高中数学难点突破_难点08__奇偶性与单调性(二)
函数的奇偶性与单调性word精品文档13页
函数的奇偶性与单调性一.知识总结1.函数的奇偶性(首先定义域必须关于原点对称)(1)为奇函数;为偶函数;(2)奇函数在原点有定义(3)任一个定义域关于原点对称的函数一定可以表示成一个奇函数和一个偶函数之和即(奇)(偶).2.函数的单调性(注:①先确定定义域;②单调性证明一定要用定义)(1)定义:区间上任意两个值,若时有,称为上增函数,若时有,称为上减函数.(2)奇函数在关于原点对称的区间上单调性相同;偶函数在关于原点对称的区间上单调性相反.判断函数单调性的方法:①定义法,即比差法;②图象法;③单调性的运算性质(实质上是不等式性质);④复合函数单调性判断法则.3.周期性:周期性主要运用在三角函数及抽象函数中,是化归思想的重要手段.求周期的重要方法:①定义法;②公式法;③图象法;④利用重要结论:若函数f(x)满足f(a-x)=f(a+x),f(b-x)=f(b+x),a≠b,则T=2|a-b|.二.例题精讲【例1】已知定义域为的函数是奇函数.(Ⅰ)求的值;(Ⅱ)若对任意的,不等式恒成立,求的取值范围.解析:(Ⅰ)因为是奇函数,所以=0,即又由f(1)= -f(-1)知(Ⅱ)由(Ⅰ)知.又由题设条件得:即:,整理得上式对一切均成立,从而判别式【例2】设函数在处取得极值-2,试用表示和,并求的单调区间.解:依题意有而故解得从而。
令,得或。
由于在处取得极值,故,即。
(1)若,即,则当时,;(2)当时,;当时,;从而的单调增区间为;单调减区间为若,即,同上可得,的单调增区间为;单调减区间为【例3】(理)设函数,若对所有的,都有成立,求实数的取值范围.(文)讨论函数的单调性(理)解法一:令g(x)=(x+1)ln(x+1)-ax,对函数g(x)求导数:g′(x)=ln(x+1)+1-a令g′(x)=0,解得x=e a-1-1,(i)当a≤1时,对所有x>0,g′(x)>0,所以g(x)在[0,+∞)上是增函数,又g(0)=0,所以对x≥0,都有g(x)≥g(0),即当a≤1时,对于所有x≥0,都有f(x)≥ax.(ii)当a>1时,对于0<x<e a-1-1,g′(x)<0,所以g(x)在(0,e a-1-1)是减函数,又g(0)=0,所以对0<x<e a-1-1,都有g(x)<g(0),即当a>1时,不是对所有的x≥0,都有f(x)≥ax成立.综上,a的取值范围是(-∞,1].解法二:令g(x)=(x+1)ln(x+1)-ax,于是不等式f(x)≥ax成立即为g(x)≥g(0)成立.对函数g(x)求导数:g′(x)=ln(x+1)+1-a令g′(x)=0,解得x=e a-1-1,当x>e a-1-1时,g′(x)>0,g(x)为增函数,当-1<x<e a-1-1,g′(x)<0,g(x)为减函数,所以要对所有x≥0都有g(x)≥g(0)充要条件为e a-1-1≤0.由此得a≤1,即a的取值范围是(-∞,1].(文)解:设,则当时,,则为增函数当时,,则为减函数当时,为常量,无单调性【例4】(理)已知函数,其中为常数.(Ⅰ)若,讨论函数的单调性;(Ⅱ)若,且=4,试证:.(文)已知为定义在上的奇函数,当时,,求的表达式.(理)(文)解:∵为奇函数,∴当时,∵为奇函数∴三.巩固练习1.已知是上的减函数,那么的取值范围是( )A. B. C.D.2.已知是周期为2的奇函数,当时,,设则( )A. B. C. D.3.下列函数中,在其定义域内既是奇函数又是减函数的是( )A. B. C.D.4.若不等式对于一切(0,)成立,则的取值范围是A.0B.–2 C.-D.-35.设是上的任意函数,则下列叙述正确的是( )A.是奇函数B.是奇函数C.是偶函数D.是偶函数6.已知定义在上的奇函数满足,则的值为( )A.-1 B.0 C.1D.27.已知函数的图象与函数(且)的图象关于直线对称,记.若在区间上是增函数,则实数的取值范围是( )A. B. C.D.8.(理)如果函数在区间上是增函数,那么实数的取值范围是( )A.B.C.D.9.对于上可导的任意函数,若满足,则必有( )A. B. C.D.10.已知,则( )A. B.C. D.11.已知函数,若为奇函数,则.12.已知函数是定义在上的偶函数. 当时,,则当时,.13.是定义在上的以3为周期的偶函数,且,则方程=0在区间(0,6)内解的个数的最小值是( )A.5B.4C.3D.214.下列函数既是奇函数,又在区间上单调递减的是( )A. B. C. D.15.若函数, 则该函数在上是( )A.单调递减无最小值B.单调递减有最小值C.单调递增无最大值D.单调递增有最大值16.若函数在区间内单调递增,则的取值范围是( )A. B.C. D.17.设是定义在上的奇函数,且的图象关于直线对称,则______.18.设函数在上满足,,且在闭区间[0,7]上,只有.(Ⅰ)试判断函数的奇偶性;(Ⅱ)试求方程=0在闭区间[-2005,2005]上的根的个数,并证明你的结论.19. (理)已知,函数(1)当为何值时,取得最小值?证明你的结论;(2)设在[ -1,1]上是单调函数,求的取值范围.(文)已知为偶函数且定义域为,的图象与的图象关于直线对称,当时,,为实常数,且.(1)求的解析式;(2)求的单调区间;(3)若的最大值为12,求.20.已知函数的图象过点(0,2),且在点处的切线方程为.(1)求函数的解析式;(2)求函数的单调区间.21.已知向量若函数在区间(-1,1)上是增函数,求的取值范围.22. (理)已知函数,,.若,且存在单调递减区间,求的取值范围.(文)已知函数在区间上是减函数,且在区间上是增函数,求实数的值.巩固练习参考答案1. C2. D3. A4. C5. D6. B7. D8. B9. C 10. A 11.a=12. -x-x4 13. B 14. D 15. A 16. B 17. 018 .解:由f(2-x)=f(2+x),f(7-x)=f(7+x)得函数的对称轴为,从而知函数不是奇函数,由从而知函数的周期为又,故函数是非奇非偶函数;(II)由(II) 又故f(x)在[0,10]和[-10,0]上均有有两个解,从而可知函数在[0,2005]上有402个解,在[-2005.0]上有400个解,所以函数在[-2005,2005]上有802个解.19. (理) 解:(I)对函数求导数得令得[+2(1-)-2]=0从而+2(1-)-2=0解得当变化时,、的变化如下表+0-0+递增极大值递减极小值递增∴在=处取得极大值,在=处取得极小值。
高中数学 函数的奇偶性与单调性复习
高中数学:函数的奇偶性与单调性复习一、函数奇偶性的复习函数的奇偶性是函数的重要性质之一,它反映了函数在输入与输出之间的内在关系。
根据奇偶性的定义,我们可以将函数分为奇函数和偶函数。
奇函数是指对于定义域内的任意x,都有f(-x)=-f(x)的函数;偶函数是指对于定义域内的任意x,都有f(-x)=f(x)的函数。
在复习过程中,我们需要掌握以下几点:1、掌握奇偶性的定义,理解奇函数和偶函数的特性。
2、掌握奇偶性的判断方法,能够根据函数的图像和性质判断其奇偶性。
3、了解奇偶性在函数性质中的应用,如对称性、单调性等。
二、函数单调性的复习函数的单调性是函数变化的另一种重要性质,它描述了函数在输入增加或减少时输出的变化情况。
如果对于定义域内的任意x1<x2,都有f(x1)<f(x2),则称函数在该区间上单调递增;如果对于定义域内的任意x1<x2,都有f(x1)>f(x2),则称函数在该区间上单调递减。
在复习过程中,我们需要掌握以下几点:1、掌握单调性的定义,理解单调递增和单调递减的含义。
2、掌握判断函数单调性的方法,能够根据函数的图像和性质判断其单调性。
3、了解单调性在函数性质中的应用,如最值、不等式等。
4、能够利用导数工具判断函数的单调性,并了解导数与单调性的关系。
三、总结函数的奇偶性和单调性是高中数学中重要的概念和性质,它们在函数的性质和应用中扮演着重要的角色。
通过复习,我们要能够深入理解奇偶性和单调性的定义和性质,掌握判断方法,并了解它们在解决实际问题中的应用。
我们还要能够利用导数工具判断函数的单调性,为后续的学习打下基础。
高中数学《函数的单调性》公开课一、教学背景分析函数的单调性是高中数学中非常重要的一部分,它不仅对于理解函数的概念有着关键性的作用,而且也是解决实际问题中常常需要用到的工具。
因此,通过对函数的单调性的学习,学生可以更好地理解函数的概念和性质,提高解决实际问题的能力。
高中高一数学教案:函数单调性与奇偶性
高中高一数学教案:函数单调性与奇偶性一、教学目标1.理解函数单调性与奇偶性的概念。
2.能够判断给定函数的单调性与奇偶性。
3.能够运用单调性与奇偶性的性质解决实际问题。
二、教学重点与难点1.教学重点:函数单调性与奇偶性的概念及其判断方法。
2.教学难点:单调性与奇偶性的综合运用。
三、教学过程(一)导入1.通过提问方式引导学生回顾初中阶段学习的函数知识,如一次函数、二次函数的单调性。
2.提问:同学们,你们知道函数的单调性和奇偶性吗?它们有什么实际意义?(二)新课讲解1.讲解函数单调性的概念:(1)定义:函数f(x)在定义域D内,如果对于任意的x1,x2∈D,且x1<x2,都有f(x1)<f(x2),则称f(x)在D内是增函数;如果对于任意的x1,x2∈D,且x1<x2,都有f(x1)>f(x2),则称f(x)在D内是减函数。
(2)举例说明:以一次函数y=x和二次函数y=x^2为例,讲解它们的单调性。
2.讲解函数奇偶性的概念:(1)定义:函数f(x)在定义域D内,如果对于任意的x∈D,都有f(-x)=f(x),则称f(x)是偶函数;如果对于任意的x∈D,都有f(-x)=-f(x),则称f(x)是奇函数。
(2)举例说明:以一次函数y=x和二次函数y=x^2为例,讲解它们的奇偶性。
3.讲解单调性与奇偶性的关系:(1)单调性与奇偶性是函数的两种基本性质,它们之间有一定的联系。
(2)单调性可以判断函数在某一区间内的增减趋势,而奇偶性可以判断函数在y轴两侧的对称性。
(3)单调性与奇偶性的综合运用可以解决一些实际问题。
(三)课堂练习(1)y=2x+1(2)y=x^2(1)y=x^3(2)y=x^2+1(1)f(x+1)(2)f(-x)(四)案例分析1.分析题目:已知函数f(x)=x^3-3x,求f(x)的单调区间和奇偶性。
2.解题步骤:(1)求导数:f'(x)=3x^2-3。
(2)判断单调性:令f'(x)>0,解得x>1或x<-1;令f'(x)<0,解得-1<x<1。
高二数学复习(八)函数的单调性与奇偶性
高二数学复习(八)函数的单调性与奇偶性知识梳理1.函数的单调性自左向右看图象是___________自左向右看图象是__________(2)单调区间的定义若函数()f x 在区间D 上是_______或_____ ___,则称函数()f x 在这一区间上具有(严格的)单调性,________叫做()f x 的单调区间.2.奇函数、偶函数的概念一般地,如果对于函数()f x 的定义域内任意一个x ,都有____________,那么函数()f x 就叫做偶函数. 一般地,如果对于函数()f x 的定义域内任意一个x ,都有___ __________,那么函数()f x 就叫做奇函数。
奇函数的图象关于原点对称;偶函数的图象关于y 轴 对称。
3.判断函数的奇偶性判断函数的奇偶性,一般都按照定义严格进行,一般步骤是: (1)考查定义域是否关于______对称;(2) 若()f x -=______,则()f x 为奇函数; 若()f x -=________,则()f x 为偶函数; 若()f x -=________且()f x -=________,则()f x 既是奇函数又是偶函数;若()f x -)≠-()f x 且()f x -≠()f x ,则()f x 既不是奇函数又不是偶函数,即非奇非偶函数.4.奇、偶函数的性质(1)奇函数在关于原点对称的区间上的单调性_____, 偶函数在关于原点对称的区间上的单调性______(填“相同”、“相反”). (2)在公共定义域内①两个奇函数的和是_____,两个奇函数的积是偶函数; ②两个偶函数的和、积是_________;③一个奇函数,一个偶函数的积是_________.典型例题例1 . 求证:(1)函数2()231f x x x =-+-在区间3(,]4-∞上是单调递增函数; (2)函数21()1x f x x -=+在区间(,1)-∞-和(1,)-+∞上都是单调递增函数.例2.函数()f x =的单调性为________________ 例3.若()x f 是定义在()+∞,0上的增函数,则不等式()()[]28->x f x f 的解集是________ 例4.若()()33212-++-=m mx x m x f 为偶函数,则实数m 的值为_______例5.判断下列函数的奇偶性:(1)2(12)()2x xf x +=_____________;(2)()lg(f x x =_____________;(3)221()lg lgf x x x =+______________;(4)()(1f x x =-; (5)2()11f x x x =+-+_______________;(6)22(0),()(0).x x x f x x x x ⎧-+≥⎪=⎨<+⎪⎩___________例 6. 已知定义在R 上的函数()f x 是奇函数,且当0x >时,2()22f x x x =-+,求函数()f x 的解析式,并指出它的单调区间.课后练习1.函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是( )A .f (x )=1x B .f (x )=(x -1)2 C .f (x )=e x D .f (x )=ln(x +1)2.若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( )A .)2()1()23(f f f <-<- B .)2()23()1(f f f <-<- C .)23()1()2(-<-<f f f D .)1()23()2(-<-<f f f3.下列函数中,在其定义域内既是奇函数又是减函数的是( ) A .R x x y ∈-=,3 B .R x x y ∈-=,1 C .R x x y ∈=, D .R x x y ∈=,)21( 4.下列函数中: ①1()f x x=;②()221f x x x =++;③()f x x =-;④()1f x x =-. 其中,在区间(0,2)上是递增函数的序号有 . 5.函数y x x =的递增区间是___ __.6.函数y =的递减区间是__________.7.已知函数()y f x =在定义域R 上是单调减函数,且(1)(2)f a f a +>,则实数a 的取值范围__________.8.已知函数1()21x f x =+,则该函数在R 上单调递 ,(填“增”“减”)值域为_______. 9.已知函数2()45f x x mx =-+在(,2)-∞-上是减函数,在(2,)-+∞上是增函数,则(1)f = .10.函数2)1(2)(2+-+-=x a x x f 在(4,4)-上是增函数,则实数a 的范围是 .11.给出4个函数:①5()5f x x x =+;②421()x f x x -=;③()25f x x =-+;④()x x f x e e -=-.其中奇函数的有___ ;偶函数的有____ ;非奇非偶的有 . 12. 设函数()()()xa x x x f ++=1为奇函数,则实数=a .13.若f (x )是偶函数,当x ∈[0,+∞)时,f (x )=x -1,求f (x -1)<0的解集________.14.设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f x f f +=+=则=)5(f _______. 15.若函数)(x f 是定义在R 上的偶函数,在]0,(-∞上是减函数,且0)2(=f ,则使0)(<x f 的x 的取值范围是 . 16.已知f (x )=ax 2+bx +3a +b 是偶函数,且定义域为[a -1,2a ],则a =______,b =_______.17.已知f(x)=x 5+ax 3-bx-8,f(-2)=10,求f(2)18.已知()f x 是奇函数,在区间(2,2)-上单调递增,且有(2)(12)0f a f a ++->,求实数a 的取值范围。
函数的性质——奇偶性、单调性、周期性知识点及题型归纳
函数的性质——奇偶性、单调性、周期性知识点及题型归纳知识点精讲函数奇偶性定义设D D x x f y (),(∈=为关于原点对称的区间),如果对于任意的D x ∈,都有)()(x f x f =-,则称函数)(x f y =为偶函数;如果对于任意的D x ∈,都有)()(x f x f -=-,则称函数)(x f y =为奇函数. 性质(1)函数具有奇偶性的必要条件是其定义域关于原点对称.(2)奇偶函数的图象特征.函数)(x f 是偶函数⇔函数)(x f 的图象关于y 轴对称;函数)(x f 是奇函数⇔函数)(x f 的图象关于原点中心对称.(3)若奇函数)(x f y =在0=x 处有意义,则有0)0(=f ;偶函数)(x f y =必满足|)(|)(x f x f =.(4)偶函数在其定义域内关于原点对称的两个区间上单调性相反;奇函数在其定义域内关于原点对称的两个区间上单调性相同.(5)若函数)(x f 的定义域关于原点对称,则函数)(x f 能表示成一个偶函数与一个奇函数的和的形式.记)]()([21)(x f x f x g -+=,)]()([21)(x f x f x h --=,则)()()(x h x g x f +=. (6)运算函数的奇偶性规律:运算函数是指两个(或多个)函数式通过加、减、乘、除四则运算所得的函数,如)()(),()(),()(),()(x g x f x g x f x g x f x g x f ÷⨯-+.对于运算函数有如下结论:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇)(÷⨯奇=偶;奇)(÷⨯偶=奇;偶)(÷⨯偶=偶.(7)复合函数)]([x g f y =的奇偶性原来:内偶则偶,两奇为奇.函数的单调性定义一般地,设函数)(x f 的定义域为D ,区间D M ⊆,若对于任意的M x x ∈21,,当21x x <时,都有)()(21x f x f <(或)()(21x f x f >),则称函数)(x f 在区间M 上是单调递增(或单调递减)的,区间M 为函数)(x f 的一个增(减)区间.注:定义域中的M x x ∈21,具有任意性,证明时应特别指出“对于任意的M x x ∈21,”.单调性是针对定义域内的某个区间讨论的.设],[,21b a M x x =∈且21x x <,则)(0)()(2121x f x x x f x f ⇔>--在],[b a 上是增函数⇔过单调递增函数图象上任意不同两点的割线的斜率恒大于零⇔0)]()()[(2121>--x f x f x x .)(0)()(2121x f x x x f x f ⇔<--在],[b a 上是减函数⇔过单调递减函数图象上任意不同两点的割线的斜率恒小于零⇔0)]()()[(2121<--x f x f x x .性质对于运算函数有如下结论:在公共区间上,增+增=增;减+减=减;增-减=增;减-增=减.一般地,对于乘除运算没有必然的结论.如“增×增=增”不一定成立;“若)(x f 为增函数,则)(1x f 为减函数”也是错误的.如)0,()(≠∈=x R x x x f ,则xx f y 1)(1==为减函数是不正确的,但若具备如下特殊要求,则结论成立: 若)(x f 为增函数,且(0)(>x f 或)(x f 0<),则)(1x f 为减函数. 若)(x f 为减函数,且(0)(>x f 或)(x f 0<),则)(1x f 为增函数. 复合函数的单调性复合函数的单调性遵从“同增异减”,即在对应的取值区间上,外层函数是增(减)函数,内层函数是增(减)函数,复合函数是增函数;外层函数是增(减)函数,内层函数是减(增)函数,复合函数是减函数. 函数的周期性定义设函数))((D x x f y ∈=,如存在非零常数T ,使得对任何D T x D x ∈+∈,,且)()(x f T x f =+,则函数)(x f 为周期函数,T 为函数的一个周期.若在所有的周期中存在一个最小的正数,则这个最小的正数叫做最小正周期.注:函数的周期性是函数的“整体”性质,即对于定义域D 中的任何一个x ,都满足)()(x f T x f =+;若)(x f 是周期函数,则其图像平移若干整数个周期后,能够完全重合.性质若)(x f 的周期为T ,则)0,(≠∈n Z n nT 也是函数)(x f 的周期,并且有)()(x f nT x f =+.有关函数周期性的重要结论(如表所示)()()()()211();()2()()()()2()()4()()2()()()()()2()()()2()()()(x R f x T f x T f x T f x T f x T f x T T f x f x f x T f x T T f x T f x T T f a x f a x b a f b x f b x f a x f a x a f x f a x f a x b a f b x f b x f a ∈+=+=-+=+=-+=-+=--+=-⎧-⎨+=-⎩+=-⎧⎨⎩+=--⎧-⎨+=--⎩函数式满足关系()周期为偶函数)()2()()()4()()()()()4()()()4()x f a x a f x f a x f a x b a f b x f b x f a x f a x a f x f a x f a x a f x +=--⎧⎨⎩+=-⎧-⎨+=--⎩+=-⎧⎨⎩+=--⎧⎨⎩为奇函数为奇函数为偶函数函数的的对称性与周期性的关系 (1)若函数)(x f y =有两条对称轴)(,b a b x a x <==,则函数)(x f 是周期函数,且)(2a b T -=;(2)若函数)(x f y =的图象有两个对称中心))(,(),,(b a c b c a <,则函数)(x f y =是周期函数,且)(2a b T -=;(3)若函数)(x f y =有一条对称轴a x =和一个对称中心))(0,(b a b <,则函数)(x f y =是周期函数,且)(4a b T -=.题型归纳及思路提示题型1 函数的奇偶性思路提示:判断函数的奇偶性,常用以下两种方法:(1)定义法.①首先看定义域是否关于原点对称;②若)()(x f x f -=-,则函数)(x f 为奇函数;若)()(x f x f =-,则函数)(x f 为偶函数.若函数)(x f 的图像关于y 轴对称,则)(x f 为偶函数.【例2.25】判断下列函数的奇偶性.(1)3|3|36)(2-+-=x x x f ; (2)11)(22-+-=x x x f ; (3))1(log )(22++=x x x f ;(4)2|2|)1(log )(22---=x x x f ; (5)⎩⎨⎧>+-<+=)0()0()(22x x x x x x x f .解析 (1)由3|3|36)(2-+-=x x x f 可知⎩⎨⎧-≠≠≤≤-⇒⎩⎨⎧≠-+≥-606603|3|0362x x x x x 且,故函数)(x f 的定义域为}6006|{≤<<<-x x x 或,定义域不关于原点对称,故)(x f 为非奇非偶函数.(2)由110101222±=⇒=⇒⎩⎨⎧≥-≥-x x x x ,故函数)(x f 的定义域为}1,1{-,关于原点对称,故0)(=x f ,所以)()()(x f x f x f -==-,所以函数)(x f 既是奇函数又是偶函数.(3)因为对任意实数x ,都有0||12≥+>++x x x x ,故定义域为R.且)()1(log 11(log )1(log )(222222x f x x x x x x x f -=++-=++=-+=-),故)(x f 为奇函数.(4)由100102|2|012<<<<-⇒⎩⎨⎧≠-->-x x x x 或,定义域关于原点对称. 此时,xx x x x f --=---=)1(log 2|2|)1(log )(2222,故有)()(x f x f -=-,所以)(x f 为奇函数. (5)当0<x 时,)()(,02x f x x x f x -=--=->-;当0>x 时,)()(,02x f x x x f x -=-=-<-.故)(x f 为奇函数.评注 利用定义判断函数的奇偶性要注意以下几点:①首先必须判断)(x f 的定义域是否关于原点对称.若不关于原点对称,则是非奇非偶函数.若关于原点对②有些函数必须根据定义域化简解析式后才可判断,否则可能无法判断或判断错误,如本例(2),若不化简可能误判为偶函数,而本例(4)可能误判为非奇非偶函数.③本例(3)若用奇偶性的等价形式,则01log )1(log )1(log )()(22222==+++-+=+-x x x x x f x f ,即)()(x f x f -=-,故)(x f 为奇函数,显然,等价形式的整理较定义法更为容易.这提醒我们,在函数解析式较复杂时,有时使用等价形式来判断奇偶性较为方便.变式1:判断下列函数的奇偶性.(1)xx x x f -+-=11)1()(; (2)24|3|3)(x x x f -+-=; (3)⎪⎩⎪⎨⎧>-≤≤--<+=)1(2)11(0)1(2)(x x x x x x f ;(4)|2||2|)(++-=x x x f .变式2:已知函数2lg )2lg()(2-++=x x x f ,试判断其奇偶性.【例2.26】已知函数),0()(2R x x xa x x f ∈≠+=,试判断其奇偶性. 分析 利用函数奇偶性的定义进行判断.解析 当0=a 时,2)(x x f =,满足)()(x f x f =-,故)(x f 为偶函数;当0≠a 时,xa x x f x a x x f -=-+=22)(,)(,假设)()(x f x f =-对任意R x ∈,0≠x 恒成立,则此时0=a ,与前提矛盾;假设)()(x f x f -=-对任意R x ∈,0≠x 恒成立,则此时022=x ,即0=x ,与条件定义域},0|{R x x x ∈≠矛盾.综上所述,当0=a 时,)(x f 为偶函数;当0≠a 时,函数)(x f 为非奇非偶函数.评注 ①函数)(x f 是奇函数⇔0)()(=-+x f x f ;函数)(x f 是偶函数0)()(=--⇔x f x f .奇偶函数②若要说明一个函数为非奇非偶函数,可以举一个反例.③本题的结论还可以借用运算函数的的奇偶性的规律获得,已知函数是一个由2x 与x a 通过加法法则运算得到的函数,而2x y =为偶函数,)0(≠=a x a y 为奇函数,故当0≠a 时,)(x f 为“偶+奇”形式,故为非奇非偶函数;当0=a 时,则2)(x x f =为偶函数.变式1:函数)()1221()(x f x F x ⋅-+=是偶函数,并且)(x f 不等于零,则)(x f 是( ) A.奇函数 B.偶函数 C.既奇又偶函数 D.非奇非偶函数变式2:对于函数R x x f y ∈=),(,“|)(|x f y =的图象关于y 轴对称”是“)(x f 是奇函数”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【例 2.27】定义在实数集上的函数)(x f ,对任意R y x ∈,都有)()(2)()(y f x f y x f y x f =-++,且0)0(≠f ,试判断)(x f 的奇偶性.分析 对于抽象函数的奇偶性判断通常利用赋值法得到)(x f 与)(x f -的关系.解析 由函数定义域为R 可知定义域关于原点对称.依题意可令0,0==y x ,得2)]0([2)0(2f f =,因为0)0(≠f ,所以1)0(=f .令0=x ,可得)(2)()(y f y f y f =-+,即)()(y f y f -=,所以)()(x f x f -=,故函数)(x f 为偶函数.评注 对于抽象函数奇偶性的判断,常通过赋值法(如令1,1,0-=x 等)凑成含有)(x f 与)(x f -的关系的式子,然后进行判断.变式1:已知函数)(x f 在R 上有定义,且对任意R y x ∈,都有)()()(y f x f y x f +=+,试判断)(x f 的奇偶性.变式2:若定义在R 上的函数)(x f 满足对任意R x x ∈21,有1)()()(2121++=+x f x f x x f ,则下列说法正确的是( )A.)(x f 是奇函数B.)(x f 是偶函数C.)(x f +1为奇函数D.)(x f +1为偶函数变式3:已知函数)(x f 在)1,1(-上有定义,且对任意)1,1(,-∈y x 都有)1()()(xyy x f y f x f ++=+,试判断函数)(x f 的奇偶性.变式4:已知)(x f ,)(x g 在R 上有定义,对任意的R y x ∈,,有)()()()()(y f x g y g x f y x f -=-,且0)1(≠f .(1)求证:)(x f 为奇函数;(2)若)2()1(f f =,求)1()1(-+g g 的值.【例 2.28】已知偶函数1)1()(23++-=mx x a x f 的定义域为),83(2m m m --,则=+a m 2______________.分析 定义域关于原点对称是奇函数或偶函数的必要条件.解析 因为)(x f 为偶函数,故其定义域必关于原点对称,所以0832=--m m ,且m m m <--832,解得4=m .由函数)(x f 为偶函数得3x 的系数为0,则01=-a ,即1=a ,故62=+a m .变式1:若函数))(12()(a x x x x f -+=为奇函数,则=a ( ) 21.A 32.B 43.C 1.D 变式2:若函数)2(log )(22a x x x f a ++=是奇函数,则=a _____________.变式3:若a x f x +-=121)(是奇函数,则=a _____________.变式4:函数k k k x f xx(212)(⋅+-=为常数)为其定义域上的奇函数,则=k ____________.变式5:函数)1)(11(log )(>--=a x kx x f a 为其定义域上的奇函数,则=k __________.【例2.29】已知函数)(x f 是定义在R 上的偶函数,当)0,(-∞∈x 时,4)(x x x f -=,则当),0(+∞∈x 时,)(x f =_______________.解析 当0>x 时,则44)()()(,0x x x x x f x --=---=-<-,因为)(x f 是偶函数,所以)(x f 4)(x x x f --=-=,故当),0(+∞∈x 时,4)(x x x f --=.评注 解此类题分三步:第一步将所求解析式自变量的范围转化为已知解析式中自变量的范围;第2步将转化后的自变量代入已知解析式;第3步利用函数的奇偶性求出解析式.变式1:已知函数)(x f 为R 上的奇函数,且当0>x 时,2)(x x x f -=,求函数)(x f 的解析式.【例2.30】已知)(x f 为定义域是关于原点对称区间上的函数,求证:)(x f 一定可以写成一个奇函数与一个偶函数之和的形式.分析 先设)(x f 能写成一个函数)(x g 和一个偶函数)(x h 之和,再利用奇偶函数的定义列方程组,解方程组即得.解析 先假设存在)()()(x h x g x f +=……………①其中)(x g 为奇函数,)(x h 是偶函数,则)()()()()(x h x g x h x g x f +-=-+-=-………②由①+②得,2)()()(x f x f x h -+=,由①-②得,2)()()(x f x f x g --=. 由此,我们得出结论,对定义域关于原点对称的函数)(x f ,都可以写成一个奇函数与一个偶函数之和.变式1:已知定义在R 上的奇函数)(x f 和偶函数)(x g 满足)1,0(2)()(≠>+-=+-a a a a x g x f x x .若a g =)2(,则)2(f =( )2.A 415.B 417.C 2.a D变式2:设函数)(x f 和)(x g 分别是R 上的偶函数和奇函数,则下列结论正确的是( )A.|)(|)(x g x f +是偶函数 |)(|)(.x g x f B -是奇函数)(|)(|.x g x f C +是偶函数 )()(|.x g x f D -是奇函数【例2.31】函数)(1sin )(3R x x x x f ∈++=,若2)(=a f ,则)(a f -的值为( )3.A 0.B 1.-C 2.-D分析 函数1sin )(3++=x x x f 中x x y sin 3+=为奇函数,借助奇函数的性质求解.解析 令x x x g sin )(3+=,得1)()(+=x g x f ,依题意得,21)(=+a g ,所以1)(=a g .由)(x g y =为奇函数,故1)()(-=-=-a g a g ,所以01)()(=+-=-a g a f ,故选B.评注 本题中虽然函数整体没有奇偶性,但可利用局部的奇偶性求解,尤其是当)(x f 为奇函数时,0)()(=+-x f x f ,特别地0)()(max min =+x f x f .变式1:对于函数c bx x a x f ++=sin )((其中Z c R b a ∈∈,,),选取c b a ,,的一组计算)1(f 和)1(-f ,所得出的正确结果一定不可能是( )A.4和6B.3和1C.2和4D.1和2变式2:已知函数),(4sin )(3R b a x b ax x f ∈++=,5))10(lg(log 2=f ,则=))2(lg(lg f ( )A.5-B.5-C.3D.4变式3:设函数1sin )1()(22+++=x x x x f 的最大值为M ,最小值为m ,则.______=+n M题型2 函数的单调性(区间)思路提示判断函数的单调性一般有四种方法:定义法、图像法、复合函数单调性法和导数法.【例2.32】求证:函数)0()(>+=a xa x x f 在),[+∞a 上是增函数. 分析 利用函数单调性的定义来证明. 解析 设任意的两个实数),[,21+∞∈a x x 且21x x <,则有)1)()()()(2121212121x x a x x x a x a x x x f x f --=++-=-(.因为),[,21+∞∈a x x ,所以a x x >21,0,012121<->-x x x x a ,)()(0)()(2121x f x f x f x f <⇒<-,故)(x f 在),[+∞a 上是增函数. 评注 利用函数单调性的定义判定时,其步骤为:(1)取值;(2)作差比较;(3)定量;(4)判断.解题时注意所设的21,x x 在区间内须具有任意性.若否定函数单调性时,只要取两个特殊自变量说明不满足即可.变式1:已知函数)(x f 对任意R y x ∈,,满足2)()()(++=+y x f y f x f ,当0>x 时,2)(>x f ,求证:)(x f 在R 上是增函数.变式2:定义在R 上的函数0)0(),(≠=f x f y ,当0>x 时,1)(>x f ,且对任意的R b a ∈,,有)()()(b f a f b a f ⋅=+.(1)求证:1)0(=f ;(2)求证:对任意的R x ∈,恒有0)(>x f ;(3)证明:)(x f 是R 上的增函数;(4)若1)2()(2>-⋅x x f x f ,求x 的取值范围.【例2.33】设),(a -∞是函数5||42+-=x x y 的一个减区间,则实数a 的取值范围是( ) ),2.[+∞-A ]2,.(--∞B ),2.[+∞C ]2,.(-∞D分析 作出函数的图象,找出递减区间,从而确定a 的取值范围.解析 由5||42+-=x x y 得,)()(x f x f =-,知)(x f y =为偶函数,其图象关于y 轴对称.只要画出当0≥x 时的图象,然后作出其关于y 轴对称的图形即可得到0<x 部分的图象,如图所示.可知,若),(a -∞为函数)(x f 的减区间,则2-≤a .故选B.变式1:下列区间中,函数|)2ln(|)(x x f -=在其上为增函数的是( ) ]1,.(-∞A ]34,1.[-B )23,0.[C )2,1.[D变式2:(2012上海理7)已知函数a e x f a x ()(||-=为常数).若)(x f 在区间),1[+∞上是增函数,则a 的取值范围是__________________.变式3:定义在R 上的函数)(x f 是偶函数,且)2()(x f x f -=,若)(x f 在区间]2,1[上是减函数,则)(x f ( )A.在区间]1,2[-上是增函数,在区间]4,3[上是减函数B.在区间]1,2[--上是增函数,在区间]4,3[上是减函数C.在区间]1,2[-上是减函数,在区间]4,3[上是增函数D.在区间]1,2[--上是减函数,在区间]4,3[上是增函数变式4:已知⎩⎨⎧≥<+-=)1(log )1(4)13()(x x x a x a x f a 是R 上的减函数,那么a 的取值范围是( ))1,0.(A )31,0.(B )31,71.[C )1,71.[D题型3 函数的周期性 思路提示(1))0(||)()(≠=⇒=+a a T x f a x f ;)(||)()(b a b a T b x f a x f ≠-=⇒+=+; (2))0(||2)()(≠=⇒-=+a a T x f a x f ; )(||2)()(b a b a T b x f a x f ≠-=⇒+-=+;)0,(||2)()(≠≠-=⇒=+⋅+c b a b a T c b x f a x f . (3))0(||6),2()()(≠=---=a a T a x f a x f x f . 【例2.34】已知函数)(x f 对任意实数x 都满足)(1)1(x f x f =+,若8)1(=f ,则=)2014(f ___________. 解析 1)(1(,)(1)1(=⋅+=+x f x f x f x f ),有1)2()1(=+⋅+x f x f ,所以)2()(+=x f x f ,故2=T ,所以81)1(1)0()2014(===f f f .变式1:函数)(x f 对任意实数x 都满足)(1)2(x f x f =+,若5)1(-=f ,则=))5((f f ____.【例 2.35】已知函数)(x f 满足),)(()()()(4,41)1(R y x y x f y x f y f x f f ∈-++==,则=)2010(f _____________.解析 令)1()1()()1()1()1()(4,1-++=⇒-++==x f x f x f x f x f f x f y)1()()1(--=+⇒x f x f x f ,6=T ,所以)0()2010(f f =,又令0,1==y x ,有)1()1()0()1(4f f f f +=,所以21)2010(,21)0(==f f .【例 2.36】已知函数)(x f 是定义在实数集R 上的不恒等于零的偶函数,且对任意实数x 都有)()1()1(x f x x xf +=+,则)25(f 的值是( )A.0B.21C.1D.25分析 )(x f 为偶函数,有)()1()1(x f x x xf +=+,只能从x x =+1或者01=++x x 时入手. 解析当01=++x x 时,即21-=x 时,)21(21)21(21)21(21f f f =-=-,得0)25(,0)23(,0)21(===f f f ,故选A. 评注 本题也可以从另外一方面解答,先构造一个函数,当Z x ∉时,x x f x x f )(1)1(=++.令xx f x g )()(=,则1)1()1(++=+x x f x g .所以)()1(x g x g =+,1=T ,令21-=x ,得0)21(),21(21)21(21)21(21==-=-f f f f .因为)21(25(g g =),即021)21(25)25(==f f .故0)25(=f .变式1:已知a 为非零常数,R x ∈且)(1)(1)(x f x f a x f -+=+,试判断)(x f 的周期性.题型4 函数性质的综合 思路提示(1)奇偶性与单调性综合解题,尤其要重视利用偶函数(或轴对称函数)与单调性综合解不等式和比较大小.(2)奇偶性、单调性、周期性综合解题,尤其要注意对称性与周期性之间的关系,周期是两条对称轴(或对称中心)之间距离的2倍,是对称中心与对称轴之间距离的4倍.如函数)(x f 的图象关于点)0,(a 和点)0,(b 中心对称,可得)(||2b a b a T ≠-=.)2()(),2()(x b f x f x a f x f --=--=,所以)2()2(x b f x a f -=-,可得||2b a T -=.如函数)(x f 的图象关于直线a x =和直线b x =轴对称,可得)(||2b a b a T ≠-=.)2()(),2()(x b f x f x a f x f -=-=,所以)2()2(x b f x a f -=-,可得||2b a T -=.如函数)(x f 关于点)0,(a 中心对称,且关于直线b x =轴对称,可得)(||4b a b a T ≠-=.)2()(),2()(x b f x f x a f x f -=--=,所以)2()2(x b f x a f -=--,故)()44(x f x a b f =+-,||4b a T -=.【2.37】定义在R 上的偶函数)(x f 满足:对任意的)](0,(,2121x x x x ≠-∞∈,有0)]()()[(2121>--x f x f x x ,则当*N n ∈时,有( ))1()1()(.+<-<-n f n f n f A )1()()1(.+<-<-n f n f n f B )1()()1(.-<-<+n f n f n f C )()1()1(.n f n f n f D -<-<+ 分析 偶函数关于y 轴对称,关于y 轴对称的两部分图象单调性相反.解析 由]0,(,21-∞∈∀x x ,有0)]()()[(2121>--x f x f x x 可得]0,(-∞∈x 时,)(x f 单调递增,因为)(x f 为偶函数,所以当),0(+∞∈x 时,)(x f 单调递减,所以自变量绝对值越小,所对应的的函数值越大.因为110+<<-≤n n n ,所以)1()()()1(+>-=>-n f n f n f n f ,故选C.变式1:已知定义域为R 的函数)(x f 在区间),8(+∞上减函数,且函数)8(+=x f y 为偶函数,则( ) )7()6(.f f A > )7()6(.f f B > )9()7(.f f C > )10()7(.f f D >变式2:已知偶函数)(x f 在区间),0[+∞上单调递增,则满足)31()12(f x f <-的x 的取值范围是( ) )32,31.(A )32,31.[B )32,21.(C )32,21.[D变式3:设函数)(x f 是奇函数,并且在R 上为增函数,若20πθ≤≤时,0)1()sin (>-+m f m f θ恒成立,则实数m 的取值范围是( ))1,0.(A )0,.(-∞B )21,.(-∞C )1,.(-∞D变式4:设函数}{,1)3()(3n a x x x f -+-=是公差不为0的等差数列,14)(...)()(721=+++a f a f a f ,则=+++721...a a a ( )A. 0B. 7C. 14D. 21【例2.38】函数)(x f 的定义域为R ,若)1(+x f 与)1(-x f 都是奇函数,则( ) A.)(x f 是偶函数 B.)(x f 是奇函数 C.)2()(+=x f x f D.)2(+x f 是奇函数 分析 由奇偶性⇒对称性⇒周期性.解析 因为)1(+x f 为奇函数,所以)1()1(+-=+-x f x f ,故)0,1(为函数)(x f 的对称中心,由)1(-x f 为奇函数,同理)0,1(-也为函数)(x f 的对称中心,利用结论知函数)(x f 的周期为4,则)1()3(-=+x f x f ,所以)3(+x f 为奇函数.故选D.变式1:定义在R 上的偶函数)(x f 满足)()1(x f x f -=+,且在]0,1[-上单调递增,设)3(f a =,)2(),2(f c f b ==,则c b a ,,的大小关系是( )c b a A >>. b c a B >>. a c b C >>. a b c D >>.变式2:已知定义在R 上奇函数)(x f 满足)()4(x f x f -=-,且在区间]2,0[上是增函数,则( ) )80()11()25(.f f f A <<- )25()11()80(.-<<f f f B)25()80()11(.-<<f f f C )11()80()25(.f f f D <<-【例2.39】定义在R 上的函数)(x f 是奇函数,且是以2为周期的周期函数,则)7()4()1(f f f ++=( ) 1.-A 0.B 1.C 4.D 解析 因为)(x f 的T=2,且是定义在R上的奇函数,所以0)0(=f ,则0)1()0()1()7()4()1(=-++=++f f f f f f ,故选B.变式1:已知)(x f 是R 上最小正周期为2的周期函数,且当20<≤x 时,x x x f -=3)(,则函数)(x f 的图象在区间]6,0[上与x 轴的交点的个数为( ) A.6 B.7 C.8 D.9【例2.40】函数)(x f 的定义域为D ,若对任意的D x x ∈21,,当21x x <时,都有)()(21x f x f ≤,则称函数)(x f 在D 上为非减函数,设函数)(x f 在]1,0[上为非减函数,且满足以下3个条件:①0)0(=f ;②)(21)3(x f x f =;③)(1)1(x f x f -=-,则=+)81()31(f f ( ) 43.A 21.B 1.C 32.D解析 21)1(21)31(==f f ,也可得41)31(21)91(==f f ,由)(1)1(x f x f -=-可得21)21(=f ,所以41)21(21)61(==f f .因为当1021≤<≤x x 时都有)()(21x f x f ≤,所以可由618191<<得,)61()81()91(f f f ≤≤,即41)81(=f ,所以43)81()31(=+f f .故选A.变式1:定义在R 上的函数满足1)1()(,0)0(=-+=x f x f f ,)(21)3(x f x f =,且当1021≤<≤x x 时,)()(21x f x f ≤,则=)20101(f ___________.变式2:设)(x g 是定义在R 上,以1为周期的函数,若函数)()(x g x x f +=在区间]4,3[上的值域为]5,2[-,则)(x f 在区间]10,10[-上的值域为_____________.变式3:对于定义域为]1,0[的连续函数)(x f ,如果同时满足以下3个条件:①对任意的]1,0[∈x ,总有0)(≥x f ;②1)1(=f ;③若1,0,02121≤+≥≥x x x x ,都有)()()(2121x f x f x x f +≥+成立,则)(x f 为理想函数.(1)若函数为理想函数,求)(x f 的值域;(2)判断函数])1,0[(12)(∈-=x x g x是否为理想函数,并予以证明;(3)若函数)(x f 为理想函数,假定存在]1,0[0∈x ,使得]1,0[)(0∈x f ,且00))((x x f f =,求证:00)(x x f =.最有效训练题1.已知函数)32(log )(22--=x x x f ,现使)(x f 为减函数的区间是( ) )6,3.(A )0,1.(-B )2,1.(C )1,.(--∞D2.已知函数]3,2[,)(2-∈=x x x f ,如果存在实数]3,2[,21-∈x x ,使得对任意实数]3,2[-∈x ,都有)()()(21x f x f x f ≤≤,则||21x x -的值是( )A.0B.2C.3D.53.函数)(x f )(R x ∈的图象如图所示,则下列哪个区间是函数)10)((log )(<<=a x f x g a 的单调减区间( )]21,0.[A ),21[)0,.(+∞-∞ B ]1,.[a C ]1,.[+a a D4.已知函数⎩⎨⎧≥<-=)2()2()4()(x a x x a x f x在R 上单调递增,则a 的取值范围是( ) ]4,1.(A )4,2.(B )4,2.[C ),4.(+∞D5.函数)(x f 是以2为周期的偶函数,且当)1,0(∈x 时,12)(-=xx f ,则)12(log 2f 的值为( )31.A 34.B 2.C 11.D 6.设2)(3-+=x x x f ,若5)(,1)(-==b f a f ,则=+b a ( ) 2.-A 0.B 1.C 2.D7.设函数))(()(R x ae e x x f xx∈+=-是偶函数,则实数=a __________.8.(1)奇函数)(x f 的定义域为]5,5[-,若当]5,0[∈x 时,)(x f 的图象如图所示,则不等式0)(<x f 的解集是__________.(2)已知函数)(x f y =是R 上的偶函数,且在]0,(-∞上是减函数,若()(2)f a f ≥,则实数a 的取值范围是________.9.已知(),()f x g x 分别是定义在R 上的奇函数和偶函数,且2()()23f x g x x x +=++,则()()f x g x -=_________.10.已知函数||sin 1()||1x x f x x -+=+()x R ∈的最大值为M ,最小值为m ,则M m +的值为___________.11.设()f x 是定义在R 上的奇函数,且对任意实数x 恒有(2)()f x f x +=-.当[0,2]x ∈时,2()2f x x x =-.(1)求证: ()f x 是周期函数;(2)当[2,4]x ∈时,求()f x 的解析式;(3)计算(0)(1)(2)(2015)f f f f ++++.12.已知定义域为R 的函数1()41xf x a =++是奇函数.(1)求a 的值;(2)判断()f x 的单调性;(3)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围.。
高一上学期函数的单调性-奇偶性及周期性知识点和题型
(一)函数的单调性1.函数单调性定义:对于给定区间D 上的函数f(x),若对于任意x 1,x 2∈D,当x 1<x 2时,都有f(x 1) <f(x 2),则称f(x)是区间D 上的增函数,D 叫f(x)单调递增区间.当x 1<x 2时,都有f(x 1)> f(x 2),则称f(x)是区间D 上的减函数,D 叫f(x)单调递减区间.2.函数单调性的判断方法:(1)从直观上看,函数图象从左向右看,在某个区间上,图象是上升的,则此函数是增函数,若图象是下降的,则此函数是减函数。
(2)一般地,设函数)(x f y =的定义域为I .如果对于属于定义域I 某个区间A 上的任意两个自变量的值1x ,2x ,且21x x <,则021<-x x(1)()()则0-21<x f x f ()()()1212120f x f x x x x x -⇔>≠-)(x f 即在区间A 上是增函数; (2)()()则21x f x f >()()()1212120f x f x x x x x -⇔<≠-)(x f 即在区间A 上是减函数. 如果函数)(x f y =在某个区间上是增函数或减函数,那么就说函数在这一区间具有(严格的)的单调性,这一区间叫做)(x f y =的单调区间.单调区间是函数定义域的子区间,因此函数单调性是函数的局部性质,应以定义域为前提;必须指明在某个区间上函数是增函数或减函数(3)复合函数单调性判断方法:设()()[][],,,,,y f u u g x x a b u m n ==∈∈若外两函数的单调性相同,则()y f g x =⎡⎤⎣⎦在x 的区间D 单调递增,若外两函数的单调性相反时,则()y f g x =⎡⎤⎣⎦在x 的区间D 单调递减.(同增异减)3.常见结论若f(x)为减函数,则-f(x)为增函数 ;若f(x)>0(或<0)且为增函数,则函数)(1x f 在其定义域为减函数.【题型一、单调性的判断】例、写出下列函数的单调区间(1),b kx y +=(2)x ky =, (3)c bx ax y ++=2.如图是定义在区间[-5,5]上的函数y=f(x),根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?【题型二、用定义法证明单调性】例、定义法证明函数y=2x+3在),(+∞-∞的单调性.例、判断函数f (x )=x x 1+在(0,1)上的单调性.【变式训练1】证明函数12)(++=x x x f 在),1(+∞-上是增函数.【方法技巧】根据函数的定义法来进行判别,记好步骤。
Ktdrep高考数学难点突破 难点08 奇偶性与单调性(二)
生命是永恒不断的创造,因为在它内部蕴含着过剩的精力,它不断流溢,越出时间和空间的界限,它不停地追求,以形形色色的自我表现的形式表现出来。
--泰戈尔难点8 奇偶性与单调性(二)函数的单调性、奇偶性是高考的重点和热点内容之一,特别是两性质的应用更加突出.本节主要帮助考生学会怎样利用两性质解题,掌握基本方法,形成应用意识.●难点磁场(★★★★★)已知偶函数f (x )在(0,+∞)上为增函数,且f (2)=0,解不等式f [log 2(x 2+5x +4)]≥0.●案例探究 [例1]已知奇函数f (x )是定义在(-3,3)上的减函数,且满足不等式f (x -3)+f (x 2-3)<0,设不等式解集为A ,B =A ∪{x |1≤x ≤5},求函数g (x )=-3x 2+3x -4(x ∈B )的最大值. 命题意图:本题属于函数性质的综合性题目,考生必须具有综合运用知识分析和解决问题的能力,属★★★★级题目.知识依托:主要依据函数的性质去解决问题.错解分析:题目不等式中的“f ”号如何去掉是难点,在求二次函数在给定区间上的最值问题时,学生容易漏掉定义域.技巧与方法:借助奇偶性脱去“f ”号,转化为x cos 不等式,利用数形结合进行集合运算和求最值.解:由⎩⎨⎧<<-<<⎩⎨⎧<-<-<-<-66603333332x x x x 得且x ≠0,故0<x <6, 又∵f (x )是奇函数,∴f (x -3)<-f (x 2-3)=f (3-x 2),又f (x )在(-3,3)上是减函数, ∴x -3>3-x 2,即x 2+x -6>0,解得x >2或x <-3,综上得2<x <6,即A ={x |2<x <6}, ∴B =A ∪{x |1≤x ≤5}={x |1≤x <6},又g (x )=-3x 2+3x -4=-3(x -21)2-413知:g (x )在B 上为减函数,∴g (x )max =g (1)=-4.[例2]已知奇函数f (x )的定义域为R ,且f (x )在[0,+∞)上是增函数,是否存在实数m ,使f (cos2θ-3)+f (4m -2m cos θ)>f (0)对所有θ∈[0,2π]都成立?若存在,求出符合条件的所有实数m 的范围,若不存在,说明理由.命题意图:本题属于探索性问题,主要考查考生的综合分析能力和逻辑思维能力以及运算能力,属★★★★★题目.知识依托:主要依据函数的单调性和奇偶性,利用等价转化的思想方法把问题转化为二次函数在给定区间上的最值问题.错解分析:考生不易运用函数的综合性质去解决问题,特别不易考虑运用等价转化的思想方法.技巧与方法:主要运用等价转化的思想和分类讨论的思想来解决问题.解:∵f (x )是R 上的奇函数,且在[0,+∞)上是增函数,∴f (x )是R 上的增函数.于是不等式可等价地转化为f (cos2θ-3)>f (2m cos θ-4m ),即cos2θ-3>2m cos θ-4m ,即cos 2θ-m cos θ+2m -2>0.设t =cos θ,则问题等价地转化为函数g (t )=t 2-mt +2m -2=(t -2m )2-42m +2m -2在[0,1]上的值恒为正,又转化为函数g (t )在[0,1]上的最小值为正.∴当2m<0,即m <0时,g (0)=2m -2>0⇒m >1与m <0不符; 当0≤2m≤1时,即0≤m ≤2时,g (m )=-42m +2m -2>0⇒4-22<m <4+22,4-22<m ≤2.当2m>1,即m >2时,g (1)=m -1>0⇒m >1.∴m >2 综上,符合题目要求的m 的值存在,其取值范围是m >4-22.●锦囊妙计本难点所涉及的问题以及解决的方法主要有:(1)运用奇偶性和单调性去解决有关函数的综合性题目.此类题目要求考生必须具有驾驭知识的能力,并具有综合分析问题和解决问题的能力.(2)应用问题.在利用函数的奇偶性和单调性解决实际问题的过程中,往往还要用到等价转化和数形结合的思想方法,把问题中较复杂、抽象的式子转化为基本的简单的式子去解决.特别是:往往利用函数的单调性求实际应用题中的最值问题.●歼灭难点训练 一、选择题1.(★★★★)设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x ,则f (7.5)等于( )A.0.5B.-0.5C.1.5D.-1.52.(★★★★)已知定义域为(-1,1)的奇函数y =f (x )又是减函数,且f (a -3)+f (9-a 2)<0,a 的取值范围是( )A.(22,3)B.(3,10)C.(22,4)D.(-2,3)二、填空题3.(★★★★)若f (x )为奇函数,且在(0,+∞)内是增函数,又f (-3)=0,则xf (x )<0的解集为_________.4.(★★★★)如果函数f (x )在R 上为奇函数,在(-1,0)上是增函数,且f (x +2)=-f (x ),试比较f (31),f (32),f (1)的大小关系_________. 三、解答题5.(★★★★★)已知f (x )是偶函数而且在(0,+∞)上是减函数,判断f (x )在(-∞,0)上的增减性并加以证明.6.(★★★★)已知f (x )=xx a 2112+-⋅ (a ∈R )是R 上的奇函数, (1)求a 的值;(2)求f (x )的反函数f -1(x );(3)对任意给定的k ∈R +,解不等式f -1(x )>lgkx+1. 7.(★★★★)定义在(-∞,4]上的减函数f (x )满足f (m -sin x )≤f (m 21+-47+cos 2x )对任意x ∈R 都成立,求实数m 的取值范围.8.(★★★★★)已知函数y =f (x )=c bx ax ++12 (a ,b ,c ∈R ,a >0,b >0)是奇函数,当x >0时,f (x )有最小值2,其中b ∈N 且f (1)<25.(1)试求函数f (x )的解析式;(2)问函数f (x )图象上是否存在关于点(1,0)对称的两点,若存在,求出点的坐标;若不存在,说明理由.参考答案难点磁场解:∵f (2)=0,∴原不等式可化为f [log 2(x 2+5x +4)]≥f (2). 又∵f (x )为偶函数,且f (x )在(0,+∞)上为增函数, ∴f (x )在(-∞,0)上为减函数且f (-2)=f (2)=0 ∴不等式可化为log 2(x 2+5x +4)≥2 ① 或log 2(x 2+5x +4)≤-2 ② 由①得x 2+5x +4≥4 ∴x ≤-5或x ≥0 ③由②得0<x 2+5x +4≤41得2105--≤x <-4或-1<x ≤2105+-④由③④得原不等式的解集为{x |x ≤-5或2105--≤x ≤-4或-1<x ≤2105+-或x ≥0} 歼灭难点训练一、1.解析:f (7.5)=f (5.5+2)=-f (5.5)=-f (3.5+2)=f (3.5)=f (1.5+2)=-f (1.5)=-f (-0.5+2)= f (-0.5)=-f (0.5)=-0.5.答案:B2.解析:∵f (x )是定义在(-1,1)上的奇函数又是减函数,且f (a -3)+f (9-a 2)<0. ∴f (a -3)<f (a 2-9).∴⎪⎩⎪⎨⎧->-<-<-<-<-9319113122a a a a ∴a ∈(22,3). 答案:A二、3.解析:由题意可知:xf (x )<0⎩⎨⎧<>⎩⎨⎧><⇔0)(00)(0x f x x f x 或⎩⎨⎧<>⎩⎨⎧-><⇔⎩⎨⎧<>⎩⎨⎧-><⇔330 )3()(0 )3()(0x x x x f x f x f x f x 或或 ∴x ∈(-3,0)∪(0,3)答案:(-3,0)∪(0,3) 4.解析:∵f (x )为R 上的奇函数 ∴f (31)=-f (-31),f (32)=-f (-32),f (1)=-f (-1),又f (x )在(-1,0)上是增函数且-31> -32>-1. ∴f (-31)>f (-32)>f (-1),∴f (31)<f (32)<f (1). 答案:f (31)<f (32)<f (1)三、5.解:函数f (x )在(-∞,0)上是增函数,设x 1<x 2<0,因为f (x )是偶函数,所以f (-x 1)=f (x 1),f (-x 2)=f (x 2),由假设可知-x 1>-x 2>0,又已知f (x )(0,+∞)上是减函数,于是有f (-x 1)<f (-x 2),即f (x 1)<f (x 2),由此可知,函数f (x )在(-∞,0)上是增函数.6.解:(1)a =1.(2)f (x )=1212+-x x (x ∈R )⇒f --1(x )=log 2xx -+11 (-1<x <1).(3)由log 2xx -+11>log 2k x+1⇒log 2(1-x )<log 2k ,∴当0<k <2时,不等式解集为{x |1-k <x <1};当k ≥2时,不等式解集为{x |-1<x <1}.7.解:⎪⎩⎪⎨⎧++-≥++-≤-⎪⎪⎪⎩⎪⎪⎪⎨⎧+-+≥-≤+-+≤-1sin sin 4721sin 4 cos 4721sin 4cos 47214sin 222x x m m x m x m x m x m x m 即,对x ∈R 恒成立,⎪⎩⎪⎨⎧=≥≤∴21233m m m 或∴m ∈[23,3]∪{21}. 8.解:(1)∵f (x )是奇函数,∴f (-x )=-f (x ),即c bx c bx c bx ax c bx ax -=+⇒+-+-=++1122 ∴c =0,∵a >0,b >0,x >0,∴f (x )=bx x b a bx ax 112+=+≥22b a ,当且仅当x =a 1时等号成立,于是22b a =2,∴a =b 2,由f (1)<25得ba 1+<25即b b 12+<25,∴2b 2-5b +2<0,解得21<b <2,又b ∈N ,∴b =1,∴a =1,∴f (x )=x +x1. (2)设存在一点(x 0,y 0)在y =f (x )的图象上,并且关于(1,0)的对称点(2-x 0,-y 0)也在y =f (x )图象上,则⎪⎪⎩⎪⎪⎨⎧-=-+-=+0020002021)2(1yxx y x x消去y 0得x 02-2x 0-1=0,x 0=1±2.∴y =f (x )图象上存在两点(1+2,22),(1-2,-22)关于(1,0)对称.。
高三数学难点突破练习----奇偶性与单调性
2009届高三数学难点突破练习----奇偶性与单调性奇偶性与单调性(一)函数的单调性、奇偶性是高考的重点内容之一,考查内容灵活多样.本节主要帮助考生深刻理解奇偶性、单调性的定义,掌握判定方法,正确认识单调函数与奇偶函数的图象.难点:设a >0,f (x )=xx e a a e +是R 上的偶函数,(1)求a 的值;(2)证明: f (x )在(0,+∞)上是增函数.例题:[例1]已知函数f (x )在(-1,1)上有定义,f (21)=-1,当且仅当0<x <1时f (x )<0,且对任意x 、y ∈(-1,1)都有f (x )+f (y )=f (xyyx ++1),试证明: (1)f (x )为奇函数;(2)f (x )在(-1,1)上单调递减.本题主要考查函数的奇偶性、单调性的判定以及运算能力和逻辑推理能力. 奇偶性及单调性定义及判定、赋值法及转化思想.本题对思维能力要求较高,如果“赋值”不够准确,运算技能不过关,结果很难获得. 对于(1),获得f(0)的值进而取x=-y 是解题关键;对于(2),判定21121x x x x --的范围是焦点.证明:(1)由f (x )+f (y )=f (xy yx ++1),令x =y =0,得f (0)=0,令y =-x ,得f (x )+f (-x )=f (21x x x --)=f (0)=0.∴f (x )=-f (-x ).∴f (x )为奇函数.(2)先证f (x )在(0,1)上单调递减.令0<x 1<x 2<1,则f (x 2)-f (x 1)=f (x 2)-f (-x 1)=f (21121x x x x --)∵0<x 1<x 2<1,∴x 2-x 1>0,1-x 1x 2>0,∴12121x x x x -->0,又(x 2-x 1)-(1-x 2x 1)=(x 2-1)(x 1+1)<0 ∴x 2-x 1<1-x 2x 1, ∴0<12121x x x x --<1,由题意知f (21121x x x x --)<0即f (x2)<f (x 1).∴f (x )在(0,1)上为减函数,又f (x )为奇函数且f (0)=0. ∴f (x )在(-1,1)上为减函数.[例2]设函数f (x )是定义在R 上的偶函数,并在区间(-∞,0)内单调递增,f (2a 2+a +1)<f (3a 2-2a +1).求a 的取值范围,并在该范围内求函数y =(21)132+-a a 的单调递减区间.本题主要考查函数奇偶性、单调性的基本应用以及对复合函数单调性的判定方法. 逆向认识奇偶性、单调性、指数函数的单调性及函数的值域问题. 逆向思维受阻、条件认识不清晰、复合函数判定程序紊乱.本题属于知识组合题类,关键在于读题过程中对条件的思考与认识,通过本题会解组合题类,掌握审题的一般技巧与方法.解:设0<x 1<x 2,则-x 2<-x 1<0,∵f (x )在区间(-∞,0)内单调递增, ∴f (-x 2)<f (-x 1),∵f (x )为偶函数,∴f (-x 2)=f (x 2),f (-x 1)=f (x 1), ∴f (x 2)<f (x 1).∴f (x )在(0,+∞)内单调递减..032)31(3123,087)41(2122222>+-=+->++=++a a a a a a 又由f (2a 2+a +1)<f (3a 2-2a +1)得:2a 2+a +1>3a 2-2a +1.解之,得0<a <3. 又a 2-3a +1=(a -23)2-45. ∴函数y =(21)132+-a a 的单调减区间是[23,+∞] 结合0<a <3,得函数y =(23)132+-a a 的单调递减区间为[23,3).本难点所涉及的问题及解决方法主要有:(1)判断函数的奇偶性与单调性若为具体函数,严格按照定义判断,注意变换中的等价性.若为抽象函数,在依托定义的基础上,用好赋值法,注意赋值的科学性、合理性.同时,注意判断与证明、讨论三者的区别,针对所列的“磁场”及“训练”认真体会,用好数与形的统一.复合函数的奇偶性、单调性.问题的解决关键在于:既把握复合过程,又掌握基本函数. (2)加强逆向思维、数形统一.正反结合解决基本应用题目.练习题:一、选择题1.下列函数中的奇函数是( )A.f (x )=(x -1)xx -+11B.f (x )=2|2|)1lg(22---x xC.f (x )=⎪⎩⎪⎨⎧>+-<+)0()0(22x x x x x xD.f (x )=xx xx sin cos 1cos sin 1++-+2.函数f (x )=111122+++-++x x x x 的图象( )A.关于x 轴对称B.关于y 轴对称C.关于原点对称D.关于直线x =1对称 二、填空题3.函数f (x )在R 上为增函数,则y =f (|x +1|)的一个单调递减区间是_________.4.若函数f (x )=ax 3+bx 2+cx +d 满足f (0)=f (x 1)=f (x 2)=0 (0<x 1<x 2),x 2,+∞)上单调递增,则b 的取值范围是_________.三、解答题5.已知函数f (x )=a x +12+-x x (a >1). (1)证明:函数f (x )在(-1,+∞)上为增函数. (2)用反证法证明方程f (x )=0没有负数根.6.求证函数f (x )=223)1(-x x 在区间(1,+∞)上是减函数. 7.设函数f (x )的定义域关于原点对称且满足:(i)f (x 1-x 2)=)()(1)()(1221x f x f x f x f -+⋅;(ii)存在正常数a 使f (a )=1.求证:(1)f (x )是奇函数.(2)f (x )是周期函数,且有一个周期是4a .8.已知函数f (x )的定义域为R ,且对m 、n ∈R ,恒有f (m +n )=f (m )+f (n )-1,且 f (-21)=0,当x >-21时,f (x )>0. (1)求证:f (x )是单调递增函数;(2)试举出具有这种性质的一个函数,并加以验证.参考答案难点:(1)解:依题意,对一切x ∈R ,有f (x )=f (-x ),即x x x ae e a a e 1=++ae x .整理,得(a -a1) (e x -x e 1)=0.因此,有a -a1=0,即a 2=1,又a >0,∴a =1 (2)证法一:设0<x 1<x 2,则f (x 1)-f (x 2)=)11)((1121122121--=-+-+x x x x x x xx e e e e e e e 21211211)1(x x x x x x x e e ee ++---=由x 1>0,x 2>0,x 2>x 1,∴112--x x e >0,1-e 21x x +<0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2) ∴f (x )在(0,+∞)上是增函数证法二:由f (x )=e x +e -x ,得f ′(x )=e x -e -x =e -x ·(e 2x -1).当x ∈(0,+∞)时,e -x >0,e 2x -1>0. 此时f ′(x )>0,所以f (x )在[0,+∞)上是增函数. 练习题:一、1.解析:f (-x )=⎪⎩⎪⎨⎧>+--<+-=⎪⎩⎪⎨⎧<-->-)0()()0()()0( )0( 2222x x x x x x x x x x x x =-f (x ),故f (x )为奇函数.答案:C2.解析:f (-x )=-f (x ),f (x )是奇函数,图象关于原点对称. 答案:C二、3.解析:令t =|x +1|,则t 在(-∞,-1]上递减,又y =f (x )在R 上单调递增,∴y =f (|x +1|)在(-∞,-1]上递减.答案:(-∞,-1]4.解析:∵f (0)=f (x 1)=f (x 2)=0,∴f (0)=d =0.f (x )=ax (x -x 1)(x -x 2)=ax 3-a (x 1+x 2)x 2+ax 1x 2x , ∴b =-a (x 1+x 2),又f (x )在[x 2,+∞)单调递增,故a >0.又知0<x 1<x ,得x 1+x 2>0, ∴b =-a (x 1+x 2)<0. 答案:(-∞,0)三、5.证明:(1)设-1<x 1<x 2<+∞,则x 2-x 1>0, 12x x a ->1且1x a >0, ∴)1(12112-=--x x x x x a a a a >0,又x 1+1>0,x 2+1>0 ∴)1)(1()(3)1)(1()1)(2()1)(2(121221122121121122++-=+++--+-=+--+-x x x x x x x x x x x x x x >0, 于是f (x 2)-f (x 1)=12x x a a -+12121122+--+-x x x x >0 ∴f (x )在(-1,+∞)上为递增函数.(2)证法一:设存在x 0<0(x 0≠-1)满足f (x 0)=0,则12000+--=x x a x 且由0<0x a <1得0<-1200+-x x <1,即21<x 0<2与x 0<0矛盾,故f (x )=0没有负数根. 证法二:设存在x 0<0(x 0≠-1)使f (x 0)=0,若-1<x 0<0,则1200+-x x <-2,0x a <1,∴f (x 0)<-1与f (x 0)=0矛盾,若x 0<-1,则1200+-x x >0, 0x a >0,∴f (x 0)>0与f (x 0)=0矛盾,故方程f (x )=0没有负数根.6.证明:∵x ≠0,∴f (x )=22422322)11(1)1(1)1(1x x x x x x x -=-=-, 设1<x 1<x 2<+∞,则01111,11121222122>->-<<x x x x .2211222222112222)11(1)11(1.0)11()11(x x x x x x x x -<-∴>->-∴∴f (x 1)>f (x 2),f (x )在(1,+∞)上是减函数.(本题也可用求导方法解决)7.证明:(1)不妨令x =x 1-x 2,则f (-x )=f (x 2-x 1)=)()(1)()()()(1)()(12212112x f x f x f x f x f x f x f x f -+-=-+=-f (x 1-x 2)=-f (x ).∴f (x )是奇函数.(2)要证f (x +4a )=f (x ),可先计算f (x +a ),f (x +2a ).∵f (x +a )=f [x -(-a )]=)1)((1)(1)()()(1)()()()(1)()(=+-=--+-=---+-a f x f x f x f a f x f a f x f a f x f a f .).(111)(11)(1)(1)(1)(])[()2(x f x f x f x f a x f a x f a a x f a x f -=++-+-=++-+=++=+∴ ∴f (x +4a )=f [(x +2a )+2a ]=)2(1a x f +-=f (x ),故f (x )是以4a 为周期的周期函数.8.(1)证明:设x 1<x 2,则x 2-x 1-21>-21,由题意f (x 2-x 1-21)>0, ∵f (x 2)-f (x 1)=f [(x 2-x 1)+x 1]-f (x 1)=f (x 2-x 1)+f (x 1)-1-f (x 1)=f (x 2-x 1)-1=f (x 2-x 1)+f (-21)-1=f [(x 2-x 1)-21]>0, ∴f (x )是单调递增函数. (2)解:f (x )=2x +1.验证过程略.奇偶性与单调性(二)本节主要帮助考生学会怎样利用两性质解题,掌握基本方法,形成应用意识. 难点:已知偶函数f (x )在(0,+∞)上为增函数,且f (2)=0,解不等式f [log 2(x 2+5x +4)]≥0. 例题: [例1]已知奇函数f (x )是定义在(-3,3)上的减函数,且满足不等式f (x -3)+f (x 2-3)<0,设不等式解集为A ,B =A ∪{x |1≤x ≤5},求函数g (x )=-3x 2+3x -4(x ∈B )的最大值. 本题属于函数性质的综合性题目,考生必须具有综合运用知识分析和解决问题的能力, 主要依据函数的性质去解决问题.题目不等式中的“f ”号如何去掉是难点,在求二次函数在给定区间上的最值问题时,学生容易漏掉定义域.借助奇偶性脱去“f ”号,转化为xcos 不等式,利用数形结合进行集合运算和求最值.解:由⎩⎨⎧<<-<<⎩⎨⎧<-<-<-<-66603333332x x x x 得且x ≠0,故0<x <6, 又∵f (x )是奇函数,∴f (x -3)<-f (x 2-3)=f (3-x 2),又f (x )在(-3,3)上是减函数, ∴x -3>3-x 2,即x 2+x -6>0,解得x >2或x <-3,综上得2<x <6,即A ={x |2<x <6}, ∴B =A ∪{x |1≤x ≤5}={x |1≤x <6},又g (x )=-3x 2+3x -4=-3(x -21)2-413知:g (x )在B 上为减函数,∴g (x )max =g (1)=-4.[例2]已知奇函数f (x )的定义域为R ,且f (x )在[0,+∞)上是增函数,是否存在实数m ,使f (cos2θ-3)+f (4m -2m cos θ)>f (0)对所有θ∈[0,2π]都成立?若存在,求出符合条件的所有实数m 的范围,若不存在,说明理由.本题属于探索性问题,主要考查考生的综合分析能力和逻辑思维能力以及运算能力. 主要依据函数的单调性和奇偶性,利用等价转化的思想方法把问题转化为二次函数在给定区间上的最值问题.考生不易运用函数的综合性质去解决问题,特别不易考虑运用等价转化的思想方法. 主要运用等价转化的思想和分类讨论的思想来解决问题.解:∵f (x )是R 上的奇函数,且在[0,+∞)上是增函数,∴f (x )是R 上的增函数.于是不等式可等价地转化为f (cos2θ-3)>f (2m cos θ-4m ),即cos2θ-3>2m cos θ-4m ,即cos 2θ-m cos θ+2m -2>0.设t =cos θ,则问题等价地转化为函数g (t )=t 2-mt +2m -2=(t -2m )2-42m +2m -2在[0,1]上的值恒为正,又转化为函数g (t )在[0,1]上的最小值为正.∴当2m<0,即m <0时,g (0)=2m -2>0⇒m >1与m <0不符; 当0≤2m≤1时,即0≤m ≤2时,g (m )=-42m +2m -2>0⇒4-22<m <4+22,4-22<m ≤2.当2m>1,即m >2时,g (1)=m -1>0⇒m >1.∴m >2 综上,符合题目要求的m 的值存在,其取值范围是m >4-22.本难点所涉及的问题以及解决的方法主要有:(1)运用奇偶性和单调性去解决有关函数的综合性题目.此类题目要求考生必须具有驾驭知识的能力,并具有综合分析问题和解决问题的能力.(2)应用问题.在利用函数的奇偶性和单调性解决实际问题的过程中,往往还要用到等价转化和数形结合的思想方法,把问题中较复杂、抽象的式子转化为基本的简单的式子去解决.特别是:往往利用函数的单调性求实际应用题中的最值问题.练习题: 一、选择题1.设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x ,则f (7.5)等于( ) A.0.5 B.-0.5 C.1.5 D.-1.52.已知定义域为(-1,1)的奇函数y =f (x )又是减函数,且f (a -3)+f (9-a 2)<0,a 的取值范围是( )A.(22,3)B.(3,10)C.(22,4)D.(-2,3)二、填空题3.若f (x )为奇函数,且在(0,+∞)内是增函数,又f (-3)=0,则xf (x )<0的解集为_________.4.如果函数f (x )在R 上为奇函数,在(-1,0)上是增函数,且f (x +2)=-f (x ),试比较f (31),f (32),f (1)的大小关系_________. 三、解答题5.已知f (x )是偶函数而且在(0,+∞)上是减函数,判断f (x )在(-∞,0)上的增减性并加以证明.6.已知f (x )=xx a 2112+-⋅ (a ∈R )是R 上的奇函数,(1)求a 的值;(2)求f (x )的反函数f -1(x );(3)对任意给定的k ∈R +,解不等式f -1(x )>lgkx+1. 7.定义在(-∞,4]上的减函数f (x )满足f (m -sin x )≤f (m 21+-47+cos 2x )对任意x ∈R 都成立,求实数m 的取值范围.8.已知函数y =f (x )=cbx ax ++12 (a ,b ,c ∈R ,a >0,b >0)是奇函数,当x >0时,f (x )有最小值2,其中b ∈N 且f (1)<25.(1)试求函数f (x )的解析式;(2)问函数f (x )图象上是否存在关于点(1,0)对称的两点,若存在,求出点的坐标;若不存在,说明理由.参考答案难点:解:∵f (2)=0,∴原不等式可化为f [log 2(x 2+5x +4)]≥f (2). 又∵f (x )为偶函数,且f (x )在(0,+∞)上为增函数, ∴f (x )在(-∞,0)上为减函数且f (-2)=f (2)=0 ∴不等式可化为log 2(x 2+5x +4)≥2① 或log 2(x 2+5x +4)≤-2 ② 由①得x 2+5x +4≥4 ∴x ≤-5或x ≥0③ 由②得0<x 2+5x +4≤41得2105--≤x <-4或-1<x ≤2105+-④由③④得原不等式的解集为 {x |x ≤-5或2105--≤x ≤-4或-1<x ≤2105+-或x ≥0} 练习题:一、1.解析:f (7.5)=f (5.5+2)=-f (5.5)=-f (3.5+2)=f (3.5)=f (1.5+2)=-f (1.5)=-f (-0.5+2)= f (-0.5)=-f (0.5)=-0.5.答案:B2.解析:∵f (x )是定义在(-1,1)上的奇函数又是减函数,且f (a -3)+f (9-a 2)<0. ∴f (a -3)<f (a 2-9).∴⎪⎩⎪⎨⎧->-<-<-<-<-9319113122a a a a ∴a ∈(22,3). 答案:A二、3.解析:由题意可知:xf (x )<0⎩⎨⎧<>⎩⎨⎧><⇔0)(00)(0x f x x f x 或 ⎩⎨⎧<>⎩⎨⎧-><⇔⎩⎨⎧<>⎩⎨⎧-><⇔3030 )3()(0 )3()(0x x x x f x f x f x f x 或或 ∴x ∈(-3,0)∪(0,3)答案:(-3,0)∪(0,3) 4.解析:∵f (x )为R 上的奇函数 ∴f (31)=-f (-31),f (32)=-f (-32),f (1)=-f (-1),又f (x )在(-1,0)上是增函数且-31> -32>-1. ∴f (-31)>f (-32)>f (-1),∴f (31)<f (32)<f (1). 答案:f (31)<f (32)<f (1)三、5.解:函数f (x )在(-∞,0)上是增函数,设x 1<x 2<0,因为f (x )是偶函数,所以 f (-x 1)=f (x 1),f (-x 2)=f (x 2),由假设可知-x 1>-x 2>0,又已知f (x )(0,+∞)上是减函数,于是有f (-x 1)<f (-x 2),即f (x 1)<f (x 2),由此可知,函数f (x )在(-∞,0)上是增函数.6.解:(1)a =1.(2)f (x )=1212+-x x (x ∈R )⇒f --1(x )=log 2xx -+11 (-1<x <1).(3)由log 2xx -+11>log 2k x+1⇒log 2(1-x )<log 2k ,∴当0<k <2时,不等式解集为{x |1-k <x <1};当k ≥2时,不等式解集为{x |-1<x <1}.7.解:⎪⎩⎪⎨⎧++-≥++-≤-⎪⎪⎪⎩⎪⎪⎪⎨⎧+-+≥-≤+-+≤-1sin sin 4721sin 4 cos 4721sin 4cos 47214sin 222x x m m x m x m x m x m x m 即,对x ∈R 恒成立,⎪⎩⎪⎨⎧=≥≤∴21233m m m 或∴m ∈[23,3]∪{21}. 8.解:(1)∵f (x )是奇函数,∴f (-x )=-f (x ),即c bx c bx c bx ax c bx ax -=+⇒+-+-=++1122 ∴c =0,∵a >0,b >0,x >0,∴f (x )=bx x b a bx ax 112+=+≥22ba ,当且仅当x =a 1时等号成立,于是22b a =2,∴a =b 2,由f (1)<25得ba 1+<25即b b 12+<25,∴2b 2-5b +2<0,解得21<b <2,又b ∈N ,∴b =1,∴a =1,∴f (x )=x +x1. (2)设存在一点(x 0,y 0)在y =f (x )的图象上,并且关于(1,0)的对称点(2-x 0,-y 0)也在y =f (x )图象上,则⎪⎪⎩⎪⎪⎨⎧-=-+-=+0020002021)2(1yxx y x x消去y 0得x 02-2x 0-1=0,x 0=1±2.∴y =f (x )图象上存在两点(1+2,22),(1-2,-22)关于(1,0)对称.。
【高中数学考点精讲】考点一 函数的单调性的判断
考点08 函数单调性与最值1、函数单调性的判断方法(1)定义法:在定义域内的某个区间上任取并使得,通过作差比较与的大小来判断单调性。
(2)性质法:若函数为增函数,为增函数,为减函数,为减函数,则有①为增函数,②为增函数,③为减函数,④为减函数。
(3)图像法:对于含绝对值或者分段函数经常使用数形结合的思想,通过函数的图象来判断函数的单调性。
由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接.(4)复合函数法:对于函数,可设内层函数为,外层函数为,可以利用复合函数法来进行求解,遵循“同增异减”,即内层函数与外层函数在区间D上的单调性相同,则函数在区间D上单调递增;内层函数与外层函数在区间D 上的单调性相反,则函数在区间D上单调递减.增函数减函数增函数减函数增函数减函数减函数增函数随着的增大而增大随着的增大而增大随着的增大而减小随着的增大而减小增函数增函数减函数减函数2、函数单调性的应用(1)比较大小.比大小常用的方法是①利用单调性比大小;②搭桥法,即引入中间量,从而确定大小关系;③数形结合比大小。
注:一般三个数比较大小使用中间量法(一个大于1,一个介于0-1之间,一个小于0)再结合函数的图像判断大小。
(2)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.解抽象函数不等式问题(如:f(a2+a-5)<2.)的一般步骤:第一步:(定性)确定函数f(x)在给定区间上的单调性;第二步:(转化)将函数不等式转化为f(M)<f(N)的形式;第三步:(去f)运用函数的单调性“去掉”函数的抽象符号“f”,转化成一般的不等式或不等式组;第四步:(求解)解不等式或不等式组确定解集;第五步:(反思)反思回顾.查看关键点,易错点及解题规范.(3)利用函数单调性求参数的取值范围.①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;②二次函数的单调性与开口和对称轴(对称轴左右两侧单调性相反)有关。
高考数学难点突破_难点08__奇偶性与单调性(二)
难点8 奇偶性与单调性(二)例题讲解:[例1]已知奇函数f (x )是定义在(-3,3)上的减函数,且满足不等式f (x -3)+f (x 2-3)<0,设不等式解集为A ,B =A ∪{x |1≤x ≤5},求函数g (x )=-3x 2+3x -4(x ∈B )的最大值. 题目分析:本题属于函数性质的综合性题目,考生必须具有综合运用知识分析和解决问题的能力,借助奇偶性脱去“f ”号,转化为x cos 不等式,利用数形结合进行集合运算和求最值.解:由⎩⎨⎧<<-<<⎩⎨⎧<-<-<-<-66603333332x x x x 得且x ≠0,故0<x <6, 又∵f (x )是奇函数,∴f (x -3)<-f (x 2-3)=f (3-x 2),又f (x )在(-3,3)上是减函数, ∴x -3>3-x 2,即x 2+x -6>0,解得x >2或x <-3,综上得2<x <6,即A ={x |2<x <6}, ∴B =A ∪{x |1≤x ≤5}={x |1≤x <6},又g (x )=-3x 2+3x -4=-3(x -21)2-413知:g (x )在B 上为减函数,∴g (x )max =g (1)=-4.[例2]已知奇函数f (x )的定义域为R ,且f (x )在[0,+∞)上是增函数,是否存在实数m ,使f (cos2θ-3)+f (4m -2m cos θ)>f (0)对所有θ∈[0,2π]都成立?若存在,求出符合条件的所有实数m 的范围,若不存在,说明理由.题目分析:本题属于探索性问题,主要考查考生的综合分析能力和逻辑思维能力以及运算能力,主要运用等价转化的思想和分类讨论的思想来解决问题.解:∵f (x )是R 上的奇函数,且在[0,+∞)上是增函数,∴f (x )是R 上的增函数.于是不等式可等价地转化为f (cos2θ-3)>f (2m cos θ-4m ),即cos2θ-3>2m cos θ-4m ,即cos 2θ-m cos θ+2m -2>0.设t =cos θ,则问题等价地转化为函数g (t )=t 2-mt +2m -2=(t -2m )2-42m +2m -2在[0,1]上的值恒为正,又转化为函数g (t )在[0,1]上的最小值为正.∴当2m<0,即m <0时,g (0)=2m -2>0⇒m >1与m <0不符; 当0≤2m≤1时,即0≤m ≤2时,g (m )=-42m +2m -2>0⇒4-22<m <4+22,∴4-22<m ≤2.当2m>1,即m >2时,g (1)=m -1>0⇒m >1.∴m >2 综上,符合题目要求的m 的值存在,其取值范围是m >4-22.题目分析:(1)运用奇偶性和单调性去解决有关函数的综合性题目.此类题目要求考生必须具有驾驭知识的能力,并具有综合分析问题和解决问题的能力.(2)应用问题.在利用函数的奇偶性和单调性解决实际问题的过程中,往往还要用到等价转化和数形结合的思想方法,把问题中较复杂、抽象的式子转化为基本的简单的式子去解决.特别是:往往利用函数的单调性求实际应用题中的最值问题.课后习题:一、选择题1.(★★★★)设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x ,则f (7.5)等于( )A.0.5B.-0.5C.1.5D.-1.52.(★★★★)已知定义域为(-1,1)的奇函数y =f (x )又是减函数,且f (a -3)+f (9-a 2)<0,则a 的取值范围是( )A.(22,3)B.(3,10)C.(22,4)D.(-2,3)二、填空题3.(★★★★)若f (x )为奇函数,且在(0,+∞)内是增函数,又f (-3)=0,则xf (x )<0的解集为_________.4.(★★★★)如果函数f (x )在R 上为奇函数,在(-1,0)上是增函数,且f (x +2)=-f (x ),试比较f (31),f (32),f (1)的大小关系_________. 三、解答题5.(★★★★★)已知f (x )是偶函数而且在(0,+∞)上是减函数,判断f (x )在(-∞,0)上的增减性并加以证明.6.(★★★★)已知f (x )=xx a 2112+-⋅ (a ∈R )是R 上的奇函数,(1)求a 的值;(2)求f (x )的反函数f -1(x );(3)对任意给定的k ∈R +,解不等式f -1(x )>lg kx+1.7.(★★★★)定义在(-∞,4]上的减函数f (x )满足f (m -sin x )≤f (m 21+-47+cos 2x )对任意x ∈R 都成立,求实数m 的取值范围.8.(★★★★★)已知函数y =f (x )=c bx ax ++12 (a ,b ,c ∈R ,a >0,b >0)是奇函数,当x >0时,f (x )有最小值2,其中b ∈N 且f (1)<25.(1)试求函数f (x )的解析式;(2)问函数f (x )图象上是否存在关于点(1,0)对称的两点,若存在,求出点的坐标;若不存在,说明理由.参考答案一、1.解析:f (7.5)=f (5.5+2)=-f (5.5)=-f (3.5+2)=f (3.5)=f (1.5+2)=-f (1.5)=-f (-0.5+2)= f (-0.5)=-f (0.5)=-0.5.答案:B2.解析:∵f (x )是定义在(-1,1)上的奇函数又是减函数,且f (a -3)+f (9-a 2)<0. ∴f (a -3)<f (a 2-9).∴⎪⎩⎪⎨⎧->-<-<-<-<-9319113122a a a a ∴a ∈(22,3). 答案:A二、3.解析:由题意可知:xf (x )<0⎩⎨⎧<>⎩⎨⎧><⇔0)(00)(0x f x x f x 或⎩⎨⎧<>⎩⎨⎧-><⇔⎩⎨⎧<>⎩⎨⎧-><⇔3030 )3()(0 )3()(0x x x x f x f x f x f x 或或∴x ∈(-3,0)∪(0,3)答案:(-3,0)∪(0,3) 4.解析:∵f (x )为R 上的奇函数 ∴f (31)=-f (-31),f (32)=-f (-32),f (1)=-f (-1),又f (x )在(-1,0)上是增函数且-31> -32>-1. ∴f (-31)>f (-32)>f (-1),∴f (31)<f (32)<f (1). 答案:f (31)<f (32)<f (1)三、5.解:函数f (x )在(-∞,0)上是增函数,设x 1<x 2<0,因为f (x )是偶函数,所以 f (-x 1)=f (x 1),f (-x 2)=f (x 2),由假设可知-x 1>-x 2>0,又已知f (x )在(0,+∞)上是减函数,于是有f (-x 1)<f (-x 2),即f (x 1)<f (x 2),由此可知,函数f (x )在(-∞,0)上是增函数.6.解:(1)a =1.(2)f (x )=1212+-x x (x ∈R )⇒f --1(x )=log 2xx -+11 (-1<x <1).(3)由log 2xx-+11>log 2k x +1⇒log 2(1-x )<log 2k ,∴当0<k <2时,不等式解集为{x |1-k <x <1};当k ≥2时,不等式解集为{x |-1<x <1}.7.解:⎪⎩⎪⎨⎧++-≥++-≤-⎪⎪⎪⎩⎪⎪⎪⎨⎧+-+≥-≤+-+≤-1sin sin 4721sin 4 cos 4721sin 4cos 47214sin 222x x m m x m x m x m x m x m 即,对x ∈R 恒成立,⎪⎩⎪⎨⎧=≥≤∴21233m m m 或∴m ∈[23,3]∪{21}. 8.解:(1)∵f (x )是奇函数,∴f (-x )=-f (x ),即c bx c bx c bx ax c bx ax -=+⇒+-+-=++1122∴c =0,∵a >0,b >0,x >0,∴f (x )=bx x b a bx ax 112+=+≥22b a ,当且仅当x =a 1时等号成立,于是22b a =2,∴a =b 2,由f (1)<25得b a 1+<25即b b 12+<25,∴2b 2-5b +2<0,解得21<b <2,又b ∈N ,∴b =1,∴a =1,∴f (x )=x +x1. (2)设存在一点(x 0,y 0)在y =f (x )的图象上,并且关于(1,0)的对称点(2-x 0,-y 0)也在y =f (x )图象上,则⎪⎪⎩⎪⎪⎨⎧-=-+-=+0020002021)2(1y xx y x x消去y 0得x 02-2x 0-1=0,x 0=1±2.∴y =f (x )图象上存在两点(1+2,22),(1-2,-22)关于(1,0)对称.。
高中函数的单调性和奇偶性
函数的单调性(一)知识梳理1、函数的单调性定义:设函数)(x f y =的定义域为A ,区间A I ⊆,如果对于区间I 内的任意两个值1x ,2x ,当21x x <时,都有)()(21x f x f <,那么就说)(x f y =在区间I 上是单调增函数,I 称为)(x f y =的单调增区间;如果对于区间I 内的任意两个值1x ,2x ,当21x x <时,都有)()(21x f x f >,那么就说)(x f y =在区间I 上是单调减函数,I 称为)(x f y =的单调减区间。
如果用导数的语言来,那就是:设函数)(x f y =,如果在某区间I 上0)(>'x f ,那么)(x f 为区间I 上的增函数;如果在某区间I 上0)(<'x f ,那么)(x f 为区间I 上的减函数;2、确定函数的单调性或单调区间的常用方法:(1)①定义法(取值――作差――变形――定号);②导数法(在区间(,)a b 内,若总有()0f x '>,则()f x 为增函数;反之,若()f x 在区间(,)a b 内为增函数,则()0f x '≥,(2)在选择填空题中还可用数形结合法、特殊值法等等,特别要注意(0by ax a x =+>,0)b >型函数的图象和单调性在解题中的运用:增区间为(,)-∞+∞,减区间为[.(3)复合函数法:复合函数单调性的特点是同增异减(4)若)(x f 与)(x g 在定义域内都是增函数(减函数),那么)()(x g x f +在其公共定义域内是增函数(减函数)。
3、单调性的说明:(1)函数的单调性只能在函数的定义域内来讨论,所以求函数的单调区间,必须先求函数的定义域;(2)函数单调性定义中的1x ,2x 有三个特征:一是任意性;二是大小,即)(2121x x x x <<;三是同属于一个单调区间,三者缺一不可;(3)函数的单调性是对某个区间而言的,所以受到区间的限制,如函数xy 1=分别在)0,(-∞和),0(+∞内都是单调递减的,但是不能说它在整个定义域即),0()0,(+∞-∞ 内是单调递减的,只能说函数xy 1=的单调递减区间为)0,(-∞和),0(+∞。
高中数学必修1函数难题突破(含解析)
1必修I 重点、难点突破----------函数的性质、图象、思想的综合应用一、函数综合问题概述必修I 第一章我们学习了函数的基本性质:单调性与奇偶性,第二章我们学习了三个基本初等函数,第三章我们学习了函数零点以及函数模型。
将以上知识综合起来命题,这样的题目叫做函数综合题。
综合题的特点:1、解决一道题需要掌握多个知识点;2、解决一道题需要找到多个知识的联系点。
3、运算往往较复杂。
5、这类问题一般以初等函数(尤其是指数对数)为载体,运用函数思想、方程思想、转化思想结合函数性质配以图象解决。
二、函数综合问题举例例1、已知函数f (x )的图象关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为( )A .c >a >bB .c >b >aC .a >c >bD .b >a >c【解析】:因为f (x )的图象关于直线x =1对称.由此可得f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52.由x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,知f (x )在(1,+∞)上单调递减.∵1<2<52<e ,∴f (2)>f ⎝ ⎛⎭⎪⎫52>f (e),∴b >a >c .例2、若函数为奇函数,则使不等式成立的 的取值范围是( )A. B.C. D.【解析】: 函数为奇函数,,即,不等式,即不等式,在上单调递减, , , 故选B.例3、已知函数的图象关于原点对称,其中为常数.求的值;当时,恒成立,求实数的取值范围;若关于的方程在上有解,求的取值范围.【解析】:函数的图象关于原点对称,函数为奇函数,,即在定义域内恒成立,所以,即在定义域内恒成立, 所以,解得:或舍,所以,当时,,时,恒成立,;由得:,即,即,即在上有解,在上单调递减,,则的值域是,.即k的取值范围为.例4、已知定义域为R的函数,是奇函数.2Ⅰ求a,b的值;Ⅱ若对任意的,不等式恒成立,求k的取值范围.【解析】:Ⅰ因为是奇函数,所以,即,, 又由知.所以,.经检验,时,是奇函数.Ⅱ由Ⅰ知,易知在上为减函数.又因为是奇函数,所以等价于,因为为减函数,由上式可得:.即对一切有:,从而判别式.所以k的取值范围是.例5、已知函数为R上的偶函数,为R上的奇函数,且.求,的解析式;若函数在R上只有一个零点,求实数a的取值范围.【解析】::因为,,,由得,.由.得:,令,则,即方程只有一个大于0的根, 当时,,满足条件;当方程有一正一负两根时,满足条件,则,,3当方程有两个相等的且为正的实根时,则,,舍时,,综上:或.例6、设函数若关于x的方程恰好有六个不同的实数解,则实数a的取值范围为A. B.C. D.【解析】:函数的图象如图,关于x的方程恰好有六个不同的实数解,令,则有两个在的不同的解,所以,解得.故选A.三、函数综合问题训练41.已知函数满足,若函数与图象的交点为,,,,则( )A. 0B. mC. 2mD. 4m【解析】:函数满足,即为,可得关于点对称,函数,即的图象关于点对称,即有为交点,即有也为交点,为交点,即有也为交点, 则有.故选B.2.已知函数则函数的零点个数为( )A. 1B. 3C. 4D. 6【解析】:令,当时,,解得,,当时,,解得,综上解得,,,令,作出图象如图所示:由图象可得当无解,有3个解,有1个解,56综上所述函数 的零点个数为4,故选C .3. 已知函数 是定义域为R 的偶函数,当 时,,若关于x 的方程 ,有且只有7个不同实数根,则实数a 的取值范围是 A.B.C.D.【解析】:由题意, 在 和 上是减函数,在 和 上是增函数, 时,函数取极大值1, 时,取极小值,时, ,关于x 的方程 、 有且只有7个不同实数根, 设 ,则方程 必有两个根 , ,其中 ,,,则. 故选A .已知函数,函数 ,其中 ,若函数 恰有4个零点,则b 的取值范围是( ) A.B.C.D.【解析】: ,,由 ,得 , 设 , 若 ,则 , ,则,若,则,,则,若,,,则即,作出函数的图象如图:当时,,当时,,故当时,,有两个交点,当时,,有无数个交点,由图象知要使函数恰有4个零点,即恰有4个根,则满足,故选D.4.已知函数且在上的最大值与最小值之和为20,记.求a的值;证明;求的值.【解析】:函数且在上的最大值与最小值之和为20,而函数且在上单调递增或单调递减,,得,或舍去,证明:,由知,,, ,7.5.函数当时求该函数的值域;若对于恒成立,求m的取值范围.【解析】:解, 令,时,,此时,当时,y取最小值,当时,y取最大值1,即函数的值域为:;若对于恒成立,令,即对恒成立,对恒成立,易知在上单调递增,,.6.已知,函数.当时,解不等式;若关于x的方程的解集中恰有一个元素,求a的值;设,若对任意,函数在区间上的最大值与最小值的差不超过1,求a的取值范围.【答案】解:当时,不等式化为:,,化为:,解得,经过验证满足条件,因此不等式的解集为:.方程即,,化为:,若,化为,解得,经过验证满足:关于x的方程的解集中恰有一个元素1.8若,令,解得,解得经过验证满足:关于x的方程的解集中恰有一个元素1.综上可得:或.,对任意,函数在区间上单调递减,,,化为:,,,在上单调递减,时,取得最大值,..的取值范围是.9。
高一数学函数的单调性与奇偶性知识精讲
高一数学函数的单调性与奇偶性【本讲主要内容】一. 本周教学内容:函数的单调性与奇偶性函数单调性概念;增(减)函数的定义及判定方法;函数奇偶性定义及判定方法。
【知识掌握】 【知识点精析】(一)函数的单调性1. 增函数、减函数的定义一般地,对于给定区间上的函数f x (),如果对于属于这个区间的任意两个自变量的值x x 12、,当x x 12<时,都有f x f x ()()12<[或都有f x f x ()()12>],那么就说f x ()在这个区间上是增函数(或减函数)。
如果函数y f x -()在某个区间上是增函数(或减函数),就说f x ()在这一区间上具有(严格的)单调性,这一区间叫做f x ()的单调区间。
如函数是增函数则称区间为增区间,如函数为减函数则称区间为减区间。
2. 函数单调性可以从三个方面理解(1)图形刻画:对于给定区间上的函数f x (),函数图象如从左向右连续上升,则称函数在该区间上单调递增,函数图象如从左向右连续下降,则称函数在该区间上单调递减。
(2)定性刻画:对于给定区间上的函数f x (),如函数值随自变量的增大而增大,则称函数在该区间上单调递增,如函数值随自变量的增大而减小,则称函数在该区间上单调递减。
(3)定量刻画,即定义。
上述三方面是我们研究函数单调性的基本途径。
注:利用导数研究函数单调性更便捷。
(二)函数奇偶性1. 奇函数:对于函数f x ()的定义域内任意一个x ,都有f x f x ()()-=-[或f x f x ()()+-=0],则称f x ()为奇函数。
2. 偶函数:对于函数f x ()的定义域内任意一个x ,都有f x f x ()()-=[或f x f x ()()--=0],则称f x ()为偶函数。
3. 奇、偶函数的性质(1)具有奇偶性的函数,其定义域关于原点对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称)。
第08讲 函数的奇偶性、周期性 高考数学大一轮复习核心题型 易错重难点专项突破(新高考版)
对于分段函数奇偶性的判断,要分段判断 f (- x )= f ( x )或 f (- x )=- f ( x )
是否成立,只有当所有区间都满足相同关系时,才能判断该分段函数的奇偶性.
角度1 判断函数的奇偶性
例1 (1)[全国卷Ⅰ]设函数 f ( x ), g ( x )的定义域都为R,且 f ( x )是奇函数, g ( x )是偶函
−1
−1
ex
+e- x ,所以 a -1=±1,解得 a =0(舍去)或 a =2,故选D.
解法二
f ( x )= = (−1) − , f ( x )是偶函数,又 y = x 是奇函数,所以
−1
−
y =e( a -1) x -e- x 是奇函数,故 a -1=1,即 a =2,故选D.
A. (0,+∞)
B. (-∞,-4)
C. (-4,0)
D. (-∞,-4)∪(0,+∞)
定义域为{ x | x ≠0}, f ( x )是奇函数,在定义域上不具有单调性,故D错误.故选
C.
2.[2023南京市、盐城市一模]若函数 f ( x )= x 3+ bx 2+ cx + d 满足 f (1- x )+ f (1+ x )
=0对一切实数 x 恒成立,则不等式 f '(2 x +3)< f '( x -1)的解集为(
图像特征 关于 y轴
对称
f(-x)=-f(x) ,则称y=f(x)为奇函数
关于 原点
对称
2.函数的周期性
(1)周期函数
非零常数
一般地,对于函数f(x),如果存在一个
T,使得对定义
域内的 每一个x
考点08 函数的奇偶性-备战2021年新高考数学一轮复习考点一遍过
考点08函数的奇偶性【命题解读】函数的奇偶性是函数的一个重要性质,在高考的试题中是必考内容,奇偶性在求解过程中要注意函数的定义域的对称,奇偶性可以说是函数的一个“整体”性质,要与单调性区分开来。
奇偶性的考察近几年的试题中主要是在函数图象等方面出现,整体难度中等。
【命题预测】预计2021年的高考函数的奇偶性还是必考内容,在出题上多注意具有奇偶性函数的图象性质,以及借助函数的奇偶性求解函数的解析式等等。
【复习建议】集合复习策略:1.理解函数的奇偶性的概念以及具有奇偶性函数的图象性质;2.掌握判断函数奇偶性的方法;3.理解掌握函数奇偶性的具体应用。
考向一函数的奇偶性及图象性质1.奇函数:如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)是奇函数;奇函数图象关于原点成中心对称.2.偶函数:如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)是偶函数;偶函数图象关于y轴成轴对称.3.函数具有奇偶性必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域.(2)判断f(x)与f(-x)的关系.在判断奇偶性时,可以转化为判断奇偶性的等价关系式f(x)+f(-x)=0(奇函数)或f(x)-f(-x)=0(偶函数)是否成立.1.【2019山东潍坊模拟】已知f(x)是定义在R上的奇函数,当x≥0时f(x)=3x+m(m为常数),则f(-log35)的值为()A .4B .-4C .6D .-6【答案】B【解析】当x ≥0时f (x )=3x +m (m 为常数),则f (0)=30+m =0,则m =-1.∴f (x )=3x -1.∵函数f (x )是定义在R 上的奇函数,∴f (-log 35)=-f (log 35)=-(3log 35-1)=-4. 故选B.2. 【2020四川省高三其他(理)】已知定义在R 上的函数()f x 满足:()2()f x f x =--,且函数(1)f x +是偶函数,当[1,0]x ∈-时,2()1f x x =-,则2020()3f =( ) A .109B .119C .139D .169【答案】C【解析】因为函数(1)f x +是偶函数,所以函数(1)f x +是偶函数, 所以()(2)f x f x -=+,因为()2()f x f x =--,所以()(2)2f x f x ++=, 所以(2)(4)2f x f x +++=,所以()(4)f x f x =+,所以函数()f x 的周期为4,所以202044()(1684)()333f f f =⨯+=, 因为241122213()(1)(1)()2()2[1()]3333339f f f f f =+=-==--=---=,所以202013()39f =, 故选:C3. 【2019临沂三模】已知函数f (x ),g (x )的定义域都为R,且f (x )是奇函数,g (x )是偶函数,设h (x )=|f (x+1)|+g (x+1),则下列结论中正确的是 ( )A . h (x ) 的图像关于点 (1,0)对称B . h (x ) 的图像关于点 (-1,0)对称C . h (x ) 的图像关于直线x=1对称D . h (x ) 的图像关于直线x=-1对称【答案】D【解析】设t=x+1,则x=t-1,h (x )=|f (x+1)|+g (x+1)等价于h (t-1)=|f (t )|+g (t ), 因为h (-t-1)=|f (-t )|+g (-t )=|-f (t )|+g (t )=|f (t )|+g (t )=h (t-1), 所以h (x )的图像关于直线x=-1对称. 故选D .考向二 函数的奇偶性与单调性的综合运用1. 比较函数值的大小问题,可以利用奇偶性把不在同一单调区间上的两个或多个自变量的函数值转化到同一单调区间上,再利用函数的单调性比较大小;2. 对于抽象函数不等式的求解,应变形为f (x 1)>f (x 2)的形式,再结合单调性脱去法则“f ”变成常规不等式(如x 1<x 2或x 1>x 2)求解.1. 【2019甘肃天水月考】已知f (x )=e x -e -x2,则下列正确的是( )A .奇函数,在R 上为增函数B .偶函数,在R 上为增函数C .奇函数,在R 上为减函数D .偶函数,在R 上为减函数 【答案】A【解析】定义域为R ,∵f (-x )=e -x -e x2=-f (x ),∴f (x )是奇函数,∵e x 是R 上的增函数,-e -x 也是R 上的增函数,∴e x -e -x2是R 上的增函数, 故选A.2. 【2020辉县市第二高级月考】已知定义域为R 的函数()f x 在[1,)+∞单调递增,且(1)f x +为偶函数,若(3)1f =,则不等式(21)1f x +<的解集为( )A .(1,1)-B .(1,)-+∞C .(,1)-∞D .(,1)(1,)-∞-+∞【答案】A【解析】由函数y =f (x +1)是定义域为R 的偶函数,可知f (x )的对称轴x =1,且在[1,+∞)上单调递增,所以不等式f (2x+1)<1=f (3)⇔ |2x+1﹣1|)<|3﹣1|, 即|2x |<2⇔|x |<1,解得-11x << 所以所求不等式的解集为:()1,1-. 故选A .3. 【2020江苏省期末】关于函数()y f x =,()y g x =,下述结论正确的是( ) A .若()y f x =是奇函数,则()00f =B .若()y f x =是偶函数,则()y f x =也为偶函数C .若()()y f x x R =∈满足()()12f f <,则()f x 是区间[]1,2上的增函数D .若()y f x =,()y g x =均为R 上的增函数,则()()y f x g x =+也是R 上的增函数 【答案】BD【解析】A. 若()y f x =是奇函数,则()00f =,当定义域不包含0时不成立,故A 错误;B. 若()y f x =是偶函数,()()f x f x =- ,故()()f x f x =-,()y f x =也为偶函数,B 正确;C. 举反例:()243f x x ⎛⎫=- ⎪⎝⎭满足()()12f f <,在[]1,2不增函数,故C 错误;D. 若()y f x =,()y g x =均为R 上的增函数,则()()y f x g x =+也是R 上的增函数 设12x x <,则()()()()2211f x g x f x g x +-+⎡⎤⎡⎤⎣⎦⎣⎦()()()()21210f x f x g x g x =-+->⎡⎤⎡⎤⎣⎦⎣⎦,故()()y f x g x =+单调递增,故D 正确;故选:BD .题组一(真题在线)1. 【2019年高考全国Ⅱ卷文数】设f (x )为奇函数,且当x ≥0时,f (x )=e 1x-,则当x <0时,f (x )=A .e 1x --B .e 1x -+C .e 1x ---D .e 1x --+2. 【2019年高考全国Ⅰ卷文数】函数f (x )=2sin cos ++x xx x在[,]-ππ的图像大致为 A .B .C .D .3. 【2020年高考天津】函数241xy x =+的图象大致为ABC D4. 【2020年新高考全国Ⅰ卷】若定义在R 的奇函数f (x )在(0),-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是 A .[)1,1][3,-+∞ B .3,1][,[01]-- C .[)1,0][1,-+∞D .1,0]3][[1,-5. 【2020年高考江苏】 已知y =f (x )是奇函数,当x ≥0时,()23f x x =,则()8f -的值是 .6. 【2019年高考北京】设函数f (x )=e x +a e −x (a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________.题组二1. 【2020·湖北省高三其他(理)】函数(22)sin x xy x -=-在[,]-ππ的图象大致为A .B .C .D .2. 【2020北京四中高三开学考试】设()f x 是定义在R 上的奇函数,且()32f x f x ⎛⎫-= ⎪⎝⎭,当10x -≤<时,()()3log 63f x x =-+.则()2020f 的值为 A .-1 B .-2C .1D .23. 【2019河北邢台月考】已知f (x )是定义在R 上的偶函数,且f (x +1)=-f (x ),若f (x )在[-1,0]上单调递减,则f (x )在[1,3]上是( ) A .增函数 B .减函数C .先增后减的函数D .先减后增的函数4. 【2019山东省实验中学诊断】函数f (x )在[0,+∞)上单调递减,且f (x -2)的图象关于x =2对称,若f (-2)=1,则满足f (x -2) ≥1的x 取值范围是( ) A .[-2,2]B .(-∞,-2]∪[2,+∞)C .(-∞,0]∪[4,+∞)D .[0,4]5.【2019山东泰安阶段检测】偶函数f (x )在[0,+∞)单调递减,f (1)=0,不等式f (x )>0的解集为________.6. 【2019山东淄博月考】已知f (x )是定义域(-1,1)的奇函数,而且f (x )是减函数,如果f (m -2)+f (2m -3)>0,那么实数m 的取值范围是________.7. 【2020巴蜀中学高三高考适应性月考】已知()121x af x =-+是定义域为R 的奇函数,且对任意实数x ,都有()2123f x mx -+>,则m 的取值范围是( ) A .22m -<< B .02m <<C .44m -<<D .2m >8.【2019贵州适应性考试】已知f (x )是奇函数,g (x )=2+f xf x. 若g (2)=3,则g (-2)=________.题组一1.D【解析】由题意知()f x 是奇函数,且当x ≥0时,f (x )=e 1x -,则当0x <时,0x ->,则()e 1()xf x f x --=-=-,得()e 1xf x -=-+.故选D . 2.D【解析】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x-+----===--+-+,得()f x 是奇函数,其图象关于原点对称.又22π1π42π2()1,π2π()2f ++==>2π(π)01πf =>-+,可知应为D 选项中的图象. 故选D . 3.A【解析】由函数的解析式可得:()()241xf x f x x --==-+,则函数()f x 为奇函数,其图象关于坐标原点对称,选项CD 错误;当1x =时,42011y ==>+,选项B 错误. 故选:A . 4.D【解析】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =, 所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞时,()0f x <,所以由(10)xf x -≥可得:021012x x x <⎧⎨-≤-≤-≥⎩或或001212x x x >⎧⎨≤-≤-≤-⎩或或0x =. 解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃, 故选:D . 5. 4-【解析】23(8)84f ==,因为()f x 为奇函数,所以(8)(8)4f f -=-=-故答案为:4- 6. -1; (],0-∞. 【解析】若函数()x xf x e ae -=+为奇函数,则()()(),x x x x f x f x e ae e ae ---=-+=-+,()()1 0x x a e e -++=对任意的x 恒成立.若函数()xxf x e ae -=+是R 上的增函数,则()' 0xxf x e ae-=-≥恒成立,2,0x a e a ≤≤.即实数a 的取值范围是(],0-∞题组二1. A 【解析】设()(22)sin xxf x x -=-,则()()()(22)sin xx f x x f x --=--=,故()f x 为[],-ππ上的偶函数,故排除B .又222202f ππ-π⎛⎫=-> ⎪⎝⎭,()00f =,排除C 、D .故选:A .2.B 【解析】∵()f x 是奇函数, ∴()f x 关于()0,0对称, 又()32f x f x ⎛⎫-=⎪⎝⎭, ∴()f x 关于34x =对称, ∴函数()f x 的一个周期为34034⨯-=, ∴()()()()20201367311f f f f =+⨯==--3log 92=-=-. 故选:B .3.D 【解析】根据题意,∵ f (x +1)=-f (x ),∴f (x +2)=-f (x +1)= f (x ),∴函数的周期是2;又f (x )在定义域R 上是偶函数,在[-1,0]上是减函数,∴函数f (x )在[0,1]上是增函数,∴函数f (x )在[1,2]上是减函数,在[2,3]上是增函数,∴f (x )在[1,3]上是先减后增的函数.4.D 【解析】因为y =f (x -2)的图象向左平移2个单位可得到y =f (x )的图象,所以由f (x -2)的图象关于x =2对称可知y =f (x )的图象关于y 轴对称,为偶函数,所以(-∞,0]上为增函数,且f (-2)=f (2)=1,所以f (x -2) ≥1只需-2≤x -2≤2,解得0≤x ≤4.5. 1-或0【解析】f (x )在[0,+∞)上单调递减,且f (1)=0,则可知x ∈[0,1)时f (x )>0.由偶函数图象关于y 轴对称,可知x ∈(-1,0]时f (x )>0.综上可得x ∈(-1,1).6. ⎝⎛⎭⎫1,53【解析】∵f (x )是定义域(-1,1)的奇函数, ∴-1<x <1,f (-x )=-f (x ).∵f (x )是减函数,∴f (m -2)+f (2m -3)>0可转化为f (m -2)>-f (2m -3),∴f (m -2)>f (-2m +3), ∴⎩⎪⎨⎪⎧-1<m -2<1,-1<2m -3<1,m -2<-2m +3∴1<m <53.7. A【解析】 根据()121xaf x =-+是定义域为R 的奇函数,由()00f =,得到a ,再利用函数的单调性,将()()21213f x mx f -+>=恒成立,转化为210x mx -+>恒成立求解. 因为()121x af x =-+是定义域为R 的奇函数 所以由()00f =,得2a =, 而()()21213f x mx f -+>=且()f x 单调递增, 所以210x mx -+>恒成立, 所以240m -<, 解得22m -<<. 故选:A . 8. 1-【解析】由题意可得g (2)=2+f 2f 2=3,则f (2)=1,又f (x )是奇函数,则f (-2)=-1,所以g (-2)=2+f -2f -2=2-1-1=-1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
难点8 关于奇偶性与单调性(二)函数的单调性、奇偶性是高考的重点和热点内容之一,特别是两性质的应用更加突出.本节主要帮助考生学会怎样利用两性质解题,掌握基本方法,形成应用意识.●难点磁场(★★★★★)已知偶函数f (x )在(0,+∞)上为增函数,且f (2)=0,解不等式f [log 2(x 2+5x +4)]≥0.●案例探究 [例1]已知奇函数f (x )是定义在(-3,3)上的减函数,且满足不等式f (x -3)+f (x 2-3)<0,设不等式解集为A ,B =A ∪{x |1≤x ≤5},求函数g (x )=-3x 2+3x -4(x ∈B )的最大值. 命题意图:本题属于函数性质的综合性题目,考生必须具有综合运用知识分析和解决问题的能力,属★★★★级题目.知识依托:主要依据函数的性质去解决问题.错解分析:题目不等式中的“f ”号如何去掉是难点,在求二次函数在给定区间上的最值问题时,学生容易漏掉定义域.技巧与方法:借助奇偶性脱去“f ”号,转化为x cos 不等式,利用数形结合进行集合运算和求最值.解:由⎩⎨⎧<<-<<⎩⎨⎧<-<-<-<-66603333332x x x x 得且x ≠0,故0<x <6, 又∵f (x )是奇函数,∴f (x -3)<-f (x 2-3)=f (3-x 2),又f (x )在(-3,3)上是减函数, ∴x -3>3-x 2,即x 2+x -6>0,解得x >2或x <-3,综上得2<x <6,即A ={x |2<x <6}, ∴B =A ∪{x |1≤x ≤5}={x |1≤x <6},又g (x )=-3x 2+3x -4=-3(x -21)2-413知:g (x )在B 上为减函数,∴g (x )max =g (1)=-4.[例2]已知奇函数f (x )的定义域为R ,且f (x )在[0,+∞)上是增函数,是否存在实数m ,使f (cos2θ-3)+f (4m -2m cos θ)>f (0)对所有θ∈[0,2π]都成立?若存在,求出符合条件的所有实数m 的范围,若不存在,说明理由.命题意图:本题属于探索性问题,主要考查考生的综合分析能力和逻辑思维能力以及运算能力,属★★★★★题目.知识依托:主要依据函数的单调性和奇偶性,利用等价转化的思想方法把问题转化为二次函数在给定区间上的最值问题.错解分析:考生不易运用函数的综合性质去解决问题,特别不易考虑运用等价转化的思想方法.技巧与方法:主要运用等价转化的思想和分类讨论的思想来解决问题.解:∵f (x )是R 上的奇函数,且在[0,+∞)上是增函数,∴f (x )是R 上的增函数.于是不等式可等价地转化为f (cos2θ-3)>f (2m cos θ-4m ),即cos2θ-3>2m cos θ-4m ,即cos 2θ-m cos θ+2m -2>0.设t =cos θ,则问题等价地转化为函数g (t ) =t 2-mt +2m -2=(t -2m )2-42m +2m -2在[0,1]上的值恒为正,又转化为函数g (t )在[0,1]上的最小值为正.∴当2m<0,即m <0时,g (0)=2m -2>0⇒m >1与m <0不符; 当0≤2m≤1时,即0≤m ≤2时,g (m )=-42m +2m -2>0⇒4-22<m <4+22, ∴4-22<m ≤2.当2m>1,即m >2时,g (1)=m -1>0⇒m >1.∴m >2 综上,符合题目要求的m 的值存在,其取值范围是m >4-22.●锦囊妙计本难点所涉及的问题以及解决的方法主要有:(1)运用奇偶性和单调性去解决有关函数的综合性题目.此类题目要求考生必须具有驾驭知识的能力,并具有综合分析问题和解决问题的能力.(2)应用问题.在利用函数的奇偶性和单调性解决实际问题的过程中,往往还要用到等价转化和数形结合的思想方法,把问题中较复杂、抽象的式子转化为基本的简单的式子去解决.特别是:往往利用函数的单调性求实际应用题中的最值问题.●歼灭难点训练 一、选择题1.(★★★★)设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x ,则f (7.5)等于( )A.0.5B.-0.5C.1.5D.-1.52.(★★★★)已知定义域为(-1,1)的奇函数y =f (x )又是减函数,且f (a -3)+f (9-a 2)<0, 则a 的取值范围是( )A.(22,3)B.(3,10)C.(22,4)D.(-2,3)二、填空题3.(★★★★)若f (x )为奇函数,且在(0,+∞)内是增函数,又f (-3)=0,则xf (x )<0的解集为_________.4.(★★★★)如果函数f (x )在R 上为奇函数,在(-1,0)上是增函数,且f (x +2)=-f (x ),试比较f (31),f (32),f (1)的大小关系_________. 三、解答题5.(★★★★★)已知f (x )是偶函数而且在(0,+∞)上是减函数,判断f (x )在(-∞,0)上的增减性并加以证明.6.(★★★★)已知f (x )=xx a 2112+-⋅ (a ∈R )是R 上的奇函数,(1)求a 的值;(2)求f (x )的反函数f -1(x );(3)对任意给定的k ∈R +,解不等式f -1(x )>lgkx+1. 7.(★★★★)定义在(-∞,4]上的减函数f (x )满足f (m -sin x )≤f (m 21+-47+cos 2x )对任意x ∈R 都成立,求实数m 的取值范围.8.(★★★★★)已知函数y =f (x )=c bx ax ++12 (a ,b ,c ∈R ,a >0,b >0)是奇函数,当x >0时,f (x )有最小值2,其中b ∈N 且f (1)<25.(1)试求函数f (x )的解析式;(2)问函数f (x )图象上是否存在关于点(1,0)对称的两点,若存在,求出点的坐标;若不存在,说明理由.参考答案难点磁场解:∵f (2)=0,∴原不等式可化为f [log 2(x 2+5x +4)]≥f (2). 又∵f (x )为偶函数,且f (x )在(0,+∞)上为增函数, ∴f (x )在(-∞,0)上为减函数且f (-2)=f (2)=0 ∴不等式可化为log 2(x 2+5x +4)≥2 ① 或log 2(x 2+5x +4)≤-2 ② 由①得x 2+5x +4≥4 ∴x ≤-5或x ≥0 ③由②得0<x 2+5x +4≤41得2105--≤x <-4或-1<x ≤2105+-④由③④得原不等式的解集为{x |x ≤-5或2105--≤x ≤-4或-1<x ≤2105+-或x ≥0} 歼灭难点训练一、1.解析:f (7.5)=f (5.5+2)=-f (5.5)=-f (3.5+2)=f (3.5)=f (1.5+2)=-f (1.5)=-f (-0.5+2)= f (-0.5)=-f (0.5)=-0.5.答案:B2.解析:∵f (x )是定义在(-1,1)上的奇函数又是减函数,且f (a -3)+f (9-a 2)<0. ∴f (a -3)<f (a 2-9).∴⎪⎩⎪⎨⎧->-<-<-<-<-9319113122a a a a ∴a ∈(22,3). 答案:A二、3.解析:由题意可知:xf (x )<0⎩⎨⎧<>⎩⎨⎧><⇔0)(00)(0x f x x f x 或 ⎩⎨⎧<>⎩⎨⎧-><⇔⎩⎨⎧<>⎩⎨⎧-><⇔330 )3()(0 )3()(0x x x x f x f x f x f x 或或 ∴x ∈(-3,0)∪(0,3)答案:(-3,0)∪(0,3) 4.解析:∵f (x )为R 上的奇函数 ∴f (31)=-f (-31),f (32)=-f (-32),f (1)=-f (-1),又f (x )在(-1,0)上是增函数且-31> -32>-1. ∴f (-31)>f (-32)>f (-1),∴f (31)<f (32)<f (1). 答案:f (31)<f (32)<f (1)三、5.解:函数f (x )在(-∞,0)上是增函数,设x 1<x 2<0,因为f (x )是偶函数,所以f (-x 1)=f (x 1),f (-x 2)=f (x 2),由假设可知-x 1>-x 2>0,又已知f (x ) 在(0,+∞)上是减函数,于是有f (-x 1)<f (-x 2),即f (x 1)<f (x 2),由此可知,函数f (x )在(-∞,0)上是增函数.6.解:(1)a =1.(2)f (x )=1212+-x x (x ∈R )⇒f --1(x )=log 2xx -+11 (-1<x <1).(3)由log 2xx -+11>log 2k x+1⇒log 2(1-x )<log 2k ,∴当0<k <2时,不等式解集为{x |1-k <x <1};当k ≥2时,不等式解集为{x |-1<x <1}.7.解:⎪⎩⎪⎨⎧++-≥++-≤-⎪⎪⎪⎩⎪⎪⎪⎨⎧+-+≥-≤+-+≤-1sin sin 4721sin 4 cos 4721sin 4cos 47214sin 222x x m m x m x m x m x m x m 即,对x ∈R 恒成立,⎪⎩⎪⎨⎧=≥≤∴21233m m m 或∴m ∈[23,3]∪{21}. 8.解:(1)∵f (x )是奇函数,∴f (-x )=-f (x ),即c bx c bx c bx ax c bx ax -=+⇒+-+-=++1122 ∴c =0,∵a >0,b >0,x >0,∴f (x )=bx x b a bx ax 112+=+≥22b a ,当且仅当x =a 1时等号成立,于是22b a =2,∴a =b 2,由f (1)<25得ba 1+<25即b b 12+<25,∴2b 2-5b +2<0,解得21<b <2,又b ∈N ,∴b =1,∴a =1,∴f (x )=x +x1. (2)设存在一点(x 0,y 0)在y =f (x )的图象上,并且关于(1,0)的对称点(2-x 0,-y 0)也在y =f (x )图象上,则⎪⎪⎩⎪⎪⎨⎧-=-+-=+0020002021)2(1yxx y x x消去y 0得x 02-2x 0-1=0,x 0=1±2.∴y =f (x )图象上存在两点(1+2,22),(1-2,-22)关于(1,0)对称.。