食品生物化学---第3章
食品生物化学重点
糖类定义:多羟醛或多羟酮及其缩聚物和某些衍生物的总称。
多糖(polysaccharides ):可水解为多个(>20)单糖或其衍生物的糖单糖的构型:一个有机分子中各个原子特有的固定的空间排列。
这种排列要求经过共价键的断裂和重新形成。
单糖的构象:构象指一个分子中,不改变共价键结构,仅靠单键的旋转或扭曲而改变分子中基团在空间的排布位置,而产生不同的排列方式。
变旋现象:一个有旋光性的溶液放置后,其比旋光度改变的现象称变旋。
化学性质:①单糖的氧化(即单糖的还原性)弱氧化剂:常用的为含Cu2+的碱性溶液 ②单糖的还原③成苷反应:单糖的半缩醛羟基(称苷羟基),与其他含羟基的化合物形成环状缩醛,在糖化学中叫糖苷。
④脱水作用⑤氨基化作用 :单糖分子中的OH 基(主要是C-2、C-3上的OH 基)可被NH2基取代而产生氨基糖,也称糖胺。
⑥脱氧:单糖的羟基之一失去氧即成脱氧糖 ⑦糖脎的生成:乳糖:乳糖酶缺乏,小肠乳糖升高引起渗透性腹泻,肠道细菌使乳糖发酵产生大量气体。
1.淀粉 直链淀粉的α-1.4-糖苷键 支链淀粉α-1.4-糖苷键 有-1,6糖苷键的分支C (CHOH )4CH 2OH D -葡萄糖H O C (CHOH )4CH 2OHH N NHC 6H 5H 2NNHC 6H 5苯肼葡萄糖苯腙++H 2O脂类(lipid )是一类微溶于水而高溶于有机溶剂的重要有机化合物。
其化学本质是脂肪酸和醇所形成的酯类及其衍生物。
脂类物质具有三个特征(1)一般不溶于水而溶于脂溶剂。
(2)是脂酸与醇所组成的酯。
(3)一般能被生物体利用,作为构建、修补组织或供能。
按化学组成分类单纯脂类: 单脂,为脂酸与醇(甘油醇和高级一元醇)所组成的酯类。
分脂、油、蜡。
复合脂类: 复脂,为脂酸与醇(甘油醇和鞘氨醇)所组成的酯类,同时还含有非脂性物质。
分为磷脂与糖脂。
衍生脂:脂类物质的衍生物,如水解产物、氧化产物等。
简单脂:脂肪酸与醇脱水缩 合形成的化合物复合脂:脂分子与磷脂、生物体分子等形成的物质 衍生脂:脂的前体及其衍生物2)系统命名法△-编码命名:从羧基端开始计算双键位置。
生物化学教案-第三章酶与维生素-4学时
(三)、诱导锲合理论:这是为了修正锁钥学说的不足而提出的一种理论。它认为,酶的活性中心与底物的结构不是刚性互补而是柔性互补。当酶与底物靠近时,底物能够诱导酶的构象发生变化,使其活性中心变得与底物的结构互补。就好像手与手套的关系一样。该理论已得到实验上的证实,电镜照片证实酶“就像是长了眼睛一样”。
管理心得:一般人认为,足以摆平或解决企业经营过程中的各种棘手问题的人,就是优秀的管理者,其实这是有待商榷的,俗话说:“预防重于治疗”,能防患于未然之前,更胜于治乱于已成之后,由此观之,企业问题的预防者,其实是优于企业问题的解决者
(3分钟)思想教育
(7分钟)新课导入
(20分钟)
酶的概述
10分钟:酶的化学组成
不适应者将被淘汰出局
善于适应是一种能力
适应有时不啻于一场严峻的考验
做职场中的“变色龙”
一、新课导入
学习生物化学我们倡导一条主线:生命的化学;化学的生命。也都是就是说只要有生命存在,那么就存在这化学反应,所有的化学反应都是在酶的催化下进行的,也就是说酶是无时无刻无处不在的(举例说明一下),酶停止工作代表生命停止。所以酶在生命活动中非常重要。下面我们开始学习酶:
授课题目(章、节或主题):
第三章酶
课时安排
2
授课时间
第4周
授课类型(请打√)
理论课□√ 研讨课□ 习题课□ 复习课□ 其他□
授课方法(请打√)
讲授□√ 讨论□ 示教□ 自学辅导□ 其他□
授课资源(请打√)
多媒体□√ 模型□ 实物□ 挂图□ 其他□
教学目的:
1.掌握酶的概念;
2.掌握酶催化的特异性、酶催化的机理;
生物化学第3章复习题(脂类的化学)
课外练习题一、名词解释1、活性脂质:是由脂肪酸和醇作用生成的酯及其衍生物2、不饱和脂肪酸:含有不饱和双键3、脂肪酸的Δ命名法:双键位置的碳原子号码从羧基端向甲基末端计数,号码后用c和t分别表示顺势和反式结构4、脂蛋白:是由制止和蛋白质组成的复合物5、糖脂:是指含一个或多个糖基的脂类,糖和脂质以共价键结合6、必须多不饱和脂肪酸:人体及哺乳动物能制造的多种脂肪酸,但不能向脂肪酸引入超过Δ9的双键7、复脂:除了含有脂肪酸和各种醇以外,还含有其他成分的酯8、磷脂:是分子中含磷酸的复合脂,包括含甘油的甘油磷脂和含鞘氨醇的鞘磷脂两大类,是生物膜的重要成分9、鞘磷脂:是有鞘氨醇、脂肪酸、磷酸和胆碱或乙醇胺组成的脂质二、符号辨识1、TG;甘油三酯2、FFA;游离脂肪酸3、PI;磷脂酰肌醇4、CM;乳糜微粒5、VLDL;极低密度脂蛋白6、ILDL;中间低密度脂蛋白7、LDL;低密度脂蛋白8、HDL;高密度脂蛋白9、PUFA;多不饱和脂肪酸10、PC;卵磷脂11、PE;脑磷脂12、PG;磷脂酰甘油13、CL;双磷脂酰甘油三、填空1、脂类按其化学组成分类分为(单纯脂质)、(复合脂质)和(衍生脂质);2、脂类按其功能分类分为(结合脂质)、(储存脂质)和(活性脂质);3、脂肪酸的Δ命名法是指双键位置的碳原子号码从(羧基)端向(甲基)末端计数;4、脂肪酸的(ω)命名法是指双键位置的碳原子号码从甲基末端向羧基端计数;5、天然脂肪酸的双键多为(顺)式构型;6、必须多不饱和脂肪酸是指人体及哺乳动物虽能制造多种脂肪酸,但不能向脂肪酸引入超过(Δ9)的双键,因而不能合成(亚麻酸)和(亚油酸),必须由膳食提供。
7、简单三酰甘油的R1=R2=R3,(棕榈酸甘油酯)、(硬脂酸甘油酯)和(油酸甘油酯)等都属于简单三酰甘油;8、鲛肝醇和鲨肝醇属于(烷醚)酰基甘油;9、(蜡)是由长链脂肪酸和长链一元醇或固醇形成的酯;10、复脂是指含有磷酸或糖基的脂类,分为(磷脂)和(糖脂)两大类;11、(甘油磷脂)是构成生物膜的第一大类膜脂;12、重要的甘油磷脂有(脑磷脂)、(卵磷脂)和(磷脂酰丝氨酸)等;13、磷脂酰丝氨酸、脑磷脂和卵磷脂的含氮碱分别是(丝氨酸)、(胆胺)和(胆酰),它们可以相互转化;14、血小板活化因子是一种(醚)甘油磷脂;15、鞘氨醇磷脂由(鞘磷脂)、(脂肪酸)和(磷脂胆酰)组成;16、糖脂是指糖通过其半缩醛羟基以(糖苷键)与脂质连接的化合物;17、鞘糖脂根据糖基是否含有(唾液酸)或硫酸基成分分为(中性)鞘糖脂和(酸性)鞘糖脂;18、最简单的硫苷脂是(硫酸)脑苷脂;神经节苷脂的糖基部分含有(唾液酸);19、萜类是(异戊二烯)的衍生物,不含脂肪酸,属简单脂类;20、类固醇的基本结构骨架是以(环戊烷多氢菲)为基础构成的甾核;21、糖脂分为(鞘糖脂)类和(甘油糖脂)类。
食品微生物学 第三章微生物的生理 第四节微生物的代谢
第三章
微生物的生理
3.1 微生物的营养 3.2 微生物的生长 3.3 微生物生长的控制 3.4 微生物的代谢
微生物的生理
3.4 微生物的代谢
代谢(metabolism)是微生物细胞与外界环境不断进行 物质交换的过程,即微生物细胞不停地从外界环境中吸收适 当的营养物质,在细胞内合成新的细胞物质并储存能量,这 是微生物生长繁殖的物质基础,同时它又把衰老的细胞和不 能利用的废物排出体外。因而它是细胞内各种生物化学反应 的总和。由于代谢活动的正常进行,保证的微生物的生长繁 殖,如果代谢作用停止,微生物的生命活动也就停止。因此 代谢作用与微生物细胞的生存和发酵产物的形成紧密相关。 微生物的代谢包括微能量代谢和物质代谢两部分。
微生物的生理
第四阶段:2-磷酸甘油酸转变为丙酮酸。这一阶段包括 以下两步反应:
① 2-磷酸甘油酸在烯醇化酶的催化下生成磷酸烯醇式丙 酮酸。
反应中脱去水的同时引起分子内部能量的重新分配,形 成一个高能磷酸键,为下一步反应做了准备。
微生物的生理
② 磷酸烯醇式丙酮酸在丙酮酸激酶的催化下,转变为 丙酮酸。
GDP+ Pi GTP 琥珀酰CoA 琥珀酸硫激酶 琥珀酸 + CoASH
琥珀酰CoA在琥珀酸硫激酶的催化下,高能硫酯键被水 解生成琥珀酸,并使二磷酸鸟苷(GDP)磷酸化形成三磷酸 鸟苷(GTP)。这是三羧酸循环中唯一的一次底物水平磷酸 化。
微生物的生理
⑥琥珀酸脱ቤተ መጻሕፍቲ ባይዱ生成延胡索酸
FAD
FADH2
琥珀酸
NAD+
NADH +H+
苹果酸
草酰乙酸
苹果酸脱氢酶
TCA循环的总反应式如下:
食品化学第三章-碳水化合物
3.条件:氨基酸和复原糖及少量的水参与
4.产物:色素〔类黑精〕
风味化合物:如麦芽酚、乙基麦芽酚、异麦芽酚
5.特点:
随着反响的进展,pH值下降(封闭了游离的氨基),复原能力上升〔复原酮产生〕;褐变初期添加亚硫酸盐,可阻止褐变,但在褐变后期参加
H
OH
H
CHO
HO
H
H
OH
H
OH HO
OH
CH2OH
D- 阿拉伯糖
CHO
CHO
H
H
CH2OH
D- 半乳糖
甘露糖
D- 葡萄糖
O
H
H
CH2OH
CH2OH
CHO
CHO
OH
H
H
OH
CH2OH
D- 木糖
CH2OH
CHO
H
OH
H
OH
OH
OH
HO
H
HO
HO
H
H
OH
H
HO
OH
H
OH
H
H
H
H
CH3
COOH
CH2OH
COOH
①根据多糖的组成分类
均多糖:指只有一种单糖组成的多糖,如淀粉,
纤维素等。
杂多糖:指由两种或两种以上的单糖组成的多糖,
如香菇多糖等。
②根据是否含有非糖基团
纯粹多糖:不含有非糖基团的多糖,也就是一般意
义上的多糖;
复合多糖:含有非糖基团的多糖,如糖蛋白、糖脂
等。
表1 食品中的糖类化合物
产品
总糖量
生物化学第三章酶化学
通式:AH2+B→BH2+A
系统命名可分为19亚类,习惯上可分为4个亚类: (1)脱氢酶:受体为NAD或NADP,不需氧。
(2)氧化酶:以分子氧为受体,产物可为水或H2O2,常需黄素辅基。
(3)过氧化物酶:以H2O2为受体,常以黄素、血红素为辅基。 (4)氧合酶(加氧酶):催化氧原子掺入有机分子,又称羟化酶。按
His 活性中心重要基团: His57 , Asp102 , Ser195
Asp
3 活性中心的研究方法 1.酶分子侧链基团修饰法 (1)非共价特异修饰法: (2)特异性共价修饰法 (3)亲和标记法
2.动力学参数测定方法 3.X-射线晶体结构分析法 4.定点诱变法
二 酶原及酶原的激活 没有催化活性的酶的前体称为酶原(zymogen)。
V max 初 速 度 v c b 1/2 V max
a
0
Km
[S]
图5-14 底物 浓度对 酶促反 应速度 的影响
酶促反应速度V与底物浓度[S]的关系
(二)Michaelis-Menten方程和米氏常数
米氏方程式推导来源于中间产物学说 解释酶促反应中底物浓度和反应速率关系的最合理的
学说是中间产物学说。该学说认为酶促反应形成酶-
通式: AB→A+B
包括醛缩酶、水化酶、脱羧酶等。共7个亚 类。
5、异构酶类 催化同分异构体之间的相互转化。
通式:A→B
其中:A、B为同分异构
包括消旋酶、异构酶、变位酶等。共6个亚 类。
6、合成酶类 催化由两种物质合成一种物质,必须与ATP 分解相偶联。也叫连接酶,如DNA连接酶。
通式:A+B+ATP→AB+ADP+Pi 或 A+B→AB+AMP+PPi
食品毒理学-第三章2 生物转化 (1)
(2)醛脱氢酶(Aldehyde dehydrogenase ALDH)
能将醛类代谢成酸类 具有基因多态性 二硫化四乙基秋兰姆(戒酒硫)是抑
制剂
1
单胺氧化
(3) 单胺氧化酶( Monoamine oxidase )
存在于肝、肾、肠、神经组织的线粒体 中;
制作用大于诱导作用。
1
黄素单加氧酶
吡咯烷生物碱类物质、单响尾蛇毒蛋白等 物质经FMO代谢形成叔胺氮氧化物,属于解毒 过程;但经P450形成亲电化合物,属于增毒反 应。 —大鼠具有高活性的P450; —豚鼠则有高活性的FMO;
1
3、醇、醛、酮氧化-还原系统和胺氧化
(1)醇脱氢酶(Alcohol dehydrogenase ADH): 位于胞浆、分布于肝、肾、肺、胃粘膜 – 能催化醇类转变为醛类,
CH3
H
R-N →R-N +HCHO
CH3 CH3
(5) 氧化基团转移:氧化脱氨、脱硫、脱卤素。
R—CH—NH2→R—C=O+NH3
│
│
CH3
CH3
1
细胞色素P450催化的反应
(6) 酯裂解(cleavage of esters):羧酸酯、磷酸酯。
R1COOCH2R2→R1COOH+R2CHO
(7) 脱氢(dehydrogenation) O ║
1
还原反应
3 羰基还原 经羰基还原酶和醇脱氢酶作用。 外源性底物:氟哌啶醇、柔红霉素、华 法林、4-硝基苯乙酮等。 内源性底物:前列腺素。
1
还原反应
4 醌还原 NAD(P)H氧化还原酶 双电子还原,形成无毒性的产物。 NADPH-P450还原酶 单电子还原, 形成超氧阴离子等自由基; 百草枯、阿霉素的代谢活化。
生物化学-3-脂类
2.活性氧(reactive oxygen)
(1)活性氧:氧或含氧的高反应活性分子 如O2. , H2O2,1O2等统称为活性氧。 (2)普通氧和几种重要的活性氧 普通氧 超氧阴离子自由基 羟基自由基 过氧化氢 单线态氧。
3.自由基链反应(chain reaction)
包括3个阶段:引发、增长、终止。 (详见下图…)
二、 脂肪酸
• 脂肪酸的种类
脂肪酸(fatty acid, FA):由一条长的烃链(“尾”) 和一个 末端羟基(“头”)组成的羧酸。 饱和脂肪酸(saturated FA):烃链不含双键(和三键)。
不饱和脂肪酸(polyunsaturated FA):含一个或多个双键。 不同脂肪酸之间的主要区别在于烃链的长度(碳原子数 目)、双键的数目和位臵。
又可分为 甘油三酯 蜡
复合脂质(compound lipid):除脂肪酸和醇外,含其他 非脂分子。
又可分为 磷脂
衍生脂质(derived lipid):由单纯脂肪酸和复合脂质衍 生而来或关系密切。 取代烃
固醇类 萜 其他脂质
糖脂
2.按脂质在水中和水界面上的行为不同:
非极性脂质:不具有溶剂可溶性,也不具有界面 可溶性。 I类极性脂质:具有界面可溶性,不具有溶剂可溶 性,能掺入膜,但自身不能形成膜。 II类极性脂质(磷脂和鞘糖脂):是成膜分子,能 形成双分子层和微囊。 III类极性脂质(去污剂):是可溶性脂质,虽具有 界面可溶性,但形成的单分子层不稳定。
• 醚甘油磷脂
缩醛磷脂 (plasmalogen) 血小板活化因子(PAF)
• 鞘磷脂
鞘磷脂(sphingomyelin)即鞘氨醇磷脂(phosphosphingolipid) ,由鞘氨醇(sphingosine)、脂肪酸、磷酰胆碱组成。
生物化学第三章 脂类化学知识点整理
脂类的生理功能
促脂溶性维生 素吸收
与细胞识别, 组织免疫等有
关
其他重要生理 活性物质的前
体
储能、供能
防止热量散 失、维持体温
结构组分:磷 脂是生物膜的
主要成分
脂类 的生理 功能
保护和固定功 能
生物化学
第二章 脂类化学
二
简单 脂质
1、甘油三酯 2、脂肪酸 3、脂肪酸与甘油三酯的理化性质
1.甘油三酯
极性头部 甘油磷脂结构通式
一、甘油磷脂
(二)主要类型
磷脂酰胆碱和磷脂酰乙醇胺是细胞膜中最丰富的脂质
一、甘油磷脂
磷脂酰丝氨酸
磷脂酰肌醇
双磷脂酰甘油
心磷脂
(三)甘油磷脂的一般性质
(1)溶解性:溶于含少量水的非极性溶剂,难溶于无水丙酮。 (2)磷脂是两性脂质,可做乳化剂,在水中能形成双分层、微囊。
(3)磷脂的水解 被碱水解 被酸水解 被专一性磷脂酶水解
如:半乳糖-N-乙酰葡萄糖胺-半乳糖-葡萄糖-鞘氨醇
甘油 三脂
三分子 脂肪酸
一分子 甘油
1.甘油三酯
单纯甘油三酯
R1、R2、R3为脂肪酸链
相同
不同
混合甘油三酯
2.脂肪酸
I. 结构
由一条4~36个碳的烃链和一个末端羧基组成的有机物。 • 脂肪酸间差别:主要是碳氢链的长度和不饱和双键的数目和位置;
2.脂肪酸 饱和脂肪酸
不饱和脂肪酸
2.脂肪酸
II. 命名及脂肪酸的简写原则
(三)甘油磷脂的一般性质 磷脂酶A1,A2,C,D:专一性水解甘油磷脂的酯键和磷酸二酯键。
溶血甘油磷酸酯(或溶血磷脂): 只含一个脂肪酸的甘油磷脂。
能溶解细胞膜。
生物化学——第三章酶
• 1926年,Sumner首次分离出脲酶结晶,证明具 有蛋白质性质。
• 1930年左右,Northrop又分离出胃蛋白酶、胰 蛋白酶及胰凝乳蛋白酶,并进行动力学探讨。
• 许多酶的一级结构已测定,1969年人工合成牛胰 核酸酶。
• 1981-1982年Cech实验室发现第一个有催化活 性的天然RNA,取名核酶ribozyme。
第三章 酶( ENZYME)
生物化学——第三章酶
第一节 酶的概念
一、对酶认识的发展
• 1857年,Paster提出酒精发酵是酵母细胞活动的结 果,并于1878年提出“酶(Enzyme)”的概念; • 1897年,Buchner提出了发酵与活细胞无关,而与细 胞液中的酶有关; • 1913年,Michaelis和Menten提出了酶促动力学原理-----米氏学说;
生物化学——第三章酶
5.异构酶 Isomerase
• 催化各种同分异构体的相互转化
• A====B 6-磷酸葡萄糖异构酶
CH2OHP O OH
OH
OH OH
CH2OHP
CH2OH
O OH
OH OH
生物化学——第三章酶
6.合成酶 Ligase or Synthetase
• (连接酶)能够催化与ATP分解反应相偶联的由小分 子合成大分子的反应。
NAD+ 该酶在此亚亚类中的编号
生物化学——第三章酶
第三节 酶的化学本质
生物化学——第三章酶
一、大多数酶是蛋白质
1、酶是蛋白质的证据 2、核酶
1981-1982,Cech发现: 核酶:四膜虫(Tetrahynena)细胞26SrRNA前体加工。
1983年S. Altman发现: 核糖核酸酶P(RNAaseP)的M1RNA组分具该酶催化特
生物化学第三章 糖类的结构和功能
二、糖的生物化学功能
⒈主要能量来源:例如,生物氧化产生ATP ⒉生物合成的碳素骨架:例如,合成氨基酸的α—酮酸、合
成核酸的核糖等。 ⒊结构物质:例如纤维素和半纤维素,甲壳素等。
三、糖类研究的历史及现状
18世纪后叶至19世纪20年代是糖类研究的第一个繁荣时期 。一大批糖被分离、纯化和表征;糖的结构、立体构型与光 学关系的法则及环状结构被建立。
吡喃
α-D-葡萄糖
β-D-葡萄糖
当形异 头碳羟基,该-OH有α型和β型两种异构体。 C1上羟基在环上方为β;在下方为α。这两种 异构体并非对映体,只是在异头碳羟基方向 不同而已,称为异头物。α型和β型可以通过 直链式而相互转变。
七、生成糖脎
糖的游离羰基能 与3分子苯肼反 应生成脎
糖脎为黄色结晶 ,难溶于水,各 种糖脎的形状与 熔点都不同,用 于鉴定糖。
九、脱氧作用
• 生成脱氧糖如D-2-脱氧核糖,L-鼠李糖、L-岩藻糖。 • 糖的显色反应
反应名称
酚试剂
适勇用于糖开类始,才反能找应到颜成色
功的路
莫利希反应 塞里万若夫反应 托伦氏反应 拜尔式反应
单糖的重要衍生物有糖醇、糖醛酸、氨基糖、 糖苷及糖脂。
糖醇:是糖分子内的醛基、酮基还原后的产物 。较稳定,有甜味。广泛分布于植物界的有甘 露醇、山梨醇。
甘露醇
由甘露糖等经镍催化加氢制 得,做片剂填充剂,用于易 吸湿药物防潮及干燥;冻干
勇于开始,才能找到成
功针的剂路载体;咀嚼片矫味剂, 使片剂溶解时吸热,口腔产 生清凉舒适感
许多糖苷是中药的有效成分,例如苦杏仁苷
黑芥子硫苷酸钾,十字花科的很多植物中,结构式如下
在辣根和芥菜籽内的酶作用下,水解为葡萄糖和异硫 氰酸烯丙酯(CH2=CH-N=C=S),产生辛辣味。
生物化学-第3章-氨基酸
(三)纸层析
Rf主要与R基 的极性有关, 溶剂的pH可 影响R基的极 性,氨基酸 与滤纸的吸 附作用也影 响Rf。
(四) 薄层层析
速度快,硅胶等支 持物可以使用较强 烈的显色方法。
(五)离子 交换层析
离子交换 树脂的结 构如图所 示,功能 基团种类 较多。
氨基酸的离子交换分离原理
若pI−pH > 0,两性离子带净正电荷,若pI−pH < 0,两性离 子带净负电荷,差值越大,所带的净电荷越多。
作业题
1. 第155页第2题;
2. 第155页第3题;
3. 第155页第5题; 4. 第155页第6题;
5. 第155页第7题;
6. 第155页第8题; 7. 第155页第9题;
8. 第156页第14题;
9. 第156页第15题。
第4 章 蛋白质的共价结构
—、蛋白质通论
(一)蛋白质的化学组成和分类 蛋白质的元素组成:C、H、O、N、S,其中含N平均为16%, 这一数据可用于蛋白质的含量测定。 1.简单蛋白 完全由氨基酸组成,不含非蛋白成分。 根据溶解性的不同,可将简单蛋白分为7类:清蛋白(溶 于水)、球蛋白(溶于稀盐溶液)、谷蛋白(溶于稀酸或稀 碱)、醇溶蛋白(溶于70%-80%的乙醇)、组蛋白(溶于水或 稀酸,可用稀氨水沉淀)、精蛋白(溶于水或稀酸,不溶于 氨水)和硬蛋白(只能溶于强酸)。 2.结合蛋白 由蛋白质和非蛋白成分组成,后者称为辅基。根据辅基 的不同,可将结合蛋白分为以下7类: 核蛋白、脂蛋白、糖蛋白、磷蛋白、血红素蛋白、黄素蛋白 和金属蛋白。
胱氨酸 半胱氨酸
N-乙酰马来酰亚胺
碘乙酸
丙烯腈
巯基阴离子
5,5′-二硫双(2-硝基苯酸)
生物化学-第三章中
1.消化系统蛋白酶原的激活
胰凝乳蛋白酶原
(胰蛋白酶)
六肽
肠 激 酶
活性中心
胰蛋白酶原 胰蛋白酶
胰蛋白酶原的激活示意图
胰蛋白酶对消化道酶的激活作用
胰蛋白酶原
肠 激 酶 胰凝乳蛋白酶原
六肽 弹性蛋白酶原
胰凝乳蛋白酶
胰蛋白酶
弹性蛋白酶
羧肽酶原
羧肽酶
激肽原 激肽释放酶
12中蛋白质凝 血因子有7种是 丝氨酸蛋白酶
进入过渡态,降低了反应活化能,使反应
易于发生。 或者酶构象发生改变的同时,底物分子也发 生形变,形成互相契合的酶-底物复合物。
过渡态
能
量
一般催化 剂反应活
改 化能
变 初态
非催化反应活化能
酶促反应活化能
反应总能量变化 终态
酶促反应活化能的改变
酶(E)与底物(S)结合生成不稳 定的中间物(ES),再分解成产物 (P)并释放出酶,使反应沿一个低 活化能的途径进行,降低反应所需 活化能,所以能加快反应速度。
侧链基团),酶活力丧失与修饰剂浓度成比例,底 物或竞争性抑制剂可降低修饰作用。
特异性共价修饰(作用于酶的特定氨基酸),
如二异丙基氟磷酸(DFP)与酶活性部位的丝氨酸 羟基结合;
亲和标记试剂可以与活性部位的特定基团共价定
量结合,如对甲苯磺酰-L-苯丙氨酰氯甲基酮(TPCK) 与胰凝乳蛋白酶活性部位丝氨酸羟基的结合, 与底 物结构比较类似-亲和标记-自杀性底物也是。
别构剂: 正别构剂---别构激活剂 负别构剂---别构抑制剂
(二)别构酶
别构酶均为寡聚酶,除活性部位外,
还有可以同效应物(调节物)结合的
调节部位.
别构酶的调控方式有四类:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
食品生物化学
(2)熔点与沸点 脂肪酸的熔点随碳链增长及饱和度的增高 而不规则的增高,且偶数碳原子链脂肪酸的熔点比相邻的奇数碳 链脂肪酸高。双键引入可显著降低脂肪酸的熔点,如C18 的四种 脂肪酸中,硬脂肪酸为70℃,亚油酸为-5℃,亚麻酸为-11℃; 顺势异构体低于反式异构体,如顺式油酸熔点为16.3℃,而反式 为43.7℃。 脂肪酸的沸点随链长而增加,饱和度不同但碳链长度相同的 脂肪酸沸点相近。 脂肪是甘油酯的混合物,而且其中还混有其它物质,所以没 有确切的熔点与沸点。一般油脂的熔点最高在40~55℃之间, 而且与组成的脂肪酸有关。
食品生物化学
②皂化价 皂化1g油脂所需氢氧化钾的毫克数。皂化价可反 映脂肪的平均分子量,因为单位重量的脂肪如分子量愈大,则摩 尔浓度愈小,所需的氢氧化钾也愈少,如果皂化价低于常数以下, 可推断混入了其他高分子量的脂肪或不皂化性的物质,如甾体物 质、脂溶性维生素及类胡萝卜素等。 ③酯值 皂化1g纯油脂所需要氢氧化钾的毫克数称为酯值, 这里不包括游离脂肪酸的作用。 ④不皂化物 油脂中含有少量不受氢氧化钾作用的脂质物质, 如甾醇、高级醇、脂溶性色素和维生素等,称为不皂化物。不皂 化物含量以百分数表示。
食品生物化学
4.衍生脂类 般性质的物质。
(1)脂肪酸 (2)高级醇类
由简单脂类与复合脂类衍生而仍具有脂类一
饱和及不饱和的脂肪酸。 除甘油以外的高分子量醇类。
(3)烃类 不含羧基或醇基,又不被皂化的化合物,包括 直链烃、类胡萝卜素等饱和及不饱和的烃类。
食品生物化学
第二节 脂肪 一、脂肪的化学结构与种类
食品生物化学
水产动物脂肪中以C20及C22脂肪酸居多,其中不饱和脂肪 酸的含量占绝大部分,种类也很多,饱和脂肪酸仅含少量。淡 水鱼类脂肪中C18不饱和脂肪酸的比例高,而海水鱼类脂肪中则 以C20及C22不饱和脂肪酸含量居优势,如含二十二碳六烯酸 (DHA)和二十碳五烯酸(EPA),具有调节血脂、降低胆固 醇和甘油三脂的含量,防止血管凝固,促进血液循环,预防脑 溢血、脑血栓及老年痴呆、减少动脉硬化及高血压,促进脑部 和眼睛的发育等功效。DHA和EPA俗称为脑黄金。
食品生物化学
图3-2 甘油的特征反应
食品生物化学
三、脂肪酸
脂肪酸是脂类化合物的主要成分之一。三酰甘油分子中, 甘油是不变的,因此,脂肪的性质与其中所含脂肪酸有很大关 系。 1.脂肪中脂肪酸的种类
目前从动物、植物、微生物中分离出的脂肪酸有近200多 种,大多数是偶数碳原子的直链脂肪酸,带侧链者极少,奇数 碳原子的也少见,但在微生物产生的脂肪中有相当量的C15、 C17 及C19 的脂肪酸,还有少数含环状烃基的脂肪酸。脂肪酸的 碳氢链有的是饱和的,有的是不饱和的,含有一个或几个双键。 饱和脂肪酸的链长一般为C4~C30,不饱和脂肪酸链长一般为 C10~C24。
四、脂肪酸及脂肪的性质
1.物理性质 (1)色泽与气味 纯净的脂肪酸及甘油酯是无色的,但天然 脂肪常具有各种颜色,如棕黄、黄绿、黄褐色等,这是因为它溶 有各种色素物质,如类胡萝卜素等的缘故。纯的脂肪是没有气味 和滋味的,但天然的脂肪则具有特殊的气味和滋味。如芝麻油、 花生油、豆油等。天然脂肪的气味除了极少数由短链脂肪酸构成 的脂肪外,一般也是由于其所含的非脂肪成分引起的。溶于脂肪 中的低级脂肪酸(≤C10)的挥发性气味也是造成脂肪嗅味的原 因。
食品生物化学
表3-2
油脂 熔点(℃) 大豆油 -8~-18 花生油 0~3
常用食用油脂的熔点范围(℃)
向日葵油 -16~-19 黄油 28~42 猪油 34~48 牛油 42~50
熔点范围对脂肪消化来说十分重要,健康人体温为37℃左右, 熔点高于体温的脂肪较难消化ቤተ መጻሕፍቲ ባይዱ比如牛油、羊油,只有趁热食用 才容易消化。油脂的沸点一般在180~200℃之间,也与组成的脂 肪酸有关。 (3)密度、溶解性与折光率 脂肪的相对密度一般与其相 对分子质量成反比,与不饱和度成正比。除个别(腰果籽壳油) 外,脂肪的密度都小于1。
食品生物化学
(1)饱和脂肪酸 饱和脂肪酸的特点是碳氢链上没有双键 存在。根据碳原子数的不同,可分为: ①低级饱和脂肪酸(挥发性脂肪酸) 分子中碳原子数≤10 的脂肪酸,常温下为液态,如常见的丁酸、乙酸等,在乳脂及 椰子油中多见。 ②高级饱和脂肪酸(固态脂肪酸) 分子中碳原子数>10的 脂肪酸,常温下为固态。如常见的软脂酸和硬脂酸等。
在不饱和脂肪酸中,有一些在人体内有着特殊的生理作用, 是维持人体正常生理功能所必需的,人体不能合成,必须由食 物供给,这种不饱和脂肪酸称为必需脂肪酸。亚麻酸不属于必 需脂肪酸,花生四烯酸(C20:4)可在体内由亚油酸合成及转化 而得到,因此亚油酸是最重要的必需脂肪酸。必需脂肪酸是组 织细胞的组成成分,而且与类脂代谢也有密切关系。必需脂肪 酸最好的食物来源是植物油类,动物脂肪中含量不多。
(2)蜡 脂肪与高级一元醇所成的酯。
食品生物化学
3.复合脂类 复合脂类分子中除了脂肪酸与醇以外,还有其他的化合物。 复合脂类主要以下几类:
(1)磷脂 由脂肪酸、醇、磷酸及一个含氮的碱构成。如: 甘油磷脂、卵磷脂、脑磷脂等。
(2)糖脂 糖脂含有糖(半乳糖和葡萄糖)、一分子脂肪 酸及神经氨基醇,不含磷酸及甘油。 (3)蛋白脂 蛋白质与脂类的复合物。
高等陆生动物脂肪中的脂肪酸主要是软脂酸、油酸,并往 往含有硬脂酸。软脂酸及油酸也是哺乳动物乳汁中的主要脂肪 酸。此外,许多动物(特别是反刍动物)的乳中含有相当多的 (5%~30%)短链脂肪酸(C4~C10)。
食品生物化学
两栖类及爬行类动物的脂肪含有大量C20及C22不饱和脂肪酸, 与水产动物相似;而鸟类及啮齿类则更接近于其他高等陆生动物。
食品生物化学
生物化学中的脂类范围广泛,并不局限于由脂肪酸和醇所 组成的物质。一般把生物体中具有脂溶性的化合物统称为脂类。 细胞内存在的萜类和甾(固醇)类物质也囊括进来。萜类和甾 类都不含有脂肪酸组分。
二、脂类的分类
1.单脂质 2.单脂质是由脂肪酸与醇所成的脂 根据醇的性质单脂质可 分为: (1)脂肪 脂肪酸与甘油所成的脂,又称中性脂肪。室温 下为液态的中性脂肪称为油。
食品生物化学
(1)水解与皂化 所有的脂肪都能在酸、碱、酶的作用下水 解,水解产物是脂肪酸及甘油。脂肪在碱性溶液中水解的产物不 是游离脂肪酸而是脂肪酸的盐类,习惯上称为肥皂。因此把脂肪 在碱性溶液中的水解称为皂化作用。 C3H5(OCOR)3+3KOH→C3H5(OH)3+3R•COOK 脂肪 甘油 皂 碱与脂肪及及脂肪酸的作用可以用酸价和皂化值、酯值和不 皂化物来反映,这几项内容也是表征脂肪特点的重要指标。 ①酸价 酸价是中和1g油脂中的游离脂肪酸所需要的氢氧化 钾的毫克数。它因油脂的精炼程度、保存时间及水解程度不同而 有差异。例如完全精炼好的油,酸价一般在0.03左右,而毛油酸 价多在1以上。所以酸价的高低是衡量油脂好坏的指标。
常温下,含不饱和脂肪酸多的植物脂肪一般为液态,称之 为油;含饱和脂肪酸多的动物脂肪在常温下一般为固态,称之 为脂。二者均以其来源名称命名。如:花生油、豆油、牛脂等。
食品生物化学
图3-1
脂肪的化学结构
食品生物化学
二、甘油
甘油(又名丙三醇),是构成脂肪的醇基部分,在各种油脂 中含量一般为4%~6%。 未经酯化的甘油能溶于水和乙醇,不溶于脂肪溶剂,沸点为 290℃,相对密度1.260。 甘油在高温下与脱水剂(无水CaCl2 、KHSO4 、MgSO4等) 共热,失水生成具有刺激鼻,喉及眼黏膜的辛辣气味的丙烯醛, 是鉴别甘油的特征的反应。油脂在高温时发生臭味就是产生丙烯 醛的缘故,也可利用此种性质来鉴定物质中是否有油脂存在。
脂肪是甘油与脂肪酸所成的酯,也称真脂或中性脂肪。
若构成甘油酯的三个烃基(R1、R2、R3)相同,则称为单 纯甘油酯,否则称为混合物甘油酯。天然脂肪中单纯甘油酯很 少,一般都是混合甘油酯。在一种脂肪中,一般至少有三种以 上的脂肪酸参与成酯,根据排列组合的规律,当一种脂肪中含 有三种脂肪酸时,就可能有10种不同的混合甘油酯存在。
(2)不饱和脂肪酸 分子中含有双键或三键的脂肪酸叫做 不饱和脂肪酸,通常为液态。
不饱和脂肪酸通常用Cx:y表示,其中x表示碳链中碳原子的 数目,y表示不饱和双键的数目。
食品生物化学
含一个双键的脂肪酸 等; 如油酸(C18:1)、棕榈油酸(C16:1)
含两个以上双键的脂肪酸。主要有亚油酸(C18:2)、亚麻 酸(C18:3)等。
食品生物化学
第三章 脂类化学
• 第一节 概述 • 第二节 脂肪 • 第三节 类脂 • 第四节 油脂加工的化学
食品生物化学
学习目标
1.了解脂类化合物的特征及分类。
2.掌握脂肪及脂肪酸的性质。
3.了解食品热加工中油脂的变化。
4.了解油脂加工中的化学变化。
食品生物化学
第一节 概述
一、脂类的特征
脂类是一类混合有机化合物,包括脂肪、蜡、磷脂、糖脂、 类固醇等。 脂类的元素组成主要为碳、氢、氧三种,有的还含有氮、 磷、硫。 脂类共同特征:不溶于水而易溶于乙醚等非极性的有机溶 剂;都具有酯的结构,或与脂肪酸有成酯的可能;都是生物体 所产生,并能为生物体所利用。
食品生物化学
脂肪不溶于水,除蓖麻油外,均仅略溶于低级醇中,但易溶于乙 醚、丙酮、苯、二硫化碳等溶剂。 脂肪酸的溶解度比相应的甘油酯大,都能溶于极性和非极性 有机溶剂中,低级脂肪酸都能溶于水,不饱和脂肪酸比饱和脂肪酸 更易溶于有机溶剂 脂肪的折光率随组成中脂肪酸的碳原子数、双键数增加而 增大,尤其是共轭双键影响更显著。因此折光率及其变化是鉴定 脂肪类别、纯度和酸败程度的重要物理常数。 2.主要化学性质
食品生物化学
2.各类生物脂肪中脂肪酸组成的特点
各种不同类型生物脂肪中的脂肪酸组成有不同的特点。陆 地上动、植物脂肪中多数为C16~C18的脂肪酸,尤以C18为最多。 动物脂肪主要是软脂酸、硬脂酸、油酸,且往往硬脂酸较多, 不饱和脂肪酸含量低。存在于植物果肉里的脂肪,如棕榈油、 橄榄油,主要脂肪酸是软脂酸、油酸,并往往含有亚油酸。种 子脂肪中一般以软脂酸、油酸、亚油酸及(或)亚麻酸为主要 脂肪酸。