高考数学模拟复习试卷试题模拟卷108 3

合集下载

高三数学模拟试题及答案

高三数学模拟试题及答案

高三数学模拟试题及答案一、选择题(本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 已知函数f(x) = 2x^2 - 4x + 3,求f(2)的值。

A. 1B. 3C. 5D. 7答案:C2. 求下列数列的通项公式:数列:1, 1/2, 1/3, 1/4, ...A. a_n = nB. a_n = 1/nC. a_n = n^2D. a_n = 1/(n+1)答案:B3. 已知圆x^2 + y^2 = 9,点P(1, 2),求点P到圆心的距离。

A. 2B. 3C. 4D. 5答案:C4. 已知向量a = (3, -4),向量b = (-2, 3),求向量a与向量b的夹角θ。

A. 30°B. 45°C. 60°D. 90°答案:B5. 已知函数y = x^3 - 3x^2 + 4x,求导数y'。

A. 3x^2 - 6x + 4B. 3x^2 - 6x + 5C. 3x^2 - 6x + 3D. 3x^2 - 6x + 2答案:A6. 已知等差数列的第5项为15,第8项为25,求公差d。

A. 2B. 3C. 4D. 5答案:B7. 已知三角形ABC的三边长分别为a = 3,b = 4,c = 5,求三角形ABC的面积。

A. 6B. 9C. 12D. 15答案:A8. 已知函数f(x) = sin(x) + cos(x),求f(π/4)的值。

A. √2B. √3C. 2D. 1答案:A9. 已知复数z = 1 + i,求z的共轭复数。

A. 1 - iB. 1 + iC. -1 + iD. -1 - i答案:A10. 已知函数y = x^2 - 6x + 9,求函数的最小值。

A. 0B. 3C. 6D. 9答案:A二、填空题(本题共5小题,每小题4分,共20分。

)11. 已知函数f(x) = x^3 - 3x + 1,求f''(x)的值。

高考数学模拟考试试卷.doc

高考数学模拟考试试卷.doc

高考数学模拟考试试卷理科数学一、选择题:(每小题5分,共50分)1.设复数z 满足关系式i z z +=+2,那么z 等于 A.i +-43 B.i -43 C.i --43 D.i +432.已知等差数列}{n a 中,1697=+a a ,14=a ,则16a 的值是A.15B.22C.31D.64 3.若命题p :B A x ⋃∈,则p ⌝是A.B x A x ∉∉且B.B x A x ∉∉或C.B A x ⋂∉D.B A x ⋂∈4.一植物园参观路径如右图所示,若要全部参观并且路线不重复,则不同 的参观路线种数共有 A. 6种B. 8种C. 36种D. 48种5.已知空间直角坐标系O xyz -中有一点)2,1,1(--A ,点B 是xOy 平面内的直线 1x y +=上的动点,则,A B 两点的最短距离是B. C.3 D.1726.若不等式na nn )1(2)1(1-+<-+对任意正整数n 恒成立,则实数a 的取值范围是A. )1,2[-B. )1,2(-C. )1,25[-D. )1,25(- 7.点),(b a M 在由不等式组⎪⎩⎪⎨⎧≤+≥≥200y x y x 确定的平面区域内,则点),(b a b a N -+所在平面区域的面积是A. 1B. 2C. 4D.88.如图,三棱锥ABC P -中,⊥PA 平面ABC ,BC AB ⊥,1==AB PA ,2=BC ,则三棱锥ABC P -的外接球表面积为A. π4B. π3C. π2D. π9.设M 是ABC ∆内任一点,且,30,320=∠=⋅BAC AC AB 设MAB MAC MBC ∆∆∆,,的面积分别为z y x ,,,且21=z ,则在平面直角中坐标系中,以,x y 为坐标的点),(y x 的轨迹图形是10.对于集合P 、Q , 定义},|{Q x P x x Q P ∉∈=-且,()()P Q P Q Q P ⊕=--,设集合},4|{2R x x x y y A ∈-==,},3|{R x y y B x∈-==,则A B ⊕等于 A. (]4,0- B. [)4,0- C. ()[),40,-∞-+∞ D. (](),40,-∞-+∞二、填空题(每小题5分,共25分)11.如图所示两个带指针的转盘,每个转盘被分成5个区域,指针落在5个区域的可能性相等,每个区域 内标有一个数字,则两个指针同时落在奇数所在区 域内的概率为 .12.函数x x x f cos 2)(+=在⎥⎦⎤⎢⎣⎡π2,0上的最大值为 .13.设121112084)3()3()4()1(a x a x a x x +++++=++ ,则=++++12420a a a a .14.点P 是双曲线)0,0(1:22221>>=-b a by a x C 和圆22222:b a y x C +=+的一个交点,且12212F PF F PF ∠=∠,其中21,F F 是双曲线1C 的两个焦点,则双曲线1C 的离心率为 。

高三数学模拟试题含答案

高三数学模拟试题含答案

高三数学模拟试题含答案第一题:计算题已知 a = 3,b = 5,c = 7,d = 9,请计算以下表达式的值,并给出计算过程。

1) x = a + b × c - d2) y = (a + b) × c - d3) z = a + (b × c - d)解答:1) x = 3 + 5 × 7 - 9 = 3 + 35 - 9 = 292) y = (3 + 5) × 7 - 9 = 8 × 7 - 9 = 56 - 9 = 473) z = 3 + (5 × 7 - 9) = 3 + (35 - 9) = 3 + 26 = 29第二题:选择题在下面的选项中,选择一个正确答案。

1) 二次函数 y = ax^2 + bx + c 的图像开口方向与参数 a 的关系是:A. a > 0,开口向上B. a > 0,开口向下C. a < 0,开口向上D. a < 0,开口向下解答:B. a > 0,开口向下第三题:解方程请求解以下方程,并给出解的步骤。

1) 2x - 5 = 3x + 12) x^2 - 4x + 3 = 0解答:1) 2x - 5 = 3x + 1移项得:2x - 3x = 1 + 5化简得:-x = 6解得:x = -62) x^2 - 4x + 3 = 0因为该方程无法直接分解成两个一次因式相乘的形式,因此使用求根公式:x = (-b ± √(b^2 - 4ac)) / 2a代入 a = 1,b = -4,c = 3,得:x = (-(-4) ± √((-4)^2 - 4 × 1 × 3)) / 2 × 1化简得:x = (4 ± √(16 - 12)) / 2计算得:x = (4 ± √4) / 2化简得:x = (4 ± 2) / 2分解得:x1 = (4 + 2) / 2 = 3x2 = (4 - 2) / 2 = 1因此方程的解为 x1 = 3,x2 = 1第四题:证明请证明勾股定理,即直角三角形中,直角边平方和等于斜边平方。

高三数学模拟试题试卷答案

高三数学模拟试题试卷答案

一、选择题(每题5分,共50分)1. 若函数f(x) = 2x + 1在区间[1, 3]上单调递增,则函数g(x) = x^2 - 2x + 1在区间[1, 3]上的单调性为:A. 单调递增B. 单调递减C. 先增后减D. 先减后增答案:A2. 已知等差数列{an}的前n项和为Sn,若a1 = 2,S5 = 25,则公差d为:A. 1B. 2C. 3D. 4答案:B3. 若复数z = 1 + bi(b∈R)在复平面上对应的点为P,则|OP|的值为:A. 1B. √2C. √(1+b^2)D. √(1-b^2)答案:C4. 函数y = log2(x+1)的图像在以下哪个象限:A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:A5. 已知三角形ABC的三个内角A、B、C满足A + B + C = π,若sinA = 1/2,sinB = √3/2,则cosC的值为:A. 1/2B. √3/2C. 1/4D. 3/4答案:D6. 已知数列{an}满足an = an-1 + 2(n≥2),且a1 = 1,则数列{an}的前n项和Sn为:A. n^2 + nB. n^2 + 2nC. n^2 + n + 2D. n^2 + 2n + 1答案:A7. 已知函数f(x) = x^3 - 3x + 2,若f'(x) = 0的解为x1、x2,则f(x)的极值点为:A. x1、x2B. x1C. x2D. 无极值点答案:A8. 若函数f(x) = ax^2 + bx + c(a、b、c为常数)的图像开口向上,且顶点坐标为(1, -2),则a、b、c的取值范围分别为:A. a > 0,b = -2,c = -2B. a > 0,b = -2,c ≠ -2C. a ≠ 0,b = -2,c = -2D. a ≠ 0,b = -2,c ≠ -2答案:A9. 已知数列{an}满足an = 2an-1 + 1(n≥2),且a1 = 1,则数列{an}的通项公式为:A. an = 2^n - 1B. an = 2^n + 1C. an = 2^n - 2D. an = 2^n + 2答案:A10. 若函数f(x) = |x-1| + |x+2|在x = -1处的导数存在,则f(-1)的值为:A. 0B. 1C. 2D. 3答案:C二、填空题(每题5分,共25分)11. 函数f(x) = (x-1)/(x+1)的对称轴方程为______。

高三数学模拟试卷试题含答案.docx

高三数学模拟试卷试题含答案.docx

数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 共 150 分 . 考试时间120 分钟.注意事项:1.答卷前,考生务必用2B 铅笔和毫米黑色签字笔(中性笔)将姓名、准考证号、考试科目、试卷类型填涂在答题卡规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试题卷上.3.第Ⅱ卷必须用毫米黑色签字笔(中性笔)作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.参考公式:球的表面积为:S 4 R2,其中R为球的半径.第Ⅰ卷(选择题共 60分)一、选择题:本大题共12 小题.每小题 5 分,共60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.i 是虚数单位,复数2i的实部为1iA.2 B .2 C .1 D .12.设全集 U R,集合M x | y lg( x21), N x | 0x 2 ,则N I (e U M ) A.x | 2 x 1B.x | 0 x 1C.x | 1 x 1D.x | x 13.下列函数中周期为且为偶函数的是A.y sin( 2x)B.y cos( 2x) C.y sin( x) D .y cos(x)2222 4.设 S n是等差数列a n的前 n 项和, a12, a53a3,则 S9A.90 B .54C.54D. 725.已知m、n为两条不同的直线,、为两个不同的平面,则下列命题中正确的是A.若l m , l n , 且m, n, 则lB.若平面内有不共线的三点到平面的距离相等,则//C.若m, m n ,则n //D.若m // n, n,则 m6.一个几何体的三视图如图所示,其中俯视图与左视图均为正视图左视图半径是 2 的圆,则这个几何体的表面积是A.16 B .14 C .12D.87.已知抛物线 y24x 的焦点为F,准线为l,点P为抛物俯视图线上一点,且在第一象限,PA l ,垂足为 A , PF 4 ,则直线 AF 的倾斜角等于A.7B.2C.3D.512346r r| a b |r r r r8.若两个非零向量 a , b 满足| a b | 2 | a | ,则向量 a b 与 b a 的夹角为A.6B.3C.2D.5369.已知函数 f ( x)x,x 0,若函数 g (x) f ( x)m 有三个不同的零点,则实数 m 的x2x, x0取值范围为A.[1,1]B.[1,1)22C.(1,0)D.(1,0]4410. 已知f ( x)| x 2 || x4 |的最小值为 n ,则二项式( x 1)n展开式中x2项的系数为xA.15B.15C. 30D. 3011. 已知函数 f ( x) 对定义域R 内的任意x 都有 f (x) = f (4x) ,且当x 2时其导函数f ( x) 满足 xf ( x) 2 f (x), 若2 a 4则A.f (2a) f (3) f (log 2 a)B.f (3) f (log 2 a) f (2 a )C.f (log2a) f (3) f (2 a )D.f (log2a) f (2 a ) f (3)12. 定义区间(a, b),[ a, b),( a, b],[a, b]的长度均为d b a ,多个区间并集的长度为各区间长度之和,例如, (1,2) U [3, 5) 的长度 d(21)(53)3 .用 [ x] 表示不超过x 的最大整数,记{}x x [ x] ,其中x R .设f ()x[]x { x} , gx( ) x 1,当0x k 时 , 不等式f ( x) gx( ) 解集区间的长度为 5 ,则 k 的值为A.6B.7C.8D.9第Ⅱ卷(非选择题共 90分)二、填空题:本大题共 4 小题,每小题 4 分,共16 分.13.某程序框图如右图所示,若a 3 ,则该程序运行开始后,输出的 x 值为;14.a1 )dx 3 ln 2(a n 1,x a若 (2x1),则a的值1xn n 1是;x2y24n3是x2x 1 15.已知 x, y 满足约束条件x y20 ,则目标函否y0输出x数 z2x y 的最大值是;16.给出以下命题:结束① 双曲线y2x2 1 的渐近线方程为y2x ;2②命题 p : “x R +, sin x1 2 ”是真命题;sin x③ 已知线性回归方程为?32x ,当变量x增加2个单位,其预报值平均增加4个单位;y④ 设随机变量服从正态分布 N (0,1),若 P(1)0.2,则 P(10)0.6 ;⑤ 已知2642 ,54342 ,712,10422,2465374141024依照以上各式的规律,得到一般性的等式为n8n2,( n 4 )n 4 (8 n) 4则正确命题的序号为(写出所有正确命题的序号).三、解答题:本大题共6小题,共74分, 解答时应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分12 分)C已知函数 f ( x) sin x (0) 在区间 [0, ] 上单调3BO A递增,在区间 [, 2] 上单调递减 ; 如图 , 四边形 OACB 中 , a , b , c 为 △ ABC 的内角 3 3sin B sin C4 cosB cosC3.A ,B ,C 的对边,且满足sin Acos A(Ⅰ)证明: bc2a ;(Ⅱ)若 b c ,设AOB , (0),OA 2OB 2,求四边形 OACB 面积的最大值 .18.(本小题满分 12 分)现有长分别为 1m 、 2m 、 3m 的钢管各 3根(每根钢管质地均匀、粗细相同且附有不同的编号),从中随机抽取 n 根(假设各钢管被抽取的可能性是均等的, 1 n 9 ),再将抽取的钢管相接焊成笔直的一根.(Ⅰ)当 n 3 时, 记事件 A { 抽取的 3 根钢管中恰有 2 根长度相等 } ,求 P( A) ;(Ⅱ)当 n 2 时 , 若用 表示新焊成的钢管的长度(焊接误差不计), ①求 的分布列;②令21,E( ) 1,求实数的取值范围.19.(本小题满分 12 分)如图,几何体 ABCD B 1C 1D 1 中,四边形 ABCD 为菱形, BAD 60o , AB a ,面 B 1C 1D 1 ∥面 ABCD , BB 1 、 CC 1 、 DD 1 都垂直于面D 1C 1ABCD , 且 BB 12a , E 为 CC 1 的中点, F 为B 1AB的中点 .E(Ⅰ)求证:DB 1 E 为等腰直角三角形;DC(Ⅱ)求二面角 B 1DE F 的余弦值 .ABF20.(本小题满分 12 分)已知 n N ,数列 d n足 d n 3 (1) n足 a n d1d2 d3d2n;又知, 数列a n2数列 b n中, b1 2 ,且任意正整数m, n ,b n m b m n.(Ⅰ)求数列a n和数列 b n的通公式;(Ⅱ)将数列b n中的第 a1,第 a2,第 a3,⋯⋯,第.a n,⋯⋯去后,剩余的...按从小到大的序排成新数列c n,求数列 c n的前2013和. 21.(本小分13 分)ur(e x r ur re 是自然数的底数),曲已知向量 m,ln x k ) , n(1, f ( x)) , m / / n (k常数,y f ( x)在点 (1, f (1))的切与y垂直,F (x)xe x f( x) .(Ⅰ)求 k 的及 F ( x)的区;(Ⅱ)已知函数g( x)x22ax (a 正数),若于任意x2[0,1],存在x1(0,) ,使得g ( x2 ) F ( x1 ) ,求数 a 的取范.22.(本小分 13 分)已知 C :x2y21(a b0) 的焦距23 ,离心率2,其右焦点F ,点a2b22B(0, b) 作直交于另一点 A .uuur uuur6,求ABF 外接的方程;(Ⅰ)若AB BF( Ⅱ ) 若点M (2,0)的直与N : x2y21相交于两点 G 、 H , P N 上一点,a2b23uuur uuur uuur uuur uuur25,求数 t 的取范.且足 OG OH tOP (O坐原点),当 PG PH3青岛市高三统一质量检测数学(理科)参考答案及评分标准一、:本大共12小.每小 5 分,共 60 分.CBACD ABBCA C B二、填空:本大共 4 小,每小 4 分,共 16 分.13.3114.215. 2 516.①③⑤三、解答:本大共 6 小,共74 分,解答写出必要的文字明、明程或演算步.17. (本小分 12分)解:(Ⅰ)由意知:24,解得:3,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分32sin B sin C 2 - cos B - cosCsin A cos Asin B cosA sin C cosA 2 sin A - cosB sin A - cosC sin Asin B cosA cosB sin A sin C cos A cosC sin A2sin Asin ( A B) sin( A C )2sin A ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分sin C sin B 2 sin A b c 2a ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分(Ⅱ)因 b c2a,b c ,所以 a b c ,所以△ ABC 等三角形SOACB SOABSABC1OA OB sin 3 AB2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分24sin3(OA2OB 2 -2OA OB cos)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 分4sin- 3 cos532sin ( - )53 ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分434Q(0, ),-( -2,) ,333-55312 分当且当2,即取最大 ,S OACB的最大 2⋯⋯⋯⋯⋯⋯364 18.(本小分12 分)解: ( Ⅰ) 事件 A 随机事件,C 31C 32C 619 P( A)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分C 9314(Ⅱ)①可能的取2,3,4,5,6P(C 32 1P(3)C 31C 31 1 2)12C 924C 92P(C 32 C 31C 311 P(5)C 31C 311 4)C 923C 924P(C 32 16)12C 92∴的分布列:2 3 4 5 6P1 1 1 1 1 1243412⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 分② E() 1 1 41 1 1 4⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分23546124312Q21, E()2E( ) 14 21Q E() 1 ,4 2111 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 12 分419.(本小 分 12 分)解:( I ) 接 BD ,交 AC 于 O ,因 四 形 ABCD 菱形,BAD 60o ,所以 BD a因 BB 1 、 CC 1 都垂直于面ABCD ,BB 1 // CC 1 ,又面 B 1C 1D 1 ∥面zD 1C 1ABCD , BC // B 1C 1B 1所以四 形 BCC 1B 1 平行四 形,EHB 1C 1BC a ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分DC因 BB 1 、 CC 1 、 DD 1 都垂直于面 ABCD ,x AOFByDB1DB 2BB12a22a23aDE DC 2CE2a2a26a22B1EB1C12C1E2a2a26a⋯ 4 分22所以 DE2B1E26a26a23a2DB124所以DB1E 等腰直角三角形⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分( II)取 DB1的中点H,因 O, H 分 DB , DB1的中点,所以OH∥ BB1以 OA, OB,OH 分x, y, z建立坐系,D (0,a,0), E(3a,0,2a), B (0,a,2a), F (3a,a,0) 2221244 uuuur uuur3a,a,uuur3a,3a,0)所以 DB1(0, a,2a), DE(2 a), DF(⋯⋯⋯⋯⋯⋯ 7 分22244ur面 DB1 E 的法向量n1( x1 , y1, z1 ) ,ur uuuur ur uuur0 ,即 ay12az13a2n1DB1 0, n1DE0 且ax1y1az1 0222ur令 z11,n1(0,2,1)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 分uur面 DFE 的法向量 n2( x2 , y2 , z2 ) ,uur uuur uur uuur3ax23ay23ax2ay22az2n2 DF 0, n2DE 0即0 且044222uur3 , 2 6 )令 x21, n2(1,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11 分33ur uur6262233二面角 B1DE⋯12 分cos n1, n2, F 的余弦3118223320.(本小分12 分)解:d n 3 ( 1) na nd 1 d 2 d 3d 2n3 2n3n⋯⋯⋯⋯⋯⋯⋯ 3 分2 ,2又由 知:令 m1 , b 2b 12 22 , b 3 b 13 23 L b n b 1n2n⋯⋯⋯⋯⋯⋯ 5 分若 b n 2n , b n m 2nm , b m n 2mn ,所以 b n m b m n 恒成立若 b n2n , 当 m1, b n m b m n 不成立 , 所以 b n 2n⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分(Ⅱ)由 知将数列b n 中的第 3 、第6 、第 9 ⋯⋯ 去后构成的新数列c n 中的奇数列与偶数列仍成等比数列,首 分 是b 1 2 , b 2 4 公比均是 8,⋯⋯⋯⋯ 9 分T2013(c 1 c 3 c 5c 2013 )( c 2 c 4 c 6c2012 )2 (1 81007 ) 4 (1 81006 )20 810066⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12 分1 8 1 87f ( x) =1nx k1 ln x k21.(本小 分13 分)解:( I )由已知可得:f ( x)xe x,e x由已知,f (1)1 k0 ,∴ k1 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分eF ( x) xe x f ( x) x( 1 ln x1) 1 x ln x x 所以 F (x)ln x2⋯⋯⋯⋯ 3 分x由F ( x)ln x 20 x1,e 2由 F ( x)ln x 2 0 x12eF ( x) 的增区 (0,12 ] ,减区 [ 12 ,)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分ee( II )Q 于任意 x 2 [0,1] , 存在 x 1 (0, ) , 使得 g ( x 2 ) F( x 1 ) ,g ( x) max F ( x)max⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分 由( I )知,当 x1, F (x) 取得最大 F (1118 分e 22)2.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ee于 g ( x) x 2 2ax ,其 称 xa当 0a1 , g(x)maxg( a)a 2 ,a 2 11 ,从而 0 a 1⋯⋯⋯⋯⋯⋯10 分e 2当 a1 , g ( x) maxg(1) 2a1 ,2a 1 11 a11e 2,从而1 2 ⋯⋯12分2e上可知:0 a 11⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 13 分2e 222.(本小 分13 分)解: ( Ⅰ ) 由 意知: c3 , e c2 ,又 a 2 b 2c 2 ,a2解得: a6, b3C 的方程 :x 2y 2 1 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分6 3uuuruuur可得: B(0, 3) , F ( 3,0) ,A( x 0 , y 0 ) , AB ( x 0 , 3 y 0 ) , BF( 3,3) ,uuur uuur3x 03( 3 y 0 )6 ,即 y 0 x 0 3QAB BF6 ,2 2x 0 4 3x 0y 0 1x 0 03由 63,或y 033y 0x 03y 03即 A(0,4 3 3 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分3) ,或 A(,3 )3①当 A 的坐 (0, 3) , OA OBOF3 , ABF 外接 是以 O 心, 3半径的 ,即 x 2y 2 3 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分②当 A 的坐 (43 , 3) , k AF1, k BF1,所以ABF 直角三角形,其外接33是以 段 AB 直径的 , 心坐(2 3 , 2 3 ) ,半径 1 AB15 ,3 32 3ABF 外接 的方程 (x2 3)2 ( y 23 3) 2 533上可知:ABF 外接 方程是 x 2 y 2 3 ,或 (x2 3)2( y 2 3)25⋯⋯7分33 3( Ⅱ ) 由 意可知直GH 的斜率存在 .GH : yk (x 2) , G (x 1, y 1 ) , H (x 2, y 2 ) , P( x, y)yk (x2)2222由x 2得: (1 2k ) x8k x 8k2y212由64k 4 4(2 k 2 1)(8k 22) 0 得: k 21 ( )⋯⋯⋯⋯⋯⋯⋯⋯⋯9 分28k 28k 22x1 x2 1 2k 2 , x1x2 1 2k 2uuur uuur2 5uuur 2 5即 1 k 2 x1 2 5QPG PH,HG x2333(1 k 2 )[64k 48k222]20 2 24(12k)12k9k 21,合()得:1k 21⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11 分442uuur uuur uuurQ OG OH tOP ,( x1x2 , y1y2 )t( x, y)从而 x x1x28k 2,y1y214kt y t t [ k( x1x2 ) 4k]t (1 2k 2 ) t (1 2k 2 )Q 点P在上,[8k 22]22[4k2]2 2 ,整理得: 16k 2t 2 (1 2k2 )t(12k)t(12k)即 t 2818,2t236,或26t 2 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯13 分2k23。

河北省唐山市(新版)2024高考数学人教版模拟(评估卷)完整试卷

河北省唐山市(新版)2024高考数学人教版模拟(评估卷)完整试卷

河北省唐山市(新版)2024高考数学人教版模拟(评估卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知,,则()A.2B.C.D.1第(2)题=()A.﹣5+i B.﹣5﹣i C.1﹣i D.1+i第(3)题复数z=的虚部是( )A.﹣i B.﹣1C.1D.i第(4)题已知定义在上的函数满足,且,为的导函数,当时,,则不等式的解集为()A.B.C.D.第(5)题已知,,,则()A.c>b>a B.a>b>c C.c>a>b D.b>a>c第(6)题17世纪德国著名的天文学家开普勒曾经这样说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割.如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是一个顶角为的等腰三角形(另一种是顶角为108°的等腰三角形).例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金中,.根据这些信息,可得()A.B.C.D.第(7)题已知向量,则与夹角的余弦值为()A.B.C.D.第(8)题已知函数()在区间上只有1个零点,且当时,单调递增,则的取值范围是()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题“阿基米德多面体”是由边数不全相同的正多边形为面围成的多面体,它体现了数学的对称美.某天小明在广场上发现了如图1所示的一个石凳,其形状是将一个正方体沿交于同一顶点的三条棱的中点截去一个三棱锥,共可截去八个三棱锥,得到八个面为正三角形,六个面为正方形的“阿基米德多面体”(如图2所示).小明用卷尺测量出这个石凳的高度为50cm,他给出了如下判断,请你指出小明的哪些判断是正确的()A.这个石凳共有24条棱,12个顶点,14个面B.一个体积为1立方米的正方体石料可以切割出8个这样的石凳(不计损耗)C.这个石凳也可以由一个直径为70cm的球形石料切割而成(不计损耗)D.如果将这个石凳三角形的那个面水平放置,石凳的高度会增加第(2)题在三棱锥中,平面,点是三角形内的动点(含边界),,则下列结论正确的是()A.与平面所成角的大小为B.三棱锥的体积最大值是2C.点的轨迹长度是D.异面直线与所成角的余弦值范围是第(3)题在棱长为1的正方体中,点M是的中点,点P,Q,R在底面四边形ABCD内(包括边界),平面,,点R到平面的距离等于它到点D的距离,则()A.点P的轨迹的长度为B.点Q的轨迹的长度为C.PQ长度的最小值为D.PR长度的最小值为三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知向量,,且,则___________.第(2)题的展开式中常数项为______.第(3)题过抛物线的焦点作圆:的两条切线,切点分别为,若为等边三角形,则的值为___________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题函数.(1)当时,求函数的单调区间;(2)若过原点O可作三条直线与的图像相切,求实数a的取值范围.第(2)题已知点,平面上的动点S到F的距离是S到直线的距离的倍,记点S的轨迹为曲线C.(1)求曲线C的方程;(2)过直线上的动点向曲线C作两条切线,,交x轴于M,交y轴于N,交x轴于T,交y轴于Q,记的面积为,的面积为,求的最小值.第(3)题已知数列满足.(1)求的通项公式;(2)在和中插入k个相同的数,构成一个新数列,,求的前45项和.第(4)题已知函数,是的导函数.(1)若,求证:当时,恒成立;(2)若存在极小值,求的取值范围.第(5)题大连育明高级中学高三学生在交流2016年全国新课标Ⅲ卷单选压轴题时,各抒己见展示各自的解法.题干:定义“规范01数列”如下:共有项,其中项为0,项为1,且对任意,中0的个数不少于1的个数.若,则不同的“规范01数列”共有[14]个.A同学发现数据较少,可以列出所有情况,得到14个;B 同学在组合数学中学过卡特兰数,,所以此题是的情况,.在一次活动课上,甲、乙俩人设计了一个游戏,抛硬币一次,若正面向上加一分,反面向上减一分.若起始分为零分,出现负分游戏立刻停止.(1)求在一次游戏中,恰好在第十一次后结束,中途只出现过两次零分的概率;(2)如果一个人在一次游戏中,连续抛了十次硬币,求此时积分的分布列和期望;(3)参与一次游戏,记总共抛硬币次数为,的期望为,求满足的最小正整数.。

江西省九江市2024高三冲刺(高考数学)统编版摸底(备考卷)完整试卷

江西省九江市2024高三冲刺(高考数学)统编版摸底(备考卷)完整试卷

江西省九江市2024高三冲刺(高考数学)统编版摸底(备考卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题现有一项需要用时两天的活动,要从5人中安排2人参加,每天安排一人,若其中甲、乙2人在这两天都没有参加,则不同的安排方式有( )A .20种B .10种C .8种D .6种第(2)题已知集合,则( )A .B .C .D .第(3)题已知函数,.若有5个零点,则实数的取值范围为( )A.B .C.D .第(4)题已知函数有3个零点,则实数的取值范围为( )A.B .C .D .第(5)题已知向量,满足,,且,则与的夹角为( )A.B .C .D .第(6)题若,则复数=A .B .C .D .第(7)题设a,b ∈R,且a 2+2b 2=6,则a+b 的最小值是( )A.-B .C.-3D .第(8)题设,,,则( )A .B .C .D .二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知圆:,点为直线:上一动点,点在圆上,以下四个命题表述正确的是( )A .直线与圆相离B .圆上有2个点到直线的距离等于1C .过点向圆引一条切线,其中为切点,则的最小值为D.过点向圆引两条切线、,、为切点,则直线经过点第(2)题已知双曲线:的右焦点为,以坐标原点为圆心,线段为半径作圆与双曲线在第一、二、三、四象限依次交于A ,B ,C ,D 四点,若,则( )A .B .C .四边形的面积为D .双曲线的离心率为第(3)题正态分布是最重要的一种概率分布,它是由德国的数学家、天文学家Moivre 于1733年提出,但由于德国数学家Gauss 率先应用于天文学研究,故正态分布又称为高斯分布,记作.当,的正态分布称为标准正态分布,如果令,则可以证明,即任意的正态分布可以通过变换转化为标准正态分布,如果,那么对任意的a,通常记,也就是说,表示对应的正态曲线与x轴在区间内所围的面积,为了解某市高三数学复习备考情况,该市教研机构组织了一次模拟考试、研究发现,本次检测的数学成绩X近似服从正态分布.则下列说法正确的有()参考数据:可供查询的(部分)标准正态分布对应的概率值.a0.240.250.260.350.360.59480.59870.60640.63680.6406A.已知,则B.C.按以往的统计数据,该市数学成绩能达到升一本分数要求的同学约占,据此估计本次检测成绩达到升一本的数学成绩约为108(精确到整数)D.已知该市考生约有10000名,某学生此次检测数学成绩为110分,则该学生在全市排名大概位于名之间三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题给定两个长度为1的平面向量和,它们的夹角为.如图所示,点C在以O为圆心的圆弧上变动.若其中,则的最大值是________.第(2)题已知数列满足,,对有,为正整数,使成立的的值为______.第(3)题设,函数与函数在区间内恰有3个零点,则a的取值范围是________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知函数.(1)当时,求曲线在点处的切线方程;(2)若在定义域内单调递增,求的取值范围.第(2)题如图,四边形为正方形,E,F分别为的中点,以为折痕把折起,使点C到达点P的位置,且平面平面.(1)证明:平面;(2)求二面角的正弦值.第(3)题“水花行动”是由新余市政府的一项重大公益民生工程项目,旨在重点针对适宜游泳的学生中普遍开展免费游泳技能培训,2022年一年,全市接受培训的学生共计17153人,合格率达.了解某校学生接受培训后游泳技能的掌握情况,从该校随机选出40名学生参加游泳技能考核测试.现将这40名学生随机分成A、B两组,其中A组24人,B组16人.经过测试后,两组各自将考核成绩统计分析如下:A组的平均成绩为70,标准差为4;B组的平均成绩为80,标准差为6.(1)求这40名学生测试成绩的平均分和标准差s;(结果精确到0.01)(2)为进一步提高同学们对游泳的兴趣,在技能考核后增加了竞速挑战赛,同学们可以向“游泳高手”发起挑战.每轮挑战赛都采取“三局两胜制”,积分规则如下:比分为则获胜方积3分,比分为则获胜方积2分,落败方不积分.现有游泳爱好者小王向“游泳高手”甲和乙发出挑战申请,首先小王和甲进行第一轮比赛,若小王落败则挑战结束,若小王获胜则继续和乙进行第二轮比赛.已知和甲比赛小王每局获胜概率为,和乙比赛小王每局获胜概率为,记小王最终获得的积分为,求的分布列.参考数据:,第(4)题已知函数,且,(1)求实数a,b的值;(2)求函数的最大值及取得最大值时的值.第(5)题在中,分别为角的对边,且满足.(1)求角大小;(2)若,求的面积的最大值.。

备战2024年高考数学模拟卷第一卷(新高考专用)共8套

备战2024年高考数学模拟卷第一卷(新高考专用)共8套

(考试时间:120分钟试卷满分:150分备战2024年高考数学模拟卷(新高考专用)黄金卷01)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设全集U =R ,集合{3,10},02xA yy x x B x x ⎧⎫==-<<=≥⎨⎬+⎩⎭∣,则U A B ð等于()A .()2,0-B .[)2,0-C .()3,2--D .(]3,2--2.已知()iR 1im z m +=∈-,z =,则实数m 的值为()A .3±B .3C.D3.下列区间中,函数()3sin 6f x x π⎛⎫=+ ⎪⎝⎭的单调递减区间是()A .π0,2⎛⎫ ⎪⎝⎭B .π,π2⎛⎫ ⎪⎝⎭C .3ππ,2⎛⎫ ⎪⎝⎭D .3π,2π2⎛⎫⎪⎝⎭4.已知函数()f x 的图象如图所示,则该函数的解析式为()A .2()e ex xx f x -=+B .()3e e x xf x x -+=C .2()e e x xx f x -=-D .()2e e x xf x x -+=5.在ABC 中,过重心E 任作一直线分别交AB ,AC 于M ,N 两点,设AM xAB =u u u r u u u r ,AN yAC =u u ur u u u r ,(0x >,0y >),则4x y +的最小值是()A .43B .103C .3D .26.一百零八塔,位于宁夏吴忠青铜峡市,是始建于西夏时期的实心塔群,共分十二阶梯式平台,自上而下一共12层,每层的塔数均不少于上一层的塔数,总计108座.已知其中10层的塔数成公差不为零的等差数列,剩下两层的塔数之和为8,则第11层的塔数为()A .17B .18C .19D .207.已知双曲线2222:1(,0)x y C a b a b -=>的右焦点为F ,过F 作x 轴的垂线与C 的一个交点为P ,与C 的一条渐近线交于,Q O 为坐标原点,若1455OP OF OQ =+,则双曲线C 的离心率为()AB .2C .53D .548.对任意()0,2e ,ln e x x a x ∈-≤恒成立,则实数a 的取值范围为()A .()e,2e B .3e ,2e 2⎡⎤⎢⎥⎣⎦C .()e2e ,2e ln 2e ⎛⎫- ⎪ ⎪⎝⎭D .()e 2e ,2e ln 2e ⎡⎤-⎢⎥⎢⎥⎣⎦二、选择题:本题共4小题,每小题5分,共20分。

全国高考数学模拟试卷(4套)

全国高考数学模拟试卷(4套)

全国高考数学模拟试卷(4套)一、选择题(共30题,每题2分,共60分)1. 已知函数 $ f(x) = x^2 4x + 3 $,则下列哪个选项是正确的?A. $ f(x) $ 在 $ x = 2 $ 处取得最小值B. $ f(x) $ 在 $ x = 2 $ 处取得最大值C. $ f(x) $ 在 $ x = 2 $ 处取得极值D. $ f(x) $ 在 $ x = 2 $ 处无极值2. 若 $ \log_2 8 = x $,则 $ x $ 的值为多少?A. 3B. 4C. 5D. 63. 已知等差数列 $ \{a_n\} $,若 $ a_1 = 3 $,$ a_3 = 9 $,则 $ a_5 $ 的值为多少?A. 12B. 15C. 18D. 214. 若 $ \sin^2 x + \cos^2 x = 1 $,则下列哪个选项是正确的?A. $ \sin x $ 和 $ \cos x $ 必须同时为正B. $ \sin x $ 和 $ \cos x $ 必须同时为负C. $ \sin x $ 和 $ \cos x $ 一正一负D. $ \sin x $ 和 $ \cos x $ 可以同时为零5. 若 $ \frac{a}{b} = \frac{c}{d} $,则下列哪个选项是正确的?A. $ a + c = b + d $B. $ ad = bc $C. $ a c = b d $D. $ \frac{a}{c} = \frac{b}{d} $6. 已知 $ a $、$ b $、$ c $ 是等边三角形的三边长,则下列哪个选项是正确的?A. $ a^2 + b^2 = c^2 $B. $ a^2 + c^2 = b^2 $C. $ b^2 + c^2 = a^2 $D. $ a = b = c $7. 若 $ \frac{x^2}{a^2} \frac{y^2}{b^2} = 1 $,则下列哪个选项是正确的?A. 该方程表示椭圆B. 该方程表示双曲线C. 该方程表示抛物线D. 该方程表示圆8. 已知 $ \sqrt{3} $ 是方程 $ x^2 2x + 1 = 0 $ 的根,则该方程的另一根为多少?A. $ 1 \sqrt{3} $B. $ 1 + \sqrt{3} $C. $ 2 \sqrt{3} $D. $ 2 + \sqrt{3} $9. 若 $ a $、$ b $、$ c $ 是三角形的三边长,且 $ a^2 +b^2 = c^2 $,则下列哪个选项是正确的?A. 该三角形是等腰三角形B. 该三角形是等边三角形C. 该三角形是直角三角形D. 该三角形是钝角三角形10. 若 $ \frac{1}{x} + \frac{1}{y} = \frac{1}{z} $,则下列哪个选项是正确的?A. $ x + y = z $B. $ xy = z $C. $ \frac{1}{x} + \frac{1}{y} = z $D. $ x + y + z = 0 $二、填空题(共10题,每题2分,共20分)11. 已知 $ f(x) = 2x + 1 $,若 $ f(3) = 7 $,则 $ f(1)$ 的值为______。

高考数学模拟考试试卷(含有答案)

高考数学模拟考试试卷(含有答案)

高考数学模拟考试试卷(含有答案)本试卷共19题。

全卷满分120分。

考试用时120分钟注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试卷、草稿纸和答题卡的非答题区域均无效。

3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。

写在试卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项符合题目要求。

1.已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z 则T S ( ) A .∅ B .S C .T D .Z2.已知复数z 满足1z =且有510z z ++=则z = ( )A .12-±B .12±C .22±D i 12±3.已知α,β均为锐角,且sin cos()sin ααββ+=则tan α的最大值是 ( )A .4B .2CD 4.为了激发同学们学习数学的热情,某学校开展利用数学知识设计LOGO 的比赛,其中某位同学利用函数图像的一部分设计了如图的LOGO ,那么该同学所选的函数最有可能是 ( )A .()sin x x x f -=B .()sin cos f x x x x =-C .()221f x x x =-D .()3sin f x x x =+5.如图1所示,古筝有多根弦,每根弦下有一个雁柱,雁柱用于调整音高和音质.图2是根据图1绘制的古筝弦及其雁柱的简易平面图.在图2中,每根弦都垂直于x 轴,相邻两根弦间的距离为1,雁柱所在曲线的方程为 1.1x y =,第n 根弦(N n ∈,从左数第1根弦在y 轴上,称为第0根弦)分别与雁柱曲线和直线:1l y x =+交于点n A (n x ,n y )和n B (nx ',n y ')则200n n n y y ='=∑( ) 参考数据:取221.18.14=.A .814B .900C .914D .10006.表面积为4π的球内切于圆锥则该圆锥的表面积的最小值为( ) A .4πB .8πC .12πD .16π7.已知定点(,0)P m ,动点Q 在圆O :2216x y +=上,PQ 的垂直平分线交直线 OQ 于M 点,若动点M 的轨迹是双曲线则m 的值可以是 ( ) A .2B .3C .4D .58.设cos0.1a =和10sin0.1b =,110tan 0.1c =则 ( )A .a b c <<B .c b a <<C .c a b <<D .a c b <<二、选择题:本题共3小题,每小题6分,共18分。

高考模拟数学试卷带答案

高考模拟数学试卷带答案

一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 若函数f(x) = 2x + 3在区间[1, 4]上单调递增,则下列结论正确的是:A. f(1) > f(2)B. f(2) > f(3)C. f(3) > f(4)D. f(4) > f(1)2. 已知数列{an}的通项公式为an = 3n - 2,则数列的前10项之和S10为:A. 28B. 55C. 82D. 1273. 若复数z满足|z - 1| = |z + 1|,则复数z对应的点在复平面上的轨迹是:A. x轴B. y轴C. 第一象限D. 第二象限4. 下列函数中,在其定义域内是奇函数的是:A. f(x) = x^2B. f(x) = |x|C. f(x) = x^3D. f(x) = x^45. 已知等差数列{an}的前n项和为Sn,若a1 = 3,d = 2,则S10等于:A. 50B. 55C. 60D. 656. 若等比数列{bn}的公比为q,且b1 = 1,b3 = 8,则q的值为:A. 2B. 4C. 8D. 167. 若直线y = kx + 1与圆x^2 + y^2 = 1相切,则k的值为:A. ±1B. ±2C. ±3D. ±48. 在△ABC中,角A、B、C的对边分别为a、b、c,若a = 5,b = 7,c = 8,则cosB的值为:A. 3/5B. 4/5C. 5/7D. 7/59. 已知函数f(x) = x^2 - 4x + 4,则函数的对称轴为:A. x = 2B. x = 4C. y = 2D. y = 410. 若sinA + sinB = 1,cosA + cosB = 1,则sin(A + B)的值为:A. 0B. 1C. -1D. 211. 已知等差数列{an}的前n项和为Sn,若a1 = 2,d = -1,则S10等于:A. -10B. -20C. -30D. -4012. 若复数z满足|z - 1| = |z + 1|,则复数z对应的点在复平面上的轨迹是:A. x轴B. y轴C. 第一象限D. 第二象限二、填空题(本大题共6小题,每小题5分,共30分。

高考数学模拟试卷附答案解析

高考数学模拟试卷附答案解析

高考数学模拟试卷附答案解析请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知函数f(x)是定义域为R的偶函数,且满足f(x)=f(2一x),当x e[0,1]时,f(x)=x,则函数F(x)=f(x)+x+4在区间[一9,10]上零点的个数为() 1一2xA.9B.10C.18D.202.如图,ABC中经A=2经B=60。

,点D在BC上,经BAD=30。

,将△ABD沿AD旋转得到三棱锥B,一ADC,分别记B,A,B,D与平面ADC所成角为C,β,则C,β的大小关系是()A.C<β<2C B.2C<β<3CC.β<2C,2C<β<3C两种情况都存在D.存在某一位置使得β>3a3.为计算S=1一2x2+3x22一4x23+...+100x(一2)99,设计了如图所示的程序框图,则空白框中应填入()A.i<100B.i>100C.i<100D.i之1004.已知定义在[1,+伪)上的函数f(x)满足f(3x)=3f(x),且当1<x<3时,f(x)=1一x一2,则方程f (x )=f (2019)的最小实根的值为()A .168B .249C .411D .5615.已知抛物线C :x 2=4y ,过抛物线C 上两点A ,B 分别作抛物线的两条切线PA ,PB ,P 为两切线的交点O 为坐标原点若PA .PB =0,则直线OA 与OB 的斜率之积为()11A .—-B .—3C .—-486.在复平面内,复数z =a +bi (a ,b e R )对应向量OZ (O 为坐标原点),设OZ =r ,以射线Ox 为始边,OZ 为终边旋转的角为θ,则z =r (cos θ+isin θ),法国数学家棣莫弗发现了棣莫弗定理:z 1=r (cos θ+isin θ),111z 2=r 2(cos θ2+isin θ2),则z 1z 2=r 2cos r (cos θ+isin θ)n =r n (cos n θ+isinn θ)(θ+θ)+isin (θ+121,已知z =(3+i )4θ2),由棣莫弗定理可以导出复数乘方公式:,则z =()A .23B .4C .83D .167.已知我市某居民小区户主人数和户主对户型结构的满意率分别如图和如图所示,为了解该小区户主对户型结构的满意程度,用分层抽样的方法抽取30%的户主进行调查,则样本容量和抽取的户主对四居室满意的人数分别为A .240,18C .240,208.直角坐标系xOy 中,双曲线边三角形,则该双曲线的离心率x 2y 2—a 2b 2e =()A .43B .54B .200,20D .200,18=1(a ,b >0)与抛物线y 2=2bx?相交于A 、B 两点,若ΔOAB 是等C .65D .76119.在平行四边形ABCD 中,AB =3,AD =2,AP =AB,AQ =AD,若CP .CQ =12,则经ADC =()32A .5π6B .3π4C .2π3D .π210.在ABC 中,角A ,B,C 的对边分别为a ,b,c ,若c —a cos B =(2a —b)cos A ,则ABC 的形状为()D .—4A .直角三角形C .等腰或直角三角形B .等腰非等边三角形D .钝角三角形11.若复数z =21+i,其中i 为虚数单位,则下列结论正确的是()A .z 的虚部为-iB .z =2C .z 的共轭复数为-1-iD .z 2为纯虚数12.下图为一个正四面体的侧面展开图,G 为BF 的中点,则在原正四面体中,直线EG 与直线BC 所成角的余弦值为()A .C .3336B .D .63336二、填空题:本题共4小题,每小题5分,共20分。

高考数学模拟试题及答案

高考数学模拟试题及答案

高考数学模拟试题及答案[说明:以下是一份数学模拟试卷,包含20道题目和对应的答案解析。

请按照试题进行答题,并在答案解析中查看详细的解题过程。

希望对您的备考有所帮助。

]Part I 选择题(共10题,每题4分,共40分)1. 若集合 A = {1, 2, 3, 4},集合 B = {3, 4, 5, 6},则A∩B = ( )。

A. {1, 2, 3, 4}B. {3, 4}C. {3, 4, 5, 6}D. {}2. 函数 y = 2^(x-1) 的图像是一条( )。

A. 直线B. 双曲线C. 抛物线D. 指数曲线3. 已知函数 f(x) = x^2 - 3x + 2,则 f(3) = ( )。

A. -2B. 0C. 2D. 44. 若sinθ = 0.8,0<θ<π/2,则cosθ = ( )。

A. 0.2B. 0.4C. 0.6D. 0.85. 已知一边长度为 a 的正方形的对角线长为 d,则 a/d = ( )。

A. √2B. 1C. 1/√2D. √2/26. 若函数 f(x) 为奇函数,则 f(-2) = ( )。

A. -f(2)B. f(2)C. 0D. -f(-2)7. 一枚硬币正面向上的概率为 0.6,抛掷该枚硬币10次,正面向上次数是 4 的概率是 ( )。

A. 0.2508B. 0.3024C. 0.2016D. 0.40328. 空间直角坐标系中,已知直线L1: 3x + 4y + λ = 0,L2: 2x + 5y - 1 = 0 相交于点 P(1, -1),则λ = ( )。

A. 3B. 4C. -3D. -49. 设复数 z 满足 |z-1| = |z-2|,则 z 等于 ( )。

A. 1B. 2C. 3D. 410. 已知对数函数y = logₐx 的图像经过点 (2, 1/3),则 a 的值为 ( )。

A. 2B. 1/2C. 1/3D. 3Part II 解答题(共10题,每题6分,共60分)11. 已知三角形 ABC,其中∠B = 100°,∠C = 25°,AD 为高,垂足为 D。

高考模拟卷数学试卷及答案

高考模拟卷数学试卷及答案

一、选择题(本大题共12小题,每小题5分,共60分)1. 下列函数中,是奇函数的是:A. \( f(x) = x^2 + 1 \)B. \( f(x) = \frac{1}{x} \)C. \( f(x) = |x| \)D. \( f(x) = x^3 \)2. 已知等差数列的前三项分别为2,5,8,则该数列的公差是:A. 1B. 2C. 3D. 43. 在直角坐标系中,点P(3,4)关于直线y=x的对称点是:A. (3,4)B. (4,3)C. (3,-4)D. (-4,3)4. 若\( a^2 + b^2 = 25 \),且\( a - b = 3 \),则\( ab \)的最大值为:A. 12B. 15C. 18D. 205. 在三角形ABC中,若\( \angle A = 30^\circ \),\( \angle B = 45^\circ \),则\( \angle C \)的度数是:A. 105°B. 120°C. 135°D. 150°6. 已知函数\( f(x) = 2x^2 - 3x + 1 \),则\( f(2) \)的值为:A. 3B. 5C. 7D. 97. 在等比数列中,若前三项分别为2,6,18,则该数列的公比是:A. 2B. 3C. 6D. 98. 若\( \sin \alpha = \frac{1}{2} \),\( \cos \beta = \frac{\sqrt{3}}{2} \),则\( \tan(\alpha + \beta) \)的值为:A. 1B. -1C. 0D. 无解9. 已知圆的方程为\( x^2 + y^2 - 4x + 6y - 12 = 0 \),则该圆的半径是:A. 2B. 3C. 4D. 510. 在直角坐标系中,点A(2,3)到直线\( 2x - y + 1 = 0 \)的距离是:A. 1B. 2C. 3D. 411. 若\( \log_2(x - 1) = 3 \),则\( x \)的值为:A. 3B. 4C. 5D. 612. 若\( \frac{a}{b} = \frac{c}{d} \),且\( a \neq 0 \),\( b \neq 0 \),\( c \neq 0 \),\( d \neq 0 \),则\( \frac{a + c}{b + d} \)的值为:A. 1B. \(\frac{1}{2}\)C. \(\frac{2}{3}\)D. 无法确定二、填空题(本大题共6小题,每小题5分,共30分)13. 函数\( f(x) = x^3 - 3x \)的极值点是______。

高三数学模拟试卷含答案

高三数学模拟试卷含答案

一、选择题(本大题共10小题,每小题5分,共50分)1. 已知函数$f(x) = 2x^3 - 3x^2 + 4x + 1$,则$f(x)$的对称中心为()A. $(0, 1)$B. $(1, 2)$C. $(1, 1)$D. $(1, 0)$2. 若$a, b, c$是等差数列,且$a + b + c = 9$,$ab + bc + ca = 15$,则$abc$的值为()A. 9B. 12C. 18D. 243. 已知圆的方程为$x^2 + y^2 - 4x - 6y + 9 = 0$,则该圆的半径为()A. 1B. 2C. 3D. 44. 函数$f(x) = \frac{x^2 - 4x + 3}{x - 1}$的图像与直线$y = x$的交点个数是()A. 1B. 2C. 3D. 45. 在直角坐标系中,若点$A(2, 3)$关于直线$y = x$的对称点为$B$,则点$B$的坐标为()A. $(3, 2)$B. $(2, 3)$C. $(3, 3)$D. $(2, 2)$6. 已知函数$f(x) = \log_2(x + 1)$,若$f(3) = f(x)$,则$x$的值为()A. 2B. 3C. 4D. 57. 若$\sin\alpha + \cos\alpha = \sqrt{2}$,则$\sin\alpha\cos\alpha$的值为()A. $\frac{1}{2}$B. $\frac{\sqrt{2}}{2}$C. $\frac{1}{\sqrt{2}}$D. 08. 在三角形ABC中,$AB = 3$,$AC = 4$,$BC = 5$,则$\cos B$的值为()A. $\frac{3}{5}$B. $\frac{4}{5}$C. $\frac{5}{3}$D. $\frac{5}{4}$9. 已知等差数列$\{a_n\}$的前$n$项和为$S_n$,若$S_3 = 18$,$S_6 = 54$,则数列的公差为()A. 2B. 3C. 4D. 510. 若函数$f(x) = x^3 - 6x^2 + 9x$在区间$[1, 3]$上单调递增,则$f(2)$的值为()A. 1B. 3C. 5D. 7二、填空题(本大题共5小题,每小题10分,共50分)11. 函数$f(x) = x^2 - 2x + 1$的图像的对称轴为______。

高三数学模拟试题及答案

高三数学模拟试题及答案

高三数学模拟试题及答案一、选择题(每题4分,共40分)1.(4分)已知函数f(x) = 2x^3 - 3x^2 - 12x + 5,求f(x)的单调递增区间。

A. (-∞, -1) ∪ (2, +∞)B. (-∞, 2) ∪ (4, +∞)C. (-∞, 1) ∪ (4, +∞)D. (-∞, 2) ∪ (3, +∞)2.(4分)设等差数列{an}的首项为a1,公差为d,若a1 = 2,a2 + a5 = 10,则数列{an}的前10项和S10为多少?A. 120B. 110C. 100D. 903.(4分)已知三角形ABC中,∠A = 60°,AB = 3,AC = 4,求BC 的长度。

A. √13B. √21C. √33D. √374.(4分)若复数z满足|z - 1| = |z + 1|,则z在复平面内对应的点的轨迹是什么?A. 直线y = xB. 直线y = -xC. 直线y = x + 2D. 直线y = -x + 25.(4分)已知数列{bn}满足b1 = 1,bn = (1/2)^(n-1) * (bn-1 +1),求b5的值。

A. 2B. 3C. 4D. 56.(4分)在直角坐标系中,圆的方程为(x - 2)^2 + (y + 3)^2 = 9,若圆与直线2x - y + 6 = 0相交,求交点坐标。

A. (1, -3)B. (3, 0)C. (2, -1)D. (0, 2)7.(4分)已知函数g(x) = x^2 - 4x + 3,求g(x)在区间[0, 3]上的最大值和最小值。

A. 最大值3,最小值0B. 最大值4,最小值0C. 最大值3,最小值-1D. 最大值4,最小值-18.(4分)已知等比数列{cn}的前n项和为Sn,若S3 = 7,S6 = 21,求S9。

A. 35B. 56C. 63D. 729.(4分)在三维直角坐标系中,点A(1, 2, 3)、B(4, 5, 6)和C(7, 8, 9),求三角形ABC的体积。

高三数学高考模拟试题及答案

高三数学高考模拟试题及答案

高三数学高考模拟试题及答案第一部分选择题1. 已知函数 $f(x) = \dfrac{x^2 - 4}{x - 2}$,则 $f(x)$ 的极限为()A. $\dfrac{1}{2}$B. $-2$C. $+\infty$D. $-\infty$2. 如图,对数函数 $y=\log_{\frac{1}{2}}(x-1)$ 的图像经过两点 $P(4,3)$,$Q(8,y)$。

则 $y=$()A. 3B. 5C. 6D. 73. 在 $\triangle ABC$ 中,$AB=3$,$BC=\dfrac{5}{2}$,$\angle C=90^\circ$,$D$ 为 $BC$ 的中点,$E$ 为 $AC$ 上一点,$BE$ 延长线交 $AD$ 于点 $F$。

则 $EF=$()A. $\dfrac{5}{3}$B. $\dfrac{25}{24}$C. $\dfrac{7}{4}$D. $\dfrac{17}{8}$4. 已知函数 $f(x)=\dfrac{2\sin x+\cos x}{\sin x-2\cos x}$,则$f\left(\dfrac{\pi}{2}+x\right)=$()A. $1+f(x)$B. $1-f(x)$C. $f(x)-1$D. $-1-f(x)$5. 已知 $x>2$,$\log_2{(2x-3)}+\log_2{(x+1)}=4$,则 $x=$()A. 3B. 5C. 7D. 9答案:1. D2. B3. B4. A5. C第二部分简答题1. 证明 $x+y\geqslant 2\sqrt{xy}$ 为二次函数 $y=\left(x-\dfrac{y}{2}\right)^2-\dfrac{y^2}{4}$ 的非负性。

2. 已知 $a^2+b^2=1$,求 $\dfrac{5a+12b}{13}$ 的最大值。

3. 在动态规划中,解决问题的一般步骤是什么?4. 概率统计中,什么是贝叶斯公式?其应用场景有哪些?5. 对于某个事件的先验概率为 $p(A)$,我们观测到了该事件发生,且得到了一个新的条件概率,那么它的后验概率为什么?答案:1. 将二次函数化为顶点式 $y=\left(x-\dfrac{y}{2}\right)^2-\dfrac{y^2}{4}$,则$y\geqslant 0$。

高考数学模拟复习试卷试题模拟卷108 3

高考数学模拟复习试卷试题模拟卷108 3

高考模拟复习试卷试题模拟卷【考情解读】 1.了解任意角的概念;2.了解弧度制的概念,能进行弧度与角度的互化;3.理解任意角的三角函数(正弦、余弦、正切)的定义. 【重点知识梳理】 1.角的概念的推广(1)定义:角可以看成平面内的一条射线绕着端点从一个位置旋转到另一个位置所成的图形. (2)分类⎧⎨⎩按旋转方向不同分为正角、负角、零角按终边位置不同分为象限角和轴线角(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k·360°,k ∈Z}.2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. (2)公式角α的弧度数公式|α|=lr (弧长用l 表示) 角度与弧度的换算①1°=π180 rad ;②1 rad =⎝⎛⎭⎫180π°弧长公式 弧长l =|α|r 扇形面积公式S =12lr =12|α|r23.任意角的三角函数三角函数正弦余弦正切定义设α是一个任意角,它的终边与单位圆交于点P(x,y),那么y叫做α的正弦,记作sin αx叫做α的余弦,记作cos αyx叫做α的正切,记作tan α各象限符号Ⅰ+++Ⅱ+--Ⅲ--+Ⅳ-+-三角函数线有向线段MP为正弦线有向线段OM为余弦线有向线段AT为正切线【高频考点突破】考点一象限角与三角函数值的符号判断【例1】 (1)若角α是第二象限角,则α2是()A.第一象限角 B.第二象限角C.第一或第三象限角 D.第二或第四象限角(2)若sin α·tan α<0,且cos αtan α <0,则角α是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角【答案】(1)C(2)C 【规律方法】(1)已知θ所在的象限,求θn 或nθ(n ∈N*)所在的象限的方法是:将θ的范围用不等式(含有k)表示,然后两边同除以n 或乘以n ,再对k 进行讨论,得到θn 或nθ(n ∈N*)所在的象限.(2)象限角的判定有两种方法:一是根据图象,其依据是终边相同的角的思想;二是先将此角化为k·360°+α(0°≤α<360°,k ∈Z)的形式,即找出与此角终边相同的角α,再由角α终边所在的象限来判断此角是第几象限角.(3)由角的终边所在的象限判断三角函数式的符号,需确定各三角函数的符号,然后依据“同号得正,异号得负”求解.【变式探究1】 (1)设θ是第三象限角,且⎪⎪⎪⎪cos θ2=-cos θ2,则θ2是()A .第一象限角B .第二象限角C .第三象限角D .第四象限角 (2)sin 2·cos 3·tan 4的值() A .小于0 B .大于0 C .等于0 D .不存在【答案】(1)B(2)A 考点二 三角函数的定义【例2】已知角θ的终边经过点P(-3,m)(m≠0)且sin θ=24m ,试判断角θ所在的象限,并求c os θ和tan θ的值.【规律方法】利用三角函数的定义,求一个角的三角函数值,需确定三个量:角的终边上任意一个异于原点的点的横坐标x,纵坐标y,该点到原点的距离r.若题目中已知角的终边在一条直线上,此时注意在终边上任取一点有两种情况(点所在象限不同).【变式探究】已知角α的终边在直线3x+4y=0上,求sin α,cos α,tan α的值.考点三扇形弧长、面积公式的应用【例3】已知一扇形的圆心角为α(α>0),所在圆的半径为R.(1)若α=60°,R=10 cm,求扇形的弧长及该弧所在的弓形的面积;(2)若扇形的周长是一定值C(C>0),当α为多少弧度时,该扇形有最大面积?【规律方法】涉及弧长和扇形面积的计算时,可用的公式有角度表示和弧度表示两种,其中弧度表示的公式结构简单,易记好用,在使用前,应将圆心角用弧度表示.弧长和扇形面积公式:l =|α|R ,S =12|α|R2=12lR.【变式探究】已知扇形的周长为4 cm ,当它的半径为______ cm 和圆心角为________弧度时,扇形面积最大,这个最大面积是________ cm2.【答案】121 【真题感悟】【高考上海,文17】已知点 A 的坐标为)1,34(,将OA 绕坐标原点O 逆时针旋转3至OB ,则点B 的纵坐标为( ).A.233 B. 235 C.211 D. 213【答案】D(·全国卷)已知角α的终边经过点(-4,3),则cos α=( ) A.45 B.35 C .-35 D .-45 【答案】D(·四川卷)设sin 2α=-sin α,α∈(π2,π),则tan 2α的值是________. 【答案】3【押题专练】1.点A(sin 2 013°,co s 2 013°)在直角坐标平面上位于() A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】 C2.已知扇形的半径为12 cm ,弧长为18 cm ,则扇形圆心角的弧度数是() A.23 B.32 C.23π D.32π【答案】 B3.已知角2α的顶点在原点,始边与x 轴的正半轴重合,终边过点⎝ ⎛⎭⎪⎫-12,32,2α∈[0,2π),则tan α=()A .- 3 B.3 C.33D .±33【答案】 B4.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是() A .(-2,3] B .(-2,3) C .[-2,3) D .[-2,3]【答案】 A5.在平面直角坐标系中,点O(0,0),P(6,8),将向量OP →绕点O 按逆时针方向旋转3π4后得向量OQ →,则点Q 的坐标是()A .(-72,-2)B .(-72,2)C .(-46,-2)D .(-46,2)【答案】 A6.若cos θ2=35,sin θ2=-45,则角θ的终边所在的直线为() A .7x +24y =0 B .7x -24y =0 C .24x +7y =0D .24x -7y =0【答案】 D7.若sin α·tan α>0,则α是第________象限角.【答案】 一或四8.已知α的顶点在原点,始边与x 轴正半轴重合,点P(-4m,3m)(m>0)是α终边上一点,则2sin α+cos α等于________.【答案】 259.已知点P ⎝⎛⎭⎫sin 3π4,cos 3π4落在角θ的终边上,且θ∈[0,2π),则tan ⎝⎛⎭⎫θ+π3的值为________.【答案】 2-310.一个扇形OAB 的面积是1 cm2,它的周长是4 cm ,求圆心角的弧度数和弦长AB.11.角α终边上的点P 与A(a,2a)关于x 轴对称(a>0),角β终边上的点Q 与A 关于直线y =x 对称,求sin α·cos α+sin β·cos β+tan α·tan β的值.12.如图,角θ的始边OA 落在Ox 轴上,其始边、终边分别与单位圆交于点A 、C ,θ∈(0,π2),△AOB 为正三角形.(1)若点C 的坐标为(35,45),求cos ∠BOC ; (2)记f(θ)=|B C|2,求函数f(θ)的解析式和值域.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第03节 几何概型A 基础巩固训练 1.在区间[0,π]上随机取一个数x ,则事件“sin x≥cos x”发生的概率为( ) A.14 B.12 C.34D .1 2.(·西城模拟)在区间[0,2]上任取两个实数a ,b ,则函数f(x)=x3+ax -b 在区间[-1,1]上有且只有一个零点的概率是( )A.18B.14C.34D.783.如图10-6-8所示,墙上挂有一边长为a 的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,a 2为半径的扇形,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则他击中阴影部分的概率是( )A .1-π4B.π4C .1-π8D.与a 的取值有关4. (·阜阳模拟)一艘轮船从O 点的正东方向10 km 处出发,沿直线向O 点的正北方向10 km 处的港口航行,某台风中心在点O ,距中心不超过r km 的位置都会受其影响,且r 是区间[5,10]内的一个随机数,则轮船在航行途中会遭受台风影响的概率是( )A.2-12B.1-22C.2-1D.2- 25.在棱长为2的正方体ABCD -A1B1C1D1中,点O 为底面ABCD 的中心,在正方体ABCD -A1B1C1D1内随机取一点P ,则点P 到点O 的距离大于1的概率为________.B 能力提升训练1. 【高考辽宁卷第6题】若将一个质点随机投入如图所示的长方形AB CD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是( )A .2πB .4πC .6πD .8π2. 在区间(0,1)内任取两个实数,则这两个实数的和大于13的概率为( ) A .1718 B .79C .29D .1183.【湖北八校高三第二次联考数学试题】记集合{}22(,)|4A x y x y =+≤和集合{}(,)|20,0,0B x y x y x y =+-≤≥≥表示的平面区域分别为1Ω和2Ω,若在区域1Ω内任取一点(,)M x y ,则点M 落在区域2Ω的概率为.4.一只小蜜蜂在一个棱长为4的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为( )A .18B .116C .127D .27645. (·福建三明质量检测)已知集合M ={x|-2≤x ≤8},N ={x|x2-3x +2≤0},在集合M 中任取一个元素x ,则“x ∈(M ∩N)”的概率是( )A .110B .16C .310D .12C 思维扩展训练1. 【东莞市高三模拟考试一】已知(2,1)A ,(1,2)B -,31,55C ⎛⎫- ⎪⎝⎭,动点(,)P a b 满足02OP OA ≤⋅≤且02OP OB ≤⋅≤,则点P 到点C 的距离大于14的概率为( ) A .5164π- B .564π C .116π- D .16π 2. 【高考重庆卷第15题】某校早上8:00开始上课,假设该校学生小张与小王在早上7:30—7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为_____(用数字作答)3. (济南市高三3月考模拟考试)如图,长方体ABCD —A1B1C 1D1,有一动点在此长方体内随机运动,则此动点在三棱锥A —A1BD 内的概率为.4. 【北京市丰台区高三一模】设不等式组22100x y y ⎧+-≤⎨≥⎩,表示的平面区域为M ,不等式组201t x t y t-≤≤⎧⎪⎨≤≤-⎪⎩,表示的平面区域为N.在M 内随机取一个点,这个点在N 内的概率的最大值是_________. 5. 若k ∈[-3,3],则k 的值使得过A(1,1)可以作两条直线与圆(x -k)2+y2=2相切的概率等于( )A .12B .13C .23D .34高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515-B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。

河北省石家庄市2024年数学(高考)统编版模拟(综合卷)模拟试卷

河北省石家庄市2024年数学(高考)统编版模拟(综合卷)模拟试卷

河北省石家庄市2024年数学(高考)统编版模拟(综合卷)模拟试卷一、单项选择题(本题包含8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题在四棱锥中,平面,,点M是矩形内(含边界)的动点,且,,直线与平面所成的角为.当三棱锥的体积最小时,三棱锥的外接球的表面积为().A.B.C.D.第(2)题已知,则的值为()A.B.C.D.2第(3)题已知为等比数列,且,则()A.216B.108C.72D.36第(4)题函数在以下哪个区间上单调递增()A.B.C.D.第(5)题已知圆锥的顶点为,为底面圆心,母线与互相垂直,的面积为,与圆锥底面所成的角为,则()A.圆锥的高为B.圆锥的体积为C.圆锥侧面展开图的圆心角为D.二面角的大小为第(6)题已知四面体的各顶点都在同一球面上,若,平面平面,则该球的表面积是()A.B.C.D.第(7)题过坐标原点的直线与椭圆交于两点,设椭圆的右焦点为,已知,且,则椭圆的离心率为()A.B.C.D.第(8)题设,,,则()A.B.C.D.二、多项选择题(本题包含3小题,每小题6分,共18分。

在每小题给出的四个选项中,至少有两个选项正确。

全部选对的得6分,选对但不全的得3分,有选错或不答的得0分) (共3题)第(1)题已知平面平面,且均与球相交,得截面圆与截面圆为线段的中点,且,线段与分别为圆与圆的直径,则()A.若为等边三角形,则球的体积为B.若为圆上的中点,,且,则与所成角的余弦值为C.若,且,则D.若,且与所成的角为,则球的表面积为或第(2)题已知函数,则()A.函数在上单调递增B.函数有且仅有一个零点C.函数有且仅有一个极值点D.直线是曲线的切线第(3)题已知正数a,b满足,则下列说法一定正确的是()A.B.C.D.三、填空(本题包含3个小题,每小题5分,共15分。

请按题目要求作答,并将答案填写在答题纸上对应位置) (共3题)第(1)题已知动点P到定点的距离和它到定直线的距离相等,则点P的轨迹方程____.第(2)题已知函数,若函数有三个零点,则实数k的取值范围是__________.第(3)题已知点为不等式所表示的可行域内任意一点,点,为坐标原点,则的最大值为________四、解答题(本题包含5小题,共77分。

江苏省盐城市2024高三冲刺(高考数学)人教版模拟(预测卷)完整试卷

江苏省盐城市2024高三冲刺(高考数学)人教版模拟(预测卷)完整试卷

江苏省盐城市2024高三冲刺(高考数学)人教版模拟(预测卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题在三棱锥中,已知,若四点均在球的球面上,且恰为球的直径,则三棱锥的体积为( )A.B.C.D.第(2)题蚊香具有悠久的历史,我国蚊香的发明与古人端午节的习俗有关.如图为某校数学社团用数学软件制作的“蚊香”. 画法如下:在水平直线上取长度为1的线段AB,作一个等边三角形ABC,然后以点B为圆心,AB为半径逆时针画圆弧交线段CB的延长线于点D(第一段圆弧),再以点C为圆心,CD为半径逆时针画圆弧交线段AC的延长线于点E,再以点A为圆心,AE为半径逆时针画圆弧……以此类推,当得到的“蚊香”恰好有11段圆弧时,“蚊香”的长度为()A.B.C.D.第(3)题如图,的外接圆的半径为,点为的中点,以点为圆心作,若与相切,则的半径为()A.3B.3.5C.2或8D.2或4第(4)题()A.B.C.D.第(5)题已知数列为等差数列,前项和为,若,则等于()A.2023B.2024C.2025D.2048第(6)题下列函数中,以为周期,且在区间上单调递增的是()A.B.C.D.第(7)题先后掷两次骰子(骰子的六个面上分别标有1,2,3,4,5,6个点),落在水平桌面后,记正面朝上的点数分别为x,y,设事件A=“为奇数”,事件B=“,满足”,则概率()A.B.C.D.第(8)题已知函数,则使不等式成立的的取值范围是()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知函数的定义域为,若,有,,则()A.B.C.为偶函数D.4为函数的一个周期第(2)题已知函数的定义域为,为奇函数,为偶函数,且对任意的,,都有,则()A.是奇函数B.C.的图象关于对称D.第(3)题已知点,是抛物线上的两个不同的点,为坐标原点,焦点为,则()A.焦点的坐标为B.若,则过定点C.若直线过点,则D.若直线过点,则的最小值为16三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知棱长为8的正方体中,平面ABCD内一点E满足,点P为正方体表面一动点,且满足,则动点P运动的轨迹周长为___________.第(2)题已知向量,满足,,若,则与的夹角为______.第(3)题设O为坐标原点,直线过抛物线的焦点,且与C交于M,N两点,l为C的准线,则三角形的面积为______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知函数,.(1)若不等式对恒成立,求的最小值;(2)证明:.(3)设方程的实根为.令若存在,,,使得,证明:.第(2)题如图,已知平行六面体的棱长均为.(1)证明:;(2)延长到,使,求直线与平面所成角的正弦值.第(3)题已知过点的曲线的方程为.(Ⅰ)求曲线的标准方程:(Ⅱ)已知点,为直线上任意一点,过作的垂线交曲线于点,.(ⅰ)证明:平分线段(其中为坐标原点);(ⅱ)求最大值.第(4)题从某学校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155和195 之间,将测量结果按如下方式分成八组:第一组,第二组,…,第八组,下图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4人.(1)求第七组的频率;(2)估计该校的800名男生的身高的众数以及身高在180以上(含180 )的人数;(3)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为,事件,求.第(5)题为了分析某个高二学生的学习状态,对其下一阶段的学习提供指导性建议.现对他高一阶段考试的数学成绩x、物理成绩y进行分析.下面是该生次考试的成绩.数学x888311792108100112物理y949110896104101106(1)他的数学成绩与物理成绩哪个更稳定?请给出你的理由;(2)已知该生的物理成绩y与数学成绩x是线性相关的,若该生的物理成绩达到115分,请你估计他的数学成绩大约是多少?(参考数据:,(参考公式:,)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考模拟复习试卷试题模拟卷【考情解读】 1.了解任意角的概念;2.了解弧度制的概念,能进行弧度与角度的互化;3.理解任意角的三角函数(正弦、余弦、正切)的定义. 【重点知识梳理】 1.角的概念的推广(1)定义:角可以看成平面内的一条射线绕着端点从一个位置旋转到另一个位置所成的图形. (2)分类⎧⎨⎩按旋转方向不同分为正角、负角、零角按终边位置不同分为象限角和轴线角(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k·360°,k ∈Z}.2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. (2)公式角α的弧度数公式|α|=lr (弧长用l 表示) 角度与弧度的换算①1°=π180 rad ;②1 rad =⎝⎛⎭⎫180π°弧长公式 弧长l =|α|r 扇形面积公式S =12lr =12|α|r23.任意角的三角函数三角函数正弦余弦正切定义设α是一个任意角,它的终边与单位圆交于点P(x,y),那么y叫做α的正弦,记作sin αx叫做α的余弦,记作cos αyx叫做α的正切,记作tan α各象限符号Ⅰ+++Ⅱ+--Ⅲ--+Ⅳ-+-三角函数线有向线段MP为正弦线有向线段OM为余弦线有向线段AT为正切线【高频考点突破】考点一象限角与三角函数值的符号判断【例1】 (1)若角α是第二象限角,则α2是()A.第一象限角 B.第二象限角C.第一或第三象限角 D.第二或第四象限角(2)若sin α·tan α<0,且cos αtan α <0,则角α是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角【答案】(1)C(2)C 【规律方法】(1)已知θ所在的象限,求θn 或nθ(n ∈N*)所在的象限的方法是:将θ的范围用不等式(含有k)表示,然后两边同除以n 或乘以n ,再对k 进行讨论,得到θn 或nθ(n ∈N*)所在的象限.(2)象限角的判定有两种方法:一是根据图象,其依据是终边相同的角的思想;二是先将此角化为k·360°+α(0°≤α<360°,k ∈Z)的形式,即找出与此角终边相同的角α,再由角α终边所在的象限来判断此角是第几象限角.(3)由角的终边所在的象限判断三角函数式的符号,需确定各三角函数的符号,然后依据“同号得正,异号得负”求解.【变式探究1】 (1)设θ是第三象限角,且⎪⎪⎪⎪cos θ2=-cos θ2,则θ2是()A .第一象限角B .第二象限角C .第三象限角D .第四象限角 (2)sin 2·cos 3·tan 4的值() A .小于0 B .大于0 C .等于0 D .不存在【答案】(1)B(2)A 考点二 三角函数的定义【例2】已知角θ的终边经过点P(-3,m)(m≠0)且sin θ=24m ,试判断角θ所在的象限,并求c os θ和tan θ的值.【规律方法】利用三角函数的定义,求一个角的三角函数值,需确定三个量:角的终边上任意一个异于原点的点的横坐标x,纵坐标y,该点到原点的距离r.若题目中已知角的终边在一条直线上,此时注意在终边上任取一点有两种情况(点所在象限不同).【变式探究】已知角α的终边在直线3x+4y=0上,求sin α,cos α,tan α的值.考点三扇形弧长、面积公式的应用【例3】已知一扇形的圆心角为α(α>0),所在圆的半径为R.(1)若α=60°,R=10 cm,求扇形的弧长及该弧所在的弓形的面积;(2)若扇形的周长是一定值C(C>0),当α为多少弧度时,该扇形有最大面积?【规律方法】涉及弧长和扇形面积的计算时,可用的公式有角度表示和弧度表示两种,其中弧度表示的公式结构简单,易记好用,在使用前,应将圆心角用弧度表示.弧长和扇形面积公式:l =|α|R ,S =12|α|R2=12lR.【变式探究】已知扇形的周长为4 cm ,当它的半径为______ cm 和圆心角为________弧度时,扇形面积最大,这个最大面积是________ cm2.【答案】121 【真题感悟】【高考上海,文17】已知点 A 的坐标为)1,34(,将OA 绕坐标原点O 逆时针旋转3至OB ,则点B 的纵坐标为( ).A.233 B. 235 C.211 D. 213【答案】D(·全国卷)已知角α的终边经过点(-4,3),则cos α=( ) A.45 B.35 C .-35 D .-45 【答案】D(·四川卷)设sin 2α=-sin α,α∈(π2,π),则tan 2α的值是________. 【答案】3【押题专练】1.点A(sin 2 013°,co s 2 013°)在直角坐标平面上位于() A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】 C2.已知扇形的半径为12 cm ,弧长为18 cm ,则扇形圆心角的弧度数是() A.23 B.32 C.23π D.32π【答案】 B3.已知角2α的顶点在原点,始边与x 轴的正半轴重合,终边过点⎝ ⎛⎭⎪⎫-12,32,2α∈[0,2π),则tan α=()A .- 3 B.3 C.33D .±33【答案】 B4.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是() A .(-2,3] B .(-2,3) C .[-2,3) D .[-2,3]【答案】 A5.在平面直角坐标系中,点O(0,0),P(6,8),将向量OP →绕点O 按逆时针方向旋转3π4后得向量OQ →,则点Q 的坐标是()A .(-72,-2)B .(-72,2)C .(-46,-2)D .(-46,2)【答案】 A6.若cos θ2=35,sin θ2=-45,则角θ的终边所在的直线为() A .7x +24y =0 B .7x -24y =0 C .24x +7y =0D .24x -7y =0【答案】 D7.若sin α·tan α>0,则α是第________象限角.【答案】 一或四8.已知α的顶点在原点,始边与x 轴正半轴重合,点P(-4m,3m)(m>0)是α终边上一点,则2sin α+cos α等于________.【答案】 259.已知点P ⎝⎛⎭⎫sin 3π4,cos 3π4落在角θ的终边上,且θ∈[0,2π),则tan ⎝⎛⎭⎫θ+π3的值为________.【答案】 2-310.一个扇形OAB 的面积是1 cm2,它的周长是4 cm ,求圆心角的弧度数和弦长AB.11.角α终边上的点P 与A(a,2a)关于x 轴对称(a>0),角β终边上的点Q 与A 关于直线y =x 对称,求sin α·cos α+sin β·cos β+tan α·tan β的值.12.如图,角θ的始边OA 落在Ox 轴上,其始边、终边分别与单位圆交于点A 、C ,θ∈(0,π2),△AOB 为正三角形.(1)若点C 的坐标为(35,45),求cos ∠BOC ; (2)记f(θ)=|B C|2,求函数f(θ)的解析式和值域.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图.3.会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.4.了解球、棱柱、棱锥、台的表面积和体积的计算公式.【热点题型】题型一空间几何体的三视图和直观图例1、(1)一几何体的直观图如图,下列给出的四个俯视图中正确的是()(2)正三角形AOB的边长为a,建立如图所示的直角坐标系xOy,则它的直观图的面积是________.【提分秘籍】(1)三视图中,正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽,即“长对正,宽相等,高平齐”;(2)解决有关“斜二测画法”问题时,一般在已知图形中建立直角坐标系,尽量运用图形中原有的垂直直线或图形的对称轴为坐标轴,图形的对称中心为原点,注意两个图形中关键线段长度的关系.【举一反三】(1)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥 B.三棱柱C.四棱锥 D.四棱柱(2)如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6cm,O′C′=2cm,则原图形是()A.正方形 B.矩形C.菱形D.一般的平行四边形题型二空间几何体的表面积与体积例2、(1)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.1727B.59C.1027D.13(2)一个多面体的三视图如图所示,则该多面体的体积为()A.233B.476C .6D .7(3)有三个球,第一个球内切于正方体,第二个球与这个正方体各条棱相切,第三个球过这个正方体的各个顶点,则这三个球的表面积之比为________.【提分秘籍】(1)解决组合体问题关键是分清该几何体是由哪些简单的几何体组成的以及这些简单的几何体的组合情况;(2)由三视图求几何体的面积、体积,关键是由三视图还原几何体,同时还需掌握求体积的常用技巧如:割补法和等价转化法.【举一反三】(1)一个空间几何体的三视图如图所示,则该几何体的表面积为()A .48B .32+817C .48+817D .80(2)把边长为1的正方形ABCD 沿对角线BD 折起,使得平面ABD ⊥平面CBD ,形成三棱锥C -ABD 的正视图与俯视图如图所示,则侧视图的面积为()A.12 B .22C.14D.24题型三空间几何体的结构特征例3、 给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体;⑤棱台的侧棱延长后交于一点.其中正确命题的序号是________.【提分秘籍】(1)解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;(2)解决本类题目的技巧:三棱柱、四棱柱、三棱锥、四棱锥是常用的几何模型,有些问题可以利用它们举特例解决或者学会利用反例对概念类的命题进行辨析.【举一反三】给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②有一个面是多边形,其余各面都是三角形的几何体是棱锥;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A .0B .1C .2D .3【高考风向标】1.【高考浙江,文2】某几何体的三视图如图所示(单位:cm ),则该几何体的体积是()A .83cmB .123cmC .3233cmD .4033cm2.【高考重庆,文5】某几何体的三视图如图所示,则该几何体的体积为()123π+ (B) 136π (C) 73π (D) 52π 3.【高考陕西,文5】一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .24π+D .34π+4、【高考新课标1,文11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )(A )1(B )2(C )4(D )85.【高考福建,文9】某几何体的三视图如图所示,则该几何体的表面积等于( )1112A .822+B .1122+C .1422+D .156.【高考山东,文9】已知等腰直角三角形的直角边的长为,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )(A )223π(B )423π()22π()42π7【高考安徽,文9】一个四面体的三视图如图所示,则该四面体的表面积是( )(A )13(B )122+(C )23 (D )228.【高考天津,文10】一个几何体的三视图如图所示(单位:m ),则该几何体的体积为3m .9.【高考四川,文14】在三棱住ABC -A1B1C1中,∠BAC =90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设点M ,N ,P 分别是AB ,BC ,B1C1的中点,则三棱锥P -A1MN 的体积是______.10.(·安徽卷)一个多面体的三视图如图1-2所示,则该多面体的体积是( )图1-2A.233B.476 C .6 D .711.(·湖南卷)一块石材表示的几何体的三视图如图1-2所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )图1-2A .1B .2C .3D .412.(·陕西卷)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( )A .4πB .3πC .2πD .π13.(·全国卷)正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16πC .9π D.27π414.(·陕西卷)四面体ABCD 及其三视图如图1-4所示,平行于棱AD ,BC 的平面分别交四面体的棱AB ,BD ,DC ,CA 于点E ,F ,G ,H.图1-4(1)求四面体ABCD 的体积;(2)证明:四边形EFGH 是矩形.【高考押题】1.下列结论中正确的是()A .各个面都是三角形的几何体是三棱锥B .以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C .棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是六棱锥D .圆锥的顶点与底面圆周上的任一点的连线都是母线2.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱对角线的条数共有()A .20B .15C .12D .103.已知底面边长为1,侧棱长为2的正四棱柱(底面是正方形的直棱柱)的各顶点均在同一个球面上,则该球的体积为()A.32π3B .4πC .2πD.4π34.某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A .72cm3B .90cm3C .108cm3D .138cm35.沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的侧视图为()6.若一个圆柱的正视图与其侧面展开图相似,则这个圆柱的侧面积与表面积的比值为________.7.一个几何体的三视图如图所示,其中侧视图与俯视图均为半径是2的圆,则这个几何体的体积是________.8.如图所示的三个几何体,一个是长方体,一个是直三棱柱,一个是过圆柱上、下底面圆心切下圆柱的四分之一部分,若这三个几何体的正视图和俯视图是相同的正方形,求它们的表面积之比.9.已知一个上、下底面为正三角形且两底面中心连线垂直于底面的三棱台的两底面边长分别为20cm 和30cm,且其侧面积等于两底面面积之和,求棱台的高.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515-B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。

相关文档
最新文档