ΔB 2Δt=mgR 2nB 1LS,故B 错误,C 正确;断开K 之后,当金属棒所受合力为零时,速度最大,设最大速度为v m ,则有E =B 1Lv m ,I m =ER 1+R 2 ,F A =B 1LI m =mg ,解得v m =mg (R 1+R 2)B 21 L 2,故D 正确.故选CD.答案:CD。

人教版2018最新版本高三物理一轮复习人教版课件_9-2法拉第电磁感应定律_自感现象PPT课件

人教版2018最新版本高三物理一轮复习人教版课件_9-2法拉第电磁感应定律_自感现象PPT课件

零点都在刻度盘中央,当电流从“+”接线柱流入时,指针向右摆,当
电流从“-”接线柱流入时,指针向左摆。在电路接通后再断开的瞬间 ,下列说法中符合实际情况的是( )
A.G1表指针向左摆,G2表指针向右摆 B.G1表指针向右摆,G2表指针向左摆
C.G1、G2表的指针都向左8/3/1
【答案】 D
2018/3/1
导体棒切割磁感线时,可有以下三种情况:
BLv Blvsin θ
2018/3/1
2 .如图所示,当导体棒在垂直于磁场的平面内,绕其一端为轴,以
角速度ω匀速转动时,产生的感应电动势为E=________。
2018/3/1
【提示】 棒在时间 t 内转过的角度 θ=ωt, 1 12 1 2 扫过的面积 S=2l· lθ=2l ωt, 对应的磁通量 Φ=BS=2Bl ωt, Φ 1 2 则棒产生的感应电动势 E= t =2Bl ω。 1 1 2 另外:由 E=Bl v ,又 v =2ωl,可得 E=2Bl ω。
2018/3/1
2.(2012· 江苏启东中学质检)如图所示,一导线弯成半径为a的半圆形
闭合回路。虚线MN右侧有磁感应强度为B的匀强磁场,方向垂直于回路
所在的平面。回路以速度v向右匀速进入磁场,直径CD始终与MN垂直。 从D点到达边界开始到C点进入磁场为止,下列结论正确的是( )
2018/3/1
A.感应电流方向不变 B.CD 段直导线始终不受安培力
【解析】 电路接通后线圈中电流方向向右,当电路 断开时,线圈中电流减小,产生与原方向相同的自感电 动势,与G2和电阻组成闭合回路,所以G1中电流方向向 右,G2中电流方向向左,即G1指针向右摆,G2指针向 左摆。B项正确。 【答案】 B
2018/3/1

人教版高考物理一轮知识点复习:法拉第电磁感应定律自感和涡流

人教版高考物理一轮知识点复习:法拉第电磁感应定律自感和涡流

法拉第电磁感应定律1.感应电动势(1)概念:在电磁感应现象中产生的电动势。

(2)产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关。

(3)方向判断:感应电动势的方向用楞次定律或右手定则判断。

2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。

(2)公式:E=nΔΦΔt,其中n为线圈匝数。

(1)磁通量、磁通量的变化量、磁通量的变化率的区别:磁通量Φ磁通量变化量ΔΦ磁通量变化率ΔΦΔt物理意义磁通量越大,某时刻穿过磁场中某个面的磁感线条数越多某段时间穿过某个面的末、初磁通量的差值表述磁场中穿过某个面的磁通量变化快慢的物理量大小计算Φ=B·S⊥,S⊥为与B垂直的面积,不垂直时,取S在与B垂直方向上的投影ΔΦ=Φ2-Φ1,ΔΦ=B·ΔS或ΔΦ=S·ΔBΔΦΔt=B·ΔSΔt或ΔΦΔt=S·ΔBΔt注意若穿过某个面有方向相反的磁场,则不能直接用Φ=B·S,应考虑相反方向的磁通量相互抵消以后所剩余的磁通量开始和转过180°后平面都与磁场垂直,但穿过平面的磁通量是不同的,一正一负,ΔΦ=2B·S,而不是零即不表示磁通量的大小,也不表示变化的多少。

在Φ-t图象中,可用切线的斜率表示备注线圈在磁场中绕垂直于B的轴匀速转动时,线圈平面与磁感线平行时,Φ=0,ΔΦΔt最大;线圈平面与磁感线垂直时,Φ最大,ΔΦΔt为零(2)对公式的理解:(3)用公式E =nS ΔBΔt求感应电动势时,S 为线圈在垂直于磁场方向的有效面积。

1.半径为r 、电阻为R 的n 匝圆形线圈在边长为l 的正方形abcd 外,匀强磁场充满并垂直穿过该正方形区域,如图9-2-1甲所示。

当磁场随时间的变化规律如图乙所示时,则穿过圆形线圈磁通量的变化率为________,t 0时刻线圈产生的感应电流为________。

图9-2-1解析:磁通量的变化率为ΔΦΔt =ΔB Δt S =B 0t 0l 2根据法拉第电磁感应定律得线圈中的感应电动势 E =n ΔΦΔt =n B 0t 0l 2再根据闭合电路欧姆定律得感应电流I =n ΔΦΔtR =n B 0l 2t 0R 。

人教版物理大一轮复习 第14课时 电磁感应

人教版物理大一轮复习 第14课时 电磁感应

第14课时 电磁感应高考题型1 楞次定律与法拉第电磁感应定律的应用1.感应电流方向的判断(1)楞次定律:一般用于线圈面积不变,磁感应强度发生变化的情形. (2)右手定则:一般用于导体棒切割磁感线的情形. 2.楞次定律中“阻碍”的主要表现形式 (1)阻碍原磁通量的变化——“增反减同”; (2)阻碍物体间的相对运动——“来拒去留”; (3)使线圈面积有扩大或缩小的趋势——“增缩减扩”; (4)阻碍原电流的变化(自感现象)——“增反减同”. 3.求感应电动势的方法 (1)法拉第电磁感应定律:E =n ΔΦΔt ⎩⎨⎧S 不变时,E =nS ΔBΔt (感生电动势)B 不变时,E =nB ΔSΔt (动生电动势)(2)导线棒垂直切割磁感线:E =BL v .(3)导体棒绕与磁场平行的轴匀速转动E =12BL 2ω.(4)线圈绕与磁场垂直的轴匀速转动e =nBSωsin ωt . 考题示例例1 (2020·江苏卷·3)如图1所示,两匀强磁场的磁感应强度B 1和B 2大小相等、方向相反.金属圆环的直径与两磁场的边界重合.下列变化会在环中产生顺时针方向感应电流的是( )图1A .同时增大B 1减小B 2 B .同时减小B 1增大B 2C .同时以相同的变化率增大B 1和B 2D .同时以相同的变化率减小B 1和B 2答案 B解析 若同时增大B 1减小B 2,则穿过环向里的磁通量增大,根据楞次定律,感应电流产生的磁场方向向外,由安培定则,环中产生的感应电流是逆时针方向,故选项A 错误;同理可推出,选项B 正确,C 、D 错误.例2 (2019·江苏卷·14)如图2所示,匀强磁场中有一个用软导线制成的单匝闭合线圈,线圈平面与磁场垂直.已知线圈的面积S =0.3 m 2、电阻R =0.6 Ω,磁场的磁感应强度B =0.2 T .现同时向两侧拉动线圈,线圈的两边在Δt =0.5 s 时间内合到一起.求线圈在上述过程中图2(1)感应电动势的平均值E ;(2)感应电流的平均值I ,并在图中标出电流方向; (3)通过导线横截面的电荷量q . 答案 (1)0.12 V(2)0.2 A 电流方向见解析图 (3)0.1 C 解析 (1)感应电动势的平均值E =ΔФΔt磁通量的变化ΔФ=B ΔS联立可得E =B ΔSΔt ,代入数据得E =0.12 V ;(2)平均电流I =ER代入数据得I =0.2 A(电流方向见图);(3)电荷量q =I Δt 代入数据得q =0.1 C 命题预测1.(多选)(2020·江苏南京、盐城市一模)如图3甲所示,a 、b 两个绝缘金属环套在同一个光滑的铁芯上.在t=0时刻,a、b两环处于静止状态,a环中的电流i随时间t的变化规律如图乙所示.下列说法中正确的是()图3A.t2时刻两环相互吸引B.t3时刻两环相互排斥C.t1时刻a环的加速度为零D.t4时刻b环中感应电流最大答案ACD解析在t2时刻与t3时刻,a环中的电流均处于减小阶段,根据楞次定律可知,两环的电流方向相同,则两环相互吸引,故A正确,B错误.a中电流产生磁场,磁场的变化使b中产生电流,才使两环相互作用,在题图乙中,“变化最快”即曲线的斜率最大.t1时刻曲线的斜率为0,这个瞬间磁场是不变化的,因此两环没有作用力,则加速度为零,故C正确.虽然t4时刻a环中的电流为零,但是根据该时刻对应的电流的曲线的斜率最大,即该时刻磁通量变化率最大,故t4时刻b环中感应电动势最大,则b环中感应电流最大,故D正确.2.(多选)(2020·江苏苏锡常镇二模)如图4甲所示,水平放置的平行金属导轨左端连接一个平行板电容器C和一个定值电阻R,导体棒MN放在导轨上且与导轨接触良好.装置放于垂直导轨平面的磁场中,磁感应强度B的变化情况如图乙所示(垂直纸面向外为磁感应强度的正方向),MN始终保持静止.不计电容器充电时间,则在0~t2时间内,下列说法正确的是()图4A.电阻R两端的电压大小始终不变B.电容器C的a板先带正电后带负电C.MN棒所受安培力的大小始终不变D.MN棒所受安培力的方向先向右后向左答案AD解析由题图乙知,磁感应强度均匀变化,根据法拉第电磁感应定律可知,回路中产生恒定的感应电动势,电路中电流恒定,电阻R两端的电压恒定,故A正确;根据楞次定律可知,通过电阻R的电流一直向下,电容器C的a板电势较高,一直带正电,故B错误;MN中感应电流方向一直向上,由左手定则可知,MN所受安培力的方向先向右后向左,故D 正确;根据安培力公式F=BIL,I、L不变,因为磁感应强度变化,MN所受安培力的大小变化,故C错误.高考题型2电磁感应中的图像问题1.电磁感应中的图像问题常见形式常见的有磁感应强度、磁通量、感应电动势、感应电流、速度、安培力等随时间或位移的变化图像.2.解答此类问题应注意以下几个方面(1)把握三个关注:(2)掌握两个常用方法,可快速准确地解题①排除法:定性分析电磁感应过程中某个物理量的变化趋势、变化快慢,特别是分析物理量的方向(正负),排除错误的选项.这种方法能快速解决问题,但不一定对所有问题都适用.②函数关系法:根据题目所给的条件写出物理量之间的函数关系,再对图像作出判断,这种方法得到的结果准确、详细,但不够简捷.考题示例例3(2018·全国卷Ⅱ·18)如图5,在同一水平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁场区域,区域宽度均为l,磁感应强度大小相等、方向交替向上向下.一边长为32l的正方形金属线框在导轨上向左匀速运动.线框中感应电流i随时间t变化的正确图线可能是()图5答案 D解析设线路中只有一边切割磁感线时产生的感应电流为i.线框位移等效电路的连接电流0~l2I=2i(顺时针) l2~l I=0l~3l2I=2i(逆时针)3l2~2l I=0由分析知,选项D符合要求.命题预测3.(2020·江苏苏州市调研)如图6所示,在自行车车轮的辐条上固定有一个小磁铁,前叉上相应位置(纸面外侧)处安装了小线圈,在车前进车轮转动过程中线圈内会产生感应电流,从垂直于纸面向里看,下列i-t图像中正确的是(逆时针方向为正)()图6答案 D解析磁铁靠近线圈时,线圈中向外的磁通量增大,根据楞次定律可知感应电流产生的磁场向里,根据安培定则可知线圈中感应电流方向为顺时针方向(负方向);当磁铁离开线圈时,线圈中向外的磁通量减小,根据楞次定律可知感应电流产生的磁场向外,根据安培定则可知线圈中感应电流方向为逆时针方向(正方向),A、B、C错误,D正确.4.(2020·江苏无锡市期末)有一匀强磁场的磁感应强度B随时间t的变化关系如图7甲所示的匀强磁场.现有如图乙所示的直角三角形导线框abc水平放置,放在匀强磁场中保持静止不动,t=0时刻,磁感应强度B的方向垂直纸面向里,设产生的感应电流i顺时针方向为正,竖直边ab所受安培力F的方向水平向左为正.则下面关于F和i随时间t变化的图像正确的是()图7答案 A解析 在0~3 s 时间内,磁感应强度随时间线性变化,由法拉第电磁感应定律可知,感应电动势恒定,回路中感应电流恒定,由F =BIL 可知,安培力与磁感应强度成正比,又由楞次定律判断出回路中感应电流的方向应为顺时针方向,即正方向, 0~2 s 内安培力水平向右,为负方向, 2~3 s 内安培力水平向左,为正方向,在3~4 s 时间内,磁感应强度恒定,感应电动势等于零,感应电流为零,安培力等于零,同理可判断出4~7 s 内的安培力变化情况,故B 、C 错误,A 正确;0~3 s 时间内,磁感应强度随时间线性变化,由法拉第电磁感应定律可知,感应电动势恒定,回路中感应电流恒定,故D 错误.5.(多选)(2020·东北三省四市教研联合体模拟)如图8所示,光滑平行金属导轨MN 、PQ 放置在同一水平面内,M 、P 之间接一定值电阻R ,金属棒ab 垂直导轨放置,金属棒和导轨的电阻均不计,整个装置处在竖直向上的匀强磁场中.t =0时对金属棒施加水平向右的外力F ,使金属棒由静止开始做匀加速直线运动.下列关于通过金属棒的电流i 、通过导轨横截面的电荷量q 、拉力F 和拉力的功率P 随时间变化的图像,正确的是( )图8答案 AC解析 由题意可知,金属棒由静止开始做匀加速直线运动,则有:x =12at 2,v =at ,根据法拉第电磁感应定律得:E =BL v =BLat ,则感应电流i =E R =BLaR t ,故A 正确;根据E =ΔΦΔt ,I =E R 和q =I Δt ,得q =ΔΦR ,而ΔΦ=B ΔS =BLx =12BLat 2,故q =BLa 2R t 2,故B 错误;根据牛顿第二定律有:F -F 安=ma ,F 安=BiL =B 2L 2aR t ,解得:F =ma +B 2L 2aR t ,故C 正确;根据P =F v , 得P =F v =ma 2t +B 2L 2a 2Rt 2,故D 错误. 高考题型3 电磁感应中的动力学与能量问题1.电磁感应中的动力学与能量问题常出现的两个模型一是线框进出磁场;二是导体棒切割磁感线运动.两类模型都综合了电路、动力学、能量知识,有时还会与图像结合,所以解题方法有相通之处.可参考下面的解题步骤:2.求解焦耳热Q 的三种方法(1)焦耳定律:Q =I 2Rt ,适用于电流、电阻不变; (2)功能关系:Q =W 克服安培力,电流变不变都适用;(3)能量转化:Q =ΔE (其他能的减少量),电流变不变都适用. 考题示例例4 (2020·江苏卷·14)如图9所示,电阻为0.1 Ω的正方形单匝线圈abcd 的边长为0.2 m ,bc 边与匀强磁场边缘重合.磁场的宽度等于线圈的边长,磁感应强度大小为0.5 T ,在水平拉力作用下,线圈以8 m/s 的速度向右穿过磁场区域.求线圈在上述过程中图9(1)感应电动势的大小E ; (2)所受拉力的大小F ; (3)感应电流产生的热量Q . 答案 (1)0.8 V (2)0.8 N (3)0.32 J解析 (1)线圈切割磁感线产生的感应电动势E =Bl v 代入数据得E =0.8 V(2)线圈中产生的感应电流I =ER拉力的大小等于安培力F =BIl 解得F =B 2l 2vR代入数据得F =0.8 N (3)运动时间t =2lv 根据焦耳定律有Q =I 2Rt 联立可得Q =2B 2l 3vR代入数据解得Q =0.32 J例5 (多选)(2018·江苏卷·9)如图10所示,竖直放置的“”形光滑导轨宽为L ,矩形匀强磁场Ⅰ、Ⅱ的高和间距均为d ,磁感应强度为B .质量为m 的水平金属杆由静止释放,进入磁场Ⅰ和Ⅱ时的速度相等.金属杆在导轨间的电阻为R ,与导轨接触良好,其余电阻不计,重力加速度为g .金属杆( )图10A .刚进入磁场Ⅰ时加速度方向竖直向下B .穿过磁场Ⅰ的时间大于在两磁场之间的运动时间C .穿过两磁场产生的总热量为4mgdD .释放时距磁场Ⅰ上边界的高度h 可能小于m 2gR 22B 4L 4答案 BC解析 穿过磁场Ⅰ后,金属杆在磁场之间做加速运动,在磁场Ⅱ上边缘速度大于从磁场Ⅰ出来时的速度,即进入磁场Ⅰ时速度等于进入磁场Ⅱ时速度,大于从磁场Ⅰ出来时的速度.金属杆在磁场Ⅰ中做减速运动,加速度方向向上,A 错. 金属杆在磁场Ⅰ中做减速运动,由牛顿第二定律知 ma =BIL -mg =B 2L 2vR-mg ,a 随着减速过程逐渐变小,即在前一段做加速度减小的减速运动;在磁场之间做加速度为g 的匀加速直线运动,两个过程位移大小相等,由v -t 图像(可能图像如图所示)可以看出前一段用时多于后一段用时,B 对. 由于进入两磁场时速度相等,由动能定理知, mg ·2d -W 安1=0, W 安1=2mgd .即通过磁场Ⅰ产生的热量为2mgd ,故穿过两磁场产生的总热量为4mgd ,C 对. 设刚进入磁场Ⅰ时速度为v ,则由机械能守恒定律知mgh =12m v 2, 进入磁场时ma =BIL -mg =B 2L 2v R-mg , 解得v =m (a +g )R B 2L 2, 联立解得h =m 2(a +g )2R 22B 4L 4g >m 2gR 22B 4L4,D 错. 命题预测6.(多选)(2020·江西上铙市高三一模)如图11所示,虚线框内有垂直纸面向里的匀强磁场,磁感应强度为B ,磁场区域上下宽度为l ;质量为m 、边长为l 的正方形线圈abcd 平面保持竖直,ab 边保持水平的从距离磁场上边缘一定高度处由静止下落,以速度v 进入磁场,经过一段时间又以相同的速度v 穿出磁场,不计空气阻力,重力加速度为g .下列说法正确的是( )图11A .线圈的电阻R =B 2l 2v mgB .进入磁场前线圈下落的高度h =v 22gC .穿过磁场的过程中,线圈电阻产生的热量Q =2mglD .线圈穿过磁场所用时间t =l v答案 ABC解析 由题意可知,线圈进入磁场和穿出磁场时速度相等,说明线圈在穿过磁场的过程中做匀速直线运动,则mg =F 安=BIl =B 2l 2v R ,R =B 2l 2v mg,所以A 正确;线圈在进入磁场前做自由落体运动,由动能定理得mgh =12m v 2,进入磁场前线圈下落的高度为h =v 22g,所以B 正确;线圈在穿过磁场的过程中克服安培力做功转化为焦耳热,又安培力与重力平衡,则穿过磁场的过程中线圈电阻产生的热量为Q =mg ·2l =2mgl ,所以C 正确;根据线圈在穿过磁场过程中做匀速运动,可得线圈穿过磁场的时间为t =2l v ,所以D 错误.7.(2020·江苏南京、盐城、一模)如图12所示,闭合矩形线框abcd 可绕其水平边ad 转动,ab 边长为x ,bc 边长为L 、质量为m ,其他各边的质量不计,线框的电阻为R .整个线框处在竖直向上的磁感应强度为B 的匀强磁场中.现给bc 边一个方向与bc 边、磁场的方向均垂直的初速度v ,经时间t ,bc 边上升到最高处,ab 边与竖直线的最大偏角为θ,重力加速度为g .求t 时间内:图12(1)线框中感应电动势的最大值;(2)流过线框导体截面的电荷量;(3)线框中感应电流的有效值.答案 (1)BL v (2)Blx sin θR (3)m [v 2-2gx (1-cos θ)]2Rt 解析 (1)开始时bc 边速度最大且速度方向与磁感应强度方向垂直,感应电动势最大,则有E max =BL v(2)根据电荷量的计算公式可得q =I t根据闭合电路欧姆定律可得I =ER根据法拉第电磁感应定律可得E =ΔΦt =BLx sin θt 解得q =BLx sin θR(3)根据能量守恒定律可得12m v 2=mgx (1-cos θ)+Q 根据焦耳定律Q =I 有2Rt解得I 有=m [v 2-2gx (1-cos θ)]2Rt. 8.(2020·湖南3月模拟)如图13所示,两根足够长的光滑直金属导轨MN 、PQ 平行固定在倾角为θ的绝缘斜面上,两导轨间距为L ,导轨的电阻不计.导轨顶端M 、P 两点间接有滑动变阻器和阻值为R 的定值电阻.一根质量为m 、电阻不计的均匀直金属杆ab 放在两导轨上,与导轨垂直且接触良好.空间存在磁感应强度大小为B 、方向垂直斜面向下的匀强磁场.调节滑动变阻器的滑片,使得滑动变阻器接入电路的阻值为2R ,让ab 由静止开始沿导轨下滑.不计空气阻力,重力加速度大小为g .图13(1)求ab 下滑的最大速度v m ;(2)求ab 下滑的速度最大时,定值电阻上消耗的电功率P ;(3)若在ab 由静止开始至下滑到速度最大的过程中,定值电阻上产生的焦耳热为Q ,求该过程中ab 下滑的距离x 以及通过滑动变阻器的电荷量q .答案 见解析解析 (1)ab 下滑的速度最大时,其切割磁感线产生的感应电动势为:E =BL v m ,此时通过定值电阻的电流为:I =E R +2R, ab 杆所受安培力大小为:F 安=BIL ,由受力平衡得mg sin θ=BIL ,联立解得:v m =3mgR sin θB 2L 2; (2)由电功率公式有:P =I 2R ,解得:P =m 2g 2R sin 2θB 2L 2; (3)由题意滑动变阻器接入电路的阻值为2R ,为定值电阻的2倍,根据焦耳定律可知,滑动变阻器上产生的焦耳热为2Q ;由能量守恒定律可得:mgx sin θ=12m v m 2+Q +2Q , 解得:x =9m 2gR 2sin θ2B 4L 4+3Q mg sin θ; 在ab 由静止开始至下滑到速度最大的过程中,穿过回路的磁通量的变化为:ΔΦ=BLx ,设ab 由静止开始至下滑到速度最大所用时间为Δt ,在该过程中,回路产生的平均感应电动势为E =ΔΦΔt 根据闭合电路欧姆定律可得,在该过程中,通过回路的平均感应电流为I =E 3R, 又q =I ·Δt 联立解得:q =3m 2gR sin θ2B 3L 3+BLQ mgR sin θ. 专题强化练保分基础练1.(2020·江苏扬州市期末)穿过某闭合回路的磁通量Φ随时间t 变化的图像如下图所示,可使回路中感应电流先增大后减小且方向不变的是( )答案 C解析 要使回路中感应电流先增大后减小且方向不变,则要求电动势先增大后减小且方向不变,A 、B 项两图回路在前半段时间内磁通量Φ随时间t 变化的图像的斜率为定值,电动势为定值;在后半段时间内磁通量Φ随时间t 变化的图像的斜率为也为定值,电动势为定值,故A 、B 错误;C 项图中磁通量Φ随时间t 变化的图像的斜率先变大后变小,所以感应电动势先变大后变小,且斜率始终为正值,电动势方向不变,故C 正确;D 项图中磁通量Φ随时间t 变化的图像的斜率大小先变小后变大,则电动势先变小后变大,且斜率的正负值变化,即电动势方向变化,故D 错误.2.(多选)(2020·江苏南通、泰州市期末)如图1所示,一条形磁铁竖直放置(上端为N 极),金属线圈从磁铁正上方某处下落,经条形磁铁A 、B 两端时速度分别为v 1、v 2,线圈中的电流分别为I 1、I 2,线圈在运动过程中保持水平,则( )图1A .I 1和I 2的方向相同B .I 1和I 2的方向相反C .I 1∶I 2=v 12∶v 22D .I 1∶I 2=v 1∶v 2答案 BD解析 金属线圈经条形磁铁A 、B 两端时,磁通量先向上增大后向上减小,依据楞次定律“增反减同”,可知感应电流产生的磁场方向先向下,后向上,根据右手螺旋定则可知,则I 1和I 2感应电流的方向先顺时针,后逆时针(从上向下看),即它们的方向相反,故A 错误,B 正确; 根据法拉第电磁感应定律及闭合电路欧姆定律有I =E R =BL v R即I 与v 成正比,故C 错误,D 正确.3.(多选)(2020·江苏常州市期末)如图2所示,钳型电流表是一种穿心式电流互感器,选择量程后,将一根通电导线夹入钳中,就可以读出导线中的电流.该电流表( )图2 A .可以测直流电流B .可以测交流电流C .量程旋钮旋到大量程时接入电路的线圈匝数变多D .量程旋钮旋到大量程时接入电路的线圈匝数变少答案 BC解析 电流互感器是根据电磁感应原理制成的,只能测量交流电流,不能测量直流电流,选项A 错误,B 正确;根据I 1I 2=n 2n 1可知,n 1和I 2一定,则当I 1变大时n 2要增大,则量程旋钮旋到大量程时接入电路的线圈匝数变多,选项C正确,D错误.4.(多选)(2020·山东潍坊市二模)如图3甲,螺线管内有平行于轴线的外加磁场,以图中箭头所示方向为其正方向.螺线管与导线框abcd相连,导线框内有一闭合小金属圆环,圆环与导线框在同一平面内.当螺线管内的磁感应强度B随时间t按图乙所示规律变化时()图3A.在0~t1时间内,环有收缩趋势B.在t1~t2时间内,环有扩张趋势C.在t1~t2时间内,环内有逆时针方向的感应电流D.在t2~t3时间内,环内有逆时针方向的感应电流答案BC解析在0~t1时间内,B均匀增加,则在线圈中产生恒定的感生电动势,在导线框dcba中形成稳定的电流,故此时环中无感应电流产生,环也没有收缩趋势,选项A错误;在t1~t2时间内,B的变化率逐渐减小,则螺线管中的感应电流方向为从下到上且逐渐减小,在导线框abcd中的磁通量为向外减小,穿过环的磁通量向外减小,根据楞次定律可知,环内有逆时针方向的感应电流,且有扩张趋势,选项B、C正确;在t2~t3时间内,B的方向向下,且B 的变化率逐渐减小,则螺线管中的感应电流方向为从上到下且逐渐减小,在导线框abcd中的磁通量为向里减小,穿过环的磁通量向里减小,根据楞次定律可知,环内有顺时针方向的感应电流,选项D错误.5.(2020·云南昆明市高三“三诊一模”测试)如图4甲所示,单匝矩形金属线框abcd处在垂直于线框平面的匀强磁场中,线框面积S=0.3 m2,线框连接一个阻值R=3 Ω的定值电阻,其余电阻不计,线框的cd边位于磁场边界上.取垂直于纸面向外为磁感应强度B的正方向,磁感应强度B随时间t变化的图像如图乙所示.下列说法正确的是()图4A .在0~0.4 s 内,线框中感应电流沿逆时针方向B .在0.4~0.8 s 内,线框有扩张的趋势C .在0~0.8 s 内,线框中的感应电流为0.1 AD .在0~0.4 s 内,ab 边所受安培力保持不变答案 C解析 由题图乙所示图线可知,在0~0.4 s 内,磁感应强度垂直于纸面向里,磁感应强度减小,则穿过线框的磁通量减小,由楞次定律可知,感应电流沿顺时针方向,故A 错误. 由题图乙所示图线可知,在0.4~0.8 s 内,穿过线框的磁通量增加,由楞次定律可知,线框有收缩的趋势,故B 错误.由题图乙所示图线可知,在0~0.8 s 内,线框产生的感应电动势为:E =ΔΦΔt =ΔB Δt S =0.4-(-0.4)0.8×0.3 V =0.3 V , 线框中的感应电流为:I =E R =0.33A =0.1 A ,故C 正确. 在0~0.4 s 内,线框中的感应电流I 保持不变,由题图乙所示图线可知,磁感应强度B 大小不断减小,由F =ILB 可知,ab 边所受安培力不断减小,故D 错误.6.(2020·江苏苏州市调研)如图5所示,两个相同的灯泡a 、b 和电阻不计的线圈L (有铁芯)与电源E 连接,下列说法正确的是( )图5A .开关S 闭合瞬间,a 灯发光,b 灯不发光B .开关S 闭合,a 灯立即发光,后逐渐变暗并熄灭C .开关S 断开,b 灯“闪”一下后熄灭D .开关S 断开瞬间,a 灯左端的电势高于右端电势答案 B解析 闭合开关S 瞬间,两小灯泡均有电流流过,同时发光,A 错误;闭合开关S 瞬间,a 灯立即发光,根据楞次定律可知线圈中产生的阻碍原电流变大的感应电流逐渐减小至0,因为a 灯和线圈并联,所以通过线圈的电流逐渐增大,通过a 灯的电流逐渐减小,亮度逐渐减小,因为线圈电阻不计,所以稳定时a 灯被短路,最后熄灭,B 正确;断开开关瞬间,b 灯断路无电流流过,立即熄灭,C 错误;断开开关瞬间,根据楞次定律可知,通过线圈的电流向右,所以线圈右端电势高于左端,所以a 灯右端的电势高于左端,D 错误.7.(多选)如图6甲所示,导线制成的等边三角形OMN 放置在水平桌面上,竖直向下的匀强磁场穿过桌面.剪下MN 间的导线,向左平移到O 点,现使其在水平外力F 作用下紧贴MON 向右匀速运动,从O 点开始计时,磁感应强度B 随时间t 的变化关系如图乙所示,导线未脱离MON 之前,外力F 、导线与MON 构成的闭合电路的电动势E 、电路中的电流I 、外力的功率P 与时间t 变化的关系正确的是( )图6A .F ∝t 2B .E ∝t 2C .I ∝tD .P ∝t 3答案 BCD解析 由题图乙知,磁感应强度B =kt ,由几何知识可知,导线切割磁感线的有效长度为l =2v t tan 30°=233v t , 设导线单位长度电阻为R ,回路总电阻为R 总=3lR =23v tR电动势E =Bl v =233k v 2t 2∝t 2,B 正确; I =E R 总=k v t 3R∝t ,C 正确; 由题意知F =F 安=BIl =239Rk 2v 2t 3∝t 3,A 错误; P =F v =239Rk 2v 3t 3∝t 3,D 正确. 8.(2020·江苏苏锡常镇一模)据报道,我国华中科技大学的科学家创造了脉冲平顶磁场磁感应强度超过60 T 的世界纪录,脉冲平顶磁场兼具稳态和脉冲两种磁场的优点,能够实现更高的强度且在一段时间保持很高的稳定度.如图7甲所示,在磁场中有一匝数n =10的线圈,线圈平面垂直于磁场,线圈的面积为S =4×10-4 m 2,总电阻为R =60 Ω.如图乙为该磁场磁感应强度的变化规律,设磁场方向向上为正,求:图7(1)t =0.5×10-2 s 时,线圈中的感应电动势大小;(2)在0~2×10-2 s 过程中,通过线圈横截面的电荷量;(3)在0~3×10-2 s 过程中,线圈产生的热量.答案 (1)24 V (2)4×10-3 C (3)0.192 J解析 (1)由E =n ΔB ΔtS 得E =10×601×10-2×4×10-4=24 V (2)在0~1×10-2 s 过程中,由I =E R 得I =0.4 A在1×10-2 s ~2×10-2 s 过程中,线圈中电流为0,由q =I Δt 可知,流过线圈的电荷量为q =0.4×1×10-2 C =4×10-3 C(3)由Q =I 2Rt 得,0~3×10-2 s 过程中,线圈产生的热量为Q =0.42×60×2×10-2 J =0.192 J.争分提能练9.(2020·江苏南泰扬徐淮连宿二模)如图8甲所示,虚线右侧有一方向垂直纸面的有界匀强磁场,磁场的磁感应强度随时间t 变化关系如图乙所示(取磁场垂直纸面向里的方向为正方向),固定的闭合导线框一半在磁场内.从t =0时刻开始,下列关于线框中感应电流i 、线框ab 边受到的安培力F 随时间t 变化图像中,可能正确的是(取线框中逆时针方向的电流为正,安培力向右为正方向)( )图8答案 B解析 由题图可知,在0~T 2内线圈中磁感应强度的变化率相同,故0~T 2内电流的方向相同,由楞次定律可知,电路中电流方向为逆时针,即电流为正方向;在T 2~T 内线圈中磁感应强度的变化率相同,故T 2~T 内电流的方向相同,由楞次定律可知,电路中电流方向为顺时针,即电流为负方向;根据法拉第电磁感应定律有E =ΔB Δt ·S 2,则感应电流为i =E R =ΔB Δt ·S 2R由题图可知两段时间内的磁感应强度大小相等,故两段时间内的感应电流大小相等,故A 错误,B 正确;由上分析可知,一个周期内电路的电流大小恒定不变,根据F =BIL 可知F 与B 成正比,则在0~T 4内磁场垂直纸面向外减小,电流方向由b 到a ,根据左手定则可知,线框ab 边受到的安培力F 方向向右,为正方向,大小随B 均匀减小;在T 4~T 2内磁场垂直纸面向里增大,电流方向由b 到a ,根据左手定则可知,线框ab 边受到的安培力F 方向向左,为负方向,大小随B 均匀增大;在T 2~3T 2内磁场垂直纸面向里减小,电流方向由a 到b ,根据左手定则可知,线框ab 边受到的安培力F 方向向右,为正方向,大小随B 均匀减小;在3T 2~T 内磁场垂直纸面向外增大,电流方向由a 到b ,根据左手定则可知,线框ab 边受到的安培力F 方向向左,为负方向,大小随B 均匀增大,故C 、D 错误.10.(多选)如图9所示,Ⅰ、Ⅱ两条虚线之间存在匀强磁场,磁场方向与竖直纸面垂直.一个质量为m 、边长为L 的正方形导体框,在此平面内沿竖直方向运动,t =0时刻导体框的上半部分恰好进入磁场,速度为v 0.经历一段时间后,当导体框上半部分恰好出磁场时,速度为零.此后导体框下落,再经历一段时间到达初始位置.不计空气阻力,则导体框( )图9A .在上升过程中的加速度一直大于g。

2021高三物理人教版一轮学案:第十单元第2讲法拉第电磁感应定律自感现象含解析

2021高三物理人教版一轮学案:第十单元第2讲法拉第电磁感应定律自感现象含解析

第2讲 法拉第电磁感应定律自感现象考纲考情核心素养 ►法拉第电磁感应定律Ⅱ►自感、涡流Ⅰ ►明确磁通量、磁通量变化、磁通量变化率的区别,知道自感及涡流现象. 物理观念 全国卷5年3考高考指数★★★★★►灵活选用感应电动势大小的公式. ►结合电路知识判断电势的高低. 科学思维知识点一 法拉第电磁感应定律1.感应电动势(1)概念:在电磁感应现象中产生的电动势.(2)产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关.(3)方向判断:感应电动势的方向用楞次定律或右手定则判断.2.法拉第电磁感应定律(1)内容:感应电动势的大小跟穿过这一电路的磁通量的变化率成正比.(2)公式:E =n ΔΦΔt,其中n 为线圈匝数. (3)感应电流与感应电动势的关系:遵守闭合电路的欧姆定律,即I =E R +r. 3.导体切割磁感线的情形(1)垂直切割:E =Bl v ,式中l 为导体切割磁感线的有效长度.(2)不垂直切割:E =BL v sin θ,式中θ为v 与B 的夹角.(3)匀速转动:导体棒在垂直匀强磁场方向以角速度ω绕一端转动切割磁感线时,E =12Bl 2ω. 知识点二 自感、涡流1.自感现象(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感.(2)自感电动势①定义:在自感现象中产生的感应电动势叫做自感电动势.②表达式:E =L ΔI Δt. (3)自感系数L①相对因素:与线圈的大小、形状、匝数以及是否有铁芯有关. ②单位:亨利(H),1 mH =10-3 H,1 μH =10-6 H.2.涡流当线圈中的电流发生变化时,在它附近的任何导体中都会产生感应电流,这种电流像水的漩涡所以叫涡流.3.电磁阻尼导体在磁场中运动时,感应电流会使导体受到安培力,安培力的方向总是阻碍导体的运动.4.电磁驱动如果磁场相对于导体运动,在导体中会产生感应电流使导体受到安培力而运动起来.1.思考判断(1)磁通量变化越大,产生的感应电动势也越大.( × )(2)感应电动势的大小与线圈的匝数无关.( × )(3)线圈中的自感电动势越大,自感系数就越大.(×)(4)磁场相对导体棒运动时,导体棒中也能产生感应电动势.(√)(5)自感电动势阻碍电流的变化,但不能阻止电流的变化.(√)2.如图所示,在磁感应强度大小为B、方向垂直纸面向里的匀强磁场中,金属杆MN在平行金属导轨ab和cd上以速度v向右滑动,MN 中产生的感应电动势大小为E1;若金属杆速度改为2v,其他条件不变,MN中产生的感应电动势大小变为E2.则关于通过电阻R的电流方向及E1E2的判断,下列说法正确的是(C)A.c→a,2 1 B.a→c,2 1C.a→c,1 2 D.c→a,1 2解析:本题考查电磁感应定律中的动生问题.金属杆以速度v向右滑动,回路中磁通量增大,由右手定则可知,回路中产生逆时针方向的感应电流,通过电阻R的电流方向为a→c,根据法拉第电磁感应定律E=BL v可知E1E2=12,选项C正确.3.如图所示,半径为r的n匝线圈放在边长为L的正方形abcd之外,匀强磁场充满正方形区域并垂直穿过该区域,当磁场以ΔBΔt的变化率变化时,线圈产生的感应电动势大小为(B)A .0B .n ΔB Δt ·L 2C .n ΔB Δt ·πr 2D .n ΔB Δt·r 2 解析:由法拉第电磁感应定律可知线圈产生的自感电动势E =n ΔB Δt·L 2,故B 正确. 4.在如图所示的电路中,L A 为灯泡,S 为开关,L 为有铁芯的线圈.对于这样的电路,下列说法正确的是( C )A .因为线圈L 通电后会产生自感现象,所以S 闭合后,灯泡L A 中无电流通过B .在S 打开或闭合的瞬间,电路中都不会产生自感现象C .当S 闭合时,电路中会产生自感现象D .在S 闭合后再断开的瞬间,灯泡L A 可能不立即熄灭解析:S 闭合瞬间,由于线圈产生自感电动势而阻碍通过灯泡L A 的电流的增加,但阻碍不是阻止,S 闭合后有电流通过L A ;S 断开瞬间,线圈产生自感电动势,因电路断开,电流立即消失,灯泡L A 立即熄灭,故C 正确,A 、B 、D 错误.5.(多选)如图所示,在线圈上端放置一盛有冷水的金属杯,现接通交流电源,过了几分钟,杯内的水沸腾起来.若要缩短上述加热时间,下列措施可行的有( AB )A .增加线圈的匝数B .提高交流电源的频率C .将金属杯换为瓷杯D .取走线圈中的铁芯解析:当电磁铁接通交流电源时,金属杯处在变化的磁场中产生涡电流发热,使水温升高.要缩短加热时间,需增大涡电流,即增大感应电动势或减小电阻.增加线圈匝数、提高交变电流的频率都是为了增大感应电动势.瓷杯不能产生涡电流,取走铁芯会导致磁性减弱,所以选项A 、B 正确,C 、D 错误.考点1 法拉第电磁感应定律的理解和应用1.对法拉第电磁感应定律的理解(1)感应电动势的大小由线圈的匝数和穿过线圈的磁通量的变化率ΔΦΔt共同决定,与磁通量Φ的大小、变化量ΔΦ的大小没有必然联系. (2)磁通量的变化率ΔΦΔt对应Φ-t 图线上某点切线的斜率. (3)公式E =n ΔΦΔt求解的是一个回路中某时间内的平均电动势,在磁通量均匀变化时,瞬时值才等于平均值.2.法拉第电磁感应定律的两个特例(1)回路与磁场垂直的面积S 不变,磁感应强度发生变化,则ΔΦ=ΔB ·S ,E =n ΔB Δt·S . (2)磁感应强度B 不变,回路与磁场垂直的面积S 发生变化,则ΔΦ=B ·ΔS ,E =nB ΔS Δt . (2019·全国卷Ⅰ)(多选)空间存在一方向与纸面垂直、大小随时间变化的匀强磁场,其边界如图(a)中虚线MN 所示.一硬质细导线的电阻率为ρ、横截面积为S ,将该导线做成半径为r 的圆环固定在纸面内,圆心O 在MN 上.t =0时磁感应强度的方向如图(a)所示;磁感应强度B 随时间t 的变化关系如图(b)所示.则在t =0到t =t 1的时间间隔内( )A .圆环所受安培力的方向始终不变B .圆环中的感应电流始终沿顺时针方向C .圆环中的感应电流大小为B 0rS 4t 0ρD .圆环中的感应电动势大小为B 0πr 24t 0【解析】 根据楞次定律可知在0~t 0时间内,磁感应强度减小,感应电流的方向为顺时针,圆环所受安培力水平向左,在t 0~t 1时间内,磁感应强度反向增大,感应电流的方向为顺时针,圆环所受安培力水平向右,所以选项A 错误,B 正确;根据法拉第电磁感应定律得E =ΔΦΔt=12πr 2·B 0t 0=B 0πr 22t 0,根据电阻定律可得R =ρ2πr S ,根据欧姆定律可得I =E R =B 0rS 4t 0ρ,所以选项C 正确,D 错误. 【答案】 BC高分技法应用电磁感应定律需注意的三个问题(1)公式E =n ΔΦΔt求解的是一个回路中某段时间内的平均电动势,在磁通量均匀变化时,瞬时值才等于平均值.(2)利用公式E =nS ΔB Δt求感应电动势时,S 为线圈在磁场范围内的有效面积.(3)通过回路截面的电荷量q =I Δt =n ΔΦΔtRΔt =n ΔΦR ,导出q 与n 、ΔΦ和电阻R 的关系式,可直接代入求解.1. (多选)如图所示,线圈匝数为n ,横截面积为S ,电阻为r ,处于一个均匀增强的磁场中,磁感应强度随时间的变化率为k ,磁场方向水平向右且与线圈平面垂直,电容器的电容为C ,定值电阻的阻值为r .下列说法正确的是( BC )A .电容器下极板带正电B .电容器上极板带正电C .电容器所带电荷量为nSkC 2D .电容器所带电荷量为nSkC解析:磁场向右均匀增强,由楞次定律判断,电容器上极板带正电,故A 错误,B 正确;闭合线圈与阻值为r 的电阻形成闭合回路,线圈相当于电源,电容器两极板间的电压等于路端电压,线圈产生的感应电动势E =nS ΔB Δt =nSk ,路端电压U =E 2r ·r =E 2,则电容器所带电荷量为Q =CU =nSkC 2,故C 正确,D 错误. 2.(多选)如图甲,在同一平面内固定有一长直导线PQ 和一导线框R ,R 在PQ 的右侧.导线PQ 中通有正弦交流电i ,i 的变化如图乙所示,规定从Q 到P 为电流正方向,导线框R 中的感应电动势( AC )A .在t =T 4时为零 B .在t =T 2时改变方向 C .在t =T 2时最大,且沿顺时针方向 D .在t =T 时最大,且沿顺时针方向解析:在t =T 4时,i -t 图线斜率为0,即磁场变化率为0,由E =ΔΦΔt=ΔB Δt S 知,E =0,A 项正确;在t =T 2和t =T 时,i -t 图线斜率的绝对值最大,在t =T 2和t =T 时感应电动势最大.在T 4到T 2之间,电流由Q向P 减弱,导线在R处产生垂直纸面向里的磁场,且磁场减弱,由楞次定律知,R产生的感应电流的磁场方向也垂直纸面向里,即R中感应电动势沿顺时针方向,同理可判断在T2到3T4之间,R中电动势也为顺时针方向,在34T到T之间,R中电动势为逆时针方向,C项正确,B、D项错误.考点2导体棒切割磁感线产生感应电动势1.E=Bl v四性的含义:名词含义正交性B、l、v三者互相垂直瞬时性若v为瞬时速度,则E为相应的瞬时感应电动势平均性导体平动切割磁感线时,若v为平均速度,则E为平均感应电动势有效性公式中的l为导体切割磁感线的有效长度.如图中棒的有效长度为ab间的距离相对性速度v是导体相对磁场的速度,若磁场也在运动,应注意速度间的相对关系当导体在垂直于磁场的平面内,绕一端以角速度ω匀速转动时,产生的感应电动势为E=Bl v=12Bl2ω,如图所示.题型1 平动切割1.如图所示,将长为2 m 的导线从正中间折成120°的角,使其所在的平面垂直于磁感应强度为2 T 的匀强磁场.为使导线中产生20 V 的感应电动势,则导线切割磁感线的最小速度为( A )A .103 3 m/sB .10 m/sC .2033 m/s D .53 3 m/s 解析:导线切割磁感线产生的感应电动势与连接A 、C 的导线产生的感应电动势等效,若速度方向垂直于AC ,则产生所要达到的感应电动势需要的切割速度最小,E =AC →·B v min ,得v min =1033 m/s ,故选A . 2.如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感应强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、有效阻值为R 的金属导线ab 垂直导轨放置,并在水平外力F 的作用下以速度v 向右匀速运动,则(不计导轨电阻)( C )A .通过电阻R 的电流方向为P →R →MB .a 、b 两点间的电压为BL vC .a 端电势比b 端高D .a 端电势比b 端低解析:由右手定则可知,通过电阻R 的电流方向为M →R →P ,选项A 错误;导体棒切割磁感线产生的感应电动势E =BL v ,则a 、b 两点间的电压U =E R +RR =12BL v ,选项B 错误;由右手定则可知,通过导体棒的电流由b →a ,此时导体棒是电源,则导体棒a 端电势比b 端高,选项C 正确,D 错误.名师点睛公式E =n ΔΦΔt与E =Bl v 的区别与联系E =n ΔΦΔt E =Bl v 区别 研究对象闭合回路 回路中做切割磁感线运动的那部分导体 适用 范围对任何电磁感应现象普遍适用 只适用于导体切割磁感线运动的情况 联系导体切割磁感线是电磁感应现象的特例,E =Bl v 可由E =n ΔΦΔt推导得出题型2 转动切割3.边界MN 的一侧区域内,存在着磁感应强度大小为B 、方向垂直于光滑水平桌面的匀强磁场.边长为l 的正三角形金属线框abc 粗细均匀,三边阻值相等,a 顶点刚好位于边界MN 上,现使线框围绕过a 点且垂直于桌面的转轴匀速转动,转动角速度为ω,如图所示,则在ab 边开始转入磁场的瞬间,ab 两端的电势差U ab 为( A )A .13Bl 2ω B .-12Bl 2ω C .-13Bl 2ω D .16Bl 2ω 解析:本题考查电磁感应定律中的旋转切割问题.在ab 边开始转入磁场的瞬间,切割磁感线产生的感应电动势为E =12Bl 2ω,设每边电阻为R ,由闭合电路欧姆定律可得金属线框中电流为I =E 3R,由右手定则可判断出感应电流方向为逆时针方向,ab 两端的电势差U ab =I ·2R=13Bl 2ω,选项A 正确. 4. (多选)法拉第圆盘发电机的示意图如图所示.铜圆盘安装在竖直的铜轴上,两铜片P 、Q 分别与圆盘的边缘和铜轴接触.圆盘处于方向竖直向上的匀强磁场B 中.圆盘旋转时,关于流过电阻R 的电流,下列说法正确的是( AB )A .若圆盘转动的角速度恒定,则电流大小恒定B .若从上向下看,圆盘顺时针转动,则电流沿a 到b 的方向流动C .若圆盘转动方向不变,角速度大小发生变化,则电流方向可能发生变化D .若圆盘转动的角速度变为原来的2倍,则电流在R 上的热功率也变为原来的2倍解析:将圆盘看成无数辐条组成,它们都在切割磁感线从而产生感应电动势和感应电流,则当圆盘顺时针(俯视)转动时,根据右手定则可知圆盘上感应电流从边缘流向中心,流过电阻的电流方向从a 到b ,B 对;由法拉第电磁感应定律得感应电动势E =BL v =12BL 2ω,I =E R +r,ω恒定时,I 大小恒定,ω大小变化时,I 大小变化,方向不变,故A 对,C 错;由P =I 2R =B 2L 4ω2R 4(R +r )2知,当ω变为原来的2倍时,P 变为原来的4倍,D 错.名师点睛平动切割和转动切割的区别(1)平动切割各点线速度相同,电动势大小E =BL v ;转动切割导体棒绕一点做圆周运动各点线速度不同,电动势大小根据E =12BL 2ω计算.(2)公式的适用条件:E =BL v 适用于磁场、导体棒、速度三者互相垂直的情况;E =12BL 2ω适用于导体棒绕一端垂直磁场切割磁感线的情况,若不绕一端转动,电动势不等于12BL2ω,如图.考点3自感现象的理解和应用1.自感现象的四大特点(1)自感电动势总是阻碍导体中原电流的变化.(2)通过线圈中的电流不能发生突变,只能缓慢变化.(3)电流稳定时,自感线圈相当于普通导体.(4)线圈的自感系数越大,自感现象越明显,自感电动势只是延缓了过程的进行,但它不能使过程停止,更不能使过程反向.2.自感中“闪亮”与“不闪亮”问题与线圈串联的灯泡与线圈并联的灯泡电路图通电时电流逐渐增大,灯泡逐渐变亮电流突然增大,然后逐渐减小达到稳定断电时电流逐渐减小,灯泡逐渐变暗,电流方向不变电路中稳态电流为I1、I2:①若I2≤I1,灯泡逐渐变暗;②若I2>I1,灯泡闪亮后逐渐变暗.两种情况下灯泡中电流方向均改变如图所示,图甲和图乙是教材中演示自感现象的两个电路图,L1和L2为电感线圈.实验时,断开开关S1瞬间,灯A1突然闪亮,随后逐渐变暗;闭合开关S2,灯A2逐渐变亮.而另一个相同的灯A3立即变亮,最终A2与A3的亮度相同.下列说法正确的是()A.图甲中,A1与L1的电阻值相同B.图甲中,闭合S1,电路稳定后,A1中电流大于L1中电流C.图乙中,变阻器接入电路电阻R与L2的电阻值相同D.图乙中,闭合S2瞬间,L2中电流与变阻器R中电流相等【解析】断开开关S1瞬间,线圈L1产生自感电动势,阻碍电流的减小,通过L1的电流反向通过A1,灯A1突然闪亮,随后逐渐变暗,说明I L1>I A1,即R L1<R A1,故A错;题图甲中,闭合开关S1,电路稳定后,因为R L1<R A1,所以A1中电流小于L1中电流,故B错;题图乙中,闭合开关S2,灯A2逐渐变亮,而另一个相同的灯A3立即变亮,最终A2与A3的亮度相同,说明变阻器接入电路电阻R与L2的电阻值相同,故C对;闭合S2瞬间,通过L2的电流增大,由于电磁感应,线圈L2产生自感电动势,阻碍电流的增大,则L2中电流与变阻器R中电流不相等,故D错.【答案】 C名师点睛分析自感现象的三个技巧3.如图所示,李辉用多用电表的欧姆挡测量一个变压器线圈的电阻,以判断它是否断路.刘伟为了使李辉操作方便,用两手分别握住线圈裸露的两端让李辉测量.测量时表针摆过了一定角度,李辉由此确认线圈没有断路.正当李辉把多用电表的表笔与被测线圈脱离时,刘伟突然惊叫起来,觉得有电击感.下列说法正确的是(B)A.刘伟被电击时变压器线圈中的电流瞬间变大B.刘伟有电击感是因为两手之间瞬间有高电压C.刘伟受到电击的同时多用电表也可以被烧坏D.实验过程中若李辉两手分别握住红、黑表笔的金属杆,他也会受到电击解析:当回路断开时,电流要立即减小到零,但由于线圈的自感现象,会产生感应电动势,该自感电动势较大,所以刘伟被“电”到,即刘伟有电击感是因为两手之间瞬间有高电压,选项A错误,B正确;因多用电表的表笔已经与被测线圈脱离,则多用电表不可能被烧坏,选项C错误;实验过程中若李辉两手分别握住红、黑表笔的金属杆,则当多用电表表笔与线圈脱离后,在电表回路不会产生感应电动势,他不会受到电击,选项D错误.4.(多选)如图所示是用电流传感器(相当于电流表,其内阻可以忽略不计)研究自感现象的实验电路,图中两个电阻的阻值均为R,L是一个自感系数足够大的自感线圈,其直流电阻值也为R.图甲、乙、丙、丁是某同学画出的在t0时刻开关S切换前后,通过传感器的电流随时间变化的图象.关于这些图象,下列说法中正确的是(BC)A.图甲是开关S由断开变为闭合,通过传感器1的电流随时间变化的情况B.图乙是开关S由断开变为闭合,通过传感器1的电流随时间变化的情况C.图丙是开关S由闭合变为断开,通过传感器2的电流随时间变化的情况D.图丁是开关S由闭合变为断开,通过传感器2的电流随时间变化的情况解析:本题考查自感现象中的电流图象.开关S由断开变为闭合,传感器2这一支路立即有电流,线圈这一支路,由于线圈阻碍电流的增加,通过线圈的电流要慢慢增加,所以干路电流(通过传感器1的电流)也要慢慢增加,故A错误,B正确;开关S由闭合变为断开,通过传感器1的电流立即消失,而线圈这一支路,由于线圈阻碍电流的减小,该电流又通过传感器2,电流的方向与之前相反,所以通过传感器2的电流逐渐减小,故C正确,D错误.。

高三物理一轮专项复习-电磁感应知识点总结

高三物理一轮专项复习-电磁感应知识点总结

高三物理一轮复习,应该如何快速掌握知识点,灵活运用物理公式呢?三好网小编整理出高三物理一轮复习,电磁感应知识点总结,希望能帮助高三生轻松应对一轮复习。

高中物理电磁感应知识点总结(一)电磁感应现象因磁通量变化而产生感应电动势的现象我们诚挚为电磁感应现象。

具体来说,闭合电路的一部分导体,做切割磁感线的运动时,就会产生电流,我们把这种现象叫电磁感应,导体中所产生的电流称为感应电流。

法拉第电磁感应定律概念基于电磁感应现象,大家开始探究感应电动势大小到底怎么计算?法拉第对此进行了总结并得到了结论。

感应电动势的大小由法拉第电磁感应定律确定,电路中感应电动势的大小,跟穿过这一电路的磁通变化率成正比。

公式:E= -n(dΦ)/(dt)。

对动生的情况,还可用E=BLV来求。

电动势的方向可以通过楞次定律来判定。

高中物理wuli.in楞次定律指出:感应电流的磁场要阻碍原磁通的变化。

对于动生电动势,同学们也可用右手定则判断感应电流的方向,也就找出了感应电动势的方向。

需要注意的是,楞次定律的应用更广,其核心在”阻碍”二字上。

感应电动势的大小计算公式(1)E=n*ΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ,Δt磁通量的变化率}(2)E=BLVsinA(切割磁感线运动) E=BLV中的v和L不可以和磁感线平行,但可以不和磁感线垂直,其中sinA为v或L与磁感线的夹角。

{L:有效长度(m)}(3)Em=nBSω(交流发电机最大的感应电动势){Em:感应电动势峰值}(4)E=B(L^2)ω/2(导体一端固定以ω旋转切割)其中ω:角速度(rad/s),V:速度(m/s)电磁感应现象是电磁学中最重大的发现之一,它显示了电、磁现象之间的相互联系和转化,对其本质的深入研究所揭示的电、磁场之间的联系,对麦克斯韦电磁场理论的建立具有重大意义。

电磁感应现象在电工技术、电技术以及电磁测量等方面都有广泛的应用。

高考物理一轮总复习第11章电磁感应第2节法拉第电磁感应定律及其应用课件

高考物理一轮总复习第11章电磁感应第2节法拉第电磁感应定律及其应用课件


q=It= t=


t=
Δ

,因在 0~0.2 s 与 0.2~0.6 s 的
时间内,磁感应强度随时间的变化量的绝对值 ΔB 相同,故通过金属框的电荷
量之比为 1∶1,A 错误;金属框中电流的电功率
1
2
=
2 2
1 2
=
4
,B
1
正确;金属框中产生的焦耳热
2
P=
=
1
Q=Pt,得
2
Δ 2


=
1 1
2 2
=
(Δ)2
,所以
2

=
2
,C
1
错误;在
0~0.2 s 与 0.2~0.6 s 时间内,通过金属框的电流方向相反,所以金属框 ab 边受
到安培力方向相反,D 错误。
2.(2022全国甲卷)三个用同样的细导线做成的刚性闭合线框,正方形线框
的边长与圆线框的直径相等,圆线框的半径与正六边形线框的边长相等,如

2
2
64
1 1
Q= ×( 0 2 +mgh)
4 2
增素能 精准突破
考点一
法拉第电磁感应定律的应用[师生共研]
1.磁通量Φ、磁通量的变化量ΔΦ、磁通量的变化率


的比较
物理量
磁通量Φ
磁通量的变化量 ΔΦ
Φ
磁通量的变化率 t
意义
某时刻穿过某
个面的磁感线
的条数
某段时间内穿过某个
面的磁通量变化多少
Δ
Δ
Δ 2
Δ
E=n =n S=n πr ,因
Δ
Δ

2023年高考物理热点复习:法拉第电磁感应定律 自感现象(附答案解析)

2023年高考物理热点复习:法拉第电磁感应定律 自感现象(附答案解析)

第1页(共22页)2023年高考物理热点复习:法拉第电磁感应定律
自感现象【2023高考课标解读】
1.能应用法拉第电磁感应定律E =n
ΔΦΔt
和导线切割磁感线产生电动势公式E =Blv 计算感应电动势.2.会判断电动势的方向,即导体两端电势的高低.3.理解自感现象、涡流的概念,能分析通电自感和断电自感.
【2023高考热点解读】
一、法拉第电磁感应定律
1.感应电动势
(1)感应电动势:在电磁感应现象中产生的电动势.
(2)产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关.
(3)方向判断:感应电动势的方向用楞次定律或右手定则判断.
2.法拉第电磁感应定律
(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.
(2)公式:E =n ΔΦΔt
,其中n 为线圈匝数.(3)感应电流与感应电动势的关系:遵循闭合电路的欧姆定律,即I =E R +r .3.导体切割磁感线时的感应电动势
(1)导体垂直切割磁感线时,感应电动势可用E =Blv 求出,式中l 为导体切割磁感线的有效长度;
(2)导体棒在磁场中转动时,导体棒以端点为轴,在匀强磁场中垂直于磁感线方向匀速转动
产生感应电动势E =Bl v -=12Bl 2ω(平均速度等于中点位置的线速度12
lω).二、自感、涡流、电磁阻尼和电磁驱动
1.自感现象
(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感,由于自感而产生的感应电动势叫做自感电动势.
(2)表达式:E =L ΔI Δt
.(3)自感系数L 的影响因素:与线圈的大小、形状、匝数以及是否有铁芯有关.
2.涡流现象。

2023版高考物理一轮总复习专题10电磁感应第2讲法拉第电磁感应定律自感涡流课件

2023版高考物理一轮总复习专题10电磁感应第2讲法拉第电磁感应定律自感涡流课件

例1 (2021年广东卷)(多选)如图所示,水平放置足够长光滑金属导
轨abc和de,ab与de平行,bc是以O为圆心的圆弧导轨,圆弧be左侧和扇
形Obc内有方向如图的匀强磁场,金属杆OP的O端与e点用导线相接,P
端 与 圆 弧 bc 接 触 良 好 , 初 始 时 , 可 滑 动 的 金 属 杆 MN 静 止 在 平 行 导 轨
AB、CD相距l=0.50 m,AC间接一电阻R=0.20 Ω,MN到AC的距离L=
0.40 m,整个装置放在方向垂直于导轨平面的磁场中.导体棒MN垂直
放在导轨上,既能固定也能无摩Fra bibliotek地沿导轨滑动,导轨的电阻均可忽略
不计,导体棒的电阻也为0.20 Ω,则有 A.若导体棒向右滑动,则N端电势高
()
B.若磁场是B=0.40 T的匀强磁场,则当
4.[自感]如图所示电路,D1和D2是两个相同的小灯泡,L是一个自 感系数相当大的线圈,其直流电阻与R相同,由于存在自感现象,在开
关S接通和断开时,灯泡D1和D2亮暗的先后顺序是 A.接通时D1灯先达最亮,断开时D1灯后暗 B.接通时D2灯先达最亮,断开时D2灯后暗 C.接通时D1灯先达最亮,断开时D1灯先暗 D.接通时D2灯先达最亮,断开时D2灯先暗 【答案】A
()
A.在 0~t0 和 t0~2t0 内,导体棒受到导轨的摩擦力方向相同 B.在 t0~2t0 内,通过电阻 R 的电流方向为 P→Q C.在 0~t0 内,通过电阻 R 的电流大小为2RBt00S D.在 0~2t0 内,通过电阻 R 的电荷量为BR0S
【答案】D
【解析】由图乙可知,0~t0 内磁感应强度减小,穿过回路的磁通量 减小,由楞次定律可知为阻碍磁通量的减少,导体棒应具有向右的运动 趋势,导体棒受到向左的摩擦力;在 t0~2t0 内,穿过回路的磁通量增加, 为了阻碍磁通量的增加,导体棒有向左的运动趋势,导体棒受到向右的 摩擦力,在两段时间内摩擦力方向相反,故 A 错误.由图乙所示图像, 可知在 t0~2t0 内磁感应强度增大,穿过闭合回路的磁通量增大.

【名师一号】高三物理一轮复习 第九章 第二讲 法拉第电磁感应定律 自感现象课件 新人教版

【名师一号】高三物理一轮复习 第九章 第二讲 法拉第电磁感应定律 自感现象课件 新人教版

A.S 闭合,L1 亮度不变,L2 亮度逐渐变亮,最后两灯 一样亮;S 断开,L2 立即不亮,L1 逐渐变亮
B.S 闭合,L1 不亮,L2 很亮;S 断开,L1、L2 立即不 亮
C.S 闭合,L1、L2 同时亮,而后 L1 逐渐熄灭,L2 亮度 不变;S 断开,L2 立即不亮,L1 亮一下才灭
D.S 闭合,L1、L2 同时亮,而后 L1 逐渐熄灭,L2 则逐 渐变得更亮;S 断开,L2 立即不亮,L1 亮一下才灭
解析 当磁感应强度增加时,若变化率ΔΔBt 不变,线框中 的感应电流不变;若变化率ΔΔBt 增加,线框中的感应电流增加, 若变化率ΔΔBt 减小,线框中的感应电流减小,故选项 A 正确而 选项 B 错误;同理可得,选项 D 正确而 C 错误.
答案 AD
4.如图所示,线圈L的自感系数很大,且其电阻可以忽 略不计,L1、L2是两个完全相同的小灯泡,随着开关S闭合 和断开的过程中,L1、L2的亮度变化情况是(灯丝不会 断)( )
让铜棒从静止开始自由下落,铜棒下落距离为 0.2R 时铜棒中 电动势大小为 E1,下落距离为 0.8R 时电动势大小为 E2.忽略 涡流损耗和边缘效应,关于 E1、E2 的大小和铜棒离开磁场前 两端的极性,下列判断正确的是( )
方向垂直纸面向里.现有一段长度为2l 、电阻为R2的均匀导体 杆 MN 架在导线框上,开始时紧靠 ac,然后沿 ab 方向以恒 定速度 v 向 b 端滑动,滑动中始终与 ac 平行并与导线框保持 良好接触.当 MN 滑过的距离为3l 时,导线 ac 中的电流是多 大?方向如何?
[解析]
MN滑过的距离为
答案 D
5.如图所示,把总电阻为2R的均匀电阻丝焊接成一半 径为a的圆环,水平固定在竖直向下的磁感应强度为B的匀强 磁场中,一长度为2a、电阻等于R,粗细均匀的金属棒MN 放在圆环上,与圆环始终保持良好的接触.当金属棒以恒定 速度v向右移动,且经过圆心时,求:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三物理第一轮复习法拉第电磁感应定律 自感二物理3-2 选修教材(必考内容)课时安排:2课时教学目标:1.理解法拉第电磁感应定律2.掌握各种情况下感应电动势的计算方法3.知道自感现象及其应用本讲重点:掌握各种情况下感应电动势的计算方法本讲难点:法拉第电磁感应定律的应用考点点拨:1.公式的选用2.旋转切割产生的感应电动势3.电磁感应中的能量守恒4.自感现象的分析与应用第一课时一、考点扫描(一)知识整合1.感应电动势:无论电路是否闭合,只要穿过电路的 发生变化,电路中就一定有 ,若电路是闭合的就有 .产生感应电动势的那部分导体就相当于一个 .2. 法拉第电磁感应定律文字表述: 。

表达式为 。

式中n 表示____________,ΔΦ表示____________,Δt 表示____________,t∆∆φ表示____________ 。

3.闭合电路的一部分导体做切割磁感线运动,则导体中的感应电动势为____________,式中θ表示___________________,当θ等于__________时公式变为__________。

式中的L 是 。

v 若是平均速度,则E 为 ;若v 为瞬时速度,则E 为 。

若导体的运动不切割磁感线,则导体中 感应电动势。

4.一段长为L的导体,在匀强磁场B中,以角速度ω垂直于磁场的方向绕导体的一端做切割磁感线运动,则导体中的感应电动势为_________________。

5.自感现象:线圈中电流发生变化而在它本身激发出感应电动势的现象叫_________。

这种电动势叫________。

自感电动势的大小与____________________________成正比,比例系数叫做__________,与________________________________________等因素有关。

(二)重难点阐释1.在tn E ∆∆Φ=中,E 的大小是由线圈的匝数及磁通量的变化率决定的,与Φ及ΔΦ之间无大小上的必然联系。

Φ大,ΔΦ及t ∆∆φ不一定大;t ∆∆φ大,Φ及ΔΦ也不一定大。

2.公式tn E ∆∆Φ=与E=BLV sin θ的比较 ①研究对象不同:前者是一个回路(不一定闭合),后者是一段直导线(或等效成直导线)。

②适用范围不同:前者具有普遍性,无论什么方式引起的Φ的变化都适用,后者只适用一部分导体做切割磁感线运动的情况。

③条件不同:前者不一定是匀强磁场,t B S n t S B n t n E ∆∆=∆∆=∆∆Φ=。

E 由t∆∆φ决定与ΔΦ大小无必然联系;后者B 、L 、v 之间应取两两互相垂直的分量,可采用投影的办法。

④意义不同:前者求得是平均电动势;后者 v 若是平均速度,则E 为平均电动势;若v 为瞬时速度,则E 为瞬时电动势。

3.自感现象中,自感电动势总阻碍自身电流的变化,“阻碍”不是“阻止”。

线圈中的电流增加时,自感电流的方向与原电流方向相反;当线圈中电流减小时,自感电流的方向与原电流的方向相同.自感电动势的大小与电流的变化率成正比.自感系数L 由线圈自身的性质决定,与线圈的长短、粗细、匝数、有无铁芯有关. 自感现象是电磁感应的特例.一般的电磁感应现象中变化的原磁场是外界提供的,而自感现象中是靠流过线圈自身变化的电流提供一个变化的磁场.它们同属电磁感应,所以自感现象遵循所有的电磁感应规律.自感电动势仅仅是减缓了原电流的变化,不会阻止原电流的变化或逆转原电流的变化.原电流最终还是要增加到稳定值或减小到零。

自感现象只有在通过电路的电流发生变化时才会产生.在判断电路性质时,一般分析方法是:当流过线圈L 的电流突然增大瞬间,我们可以把L 看成一个阻值很大的电阻;当流经L 的电流突然减小的瞬间,我们可以把L 看作一个电源,它提供一个跟原电流同向的电流.图2电路中,当S 断开时,我们只看到A 灯闪亮了一下后熄灭,那么S 断开时图1电路中就没有自感电流?能否看到明显的自感现象,不仅仅取决于自感电动势的大小,还取决于电路的结构.在图2电路中,我们预先在电路设计时取线圈的阻值远小于灯A 的阻值,使S 断开前,并联电路中的电流I L >>I R ,S 断开瞬间,虽然L 中电流在减小,但这一电流全部流过A 灯,仍比S 断开前A 灯的电流大得多,且延滞了一段时间,所以我们看到A 灯闪亮一下后熄灭,对图1的电路,S 断开瞬间也有自感电流,但它比断开前流过两灯的电流还小,就不会出现闪亮一下的现象.二、高考要点精析(一)公式的选用☆考点点拨(1)法拉第电磁感应定律t n E ∆∆Φ=/计算的电动势为平均值,用来计算通过导体横截面的电量。

设在时间∆t 内通过导线截面的电量为q ,则根据电流定义式I q t =/∆及法拉第电磁感应定律t n E ∆∆Φ=/,得:Rn t t R n t R E t I q ∆Φ=∆⋅∆∆Φ=∆⋅=∆⋅= 上式中n 为线圈的匝数,∆Φ为磁通量的变化量,R 为闭合电路的总电阻。

如果闭合电路是一个单匝线圈(n =1),则q R =∆Φ. (2)公式E=BLv ,可以计算感应电动势的瞬时值。

【例1】如图所示,空间存在垂直于纸面的均匀磁场,在半径为a 的圆形区域内部及外部,磁场方向相反,磁感应强度的大小均为B 。

一半径为b ,电阻为R 的圆形导线环放置在纸面内,其圆心与圆形区域的中心重合。

当内、外磁场同时由B 均匀地减小到零的过程中,通过导线截面的电量q =____________。

解析:由题意知:ΦΦ122220=-=B b a π(),,∴=-=-∆ΦΦΦ21222πBb a , 由q R q Bb a R==-∆Φ,π222 【例2】一个电阻为R 的长方形线圈abcd 沿着磁针所指的南北方向平放在北半球的一个水平桌面上,ab =L 1,bc =L 2,如图所示。

现突然将线圈翻转1800,使ab 与dc 互换位置,用冲击电流计测得导线中流过的电量为Q 1。

然后维持ad 边不动,将线圈绕ad 边转动,使之突然竖直,这次测得导线中流过的电量为Q 2,试求该处地磁场的磁感强度的大小。

解析:根据地磁场的特征可知,在北半球的地磁场方向是向北向下的。

只要求出这个磁感强度的竖直分量B 1和水平分量B 2,就可以求出该处磁感强度B 的大小。

当线圈翻个身时,穿过线圈的磁通量的变化量为S B 112=∆φ,因为感应电动势tQ R RI t E ∆∆==∆∆=φ1, 所以 2B 1L 1L 2=RQ 1 当线圈绕ad 边竖直站起来时,穿过线圈的磁通量的变化量为2112122L L B L L B -=∆φ,所以 221122)(RQ L L B B =-=∆φ 由此可得:222121212222Q Q Q Q L L R B ++= ☆考点精炼1.如图所示是一种测量通电螺线管中磁场的装置,把一个很小的测量线圈A 放在待测处,线圈与测量电量的冲击电流计G 串联,当用双刀双掷开关S 使螺线管的电流反向时,测量线圈中就产生感应电动势,从而引起电荷的迁移,由表G 测出电量Q ,就可以算出线圈所在处的磁感应强度B 。

已知测量线圈共有N 匝,直径为d ,它和表G 串联电路的总电阻为R ,则被测处的磁感强度B 为多大?2.(2006全国理综卷Ⅰ)如图,在匀强磁场中固定放置一根串接一电阻R 的直角形金属导轨aob (在纸面内),磁场方向垂直纸面朝里,另有两根金属导轨c 、d 分别平行于oa 、ob 放置。

保持导轨之间接触良好,金属导轨的电阻不计。

现经历以下四个过程:①以速率v 移动d ,使它与ob 的距离增大一倍;②再以速率v 移动c ,使它与oa 的距离减小一半;③然后,再以速率2v 移动c ,使它回到原处;④最后以速率2v 移动d ,使它也回到原处。

设× × ×× ×上述四个过程中通过电阻R 的电量的大小依次为Q 1、Q 2、Q 3和Q 4,则A .Q 1=Q 2=Q 3=Q 4B .Q 1=Q 2=2Q 3=2Q 4C .2Q 1=2Q 2=Q 3=Q 4D .Q 1≠Q 2=Q 3≠Q 4(二)旋转切割产生的感应电动势☆考点点拨(1)转动轴与磁感线平行。

如图,磁感应强度为B 的匀强磁场方向垂直于纸面向外,长L 的金属棒oa 以o 为轴在该平面内以角速度ω逆时针匀速转动。

求金属棒中的感应电动势。

在用导线切割磁感线产生感应电动势的公式时注意其中的速度v 应该是平均速度,即金属棒中点的速度。

2212L B L BL E ωω=⋅= (2)线圈的转动轴与磁感线垂直。

如图,矩形线圈的长、宽分别为L 1、L 2,所围面积为S ,向右的匀强磁场的磁感应强度为B ,线圈绕图示的轴以角速度ω匀速转动。

线圈的ab 、cd 两边切割磁感线,产生的感应电动势相加可得E=BS ω。

如果线圈由n 匝导线绕制而成,则E=nBS ω。

从图示位置开始计时,则感应电动势的即时值为e=nBS ωcos ωt 。

该结论与线圈的形状和转动轴的具体位置无关(但是轴必须与B 垂直)。

实际上,这就是交流发电机发出的交流电的瞬时电动势公式。

【例3】 如图所示,xoy 坐标系y 轴左侧和右侧分别有垂直于纸面向外、向里的匀强磁场,磁感应强度均为B ,一个围成四分之一圆形的导体环oab ,其圆心在原点o ,半径为R ,开始时在第一象限。

从t =0起绕o 点以角速度ω逆时针匀速转动。

试画出环内感应电动势E 随时间t 而变的函数图象(以顺时针电动势为正)。

解:开始的四分之一周期内,oa 、ob 中的感应电动势方向相同,大小应相加;第二个四分之一周期内穿过线圈的磁通量不变,因此感应电动势为零;第三个四分之一周期内感应电动势与第一个四分之一周期内大小相同而方向相反;第四个四分之一周期内感应电动势又为零。

感应电动势的最大值为E m =BR 2ω,周期为T =2π/ω,图象如右。

☆考点精炼3.如图所示,金属圆环圆心为O ,半径为L ,金属棒Oa 以O 点为轴在环上转动,角速度为ω,与环面垂直的匀强磁场磁感应强度为B ,电阻R 接在O 点与圆环之间,求通过R 的电流大小。

第二课时(三)电磁感应中的能量守恒 ovO ET2T E m☆考点点拨只要有感应电流产生,电磁感应现象中总伴随着能量的转化。

电磁感应的题目往往与能量守恒的知识相结合。

这种综合是很重要的。

要牢固树立起能量守恒的思想。

【例4】 如图所示,矩形线圈abcd 质量为m ,宽为d ,在竖直平面内由静止自由下落。

其下方有如图方向的匀强磁场,磁场上、下边界水平,宽度也为d ,线圈ab 边刚进入磁场就开始做匀速运动,那么在线圈穿越磁场的全过程,产生了多少电热?解:ab 刚进入磁场就做匀速运动,说明安培力与重力刚好平衡,在下落2d 的过程中,重力势能全部转化为电能,电能又全部转化为电热,所以产生电热Q =2mgd 。

相关文档
最新文档