2017-2018学年湖北省黄冈市高三4月调研考试数学(理)Word版含答案

合集下载

2018武汉元调数学试卷及答案(Word精校版)

2018武汉元调数学试卷及答案(Word精校版)

第1页 / 共10页2017-2018学年度武汉市部分学校九年级元月调考一.选择题(共10小题,每小题3分,共30分) 1.方程x (x -5)=0化成一般形式后,它的常数项是A .-5B .5C .0D .12.二次函数y =2(x -3)2-6A .最小值为-6B .最大值为-6C .最小值为3D .最大值为3 3.下列交通标志中,是中心对称图形的是A .B .C .D .4.事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则 A .事件①是必然事件,事件②是随机事件. B .事件①是随机事件,事件②是必然事件. C .事件①和②都是随机事件. D .事件①和②都是必然事件.5.投掷一枚质地均匀的硬币,正面朝上的概率为0.5,下列说法正确的是 A .连续投掷2次必有1次正面朝上. B .连续投掷10次不可能都正面朝上.C .大量反复投掷每100次出现正面朝上50次.D .通过投掷硬币确定谁先发球的比赛规则是公平的.6.一元二次方程20x m ++=有两个不相等的实数根则A .3m >B .3m =C .3m <D .3m ≤7.圆的直径是13cm ,如果圆心与直线上某一点的距离是6.5cm ,那么直线和圆的位置关系是 A .相离 B .相切 C .相交 D .相交或相切8.如图,等边△ABC 的边长为4,D ,E ,F 分别为边AB ,BC ,AC 的中点,分别以A ,B ,C 三点为圆心,以AD 长为半径作三条圆弧,则图中三条圆弧的弧长之和是A .πB .2πC .4πD .6π9.如图,△ABC 的内切圆与三边分别相切于点D ,E ,F ,则下列等式:①∠EDF =∠B ,②2∠EDF =∠A +∠C ,③2∠A =∠FED +∠EDF ,④∠AED +∠BFE +∠CDF =180°,其中成立的个数是 A .1个 B .2个 C .3个 D .4个 10.二次函数y =-x 2-2x +c 在32x -≤≤的范围内有最小值-5,则c 的值是 A .-6 B .-2 C .2 D .3二.填空题(共6小题,每小题3分,共18分)B第2页 / 共10页11.一元二次方程20x a -=的一个根是2,则a 的值是 .12.把抛物线22y x =先向下平移1个单位,再向左平移2个单位,得到的抛物线的解析式是 . 13.一个不透明的口袋中有四个完全相同的小球,把它们分别标记为1,2,3,4.随机摸取一个小球然后放回, 再随机摸出一个小球,两次取出的小球标号的和为5的概率是 .14.设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的比,可以增加视觉美感,按此比例,如果雕像的高为2m ,那么上部应设计为多高?设雕像的上部高为x m ,列方程,并化成一般形式为 .15.如图,正六边形ABCDEF 中,P 是边ED 的中点,连接AP ,则AP AB=16.在O 中,AB 所对的圆心角108AOB ∠=︒,点C 为O 上的动点,以AO ,AC 为边构造AODC ,当∠A= °时,线段BD 最长.三.解答题(共8小题,共72分) 17. (本题8分)解方程230x x +-=AA第3页 / 共10页18. (本题8分)如图在O 中,半径OA 与弦BD 垂直,点C 在O 上,∠AOB=80°. (1)若点C 在优弧BD 上,求∠ACD 的大小; (2)若点C 在劣弧BD 上,直接写出∠ACD 的大小.19.(本题8分)甲,乙,丙三个盒子中分别装有除颜色以外都相同的小球,甲盒中装有两个球,分别为一个红球和一个绿球,乙盒中装有三个球,分别为两个绿球和一个红球;丙盒中装有两个球,分别为一个红球和一个绿球,从三个盒子中各随机取出一个小球. (1)请画树状图,列举所有可能的结果;(2)请直接写出事件“取出至少一个红球”的概率.20. (本题8分)如图,在平面直角坐标系中有点A(-4,0),B(0,3),点分别为C,D.(1)当a=-4时,①在图中画出线段CD,保留作图痕迹;②线段CD向下平移个单位时,四边形ABCD为菱形;(2)当a=时,四边形ABCD为正方形.21. (本题8分)如图,点D在⊙O的直径AB的延长线上,CD切⊙O于点C,AE⊥CD于点E.(1)求证:AC平分∠DAE.(2)若AB=6,BD=2,求CE的长.A第4页 / 共10页22. (本题10分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m.设平行于墙的边长为xm.(1)设垂直于墙的一边长为y,请直接写出y与x之间的函数关系式.(2)若菜园面积为384m2,求x的值.(3)求菜园的最大面积.23. (本题10分)如图,点C为线段AB上一点,分别以AB,AC,CB为底作顶角为120°的等腰三角形,顶角顶点分别为D,E,F,(点E,F在AB的同侧,点D在另一侧).(1)如图1,若点C是AB的中点,则∠AED=__________;(2)如图2,若点C不是AB的中点,①求证:△DEF为等边三角形;②连接CD,若∠ADC=90°,AB=3,请直接写出EF的长.AA第5页 / 共10页24.(本题12分)已知抛物线22=++与x轴交于A(-1,0),B(3,0)两点,一次函数y=kx+b的图象l经y ax x c过抛物线上的点C(m,n).(1)求抛物线的解析式;(2)若m=3,直线l与抛物线只有一个公共点,求k的值;(3)若k=-2m+2,直线l与抛物线的对称轴相交于点D,点P在对称轴上,当PD=PC时,求点P的坐标.第6页 / 共10页第7页 / 共10页2017-2018学年度武汉市部分学校九年级元月调考解析一.选择题9.如图:①∵∠EOF =2∠EDF ,∠EOF +∠B =180°, ∴2∠EDF +∠B =180°所以①错误②∵∠EOF =2∠EDF ,∠EOF +∠B =180°, ∠A +∠B +∠C =180°,∴2∠EDF =∠A +∠C 所以②正确③∵∠EDF +∠DEF =2x +y +z =90°+x ,∵∠A+∠EOD =180°,∴∠A =180°-2(y +z )=2x , ∴2(∠EDF +∠DEF )-180°=∠A 所以③错误④∠AED +∠BFE +∠CDF =90°-x +90°-y +90°-z =270°-(x +y +z )=270°-90°=180° 所以④正确二.填空题 11. 412. 2287y x x=++ 13.1414. 2-640x x +=15.16.27°16.延长AO 与O 交于点P ,连接DP ,如图,则 O CAO D P ∆∆≌ DP OC ∴=,即点D 的运动轨迹是以点P 为圆心,OC 长 为半径的圆.如图所示,连接BP ,BP 与P 的交点记作'DBD 最大值为'BD ,此时1'272A POD APB ∠=∠=∠=三.解答题17.1x 1x =PD’BOAC B第8页 / 共10页18. (1)∵OA ⊥BD , ∴AB =AD ,∴∠ACD =12∠AOB =40° (2)40°或140°19.(1)由题意可得如下树状图,由图可知共有12种等可能的情况.(2)5620.(1)如图所示 (2)2(3)72-21.(1)证明:连OC∵CD 与⊙O 切于点C , ∴OC ⊥DE ,∠OCD =90°∵AE ⊥DE , ∴∠E =90°,∴∠OCD =∠E =90°,∴OC //AE , ∴∠1=∠2 ∵OC =OA , ∴∠1=∠3, ∴∠2=∠3, ∴AC 平分∠DAE (2)解:作CH ⊥OD∵AB =6, ∴AO =OB =OC =3∵AC 平分∠DAE ,CH ⊥OD ,CE ⊥AE , ∴CE =CH ∵∠OCD =90°, ∴CD∵OCD S ∆=12OC ·CD =12OD ·CH , ∴CH =125, ∴CE =12522. (1)由题意可知: 200x +150⨯2y =10000化简得:210033y x =-+∴y 与x 之间的函数关系式210033y x =-+(024x <≤)(2)210038433x x ⎛⎫-+= ⎪⎝⎭整理得:()22549x -=解得:x 1=18,x 2=32∵024x <≤ ∴x =18即菜园面积为384m 2,x 的值为18. (3)设菜园的面积SS =210033x x ⎛⎫-+ ⎪⎝⎭=()2212502533x --+A第9页 / 共10页∵203-<,开口向下对称轴x =25∴当024x <≤时,y 随x 的增大而增大. ∴当x =24时,S 的最大值为416. 所以,菜园的最大面积为416 m 2 23. (1)90°(2)①证明:延长AE 、BF 交于G ,连DG .易证四边形ADBG 为菱形,△ADG 为等边三角形,四边形EGFC 为平行四边形. 可证∠DAE =∠DGF =60°,AE =CE =GF . 在△ADE 和△GDF 中. DA DG DAE DGF AE GF =⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△GDF (SAS ) ∴DE =DF ,∠ADE =∠GDF∴∠EDF =∠EDG +∠GDF =∠EDG +∠ADE =∠ADG =60° ∴△EDF 为等边三角形.②EF24.(1)将A (-1,0),B (3,0)代入22y ax x c =++中得:02096a ca c =-+⎧⎨=++⎩解得:a =-1,c =3∴抛物线的解析式为223y x x =-++(2)当m =3时,n =-9+6+3=0, ∴C (3,0), 将点C 代入y =kx +b 中得: 0=3k +b , ∴b =-3k , ∴l 的解析式为y =kx -3k联立:2323y kx ky x x =-⎧⎨=-++⎩得:()22330x k x k +---= ∵l 与抛物线只有一个交点BA第10页 / 共10页∴()()224330k k ∆=----=得:k =-4(3)当k =-2m +2时,y =(-2m +2)x +b 且m ≠1 将C (m ,n )代入y =(-2m +2)x +b 中得: n =(-2m +2)m +b ∵223n m m =-++∴23b m =+,l 的解析式为()2223y m x m =-+++ ∵D 为l 与抛物线对称轴的交点∴1D x =, 当x =1时,225y m m =-+ ∴()21,25D m m -+,()2,23C m m m -++ 设()1,P a , ∵PC =PD ,∴22PC PD =即()()()2222212325m m m a m m a -+-++-=-+-解得:154a =, ∴P 的坐标为(1,154)。

湖北省部分重点中学2017-2018学年高一上学期期中联考数学试题 Word版含解析

湖北省部分重点中学2017-2018学年高一上学期期中联考数学试题 Word版含解析

湖北省部分重点中学2017-2018学年度上学期期中联考高一数学试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集,,,则图中阴影部分所表示的集合为()A. B. C. D.【答案】C【解析】图中阴影部分所表示的集合为,全集,,所以,,故选C.2.下列四组函数中,表示同一函数的是()A.与B.与C.D.【答案】D与与【解析】在选项中,前者的属于非负数,后者的,两个函数的值域不同;在选项中,前者的定义域为在选项中,,后者为定义域是或,定义域不同;在选项中,两函数定义域不相同;的定义域为,定义域不相同,值域、对应法则都相同,所以是同一函数,故选D.3.函数A. B.【答案】B【解析】要使函数故选B.的定义域为()C. D.有意义,则,则,故函数的定义域是,4.下列函数中为偶函数且在A. B. C.【答案】B 上单调递减的函数是()D.【解析】项,定义域为,不是偶函数,故项错误;项,定义域为,,是偶函数,由反比例函数性质可得,在上单调递减,故项正确;项,在递增,故项错误;项,5.函数A. B.【答案】A原函数是奇函数,故错误,故选B.的单调递增区间是()C. D.【解析】函数的定义域为,设,根据复合函数的性质可得函数的单调增区间即的单调递增区间是的单调减区间,,故选A.的单调减区间为,函数【方法点睛】本题主要考查对数函数的性质、复合函数的单调性,属于中档题.复合函数的单调性的判断可以综合考查两个函数的单调性,因此也是命题的热点,判断复合函数单调性要注意把握两点:一是要同时考虑两个函数的的定义域;二是同时考虑两个函数的单调性,正确理解“同增异减”的含义(增增增,减减增,增减减,减增减).6.已知函数A. B. C.【答案】B【解析】设,,则函数D.的值域为(),时,,时,,的值域为7.已知A. B.【答案】C ,故选B.,则不等式C.的解集为()D.,综上【解析】设,则不等式等价为,作出的图象,如图,由图象可知时,,即时,,若,由得,解得,若,由,得,解得,即不等式的解集为,故选C.8.一水池有两个进水口和一个出水口,每个水口的进、出水速度如图甲、乙所示,某天0点到8点该水池的蓄水量如图丙所示,给出以下3个论断:①0点到4点只进水不出水;②4点到6点不进水只出水;③6点到8点不进水也不出水,其中一定正确的是()A.①②③B.②③C.①③D.①【答案】D【解析】由甲、乙两图可得进水速度为,出水速度为,结合丙图中直线的斜率可知,只进水不出水时,蓄水量增加的速度是,故①正确;不进水只出水时,蓄水量减少的速度是,故②不正确;两个进水一个出水时,蓄水量减少的速度是,故③不正确,故选D.9.若在上为减函数,则实数的取值范围为()A. B. C. D.【答案】C【解析】为上的减函数,时,递减,即,①,时,递减,即,②且,③联立①②③解得,,故选C.【方法点晴】本题主要考查分段函数的解析式及单调性,属于中档题.分段函数的单调性是分段函数性质中的难点,也是高考命题热点,要正确解答这种题型,必须熟悉各段函数本身的性质,在此基础上,不但要求各段函数的单调性一致,最主要的也是最容易遗忘的是,要使分界点处两函数的单调性与整体保持一致.10.若,,,定义在上的奇函数满足:对任意的且都有,则的大小顺序为()A. C.B. D.【答案】B【解析】对任意且都有,在上递减,又是奇函数,在上递减,由对数函数性质得,由指数函数性质可得,又11.设集合,,,故选B.,从到建立的映射中,其中为函数值域的映射个数为()A.9个B.8个C.7个D.6个【答案】D12.已知定义在上的函数在上是减函数,若是奇函数,且,则不等式的解集是()A.C.【答案】AB. D.【解析】由是把函数向右平移个单位得到的,所以函数的图象关于对称,如图,且,或,,结合函数的图象可知,当时,综上所述,的解集是,故选A.【方法点睛】本题主要考查抽象函数的奇偶性与单调性的应用以及函数的图象的变换,属于难题.将奇偶性与单调性综合考查是,一直是命题的热点,解这种题型往往是根据函数在所给区间上的单调性,根据奇偶性判断出函数在对称区间上的单调性(偶函数在对称区间上单调性相反,奇函数在对称区间单调性相同),然后再根据单调性列不等式求解.二、填空题(每题5分,满分20分,将答案填在答题纸上)13..已知幂函数【答案】【解析】由题意令,故答案为.14.设【答案】(1).【解析】的图像过点,则的值为_________.,由于图象过点,得,,那么的解析式_________,定义域为_________.(2).,令,,故答案为(1),(2).( (15. 设函数【答案】3 【解析】令,则,,若 ,则 _________.,是奇函数, ,即,故答案为 .16. 若函数【答案】在 上为减函数,则实数 的取值集合是_________.【解析】显然,求导函数可得: 函数 在区间 上是减函数,在区间 上恒成立, , 或实数 的取值范围是,故答案为 ................三、解答题 (本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.)17. 求下列各式的值:(1) ;(2) .【答案】(1)(2)【解析】试题分析: 1)直接利用指数幂的运算法则求解,化简过程中注意避免计算错误; 2)直接利用对数运算法则,化简过程中注意运用换底公式.试题解析:(1)原式=(2)原式=18.已知函数为集合.(1)求集合和集合;的定义域为集合,关于的不等式的解集(2)若,求实数的取值范围.【答案】(1)详见解析(2)【解析】试题分析:(1)利用一元二次不等式的解法以及含参数的不等式的解法解不等式即可分别求出集合;(2)等价于,利用(1)的结论根据的包含关系,分类讨论,分别得到关于的不等式,解出即可得结果.试题解析:(1)若有意义,则所以的定义域;的解集为集合当当当时,集合时,集合时,集合;(2)因为所以由(1)当当当时,时,时,集合即即综上,实数的取值范围是.【方法点睛】本题主要考查函数的定义域、一元二次不等式的解法、集合的子集以及分类讨论思想.分类讨论思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决含参数问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点.充分利用分类讨论思想方法能够使问题条理清晰,进而顺利解答,希望同学们能够熟练掌握并应用与解题当中.19.设函数.( ,利用函数单调性及(1)若(2)若【答案】(1),求实数 的取值范围;,求实数 的取值范围.(2)【解析】试题分析: 1)可得结果;(2)等价于 等价于方程时,无解,根据判别式小于零即恒成立,分离参数可得,求出试题解析:(1)因为方程的最小值,从而可得结果.无解,所以 的判别式 或有两个相等的实根为 ,即或所以实数 的取值范围为(2)由题意当时,,即 ,令所以实数 的取值范围为 20. 已知函数(1)求 的值; .( 且 )为奇函数.(2)求函数 的值域;(3)判断的单调性并证明.【答案】(1)2(2)(3)详见解析【解析】试题分析:(1)利用,求得,验证此时 为奇函数即可;(2)化简即可得结果;(3)任取,作差性质可得,化简分解因式可得,从而可得结果.,利用指数函数的试题解析:(1)因为 的定义域为所以,当 时,可得则 为奇函数,所以(2)因为又所以(3)的值域为;为上的增函数.证明:对任意的,因为所以,,所以为上的增函数.【方法点睛】本题主要考查函数的值域、奇偶性以及函数的单调性,属于中档题.利用定义法判断函数的单调性的一般步骤是:(1)在已知区间上任取;(2)作差;(3)判断的符号,可得在已知区间上是增函数,可得在已知区间上是减函数.21.设函数(1)求函数.的定义域;(2)若对任意实数,关于的方程总有解,求实数的取值范围.【答案】(1)详见解析(2)【解析】试题分析:(1)对,分三种情况讨论,分别利用一元二次不等式的解法,求解不等式即可得结果;(2)任意实数的值域为,的结果.方程的值域为总有解,等价于函数,利用判别式非负,解不等式即可试题解析:(1)由有意义当当当时,时,时,的定义域为的定义域为的定义域为(2)对任意实数方程总有解,等价于函数的值域为则的值域为,则至少有一解,,实数的取值范((围22. 设函数(1)判断函数(2)求函数.的奇偶性;在 上的最大值 的解析式.【答案】(1)为非奇非偶函数(2)【解析】试题分析: 1)当 时,可得 ,可得 为奇函数,当 时,由且,可得 为非奇非偶函数; 2)根据二次函数的对称轴与区间之间的关系,对分三种情况讨论,分别结合函数单调性可得函数式.在 上的最大值,从而可得 的解析试题解析:(1) 当时,所以当为奇函数;时,所以为非奇非偶函数;,则(2),当当时, 在时,上是单调递增函数,在其中上是单调递增函数, 在 上是单调递减函数.当当时时,,当时,在上是单调递增函数, 在 上是单调递减函数.当 时, 在 上是单调递增函数,所以函数在上的最大值的解析式。

湖北省武汉市2017-2018学年高三四月调考数学试卷(文科) Word版含解析

湖北省武汉市2017-2018学年高三四月调考数学试卷(文科) Word版含解析

湖北省武汉市2017-2018学年高三四月调考数学试卷(文科)一、选择题(共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项符合题目要求的)1.(5分)复数z=的实部与虚部之和为()A.0B.C.1D.22.(5分)设全集U=R,集合M={x|y=lg(x2﹣1)|,N={x|0<x<2},则(∁R M)∩N=()A.{x|﹣2≤x≤1} B.{x|0<x≤1} C.{x|﹣1≤x≤1} D.{x|x<1}3.(5分)函数f(x)=|sin cos|的最小正周期是()A.B.C.πD.2π4.(5分)已知某赛季甲、乙两名篮球运动员每场比赛得分的茎叶图如图所示,则甲、乙两人得分的中位数之和是()A.62 B.63 C.64 D.655.(5分)若P:∃x0∈R,x02+2x0+3≤0,则P的否定¬P是()A.∀x∈R,x2+2x+3>0 B.∀x∈R,x2+2x+3≥0C.∀x∈R,x2+2x+3<0 D.∀x∈R,x2+2x+3≤06.(5分)△ABC外接圆的半径为1,圆心为O,且的值是()A.3B.C.D.17.(5分)先后抛掷两颗质地均匀的骰子,则两次朝上的点数之积为奇数的概率为()A.B.C.D.8.(5分)已知某产品连续4个月的广告费x i(千元)与销售额y i(万元)(i=1,2,3,4)满足,,若广告费用x和销售额y之间具有线性相关关系,且回归直线方程为=0.8x+a,那么广告费用为6千元时,可预测的销售额为()A.3.5万元B.4.7万元C.4.9万元D.6.5万元9.(5分)已知直线kx﹣y=k﹣1与ky﹣x=2k的交点在第二象限,则实数k的取值范围是()A.(0,)B.(,1)C.(0,1)D.[1}10.(5分)过点A(﹣2,3)作抛物线:y2=4x的两条切线l1,l2,设l1,l2与y轴分别交于点B,C,则△ABC的外接圆方程为()A.x2+y2﹣3x﹣2y+1=0 B.x2+y2﹣2x﹣3y+1=0C.x2+y2﹣3x﹣4=0 D.x2+y2+x﹣3y﹣2=0二、填空题(共7小题,每小题5分,满分35分)11.(5分)不等式|x|+|x﹣1|>3的解集为.12.(5分)若x、y满足,则z=x﹣y的最大值为.13.(5分)执行如图所示的程序框图,若输入p=5,则输出的S等于14.(5分)一个几何体的三视图如图所示,则该几何体的表面积为15.(5分)如图,正四棱锥O﹣ABCD的棱长均为1,点A、B、C、D在求O的表面上,延长CO交球面于点S,则四面体A﹣SOB的体积为.16.(5分)在各项均为正项的等比数列{a n}中,已知a1+a2+a3+a4+a5=31,=,则a3=.17.(5分)已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=,若y=f2(x)﹣af(x)+a﹣1的零点个数是7个,则实数a的取值范围为.三、解答题(共5小题,满分65分)解答应写出文字说明,证明过程或演算步骤18.(12分)已知等差数列{a n}的前n项和为S n,a3=5,S8=64.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求证:>(n≥2,n∈N)19.(12分)已知△ABC的内角A、B、C的对边a,b,c,且满足bcos2A=a(2﹣sinAsinB),a+b=6.(Ⅰ)求a、b的值(Ⅱ)若cosB=,求△ABC的面积.20.(13分)如图,在四面体P﹣ABC中,底面ABC是边长为1的正三角形,PB=PC=,AB⊥BP.(Ⅰ)求证:PA⊥BC(Ⅱ)求点P到底面ABC的距离.21.(14分)已知函数f(x)=x3﹣3x2+ax(a∈R)(1)求函数y=f(x)的单调区间;(2)当a≥2时,求函数y=|f(x)|在0≤x≤1上的最大值.22.(14分)已知椭圆C:=1(a>b>0)的离心率为,短轴长为2.(Ⅰ)求椭圆C的方程;(Ⅱ)若A、B是椭圆C上的两动点,O为坐标原点,OA、OB的斜率分别为k1,k2,问是否存在非零常数λ,使k1•k2=λ时,△AOB的面积S为定值,若存在,求λ的值;若不存在,请说明理由.湖北省武汉市2015届高三四月调考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项符合题目要求的)1.(5分)复数z=的实部与虚部之和为()A.0B.C.1D.2考点:复数代数形式的乘除运算;复数的基本概念.专题:数系的扩充和复数.分析:利用复数的运算法则、实部与虚部的定义即可得出.解答:解:复数z====,∴实部与虚部之和==1,故选:C.点评:本题考查了复数的运算法则、实部与虚部的定义,属于基础题.2.(5分)设全集U=R,集合M={x|y=lg(x2﹣1)|,N={x|0<x<2},则(∁R M)∩N=()A.{x|﹣2≤x≤1} B.{x|0<x≤1} C.{x|﹣1≤x≤1} D.{x|x<1}考点:交、并、补集的混合运算.专题:集合.分析:本题主要考查了集合间的运算,根据运算原则求解即可.解答:解:M={x|y=lg(x2﹣1)}={x|x<﹣1或x>1},∴∁R M={x|﹣1≤x≤1},∴(∁R M)∩N={x|0<x≤1},故选:B.点评:本题主要考查集合间的运算,属于基础题.3.(5分)函数f(x)=|sin cos|的最小正周期是()A.B.C.πD.2π考点:三角函数的周期性及其求法.专题:三角函数的图像与性质.分析:由条件利用二倍角的正弦公式可得函数的解析式为f(x)=|sinx|,再根据y=|Asin(ωx+φ)|的周期等于•,可得结论.解答:解:函数f(x)=|sin cos|=|sinx|的最小正周期是•=π,故选:C.点评:本题主要考查三角函数的周期性及其求法,二倍角的正弦公式,利用了y=Asin(ωx+φ)的周期等于T=,y=|Asin(ωx+φ)|的周期等于•,属于基础题.4.(5分)已知某赛季甲、乙两名篮球运动员每场比赛得分的茎叶图如图所示,则甲、乙两人得分的中位数之和是()A.62 B.63 C.64 D.65考点:众数、中位数、平均数;茎叶图.专题:计算题;图表型.分析:由茎叶图知甲的数据有12个,中位数是中间两个数字的平均数,乙的数据有13个,中位数是中间一个数字36,做出两个数字之和.解答:解:由茎叶图知甲的数据有12个,中位数是中间两个数字的平均数=27乙的数据有13个,中位数是中间一个数字36∴甲和乙两个人的中位数之和是27+36=63故选B.点评:本题考查茎叶图和中位数,本题解题的关键是先看出这组数据的个数,若个数是一个偶数,中位数是中间两个数字的平均数,若数字是奇数个,中位数是中间一个数字.5.(5分)若P:∃x0∈R,x02+2x0+3≤0,则P的否定¬P是()A.∀x∈R,x2+2x+3>0 B.∀x∈R,x2+2x+3≥0C.∀x∈R,x2+2x+3<0 D.∀x∈R,x2+2x+3≤0考点:的否定.专题:简易逻辑.分析:直接利用特称的否定是全称写出结果即可.解答:解:因为特称的否定是全称,所以,若P:∃x0∈R,x02+2x0+3≤0,则P的否定¬P是:∀x∈R,x2+2x+3>0.故选:A.点评:本题考查的否定,特称与全称的否定关系,基本知识的考查.6.(5分)△ABC外接圆的半径为1,圆心为O,且的值是()A.3B.C.D.1考点:平面向量数量积的运算;向量在几何中的应用.专题:计算题;平面向量及应用.分析:根据题中的向量等式可知AO是△ABC的边BC上的中线,可得△ABC是以A为直角顶点的直角三角形.然后在等腰△ABO中利用余弦定理,算出∠AOB=120°,进而得到∠C=60°.最后结合向量数量积公式和△ABC的边长,即可得出•的值.解答:解:∵,∴AO是△ABC的边BC上的中线,∵O是△ABC外接圆的圆心∴△ABC是以A为直角顶点的直角三角形∵等腰△ABO中,||=||=1,=∴cos∠AOB==﹣,可得∠AOB=120°由此可得,∠B=30°,∠C=90°﹣30°=60°,且△ACO是边长为1的等边三角形∵Rt△ABC中,||=1,||=2∴•=||•||cos60°=1故选:D点评:本题给出三角形ABC外接圆心O,在已知AO是BC边的中线情况下求•的值.着重考查了直角三角形的性质、余弦之理和向量数量积运算公式等知识,属于中档题.7.(5分)先后抛掷两颗质地均匀的骰子,则两次朝上的点数之积为奇数的概率为()A.B.C.D.考点:古典概型及其概率计算公式.专题:概率与统计.分析:根据题意得出基本事件为(x,y),总共有6×6=36,列举两次朝上的点数之积为奇数事件求解个数,运用古典概率公式求解即可.解答:解:骰子的点数为:1,2,3,4,5,6,先后抛掷两颗质地均匀的骰子,基本事件为(x,y),总共有6×6=36,两次朝上的点数之积为奇数事件为:A有(1,1),(1,3),(1,5),(3,1),(3,3),(3,5),(5,1),(5,3),(5,5),共有9个结果,∴两次朝上的点数之积为奇数的概率为P(A)==故选:C点评:本题考查了古典概率的求解,关键是求解基本事件的个数,运用列举的方法求解符合题意的事件的个数,属于中档题.8.(5分)已知某产品连续4个月的广告费x i(千元)与销售额y i(万元)(i=1,2,3,4)满足,,若广告费用x和销售额y之间具有线性相关关系,且回归直线方程为=0.8x+a,那么广告费用为6千元时,可预测的销售额为()A.3.5万元B.4.7万元C.4.9万元D.6.5万元考点:线性回归方程.专题:计算题;概率与统计.分析:求出样本中心点代入回归直线方程,可得a,再将x=6代入,即可得出结论.解答:解:由题意,=4.5,=3.5,代入=0.8x+a,可得3.5=0.8×4.5+a,所以a=﹣0.1,所以=0.8x﹣0.1,所以x=6时,=0.8×6﹣0.1=4.7,故选:B.点评:本题考查线性回归方程,考查学生的计算能力,利用回归方程恒过样本中心点是关键.9.(5分)已知直线kx﹣y=k﹣1与ky﹣x=2k的交点在第二象限,则实数k的取值范围是()A.(0,)B.(,1)C.(0,1)D.[1}考点:两条直线的交点坐标.专题:直线与圆.分析:联立,解得,解出即可.解答:解:联立,解得,解得.∴实数k的取值范围是.故选:A.点评:本题考查了直线的交点、不等式的解法,考查了计算能力,属于基础题.10.(5分)过点A(﹣2,3)作抛物线:y2=4x的两条切线l1,l2,设l1,l2与y轴分别交于点B,C,则△ABC的外接圆方程为()A.x2+y2﹣3x﹣2y+1=0 B.x2+y2﹣2x﹣3y+1=0C.x2+y2﹣3x﹣4=0 D.x2+y2+x﹣3y﹣2=0考点:直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:直接利用A的坐标满足圆的方程,判断求解即可.解答:解:由题意可知,△ABC的外接圆方程,A的坐标满足圆的方程,点A(﹣2,3)代入x2+y2﹣3x﹣2y+1=0,左侧=4+9+6﹣9+1=11≠0,不成立.所以A不正确;点A(﹣2,3)代入x2+y2﹣2x﹣3y+1=0,左侧=4+9+4﹣9+1=9≠0,不成立.所以B不正确;点A(﹣2,3)代入x2+y2﹣3x﹣4=0,左侧=4+9+6﹣4=15≠0,不成立.所以C不正确;点A(﹣2,3)代入x2+y2+x﹣3y﹣2=0,左侧=4+9﹣2﹣9﹣2=0,成立.所以D正确;故选:D.点评:本题考查直线与圆锥曲线的应用,圆的方程的求法,本题是选择题,方法独特,希望同学们掌握;如果直接求解方法是设出切线的斜率,利用直线与抛物线相切,求出k,然后求出三角形的顶点坐标,利用圆的一般方程求解.二、填空题(共7小题,每小题5分,满分35分)11.(5分)不等式|x|+|x﹣1|>3的解集为(﹣∞,﹣1)∪(2,+∞).考点:绝对值不等式的解法.专题:不等式的解法及应用.分析:由于|x|+|x﹣1|表示数轴上的x对应点到0、1对应点的距离之和,而﹣1和2对应点到0、1对应点的距离之和等于3,由此求得不等式的解集.解答:解:由于|x|+|x﹣1|表示数轴上的x对应点到0、1对应点的距离之和,而﹣1和2对应点到0、1对应点的距离之和等于3,故当x<﹣1,或x>2时,不等式|x|+|x﹣1|>3成立.故不等式|x|+|x﹣1|>3的解集为(﹣∞,﹣1)∪(2,+∞),故答案为:(﹣∞,﹣1)∪(2,+∞).点评:本题主要考查绝对值的意义,绝对值不等式的解法,属于中档题.12.(5分)若x、y满足,则z=x﹣y的最大值为.考点:简单线性规划.专题:不等式的解法及应用.分析:由约束条件作出可行域,数形结合得到最优解联立方程组求得最优解的坐标,代入目标函数得答案.解答:解:由约束条件作出可行域如图,联立,解得,即C(1,0),化目标函数z=x﹣y为直线方程斜截式:,由图可知,当直线过点C时,直线在y轴上的截距最小,z有最大值等于.故答案为:.点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.13.(5分)执行如图所示的程序框图,若输入p=5,则输出的S等于考点:程序框图.专题:图表型;三角函数的图像与性质.分析:模拟执行程序框图,依次写出每次循环得到的n,s的值,当n=5时,不满足条件n <p,退出循环,输出S的值为.解答:解:模拟执行程序框图,可得p=5,n=0,S=0满足条件n<p,n=1,S=满足条件n<p,n=2,S=满足条件n<p,n=3,S=满足条件n<p,n=4,S=满足条件n<p,n=5,S=不满足条件n<p,退出循环,输出S的值为.故答案为:.点评:本题主要考查了循环结构的程序框图,依次正确写出每次循环得到的n,s的值是解题的关键,属于基本知识的考查.14.(5分)一个几何体的三视图如图所示,则该几何体的表面积为2π+2π+4考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:根据几何体的三视图,得出该几何体是一底面为半圆,高为2的半圆锥,结合图中数据,求出它的表面积.解答:解:根据几何体的三视图,得;该几何体是一底面为半圆,高为2的半圆锥,且底面半圆的半径为2;∴该半圆锥的表面积为S表面积=S半圆+S△+S侧面展开图=π•22+×4×2+××2π•2×=2π+4+2π.故答案为:2π+2π+4.点评:本题考查了空间几何体的三视图的应用问题,解题时应根据三视图得出几何体的结构特征,是基础题目.15.(5分)如图,正四棱锥O﹣ABCD的棱长均为1,点A、B、C、D在求O的表面上,延长CO交球面于点S,则四面体A﹣SOB的体积为.考点:棱柱、棱锥、棱台的体积;球内接多面体.专题:空间位置关系与距离.分析:假设AC与BD相交于点E,则BE⊥平面SAC,BE=.利用正方体的性质与勾股定理的逆定理可得OA⊥OC,利用四面体A﹣SOB的体积V=V B﹣SAO=BE•S△SAO.即可得出.解答:解:假设AC与BD相交于点E,则BE⊥平面SAC,BE=.连接SA,∵SC是直径,∴SA⊥AC,∵OA2+OC2=AC2=2,∴OA⊥OC,∴又S△SAO=S△OAC==.四面体A﹣SOB的体积V=V B﹣SAO=BE•S△SAO=×=.故答案为:.点评:本题考查了线面面面垂直的判定性质定理、正方形的性质、正四面体的性质、球的性质、三棱锥的体积计算公式,考查了推理能力与计算能力,属于中档题.16.(5分)在各项均为正项的等比数列{a n}中,已知a1+a2+a3+a4+a5=31,=,则a3=4.考点:等比数列的通项公式.专题:等差数列与等比数列.分析:设出等比数列的首项和公比,由题意列式,整体运算得到,则a3可求.解答:解:设等比数列a n的公比为q,则{}也是等比数列,且公比为,依题意得:,两式作比得:,即,∵a n>0,∴a3=4.故答案为:4.点评:本题考查了等比数列的通项公式,考查了等比数列的前n项和,是基础的计算题.17.(5分)已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=,若y=f2(x)﹣af(x)+a﹣1的零点个数是7个,则实数a的取值范围为(,2).考点:根的存在性及根的个数判断;函数的零点与方程根的关系.专题:计算题;作图题;函数的性质及应用.分析:化简f2(x)﹣af(x)+a﹣1=0得f(x)=1或f(x)=a﹣1,作f(x)与y=1及y=a ﹣1的图象,由数形结合求解.解答:解:令f2(x)﹣af(x)+a﹣1=0得,f(x)=1或f(x)=a﹣1,作f(x)与y=1及y=a﹣1的图象如下,由图象知,y=1与f(x)的图象有三个交点,故y=a﹣1与f(x)有四个交点,f(2)=,则结合图象可得,<a﹣1<1,即<a<2;故答案为:(,2).点评:本题考查了函数的零点与函数的交点的关系应用及数形结合的思想应用,属于中档题.三、解答题(共5小题,满分65分)解答应写出文字说明,证明过程或演算步骤18.(12分)已知等差数列{a n}的前n项和为S n,a3=5,S8=64.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求证:>(n≥2,n∈N)考点:数列与不等式的综合;等差数列的前n项和.专题:等差数列与等比数列;不等式的解法及应用.分析:(1)设等差数列{a n}的首项为a1,公差为d,通过a3=5,S8=64可得首项和公差,计算即可;(2)通过(1)可知S n=n2,利用不等式的性质化简可得原成立,只需3n2>1在n≥1时恒成立.解答:(1)解:设等差数列{a n}的首项为a1,公差为d,根据题意,可得,解得a1=1,d=2,∴数列{a n}的通项公式为:a n=2n﹣1;(2)证明:由(1)可知:S n=n2,要证:>(n≥2,n∈N)恒成立,只需证:+>,只需证:[(n+1)2+(n﹣1)2]n2>2(n2﹣1)2,只需证:(n2+1)n2>(n2﹣1)2,只需证:3n2>1,而3n2>1在n≥1时恒成立,且以上每步均可逆,从而:>(n≥2,n∈N)恒成立.点评:本题考查等差数列的简单性质,利用不等式的性质进行化简是解决本题的关键,属于中档题.19.(12分)已知△ABC的内角A、B、C的对边a,b,c,且满足bcos2A=a(2﹣sinAsinB),a+b=6.(Ⅰ)求a、b的值(Ⅱ)若cosB=,求△ABC的面积.考点:正弦定理.分析:(I)由bcos2A=a(2﹣sinAsinB),可得sinBcos2A=sinA(2﹣sinAsinB),化为sinB=2sinA,由正弦定理可得:b=2a,与a+b=6联立解得a,b.(II)由cosB=,可得sinB=,可得sinA=,cosA=;sinC=sin (A+B)=sinAcosB+cosAsinB,利用S△ABC=即可得出.解答:解:(I)∵bcos2A=a(2﹣sinAsinB),∴sinBcos2A=sinA(2﹣sinAsinB),∴sinBcos2A+sin2AsinB=2sinA,∴sinB=2sinA,由正弦定理可得:b=2a,与a+b=6联立解得a=2,b=4.(II)∵cosB=,∴sinB==,∴sinA==cosA==;∴sinC=sin(A+B)=sinAcosB+cosAsinB=+=,∴S△ABC===2.(II)由余弦定理可得:b2=a2+c2﹣2accosB,b=2a,c=,∴4a2=a2+7﹣=a2+7﹣2×,化为3a2+4a﹣7=0,解得a=1.∴b=2.∴a=1,b=2.点评:本题考查了正弦定理余弦定理、同角三角函数基本关系式、两角和差的正弦公式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.20.(13分)如图,在四面体P﹣ABC中,底面ABC是边长为1的正三角形,PB=PC=,AB⊥BP.(Ⅰ)求证:PA⊥BC(Ⅱ)求点P到底面ABC的距离.考点:点、线、面间的距离计算;直线与平面垂直的性质.专题:综合题;空间位置关系与距离.分析:(Ⅰ)取BC中点M,连结AM,PM,依题意可知AM⊥BC,PM⊥BC,从而BC⊥平面PAM,由此能证明PA⊥BC;(Ⅱ)过P作PH⊥AM,连接BH,证明PH⊥平面ABC,求出BH,即可求点P到底面ABC 的距离.解答:(Ⅰ)证明:取BC中点M,连结AM,PM,依题意底面ABC是边长为1的正三角形,PB=PC=,所以AM⊥BC,PM⊥BC,又AM∩PM=M,所以BC⊥平面PAM,又PA⊂平面PAM,所以PA⊥BC;(Ⅱ)解:因为BC⊥平面PAM,BC⊂平面ABC所以平面ABC⊥平面PAM,过P作PH⊥AM,连接BH,所以PH⊥平面ABC,所以PH⊥AB,因为AB⊥PB,PH∩PB=P,所以AB⊥平面PBH,所以AB⊥BH.在Rt△ABH中,∠BAH=30°,所以BH=,在Rt△PBH中,PB=,所以PH==,所以点P到底面ABC的距离为.点评:本题考查异面直线垂直的证明,考查点到平面的距离的求法,正确作出点P到底面ABC的距离是解题的关键.21.(14分)已知函数f(x)=x3﹣3x2+ax(a∈R)(1)求函数y=f(x)的单调区间;(2)当a≥2时,求函数y=|f(x)|在0≤x≤1上的最大值.考点:利用导数研究函数的单调性;利用导数求闭区间上函数的最值.专题:函数的性质及应用;导数的综合应用.分析:(1)求出函数的导数,讨论判别式小于或等于0,和大于0,令导数大于0,得增区间;令导数小于0,得减区间;(2)由(1)讨论当a≥3时,当2≤a<3时,求得函数的单调区间,通过函数值的符号,去绝对值符号,即可得到最大值.解答:解:(1)函数f(x)=x3﹣3x2+ax的导数为f′(x)=3x2﹣6x+a,判别式△=36﹣12a,当△≤0时,即a≥3,f′(x)≥0恒成立,f(x)为增函数;当a<3时,即△>0,3x2﹣6x+a=0有两个实根,x1=1﹣,x2=1+,f′(x)>0,可得x>x2或x<x1;f′(x)<0,可得x1<x<x2.综上可得,a≥3时,f(x)的增区间为R;a<3时,f(x)的增区间为(﹣∞,1﹣),(1+,+∞),减区间为(1﹣,1+).(2)由于y=|f(x)|的图象经过原点,当a≥3时,由(1)可得y=|f(x)|=f(x)在[0,1]递增,即有x=1处取得最大值,且为a﹣2;当2≤a<3时,由(1)可得f(x)在[0,1﹣)递增,在(1﹣,1]递减,则f(x)在x=1﹣处取得最大值,且大于0,又f(0)=0,f(1)=a﹣2≥0,则y=|f(x)|=f(x)(0≤x≤1)的最大值即为f(1﹣).综上可得,当a≥3时,函数y的最大值为a﹣2;当2≤a<3时,函数y的最大值为f(1﹣).点评:本题考查导数的运用:求单调区间和极值、最值,主要考查分类讨论的思想方法和函数的单调性的运用,考查运算能力,属于中档题和易错题.22.(14分)已知椭圆C:=1(a>b>0)的离心率为,短轴长为2.(Ⅰ)求椭圆C的方程;(Ⅱ)若A、B是椭圆C上的两动点,O为坐标原点,OA、OB的斜率分别为k1,k2,问是否存在非零常数λ,使k1•k2=λ时,△AOB的面积S为定值,若存在,求λ的值;若不存在,请说明理由.考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)通过=、2b=2、a2=b2+c2,计算即得结论;(Ⅱ)设直线AB的方程并与椭圆方程联立,利用韦达定理、三角形面积计算公式、k1•k2=λ可得S△AOB的表达式,分析表达式、计算即可.解答:解:(Ⅰ)∵e==,2b=2,a2=b2+c2,∴a=2,b=1,∴椭圆C的方程为:+y2=1;(Ⅱ)结论:存在非零常数λ=﹣,使k1•k2=﹣时,△AOB的面积S为定值1.理由如下:设存在这样的常数λ,使k1•k2=λ时,S△AOB为定值.设直线AB的方程为:y=kx+m,且AB与+y2=1的交点坐标为A(x1,y1),B(x2,y2),∵k1•k2=λ,∴λx1x2﹣y1y2=0,∴﹣λx1x2+(kx1+m)(kx2+m)=0,∴(k2﹣λ)x1x2+km(x1+x2)+m2=0.将y=kx+m代入+y2=1,消去y得:(1+4k2)x2+8kmx+4m2﹣4=0,由韦达定理可得:x1+x2=,x1x2=,∴(k2﹣λ)x1x2+km(x1+x2)+m2=0可化为:m2=,∵点O到直线AB的距离为d=,∴S△AOB=•d•|AB|=•|x1﹣x2|•|m|=,∴==•,要使上式为定值,只需==,即只需(1+4λ)2=0,∴λ=﹣,此时=,即S△AOB=1,故存在非零常数λ=﹣,此时S△AOB=1.点评:本题考查椭圆的定义及其标准方程、直线与椭圆的位置关系等基础知识,考查运算求解能力、抽象概括能力、推理论证能力,注意解题方法的积累,属于中档题.。

湖北省黄冈市2025届高三上学期9月调研考试(一模)语文试卷Word版含答案

湖北省黄冈市2025届高三上学期9月调研考试(一模)语文试卷Word版含答案

黄冈市2024年高三年级9月调研考试语文本试卷共8页,23题。

全卷满分150分。

考试用时150分钟。

★祝考试顺利★注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

写在试卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。

写在试卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将答题卡上交。

一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,19分)阅读下面的文字,完成1-5题①“泱泱中华,历史何其悠久,文明何其博大,这是我们的自信之基、力量之源。

”习近平总书记在二O二四年新年贺词中指出中华伟大文化对于新时代砥砺前行的重要作用,而总书记提到的这片辽阔土地所孕育的、令全国乃至全世界都心驰神往的大漠孤烟、江南细雨、黄河九曲、奔流长江、良渚、二里头、殷墟甲骨、三星堆等等,都是纪录片人的创作富矿。

2023年,纪录片行业深入贯彻习近平总书记在文化传承发展座谈会上的讲话精神,在全面贯彻落实党的二十大精神的开局之年坚定文化自信,承担起传承历史、传播文化、记录时代的重要使命,记录下国家行进步伐何以坚实、有力量、见风采、显底色,持续推动文化繁荣、创作繁荣。

②记录中国积极拥抱世界,担当大国责任之姿。

2023年纪录片搭建文化对话交的桥梁,国际合作灵动多样,出海态势欣欣向荣,结出累累硕果。

传播视角方面,重视全球视野,《当法老遇见三星堆》在文化互鉴角度揭示不同文明背景下相同的热爱,《下一站出口》邀请外籍青年走进、体验真实的中国。

合作模式方面,联合拍摄制作,增强纪录片的国际竞争力,在中法建交即将迎来60周年之际,中法合拍纪录片《野性四季:珍稀野生动物在中国》留存具有科学价值的影像档案;中央广播电视总台影视剧纪录片中心与海南广播电视总台(集团)联合出品,华纳兄弟探索集团联合制作的《中国海南·雨林秘境》呈现海南热带雨林的独特性、稀缺性和神秘性。

湖北省黄冈市2017-2018学年高三四月调考数学试卷(理科) Word版含解析

湖北省黄冈市2017-2018学年高三四月调考数学试卷(理科) Word版含解析

2017-2018学年湖北省黄冈市高三调考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一个选项是符合题目要求的。

1.已知复数在复平面内对应的点在虚轴上(不含原点),则实数a=()A.﹣1 B. 1 C. D.2.设全集U=R,A={x||x|<2},B={x|y=},则图中阴影部分所表示的集合()A.(﹣2,+∞) B.(1,2] C.(﹣2,1) D.(﹣2,1]3.设ω>0,函数y=sin(ωx+)的图象向右平移个单位后与原图象重合,则ω的最小值是()A. B. C. 3 D.4.下列说法中正确的是()A.“若x>y,则﹣x<﹣y”的逆否是“若﹣x>﹣y,则x<y”B.若p:∀x∈R,x2+1>0,则¬p:∀x∉R,x2+1≤0C.设x、y∈R,则“(x﹣y)•x2<0”是“x<y”的必要而不充分条件D.设l是一条直线,α、β是两个不同的平面,若l⊥α,l⊥β,则α∥β5.小吴同学计划大学毕业后出国留学,其父母于2014年7月1日在银行存入a元钱,此后每年7月1日存入a元钱,若年利润为p且保持不变,并约定每年到期,存款的本息均自动转为新的一年的定期,在小吴同学2019年7月1日大学毕业时取出这五笔存款,则可以取出的钱(元)的总数为()A. a(1+p)5 B. a(1+p)6 C.[(1+p)5﹣(1+p)] D.[(1+p)6﹣(1+p)]6.设、是单位向量,若=3,=,方向的投影为,则与夹角为()A. B. C. D.7.如图直观图由直三棱柱与圆锥组成的几何体,其三视图的正视图为正方形,则俯视图中的椭圆的离心率为()A. B. C. D.8.若函数f(x)=log(﹣x2+4x+5)在区间(3m﹣2,m+2)内单调递增,则实数m的取值为()A. [] B. [] C. [) D. [)9.运行如图的程序框图,若输入n=2015,则输出的a=()A. B. C. D.10.定义区间[x1,x2]长度为x2﹣x1,(x2>x1),已知函数f(x)=(a∈R,a≠0)的定义域与值域都是[m,n],则区间[m,n]取最大长度时a的值为()A. B. a>1或a<﹣3 C. a>1 D. 3二、填空题:本大题共4小题,考生共需作答5小题,每小题5分,共25分,请将答案填在答题卡对应题号的位置上,答错位置,书写不清,模棱两可均不得分。

2017-2018学年数学人教A版必修一优化练习:第二章2.3 幂函数(含解析)

2017-2018学年数学人教A版必修一优化练习:第二章2.3 幂函数(含解析)

[课时作业][A组基础巩固]1.下列所给出的函数中,是幂函数的是()A.y=-x3B.y=x-3C.y=2x3D.y=x3-1解析:由幂函数的定义可知y=x-3是幂函数.答案:B2.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是() A.y=x-2 B.y=x-1C.y=x2D.y=x 1 3解析:∵y=x-1和y=x 13都是奇函数,故B、D错误.又y=x2虽为偶函数,但在(0,+∞)上为增函数,故C错误.y=x-2=1x2在(0,+∞)上为减函数,且为偶函数,故A 满足题意.答案:A3.如图,函数y=x 23的图象是()解析:y=x 23=3x2≥0,故只有D中的图象适合.答案:D4.已知幂函数273225()(1)()t tf x t t x t N+-=-+⋅∈是偶函数,则实数t的值为()A.0 B.-1或1 C.1 D.0或1解析:∵273225()(1)()t tf x t t x t N+-=-+⋅∈是幂函数,∴t2-t+1=1,即t2-t=0,∴t=0或t=1.当t=0时,f(x)=x 75是奇函数,不满足题设;当t=1时,f(x)=x 85是偶函数,满足题设.答案:C5.a ,b 满足0<a <b <1,下列不等式中正确的是( ) A .a a <a b B. b a <b b C .a a <b aD .b b <a b解析:因为0<a <b <1,而函数y =x a 单调递增,所以a a <b a . 答案:C6.若函数则f {f [f (0)]}=________.解析:∵f (0)=-2, ∴f (-2)=(-2+3)12=1, ∴f (1)=1,∴f {f [f (0)]}=f [f (-2)]=f (1)=1. 答案:1 7.下列命题中,①幂函数的图象不可能在第四象限;②当α=0时,函数y =x α的图象是一条直线; ③当α>0时,幂函数y =x α是增函数;④当α<0时,幂函数y =x α在第一象限内函数值随x 值的增大而减小. 其中正确的序号为________.解析:当α=0时,是直线y =1但去掉(0,1)这一点,故②错误.当α>0时,幂函数y =x α仅在第一象限是递增的,如y =x 2,故③错误. 答案:①④8.已知n ∈{-2,-1,0,1,2,3},若⎝ ⎛⎭⎪⎫-12n >⎝ ⎛⎭⎪⎫-13n ,则n =________.解析:∵-12<-13,且⎝ ⎛⎭⎪⎫-12n >⎝ ⎛⎭⎪⎫-13n,∴y =x n 在(-∞,0)上为减函数.又n ∈{-2,-1,0,1,2,3},∴n =-1或n =2. 答案:-1或29.点(2,2)与点⎝ ⎛⎭⎪⎫-2,-12分别在幂函数f (x )、g (x )的图象上,问当x 为何值时,有①f (x )>g (x );②f (x )=g (x );③f (x )<g (x ). 解析:设f (x )=x α,g (x )=x β, 则(2)α=2,(-2)β=-12, ∴α=2,β=-1. ∴f (x )=x 2,g (x )=x -1.分别作出它们的图象如图所示,由图象可知,当x ∈(-∞,0)∪(1,+∞)时,f (x )>g (x ); 当x =1时,f (x )=g (x ); 当x ∈(0,1)时,f (x )<g (x ). 10.已知幂函数y =x223m m -- (m ∈N +)的图象关于y 轴对称,且在(0,+∞)上是减函数,求满足(a +1)3m <(3a -2)3的a 的取值范围.解析: ∵函数在(0,+∞)上单调递减,∴m 2-2m -3<0, 解得-1<m <3.∵m ∈N +,∴m =1,2.又∵函数图象关于y 轴对称,∴m 2-2m -3是偶数.又∵22-2×2-3=-3为奇数,12-2×1-3=-4为偶数,∴m =1. ∴原不等式等价于(a +1)3<(3a -2)3. 又∵y =x 3在(-∞,+∞)上是增函数, ∴a +1<3a -2,∴2a >3,a >32, 故a 的取值范围是a >32.[B 组 能力提升]1.设幂函数f (x )的图象经过点⎝ ⎛⎭⎪⎫13,3,设0<a <1,则f (a )与f (a -1)的大小关系是( )A .f (a -1)<f (a ) B.f (a -1)=f (a ) C .f (a -1)>f (a )D .不能确定解析:因为幂函数f (x )的图象经过点⎝ ⎛⎭⎪⎫13,3,设f (x )=x α,因为图象经过点⎝ ⎛⎭⎪⎫13,3,所以⎝ ⎛⎭⎪⎫13α=3,解得α=-12,所以f (x )=x 12-在第一象限单调递减.因为0<a <1,所以a -1>a ,所以f (a -1)<f (a ). 答案:A 2.若(a +1)12-<(3-2a )12-,则a 的取值范围是( )A.⎝ ⎛⎭⎪⎫12,23B.⎝ ⎛⎭⎪⎫23,32C.⎝ ⎛⎭⎪⎫23,2 D .⎝ ⎛⎭⎪⎫32,+∞解析:令f (x )=x12-=1x,∴f (x )的定义域是(0,+∞),且在(0,+∞)上是减函数,故原不等式等价于⎩⎨⎧a +1>0,3-2a >0,a +1>3-2a ,解得23<a <32. 答案:B3.已知(0.71.3)m <(1.30.7)m ,则实数m 的取值范围是________. 解析:∵0<0.71.3<0. 70=1,1.30.7>1.30=1, ∴0.71.3<1.30.7.而(0.71.3)m <(1.30.7)m ,∴幂函数y =x m 在 (0,+∞)上单调递增,故m >0. 答案:(0,+∞)4.把⎝ ⎛⎭⎪⎫2313-,⎝ ⎛⎭⎪⎫3512,⎝ ⎛⎭⎪⎫2512,⎝ ⎛⎭⎪⎫760按从小到大的顺序排列________.解析:⎝ ⎛⎭⎪⎫760=1,⎝ ⎛⎭⎪⎫2313->⎝ ⎛⎭⎪⎫230=1,⎝ ⎛⎭⎪⎫3512<1,⎝ ⎛⎭⎪⎫2512<1.∵y =x 12为增函数,∴⎝ ⎛⎭⎪⎫2512<⎝ ⎛⎭⎪⎫3512<⎝ ⎛⎭⎪⎫760<⎝ ⎛⎭⎪⎫2313-.答案:⎝ ⎛⎭⎪⎫2512<⎝ ⎛⎭⎪⎫3512<⎝ ⎛⎭⎪⎫760<⎝ ⎛⎭⎪⎫2313-5.已知幂函数f (x )=x 21()m m -+ (m ∈N +).(1)试确定该函数的定义域,并指明该函数在其定义域上的单调性;(2)若该函数f (x )经过点(2,2),试确定m 的值,并求满足条件f (2-a )>f (a -1)的实数a 的取值范围.解析:(1)∵m 2+m =m (m +1)(m ∈N +),而m 与m +1中必有一个为偶数, ∴m 2+m 为偶数,∴函数f (x )=x 21()m m -+ (m ∈N +)的定义域为[0,+∞),并且该函数在[0,+∞)上为增函数. (2)∵函数f (x )经过点(2,2),∴2=2(m 2+m )-1,即212=2(m 2+m )-1, ∴m 2+m =2,解得m =1或m =-2, 又∵m ∈N +,∴m =1,f (x )=x 12. 又∵f (2-a )>f (a -1),∴⎩⎨⎧2-a ≥0,a -1≥0,2-a >a -1,解得1≤a <32,故函数f (x )经过点(2,2)时,m =1.满足条件f (2-a )>f (a -1)的实数a 的取值范围为1≤a <32. 6.已知函数f (x )=(m 2+2m )·x 21m m +-,求m 为何值时,f (x )是:(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数. 解析:(1)若f (x )为正比例函数,则⎩⎨⎧m 2+m -1=1,m 2+2m ≠0,解得m =1. (2)若f (x )为反比例函数,则⎩⎨⎧m 2+m -1=-1,m 2+2m ≠0,解得m =-1. (3)若f (x )为二次函数,则⎩⎨⎧m 2+m -1=2,m 2+2m ≠0,解得m =-1±132.(4)若f (x )为幂函数,则m 2+2m =1, 解得m =-1±2.。

2017-2018学年高一下学期期中数学试卷Word版含解析

2017-2018学年高一下学期期中数学试卷Word版含解析

2017-2018学年高一下学期期中数学试卷一、选择题(共12小题,每小题5分,满分60分)1.下列说法中正确的是()A.共线向量的夹角为0°或180°B.长度相等的向量叫做相等向量C.共线向量就是向量所在的直线在同一直线上D.零向量没有方向2.下列函数中为奇函数的是()A.y=sin|x| B.y=sin2x C.y=﹣sinx+2 D.y=sinx+13.已知角的终边经过点(4,﹣3),则tanα=()A.B.﹣ C.D.﹣4.函数y=cos(4x﹣π)的最小正周期是()A.4πB.2πC.πD.5.在直角坐标系中,直线3x+y﹣3=0的倾斜角是()A.B.C. D.6.函数的单调递减区间()A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)7.函数y=3sin(2x+)+2图象的一条对称轴方程是()A.x=﹣B.x=0 C.x=πD.8.下列选项中叙述正确的是()A.终边不同的角同一三角函数值可以相等B.三角形的内角是第一象限角或第二象限角C.第一象限是锐角D.第二象限的角比第一象限的角大9.如果点P(sinθcosθ,2cosθ)位于第二象限,那么角θ所在象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.向量+++化简后等于()A.B.C.D.11.已知函数y=Asin(ωx+φ)+B的一部分图象如图所示,如果A>0,ω>0,|φ|<,则()A.A=4 B.ω=1 C.φ=D.B=412.给出下列说法:①终边相同的角同一三角函数值相等;②在三角形中,若sinA=sinB,则有A=B;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sinα=sinβ,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确说法的个数是()A.1 B.2 C.3 D.4二、填空(本大题共4小题,每小题5分,共20分.)13.以点(0,2)和(4,0)为端点的线段的中垂线的方程是.14.圆x2+y2=4上的点到直线3x+4y﹣25=0的距离最小值为.15.已知=, =, =, =, =,则+++﹣= .16.已知tan()=,tan()=﹣,则tan()= .三、解答题(本大题共6小题,17题10分其余每题12分共70分)17.已知角α的终边经过一点P(5a,﹣12a)(a>0),求2sinα+cosα的值.18.已知△ABC的三个顶点A(0,4),B(﹣2,6),C(8,2);(1)求AB边的中线所在直线方程.(2)求AC的中垂线方程.19.若圆经过点A(2,0),B(4,0),C(1,2),求这个圆的方程.20.已知cosα=,cos(α﹣β)=,且0<β<α<,(1)求tan2α的值;(2)求cosβ的值.21.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,(Ⅰ)求函数的解析式;(Ⅱ)求函数的对称轴方程和对称中心坐标.22.已知函数f(x)=sin2ωx+sinωx•cosωx﹣1(ω>0)的周期为π.(1)当x∈[0,]时,求f(x)的取值范围;(2)求函数f(x)的单调递增区间.2017-2018学年高一下学期期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.下列说法中正确的是()A.共线向量的夹角为0°或180°B.长度相等的向量叫做相等向量C.共线向量就是向量所在的直线在同一直线上D.零向量没有方向【考点】向量的物理背景与概念.【分析】根据共线向量、平行向量、相等向量以及零向量的概念便可判断每个说法的正误,从而找出正确选项.【解答】解:A.共线向量的方向相同或相反;方向相同时,夹角为0°,相反时的夹角为180°,∴该说法正确;B.长度相等,方向相同的向量叫做相等向量,∴该说法错误;C.平行向量也叫共线向量,∴共线向量不是向量所在直线在同一直线上;∴该说法错误;D.零向量的方向任意,并不是没有方向,∴该说法错误.故选:A.2.下列函数中为奇函数的是()A.y=sin|x| B.y=sin2x C.y=﹣sinx+2 D.y=sinx+1【考点】函数奇偶性的判断.【分析】要探讨函数的奇偶性,先求函数的定义域,判断其是否关于原点对称,然后探讨f(﹣x)与f(x)的关系,即可得函数的奇偶性.【解答】解:选项A,定义域为R,sin|﹣x|=sin|x|,故y=sin|x|为偶函数.选项B,定义域为R,sin(﹣2x)=﹣sin2x,故y=sin2x为奇函数.选项C,定义域为R,﹣sin(﹣x)+2=sinx+2,故y=sinx+2为非奇非偶函数偶函数.选项D,定义域为R,sin(﹣x)+1=﹣sinx+1,故y=sinx+1为非奇非偶函数,故选:B.3.已知角的终边经过点(4,﹣3),则tanα=()A.B.﹣ C.D.﹣【考点】任意角的三角函数的定义.【分析】根据三角函数的定义进行求解即可.【解答】解:∵角α的终边经过点P(4,﹣3),∴tanα==,故选:B.4.函数y=cos(4x﹣π)的最小正周期是()A.4πB.2πC.πD.【考点】三角函数的周期性及其求法.【分析】根据余弦函数的最小正周期的求法,将ω=4代入T=即可得到答案.【解答】解:∵y=cos(4x﹣π),∴最小正周期T==.故选:D.5.在直角坐标系中,直线3x+y﹣3=0的倾斜角是()A.B.C. D.【考点】直线的倾斜角.【分析】由已知方程得到直线的斜率,根据斜率对于得到倾斜角.【解答】解:由已知直线的方程得到直线的斜率为﹣,设倾斜角为α,则tanα=﹣,α∈[0,π),所以α=;故选:D.6.函数的单调递减区间()A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)【考点】正弦函数的单调性.【分析】利用y=sinx的单调性,求出函数的单调递减区间,进而可求函数的单调递减区间.【解答】解:利用y=sinx的单调递减区间,可得∴∴函数的单调递减区间(k∈Z)故选D.7.函数y=3sin(2x+)+2图象的一条对称轴方程是()A.x=﹣B.x=0 C.x=πD.【考点】正弦函数的图象.【分析】利用正弦函数的图象的对称性,求得y=3sin(2x+)+2图象的一条对称轴方程.【解答】解:∵对于函数y=3sin(2x+)+2图象,令2x+=kπ+,求得x=+,可得函数图象的一条对称轴方程为x=π,故选:C.8.下列选项中叙述正确的是()A.终边不同的角同一三角函数值可以相等B.三角形的内角是第一象限角或第二象限角C.第一象限是锐角D.第二象限的角比第一象限的角大【考点】命题的真假判断与应用.【分析】分别举例说明四个选项的正误得答案.【解答】解:对于A,终边不同的角同一三角函数值可以相等,正确,如;对于B,三角形的内角是第一象限角或第二象限角,错误,如是终边在坐标轴上的角;对于C,第一象限是锐角,错误,如是第一象限角,不是锐角;对于D,第二象限的角比第一象限的角大,错误,如是第二象限角,是第一象限角,但.故选:A.9.如果点P(sinθcosθ,2cosθ)位于第二象限,那么角θ所在象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】三角函数的化简求值.【分析】根据象限得出sinθ,cosθ的符号,得出θ的象限.【解答】解:∵P(sinθcosθ,2cosθ)位于第二象限,∴sinθcosθ<0,cosθ>0,∴sinθ<0,∴θ是第四象限角.故选:D.10.向量+++化简后等于()A.B.C.D.【考点】向量加减混合运算及其几何意义.【分析】利用向量的三角形法则与多边形法则即可得出.【解答】解:向量+++=,故选:D.11.已知函数y=Asin(ωx+φ)+B的一部分图象如图所示,如果A>0,ω>0,|φ|<,则()A.A=4 B.ω=1 C.φ=D.B=4【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】先根据函数的最大值和最小值求得A和B,然后利用图象中﹣求得函数的周期,求得ω,最后根据x=时取最大值,求得φ.【解答】解:如图根据函数的最大值和最小值得求得A=2,B=2函数的周期为(﹣)×4=π,即π=,ω=2当x=时取最大值,即sin(2×+φ)=1,2×+φ=2kπ+φ=2kπ﹣∵∴φ=故选C.12.给出下列说法:①终边相同的角同一三角函数值相等;②在三角形中,若sinA=sinB,则有A=B;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sinα=sinβ,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确说法的个数是()A.1 B.2 C.3 D.4【考点】任意角的概念.【分析】由任意角的三角函数的定义,三角函数值与象限角的关系,即可得出结论.【解答】解:①由任意角的三角函数的定义知,终边相同的角的三角函数值相等,正确.②在三角形中,若sinA=sinB,则有A=B,故正确;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关,正确,④若sinα=sinβ,则α与β的终边相同或终边关于y轴对称,故不正确.⑤若cosα<0,则α是第二或第三象限角或α的终边落在x轴的非正半轴上,故不正确.其中正确的个数为3个,故选:C.二、填空(本大题共4小题,每小题5分,共20分.)13.以点(0,2)和(4,0)为端点的线段的中垂线的方程是2x﹣y﹣3=0 .【考点】待定系数法求直线方程.【分析】先求出线段AB的中垂线的斜率,再求出线段AB的中点的坐标,点斜式写出AB的中垂线得方程,并化为一般式.【解答】解:设A(0,2)、B(4,0).=﹣,所以线段AB的中垂线得斜率k=2,又线段AB的中点为(2,1),直线AB的斜率 kAB所以线段AB的中垂线得方程为y﹣1=2(x﹣2)即2x﹣y﹣3=0,故答案为:2x﹣y﹣3=0.14.圆x2+y2=4上的点到直线3x+4y﹣25=0的距离最小值为 3 .【考点】直线与圆的位置关系.【分析】圆心(0,0)到直线3x+4y﹣25=0的距离d==5,圆x2+y2=4上的点到直线3x+4y﹣25=0距离的最小值是AC=5﹣r,从而可求.【解答】解:∵圆心(0,0)到直线3x+4y﹣25=0的距离d==5,∴圆x2+y2=4上的点到直线3x+4y﹣25=0距离的最小值是AC=5﹣r=5﹣2=3故答案为:3.15.已知=, =, =, =, =,则+++﹣= .【考点】向量的加法及其几何意义.【分析】利用向量的三角形法则与多边形法则即可得出.【解答】解: +++﹣=+++﹣=﹣=,故答案为:.16.已知tan()=,tan()=﹣,则tan()= 1 .【考点】两角和与差的正切函数.【分析】观察三个函数中的角,发现=﹣(),故tan()的值可以用正切的差角公式求值【解答】解:∵=﹣(),∴tan()===1故答案为1三、解答题(本大题共6小题,17题10分其余每题12分共70分)17.已知角α的终边经过一点P(5a,﹣12a)(a>0),求2sinα+cosα的值.【考点】任意角的三角函数的定义.【分析】利用三角函数的定义可求得sinα与cosα,从而可得2sinα+cosα.【解答】解:由已知r==13a…∴sinα=﹣,cosα=,…∴2sinα+cosα=﹣…18.已知△ABC的三个顶点A(0,4),B(﹣2,6),C(8,2);(1)求AB边的中线所在直线方程.(2)求AC的中垂线方程.【考点】待定系数法求直线方程.【分析】(1)利用中点坐标公式、斜截式即可得出.(2)利用斜率计算公式、相互垂直的直线斜率之间的关系、斜截式即可得出.【解答】解:(1)∵线段AB的中点为(﹣1,5),∴AB边的中线所在直线方程是=,即x+3y﹣14=0.(2)AC的中点为(4.3)==﹣,∵KAC∴y﹣3=4(x﹣4)即y=4x﹣13,∴AC的中垂线方程为y=4x﹣13.19.若圆经过点A(2,0),B(4,0),C(1,2),求这个圆的方程.【考点】圆的一般方程.【分析】设出圆的一般式方程,把三个点的坐标代入,求解关于D、E、F的方程组得答案.【解答】解:设圆的方程为x2+y2+Dx+Ey+F=0,则,解得.∴圆的方程为:.20.已知cosα=,cos(α﹣β)=,且0<β<α<,(1)求tan2α的值;(2)求cosβ的值.【考点】二倍角的正切;两角和与差的余弦函数.【分析】(1)利用已知及同角三角函数基本关系式可求sinα,进而可求tanα,利用二倍角的正切函数公式可求tan2α的值.(2)由0<β<α<,得0<α﹣β<,利用同角三角函数基本关系式可求sin(α﹣β),由β=α﹣(α﹣β)利用两角差的余弦函数公式即可计算求值.【解答】解:(1)∵由cosα=,0<α<,得sinα===,∴得tan=∴于是tan2α==﹣.…(2)由0<β<α<,得0<α﹣β<,又∵cos(α﹣β)=,∴sin(α﹣β)==,由β=α﹣(α﹣β)得:cosβ=cos[α﹣(α﹣β)]=cosαcos(α﹣β)+sinαsin(α﹣β)==.…21.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,(Ⅰ)求函数的解析式;(Ⅱ)求函数的对称轴方程和对称中心坐标.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的图象.【分析】(Ⅰ)由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.(Ⅱ)利用正弦函数的图象的对称性,求得函数的对称轴方程和对称中心坐标.【解答】解:(Ⅰ)由函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象,可得A=2, ==+,∴ω=2.再根据五点法作图可得2•(﹣)+φ=,∴φ=,函数f(x)=2sin(2x+).(Ⅱ)由2x+=kπ+,求得x=﹣,可得函数的图象的对称轴方程为x=﹣,k∈Z.令2x+=kπ,求得x=﹣,可得函数的图象的对称轴中心为(﹣,0),k∈Z.22.已知函数f(x)=sin2ωx+sinωx•cosωx﹣1(ω>0)的周期为π.(1)当x∈[0,]时,求f(x)的取值范围;(2)求函数f(x)的单调递增区间.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(1)利用降幂公式降幂,再由辅助角公式化简,由x的范围求得相位的范围,则函数的取值范围可求;(2)利用复合函数的单调性求得原函数的单调区间.【解答】解:(1)f(x)=sin2ωx+sinωx•cosωx﹣1==.∵ω>0,∴T=,则ω=1.∴函数f(x)=sin(2x﹣)﹣.由0,得,∴,∴.∴f(x)的取值范围[﹣1,];(2)令,得:,(k∈Z),∴f(x)的单调递增区间为[kπ﹣,kπ+],(k∈Z).。

2018届高三上学期期末联考数学(理)试题有答案-精品

2018届高三上学期期末联考数学(理)试题有答案-精品

2017—2018学年度第一学期期末联考试题高三数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分全卷满分150分,考试时间120分钟.注意:1. 考生在答题前,请务必将自己的姓名、准考证号等信息填在答题卡上.2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试卷上无效.3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内.答在试题卷上无效.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.把答案填在答题卡上对应题号后的框内,答在试卷上无效.1.设集合{123}A =,,,{45}B =,,{|}M x x a b a A b B ==+∈∈,,,则M 中的元素个数为A .3B .4C .5D .62.在北京召开的第24届国际数学家大会的会议,会议是根据中国古代数学家赵爽的弦图(如图)设计的,其由四个全等的直角三角形和一个正方形组成,若直角三角形的直角边的边长分别是3和4,在绘图内随机取一点,则此点取自直角三角形部分的概率为 A .125B .925C .1625D .24253.设i 为虚数单位,则下列命题成立的是A .a ∀∈R ,复数3i a --是纯虚数B .在复平面内i(2i)-对应的点位于第三限象C .若复数12i z =--,则存在复数1z ,使得1z z ∈RD .x ∈R ,方程2i 0x x +=无解4.等比数列{}n a 的前n 项和为n S ,已知3215109S a a a =+=,,则1a =A .19B .19-C .13D .13-5.已知曲线421y x ax =++在点(1(1))f --,处切线的斜率为8,则(1)f -=试卷类型:A天门 仙桃 潜江A .7B .-4C .-7D .4 6.84(1)(1)x y ++的展开式中22x y 的系数是A .56B .84C .112D .1687.已知一个空间几何体的三视图如图,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是 A .4cm 3B .5 cm 3C .6 cm 3D .7 cm 38.函数()sin()(0,0)f x A x A ωϕω=+>>的图像如图所示,则(1)(2)(3)(18)f f f f ++++的值等于ABC 2D .19.某算法的程序框图如图所示,其中输入的变量x 在1,2,3…,24 这24个整数中等可能随机产生。

湖北省黄冈市2017-2018学年高三第一次调研考试数学(理)试题 Word版含答案

湖北省黄冈市2017-2018学年高三第一次调研考试数学(理)试题 Word版含答案

2017-2018学年 理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.已知函数()f x =的定义域为M ,()ln(1)g x x =-的定义域为N ,则()R M C N = ( )A .{|1}x x <B .{|1}x x ≥C .φD .{|11}x x -<< 2.给定下列两个:221:,,0p a b R a ab b ∃∈--<;2p :在三角形ABC 中,A B >,则sin sin A B >.则下列中的真为( )A .1pB .12p p ∧C .12()p p ∨⌝D .12()p p ⌝∧3.设{}n a 是公差为正数的等差数列,若12315a a a ++=,12380a a a =,则111213a a a ++=( )A .120B .105C .90D .754.若,m n 是两条不同的直线,,,αβγ是三个不同的平面,则下列为真的是( ) A .若,m βαβ⊂⊥,则m α⊥ B .若//,//m n αα,则//m n C .若,//m m βα⊥,则αβ⊥ D .若,αγαβ⊥⊥,则βγ⊥5.设条件2:210p ax ax -+>的解集是实数集R ;条件:01q a <<,则条件p 是条件q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要 6.函数()(1)ln ||f x x x =-的图象大致为( )7.已知某四棱锥的三视图如图所示,则该四棱锥的侧面积是( )A .3B .3+C .1+D .1+8.函数()sin()(0)f x A x A ϕ=+>在3x π=处取得最小值,则( )A .()3f x π+是奇函数B .()3f x π+是偶函数 C .()3f x π-是奇函数 D .()3f x π-是偶函数 9.在Rt ABC ∆中,90BCA ∠=,6AC BC ==,M 为斜边AB 的中点,N 为斜边AB 上一点,且MN =CM CN ∙的值为( )A .B .16C .24D .1810.设12x <<,则ln x x ,2ln ()x x ,22ln x x的大小关系是( ) A .222ln ln ln ()x x x x x x << B .222ln ln ln ()x x x x x x << C .222ln ln ln ()x x x x x x << D .222ln ln ln ()x x x x x x<< 11.设12,F F 是双曲线2214y x -=的左、右两个焦点,若双曲线右支上存在一点P ,使22()0OP OF F P +∙= (O 为坐标原点)且12||||PF PF λ=,则λ的值为( )A .2B .12C .3D .1312.已知()||x f x x e =∙,又2()()()()g x f x t f x t R =+∙∈,若满足()1g x =-的x 有四个,则t 的取值范围为( )A .21(,)e e ++∞ B .21(,)e e +-∞- C .21(,2)e e +-- D .21(2,)e e+ 二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知抛物线2:2(0)C y px p =>上一点(4,)A m 到其焦点的距离为174,则p 的值为 .14.设函数24,0()3,0x x f x x x ⎧->=⎨--<⎩,若()(1)f a f >,则实数a 的取值范围是 .15.已知向量,a b 满足||2a = ,||1b = ,a 与b 的夹角为3π,则a 与2a b + 的夹角为 .16.对于函数sin ,[0,2]()1(2),(2,)2x x f x f x x π∈⎧⎪=⎨-∈+∞⎪⎩,有下列3个:①任取12,[0,)x x ∈+∞,都有12|()()|2f x f x -≤恒成立; ②*()2(2)()f x kf x k k N =+∈,对于一切[0,)x ∈+∞恒成立; ③函数()ln(1)y f x x =--在(1,)+∞上有3个零点; 则其中所有真的序号是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分10分)ABC ∆的内角,,A B C 所对的边分别为,,a b c,且sin cos c C c A -.(1)求A ;(2)若1a =,ABC ∆的面积为4,求,b c .18. (本小题满分12分)对于函数()f x ,若在定义域内存在实数x 满足()()f x f x -=-,则称()f x 为“局部奇函数”.:()2x p f x m =+为定义在[1,1]-上的“局部奇函数”; :q 方程2(51)10x m x +++=有两个不等实根;若“p q ∧”为假,“p q ∨”为真,求m 的取值范围. 19. (本小题满分12分)在直角坐标系xOy 中,已知点(1,1),(3,3)A B ,点C 在第二象限,且ABC ∆是以BAC ∠为直角的等腰直角三角形,点(,)P x y 在ABC ∆三边围成的区域内(含边界).(1)若0PA PB PC ++= ,求||OP;(2)设(,)OP mAB nAC m n R =+∈,求2m n +的最大值.20. (本小题满分12分)已知数列{}n a 的前n 项和为n S ,向量(,)n a S n = ,(97,2)b n =-,且a 与b 共线.(1)求数列{}n a 的通项公式;(2)对任意*m N ∈,将数列{}n a 中落入区间2(9,9)m m内的项的个数记为m b ,求数列{}m b 的前m 项和m T .21. (本小题满分12分) 已知函数2()28f x x x =--.(1)若对3x >,不等式()(2)15f x m x m >+--恒成立,求实数m 的取值范围; (2)记1()()42h x f x =--,那么当12k ≥时,是否存在区间[,]()m n m n <使得函数在区间[,]m n 上的值域恰好为[,]km kn ?若存在,请求出区间[,]m n ;若不存在,请说明理由. 22.(本小题满分12分)已知函数2()ln ,f x x ax x a R =+-∈.(1)若函数()f x 在[1,2]上是减函数,求实数a 的取值范围;(2)令2()()g x f x x =-,是否存在实数a ,当(0,]x e ∈(e 是自然常数)时,函数()g x 的最小值是3,若存在,求出a 的值;若不存在,说明理由. (3)当(0,]x e ∈时,证明:225(1)ln 2e x x x x ->+.2016年高三九月考试数学试题(理科)答案一、A D B C C A B B D A A B二、13. 21 14. (-∞,-1)∪(1,+∞) 15. 6π16. ①③ 三、解答题17.解:(1)由已知结合正弦定理可得﹣sinCcosA ,……2分∵sinC ≠0,∴1=sinA ﹣cosA=2sin (A ﹣6π),即sin (A ﹣6π)=12,……4分又∵A ∈(0,π),∴A ﹣6π∈(﹣6π,56π),∴A ﹣6π=6π,∴A=3π,…………5分(2)S=12bcsinA ,即34=12bc 32,∴bc=1,①… 7分又∵a 2=b 2+c 2﹣2bccosA=(b +c )2﹣2bc ﹣2bccos 3π,即1=(b +c )2﹣3,且b ,c 为正数,∴b +c=2,②……9分 由①②两式解得b=c=1.…… 10分18.【解析】若p 为真,则由于()2x f x m =+为[1,1]-的局部奇函数,从而()()0f x f x +-=,即2220xxm -++=在[1,1]-上有解……2分令12[,2]2xt =∈,则12m t t -=+又1()g t t t =+在1[,1)2上递减,在[1,2]上递增,从而5()[2,]2g t ∈,得52[2,]2m -∈故有514m -≤≤-.若q 为真,则有2(51)40m ∆=+->,得35m <-或15m >. 又由“p q ∧”为假,“p q ∨”为真,则p 与q 一真一假综上知m 的取值范围为54m <-或315m -<<-或15m > ……12分 19.解:(1)A (1,1),B (3,3),ABC ∆是以BAC ∠为直角的等腰直角三角形且C 在第二象限,(1,3)C ∴- ,0PA PB PC ++=, P 是ABC ∆的重心,7(1,)3P ∴,||OP = ……5分(2) (,)OP mAB nAC m n R =+∈ ,(2,2),(2,2)AB AC ==-,(,)(22,22)x y m n m n =-+,3,,2444x y y x y xm n m n +--==+= ……9分 有线性规划知3y x -的最大值为10,此时1,3x y =-= m+2n 的最大值为52……12分20.解 (1)与共线,2(97)97222n n n S n n -==- ,111,98n n n a a S S n -==-=- 所以a n =9n -8(n ∈N *). ……6分(2)对m ∈N *,若9m <a n <92m ,则9m +8<9n <92m +8. 因此9m -1+1≤n ≤92m -1.故得b m =92m -1-9m -1.于是T m =b 1+b 2+b 3+…+b m =(9+93+…+92m -1)-(1+9+…+9m -1)=9(181)1918119m m-----=299110980m m⨯+-⨯. ……12分21解:(1) f(x)=x 2-2x-8,228(2)15x x m x m -->+--,即2(4)70x m x m -+++>对3x >恒成立,则①43293(4)70m m m +⎧≤⎪⎨⎪-+++≥⎩或②2(4)4(7)0m m ∆=+-+≤解得①2m ≤或 ②62m -≤≤综合得m 的取值范围为(,2]-∞…………6分(注:亦可分离变量2471x x m x -+<-对3x >恒成立,)(2)22111()(1)222h x x x x =-+=--+,max 1()2kn h x ≤= 12n k ≤,又12k ≥,∴1n ≤,∴()h x 在[,]m n 上单调递增,()()h m km h n kn =⎧⎨=⎩,221212m m kmn n kn⎧-+=⎪⎪⎨⎪-+=⎪⎩,m,n 是方程-12x 2+(1-k)x=0的两根,x 1=0,x 2=2-2k ∴当112k ≤<时,[,][0,22]m n k =-, 当1k >时,[,][22,0]m n k =-, 当1k =时,不存在区间…………12分22.解:(1)2'121()20x ax f x x a x x+-=+-=≤在[1,2]上恒成立, 令h (x )=2x 2+ax ﹣1,有(1)0(2)0h h ≤⎧⎨≤⎩得172a a ≤-⎧⎪⎨≤-⎪⎩,得72a ≤- …………3分(2)假设存在实数a ,使g (x )=ax ﹣lnx (x ∈(0,e ])有最小值3,'11()ax g x a x x-=-= ①当a ≤0时,g (x )在(0,e ]上单调递减,g (x )min =g (e )=ae ﹣1=3,4a e=(舍去), ②当10e a <<时,g (x )在1(0,)a 上单调递减,在1(,]e a上单调递增 ∴min 1()()1ln 3g x g a a==+=,a=e 2,满足条件.③当1e a ≥时,g (x )在(0,e ]上单调递减,g (x )min =g (e )=ae ﹣1=3,4a e=(舍去), 综上,存在实数a=e 2,使得当x ∈(0,e ]时g (x )有最小值3. ………………8分(3)令F (x )=e 2x ﹣lnx ,由(2)知,F (x )min =3.令ln 5()2x x x φ=+,'21ln ()xx xφ-=, 当0<x ≤e 时,ϕ'(x )≥0,φ(x )在(0,e ]上单调递增∴max 1515()()3222x e e φφ==+<+=∴2ln 5ln 2x e x x x ->+,即225(1)ln 2e x x x x ->+.…………12分。

2017-2018学年高中数学北师大版三教学案:第一章§4数据的数字特征含答案

2017-2018学年高中数学北师大版三教学案:第一章§4数据的数字特征含答案

[核心必知]1.众数、中位数、平均数(1)众数的定义:一组数据中重复出现次数最多的数称为这组数的众数,一组数据的众数可以是一个,也可以是多个.(2)中位数的定义及求法:把一组数据按从小到大的顺序排列,把处于最中间位置的那个数(或中间两数的平均数)称为这组数据的中位数.(3)平均数:①平均数的定义:如果有n个数x1、x2、…、x n,那么错误!=错误!,叫作这n个数的平均数.②平均数的分类:总体平均数:总体中所有个体的平均数叫总体平均数.样本平均数:样本中所有个体的平均数叫样本平均数.2.标准差、方差(1)标准差的求法:标准差是样本数据到平均数的一种平均距离,一般用s表示.s=错误!.(2)方差的求法:标准差的平方s2叫作方差.s2=错误![(x1-错误!)2+(x2-错误!)2+…+(x n-错误!)2].其中,x n是样本数据,n是样本容量,错误!是样本均值.(3)方差的简化计算公式:s2=错误![(x错误!+x错误!+…+x错误!)-n错误!2]=错误!(x错误!+x错误!+…+x错误!)-错误!2.3.极差一组数据的最大值与最小值的差称为这组数据的极差.4.数字特征的意义平均数、中位数和众数刻画了一组数据的集中趋势,极差、方差刻画了一组数据的离散程度.[问题思考]1.一组数据的众数一定存在吗?若存在,众数是唯一的吗?提示:不一定.若一组数据中,每个数据出现的次数一样多,则认为这组数据没有众数;不是,可以是一个,也可以是多个.2.如何确定一组数据的中位数?提示:(1)当数据个数为奇数时,中位数是按从小到大顺序排列的中间位置的那个数.(2)当数据个数为偶数时,中位数为排列在最中间的两个数的平均值.讲一讲1。

据报道,某公司的33名职工的月工资(单位:元)如下:(1)(2)假设副董事长的工资从5 000元提升到20 000元,董事长的工资从5 500元提升到30 000元,那么新的平均数、中位数、众数又是什么?(精确到元)(3)你认为哪个统计量更能反映这个公司员工的工资水平,结合此问题谈一谈你的看法.[尝试解答](1)平均数是错误!=1 500+错误!≈1 500+591=2 091(元).中位数是1 500元,众数是1 500元.(2)新的平均数是错误!′=1500+错误!≈1 500+1 788=3 288(元).中位数是1 500元,众数是1 500元.(3)在这个问题中,中位数或众数均能反映该公司员工的工资水平,因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差较大,所以平均数不能反映这个公司员工的工资水平.1.众数、中位数与平均数都是描述一组数据集中趋势的量,平均数是最重要的量.2.众数考查各个数据出现的频率,大小只与这组数据中的部分数据有关,当一组数据中有不少数据多次重复出现时,其众数往往更能反映问题.3.中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响,中位数可能在所给的数据中,也可能不在所给的数据中.当一组数据中的个别数据变动较大时,可用中位数描述它的某种集中趋势.练一练1.某公司销售部有销售人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:(1)求这15位销售人员该月销售量的平均数、中位数及众数;(2)假设销售部负责人把月销售额定为320件,你认为是否合理,为什么?如不合理,请你制定一个较为合理的销售定额.解:(1)平均数为错误!(1 800×1+510×1+250×3+210×5+150×3+120×2)=320(件),中位数为210件,众数为210件.(2)不合理,因为15人中有13人的销售量未达到320件,也就是说,虽然320是这一组数据的平均数,但它却不能反映全体销售人员的销售水平.销售额定为210件更合理些,这是由于210既是中位数,又是众数,是大部分人都能达到的定额。

2017-2018学年高二年级数学期末试卷(理数)含答案

2017-2018学年高二年级数学期末试卷(理数)含答案

2.若 x 2m2 3 是 1 x 4 的必要不充分条件,则实数 m 的取值范围是( )
10.已知函数 f x 1 x3 1 mx2 4x 3 在区间 1,2上是增函数,则实数 m 的取值范围是(
32
A . 3,3
B . ,3 3, C . ,1 1,
,则满足
11.已知函数
f
x
3|x1| , x2 2x
x 1,
0, x
0
若关于
x
的方程 f
x2

a
1f
x
a

0有
7
个不
等实根,则实数 a 的取值范围是(
)
A . 2,1
B .2,4
C . 2,1
D . ,4
12.
已知函数
A . loga c logb c B . logc a logc b C . a c bc
D . ca cb
一、选择题(本大题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是 9.已知函数 f x 2 xm 1 为偶函数,记 a f log0.5 3 , b f log2 5 , c f 2m,则
由题设知


解得 的横坐标分别是 则 有 又
,又 于是
, ,

,即 l 与直线 平行, 一定相交,分别联立方

是平面
的法向量,则
,即

对任意
,要使

的面积之比是常数,只需 t 满足
可取
,故,所以 与平面
20. (1)依题意可得
所成角的正弦值为 ---------12 分 ,

湖北省部分重点中学2017-2018学年新高三上学期起点考试 数学(文) Word版含答案

湖北省部分重点中学2017-2018学年新高三上学期起点考试 数学(文) Word版含答案

湖北省部分重点中学2017-2018学年度上学期新高三起点考试数学试题(文科)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设全集U=R,若集合A={>13|x x },B={>0log |3x x },A ∩C u B().A.{<0|x x }B. {>1|x x }C. {<10|x x ≤}D. {1<0|≤x x } 2.已知复数i iz 2310-+=(其中i 为虚数单位),则|z | = ( ). A. 33 B. 23 C. 32D. 223.在平面直角坐标xoy 中,已知四边形ABCD 是平行四边形,错误!未找到引用源。

=(3,1),错误!未找到引用源。

=(2,-2),则错误!未找到引用源。

•错误!未找到引用源。

= ( ). A.2 B. -2 C.-10D. 104. 己知P: >ax 5),3,2(2+∈∀x x 是假,则实数a 的取值范围是( ) A. [52,+∞)B.[29, +∞) C .[314, +∞) D.(-∞,52] 5.先后抛掷两颗质地均匀的骰子,则两次朝上的点数之积为奇数的概率为( ). A.121B.61 C.41D.316.过双曲线1322=-y x 的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于 A 、B 两点,则|AB|=( ). A.334 B. 32 C. 3π D. 125π7.函数x y 2cos =的图象向右平移)2<<0(πϕϕ 个单位后,与函数)62sin(π-=x y 的图象重合, 则ϕ=( ). A.12π B. 6π C.3πD.125π8. 己知等比数列{n a }满足14,25311=++=a a a a ,则=++321111a a a ( ).A.87 B. 47 C. 913 D. 18139.已知变量x,y 满足约束条件⎪⎩⎪⎨⎧≤+≤-≥4220y x t x x ,则13-+=x y z 的取值范围是( )A.(-∞,-3]∪[1,+∞)B. [-1,3]C. (-∞,-1]∪[3,+∞)D. [-3,1]10. 阅读如图所示的程序框图,则输出结果S 的值为( ).A.81 B. 21 C. 163 D. 16111.如图是某几何体的三视图,当xy 最大时,该几何体的体积为( ). A. 1215152π+B. 121π+ C.41515π+D.4151π+12. 若函数x a x x x f sin 2sin 31)(+-=在(-∞,+∞)上单调递增,则a 的取值范围是().A. [-1,1]B. [-1,31] C. [31-,31] D. [-1, 31-] 二、填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题卡对应题号的位置上,答错位置,书写不清,模棱两可均不得分。

XXX闻道2017-2018学年度第三次高中联合质量测评理科数学试卷(含答案)

XXX闻道2017-2018学年度第三次高中联合质量测评理科数学试卷(含答案)

XXX闻道2017-2018学年度第三次高中联合质量测评理科数学试卷(含答案)XXX闻道2017-2018学年度第三次高中联合质量测评理科数学本试卷共4页,满分150分,考试用时120分钟。

注意事项:1.答题前,考生务必用5毫米黑色签字笔将自己的姓名和准考证号填写在答题卡上。

2.选择题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.非选择题必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置。

如需改动,先划掉原来的答案,然后再写上新的答案。

不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

第I卷一、选择题1.设复数$z=3+i$(其中$i$为虚数单位),则复数$z-\frac{1}{z}$的虚部为($\quad$)A。

$z$。

B。

$-1919$。

C。

$-10$。

D。

$xxxxxxxx$2.若集合$M=\{x|x-2x^20\}$,则$M\cap N$($\quad$)A。

$\varnothing$。

B。

$\left\{\frac{1}{4}\right\}$。

C。

$\left\{\frac{1}{2},\frac{1}{1}\right\}$。

D。

$\left\{\frac{1}{4},+\infty\right\}$3.下图是XXX发布的2017年1月至7月的本市楼市价格同比增长与环比增长涨跌幅数据绘制的雷达图(注:2017年2月与2016年2月相比较,叫同比;2017年2月与2017年1月相比较,叫环比)。

根据该雷达图,则下列结论错误的是($\quad$)A。

2017年1月至7月该市楼市价格有涨有跌。

B。

2017年1月至7月分别与2016年1月至7月相比较,该市楼市价格有涨有跌。

C。

2017年2月至7月该市市价格涨跌波动不大,变化比较平稳。

D。

2017年1月至7月分别与2016年1月至7月相比较,1月该市楼市价格涨幅最大。

湖北省2017届高三4月调研考试 数学(理) (word版含答案)

湖北省2017届高三4月调研考试 数学(理) (word版含答案)

2017年湖北省高三四月调考理科数学第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.若复数1,z i z =+为z 的共轭复数,则z z ⋅=2i 2.设集合(){}(){},|1,,|1A x y y x B x y x y ==+=+=,则A B 中的元素个数为A.0个B. 1个C. 2个D.无数个3.设等差数列{}n a 的前n 项和为n S ,若12464,30a a a a =++=,则6S = A. 54 B. 44 C. 34 D. 244.已知点()()1,0,1,0A B -为双曲线()222210,0x y a b a b-=>>的左右顶点,点M 在双曲线上,ABM ∆为等腰三角形,且顶角为120 ,则该双曲线的标准方程为A. 2214y x -= B. 2212y x -= C.221x y -= D.2212y x -= 5.621x x ⎛⎫- ⎪⎝⎭的展开式,6x 的系数为A. 15B. 6C. -6D. -156.已知随机变量η满足()()15,15E D ηη-=-=,则下列说法正确的是A. ()()5,5E D ηη=-=B. ()()4,4E D ηη=-=-C. ()()5,5E D ηη=-=-D. ()()4,5E D ηη=-=7.设,,a b c 均为非零向量,已知命题:p a c =是a cbc ⋅=⋅的必要不充分条件,命题:1q x >是1x >成立的充分不必要条件,则下列命题是真命题的是A. p q ∧B. p q ∨C. ()()p q ⌝∧⌝D.()p q ∨⌝ 8.已知函数()()cos 0,,2xx f x a R a e ωϕπωϕ+⎛⎫=><∈ ⎪⋅⎝⎭在区间[]3,3-上的图象如图所示,则aω可取A. 4πB. 2πC.πD.2π 9.执行如图所示的程序框图,若输出的值为5y =,则满足条件的实数x 的个数为A. 4B. 3C. 2D. 110.网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为A. 2B. 4C.3D. 13+11.已知实数,x y 满足()2221x y +-=的取值范围是A.2⎤⎦ B. []1,2 C. (]0,2D. ⎤⎥⎝⎦12.过圆2225x y +=内一点)P作倾斜角互补的直线AC 和BD ,分别交圆于A,C,和B,D ,则四边形ABCD 的面积的最大值为A.C.第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.已知正六棱锥S ABCDEF -的底面边长和高均为1,则异面直线SC 与DE 所成角的大小为为 .14.已知数列{}n a 为等差数列,{}n b 为等比数列,且0,0n n a b >>,记数列{}n n a b ⋅的前n项和为n S ,若()()111,131nn a b S n n N *===-⋅+∈,则数列25n n a b ⎧⎫-⎨⎬⎩⎭的最大项为第 项.15. 某单位植树节计划种杨树x 棵,柳树y 棵,若实数,x y 满足约束条件2527x y x y x ->⎧⎪-<⎨⎪<⎩,则该单位集合栽种这两种树的棵树最多为 . 16.函数()sin sin 3f x x x π⎛⎫=++⎪⎝⎭的值域为 . 三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程. 17.(本题满分12分)在ABC ∆中,角A,B,C 的对边分别为,,a b c ,且cos .a C b= (1)求B ;(2)设CM 是角C 的平分线,且1,6CM b ==,求cos BCM ∠.18.(本题满分12分)如图,长方体1111ABCD A BC D -中,点M 在棱1BB 上,两条直线,MA MC 与平面ABCD 所成角均为θ,AC 与BD 交于点O.(1)求证:AC OM ⊥;(2)当M 为1BB 的中点,且4πθ=时,求二面角11A D M B --的余弦值.19.(本题满分12分)在某小学体育素质达标运动会上,对10名男生和10名女生在一分钟跳绳的次数进行统计,得到如下所示茎叶图: (1)已知男生组中数据的中位数为125,女生组数据的平均数为124,求,x y 的值;(2)现从这20名学生中任意抽取一名男生和一名女生对他们进行训练,记一分钟内跳绳次数不低于115且不超过125的学生被选上的人数为X ,求X 的分布列和数学期望E (X ).20.(本题满分12分)已知平面内动点P 与点()3,0A -和点()3,0B 的连线的斜率之积为8.9- (1)求动点P 的轨迹方程;(2)设点P 的轨迹且曲线C ,过点()1,0的直线与曲线C 交于M,N 两点,记AMB ∆的面积为1S ,ANB ∆的面积为2S ,当12S S -取得最大值时,求12S S 的值.21.(本题满分12分)已知函数()()ln ,.x x f x x x g x e==(1)证明方程()()f x g x =在区间()1,2内有且仅有唯一实根;(2)记{}m ax ,a b 表示,a b 两个数中的较大者,方程()()f x g x =在区间()1,2内的实数根为()()(){}0,max ,x m x f x g x =,若()()m x n n R =∈在()1,+∞内有两个不等的实根()1212,x x x x <,判断12x x +与02x 的大小,并说明理由.请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B 铅笔将答题卡上相应的题号涂黑。

湖北省武汉市部分学校2024-2025学年高三上学期9月调研考试英语试题(含答案)

湖北省武汉市部分学校2024-2025学年高三上学期9月调研考试英语试题(含答案)

2024~2025学年度武汉市部分学校高三年级九月调研考试英语试卷武汉市教育科学研究院命制2024.9.5本试题卷共12页,67题。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

写在试卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内写在试卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试卷和答题卡一并上交第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。

录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题纸上。

第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C 三个选项中选出最佳选项。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍例:How much is the shirt?A.C19.15.B. 9.18.C.19.15.答案是C.1. What is the woman doingA. Visiting the park.B. Driving the car.C. Inquiring the way.2.What are the speakers talking aboutA.A hot topic.B. An impressive movie.C.A space exploration.3. What does the woman suggest to deal with the studentsA. Giving encouragement.B. Setting a deadline.C. Having a talk.4.What will the speakers probably do nextA. Find a part-time job.B. Head to Mike's home.C. Make a purchase.5.When does the man take classes this weekA. On Tuesday.B. On Wednesday.C. On Friday.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年湖北省黄冈市高三4月调研考试
数学(理科)
第Ⅰ卷(选择题 共60分)
一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.
1.若复数1,z i z =+为z 的共轭复数,则z z ⋅=
2i 2.设集合(){}(){},|1,,|1A x y y x B x y x y =
=+=+=,则A B 中的元素个数为
A.0个
B. 1个
C. 2个
D.无数个
3.设等差数列{}n a 的前n 项和为n S ,若12464,30a a a a =++=,则6S = A. 54 B. 44 C. 34 D. 24
4.已知点()()1,0,1,0A B -为双曲线()22
2210,0x y a b a b
-=>>的左右顶点,点M 在双曲线上,ABM ∆为
等腰三角形,且顶角为120
,则该双曲线的标准方程为
A. 22
14y x -= B. 2212y x -= C.22
1x y -= D.2212
y x -= 5.6
21x x ⎛⎫- ⎪⎝
⎭的展开式,6
x 的系数为
A. 15
B. 6
C. -6
D. -15
6.已知随机变量η满足()()15,15E D ηη-=-=,则下列说法正确的是 A. ()()5,5E D ηη=-= B. ()()4,4E D ηη=-=- C. ()()5,5E D ηη=-=- D. ()()4,5E D ηη=-=
7.设,,a b c 均为非零向量,已知命题:p a c =
是a c b c ⋅=⋅
的必要不充分条件,命题:1q x >是
1
x >成立的充分不必要条件,则下列命题是真命题的是 A. p q ∧ B. p q ∨ C. ()()p q ⌝∧⌝
D.()p q ∨⌝ 8.已知函数()()cos 0,,2x
x f x a R a e ωϕπωϕ+⎛⎫
=
><∈ ⎪⋅⎝⎭
在区间[]3,3-上的图象如图所示,则
a
ω
可取 A. 4π B. 2π C.π D.
2
π 9.执行如图所示的程序框图,若输出的值为5y =,则满足条件的实数x 的个数为
A. 4
B. 3
C. 2
D. 1
10.网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为
A. 2
B. 4
C.
3
D. 13+
11.已知实数,x y 满足()2
2
21x y +-=
的取值范围是
A.
2⎤⎦
B. []1,2
C. (]0,2
D. 2⎛⎤
⎥ ⎝⎦
12.过圆2225x y +=
内一点)
P 作倾斜角互补的直线AC 和BD ,分别交圆于A,C,和B,D ,则四边形
ABCD 的面积的最大值为
A.
C.
第Ⅱ卷(非选择题 共90分)
二、填空题:本大题共4小题,每小题5分,共20分.
13.已知正六棱锥S ABCDEF -的底面边长和高均为1,则异面直线SC 与DE 所成角的大小为为 .
14.已知数列{}n a 为等差数列,{}n b 为等比数列,且0,0n n a b >>,记数列{}n n a b ⋅的前n 项和为n S ,若
()()111,131n n a b S n n N *===-⋅+∈,则数列25n n a b ⎧⎫
-⎨⎬⎩⎭
的最大项为第 项.
15. 某单位植树节计划种杨树x 棵,柳树y 棵,若实数,x y 满足约束条件2527x y x y x ->⎧⎪
-<⎨⎪<⎩
,则该单位集合栽种
这两种树的棵树最多为 . 16.函数()sin sin 3f x x x π⎛⎫
=++
⎪⎝

的值域为 . 三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程. 17.(本题满分12分)
在ABC ∆中,角A,B,C 的对边分别为,,a b c ,且cos .a C b
= (1)求B ;
(2)设CM 是角C 的平分线,且1,6CM b ==,求cos BCM ∠.
18.(本题满分12分)
如图,长方体1111ABCD A BC D -中,点M 在棱1BB 上,两条直线,MA MC 与平面ABCD 所成角均为θ,AC 与BD 交于点O. (1)求证:AC OM ⊥; (2)当M 为1BB 的中点,且4
π
θ=
时,求二面角11A D M B --的余弦值.
19.(本题满分12分)
在某小学体育素质达标运动会上,对10名男生和10名女生在一分钟跳绳的次数进行统计,得到如下所示茎叶图: (1)已知男生组中数据的中位数为125,女生组数据的平均数为124,求,x y 的值;
(2)现从这20名学生中任意抽取一名男生和一名女生对他们进行训练,记一分钟内跳绳次数不低于115且不超过125的学生被选上的人数为X ,求X 的分布列和数学期望E (X ).
20.(本题满分12分)
已知平面内动点P 与点()3,0A -和点()3,0B 的连线的斜率之积为8.9
- (1)求动点P 的轨迹方程;
(2)设点P 的轨迹且曲线C ,过点()1,0的直线与曲线C 交于M,N 两点,记AMB ∆的面积为1S ,ANB ∆的面积为2S ,当12S S -取得最大值时,求1
2
S S 的值.
21.(本题满分12分)已知函数()()ln ,.x
x f x x x g x e ==
(1)证明方程()()f x g x =在区间()1,2内有且仅有唯一实根;
(2)记{}max ,a b 表示,a b 两个数中的较大者,方程()()f x g x =在区间()1,2内的实数根为
()()(){}0,max ,x m x f x g x =,若()()m x n n R =∈在()1,+∞内有两个不等的实根()1212,x x x x <,判断
12x x +与02x 的大小,并说明理由.
请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B 铅笔将答题卡上相应的题号涂黑。

22.(本题满分10分)选修4-4:参数方程与极坐标系
以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为曲线1C 的极坐标方程为
2sin ρθ=,正方形ABCD 的顶点都在上,且依次按逆时针方向排列,点A
的极坐标为.4π⎫⎪⎭
(1)求点C 的直角坐标;
(2)若点P 在曲线222:4C x y +=上运动,求2
2
PB PC +的取值范围.
23.(本题满分10分)选修4-5:不等式选讲 已知函数() 2.f x x a x =++-
(1)若()f x 的最小值为4,求实数a 的值;
(2)若10x -≤≤时,不等式()3f x x ≤-恒成立,求实数a 的取值范围.
2017-2018学年湖北省黄冈市高三4月调研考试
数学(理)答案。

相关文档
最新文档