概率论-样本与统计量、统计量的分布

合集下载

概率论与数理统计(06)第6章 统计量及其抽样分布

概率论与数理统计(06)第6章  统计量及其抽样分布
一个任意分 布的总体
σx =
σ
n
当样本容量足够 大时( 大时(n ≥ 30) , 样本均值的抽样 分布逐渐趋于正 态分布
6 - 11
µx = µ
xቤተ መጻሕፍቲ ባይዱ
x 的分布趋 于正态分布 的过程
6 - 12
6.4 正态总体 6.3.1 χ2分布 6.3.2 t 分布 6.3.3 F 分布
6 - 13
χ2 分布
第六章 样本与统计量
6.1引言 6.1引言
数理统计学: 运用概率论的基础知识,对要研究的随机现象进行 多次观察或试验,研究如何合理地获得数据资料, 建立有效的数学方法,根据所获得的数据资料,对 所关心的问题作出估计与检验。
6-1
§6.2总体与样本 6.2总体与样本
对某一问题的研究对象全体称为总体。 组成总体的某个基本单元,称为个体。 总体可以是具体事物的集合,如一批产品。 也可以是关于事物的度量数据集合,如长度测量。 总体可以包含有限个个体,也可以包含无限个个体。 有限总体在个体相当多的情况下,可以作为无限 总体进行研究。 总体中的个体,应当有共同的可观察的特征。该 特征与研究目的有关。
6 - 16
χ2分布
(图示) 图示)
n=1 n=4 n=10
n=20
6 - 17 不同容量样本的抽样分布
χ2
t 分布
6 - 18
t 分布
1. 高 塞 特 (W.S.Gosset) 于 1908 年 在 一 篇 以 (W. “Student”(学生)为笔名的论文中首次提出 Student”(学生)
X ~ N(µ,σ ) ,则
2
χ2分布
2. 3.
z=
X −µ
Y=z

概率论与数理统计第六章统计量,样本及抽样分布

概率论与数理统计第六章统计量,样本及抽样分布

(2) X 1
~
2 (n1 ),
X2
~
2 (n2 ),
X1,
X

2



X 1 X 2 ~ 2 (n1 n2 ).
(3) X ~ 2 (n), E( X ) n, D( X ) 2n,
.
2021/3/11
20
(4). 2分布的分位点
对于给定的正数,0 1,
称满足条件
P
2 2 (n)
k 1
,
X
k 2
,,
X
k n
独立且与X
k同分布,
E
(
X
k i
)
k
k 1,2,,n 再由辛钦大数定律可得上述结论.
再由依概率收敛性质知,可将上述性质推广为
g( A1, A2 ,, Ak ) p g(1,2 ,,k ) 其中g为连续函数.
这就是矩估计法的理论根据.
2021/3/11
18
皮肌炎图片——皮肌炎的症状表现 数理统计
10
3. 总体、样本、样本值的关系
事实上我们抽样后得到的资料都是具体的、确 定的值. 如我们从某班大学生中抽取10人测量身高, 得到10个数,它们是样本取到的值而不是样本. 我 们只能观察到随机变量取的值而见不到随机变量.
2021/3/11
11
总体(理论分布) ?
样本
样本值
统计是从手中已有的资料--样本值,去推断总 体的情况---总体分布F(x)的性质.
2. t分布的密度函数关于t 0对称.当n充分大时, 其图形近似于标准正态分布概率密度的图形,
再由函数的性质有
lim h(t)
n
1 et2 2. 2

《概率论与数理统计》统计量及其分布

《概率论与数理统计》统计量及其分布
律性的数学学科.
但数理统计以概率论为基础,更着重于根据试验得
到的数据来对研究对象的客观规律作出种种合理的估
计和判断.
4
第5章
统计量及其分布

描述统计学

对随机现象进行观测、试验, 以取得有代表

性的观测值.


推断统计学

对已取得的观测值进行整理、分析, 作出推

断、决策,从而找出所研究的对象的规律性.
O
5
n 10
10
15
20
x
32
01
抽样分布
2. t 分布
2
X
~
N
(0,1)

Y
~
x
(n),且X与Y 独立,则
设随机变量
X
T
Y /n
服从自由度为n的t分布,记为t(n).
性质 密度f(t)是偶函数,且t分布的极限分布是标准正
态分布.
33
01
抽样分布
t分布的密度函数
n 1
n 1


那么如何来利用样本呢?
列表?
画图?
统计量!
样本来自于总体,含有总体性质的信息,但较为分
散. 为了进行统计推断,需要把分散的信息进行整理,
针对不同的研究目的,构造不同的样本函数,这种函
数在统计学中称为统计量.
18
本讲内容
01
总体与个体
02
样本
03
统计量
03
统计量
3.统计量
统计量——不含有未知参数的样本函数


f ( x)
n1
n2
x

概率论与数理统计教案统计量和抽样分布

概率论与数理统计教案统计量和抽样分布

概率论与数理统计教案-统计量和抽样分布一、教学目标1. 理解统计量的概念,掌握常见统计量的计算方法。

2. 了解抽样分布的定义,掌握正态分布、t分布、卡方分布等常见抽样分布的特点及应用。

3. 学会使用抽样分布进行假设检验和置信区间的估计。

二、教学内容1. 统计量的概念及计算方法统计量的定义样本均值、样本方差、样本标准差等常见统计量2. 抽样分布的定义及特点抽样分布的定义正态分布、t分布、卡方分布等常见抽样分布的特点3. 抽样分布的应用假设检验置信区间的估计三、教学方法1. 讲授法:讲解统计量的概念、计算方法,抽样分布的定义及特点。

2. 案例分析法:通过具体案例,让学生学会使用抽样分布进行假设检验和置信区间的估计。

3. 互动教学法:引导学生参与课堂讨论,提问、解答问题,提高学生的积极性和主动性。

四、教学步骤1. 引入统计量的概念,讲解样本均值、样本方差、样本标准差等常见统计量的计算方法。

2. 讲解抽样分布的定义,介绍正态分布、t分布、卡方分布等常见抽样分布的特点及应用。

3. 通过具体案例,让学生学会使用抽样分布进行假设检验和置信区间的估计。

五、课后作业1. 复习本节课的内容,整理笔记。

2. 完成课后习题,加深对统计量和抽样分布的理解。

3. 选择一个感兴趣的话题,运用抽样分布进行实际问题的分析。

六、教学评估1. 课堂提问:通过提问了解学生对统计量和抽样分布的理解程度。

2. 课后习题:检查学生对课堂内容的掌握情况。

3. 实际案例分析:评估学生运用抽样分布解决实际问题的能力。

七、拓展与延伸1. 引导学生探讨抽样分布在其他领域的应用,如经济学、生物学等。

2. 介绍与抽样分布相关的高级主题,如非参数统计、贝叶斯统计等。

3. 鼓励学生参加相关竞赛、研究项目,提高实践能力。

八、教学资源1. 教材:概率论与数理统计相关教材。

2. 课件:PPT课件,辅助学生理解统计量和抽样分布的概念及应用。

3. 案例资料:提供具体案例,方便学生学会使用抽样分布进行假设检验和置信区间的估计。

概率论 第六章 样本及抽样分布

概率论 第六章 样本及抽样分布
函数Fn(x)为 Fn(x)=S(x)/n , -∞<x< +∞。
一般,设 x1,x2, …,xn 是总体F的一个容 量为n的样本值,先将x1,x2, …,xn 按自小到 大的次序排列,并重新编号,设为
x(1) ≤x(2) ≤…≤x(n) 则经验分布函数Fn(x)的观察值为
0,
若x x(1) ,
性质:
(1) limf (t)
1
e ; t2 2
n
2
(2)当n 45时 取t (n) Z .
(三)设X~2(n1), Y~ 2(n2), 且X 与Y相互独立,则随机变量
F X/ n1 Y / n2
则称F服从第一自由度为n1,第二自由 度为n2的F分布,记作
F~F(n1 ,n2)
F分布的分布密度为
2 2
E( X 2 ) D( X ) (E( X ))2
2 2
n
E(S 2 )
E[ 1 n 1
n i 1
(Xi
X
)2 ]
E[
1
n
(
n 1 i1
X
2 i
2
n X )]
1
n
E(
n 1 i1
X
2 i
nX
2
)
1 [E( n 1
n i 1
X
2 i
)
E(n X
2
)]
1[ n 1
n i 1
考察某厂生产的电容器
的使用寿命。在这个试验 中什么是总体,什么是个 体。
解 个体是每一个电容器 的使用寿命;总体X是各个 电容器的使用寿命的集合。
2. 样本
为推断总体分布及各种特征,按一定规 则从总体中抽取若干个体进行观察试验,以 获得有关总体的信息,这一抽取过程称为 “抽样”,所抽取的部分个体称为样本. 样 本中所包含的个体数称为样本容量.

第六章 数理统计的基本概念

第六章 数理统计的基本概念

1 n 2 S S ( X X ) i n 1 i 1
2
(4) 样本k阶(原点)矩
1 n k Ak X i n i 1
k 1, 2,
k 2,3,
(5) 样本k阶中心矩
1 n Bk ( X i X )k n i 1
§2
常用统计量的分布
统计量的分布称为抽样分布.下面介绍三种由 正态总体演化而来的统计量的分布:
• 从二战后到现在,是统计学发展的第三个时期,这是一个在 前一段发展的基础上,随着生产和科技的普遍进步,而使这 个学科得到飞速发展的一个时期,同时,也出现了不少有待 解决的大问题.
学科奠基者



数理统计作为一个进一步完善的数学学科的奠基者是英国人费歇尔。他1909 年入剑桥大学,攻读数学物理专业,三年后毕业。毕业后,他曾去投资办工 厂,又到加拿大农场管过杂务,也当过中学教员。1919年,他开始对生物统 计学产生了浓厚的兴趣,参加罗萨姆斯泰德试验站的工作,致力于数理统计 在农业科学和遗传学中(费歇尔1890—1962)的应用研究。 年轻的费歇尔主要的研究工作是用数学将样本的分布给以严格的确定。 在一般人看来枯燥乏味的数学,常能带给研究者极大的慰藉,费歇尔热衷于 数理统计的研究工作,后来的理论研究成果有:数据信息的测量、压缩数据 而不减少信息、对一个模型的参数估计等。 最使科学家称赞的工作则是试验设计,它将一切科学试验从某一个侧面 “科学化”了,不知节省了多少人力和物力,提高了若干倍的工效。 费歇尔培养了一个学派,其中有专长纯数学的,有专长应用数学的。在30- 50年代费歇尔是统计学的中心人物。1959年费歇尔退休后在澳大利亚度过了 最后三年。
若 x1 , x2 , , xn 是样本的观察值, 则 g ( x1 , x2 , xn ) 是 g ( X 1 , X 2 , X n )

《概率论与数理统计》第六章

《概率论与数理统计》第六章
所以,X是一个随机变量!
既然总体是随机变量X,自然就有其概率分布。
我们把X的分布称为总体分布。
总体的特性是由总体分布来刻画的。因此,常 把总体和总体分布视为同义语。
第六章 样本及抽样分布 ‹#›
例2
在例1中,假定物体真实长度为(未知)。一般 说来,测量值X就是总体,取 附近值的概率要大一 些,而离 越远的值被取到的概率就越小。
k=1,2,…
第六章 样本及抽样分布 ‹#›
它反映了总体k 阶矩的信息
样本k阶中心矩
Bk
1 n
n i 1
(Xi
X )k
它反映了总体k 阶 中心矩的信息
第六章 样本及抽样分布 ‹#›
统计量的观察值
1 n
x n i1 xi;
s2
1 n 1
n i1
(xi
x )2
s
1 n 1
n i1
(xi
x
)2
第六章 样本及抽样分布 ‹#›
实际上,我们真正关心的并不一定是总体或个
体本身,而真正关心的是总体或个体的某项数量指 标。
如:某电子产品的使用寿命,某天的最高气温, 加工出来的某零件的长度等数量指标。因此,有时也
将总体理解为那些研究对象的某项数量指标的全
体。
第六章 样本及抽样分布 ‹#›
为评价某种产品质量的好坏,通常的做法是: 从全部产品中随机(任意)地抽取一些样品进行观测(检
样本X1,X2,…,Xn 既被看成数值,又被看成随机变量, 这就是所谓的样本的二重性。
随机样本
例 4 (例2续) 在前面测量物体长度的例子中,如果我们 在完全相同的条件下,独立地测量了n 次,把这 n 次测 量结果,即样本记为
X1,X2,…,Xn .

概率论与数理统计第6章

概率论与数理统计第6章

以分组区间为底,以
Yj
Wj X j1 X j
Wj 5
为高
作频率直方图
23
从频率直方图可看到:靠近两个极端的数据出现比 较少,而中间附近的数据比较多,即中间大两头小的分 布趋势,——随机变量分布状况的最粗略的信息。
在频率直方图中, 每个矩形面积恰好等于样本值 落在该矩形对应的分组区间内的频率,即
S j
Wj X j1
Xj
X j1 X j
Wj
频率直方图中的小矩形的面积近似地反映了样本数
据落在某个区间内的可能性大小,故它可近似描述X的
分布状况。
24
12
第二.计算样本特征数
1.反映集中趋势的特征数:样本均值、中位数、众数等 样本均值MEAN 中位数MEDIAN 众数
X 90.3
91
91, 94
代表性——即子样( X1, X2 ,
,
X
)的每个分量
n
X

i
总体 X 具有相同的概率分布。
独立性——即 X1, X2, , Xn 是相互独立的随机变量。
满足上述两点要求的子样称为简单随机子样.获得简 单随机子样的抽样方法叫简单随机抽样.
从简单随机子样的含义可知,样本 X1, X2 , , Xn 是来自总体 X、与总体 X具有相同分布的随机变量.
2分布 t 分布 数理统计的三大分布(都是连续型). F分布 它们都与正态分布有密切的联系.
在本章中特别要求掌握对正态分布、 2分布、 t分布、F分布的一些结论的熟练运用. 它们
是后面各章的基础.
31
一、 2分布
定义 设总体 X ~ N 0,1 , X1, X2,..., Xn 是 X

概率论第五章统计量及其分布

概率论第五章统计量及其分布
1) = (Np1)/(N1) 而若第一次抽到的是合格品,则第二次抽到不合 格品的概率为
P(x2 = 1 | x1 = 0) = (Np)(N1)
21 October 2019
华东师范大学
第五章 统计量及其分布
第18页
显然,如此得到的样本不是简单随机样本。 但是,当N 很大时,我们可以看到上述两种 情形的概率都近似等于p 。所以当N 很大, 而n不大(一个经验法则是 n N 0.1)时可
21 October 2019
21 October 2019
华东师范大学
第五章 统计量及其分布
第6页
比如:两个生产同类产品的工厂的产品的总体 分布:
X
0
1
p
0.983
0.017
X
0
1
p
0.915
0.085
21 October 2019
华东师范大学
第五章 统计量及其分布
第7页
例5.1.2 在二十世纪七十年代后期,美国消费 者购买日产SONY彩电的热情高于购买美产 SONY彩电,原因何在?
以把该样本近似地看成简单随机样本。
思考:
若总体的密度函数为p(x),则其样本的(联 合)密度函数是什么?
21 October 2019
华东师范大学
第五章 统计量及其分布
第19页
§5.2 样本数据的整理与显示
5.2.1 经验分布函数
设 x1, x2, …, xn 是取自总体分布函数为F(x)的样 本,若将样本观测值由小到大进行排列,为 x(1), x(2), …, x(n),则称 x(1), x(2), …, x(n) 为有序样本,
用有序样本定义如下函数
0, Fn ( x) k / n, 1,

概率论第六章样本及抽样分布

概率论第六章样本及抽样分布
2 1 2 2
本相互独立,记
1 n1 X Xi n1 i 1 1 n2 Y Yi n2 i 1
则有 ⑴
2 1 2 2 2 1 2 2
1 n1 S12 ( X k X )2 n1 1 k 1 1 n2 2 S2 (Yk Y ) 2 n2 1 k 1
S / ~ F (n1 1, n2 1) S /
⑵ 当 时
2 1 2 2 2
X Y ( 1 2 ) ~ N (0,1) 1 1 n1 n2
(n1 1) S12

2 1

2 (n2 1) S2

2 2
~ 2 (n1 n2 2)
X Y ( 1 2 ) ~ t (n1 n2 2) 1 1 S n1 n2
2
又因为
(n 1)S 2

2
~ (n 1)
2
X n1 X n
故 Y

(n 1) S 2
n n 1 ~ t (n 1) /(n 1)

2
X n1 X n Y S
n ~ t (n 1) n 1
例4
设总体X , Y 相互独立 X ~ N (0,32 ) , Y ~ N (0,32 ) ,
2
X n1 X n n X 1 , X 2 ,, X n , X n1 , 求 Y 的分布 . S n 1 1 n 1 n 2 2 其中 X n X i , S ( Xi X n ) n i 1 n 1 i 1
1 2 解 由已知得 X n1 ~ N ( , ) , X n ~ N ( , ) , n n 1 2 所以 X n1 X n ~ N (0, ) n n 标准化得 X n1 X n ~ N (0,1) n 1

概率论数理统计基础知识第五章

概率论数理统计基础知识第五章

C
]
(A)Y ~ 2 (n). (B)Y ~ 2 (n 1). (C)Y ~ F (n,1). (D)Y ~ F (1, n).
【例】设 随机变量X和Y都服从标准正态分布,则[ C ]
(A)X+Y服从正态分布.
2 2 2
(B)X2 +Y2服从 2分布. Y
2
2 X (C)X 和Y 都服从 分布. (D)
(X ) ~ t ( n 1) S n
客、考点 10,正态总体的抽样分布
33/33
34/33
35/33
【例】设总体 X ~ N (0,1),X 1 , X 2 , X1 X 2
2 2 X3 X4
, X n 是简单随机
2 X i. i 4 n
样本 , 试问下列统计量服从什么分布? (1 ) ; (2 ) n 1X1
记:F分布是两个卡方分布的商
2. F 分布的上侧分位数
设 F ~ F (k1 , k2 ) ,对于给定的 a (0,1) ,称满足条件
P{F Fa (k1 , k2 )}

Fa ( k1 ,k2 )
f F ( x)dx a
的数 Fa (k1 , k2 ) 为F 分布的上侧a 分位数。
服从F分布.
§5.5 正态总体统计量的分布
一、单个正态总体情形 总体
X ~ N ( , 2 ) ,样本 X1 , X 2 , , Xn ,
1 n 样本均值 X X i n i 1
n 1 2 样本方差 S 2 ( X X ) i n 1 i 1
1. 定理1 若设总体X~N(μ,σ2), 则统计量
有一约束条件
(X
i 1

(概率论与数理统计茆诗松)第5章统计量及其分布

(概率论与数理统计茆诗松)第5章统计量及其分布

统计量用于评估和 预测经济趋势例如 GDP、CPI等。
统计量用于研究经济 现象之间的相关性例 如通过回归分析探究 收入与消费的关系。
统计量用于风险评估 和决策制定例如在投 资组合优化中应用统 计量来降低风险。
统计量用于市场调研和 消费者行为分析例如通 过调查数据了解消费者 的购买意愿和偏好。
统计量用于描述大量粒子系统的宏观性质如温度、压强等。 在高能物理实验中统计量用于分析粒子碰撞数据以发现新粒子或研究基本粒子的相互作用。 在天体物理中统计量用于研究星系分布、宇宙射线等以揭示宇宙的演化历史和结构。 在凝聚态物理中统计量用于描述量子多体系统的性质如超导、量子相变等。
单击此处添加标题
性质:二项分布具有可加性即如果有两个独立的二项分布的随机变量X和Y那么 X+Y仍然服从二项分布。
单击此处添加标题
应用:二项分布在统计学、生物学、医学等领域有广泛的应用例如在遗传学中 研究基因的遗传规律在可靠性工程中研究设备的寿命等。
定义:泊松分布是一种离散概率分布描述了在单位时间内(或单位面积内)随机事件发生的次数。
适用范围:非参数检验适用于总体分布未知或已知分布不满足参数检验条件的情况能够更加灵活地处理 各种数据类型和分布。
添加标题
常见方法:常见的非参数检验方法包括符号检验、秩次检验、中位数检验等这些方法都是基于样本数据 本身的特性进行统计推断不需要对总体参数进行假设检验。
添加标题
优点与局限性:非参数检验具有适用范围广、灵活性高等优点但也存在一定的局限性如对于小样本数据 可能不太稳定等。因此在选择统计检验方法时需要根据具体情况进行综合考虑。

构造方法:利 用样本数据和 适当的数学方 法来构造有效
估计
应用:在统计 学、经济学、 社会学等领域

概率论与数理统计知识点总结

概率论与数理统计知识点总结

概率论与数理统计知识点总结1. 概率论基础- 随机事件:一个事件是随机的,如果它可能发生也可能不发生。

- 样本空间:所有可能事件发生的集合。

- 事件的概率:事件发生的可能性的度量,满足0≤P(A)≤1。

- 条件概率:在另一个事件发生的条件下,一个事件发生的概率。

- 贝叶斯定理:描述了随机事件A和B的条件概率和边缘概率之间的关系。

- 独立事件:两个事件A和B是独立的,如果P(A∩B) = P(A)P(B)。

- 互斥事件:两个事件A和B是互斥的,如果它们不能同时发生,即P(A∩B) = 0。

2. 随机变量及其分布- 随机变量:将随机事件映射到实数的函数。

- 离散随机变量:取值为有限或可数无限的随机变量。

- 连续随机变量:可以在某个区间内取任意值的随机变量。

- 概率分布函数:描述随机变量取值的概率。

- 概率密度函数:连续随机变量的概率分布函数的导数。

- 累积分布函数:随机变量取小于或等于某个值的概率。

- 期望值:随机变量的长期平均值。

- 方差:衡量随机变量取值的离散程度。

3. 多维随机变量及其分布- 联合分布:描述两个或多个随机变量同时取特定值的概率。

- 边缘分布:通过联合分布求得的单个随机变量的分布。

- 条件分布:给定一个随机变量的值时,另一个随机变量的分布。

- 协方差:衡量两个随机变量之间的线性关系。

- 相关系数:协方差标准化后的值,表示变量间的线性相关程度。

4. 大数定律和中心极限定理- 大数定律:随着试验次数的增加,样本均值以概率1收敛于总体均值。

- 中心极限定理:独立同分布的随机变量之和,在适当的标准化后,其分布趋近于正态分布。

5. 数理统计基础- 样本:从总体中抽取的一部分个体。

- 总体:研究对象的全体。

- 参数估计:用样本统计量来估计总体参数。

- 点估计:给出总体参数的一个具体估计值。

- 区间估计:给出一个包含总体参数可能值的区间。

- 假设检验:对总体分布的某些假设进行检验。

- 显著性水平:拒绝正确假设的最大概率。

概率论与数理统计教案统计量和抽样分布

概率论与数理统计教案统计量和抽样分布

一、统计量和抽样分布的概念介绍1.1 统计量的定义讲解统计量的概念,即根据样本数据所定义的量,用来描述样本的某些特征。

例如,样本均值、样本方差等。

1.2 抽样分布的定义解释抽样分布是指在一定的抽样方法下,统计量的概率分布。

例如,正态分布、t分布等。

二、统计量的估计方法2.1 点估计介绍点估计的概念,即用一个具体的数值来估计总体参数。

例如,用样本均值来估计总体均值。

2.2 区间估计讲解区间估计的方法,即根据样本数据,给出总体参数估计的一个区间,该区间以一定的概率包含总体参数。

例如,置信区间。

三、抽样分布的性质及应用3.1 抽样分布的性质讲解抽样分布的一些基本性质,如独立性、对称性、无偏性等。

3.2 抽样分布的应用介绍抽样分布在实际问题中的应用,如利用抽样分布来判断总体均值的假设检验问题。

四、假设检验的基本概念和方法4.1 假设检验的定义解释假设检验是一种统计推断方法,通过观察样本数据,对总体参数的某个假设进行判断。

4.2 假设检验的方法讲解常见的假设检验方法,如单样本t检验、双样本t检验、卡方检验等。

4.3 假设检验的判断准则介绍假设检验的判断准则,如P值、显著性水平等,并解释其含义和作用。

六、正态分布及其应用6.1 正态分布的定义与性质详细介绍正态分布的概念、概率密度函数、累积分布函数以及其性质,如对称性、钟形曲线等。

6.2 标准正态分布解释标准正态分布的概念,即均值为0,标准差为1的正态分布。

讲解标准正态分布表的使用方法。

6.3 正态分布的应用介绍正态分布在实际问题中的应用,如利用正态分布来分析和估计总体均值、方差等参数。

七、t 分布及其应用7.1 t 分布的定义与性质讲解t 分布的概念、概率密度函数、累积分布函数以及其性质。

解释t 分布与正态分布的关系。

7.2 t 分布的自由度介绍t 分布的自由度概念,即样本量。

讲解自由度对t 分布形状的影响。

7.3 t 分布的应用介绍t 分布在实际问题中的应用,如利用t 分布进行小样本推断、假设检验等。

概率论与数理统计--第五章 统计量及其分布

概率论与数理统计--第五章 统计量及其分布
例。 某公司要采购一批产品,每件产品不是合格的就是不合格的。该批产品的不合格率是p,由此,若从该批产品中中随机抽取一件,设X为其产品的不合格数,显然X的分布是两点分布,但p是未知的,而p决定了该批产品的质量,直接影响采购行为的经济效益,因此人们就会对p提出一些问题: 1,p的大小如何? 2,p大概落到什么范围? 3,能否认为p满足设定要求?(p≤0.05)
5.2.2 频数--频率分布表
样本数据的整理是统计研究的基础,整理数据的最常用方法之一是给出其频数分布表或频率分布表。
例5.2.2 为研究某厂工人生产某种产品的能力, 我们随机调查了20位工人某天生产的该种产品 的数量,数据如下
(1) 对样本进行分组:作为一般性的原则,组数通 常在5~20个,对容量较小的样本;
这是一个容量为10的样本的观测值,(体会抽样作用) 对应的总体为该厂生产的瓶装啤酒的净含量。
这样的样本称为完全样本。
例5.1.4 考察某厂生产的某种电子元件的 寿命,选了100只进行寿命试验,得到 如下数据:
表5.1.2 100只元件的寿命数据
表5.1.2中的样本观测值没有具体的数值, 只有一个范围,这样的样本称为分组样本。
设总体X具有分布函数F(x), x1, x2, …, xn 为取自该总体的容量为n的样本,则样本联合分布函数为
用简单随机抽样方法得到的样本称为 简单随机样本,也简称样本。
于是,样本 x1, x2, …, xn 可以看成是 独立同分布( iid ) 的随机变量, 其共同分布即为总体分布。
5.2.1 经验分布函数
(2) 确定每组组距:近似公式为 组距d = (最大观测值 最小观测值)/组数;
(3) 确定每组组限: 各组区间端点为 a0, a1=a0+d, a2=a0+2d, …, ak=a0+kd, 形成如下的分组区间 (a0 , a1] , (a1, a2], …, (ak-1 , ak]

大学数理统计的基本概念

大学数理统计的基本概念

大学数理统计的基本概念数理统计是一门应用数学学科,研究如何收集数据、分析数据并进行推断的方法和理论。

在大学的数学统计课程中,学生将学习一系列核心的基本概念,如样本、总体、概率、随机变量等等。

本文将介绍大学数理统计中的基本概念,并探讨它们在实际问题中的应用。

一、样本与总体在数理统计中,样本和总体是两个基本概念。

样本是从总体中选取的一部分个体或观测值的集合,而总体是研究对象的全体个体或观测值的集合。

样本的选择通常通过随机抽样来保证代表性。

二、概率与概率分布概率是描述随机事件发生可能性的数值,通常用0到1的数字表示。

在数理统计中,我们使用概率来描述随机变量的可能取值。

概率分布是随机变量取值的可能性分布,常见的概率分布包括均匀分布、正态分布等等。

概率和概率分布对于研究和预测随机事件至关重要。

三、随机变量与参数估计随机变量是在一个随机试验中可能取到的各种值,可以分为离散随机变量和连续随机变量。

参数估计是通过样本数据对总体参数进行估计的过程,主要包括点估计和区间估计两种方法。

参数估计是统计学的核心内容之一,对于从样本数据中推断总体特征非常重要。

四、假设检验与统计推断假设检验是判断关于总体参数的假设是否成立的一种方法。

在假设检验中,我们需要提出一个原假设和一个备择假设,并根据样本数据进行推断和判断。

统计推断是根据样本数据对总体进行推断和预测的过程,常用的方法包括参数估计和假设检验。

五、回归与方差分析回归分析是研究自变量和因变量之间关系的一种统计方法,用于建立数学模型并进行预测和解释。

方差分析是用于比较多个总体均值是否有显著性差异的统计方法,常用于实验设计和数据分析。

六、抽样调查与统计图表抽样调查是经济、社会和科学研究中常用的一种数据收集方法,通过从总体中选取样本进行调查和分析,得出对总体的推断。

统计图表是用来直观展示数据分布、关系和趋势的图形工具,包括条形图、折线图、饼图等等。

总结:大学数理统计的基本概念包括样本与总体、概率与概率分布、随机变量与参数估计、假设检验与统计推断、回归与方差分析以及抽样调查与统计图表。

概率论与数理统计6.第六章:样本及抽样分布

概率论与数理统计6.第六章:样本及抽样分布

),
,
,
,
是来
Z=
(

证明统计量 Z 服从自由度为 2 的 t 分布。
14
),
,
,
,
是来 , .ຫໍສະໝຸດ 自 总 体 X 的 样 本 , E( ) 则 ,D( )=
是来自总体 X ,D(X)= . ,
,D( )=
11
3. 设 , 本 ,E(X)=
, , 为来自总体 X 的样 ,D(X)=9, 为样本均值 , 试用 < ≥ ,
切比雪夫不等式估计 P{ P{ 4.设 , 则当 K= > ≤ , , . 是总体 X
lim f (t ) (t )
n
1 e 2
t2 2
, x
3.分位点 设 T~t(n), 若对 :0<<1,存在 t(n)>0,
4
满足 P{Tt(n)}=, 则称 t(n)为 t(n)的上侧分位点 注: t1 (n) t (n) 三、F—分布 1.构造 若 1 ~2(n1), 2~2(n2),1, 2 独立,则
y0
2. F—分布的分位点 对于 :0<<1,若存在 F(n1, n2)>0, 满足 P{FF(n1, n2)}=, 则称 F(n1, n2)
5
为 F(n1, n2)的上侧 分位点; 注: F1 (n1 , n2 )
1 F (n2 , n1 )
§ 6.3 正态总体的抽样分布定理
X Y /n ~ t ( n)
t(n)称为自由度为 n 的 t—分布。 t(n) 的概率密度为
n 1 ) 1 t 2 n2 2 f (t ) (1 ) , t n n n ( ) 2 (

样本与统计量

样本与统计量
第五章主要简介数理统计旳某些基本术语, 基本概念, 主要 旳统计量及其分布, 它们是背面各章旳基础.
§5 样本与统计量
第五章 样本与统计量
第一节 样本与统计量 第二节 数据旳简朴处理 第三节 统计量旳分布
§5 样本与统计量
在数理统计中, 研究对象旳全体称为总体或母 体, 而构成总体旳每个单元称为个体.
102
99
89
104
94
94
92
96
87
94
92
86
102
88
75
90
90
80
84
91
82
94
99
102
91
96
94
94
85
88
80
83
81
69
95
80
97
92
96
109
91
80
80
94
102
80
86
91
90
83
84
91
87
95
76
90
91
77
103
89
88
85
95
92
104
92
95
83
86
81
86
中心问题是降低误差, 降低犯错旳可能性. 统计推断是 “数理统计”(属理科)旳主要内容.
/descriptive statistics /inferential statistics
§5 样本与统计量
描述统计与推断统计旳关系
概率论
反应客 观现象 旳数据
样本数据
描述统计
(数据旳搜集, 整
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3o 2 (n)分布的上分位数有表可查
例如 0.1
2 0.05
(10)
18.307——含义?
0.08
0.06
P 2(10) 18.307 0.05 0.04 0.02
n = 10
5
10
• 15 20.0250(10)
iid
定理2 (样本方差的分布) X1,L , Xn ~ N (, 2 ),
× 分布函数和数字特征.
对个体逐个观测来获取总体X的分布情况?
取样本!根据样本的取值情况来推断总体的情况.
2. 样本:来自总体的部分个体X1,… ,Xn ,如果满足:
(1)代表性: Xi(i=1,…,n)与总体 同分布; (2)独立性:X1,… , Xn 相互独立. 则称X1,… ,Xn为容量为n 的简 单随机样本,简称样本。而称 X1,… , Xn的一次实现为样本观 察值, 记x1, …, xn.
来自总体X , Xn ~ X 或 f ( x), F ( x),L
显然,样本联合分布函数或密度函数为
n
F * ( x1 , x2 , , xn ) F ( xi ) i 1
n
或 f * ( x1 , x2 , , xn )
f (xi )
i 1
n
2 )
2
总结
一、总体与样本 二、统计量 三、几个常用的统计量
作业: P106—2(1)(2),
4,5
6.3 常用统计量的分布
正态分布外三大重要分布: 2分布、t分布、F分布
一、正态分布
定理1(样本均值的分布)若X1, X2, …,Xn相互独立,
Xi :
N
(
i
,
2 i
),

n
ai Xi
i 1
令Zi
Xi
X
则Z1,Z2,…,Zn并不完全自由,
Z1+Z2+…+Zn=
1
(X1
X
X2
X
L
Xn
有一个约束条件:
故自由度 X )=0 为n-1.
三、 t 分布 (Student 分布)
定义 设 X ~ N(0,1) , Y ~ 2(n), X ,Y相互独立,
则称统计量 T X 服从自由度为 n 的T 分布,记
为T ~t(n).
Y /n
其密度函数为
0.4
f (t)
n
2
1
n
n 2
1
t2 n
n1 2
t
0.3
0.2
n=1
0.1
t 分布的图形(红色 的是标准正态分布)-3 -2 -1
n=20
123
t 分布的性质
1°f n(t)是偶函数,
n , fn (t) (t)
1
t2
e2
2
2°T 分布的上 分位数 t 与双侧
D( X ) 2
(2) D( X )
nn
(3) E(S 2 ) D( X ) 2
证明 (1)、(2)自证, 下面证明性质(3).
ES 2
E
1 n 1
n i 1
(Xi
X )2
1 n1
E
n i 1
(Xi
X )2
1 n1
E
n i 1
(X2 i
2XX i
X
2)
1 n1
E
n i1
2.
样本方差
S2
1 n1
n i 1
(Xi
X )2
样本均方差(标准差) S S 2
样本的数字特征
3.样本k阶矩 k阶原点矩
k阶中心矩
mk
1 n
n i 1
X
k i
M k
1 n
n
(Xi
i 1
X )k
m1 X
M2
n1 n
S2
S 2(n较大)
性质 如果总体X的期望为,方差为2,则
(1) E( X ) E( X )
2
~
2 (n 1)
n ~ t(n 1)
(n 1)S 2 与
2
X
(n 1)S 2 2
n1
相互独立
即 X ~ t(n 1)
Sn
P115定理6-4(两个正态总体 2同, 不同)的推导
设 X1, X 2 , , X n 与 Y1,Y2 , ,Ym 分别是来
自正态总体 X ~ N(1, 2) 与 Y ~ N (2, 2 ) 的
)

相互独立的简单随机样本.则
(n 1)S12
2 1
~
2(n 1),
(m 1)S22
2 2
~
2(m 1)
(n 1)S12
2 1
(m 1)S22
2 2
n1 =
m1
S12 S22
2 1
2 2
~ F(n 1, m 1)
(3)
若1 2 , 则 F 分布的性质
S12 S22
~ F(n 1, m 1)
分位数 t/2 均可查表得.
P T t
t t1
• -3 --t2
0. 35 0. 3
0. 25 0. 2
0. 15 0. 1
0. 05
-1
P T ? 0.05 t0.05(10) 1.8125
n = 10
• 1 2t 3
P T 1.8125 0.05
P T ? 0.05 P T 1.8125 0.05
0. 2
m = 10, n = 15
1
2
3
4
5
6
0. 8
0. 6
m = 4, n =10
0. 4
m = 10, n = 10
0. 2
m = 15, n = 10
1
2
3
4
5
6
定理 设 X1, X 2 , , X n 与 Y1,Y2 , ,Ym 分别是来
自正态总体 X
~
N
(1
,
2 1
)
与Y
~
N
(
2
,
2 2
X2 i
2X
n i 1
Xi
n i 1
X
2
1 n1
E
n i 1
X
2 i
2X
nX
nX
2
DX i
EX
2 i
(EXi )2
1
n
1
n i 1
EX
2 i
nE
(
X
)2
EX
2 i
(EXi )2
DX i
2
2
E(X )2 (E X )2 DX 2 2
n
1 n1
n i 1
(2
2)
n( 2
1
3.总体、样本、样本观察值的关系
总体
理论分布
样本
样本观察值
样本空间 —— 样本所有可能取值的集合.
二、统计量
定义:如果样本X1, … ,Xn 的函数g(X1, … ,Xn )不含
未知参数,则称之为总体X的一个统计量.
例 X ~ N (, 2 ) , 已知, 2为未知参数,
X=(X1,… , Xn)是一样本, (1) 写出样本空间与样本X的联合密度函数;
1o 若F ~ F(n, m) , 则 1/ F ~ F(m, n)
0.6
2o F (n, m)的上分位数
0.5
0.4
F (n, m)有表可查 :
0.3 0.2
P(F F (n, m)) 例如 F0.05 (4, 5) 5.19
0.1

123 45 6
F0.95 (5, 4) ? F(n,m)
相互独立的简单随机样本.

X
1 n
n i1
Xi
~
N
(1,
2
n
)
Y
1 m
m
Yj
j 1
~
N
(2
,
2
m
)
X
Y
~
N (1
2
,
2
n
2
m
)
( X Y ) (1 2 ) ~ N (0,1) 2 2
nm
(n
1)S12
2
~
2 (n
1)
(m 1)S22
2
~
2 (m
1)
(n 1)S12
2
(m
1)S22
2
~ 2 (n m 2)
解 {( x1,L , xn ) : xi R, i 1,L , n}
n
n
f(
x1
,L
1
,
xn
)
e
i 1
1
2 2
f ( xi
n
( xi
i1
)
i 1
)2
( 2 )n
1
e
1
2
2
(
xi
)2
2
(2) 指出下列哪些是统计量?
X
1 n
n i 1
Xi
,
是, 称为
样本均值
S2 1 n n 1 i1
1 F1 (n, m) F (m, n)
1
1
F0.95 (5, 4) F0.05 (4, 5) 5.19
例1 证明
F1 (n, m)
F
1 (m, n)

P(F
F1 (n, m))
《数理统计》
数理统计学是关于数据资料收集、整理、分析、 和推断的一门应用性很强的学科。利用数理统计学 可对所考察的问题作出推断和预测,直至为采取一 定的决策和行动提供依据和建议.
相关文档
最新文档