材料力学A80学时练习册第八~十三章答案
《材料力学》第八章课后习题参考答案
解题方法与技巧归纳
受力分析
在解题前首先要对物体进行受力分析, 明确各力的大小和方向,以便后续进 行应力和应变的计算。
图形结合
对于一些复杂的力学问题,可以画出 相应的示意图或变形图,帮助理解和 分析问题。
公式应用
熟练掌握材料力学的相关公式,能够 准确应用公式进行计算和分析。
检查结果
在解题完成后,要对结果进行检查和 验证,确保答案的正确性和合理性。
压杆稳定
探讨细长压杆在压缩载荷作用下的稳定性问题。
解题方法与技巧
准确理解题意
仔细审题,明确题目要求和考查的知识点。
选择合适的公式
根据题目类型和所给条件,选用相应的公式 进行计算。
注意单位换算
在计算过程中,要注意各物理量的单位换算, 确保计算结果的准确性。
检查答案合理性
得出答案后,要检查其是否符合实际情况和 物理规律,避免出现错误。
相关题型拓展与延伸
组合变形问题
超静定问题
涉及多种基本变形的组合,如弯曲与扭转 的组合、拉伸与压缩的组合等,需要综合 运用所学知识进行分析和计算。
超静定结构是指未知力数目多于静力平衡 方程数目的结构,需要通过变形协调条件 或力法、位移法等方法进行求解。
稳定性问题
疲劳强度问题
研究细长压杆在压力作用下的稳定性问题 ,需要考虑压杆的临界力和失稳形式等因 素。
研究材料在交变应力作用下的疲劳破坏行为 ,需要了解疲劳极限、疲劳寿命等概念和计 算方法。
THANKS FOR WATCHING
感谢您的观看
重点知识点回顾
材料的力学性质
包括弹性、塑性、强度、硬度等基本概念和 性质。
杆件的拉伸与压缩
涉及杆件在拉伸和压缩状态下的应力、应变及 变形分析。
材料力学课后习题答案13章
= 7.44 × 10− 2 m = 74.4mm
而
2 × 0.050 Fd = (300 N ) 1 1 + + 2.22 × 10 − 2
= 1.004 × 10 3 N
M max = 1.004 ×10 3 N (1.00m ) = 1.004 ×10 3 N ⋅ m
设压杆微弯平衡时的挠曲轴方程为
πx w = f sin l
式中,f 为压杆中点的挠度即最大挠度。
题 13-8 图 解:由题设可知,
w = f sin
πx , l
6
w′ =
πf πx cos l l
据此可得
λ (x ) =
q cr 所作之功为
1 x 2 * 1 ( w′) dx = 2 0 2
∫
∫
x 0
(也可通过左侧题号书签直接查找题目与解)
13-2
比为 8:3。
图示圆截面简支梁,直径为 d,承受均布载荷 q 作用,弹性模量 E 与切变模量 G 之
(1)若同时考虑弯矩与剪力的作用,试计算梁的最大挠度与最大转角; (2)当 l/d =10 与 l/d =5 时,试计算剪切变形在总变形(最大挠度与最大转角)中所占百分比。
(2)被冲击面(弹簧顶面)的静位移为
∆st =
最大冲击载荷为
Pl P 500 + = 1.516 × 10 − 5 m + m = 2.52 × 10 − 3 m 3 EI k 200 × 10
2h + + Fd = P 1 1 ∆ st
于是,杆内横截面上最大的正应力为
Fl 3 ∆= 48EI
得刚度系数
0.030 4 48 × 200 × 10 × F 48 EI 12 N = 6.48 × 10 5 N k= = 3 = 3 ∆ m m l 1.00
《材料力学》练习册答案
《材料力学》练习册答案习题一一、填空题1.对于长度远大于横向尺寸的构件称为(杆件)。
2.强度是指构件(抵抗破坏)的能力。
3.刚度是指构件(抵抗变形)的能力。
二、简答题1.试叙述材料力学中,对可变形固体所作的几个基本假设。
答:(1)均匀连续假设:组成物体的物质充满整个物体豪无空隙,且物体各点处力学性质相同(2)各向同性假设:即认为材料沿不同的方向具有相同的力学性质。
(3)小变形假设:由于大多数工程构件变形微小,所以杆件受力变形后平衡时,可略去力作用点位置及有关尺寸的微小改变,而来用原始尺寸静力平衡方程求反力和内力。
2.杆件的基本变形形式有哪几种?答:1)轴向拉伸与压缩;2)剪切;3)扭转;4)弯曲3.试说明材料力学中所说“内力”的含义。
答:材料力学中所说的内力是杆件在外力作用下所引起的“附加内力”。
4.什么是弹性变形?什么是塑性变形?答:杆件在外力作用下产生变形,当撤掉引起变形的因素后,如果杆件的变形完全消失而恢复到原来状态,这种变形称为是完全弹性的即弹性变形。
而撤掉引起变形的因素后,如果杆件的变形没有完全恢复而保留了一部分,被保留的这部分变形称为弹性变形又叫永久变形。
三、判断题1.材料单元体是无限微小的长方体(X )习题二一、填空题1.通过一点的所有截面上(应力情况的总和),称为该点的应力状态。
45的条纹,条纹是材料沿(最2.材料屈服时,在试件表面上可看到与轴线大致成ο大剪应力面)发生滑移而产生的,通常称为滑移线。
3.低碳钢的静拉伸试验中,相同尺寸的不同试件“颈缩”的部位不同,是因为(不同试件的薄弱部位不同)4.对于没有明显屈服阶段的塑性材料,通常规定以产生塑性应变(εs=0.2% 时的应用定为名义屈服极限,用δρ2表示)5.拉,压杆的横截面上的内力只有(轴力)。
6.工程中,如不作特殊申明,延伸率δ是指(L=10 d)标准试件的延伸率二、简答题1.试叙述低碳钢的静拉伸试验分几个阶段?各处于什么样的变形阶段。
材料力学习题册参考答案
材料力学习题册参考答案材料力学习题册参考答案(无计算题)第1章:轴向拉伸与压缩一:1(ABE )2(ABD )3(DE )4(AEB )5(C )6(CE)7(ABD )8(C )9(BD )10(ADE )11(ACE )12(D )13(CE )14(D )15(AB)16(BE )17(D )二:1对2错3错4错5对6对7错8错9错10错11错12错13对14错15错三:1:钢铸铁 2:比例极限p σ 弹性极限e σ 屈服极限s σ 强度极限b σ3.横截面 45度斜截面4. εσE =, EAFl l =5.强度,刚度,稳定性;6.轴向拉伸(或压缩);7. llb b ?μ?=8. 1MPa=106 N/m 2 =1012 N/mm 2 9. 抵抗伸缩弹性变形,加载方式 10. 正正、剪 11.极限应力 12. >5% <5% 13. 破坏s σ b σ 14.强度校核截面设计荷载设计15. 线弹性变形弹性变形 16.拉应力 45度 17.无明显屈服阶段的塑性材料力学性能参考答案:1. A 2. C 3. C 4. C 5. C 6. 5d ; 10d 7. 弹塑8. s2s 9. 0.1 10. 压缩11. b 0.4σ 12. <;< 剪切挤压答案:一:1.(C ),2.(B ),3.(A ),二:1. 2bh db 2. b(d+a) bc 3. 4a δ a 2 4. F第2章:扭转一:1.(B ) 2.(C D ) 3.(C D ) 4. (C ) 5. (A E ) 6. (A )7. (D )8. (B D ) 9.(C ) 10. (B ) 11.(D ) 12.(C )13.(B )14.(A ) 15.(A E )二:1错 2对 3对 4错 5错 6 对三:1. 垂直 2. 扭矩剪应力 3.最外缘为零4. p ττ< 抗扭刚度材料抵抗扭转变形的能力5. 不变不变增大一倍6. 1.5879τ7.实心空心圆8. 3241)(α- 9. m ax m in αττ= 10. 长边的中点中心角点 11.形成回路(剪力流)第3章:平面图形的几何性质一:1.(C ),2.(A ),3.(C ),4.(C ),5.(A ),6.(C ),7.(C ),8.(A ),9.(D )二:1). 1;无穷多;2)4)4/5(a ; 3),84p R I π=p 4z y I 16R I I ===π4)12/312bh I I z z ==;5))/(/H 6bh 6BH W 32z -= 6)12/)(2211h b bh I I I I z y z y +=+=+;7)各分部图形对同一轴静矩8)两轴交点的极惯性矩;9)距形心最近的;10)惯性主轴;11)图形对其惯性积为零三:1:64/πd 114; 2.(0 , 14.09cm )(a 22,a 62)3: 4447.9cm 4, 4:0.00686d 4 ,5: 77500 mm 4 ;6: 64640039.110 23.410C C C C y y z z I I mm I I mm ==?==?第4章:弯曲内力一:1.(A B )2.(D )3.(B )4.(A B E )5.(A B D )6.(ACE ) 7.(ABDE ) 8.(ABE )9. (D ) 10. (D ) 11.(ACBE ) 12.(D ) 13.(ABCDE )二:1错 2错 3错 4对 5错 6对 7对三:1. 以弯曲变形 2.集中力 3. KNm 2512M .max =4. m KN 2q = 向下 KN 9P = 向上5.中性轴6.荷载支撑力7. 小8. 悬臂简支外伸9. 零第5章:弯曲应力一:1(ABD)2.(C )3.(BE )4.(A )5.(C )6.(C )7.(B )8.(C )9.(BC )二:1对 2错 3错 4 对 5 错 6错 7 对三:1.满足强度要求更经济、更省料2. 变成曲面,既不伸长也不缩短3.中性轴4.形心主轴5.最大正应力6.剪力方向7.相等8.平面弯曲发生在最大弯矩处9.平面弯曲第6章:弯曲变形一:1(B ),2(B ),3(A ),4(D ),5(C ),6(A ),7(C ),8(B ),9(A )10(B ),11(A )二:1对2错3错4错5错6对7错8错9错10对11错12对三:1.(转角小量:θθtan ≈)(未考虑高阶小量对曲率的影响)2. 挠曲线采用近似微分方程导致的。
材料力学习题册答案学习资料
练习1 绪论及基本概念1-1 是非题(1)材料力学是研究构件承载能力的一门学科。
( 是 )(2)可变形固体的变形必须满足几何相容条件,即变形后的固体既不可以引起“空隙”,也不产生“挤入”现象。
(是 )(3)构件在载荷作用下发生的变形,包括构件尺寸的改变和形状的改变。
( 是 ) (4)应力是内力分布集度。
(是 )(5)材料力学主要研究构件弹性范围内的小变形问题。
(是 ) (6)若物体产生位移,则必定同时产生变形。
(非 ) (7)各向同性假设认为,材料沿各个方向具有相同的变形。
(F )(8)均匀性假设认为,材料内部各点的力学性质是相同的。
(是):(9)根据连续性假设,杆件截面上的内力是连续分布的,分布内力系的合力必定是一个力。
(非) (10)因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。
(非 )1-2 填空题(1)根据材料的主要性质对材料作如下三个基本假设:连续性假设 、均匀性假设 、 各向同性假设 。
(2)工程中的 强度 ,是指构件抵抗破坏的能力; 刚度 ,是指构件抵抗变形的能力。
(3)保证构件正常或安全工作的基本要求包括 强度 , 刚度 ,和 稳定性 三个方面。
,(4)图示构件中,杆1发生 拉伸 变形,杆2发生 压缩 变形, 杆3发生 弯曲 变形。
(5)认为固体在其整个几何空间内无间隙地充满了物质,这样的假设称为 连续性假设 。
根据这一假设构件的应力,应变和位移就可以用坐标的 连续 函数来表示。
(6)图示结构中,杆1发生 弯曲 变形,构件2发生 剪切 变形,杆件3发生 弯曲与轴向压缩组合。
变形。
(7)解除外力后,能完全消失的变形称为 弹性变形 ,不能消失而残余的的那部分变形称为 塑性变形 。
(8)根据小变形条件,可以认为构件的变形远小于其原始尺寸。
1-3 选择题(1)材料力学中对构件的受力和变形等问题可用连续函数来描述;通过试件所测得的材料的力学性能,可用于构件内部的任何部位。
昆明理工大学材料力学A80学时练习册1-13章答案
第一章 绪论一、是非判断题1.1 ( × );1.2 ( × );1.3 ( × );1.4 ( ∨ );1.5 ( ∨ );1.6 ( ∨ ) 1.7 ( ∨ );1.8 ( × );1.9 ( × );1.10 ( ∨ );1.11 ( ∨ )1.12 ( ∨ );1.13 ( × );1.14 ( ∨ );1.15 ( ∨ ) ;1.16 ( × )二、填空题1.1 杆件 变形 , 应力,应变 。
1.2 外力的合力作用线通过杆轴线 , 沿杆轴线伸长或缩短 。
1.3 受一对等值,反向,作沿剪切面发生相对错动 , 沿剪切面发生相对错动 。
1.4 外力偶作用面垂直杆轴线 。
任意二横截面发生绕杆轴线的相对转动 。
1.5 外力作用线垂直杆轴线,外力偶作用面通过杆轴线 , 梁轴线由直线变为曲线 。
1.6 包含两种或两种以上基本变形的组合 。
1.7 强度 , 刚度 , 稳定性 。
1.8 强度 , 刚度 , 稳定性 。
1.9 连续性 , 均匀性 , 各向同性 。
1.10 连续性假设 。
应力 、 应变 变形等 。
1.11 拉伸 , 压缩 , 弯曲 。
1.12 2α ; α-β ; 0 。
三、选择题1.1 1 。
1.2 C 。
1.3 C 。
四、计算题1.10=A X ∑=0X FF S =⇒∑=0Y 0=-F Y A F Y A =⇒∑=0A M 0=--FL M FL M -=⇒y x解:1. 求A 端的反力: 2. 求1-1截面的内力: ∑=0Y 0=F F S-∑=01C M 02=--/FL M 2/FL M -=⇒X A M1.2第二章 拉伸、压缩与剪切一、是非判断题2.1 ( × );2.2 ( ×);2.3 ( × );2.4. ( ×);2.5 ( × );2.6 ( × ) 2.7 ( × );2.9 ( × );2.10 ( × );2.11( × );2.12( ∨ )二、填空题2.1 2.22.3 最大工作应力σmax 不超过许用应力[σ] , 强度校核 ; 截面设计 ; 确定许可载荷 。
材料力学作业及练习题参考答案(8、9章)
八章2题: 解:查槽钢表,每根槽钢,A=25.669 cm2,W=141 cm3, 则两根槽钢制成的梁:A=2A=51.538 cm2, W=2W=282 cm3 在B截面左侧的上边缘处: =-FN/A+M/W=-50×103/(51.538×10-4)+37.5×103/(282×10-6) =123.24×106 Pa, 即在该处为拉应力123.24 MPa ; 在B截面左侧的下边缘处: =-FN/A-M/W=-50×103/(51.538×10-4)-37.5×103/(282×10-6) =-142.72×106 Pa, 即在该处为压应力142.72 MPa ; 在B截面右侧的上边缘处: =M/W=37.5×103/(282×10-6)=132.98×106 Pa, 即在该处为拉应力132.98 MPa ; 在B截面右侧的下边缘处: =-M/W=-37.5×103/(282×10-6)=-132.98×106 Pa, 即在该处为压应力132.98 MPa。
材料力学课后习题答案详细
N1 N 2 0.5F 0.5 20 10(kN )
10
(2)求 C 点的水平位移与铅垂位移。 变形协调图
A
点的铅垂位移:l1
N1l EA1
10000N 1000mm 210000N / mm2 100mm2
0.476mm
B 点的铅垂位移: l2
材料可认为符合胡克定律,其弹性模量 E 10GPa 。如不计柱的自重,试求:
(1)作轴力图;
(2)各段柱横截面上的应力;
(3)各段柱的纵向线应变;
(4)柱的总变形。
解:(1)作轴力图
N AC 100kN NCB 100 160 260(kN )
轴力图如图所示。
(2)计算各段上的应力
第二章 轴向拉(压)变形
[习题 2-1] 试求图示各杆 1-1 和 2-2 横截面上的轴力,并作轴力图。 (a) 解:(1)求指定截面上的轴力
N11 F N 22 2F F F
(2)作轴力图 轴力图如图所示。
(b) 解:(1)求指定截面上的轴力
N11 2F N 22 2F 2F 0
如以 表示斜截面与横截面的夹角,试求当 0o ,30o ,45o ,60o ,90o 时各斜截面
上的正应力和切应力,并用图表示其方
向。
解:斜截面上的正应力与切应力的公式
为:
5
0 cos 2
0 2
sin 2
式中, 0
N A
10000 N 100mm 2
100MPa ,把
示。
由平平衡条件可得:
X 0
N EG N EA cos 0
材料力学课后答案
- 1 -第8章 杆件的拉伸与压缩8-1 填空题:8-1(1) 如图拉杆的左半段是边长为b 的正方形,右半段是直径为b 的圆杆。
两段许用应力均为 ][σ,则杆的许用荷载 =][F ][4π2σb 。
8-1(2) 图示拉杆由同种材料制成,左部分是内径为D 、外径为D 2的空心圆杆,右部分为实心圆杆,要使两部分具有相同的强度,右部分的直径应取 D3 。
8-1(3) 杆件轴向拉伸或压缩时,其斜截面上切应力随截面方位的不同而不同,而切应力的最大值发生在与轴线间的夹角为 45° 的斜截面上。
8-1(4) 图中两斜杆的抗拉刚度为EA ,A 点的竖向位移为EAFa 2 。
8-1(5) 图中结构中两个构件的厚度b 相同,则它们的挤压面积 =A αcos ab。
8-1(6) 图中结构中,若 h d D 32==,则螺栓中挤压应力、拉伸应力和剪切应力三者的比例关系是 9:24:8 。
题 8-1(5) 图题 8-1(1) 图题 8-1(2) 图题 8-1(6)图F题 8-1(4) 图- 2 -分析:222bs 3π4)(π4d F d D F =−=σ, 2tπ4d F =σ, 22π3πd F hd F ==τ,故有 9:24:883:1:31::tbs ==τσσ。
8-2 单选题:8-2(1) 图示的等截面杆左端承受集中力,右端承受均布力,杆件处于平衡状态。
1、3两个截面分别靠近两端,2截面则离端部较远。
关于1、2、3这三个截面上的正应力的下列描述中,正确的是 C 。
A .三个截面上的正应力都是均布的 B .1、2两个截面上的正应力才是均布的 C .2、3两个截面上的正应力才是均布的 D .1、3两个截面上的正应力才是均布的8-2(2) 若图示两杆的材料可以在铸铁和钢中选择,那么,综合强度和经济性两方面的因素, C 更为合理。
A .两杆均选钢 B .两杆均选铸铁C .① 号杆选钢,② 号杆选铸铁D .① 号杆选铸铁,② 号杆选钢8-2(3) 图示承受轴向荷载的悬臂梁中,在加载前的一条斜直线KK 在加载过程中所发生的变化是 D 。
材料力学习题及答案
材料力学-学习指导及习题答案第一章绪论1-1 图示圆截面杆,两端承受一对方向相反、力偶矩矢量沿轴线且大小均为M的力偶作用。
试问在杆件的任一横截面m-m上存在何种内力分量,并确定其大小。
解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M x,即扭矩,其大小等于M。
1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ。
解:应力p与斜截面m-m的法线的夹角α=10°,故σ=p cosα=120×cos10°=118.2MPaτ=p sinα=120×sin10°=20.8MPa1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为σmax=100 MPa,底边各点处的正应力均为零。
试问杆件横截面上存在何种内力分量,并确定其大小。
图中之C点为截面形心。
解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力F N=100×106×0.04×0.1/2=200×103 N =200 kN其力偶即为弯矩M z=200×(50-33.33)×10-3 =3.33 kN·m1-4 板件的变形如图中虚线所示。
试求棱边AB与AD的平均正应变及A点处直角BAD的切应变。
解:第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最大值。
解:(a) F N AB=F, F N BC=0, F N,max=F(b) F N AB=F, F N BC=-F, F N,max=F(c) F N AB=-2 kN, F N2BC=1 kN, F N CD=3 kN, F N,max=3 kN(d) F N AB=1 kN, F N BC=-1 kN, F N,max=1 kN2-2 图示阶梯形截面杆AC,承受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm。
材料力学课后习题答案8章
由于式中 α 为任意值,故原命题得证。
8-7
已知某点 A 处截面 AB 与 AC 的应力如图所示(应力单位为 MPa) ,试用图解法
求主应力的大小及所在截面的方位。
题 8-7 图 解:根据题图所给的已知应力,可画出应力圆来,如图 8-7 所示。
图 8-7 从所画的应力圆上可以量得两个主应力,它们是:
由
tanα 0 = −
得 σ 1 的方位角为
τx 2.25 =− = −0.07458 σ x − σ min 30.0 + 0.1678
α 0 = −4.27 o
对于应力图 c,其切应力为
τC =
3FS 3 × 20 × 103 N = = 3.00 × 106 Pa = 3.00MPa 2 2 A 2 × 0.050 × 0.200m
σα = (
30 + 10 + 20sin 90 o )MPa = 40.0MPa 2 30 − 10 sin 90 o )MPa = 10.0MPa τα = ( 2
(b)解:由题图所示应力状态可知,
1
σ x = −30MPa,σ y = 10MPa,τ x = 20MPa,α = 22.5 o
(a) (b) (c)
= 350 × 10 −6
将式(a)和(b)代入式(c),得
γ xy = (550 − 700) × 10 −6 = −150 × 10 −6
(d)
将以上所得结果(a),(b)和(d)代入平面应变状态任意方位的正应变公式,计算 ε135o 应有 的测量值为
ε135o =
1 1 (450 + 100) × 10 −6 + (450 − 100) × 10 −6 cos270 o 2 2 1 − × (−150 × 10 −6 )sin270 o = 200 × 10 −6 2
材料力学习题册 参考答案
第一章绪论一、选择题1.根据均匀性假设,可认为构件的(C)在各处相同。
A.应力 B.应变C.材料的弹性系数 D.位移2.构件的强度是指(C),刚度是指(A),稳定性是指(B)。
A.在外力作用下构件抵抗变形的能力B.在外力作用下构件保持原有平衡状态的能力C.在外力作用下构件抵抗强度破坏的能力3.单元体变形后的形状如下图虚线所示,则A点剪应变依次为图(a) (A),图(b) (C),图(c) (B)。
A.0 B.r2 C.r D.r4.下列结论中( C )是正确的。
A.内力是应力的代数和; B.应力是内力的平均值;C.应力是内力的集度; D.内力必大于应力;5. 两根截面面积相等但截面形状和材料不同的拉杆受同样大小的轴向拉力,它们的应力是否相等(B)。
A.不相等; B.相等; C.不能确定;6.为把变形固体抽象为力学模型,材料力学课程对变形固体作出一些假设,其中均匀性假设是指(C)。
A. 认为组成固体的物质不留空隙地充满了固体的体积;B. 认为沿任何方向固体的力学性能都是相同的;C. 认为在固体内到处都有相同的力学性能;D. 认为固体内到处的应力都是相同的。
二、填空题1.材料力学对变形固体的基本假设是连续性假设,均匀性假设,各向同性假设。
2.材料力学的任务是满足强度,刚度,稳定性的要求下,为设计经济安全的构件提供必要的理论基础和计算方法。
3.外力按其作用的方式可以分为表面力和体积力,按载荷随时间的变化情况可以分为静载荷和动载荷。
4.度量一点处变形程度的两个基本量是(正)应变ε和切应变γ。
三、判断题1.因为构件是变形固体,在研究构件平衡时,应按变形后的尺寸进行计算。
( × ) 2.外力就是构件所承受的载荷。
( × ) 3.用截面法求内力时,可以保留截开后构件的任一部分进行平衡计算。
( √ ) 4.应力是横截面上的平均内力。
( × ) 5.杆件的基本变形只是拉(压)、剪、扭和弯四种,如果还有另一种变形,必定是这四种变形的某种组合。
材料力学习题册答案-第8章 组合变形
第 八 章 组 合 变 形一、选择题1、偏心拉伸(压缩)实质上是(B )的组合变形。
A .两个平面弯曲B .轴向拉伸(压缩)与平面弯曲C .轴向拉伸(压缩)与剪切D .平面弯曲与扭转 2、图示平面曲杆,其中AB ⊥BC 。
则AB 部分的 变形为( B )。
A . 拉压扭转组合B .弯曲扭转组合C .拉压弯曲组合D .只有弯曲二、计算题1、如图所示的悬臂梁,在全梁纵向对称平面内承受均布荷载 q=5kN/m ,在自由端的水平对称平面内受集中力P=2kN 的作用。
已知截面为25a 工字钢,材料的弹性模量E=2×105MPa ,求: (1)梁的最大拉、压应力(2)若[σ]=160MPa ,校核梁的强度是否安全。
解:(1)固定端截面为危险截面。
22max 115210kN m 22z M ql ==⨯⨯=⋅max 224kN m y M Pl ==⨯=⋅查表得:3348.283cm ,401.883cm y z W W ==由于截面对称,最大拉、压应力相等。
33max max max max661010410()Pa 108MPa 401.8831048.28310y z t c z y M M W W σσ--⨯⨯==+=+=⨯⨯(2)校核梁的强度[]max 108MPa 160MPaσσ=<=可见,梁的强度是足够的。
2、矩形截面木檩条,尺寸及受载情况如图所示。
已知q=2.1kN/m,木材许用拉应力[σt ]=11MPa ,许用挠度[w]= l /200,弹性模量E=10GPa 。
校核其强度和刚度。
ABCq解:(1)受力分析,计算内力。
根据梁的受力特点可知梁将产生斜弯曲。
因此,将载荷q 沿两对称轴分解为cos y q q ϕ= , sin z q q ϕ=在q 作用下,梁跨中截面的弯矩最大,为危险截面。
由q z 、q y 引起的最大弯矩M ymax 、M zmax 为202max 202max112.1sin 2634'4 1.88kN m 88112.1cos 2634'43.76kN m 88y z z y M q l M q l ==⨯⨯⨯=⋅==⨯⨯⨯=⋅(2)确定危险点位置,计算危险点应力。
材料力学习题及答案.pptx
解 : (1) 轮 1 、 2 、 3 、 4 作 用 在 轴 上 扭 力 矩 分 别为
轴内的最大扭矩
若将轮 1 与轮 3 的位置对调,则最大扭矩变 为
最大扭矩变小,当然对轴的定的圆截面轴,承受扭力矩作用。试求支反力偶矩。设扭转刚度为已知常数。
试从强度方面考虑,建立三者间的合理比值。已知许用应力[σ]=120MPa,许用切应力[τ]=90MPa,许用挤 压应力[σbs]=240MPa。
解:由正应力强度条件 由挤压强度条件
由切应力强度条件
5
学海无 涯
D:h:d=1.225:0.333:1
式 (1) : 式 (3)得
式 (1) : 式 (2) 得
由实心轴的切应力强度条件
4-3(4-12) 某传动轴,转速 n=300 r/min,轮 1 为主动轮,输入功率 P1=50kW,轮 2、轮 3 与轮 4 为从动轮,输出功率分别为 P2=10kW,P3=P4=20kW。
(1) 试求轴内的最大扭矩; (2) 若将轮 1 与轮 3 的位置对调,试分析对轴的受力是否有利。
10
学海无 涯
解:各杆轴力及变形分别为
梁 BD 作刚体平动,其上 B、C、D 三点位移相
等
3-8(3-17) 图示桁架,在节点 B 和 C 作用一对大小相等、方
向相反的载荷 F。设各杆各截面的拉压刚度均为 EA,试计算节点 B 和 C 间的相对位移ΔB/C。
解
:
根
据
能
量
守
恒
定
律
,
有
3-9(3-21) 由铝镁合金杆与钢质套管组成一复合杆,杆、管各载面的刚度分别为 E1A1 与 E2A2。复合杆承受 轴向载荷 F 作用,试计算铝镁合金杆与钢管横载面上的正应力以及杆的轴向变形。
材料力学A80学时10级练习册解答Lpc-概念
第一章 绪论一、是非判断题1.1 材料力学的研究方法与理论力学的研究方法完全相同。
( × ) 1.2 内力只作用在杆件截面的形心处。
( × ) 1.3 杆件某截面上的内力是该截面上应力的代数和。
( × )1.4 确定截面内力的截面法,适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普遍情况。
( ∨ )1.5 根据各向同性假设,可认为材料的弹性常数在各方向都相同。
( ∨ ) 1.6 根据均匀性假设,可认为构件的弹性常数在各点处都相同。
( ∨ ) 1.7 同一截面上正应力σ与切应力τ必相互垂直。
( ∨ ) 1.8 同一截面上各点的正应力σ必定大小相等,方向相同。
( × ) 1.9 同一截面上各点的切应力τ必相互平行。
( × ) 1.10 应变分为正应变ε和切应变γ。
( ∨ ) 1.11 应变为无量纲量。
( ∨ ) 1.12 若物体各部分均无变形,则物体内各点的应变均为零。
( ∨ ) 1.13 若物体内各点的应变均为零,则物体无位移。
( × ) 1.14 平衡状态弹性体的任意部分的内力都与外力保持平衡。
( ∨ ) 1.15 题1.15图所示结构中,AD 杆发生的变形为弯曲与压缩的组合变形。
( ∨ )1.16 题1.16图所示结构中,AB 杆将发生弯曲与压缩的组合变形。
( × )二、填空题1.1 材料力学主要研究受力后发生的1.2 拉伸或压缩的受力特征是 ,变形特征是 。
1.3 剪切的受力特征是 ,变形特征是 。
1.4 扭转的受力特征是 ,变形特征是 。
1.5 弯曲的受力特征是 ,变形特征是 。
1.6 组合受力与变形是指 。
1.7 构件的承载能力包括 , 和 三个方面。
1.8 所谓 ,是指材料或构件抵抗破坏的能力。
所谓 ,是指构件抵抗变形的能力。
所B题1.15图题1.16图外力的合力作用线通过杆轴线 杆件 沿杆轴线伸长或缩短受一对等值,反向,作用线距离很近的力的作用 沿剪切面发生相对错动 外力偶作用面垂直杆轴线 任意二横截面发生绕杆轴线的相对转动 外力作用线垂直杆轴线,外力偶作用面通过杆轴线梁轴线由直线变为曲线 包含两种或两种以上基本变形的组合 强度 刚度 稳定性 强度 刚度谓 ,是指材料或构件保持其原有平衡形式的能力。
材料力学习题及参考答案
答案:
5.对于拉伸曲线上没有屈服平台的合金塑性材料,
工程上规定 0.2 作为名义屈服极限,此时相对应的
应变量为 0.2%。
()
答案:
四、计算
1.矿井起重机钢绳如图(a)所示,AB段截面积 A1 300mm2, BC段截面积 A2 400mm2,钢绳的单位体积重量 28kN / m3, 长度l 50m,起吊重物的重量 P 12kN,求:1)钢绳内的最大 应力;2)作轴力图。
2
100MPa,
试求此结构许可载荷P。
A
B
1 45o 30o 2
C
P
a
解: 1)结构中各杆应满足平衡条件
y
N1
N2
对节点C取图(b)所示研究对象,有
45o 30o
Cx
X
N1 sin 45o
N2
sin 30o
0 a
答案: 四,弹性、屈服、强化和颈缩、断裂。
5.用塑性材料的低碳钢标准试件在做拉伸实验过程中,将 会出现四个重要的极限应力;其中保持材料中应力与应变 成线性关系的最大应力为( );使材料保持纯弹性变形 的最大应力为( );应力只作微小波动而变形迅速增加 时的应力为( );材料达到所能承受的最大载荷时的应 力为( )。
起重杆(杆1)为钢管,外径D=400mm,内径d=20mm,
许用应力 80MPa。钢丝绳2的横截面积 1
A2
500mm,2 许
用应力 60MPa。若最大起重量P=55kN,试校核此起
2
重机的强度是否安全。
B
45o 2
C
15o 1
AP
a
y
解:1)确定杆件受力
昆明理工大学材料力学A80学时习题册
解:设木材承受的轴力为 FNw,每个等边角钢承受的轴力为 FNs
3
F
F
FNw + 4FNs − F = (a) 0 F l 0 FNwl ⇒ = Ns 由 Δlw = s Ew Aw Es As Δl
∴ FNs = ⋅⋅⋅ = ⇒ FNs = FNw 0.1 0.1F FNs = 0.071F FNw = 0.717F σw = FNw 0.717F ≤ [σ = 木 Aw Aw
( —)
954.9Nm
2387.3Nm
7
α
α
2 = σ cos α =
由: α =≤ [σ σ [σ]]⋅ ⇒F≤ = 50 cos A 2 α kN ⇒ 取 [F ] = 50 kN
⇒
2 cos 2 α [σ = [τ sin 2α ] 2 ⇒ α = 26 .57
0
]
2
]
=
2.7* 木制短柱的四角用四个 40mm×40mm×4mm 的等边角钢固定。已知角钢的许用应力 [σ]钢=160 MPa,E 钢 =200 GPa;木材的许用应力[σ]木=12 MPa,E 木=10 GPa。试求许可 载荷 F。
杆∴为 钢F 制
2.8 图示的杆件结构中 1、2 杆为木制,3、4 A1 = A2 = 4000 mm 2 ,3、4 杆的横截面面积
[
]
、2 杆的横截面面积 =,
6已 97 .5 k1 N 2 ;1、2 杆的许用应 800 mm A =知 A3 = 4
力 [σ]木=20MPa,3、4 杆的许用应力[σ]钢=120MPa,试求结构的许用载荷[P].
FNs FNi
代入(a)式得:
∑M
0
A
=
南华大学材料力学练习册答案
第二章 平面力系2-1. 已知:CD AB AC ==,kN 10P =,求A 、B 处约束反力。
解:取杆ACD 为研究对象,受力如图。
0=∑A m ,0245sin 0=⨯-⨯AC P AC F CkN P F C 28.282==∑=0xF ,045cos 0=-Ax C F F)(10←=kN F Ax∑=0yF,045sin 0=--P F F Ay C)(10↓=kN F Ay2-2. 已知力P 的作用线垂直于AB 杆,BC 杆与P 力的作用线夹角为045,杆BC 垂直于杆CD ,力Q 的作用线与CD 杆的夹角为060。
kN 1P =,求系统平衡时Q =?解:分别取节点B 、C 为研究对象,受力如图。
对于节点B :0=∑xF,045cos 0=-BC F P对于节点C :0=∑x F ,030cos 0'=-Q F BC联立上两式解得:kN P Q 362362==2-3. 图示结构中,AB 杆水平,AC 杆与AB 杆的夹角为030,杆件的自重不计,kN 10W =,求B 、C 处反力。
解:取整体为研究对象,受力如图。
0=∑yF,045cos 30sin 00=--T C F W FkN W F C 14.34)22(=+=(压)0=∑XF,045sin 30cos 00=-+T C B F F F)(43.15←-=kN F B2-4. 已知:m N 200M 1⋅=,m N 500M 2⋅=,m 0.8AB CD AC ===, 求A 、C 处支反力。
解:取杆ACD 为研究对象,受力如图。
0=∑Am ,08.045sin 210=-+⨯M M F C B C F N F ==3752-5. 已知AD 杆上固接一销钉,此销钉可以在BC 杆的滑道内无摩擦地滑动,系统平衡在图示位置,BC 与AD 成045,m N 1000M 1⋅=,求2M 。
解:取杆AD 为研究对象,受力如图。
【学习】周建方版材料力学习题解答第八章0130汇总
【关键字】学习8-1 图8-34所示结构,杆AB 为5号槽钢,许用应力MPa ][1601=σ,杆BC 为矩形截面,mm b 50=,mm h 100=,许用应力MPa ][82=σ,承受载荷kN F 128=,试校核该结构的强度。
题8-1图解:由平衡条件解得,8-2 在图8-35所示结构中,钢索BC 由一组直径的钢丝组成。
若钢丝的许用应力,AC 梁受有均布载荷,试求所需钢丝的根数。
又若将BC 杆改为由两个等边角钢焊成的组合截面,试确定所需等边角钢的型号。
角钢的。
题8-1图解:BC 的内力计算: 采用钢丝数:采用两等边角钢,则型号为8-3 图8-36为一托架,AC 是圆钢杆,许用应力;BC 杆是方木杆,许用应力。
试选择钢杆圆截面的直径d 及木杆方截面的边长b 。
题8-3图解:AB 和BC 的内力计算: AC 杆: d≥ BC 杆: b≥8-4 结构受力如图8-37所示,各杆的材料和横截面面积均相等:,。
安全系数取,试确定结构的许可载荷。
当为多大时,结构发生断裂破坏?题8-4图解: 由平静方程可以解出 : 许可载荷确定: 所以:结构断裂载荷确定:8-5 图8-38所示卧式拉床的油缸内径,活塞杆直径,许用应力。
缸盖由六个的螺栓与缸体联结,螺栓的内径,许用应力。
试按活塞杆和螺栓的强度确定最大油压。
题8-5图解: 轴力计算: 所以:按螺栓强度计算: 所以:所以最大油压p=6.5MPa8-6 图8-39所示AB 轴的转速,从B 轮输入功率马力,功率的一半通过锥形齿轮传给垂直轴C ,另一半由水平轴H 输出。
已知,,,,,。
试对各轴进行强度校核。
题8-6图解: 轴C 的转速: 轴上各段的扭矩计算: 应力计算:8-7 联轴器采用直径为d 的螺栓连接,螺栓排到如图8-40所示,在半径为R1的圆上有四个,在半径为R2的圆上有六个,螺栓的许用应力为,轴每分钟转数为,若不计圆盘间的摩擦,试求该联轴器所能传递的功率。
题8-7图解: 一个螺栓能传递的剪力, 在半径上: 在半径上: 所有螺栓能传递的扭矩为: 所有螺栓可传递的功率:8-8 图8-41所示为的矩形截面轴,受外力偶矩和作用,已知,,,试求的许用值及自由端截面A 的转角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章 组合变形一、是非判断题8.1 ( ∨ );8.2 ( × );8.3 ( ∨ );8.4 ( ∨ );8.5 ( ∨ )8.6 ( × );8.7 ( × );8.8 ( × );8.9 ( ∨ ) 8.10 ( × )二、填空题8.1 周向有较大的拉应力且σbt 较小 。
8.2 外侧有较大拉应力产生且σbt 较小 。
8.3 圆截面或圆环截面 , 塑性材料 。
8.4三、计算题 8.1471.77F(b)471.77(a)C偏心压缩 上下解:将F 向柱的轴线平移得:kN F 200=)(m kN e M e ⋅=200∴柱是压-弯组合变形,危险截面在底部横截面。
危险截面上的内力为: kNF G F N 290-=-=-eM M e 200==)(150-5.72-2m kN e A =∴σ)(1505.722B m kN e +-=σBA σσ2=由me 1610450572..==⇒kPaA 67.96-=∴σkPaB 33.48-=σ8.28.38. 4解:将F P1向自由端截面形心平移得:kN F P 601=mkN F M P ze ⋅==210201..∴梁是拉-弯-弯组合变形,危险截面在固定端截面。
危险截面上的内力为: kN F F P N 601==kNm M M ze Z 21.==zzy y N A W M W M A F -=-σkNmF M P y 84212..==则由叠加原理: MPa 625002500-=-=6000-MPa B 125002500-=+=6000-σMPa C 1125002500=++=6000σMPaD 625002500=-+=6000σyz 解:梁是弯-弯组合变形,危险截面在固定端截面。
危险截面上的内力为:kNmlF M Z 801.P ==kNmlF M P y 2322.==(1)由叠加原理: []σσ≤+=3max 2)2(3b M M z y mm m b 7.400407.0=≥⇒mmb h mm b 82241===,取:(2)求圆形截面的d :kNm M M M zy3322.=+=合 []σπσ≤⋅=3max 32d M 合mmm d 4.590594.0=≥⇒mmd 60取:=解:将(a)图中的F P 向杆开槽部分的轴线平移得:P F 4P e aF M =∴(a)图杆是拉-弯组合变形; 2max 34aF W M A F Pe P a =+=)(σ(b)图杆是轴向拉伸;2max a F P b =)(σ34=∴b a )()(max max σσeM eM 4a8. 58.6 8.7解:将F P 向自由端的坐标原点平移得: NF P 1000=NmF M P y 5200250..==∴切槽部分为拉-弯-弯组合变形;由叠加原理:NmF M P z 50050==.22max 66bhM hb M bh F zy P ++=σMPa Pa 140101406=⨯=BA解:作用在信号板上的力为: kNA p F 393045022..=⨯⨯=⋅=π将F 向圆柱AB 的轴线平移得: kN F 3930.=m kN F M e ⋅==236060..∴圆柱AB 是弯-扭组合变形,危险截面是A 截面。
危险截面A 上的内力为: mkN M T e ⋅==2360.mkN F M ⋅==314080..由(8.5)式:[]σαπ≤-+)1(324322D T M []691.0309.01321)(32244=-=+-≤=⇒σπαD T M D d mm D d 71.54691.04=⨯≤⇒mm D d D 6452271542壁厚:..=-≥-=∴δz 1F cx M DxM 2F BZ Dy M 解:1)求支反力:∑=0xMkN F 1002=⇒当F 1单独作用时: ∑=0BM kN Y A 537.=⇒当F 2单独作用时:∑=0AMkNZ B 75=⇒2)求内力:C D 段: m kN F d M T DDx ⋅-=-=-=5722.F 1单独作用时: mkN Y M A CZ ⋅==625.515.0m kN M M CZ DZ ⋅==8751450150...由(8.5)式: []σπ≤⋅+=+3222232d T M W T M maxmax F 2单独作用时: mkN Z M B Dy ⋅==2511150..m kN M M Dy Cy ⋅==753450150...∴F 1,F 2共同作用时: mkN M M M Cy CZ C ⋅=+=76622.mkN M M M Dy DZ D ⋅=+=411122.∴危险截面在D 截面: m kN T T ⋅==57.m ax mkN M M D ⋅==4111.max []mmT M d 611132322.maxmax =⋅⋅⋅=⋅+≥σπ最大拉应力作用在中间切槽部分任意横截面的左上角处。
8.8第九章 压杆稳定一、是非判断题9.1( × );9.2( ∨ );9.3( × );9.4( × );9.5( × );9.6( ∨ ) 9.7( ∨ );9.8( × );9.9( ∨ ) ;9.10( × )二、填空题9.1 长度(l ),约束(μ),横截面的形状和大小(i ) 9.2 小 , 容易 9.3 E , I , μ , l 。
9.4 λ≥λ1 λ 2<λ<λ1 λ≤λ2 。
9.59.69.7 圆 (正方形和圆形截面比较)mmd 112取:=yM xM 1P 3P 2P 解:将P 1, P 2, P 3向B 截面平移得:kNmP M x 30301..==∴AB 杆为拉-弯-扭组合变形;A 截面的内力为: MPa W M A F A NA A 3104040106403204010343323....max =⨯⨯⨯+⨯⨯⨯=+=ππσkNmP M y 90303..==kNmM T x A 30.==kNmP M zA 40401..==kNP F NA 33==kNmM P M y yA 50402..-=-=∴A 截面的合弯矩为: kNmM M M zA yA A 64022.=+=忽略剪力引起的剪应力,则: MPa W T tA A 87.23max ==τ[]MPa MPa A A r 12021123224=<=+=∴στσσ.max max ∴A 截面满足强度条件。
(a)(c)(e)I min 的轴 34144126412222244πππππ=⨯⨯⨯⨯==d d a a d a I I R S / R S II >∴有应力集中时 22)(l EI F cr μπ=三、选择题9.1则正确答案是 A 。
9.2则正确结论是 A 。
9.3正确答案是 A 。
;9.4 A。
四、计算题 9.19.2(a) (b) (c) 22)(minl EI F cr μπ=解:由(9.5)式 kN l d E F cr 55464242.)(=⨯=ππ圆形: kN l Ehb F cr 248912232.)(=⨯=π矩形: kN l EI F cr 944582109310200289222.)(min =⨯⨯⨯⨯==-ππ工字形:查表No.16:I min =93cm 4 22)(l EI F cr μπ=∴由(9.5)式: 解: m d A I i 0404.=== 10012504.0511≈>=⨯=∴λλa 1005.12204.077.01≈>=⨯=λλb i l μλ=又1005.11204.095.01≈>=⨯=λλC kN F acr 2540645160102002492=⨯⨯⨯⨯⨯=.ππb 16010200492.⨯⨯⨯⨯ππc16010200492.⨯⨯⨯⨯ππ0PF PF 22λπσE cr =dl il⋅=⋅=μμλ49.49.5FFF4dAIi==964075811=⨯==..ilμλ解:93.92102401021069221=⨯⨯⨯==πσπλpE93.92961=>=λλ∴可用欧拉公式计算F cr。
828.8)(22=>===stcr nFlEIFFnμπ∴活塞杆满足稳定性条件。
解:取销钉B为研究对象。
∑=0X∑=0YβtgllABBC=θcosFFAB=⇒FθsinFFBC=⇒∵当二杆所受压力同时达到临界压力F cr时,F最大。
BCcrBCABcrABFFFF)()(==即:2222)(sincosβπθπθtglEIFlEIFABAB==⇒βθθ2tg=⇒sincos)(βθ21tgctg-=⇒)(:βθ21ctgtgor-=α8040481=⨯==..ilABμλ又因为对Q235钢:1006.6112==λλ,12可见λλλ<<AB:∴AB杆是中柔度杆kN42.269=取整体为研究对象:4780060080022=-=αsin解:(1)求托架的临界荷载F cr:AbaAFABABcrABcr)()()(λσ-==∴∑=0CM)(sin aFFFABABP672==⇒α由(a)式得托架的临界荷载:kNFFABcrcrP811867.)()(==(2)校核托架的稳定性:若F p=70kN,则:[]2697.11070108.118))(33=<=⨯⨯===stPcrPABABcr nFFFFn(∴托架不安全。
(3)托架所能承受的最大载荷有没有变化?按压杆AB的稳定性进行计算:由(a)式:76PABFF=ABcrF)(ABcrF)(FABcr42.2697)(7⨯9.6按梁CD 的强度进行计算:∑=0X 0=-C AB X F αcos 取梁CD 为研究对象:y 729PAB C F F X ==⇒αcos 梁CB 段为拉-弯组合变形: 梁的B 截面为危险截面: 查附录II,表4,No.18工字钢: 3218575630cmW cm A ==,.PB F M M 30.m ax ==[]σσ≤+=+=W F A F W M A X PP C 30729.max max []kNW A F P 6.73)3.0729(=+≤⇒σ。
没有变459取:化.max kN F F P ==查附录II, 表4,No.16工字钢: 341411130cm W cm I ==,1001031=>=⋅=∴λμλyCDCD il 解:1)求柱CD 的压力Y c :为1次超静定结构;变形协调条件为:CDCY Cq C l w w w C ∆=+=CDCD C AB C ABEA l Y EI l Y EI ql -=+-48384534查表6.1: )(CDCD ABAB C A l I l I ql Y +=⇒48384534查附录II, 表1,63mm ×63mm ×5mm 等边角钢: 2414361723cm A cm I y .,.==2)求梁的工作安全因数: 取梁为研究对象,由对称性得: kN Y ql Y Y C AB BA 182=-==kNm ql l Y M AB AB AC 12842424188222-=⨯-⨯=-=∴kNm M M C 12==⇒m ax 82.2max max ===WM n SS σσσ梁的工作安全因数:3)求柱CD 的工作安全因数: m cm A I A I i y CD y y 0194209421143617232....===== 柱CD 是大柔度杆。