2018年广东省佛山市顺德区中考数学模拟试卷(4月份)
2018年广东省中考数学模拟试卷含答案
2018年广东省中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)四个实数0、、﹣3.14、2中,最小的数是()A.0 B.C.﹣3.14 D.22.(3分)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A.1.442×107B.0.1442×107C.1.442×108D.0.1442×1083.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是()A.B.C.D.4.(3分)数据1、5、7、4、8的中位数是()A.4 B.5 C.6 D.75.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆B.菱形C.平行四边形D.等腰三角形6.(3分)不等式3x﹣1≥x+3的解集是()A.x≤4 B.x≥4 C.x≤2 D.x≥27.(3分)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为()A.B.C.D.8.(3分)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30°B.40°C.50°D.60°9.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<B.m≤C.m>D.m≥10.(3分)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是.12.(3分)分解因式:x2﹣2x+1=.13.(3分)一个正数的平方根分别是x+1和x﹣5,则x=.14.(3分)已知+|b﹣1|=0,则a+1=.15.(3分)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为.(结果保留π)16.(3分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为.三、解答题(一)17.(6分)计算:|﹣2|﹣20180+()﹣118.(6分)先化简,再求值:•,其中a=.19.(6分)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.20.(7分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工人数为人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?22.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.23.(9分)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.25.(9分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC=°;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y 取得最大值?最大值为多少?参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)四个实数0、、﹣3.14、2中,最小的数是()A.0 B.C.﹣3.14 D.2【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣3.14<0<<2,所以最小的数是﹣3.14.故选:C.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.(3分)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A.1.442×107B.0.1442×107C.1.442×108D.0.1442×108【分析】根据科学记数法的表示方法可以将题目中的数据用科学记数法表示,本题得以解决.【解答】解:14420000=1.442×107,故选:A.【点评】本题考查科学记数法﹣表示较大的数,解答本题的关键是明确科学记数法的表示方法.3.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是()A. B.C.D.【分析】根据主视图是从物体正面看所得到的图形解答即可.【解答】解:根据主视图的定义可知,此几何体的主视图是B中的图形,故选:B.【点评】本题考查的是简单几何体的三视图的作图,主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形.4.(3分)数据1、5、7、4、8的中位数是()A.4 B.5 C.6 D.7【分析】根据中位数的定义判断即可;【解答】解:将数据重新排列为1、4、5、7、8,则这组数据的中位数为5故选:B.【点评】本题考查了确定一组数据的中位数的能力.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆B.菱形C.平行四边形D.等腰三角形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.(3分)不等式3x﹣1≥x+3的解集是()A.x≤4 B.x≥4 C.x≤2 D.x≥2【分析】根据解不等式的步骤:①移项;②合并同类项;③化系数为1即可得.【解答】解:移项,得:3x﹣x≥3+1,合并同类项,得:2x≥4,系数化为1,得:x≥2,故选:D.【点评】本题主要考查解一元一次不等式,解题的关键是掌握解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.7.(3分)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE 与△ABC的面积之比为()A.B.C.D.【分析】由点D、E分别为边AB、AC的中点,可得出DE为△ABC的中位线,进而可得出DE∥BC及△ADE∽△ABC,再利用相似三角形的性质即可求出△ADE与△ABC的面积之比.【解答】解:∵点D、E分别为边AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,∴△ADE∽△ABC,∴=()2=.故选:C.【点评】本题考查了相似三角形的判定与性质以及三角形中位线定理,利用三角形的中位线定理找出DE∥BC是解题的关键.8.(3分)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30°B.40°C.50° D.60°【分析】依据三角形内角和定理,可得∠D=40°,再根据平行线的性质,即可得到∠B=∠D=40°.【解答】解:∵∠DEC=100°,∠C=40°,∴∠D=40°,又∵AB∥CD,∴∠B=∠D=40°,故选:B.【点评】本题考查了平行线性质的应用,运用两直线平行,内错角相等是解题的关键.9.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<B.m≤C.m>D.m≥【分析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.【解答】解:∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<.故选:A.【点评】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10.(3分)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC 上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【解答】解:分三种情况:①当P在AB边上时,如图1,设菱形的高为h,y=AP•h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C不正确;②当P在边BC上时,如图2,y=AD•h,AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=PD•h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿在A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项D不正确;故选:B.【点评】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,分三段求出△PAD的面积的表达式是解题的关键.二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是50°.【分析】直接利用圆周角定理求解.【解答】解:弧AB所对的圆心角是100°,则弧AB所对的圆周角为50°.故答案为50°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.12.(3分)分解因式:x2﹣2x+1=(x﹣1)2.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.13.(3分)一个正数的平方根分别是x+1和x﹣5,则x=2.【分析】根据正数的两个平方根互为相反数列出关于x的方程,解之可得.【解答】解:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.【点评】本题主要考查的是平方根的定义和性质,熟练掌握平方根的定义和性质是解题的关键.14.(3分)已知+|b﹣1|=0,则a+1=2.【分析】直接利用非负数的性质结合绝对值的性质得出a,b的值进而得出答案.【解答】解:∵+|b﹣1|=0,∴b﹣1=0,a﹣b=0,解得:b=1,a=1,故a+1=2.故答案为:2.【点评】此题主要考查了非负数的性质以及绝对值的性质,正确得出a,b的值是解题关键.15.(3分)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为π.(结果保留π)【分析】连接OE,如图,利用切线的性质得OD=2,OE⊥BC,易得四边形OECD为正方形,先利用扇形面积公式,利用S正方形OECD﹣S扇形EOD 计算由弧DE、线段EC、CD所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积.【解答】解:连接OE,如图,∵以AD为直径的半圆O与BC相切于点E,∴OD=2,OE⊥BC,易得四边形OECD为正方形,∴由弧DE、线段EC、CD所围成的面积=S正方形OECD﹣S扇形EOD=22﹣=4﹣π,∴阴影部分的面积=×2×4﹣(4﹣π)=π.故答案为π.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了矩形的性质和扇形的面积公式.16.(3分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B 2A3B3;以此类推,…,则点B6的坐标为(2,0).【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B2、B3、B4的坐标,得出规律,进而求出点B6的坐标.【解答】解:如图,作A 2C⊥x轴于点C,设B1C=a,则A2C=a,OC=OB 1+B1C=2+a,A2(2+a,a).∵点A2在双曲线y=(x>0)上,∴(2+a)•a=,解得a=﹣1,或a=﹣﹣1(舍去),∴OB 2=OB1+2B1C=2+2﹣2=2,∴点B 2的坐标为(2,0);作A 3D⊥x轴于点D,设B2D=b,则A3D=b,OD=OB 2+B2D=2+b,A2(2+b,b).∵点A3在双曲线y=(x>0)上,∴(2+b)•b=,解得b=﹣+,或b=﹣﹣(舍去),∴OB=OB2+2B2D=2﹣2+2=2,∴点B 3的坐标为(2,0);同理可得点B 4的坐标为(2,0)即(4,0);…,∴点B n的坐标为(2,0),∴点B 6的坐标为(2,0).故答案为(2,0).【点评】本题考查了反比例函数图象上点的坐标特征,等边三角形的性质,正确求出B2、B3、B4的坐标进而得出点B n的规律是解题的关键.三、解答题(一)17.(6分)计算:|﹣2|﹣20180+()﹣1【分析】直接利用负指数幂的性质以及零指数幂的性质、绝对值的性质进而化简得出答案.【解答】解:原式=2﹣1+2=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6分)先化简,再求值:•,其中a=.【分析】原式先因式分解,再约分即可化简,继而将a的值代入计算.【解答】解:原式=•=2a,当a=时,原式=2×=.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.19.(6分)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【分析】(1)分别以A、B为圆心,大于AB长为半径画弧,过两弧的交点作直线即可;(2)根据∠DBF=∠ABD﹣∠ABF计算即可;【解答】解:(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=75°,DC∥AB,∠A=∠C.∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°,∵EF垂直平分线线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于常考题型.20.(7分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?【分析】(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x ﹣9)元/条,根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据总价=单价×数量,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据题意得:=,解得:x=35,经检验,x=35是原方程的解,∴x﹣9=26.答:A型芯片的单价为26元/条,B型芯片的单价为35元/条.(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据题意得:26a+35(200﹣a)=6280,解得:a=80.答:购买了80条A型芯片.【点评】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工人数为800人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?【分析】(1)由“不剩”的人数及其所占百分比可得答案;(2)用总人数减去其它类型人数求得“剩少量”的人数,据此补全图形即可;(3)用总人数乘以样本中“剩少量”人数所占百分比可得.【解答】解:(1)被调查员工人数为400÷50%=800人,故答案为:800;(2)“剩少量”的人数为800﹣(400+80+20)=300人,补全条形图如下:(3)估计该企业某周的工作量完成情况为“剩少量”的员工有10000×=3500人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体.22.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.【分析】(1)根据矩形的性质可得出AD=BC、AB=CD,结合折叠的性质可得出AD=CE、AE=CD,进而即可证出△ADE≌△CED(SSS);(2)根据全等三角形的性质可得出∠DEF=∠EDF,利用等边对等角可得出EF=DF,由此即可证出△DEF是等腰三角形.【解答】证明:(1)∵四边形ABCD是矩形,∴AD=BC,AB=CD.由折叠的性质可得:BC=CE,AB=AE,∴AD=CE,AE=CD.在△ADE和△CED中,,∴△ADE≌△CED(SSS).(2)由(1)得△ADE≌△CED,∴∠DEA=∠EDC,即∠DEF=∠EDF,∴EF=DF,∴△DEF是等腰三角形.【点评】本题考查了全等三角形的判定与性质、翻折变换以及矩形的性质,解题的关键是:(1)根据矩形的性质结合折叠的性质找出AD=CE、AE=CD;(2)利用全等三角形的性质找出∠DEF=∠EDF.23.(9分)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M 的坐标;若不存在,请说明理由.【分析】(1)把C(0,﹣3)代入直线y=x+m中解答即可;(2)把y=0代入直线解析式得出点B的坐标,再利用待定系数法确定函数关系式即可;(3)分M在BC上方和下方两种情况进行解答即可.【解答】解:(1)将(0,﹣3)代入y=x+m,可得:m=﹣3;(2)将y=0代入y=x﹣3得:x=3,所以点B的坐标为(3,0),将(0,﹣3)、(3,0)代入y=ax2+b中,可得:,解得:,所以二次函数的解析式为:y=x2﹣3;(3)存在,分以下两种情况:①若M在B上方,设MC交x轴于点D,则∠ODC=45°+15°=60°,∴OD=OC•tan30°=,设DC为y=kx﹣3,代入(,0),可得:k=,联立两个方程可得:,解得:,所以M 1(3,6);②若M在B下方,设MC交x轴于点E,则∠OEC=45°﹣15°=30°,∴OE=OC•tan60°=3,设EC为y=kx﹣3,代入(3,0)可得:k=,联立两个方程可得:,解得:,所以M 2(,﹣2),综上所述M的坐标为(3,6)或(,﹣2).【点评】此题主要考查了二次函数的综合题,需要掌握待定系数法求二次函数解析式,待定系数法求一次函数解析式等知识是解题关键.24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O 经过点C,连接AC,OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.【分析】(1)连接OC,证△OAD≌△OCD得∠ADO=∠CDO,由AD=CD 知DE⊥AC,再由AB为直径知BC⊥AC,从而得OD∥BC;(2)根据tan∠ABC=2可设BC=a、则AC=2a、AD=AB==,证OE为中位线知OE=a、AE=CE=AC=a,进一步求得DE==2a,再△AOD中利用勾股定理逆定理证∠OAD=90°即可得;(3)先证△AFD∽△BAD得DF•BD=AD2①,再证△AED∽△OAD得OD•DE=AD2②,由①②得DF•BD=OD•DE,即=,结合∠EDF=∠BDO知△EDF∽△BDO,据此可得=,结合(2)可得相关线段的长,代入计算可得.【解答】解:(1)连接OC,在△OAD和△OCD中,∵,∴△OAD≌△OCD(SSS),∴∠ADO=∠CDO,又AD=CD,∴DE⊥AC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACB=90°,即BC⊥AC,∴OD∥BC;(2)∵tan∠ABC==2,∴设BC=a、则AC=2a,∴AD=AB==,∵OE∥BC,且AO=BO,∴OE=BC=a,AE=CE=AC=a,在△AED中,DE==2a,在△AOD中,AO2+AD2=()2+(a)2=a2,OD2=(OF+DF)2=(a+2a)2=a2,∴AO2+AD2=OD2,∴∠OAD=90°,则DA与⊙O相切;(3)连接AF,∵AB是⊙O的直径,∴∠AFD=∠BAD=90°,∵∠ADF=∠BDA,∴△AFD∽△BAD,∴=,即DF•BD=AD2①,又∵∠AED=∠OAD=90°,∠ADE=∠ODA,∴△AED∽△OAD,∴=,即OD•DE=AD2②,由①②可得DF•BD=OD•DE,即=,又∵∠EDF=∠BDO,∴△EDF∽△BDO,∵BC=1,∴AB=AD=、OD=、ED=2、BD=、OB=,∴=,即=,解得:EF=.【点评】本题主要考查圆的综合问题,解题的关键是掌握等腰三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质及勾股定理逆定理等知识点.25.(9分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC=60°;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?【分析】(1)只要证明△OBC是等边三角形即可;(2)求出△AOC的面积,利用三角形的面积公式计算即可;(3)分三种情形讨论求解即可解决问题:①当0<x≤时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.②当<x≤4时,M在BC上运动,N在OB上运动.③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.【解答】解:(1)由旋转性质可知:OB=OC,∠BOC=60°,∴△OBC是等边三角形,∴∠OBC=60°.故答案为60.(2)如图1中,∵OB=4,∠ABO=30°,∴OA=OB=2,AB=OA=2,∴S △AOC=•OA•AB=×2×2=2,∵△BOC是等边三角形,∴∠OBC=60°,∠ABC=∠ABO+∠OBC=90°,∴AC==2,∴OP===.(3)①当0<x≤时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.则NE=ON•sin60°=x,∴S△OMN=•OM•NE=×1.5x×x,∴y=x2.∴x=时,y有最大值,最大值=.②当<x≤4时,M在BC上运动,N在OB上运动.作MH⊥OB于H.则BM=8﹣1.5x,MH=BM•sin60°=(8﹣1.5x),∴y=×ON×MH=﹣x2+2x.当x=时,y取最大值,y<,③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.MN=12﹣2.5x,OG=AB=2,∴y=•MN•OG=12﹣x,当x=4时,y有最大值,最大值=2,综上所述,y有最大值,最大值为.【点评】本题考查几何变换综合题、30度的直角三角形的性质、等边三角形的判定和性质、三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。
(完整word版)2018年广东省中考数学模拟试题及答案
市城生卫建 创 第5题2018年广东省中考数学模拟试题一。
选择题(每题3分,共30分) 1.6-的倒数是( ).A .6-B 。
6C 。
16-D .162.2011年11月30日,“海峡号”客滚轮直航台湾旅游首发团正式起航。
“海峡号”由福建海峡高速客滚航运有限公司斥资近3亿元购进,将3亿用科学记数法表示正确的是( )A .8103⨯B 。
9103⨯C .10103⨯D .11103⨯3.下列计算中,正确的是( ).A .23x y xy +=B .22x x x ⋅=C .3262()x y x y =D 。
623x x x ÷=4.已知一个等腰三角形的一边长是3,另一边长为7,则这个等腰三角形的周长为( )A .13B . 17C . 13或17D . 45.如图,该图形经过折叠可以围成一个正方体,折好以后与“城”字相对的字是( )A .生B .创C .城D .卫6.将二次函数y =2(x -1)2-3的图像向右平移3个单位,则平移后的二次函数的顶点是( )A .(-2,-3)B .(4,3)C .(4,-3)D .(1,0)7.如图,□MNEF 的两条对角线ME ,NF 交于原点O ,点F 的坐标是(3,2),则点N 的坐标为( ) A (-3,-2) B(-3,2) C (-2,3) D(2,3) 8.已知12n 是整数,则满足条件的最小正整数n 是( ).A 。
2B .3C .4D .59.有2名男生和2名女生,王老师要随机地、两两一对地排座位, 一男一女排在一起的概率是( )A. 14B. 错误! C 。
错误! D. 错误!10。
若不等式组⎧<+,03a x 的解集为0<x ,则a 的取值范围为( )A 。
a >0 B. a =0 C 。
a >4 D. a =4 二、填空题(每题4分,共24分)11.如图,已知直线21//l l ,135︒∠=,那么2∠= . 12.经过点A(1,2)的反比例函数的解析式为:___ ___。
广东省2018年中考模拟考试数学试卷(含答案)
九年级学业模拟考试数学试卷说明:本试卷共 4页,25小题,满分120分•考试用时100分钟. 注意事项:1答题前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写准考证号、姓名、试室号、座位号, 再用2B 铅笔把试室号、座位号的对应数字涂黑. 2 •选择题每小题选出答案后,用2B 铅笔把答题卡上对应答案选项涂黑,如需改动,用橡皮擦擦干净后,再重新选涂其他答案,答案不能答在试卷上.3•非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上; 如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的 答案无效. 4.考生必须保持答题卡的整洁•考试结束后,将试卷和答题卡一并交回. 一、选择题(本大题10小题,每题3分,共30分)111.-的倒数是(▲) A .B . - 8C . 88 8若一个正n 边形的每个内角为150。
,则这个正n 边形的边数是(▲)1个球,则摸出的球是白球的概率为( ▲)C .- 21D .-82. 是中心对称图形的是(F 图形是我国国产品牌汽车的标识,在这些汽车标识中, B .C .② D. ®▲)3. 4. C . 5. 10 B . 11 C .地球的表面积约是0.51 XI09 千米5.1 X 07 千米 2一个布袋里装有 12 D . 13510 000 000千米2,用科学记数法表示为(▲) 8十、2B . 5.1X10 千米D . 51 X107 千米 26个只有颜色不同的球,其中2个红球,4个白球.从布袋里任意摸6.在 Rt △ ABC 中, C=90° 如果BC=2 , 2sinA=,那么AB 的长是(▲)37. 如果代数式 4 324y - C .5D .■132y+5的值是 9,那么代数式2y 2- y+2的值等于(▲)‘2a15.已知满足 a —3+(a —b —5) =0,则 b = ▲.16.如图,△ ABC 的面积是4,点D 、E 、F 分别是 BC 、AD 、 则厶C EF 的面积是▲.三.解答题(一)(本大题3小题,每题6分,共18 分)17 .计算:(兀 一 1) + V_1 _ 寸 9 十 | —1 1 2m18. 先化简,再求值( )* —2 ,其中m =3.m —2 m +2 m —4m +48.下面是一位同学做的四道题, 其中正确的是(▲)3 3 6 2 3 52A . m +m =mB . x ?x =xC . (- b ) 吃b=2b 233 6D . (- 2pq ) = - 6p q9.已知四边形ABCD 是平行四边形,对角线 AC 、BD 交于点O , E 是BC 的中点, 以下说法错误的是(▲) A . OE= DC 2 C .Z BOE= / OBA B . OA=OC D . Z OBE= / OCE 10.对于函数y =-2x ,2,下列结论:①.当x > 1时,y v 0;②.它的图象经过第一、二、三象限; ③.它的图象必经过点 (-2, 2);④.y 的值随x 值的增大而增大,其中正确结论的个数是( 二.填空题(本大题 6小题,每小题4分,共24 分) 11.比较大小:3 ▲ 77(填 “ >” “ c ” 或“=”). 12 .如图,正六边形 ABCDEF 内接于O O ,若AB=2则O O 的半径为▲. D'CAf EF13•不等式组x2:3x的解集为、 x-4 空 0 14 .如图,将 ^ABC 沿直线AB 向右平移后到达 BDE 的位置, 若区 CAB = 50° Z ABC = 100° ,贝U N CBE 的度数为 ▲. DRABE 的中点,ED19. 光明市在道路改造过程中,需要铺设一条污水管道,决定由甲、乙两个工程队来完成这一工程已知甲工程队比乙工程队每天多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.求甲、乙工程队每天各铺设多少米?四•解答题(二)(本大题3小题,每小题7分,共21 分)20. 如图,在△ ABC 中,/ ABC=60。
2018年广东省初中毕业生考试数学模拟试卷(原稿八套)
2018年广东省初中毕业生考试数学模拟试卷(一)一、选择题(本大题10小题,每小题3分,共30分)1.2-的倒数是( )A .12-B .12C .2-D .22.一个几何体的三视图如右图,那么这个几何体是( )A .B .C .D .3.下列计算正确的是( )A .325a a a +=B .54a a a ÷=C .44•a a a =D .236ab ab =()4.如图,已知AB ∥CD ,BE 平分∠ABC ,且交CD 于点D ,∠CDE =150°,则∠C 为( )A .120°B .150°C .135°D .110°5.不等式组 的解集在数轴上表示为( )A .B .C .D .6.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A .12B .13C .14D .167.如图,△ABC ≌△ADE ,∠B =80°,∠C =30°,∠DAC =35°,则∠EAC 的度数为( )A .40°B .35°C .30°D .25°8.抛物线y =3x 2向下平移3个单位,再向左平移2个单位,得到的抛物线解析式为( ) A .2323y x =++() B .2323y x =+(﹣) C .2323y x =+()﹣ D .2323y x =(﹣)﹣ 9.如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,点D 落在点D ′处,则重叠部分△AFC 的面积为( )A .6B .8C .10D .1210.在同一坐标系中,正比例函数y x =-与反比例函数2y x=的图象大致是( )⎩⎨⎧≤-048213x -x >A .B .C .D .二、填空题(本大题6小题,每小题4分,共24分)11.分解因式:x 3﹣2x 2+x = .12.水星和太阳的平均距离约为57900000km ,则57900000用科学记数法表示是 .13.一个多边形的每个外角都等于72°,则这个多边形的边数为 .14.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,连接AC .若∠CAB =22.5°,CD =8cm ,则⊙O 的半径为 cm .15.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的进价为 元.16.观察下列数据,按某种规律在横线上填上适当的数:1,34-,59,716-, , .三、解答题(一)(本大题3小题,每小题6分,共18分)17.计算: 021201426012sin π-︒+(﹣)-()-18.先化简,再求值:21111a a a a -⎛⎫-÷ ⎪++⎝⎭,其中1a =19.如图,在△ABC中,∠C=90°,∠B=60°.(1)作∠B的平分线BD,交AC于点D;(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)连接BD,求证:△ABD是等腰三角形.四、解答题(二)(本大题3小题,每小题7分,共21分)20.“地球一小时(Earth Hour)”是世界自然基金会(WWF)应对全球气候变化所提出的一项倡议,希望个人、社区、企业和政府在每年3月最后一个星期六20:30﹣21:30熄灯一小时,来唤醒人们对节约资源保护环境的意识.2013年,因为西方复活节的缘故,活动提前到2013年3月23日,在今年的活动中,关于南京电量不降反升的现象,有人以“地球一小时﹣﹣你怎么看?”为主题对公众进行了调查,主要有4种态度A:了解、赞成并支持B:了解,忘了关灯C:不了解,无所谓D:纯粹是作秀,不支持,请根据图中的信息回答下列问题:(1)这次抽样的公众有人;(2)请将条形统计图补充完整;(3)在扇形统计图中,“不了解,无所谓”部分所对应的圆心角是度;(4)若城区人口有300万人,估计赞成并支持“地球一小时”的有人.并根据统计信息,谈谈自己的感想.21.如图1,某超市从底楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,求二楼的层高BC(精确到0.1米).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)22.据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4mg,若一年滞尘1000mg所需的银杏树叶的片数与一年滞尘550mg所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.五、解答题(三)(本大题3小题,每小题9分,共27分)23.如图,反比例函数2yx=的图象与一次函数y=kx+b的图象交于点A、B,点A、B的横坐标分别为1,2-,一次函数图象与y轴的交于点C,与x轴交于点D.(1)求一次函数的解析式;(2)对于反比例函数2yx=,当y<1-时,写出x的取值范围;(3)在第三象限的反比例图象上是否存在一个点P,使得S△ODP=2S△OCA?若存在,请求出来P的坐标;若不存在,请说明理由.24.如图,AB是⊙O的直径,C、G是⊙O上两点,且C是弧AG的中点,过点C的直线CD⊥BG的延长线于点D,交BA的延长线于点E,连接BC,交OD于点F.(1)求证:CD是⊙O的切线;(2)若23OFFD,求证:AE=AO;(3)连接AD,在(2)的条件下,若CD=AD的长.25.如图,抛物线y=ax2+bx+c经过点A(﹣6,0),B(2,0),C(0,﹣6).(1)求抛物线的解析式;(2)若点P为第三象限内抛物线上的一点,设△P AC的面积为S,求S的最大值并求出此时点P的坐标;(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.2018年广东省初中毕业生考试数学模拟试卷(二)一、选择题(本大题10小题,每小题3分,共30分)1.如果向右走5步记为+5,那么向左走3步记为()A.+3 B.﹣3 C.+ D.﹣2.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.若(a﹣2)2+|b+3|=0,则(a+b)2017的值是()A.1 B.0 C.2017 D.﹣14.如图,已知Rt△ABC中,∠C=90°,AC=4,tanA=,则BC的长是()A.2 B.8 C.2 D.45.如图,⊙O是△ABC的外接圆,∠ACO=45°,则∠B的度数为()A.30° B.35° C.40° D.45°6.若关于x的一元二次方程x2﹣4x+5﹣a=0有实数根,则a的取值范围是()A.a≥1 B.a>1 C.a≤1 D.a<17.若正比例函数的图象经过点(﹣1,2),则这个图象必经过点()A.(1,2)B.(﹣1,﹣2)C.(2,﹣1)D.(1,﹣2)8.一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是()A.至少有1个球是黑球 B.至少有1个球是白球C.至少有2个球是黑球D.至少有2个球是白球9.将一张宽为4cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是()A.cm2 B.8cm2 C.cm2D.16cm210.如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A.B.C.D.二、填空题(本大题6小题,每小题4分,共24分)11.在函数y=中,自变量x的取值范围是.12.计算:= .13.杨絮纤维的直径约为0.000 010 5m,该直径用科学记数法表示为.14.一个多边形的内角和是外角和的2倍,则这个多边形的边数为.15.如图,在边长为4的正方形ABCD中,先以点A为圆心,AD的长为半径画弧,再以AB边的中点为圆心,AB长的一半为半径画弧,则阴影部分面积是(结果保留π).16.如图,在平面直角坐标系中有一个等边△OBA,其中A点坐标为(1,0).将△OBA绕顶点A顺时针旋转120°,得到△AO1B1;将得到的△AO1B1绕顶点B1顺时针旋转120°,得到△B1A1O2;然后再将得到的△B1A1O2绕顶点O2顺时针旋转120°,得到△O2B2A2…按照此规律,继续旋转下去,则A7点的坐标为.三、解答题(一)(本大题3小题,每小题6分,共18分)17.已知4x=3y,求代数式(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2的值.18.如图,点D,E在△ABC的边BC上,AB=AC,AD=AE.求证:BD=CE.19.如图,已知钝角△ABC(1)利用尺规作图,过点A作BC边的垂线,交CB的延长线于点D(保留作图痕迹,不要求写作法);(2)在(1)的条件下,若∠ABC=122°,BC=5,AD=4,求CD的长.(结果保留到0.1,参考数据:sin32°=0.53,cos32°=0.85,tan32°=0.62.)四、解答题(二)(本大题3小题,每小题7分,共21分)20.为了了解某学校初三年级学生每周平均课外阅读时间的情况,随机抽查了该学校初三年级m名同学,对其每周平均课外阅读时间进行统计,绘制了如下条形统计图(图一)和扇形统计图(图二):(1)根据以上信息回答下列问题:①求m值;②求扇形统计图中阅读时间为5小时的扇形圆心角的度数;③补全条形统计图;(2)直接写出这组数据的众数、中位数,求出这组数据的平均数.21.如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,且AE∥CD,CE∥AB.(1)证明:四边形ADCE是菱形;(2)若∠B=60°,BC=6,求菱形ADCE的边CE上的高.(计算结果保留根号)22.为了拉动内需,全国各地汽车购置税补贴活动在2009年正式开始,某经销商在政策出台前一个月共售出某品牌汽车的手动型和自动型共960台,政策出台后的第一个月售出这两种型号的汽车共1228台,其中手动型和自动型汽车的销售量分别比政策出台前一个月增长30%和25%.(1)在政策出台前一个月,销售的手动型和自动型汽车分别为多少台?(2)若手动型汽车每台价格为8万元,自动型汽车每台价格为9万元.根据汽车补贴政策,政府按每台汽车价格的5%给购买汽车的用户补贴,问政策出台后的第一个月,政府对这1228台汽车用户共补贴了多少万元?五、解答题(三)(本大题3小题,每小题9分,共27分)23.如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,24.点E(4,n)在边AB上,反比例函数(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=.(1)求边AB的长;(2)求反比例函数的解析式和n的值;(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求线段OG的长.24.如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线 BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交 AB于点F.(1)求证:AE为⊙O的切线.(2)当BC=8,AC=12时,求⊙O的半径.(3)在(2)的条件下,求线段BG的长.25.如图,在四边形ABCD中,DC∥AB,DA⊥AB,AD=4cm,DC=5cm,AB=8cm.如果点P由B点出发沿BC方向向点C匀速运动,同时点Q由A点出发沿AB方向向点B匀速运动,它们的速度均为1cm/s,当P点到达C点时,两点同时停止运动,连接PQ,设运动时间为t s,解答下列问题:(1)当t为何值时,P,Q两点同时停止运动?(2)设△PQB的面积为S,当t为何值时,S取得最大值,并求出最大值;(3)当△PQB为等腰三角形时,求t的值.2018年广东省初中毕业生考试数学模拟试卷(三)一、选择题(本大题10小题,每小题3分,共30分)1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣22.计算(﹣3x)2的结果正确的是()A.﹣3x2B.6x2C.﹣9x2D.9x23.保护水资源,人人有责,我国是缺水国家,目前可利用淡水资源总量仅约为899000亿立方米,899000亿用科学记数法表示为()A.8.99×1013B.0.899×1014C.8.99×1012D.89.9×1011 4.如图所示的几何体是由几个相同的小正方体搭成的一个几何体,它的俯视图是()A.B.C.D.5.反比例函数y=6x的图象上有两点(﹣2,y1)(1,y2),那么y1与y2的关系为()A.y1>y2B.y1=y2C.y1<y2D.不能确定6.如图,已知△ABC中,D、E分别是AB、AC的中点,∠B=60°,则∠ADE的度数为()A.90°B.70°C.60°D.30°7.一组数据3,3,2,5,8,8的中位数是()A.3 B.4 C.5 D.8.8.如图,△ABC的顶点均在⊙O上,若∠A=36°,则∠BOC的度数为()A.18°B.36°C.60°D.72°9.如图,平行四边形ABCD中,EF∥BC,AE:EB=2:3,EF=4,则AD的长为()A.163B.8 C.10 D.1610.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①b2﹣4ac>0;②abc >0;③b=﹣2a;④9a+3b+c<0.其中,正确结论的个数是()A.1 B.2 C.3 D.4二、填空题(本大题6小题,每小题4分,共24分)11.分解因式:x2﹣4x+4=.12.如图,⊙O的内接四边形ABCD中,∠BOD=100°,则∠BCD=.13.方程233x x=-的解为x=.14.如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是.15.已知圆锥的侧面积等于60πcm2,母线长10 cm,则圆锥的侧面展开图的弧长是cm.16.如图,AC是正方形ABCD的对角线,将△ACD绕着点A顺时针旋转后得到△AC′D′,点D′落在AC上,C′D′交BC于点E,若AB=1,则图中阴影部分图形的面积是.三、解答题(一)(本大题3小题,每小题6分,共18分)17.计算:(13)﹣1tan60°+|3﹣.18.先化简再求值:2125()422x x x x x +--?-++,其中2x .19.如图,在△ABC 中,∠C =90°.(1)用尺规作图法作AB 边上的垂直平分线DE ,交AC 于点D ,交AB 于点E .(保留作图痕迹,不要求写作法和证明);(2)连结BD ,若BD 平分∠CBA ,求∠A 的度数.四、解答题(二)(本大题3小题,每小题7分,共21分)20.某种电脑病毒在网络中传播得非常快,如果有一台电脑被感染,经过两轮传播后共有144台电脑被感染(假定感染病毒的电脑没有及时得到查毒、杀毒处理)(1)求每轮感染中平均一台电脑感染几台电脑?(2)如果按照这样的感染速度,经过三轮感染后被感染的电脑总数会不会超过1700台?21.如图,一艘轮船出海执行任务,从灯塔C 出发,沿南偏东30°方向匀速航行一段时间后到达A 处,再向正东方向以相同速度航行海里,到达位于灯塔C 南偏东60°方向的B 处.(1)求轮船从灯塔C 出发经由A 处到达B 处航行的总路程;(2)若轮船从灯塔C 出发经由A 处到达B 处共用了线路BC 直接返回到灯塔C 处要用多长时间?(结果保留根号)22.某酒家为了了解市民对去年销量较好的五仁馅、豆沙馅、红枣馅、双黄馅四种不同口味月饼(以下分别用A ,B ,C ,D 表示)的喜爱情况,在节前对人口总数8000人的某社区市民进行了抽样情况调查,绘制成如图的两幅统计图(尚不完整),请根据信息回答:(1)将两幅不完整的图补充完整,并估计该社区爱吃D型月饼的人数;(2)若有外型完全相同的A,B,C,D月饼各一个,小王吃了两个,求她第二个吃到的月饼恰好是C型的概率.五、解答题(三)(本大题3小题,每小题9分,共27分)23.如图,反比例函数2yx=的图象与一次函数y=kx+b的图象交于点A、B,点A、B的横坐标分别为1,﹣2,一次函数图象与y轴的交于点C,与x轴交于点D.(1)求一次函数的解析式;(2)对于反比例函数2yx=,当y<﹣1时,写出x的取值范围;(3)在第三象限的反比例图象上是否存在一个点P,使得S△ODP=2S△OCA?若存在,请求出来P的坐标;若不存在,请说明理由.24.如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD、过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)求证:△FDB∽△F AD;(3)如果⊙O的半径为5,sin∠ADE=45,求BF的长.25.如图,在平面直角坐标系中,直线y=﹣3x﹣3与x轴交于点A,与y轴交于点C.抛物线y=x2+bx+c经过A,C两点,且与x轴交于另一点B(点B在点A右侧).(1)求抛物线的解析式及点B坐标;(2)若点M是线段BC上一动点,过点M的直线EF平行y轴交x轴于点F,交抛物线于点E.求ME长的最大值;(3)试探究当ME取最大值时,在x轴下方抛物线上是否存在点P,使以M,F,B,P为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,试说明理由.2018年广东省初中毕业生考试数学模拟试卷(四)一、选择题(本大题10小题,每小题3分,共30分)1.﹣5的绝对值是()A.15B.5 C.﹣15D.﹣52.在奔驰、宝马、丰田、三菱等汽车标志图形中,为中心对称图形的是()A.B.C.D.3.小超同学在“百度”搜索引擎中输入“中国梦,我的梦”,能搜索到与之相关结果的条数是1650000,这个数用科学记数法表示为()A.165×104B.1.65×105C.1.65×106D.0.165×107 4.将x2﹣16分解因式正确的是()A.(x﹣4)2B.(x﹣4)(x+4)C.(x+8)(x﹣8)D.(x﹣4)2+8x 5.如图,已知AB∥CD,BC平分∠ABE,∠C=33°,则∠BED的度数是()A.16°B.33°C.49°D.66°6.函数y=(x+1)2﹣2的最小值是()A.1 B.﹣1 C.2 D.﹣27.有两个事件,事件A:掷一次骰子,向上的一面是3;事件B:篮球队员在罚球线上投篮一次,投中.则()A.只有事件A是随机事件B.只有事件B是随机事件C.事件A和B都是随机事件D.事件A和B都不是随机事件8.如图,在Rt△ABC中,∠C=90°,∠A=30°,AC=2,则AB=()A.4 B C D9.如图,把矩形ABCD沿EF折叠,使点C落在点A处,点D落在点G处,若∠CFE=60°,且DE=1,则边BC的长()A.3 B.4 C.3.5 D.610.在同一平面直角坐标系内,一次函数y=ax+b与二次函数y=ax2+5x+b的图象可能是()A.B.C.D.二、填空题(本大题6小题,每小题4分,共24分)11有意义的x的取值范围是.12.如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线AC的长等于米.130p-﹣tan45°=.(3)14.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点.△ABC的顶点都在方格的格点上,则cos A=.15.如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC,若AD:DB=1:2,AE=2,则AC=.16.如图,在△ABC中,已知点D、E、F分别为BC、AD、CE的中点,且S△ABC=1cm2,则S△BEF=cm2.三、解答题(一)(本大题3小题,每小题6分,共18分)17.解不等式组:426113x xxxì-ïí+-ïî>≥,把解集表示在数轴上,并写出所有非负整数解.18.先化简,再求值:(22aa-+12a-)÷2212a aa-+-,其中a1.19.如图,在△ABC中,延长BC至D,∠A=60°,∠B=45°.(1)过点C作直线CE∥AB(尺规作图,不写作法,保留作图痕迹);(2)求∠ACD的度数.四、解答题(二)(本大题3小题,每小题7分,共21分)20.某学校为了提高学生学科能力,决定开设以下校本课程:A.文学院,B.小小数学家,C.小小外交家,D.未来科学家,为了解学生最喜欢哪一项校本课程,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的小小外交家的课堂学习中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加全国英语口语大赛,求恰好同时选中甲、乙两位同学的概率(用树状图或列表法解答).21.某中学图书馆近日购进甲、乙两种图书,每本甲图书的进价比每本乙图书的进价高20元,花780元购进甲图书的数量与花540元购进乙图书的数量相同.(1)求甲、乙两种图书每本的进价分别是多少元?(2)某中学计划购进甲、乙两种图书共70本,总购书费用不超过4000元,则最多购进甲种图书多少本?22.如图,在□ABCD中,点P是AB边上一点(不与A,B重合),CP=CD,过点P作PQ ⊥CP,交AD边于点Q,连结CQ.(1)若∠BPC=∠AQP,求证:四边形ABCD是矩形;(2)在(1)的条件下,当AP=2,AD=6时,求AQ的长.五、解答题(三)(本大题3小题,每小题9分,共27分)23.如图,一次函数y=kx+b(k≠0)与反比例函数y=mx(m≠0)的图象有公共点A(1,a)、D(﹣2,﹣1).直线l与x轴垂直于点N(3,0),与一次函数和反比例函数的图象分别交于点B、C.(1)求一次函数与反比例函数的解析式;(2)根据图象回答,x在什么范围内,一次函数的值大于反比例函数的值;(3)求△ABC的面积.24.如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CB D.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为1,∠CBD=30°,则图中阴影部分的面积;(3)过点B作⊙O的切线交CD的延长线于点E,若BC=12,tan∠CDA=23,求BE的长.25.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.(1)求线段CD的长;(2)设△CPQ的面积为S,求S与t之间的函数关系式,并确定在运动过程中是否存在某一时刻t,使得S△CPQ:S△ABC=9:100?若存在,求出t的值;若不存在,则说明理由.(3)是否存在某一时刻t,使得△CPQ为等腰三角形?若存在,求出所有满足条件的t的值;若不存在,则说明理由.2018年广东省初中毕业生考试数学模拟试卷(五)一、选择题(本大题10小题,每小题3分,共30分) 1.-5的绝对值是() A .15 B .-5 C .5 D .15- 2.下列计算正确的是()A .448x x 2x+= B .x 3•x =x 4 C .325()a a =D .339)3(m m =3.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“丽”相对的面上的汉字是()A. 创B.新C.广D.东 4a 的取值范围是().A 、a ≥2B 、a<-2C 、a ≤2D 、a ≥-25.某个密码锁的密码由四个数字组成,每个数字都是0-9这十个数字中的一个,只有当四个数字与所设定的密码及顺序完全相同,才能将锁打开,如果仅忘记了所设密码的第三个数字,那么一次就能打开该密码的概率是()A 、110B 、19C 、13D 、12 6.一元二次方程2x 2+3x +m=0的有两个相等的实数根,则m 的值是( )A .-89B .98-C .89D .987.如图,四边形ABCD 是菱形,8=AC ,6=DB ,AB DH ⊥于H ,则DH 等于() A .524B .512 C .5 D .48.下列说法正确的是()A 、如果a=b ,那么22a b =;B 、如果a b =,那么a=b ;C 、有一组邻边相等的四边形是菱形;D 、两边及一角对应相等的两个三角形全等第7题图CH9.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a-3b+c<0;(3)a+b+c>0;(4)抛物线与x轴的另一个交点坐标是(5,0).其中正确的结论有()A.2个B.3个C.4个D.5个10.如图,在矩形ABCD中,点E,F分别在边CD,BC上,且DC=3DE=3a,将矩形沿直线EF折叠,使点C恰好落在AD边上的点P处,则FP=_______.AP(C) DEBFCA、2aB、3aC、4aD、23a二、填空题(本大题6小题,每小题4分,共24分)11.9的算术平方根为;12.如图,将一副三角板的直角顶点重叠在一起,若∠ECD=35°,则∠ACB的度数为13.如图,点D、E分别为△ABC的边AB、AC上的中点,则△ADE的面积与四边形BCED的面积的比为14.解不等式组:2(2)3(1)122x xx⎧-≤-⎪⎨>⎪⎩.的解集是;15.下图为一个圆柱形输水管道的横截面,其半径为2.5米,现管内水面宽AB为4米,则管内最大水深为米。
精品解析:广东省佛山市顺德区2017-2018学年七年级4月月考数学试题(解析版)
2017学年度第二学期月考教研联盟测试七年级数学科试卷满分为120分,考试用时为100分钟.一、选择题(本大题共10小题,每小题3分,共30分)1. 下列计算正确的是()A. B. C. D.【答案】A【解析】解:A.,故A正确;B..故B错误;C.,故C错误;D.,故D错误.故选A.2. 如图,∠1和∠2是一对()A. 同位角B. 对顶角C. 内错角D. 同旁内角【答案】C学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...3. 生物学家发现一种病毒的长度约为0.00 004mm,0.00 004用科学记数法表示是()A. B. C. D.【答案】B【解析】解:0.00 004=.故选B.4. 的值为()A. 0B. 1C. 无意义D. 2018【答案】B【解析】解:原式=1.故选B.5. 体育课上,老师测量跳远成绩的主要依据是()A. 垂线段最短B. 两点之间,线段最短C. 平行线间的距离相等D. 两点确定一条直线【答案】A【解析】解:体育课上,老师测量跳远成绩的依据是垂线段最短.故选C.6. 下列多项式乘法中不能用平方差公式计算的是()A. B. C. D.【答案】D【解析】解:A.=,可以用平方差公式;B.=,可以用平方差公式;C.=,可以用平方差公式;D.=,不能用平方差公式.故选D.7. 如图,在下图中有对顶角的图形是()A. ①B. ①②C. ②④D. ②③【答案】C【解析】试题解析:根据图形,有对顶角的图形只有②④.故选C.8. 如图,将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A. 1B. 2C. 3D. 4【答案】D【解析】试题分析:∵纸条的两边平行,∴(1)∠1=∠2(同位角);(2)∠3=∠4(内错角);(4)∠4+∠5=180°(同旁内角)均正确;又∵直角三角板与纸条下线相交的角为90°,∴(3)∠2+∠4=90°,正确.故选D.考点:1.平行线的性质;2.余角和补角.9. 请你观察图形,依据图形面积之间的关系,不需要添加辅助线,便可得到一个你非常熟悉的公式,这个公式是()A. B.C. D.【答案】B【解析】解:大正方形面积为:(x+y)2,大正方形面积=4个小图形的面积和=x2+y2+xy+xy,∴可以得到公式:(x+y)2=x2+2xy+y2.故选B.10. …+1 的个位数字为()A. 2B. 4C. 6D. 8【答案】C【解析】解:(2﹣1)(2+1)(22+1)(24+1)(28+1)…(232+1)+1=(22﹣1)(22+1)(24+1)(28+1)…(232+1)+1=(24﹣1)(24+1)(28+1)…(232+1)+1=(28﹣1)(28+1)…(232+1)+1=(216﹣1)…(232+1)+1=264﹣1+1=264;∵21=2,22=4,23=8,24=16,个位数按照2,4,8,6依次循环,而64=16×4,故原式的个位数字为6.故选C.点睛:本题考查了平方差公式的运用,幂的个位数的求法,重复使用平方差公式是解题的关键.二、填空题(本大题共6小题,每小题4分,共24分)11. 在同一平面内,三条直线、、,若∥,∥,则________.【答案】∥【解析】解:∵同一平面内三条直线a、b、c,a∥b,a∥c,∴b∥c.故答案为:b∥c.12. 一个多项式除以3xy商为,则这个多项式是__________________【答案】【解析】解:根据题意得:3xy(9x2y﹣xy)=27x3y2﹣x2y2.故答案为:27x3y2﹣x2y2.13. ∠1与∠2互余,∠1与∠3互补,若∠3=125°,则∠2= ________度。
2018年广东省中考数学模拟试卷(一)
2018年广东省中考数学模拟试卷(一)2018年广东省中考数学模拟试卷(一)一、选择题(本大题共5小题,每小题3分,共15分;在每小题给出的四个选项中,只有一个是正确的)1.﹣4的倒数是()A.4 B.﹣4 C.D.2.一种细菌的半径是0.000045米,该数字用科学记数法表示正确的是()A.4.5×105B.45×106C.4.5×10﹣5D.4.5×10﹣43.(2018•遵义)函数y=﹣中的自变量x的取值范围是()A.x≥0 B.x<0且x≠1 C.x<0 D.x≥0且x≠14.(2018•东营)方程组的解是()A.B.C.D.5.(2018•宁波)下列各图是选自历届世博会徽中的图案,其中是中心对称图形的是()A.B.C.D.二、填空题(本大题共5小题,每小题4分,共20分)6.(2018•大庆)分解因式:ab2﹣2ab+a=_________.7.(2018•安顺)如果点P(4,﹣5)和点Q(a,b)关于y轴对称,则a的值为_________.8.(2018•宜宾)一组数据1,6,x,5,9的平均数是5,那么这组数据的中位数是_________.9.若双曲线的图象经过第二、四象限,则k的取值范围是_________.10.(2018•济宁)如图,观察每一个图中黑色正六边形的排列规律,则第10个图中黑色正六边形有_________个.三、解答题(本大题共5小题,每小题6分,共30分)11.计算:(﹣2018)0+()﹣1+|﹣2|﹣2cos60°.12.(2018•遵义)先化简,再求值:,其中x=2,y=﹣1.13.(2018•抚顺)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC与△DEF关于点O成中心对称,△ABC与△DEF的顶点均在格点上,请按要求完成下列各题.(1)在图中画出点O的位置.(2)将△ABC先向右平移4个单位长度,再向下平移2个单位长度,得到△A1B1C1,请画出△A1B1C1;(3)在网格中画出格点M,使A1M平分∠B1A1C1.14.(2018•宁波)如图,已知二次函数y=﹣+bx+c的图象经过A(2,0)、B(0,﹣6)两点.(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积.15.(2018•遵义)某市为缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯长AB=6m,∠ABC=45°,后考虑到安全因素,将楼梯脚B移到CB延长线上点D处,使∠ADC=30°(如图所示).(1)求调整后楼梯AD的长;(2)求BD的长.(结果保留根号)四、解答题(本大题共4小题,每小题7分,共28分)16.(2018•南京)从3名男生和2名女生中随机抽取2018年南京青奧会志愿者.求下列事件的概率:(1)抽取1名,恰好是女生;(2)抽取2名,恰好是1名男生和1名女生.17.(2018•荆州)如图,P是矩形ABCD下方一点,将△PCD绕P点顺时针旋转60°后恰好D点与A点重合,得到△PEA,连接EB,问△ABE是什么特殊三角形?请说明理由.18.(2018•绵阳)绵阳市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王灿如何安排甲、乙两种货车可一次性地运到销售地有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?19.(2018•扬州)已知:如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.(1)以AB边上一点O为圆心,过A、D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;(2)若(1)中的⊙O与AB边的另一个交点为E,AB=6,BD=2,求线段BD、BE与劣弧DE所围成的图形面积.(结果保留根号和π)五、解答题(本大题共3小题,每小题9分,共27分)20.对于任何实数,我们规定符号的意义是=ad﹣bc.(1)按照这个规定请你计算的值;(2)按照这个规定请你计算:当x2﹣3x+1=0时,的值.21.(2018•岳阳)如图1,将菱形纸片AB(E)CD(F)沿对角线BD(EF)剪开,得到△ABD和△ECF,固定△ABD,并把△ABD与△ECF叠放在一起.(1)操作:如图2,将△ECF的顶点F固定在△ABD的BD边上的中点处,△ECF绕点F在BD边上方左右旋转,设旋转时FC交BA于点H(H点不与B点重合),FE交DA于点G(G点不与D点重合).求证:BH•GD=BF2(2)操作:如图3,△ECF的顶点F在△ABD的BD边上滑动(F点不与B、D点重合),且CF始终经过点A,过点A作AG∥CE,交FE于点G,连接DG.探究:FD+DG=_________.请予证明.22.(2018•黄石)已知二次函数y=x2﹣2mx+4m﹣8(1)当x≤2时,函数值y随x的增大而减小,求m的取值范围.(2)以抛物线y=x2﹣2mx+4m﹣8的顶点A为一个顶点作该抛物线的内接正三角形AMN(M,N两点在拋物线上),请问:△AMN的面积是与m无关的定值吗?若是,请求出这个定值;若不是,请说明理由.(3)若抛物线y=x2﹣2mx+4m﹣8与x轴交点的横坐标均为整数,求整数m的最小值.2018年广东省中考数学模拟试卷(一)参考答案与试题解析一、选择题(本大题共5小题,每小题3分,共15分;在每小题给出的四个选项中,只有一个是正确的)1.﹣4的倒数是()A.4 B.﹣4 C.D.考点:倒数。
广东省佛山市普通高中学校2018届高三数学4月月考模拟试题
广东省佛山市普通高中学校2018届高三数学4月月考模拟试题满分150分,时间120分钟. 第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}1,2,3A =,{}3BA =,{}1,2,3,4,5B A =,则集合B 的子集的个数为A .6 个B .7 个C .8个D .9个 2.命题“2,20x R x x ∃∈-+≥”的否定是A.2,20x R x x ∃∈-+>B.2,20x R x x ∃∈-+<C.2,20x R x x ∀∈-+≥D.2,20x R x x ∀∈-+< 3.已知,αβ表示两个不同的平面,l 为α内的一条直线,则“αβ”是“l β”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 4.函数()2sin f x x x =-的零点个数为A.1B.2C.3D.4 5.不等式2162a bx x b a+<+对任意,(0,)a b ∈+∞恒成立,则实数x 的取值范围是 A. (2,0)- B.(,2)(0,)-∞-+∞ C.(-6.如右图所示,程序框图输出的所有实数对),(y x 所对应的点都在函数A.y =x +1的图象上B.y =2x 的图象上C.y =2x的图象上 D.y =12x -的图象上7.在区间[]0,π上随机取一个数x ,则事件sin cos 1x x +≥“”发生的概率为 A.14 B. 13 C.12 D.238.定义:函数()f x 的定义域为D ,如果对于任意的1x D ∈,存在唯一的2x D ∈,使得12()()f x f x c =(其中c 为常数)成立,则称函数()f x 在D 上的几何均值为c . 则下列开始1,1x y ==结束输出(,)x y4?x ≤是1,2x x y y=+=否函数在其定义域上的“几何均值”可以为2的是A.21y x =+B.sin 3y x =+C.x y e =(e 为自然对数的底)D.ln y x =9.已知抛物线240x py(p )=>与双曲线2222100y x (a ,b )a b-=>>有相同的焦点F ,点A是两曲线的一个交点,且AF y ⊥轴,则双曲线的离心率为A 51+ B 21 C 31 D .221210. 设,x y 满足约束条件360200,0x y x y x y --≤⎧⎪-+≥⎨⎪≥≥⎩,若目标函数z ax by =+ (0>a ,0>b )的最大值为8,点P 为曲线21(0)3y x x=-<上动点,则点P 到点(,)a b 的最小距离为 A .71313 B .0 C .71326D .1 第Ⅱ卷(非选择题,共100分)二、填空题: 本大题共7小题,每小题5分,共35分. 请将答案填在答题卡对应题号.......的位置上. 答错位置,书写不清,模棱两可均不得分.11.若53sin =θ,θ为第二象限角,则tan()πθ-= . 12.设复数1a iz i+=+,其中a 为实数,若z 的实部为2,则z 的虚部为 .13.已知正方形ABCD 的边长为1,则=-BD 2 .14.某行业从2013年开始实施绩效工资改革,为了解该行业职工工资收入情况,调查了1000名该行业的职工,并由所得数据画出了如图所示的频率分布直方图,由图可知中位数为________. 现要从这1000人中再用分层抽样的方法抽出100人作进一步调查, 则月收 入在[3500,4000)(元)内应抽出 人.2000 3500 4000 4500 频率/组距0.00010.0002 0.0004 0.0005 0.0003 第14题图ABPC俯视图主视图第15题图15. 某三棱锥P ABC-的正视图为如图所示边长为2的正三角形,俯视图为等腰直角三角形,则三棱锥的表面积是 .16. 挪威数学家阿贝尔,曾经根据阶梯形图形的两种不同分割(如下图),利用它们的面积关系发现了一个重要的恒等式---阿贝尔公式:11223311222333411()()()()n n n n n n na b a b a b a b a b b L b b L b b L b b L b--++++=-+-+-++-+则其中:(Ⅰ)3L=______________;(Ⅱ)nL=______________.17.若直线1x my=-与圆22:0C x y mx ny p++++=交于A、B两点,且A、B两点关于直线y x=对称,则实数p的取值范围为________________.三、解答题:本大题共5小题,共65分。
广东省佛山市顺德区八年级数学下学期4月月考试题 新人
广东省佛山市顺德区2017-2018学年八年级数学下学期4月月考试题说明:l .本卷共4页,满分为120分,考试用时为100分钟.一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请将下列各题的正确选项填写在答题卡相应的位置上. 1.下列各式中,是一元一次不等式的是( )A .845>+B .54≤xC .12-xD .032≥-x x 2.已知x y >,则下列不等式不成立的是 ( )A .66x y ->-B .33x y >C .22x y -<-D .3636x y -+>-+ 3.已知两个不等式的解集在数轴上如图,那么这个解集为( ) A .2≤x . B .21≤<-x C .1-≤xD .1-<x4.Rt △ABC 中,∠C=90°,∠B=40°,则∠A=( ) A .60°B .50°C .40°D .30°5.根据下图所示,对a 、b 、c 三种物体的质量判断正确的是( )A .c a <B .b a <C .c a >D .c b <6.如图,点P 是∠BAC 的平分线AD 上一点,PE ⊥AC 于点E . 已知PE=3,则点P 到AB 的距离是( ) A .3 B .4C .5D .67. 已知:在△ABC 中,AB ≠AC ,求证:∠B ≠∠C . 若用反证法来证明这个结论,可以假设 ( )A .∠A =∠B B .∠B =∠C C .AB =BCD .∠A =∠C 8.如图是一块三角形的草坪,现要在草坪上建一凉亭供大家休息, 要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( ) A .△ABC 三条角平分线的交点 B .△ABC 三边的中垂线的交点 C .△ABC 三条高所在直线的交点 D .△ABC 的三条中线的交点9.不等式组⎩⎨⎧>-<+-m x x x 623的解集是x >2,那么m 的取值范围( )A .m >2B .m <2C .m ≤2D .m ≥210.如图,一次函数b kx y +=的图像经过A 、B 两点,则0>+b kx 解集是( )A .0>xB .2x >C .3x >-D .23<<-x二、填空题(本大题共6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上11.命题“等边对等角”的逆命题是 . 12.如图,△ABC 是等边三角形,CD AD =,则ADB ∠=________度,CBD ∠=________度. 13.当x 满足条件 ,代数式1+x 的值大于3.14.等腰三角形的一个内角是50°,则另外两个角的度数分别是 .15.满足不等式组⎩⎨⎧>+≤-01012x x 的整数解是 .16.如图,MAN ∠是一钢架,且018=∠MAN ,为了使钢架更加坚固,需在其内部添加一些钢管BC , CD ,DE ,…,添加的钢管长度都与AB 相等, 则最多能添这样的钢管 根.三、解答题(一)(本大题共3小题,每小题6分,共18分)请在答题卡相应位置上作答. 17.解不等式. )2(34+≥-x x , 并把解集在数轴上表示出来18.解不等式组⎪⎩⎪⎨⎧≥+-<-1223253x x x .19.已知:如图,四边形ABCD 中,∠A CB=90°,AB=15,BC=9,AD=5,DC=13.试判断△ACD 的形状,并说明理由;四、解答题(二)(本大题共3小题,每小题7分,共21分)请在答题卡相应位置上作答 20.如图,在△ABC 中,090=∠C .(1)尺规作图:作AB 边上垂直平分线DE ,交AC 于点D ,交AB 于点E ; (保留作图痕迹,不写作法和证明);(2)在(1)的条件下,连接BD ,若BC=3cm ,,AC=4cm ,求△BCD 的周长.21.小明和小彬在证明“有两个角相等的三角形是等腰三角形”这一命题时,画出图形,写出“已知”,“求证”(如图),她们对各自所作的辅助线描述如下: 小明:“过点A 作BC 的中垂线AD ,垂足为D ”; 小彬:“作△ABC 的角平分线AD ”.数学老师看了两位同学的辅助线作法后,说: “小彬的作法是正确的,而小明的作法需要订正.” (1)请你简要说明小明的辅助线作法错在哪里; (2)根据小彬的辅助线作法,完成证明过程.22. 2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,顺德区政府招商办准备引荐本区的龙头企业与 “一带一路”沿线国家和地区合作.负责人要为这些企业制作一批宣传材料,联系了甲、乙两家设计公司,甲公司提出:每份材料收费20元,另加设计费3000元;乙公司提出:每份材料收费30元,不收设计费.在其他条件完全相同的情况下,区招商负责人选择哪间公司比较合算?已知:如图,在△ABC中,∠B =∠C.求证:△ABC 是等腰三角形DCBA五、解答题(三)(本大题共3小题,每小题9分,共27分)请在答题卡相应位置上作答.23.如图,直线1l 的表达式为22-=x y ,直线1l 与x 轴交于点D ,直线2l :b kx y +=与x 轴交于点A ,且经过点B ,直线1l 、2l 交于点)2,(m C .(1)求m 的值;(2)求直线2l 的表达式;(3)根据图象,直接写出221-<+<x b kx 的解集.24.如图,在△ABC 中,090=∠C ,AD 平分∠CAB ,交CB 于点D ,过点D 作AB DE ⊥于点E .若030=∠B ,CD=5,.(1)求BD 的长(2)AE 与BE 相等吗?说明理由。
广东省佛山市顺德区2017_2018学年七年级数学下学期4月月考试题含答案
2题21广东省佛山市顺德区2017-2018学年七年级数学下学期4月月考试题说明:l.本卷共4页,满分为120分,考试用时为100分钟.2.解答过程写在答题卡上,监考教师只收答题卡.3.非选择题必须用黑色字迹的钢笔或签字笔作答;画图时用2B铅笔并描清晰.一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请将下列各题的正确选项填写在答题卡相应的位置上.1.下列计算正确的是()A.642aa a =⋅B.326mm m =÷C.36326)2(ba b a =D.832)(a a =2.如图,∠1和∠2是一对()A.同位角B.对顶角C.内错角D.同旁内角3.生物学家发现一种病毒的长度约为0.00004mm,0.00004A.4104.0-⨯B.5104-⨯C.51040-⨯D.5104⨯4.02018)(π-的值为()A.0 B.1C.无意义D.20185.体育课上,老师测量跳远成绩的主要依据是()A.垂线段最短B.两点之间,线段最短C.平行线间的距离相等D.两点确定一条直线6.下列多项式乘法中不能用平方差公式计算的是()A.))((b a b a -+B.))((a b b a -+C.))((b a b a ---D.))((b a b a -+-7.如图,在下图中有对顶角的图形是()A.①B.①②C.②④D.②③8.如图,将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.1B.2C.3D.49.请你观察图形,依据图形面积之间的关系,不需要添加辅助线,12345第8题AD AC B A E AC AB A F A D AC D B E AFC G B AB A E AF CG B A图a 图b 图c 便可得到一个你非常熟悉的公式,这个公式是()A.22))((yx y x y x -=-+B.2222)(y xy x y x ++=+C.2222)(yxy x y x +-=-D.222)(yxy x y x ++=+10.1)1)(21)(21)(2(2842++++…1)(232++1的个位数字为()A.2B.4C.6D.8二、填空题(本大题共6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.在同一平面内,三条直线a 、b 、c ,若a ∥b ,a ∥c ,则________.12.一个多项式除以3xy 商为xy y x 3192-,则这个多项式是13.∠1与∠2互余,∠1与∠3互补,若∠3=125°,则∠2=度。
广东省2018年最新中考数学模拟精编试卷(1)及答案
广东省中考数学模拟试卷(2018.4)一、选择题(本大题共10小题,每小题3分,共30分)1.下列实数中,为无理数的是( )A. 2B.12C .0.2D .-72.计算(a 3)2的结果为( ) A .a 4 B .a 5 C .a 6 D .a 7 3.如图M2-1所示的几何体的左视图是( )图M2-1A. B. C. D.4.2017年某校有880名初中毕业生参加升学考试,为了解这880名考生的数学成绩,从中抽取200名考生的数学成绩进行统计,在这个问题中样本是( )A .880名考生B .200名考生C .880名考生的数学成绩D .200名考生的数学成绩 5.如图M2-2,已知直线AB ∥CD ,∠C =100°,∠A =30°,则∠E 的度数为( )A .30°B .60°C .70°D .100°图M2-2 图M2-3 图M2-4 图M2-56.关于x 的一元二次方程x 2-2x +k =0有两个不相等的实数根,则k 的取值范围为( ) A .k <1 B .k >1 C .k <-1 D .k >-1 7.如图M2-3,半圆A 和半圆B 均与y 轴相切于点O ,其直径CD ,EF 均和x 轴垂直,以点O 为顶点的两条抛物线分别经过点C ,E 和点D ,F ,则图中阴影部分面积是( )A .π B.12πC.13π D .条件不足,无法求 8.如图M2-4,已知⊙O 的直径AB ⊥CD 于点E ,则下列结论不一定正确的是( )A .CE =DEB .AE =OEC.BC =BD D .△OCE ≌△ODE9.如图M2-5,△ABC 的顶点是正方形网格的格点,则sin A 的值为( )A.13B.1010C.55D.3 1010 10.将圆心角为90°,面积为4π cm 2的扇形围成一个圆锥的侧面,则所围成的圆锥的底面半径为( ) A .1 cm B .2 cm C .3 cm D .4 cm二、填空题(本大题共6小题,每小题4分,共24分)11.分解因式:2m 2-2=____________.12.将2.05×10-3用小数表示为____________. 13.如图M2-6,从y =ax 2的图象上可以看出,当-1≤x ≤2时,y 的取值范围是____________.图M2-6 图M2-714.在Rt △ABC 中,∠C =90°,sin A =45,AB =10,那么BC =____________.15.设x 1,x 2是一元二次方程x 2-5x -1=0的两实数根,则x 21+x 22-5x 1-5x 2的值为__________. 16.如图M2-7,在矩形ABCD 中,BC =2AB ,∠ADC 的平分线交边BC 于点E ,AH ⊥DE 于点H ,连接CH 并延长交边AB 于点F ,连接AE 交CF 于点O .给出下列命题:①∠AEB =∠AEH ;②DH =2 2EH ;③HO =12AE ;④BC -BF =2EH .其中正确命题的序号是____________(填上所有正确命题的序号). 三、解答题(一)(本大题共3小题,每小题6分,共18分)17.计算:8sin 45°-20160+2-1.18.先化简x 2+2x x -1·⎝⎛⎭⎫1-1x ,然后从0,2中选一个合适的值代入求值.19.如图M2-8,已知A (-3,-3),B (-2,-1),C (-1,-2)是平面直角坐标系上三点.(1)请画出△ABC 关于原点O 对称的△A 1B 1C 1;(2)请写出点B 关于y 轴对称的点B 2的坐标,若将点B 2向上平移h 个单位,使其落在△A 1B 1C 1内部,指出h 的取值范围.图M2-8四、解答题(二)(本大题共3小题,每小题7分,共21分)20.如图M2-9山坡上有一根旗杆AB,旗杆底部B点到山脚C点的距离BC为6 3 m,斜坡BC的坡度i =1∶ 3.小明在山脚的平地F处测量旗杆的高,点C到测角仪EF的水平距离CF=1 m,从E处测得旗杆顶部A的仰角为45°,旗杆底部B的仰角为20°.(1)求坡角∠BCD;(2)求旗杆AB的高度.(参考数值:sin 20°≈0.34,cos 20°≈0.94,tan 20°≈0.36)图M2-921.“中国梦”关乎每个人的幸福生活,为进一步感知我们身边的幸福,展现某市全体市民追梦的风采,某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品.现将参赛的50件作品的成绩(单位:分)(1)表中的x的值为____________,y的值为____________.(2)将本次参赛作品获得A等级的学生依次用A1,A2,A3,…,表示,现该校决定从本次参赛作品中获得A 等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生A1和A2的概率.22.绵州大剧院举行专场音乐会,成人票每张20元,学生票每张5元,暑假期间,为了丰富广大师生的业余文化生活,影剧院制定了两种优惠方案,方案1:购买一张成人票赠送一张学生票;方案2:按总价的90%付款,某校有4名老师与若干名(不少于4人)学生听音乐会.(1)设学生人数为x(单位:人),付款总金额为y(单位:元),求分别建立两种优惠方案中y与x的函数关系式;(2)请计算并确定出最节省费用的购票方案.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.某进口专营店销售一种“特产”,其成本价是20元/千克,根据以往的销售情况描出销量y(千克/天)与售价x(元/千克)的关系,如图M2-10.(1)试求出y与x之间的一个函数关系式;(2)利用(1)的结论:求每千克售价为多少元时,每天可以获得最大的销售利润.(3)进口产品检验、运输等过程需耗时5天,该“特产”最长的保存期为一个月(30天),若售价不低于30元/千克,则一次进货最多只能多少千克?图M2-1024.如图M2-11,△ABC和△AED是等腰直角三角形,∠BAC=∠EAD=90°,点D,E在∠BAC的外部,连接DC,BE.(1)求证:BE=CD;(2)若将△AED绕点A旋转,直线CD交直线AB于点G,交直线BE于点K.若AC=8,GA=2,试求GC·KG 的值.图M2-1125.如图M2-12,在平面直角坐标系xOy中,二次函数y=ax2+bx-4(a≠0)的图象与x轴交于A(-2,0),C(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.(1)求该二次函数的解析式;(2)如图1,连接BC,在线段BC上是否存在点E,使得△CDE为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)如图2,若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n<0),连接PB,PD,BD,求△BDP 面积的最大值及此时点P的坐标.图M2-12广东省中考数学模拟试卷(2018.4)答案1.A2.C3.A4.D5.C6.A7.B8.B 9.B 解析:如图D156,连接CE ,图D156∵根据图形可知:DC =2,AD =4,∴AC =22+42=2 5,BE =CE =12+12=2,∠EBC =∠ECB =45°. ∴CE ⊥AB .∴sin A =CE AC =22 5=1010.10.A 解析:设扇形的半径为R ,根据题意,得90·π·R 2360=4π.解得R =4.设圆锥的底面圆的半径为r ,则12·2π·r ·4=4π.解得r =1.即所围成的圆锥的底面半径为1 cm. 11.2(m +1)(m -1) 12.0.002 05 13.0≤y ≤4 14.8 15.216.①③ 解析:在矩形ABCD 中,AD =BC =2AB =2CD , ∵DE 平分∠ADC , ∴∠ADE =∠CDE =45°. ∵AH ⊥DE ,∴△ADH 是等腰直角三角形. ∵AD =2AB . ∴AH =AB =CD .∵△DEC 是等腰直角三角形, ∴DE =2CD . ∴AD =DE .∴∠AED =67.5°. ∴∠AEB =180°-45°-67.5°=67.5°. ∴∠AED =∠AEB , 故①正确; 设DH =1,则AH =DH =1,AD =DE = 2. ∴HE =2-1.∵∠AEH =67.5°, ∴∠EAH =22.5°.∵DH =CD ,∠EDC =45°, ∴∠DHC =67.5°. ∴∠OHA =22.5°. ∴∠OAH =∠OHA . ∴OA =OH .∴∠AEH =∠OHE =67.5°. ∴OH =OE .∴OH =12AE .故③正确;∵AH =DH ,CD =CE , 在△AFH 与△CHE 中, ⎩⎪⎨⎪⎧∠AHF =∠HCE =22.5°,AH =CE ,∠F AH =∠HEC =45°,∴△AFH ≌△CHE (ASA). ∴AF =EH .在△ABE 与△AHE 中, ⎩⎪⎨⎪⎧AB =AH ,∠BEA =∠HEA ,AE =AE ,∴△ABE ≌△AHE . ∴BE =EH .∴BC -BF =(BE +CE )-(AB -AF )=(EH +CD )-(CD -EH )=2EH . 故④错误. 故答案为①③.17.解:原式=2 2×22-1+12=2-1+12=32.18.解:x 2+2x x -1·⎝⎛⎭⎫1-1x =x (x +2)x -1·x -1x =x +2,当x =2时,原式=2+2=4. 19.解:(1)△A 1B 1C 1如图D157.图D157(2)点B 2的坐标为(2,-1),由图可知,点B 2到B 1与A 1C 1的中点的距离分别为2,3.5, 所以h 的取值范围为2<h <3.5.20.解:(1)如图D158,∵斜坡BC 的坡度i =1∶3,图D158∴tan ∠BCD =BD DC =33.∴∠BCD =30°.(2)在Rt △BCD 中,CD =BC ×cos ∠BCD =6 3×32=9. 则DF =DC +CF =10(m). ∵四边形GDFE 为矩形, ∴GE =DF =10(m), ∵∠AEG =45°, ∴AG =GE =10(m),在Rt △BEG 中,BG =GE ×tan ∠BEG =10×0.36=3.6(m), 则AB =AG -BG =10-3.6=6.4(m). 答:旗杆AB 的高度为6.4 m.21.解:(1)∵x +35+11=50, ∴x =4,或x =50×0.08=4. y =3550=0.7,或y =1-0.08-0.22=0.7. (2)依题得获得A 等级的学生有4人,用A 1,A 2,A 3,A 4表示,画树状图D159如下:图D159由上图可知共有12种结果,且每一种结果可能性都相同,其中抽到学生A 1和A 2的有两种结果,所以从本次参赛作品中获得A 等级学生中,随机抽取两名学生谈谈他们的参赛体会,恰好抽到学生A 1和A 2的概率为p =212=16.22.解:(1)按优惠方案①可得y 1=20×4+(x -4)×5=5x +60(x ≥4), 按优惠方案②可得y 2=(5x +20×4)×90%=4.5x +72(x ≥4). (2)因为y 1-y 2=0.5x -12(x ≥4),①当y 1-y 2=0时,得0.5x -12=0.解得x =24. ∴当购买24张票时,两种优惠方案付款一样多. ②当y 1-y 2<0时,得0.5x -12<0.解得x <24. ∴4≤x <24时,y 1<y 2,优惠方案①付款较少. ③当y 1-y 2>0时,得0.5x -12>0.解得x >24. 当x >24时,y 1>y 2,优惠方案②付款较少.23.解:(1)设y 与x 之间的一个函数关系式为y =kx +b ,则⎩⎪⎨⎪⎧38=37k +b ,34=39k +b .解得⎩⎪⎨⎪⎧k =-2,b =112.故函数关系式为y =-2x +112.(2)依题意有w =(x -20)(-2x +112)=-2(x -38)2+648, 故每千克售价为38元时,每天可以获得最大的销售利润. (3)由题意可得,售价越低,销量越大,即能最多的进货,设一次进货最多m 千克,则m-2×30+112≤30-5. 解得m ≤1300.故一次进货最多只能是1300千克. 24.解:(1)∵∠BAC =∠EAD =90°, ∴∠BAC +∠BAD =∠EAD +∠BAD . ∴∠CAD =∠BAE .在△BAE 和△CAD 中, ⎩⎪⎨⎪⎧AB =AC ,∠BAE =∠CAD ,AE =AD ,∴△BAE ≌△CAD (SAS). ∴BE =CD .(2)当点G 在线段AB 上时[如图D160(1)], ∵△BAE ≌△CAD , ∴∠ACD =∠ABE . 又∵∠CGA =∠BGK , ∴△CGA ∽△BGK . ∴AG KG =GC GB . ∴AG ·GB =GC ·KG . ∵AC =8, ∴AB =8. ∵GA =2, ∴GB =6. ∴GC ·KG =12,当点G 在线段AB 延长线上时[如图D160(2)], ∵△BAE ≌△CAD , ∴∠ACD =∠ABE . 又∵∠BGK =∠CGA , ∴△CGA ∽△BGK . ∴AG KG =CG GB , ∴AG ·GB =GC ·KG . ∵AC =8, ∴AB =8. ∵GA =2, ∴GB =10. ∴GC ·KG =20.(1) (2)图D16025.解:(1)∵二次函数y =ax 2+bx -4(a ≠0)的图象与x 轴交于A (-2,0),C (8,0)两点,∴⎩⎪⎨⎪⎧4a -2b -4=0,64a +8b -4=0.解得⎩⎨⎧a =14,b =-32.∴该二次函数的解析式为y =14x 2-32x -4.(2)由二次函数y =14x 2-32x -4可知对称轴x =3,∴D (3,0),∵C (8,0),∴CD =5.由二次函数y =14x 2-32x -4,可知:B (0,-4).设直线BC 的解析式为y =kx +b ,∴⎩⎪⎨⎪⎧8k +b =0,b =-4.解得⎩⎪⎨⎪⎧k =12,b =-4.∴直线BC 的解析式为y =12x -4.设E ⎝⎛⎭⎫m ,12m -4, 当DC =CE 时,EC 2=(m -8)2+⎝⎛⎭⎫12m -42=CD 2, 即(m -8)2+⎝⎛⎭⎫12m -42=52.解得m 1=8-2 5,m 2=8+2 5(舍去). ∴E (8-2 5,-5);当DC =DE 时,ED 2=(m -3)2+⎝⎛⎭⎫12m -42=CD 2, 即(m -3)2+⎝⎛⎭⎫12m -42=52,解得m 3=0,m 4=8(舍去), ∴E (0,-4);当EC =DE 时,(m -8)2+⎝⎛⎭⎫12m -42=(m -3)2+⎝⎛⎭⎫12m -42.解得m 5=5.5. ∴E ⎝⎛⎭⎫112,-54. 综上,存在点E ,使得△CDE 为等腰三角形,所有符合条件的点E 的坐标为(8-2 5,-5),(0,-4),⎝⎛⎭⎫112,-54.(3)过点P 作y 轴的平行线交x 轴于点F , ∵点P 的横坐标为m ,∴点P 的纵坐标为14m 2-32m -4.∵△PBD 的面积S =S 梯形-S △BOD -S △PFD =12m ⎣⎡⎦⎤4-⎝⎛⎭⎫14m 2-32m -4-12(m -3)⎣⎡⎦⎤-⎝⎛⎭⎫14m 2-32m -4-12×3×4 =-38m 2+174m =-38⎝⎛⎭⎫m -1732+28924∴当m =173时,△PBD 的最大面积为28924,∴点P 的坐标为⎝⎛⎭⎫173,-16136.。
广东署山市顺德区2018届九年级数学4月月考试题(附答案)
广东省佛山市顺德区2018届九年级数学4月月考试题说明:l .本卷共4页,满分为120分,考试用时为100分钟.一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请将下列各题的正确选项填写在答题卡相应的位置上. 1.sin60°的值为( ) A .B .C .D .2.在△ABC 中,∠C=90°,AB=10,cosA=,则BC 的长为( ) A .6 B .7.5 C .8D .12.53.已知⊙O 的半径为3,圆心O 到直线l 的距离为2,则直线l 与⊙O 的位置关系是( ) A .相交 B .相切 C .相离 D .不能确定4.二次函数3)1(2+-=x y ( ) A .有最大值1 B .有最小值1C .有最大值3D .有最小值35.如图,⊙O 是△ABC 的外接圆,已知∠ACO=30°, 则∠B 的度数是( ) A .30° B .45°C .60°D .75°6.三角形的内心是三角形内切圆的圆心,它也是三角形( ) A .三条高线的交点B .三边垂直平分线的交点C .三边中线的交点D .三条内角平分线的交点 7.正六边形ABCDEF 内接于⊙O ,正六边形的周长是12, 则⊙O 的半径是( ) A .B .2C .2D .28.二次函数c bx ax y ++=2的图象如图所示,则下列结论中错误的是( ) A .函数有最小值 B .0<cC .当﹣1<x <2时,y >0D .当x <时,y 随x 的增大而减小9.如图,边长为1的小正方形网格中,⊙O 的圆心在格点上,则sin ∠EDB 的值是( )A .B .C .D . 10.当ab >0时,2ax y =与b ax y +=的图象大致是( )A .B .C .D .二、填空题(本大题共6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上. 11.在Rt △ABC 中,∠C =90°,AC=3,BC=4,则sinA= .12.已知扇形的圆心角是120°,半径是6cm ,则它的面积是_____ (结果保留π). 13.抛物线122-=x y 的对称轴是 .14.如图,四边形ABCD 内接于⊙O ,DA=DC ,∠CBE=50°,则∠DAC 的大小为 度.15.已知二次函数m x x y ++-=22的部分图象如图,则关于x 的一元二次方程022=++-m x x 的解为 .16.把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=8cm ,则圆形螺母的外直径是 .三、解答题(一)(本大题共3小题,每小题6分,共18分)请在答题卡相应位置上作答. 17.计算: 0360tan 2)21(12)14.3(--++--π18.求二次函数1422+--=x x y 的顶点坐标,并说出此函数的两条性质.19.如图,AB 与⊙O 相切于点C ,OA=OB ,⊙O 的直径为8cm ,AB=10cm ,求OA 长.EBC四、解答题(二)(本大题共3小题,每小题7分,共21分)请在答题卡相应位置上作答.20.如图,一条公路的转弯处是一段圆弧().(1)用直尺和圆规作出所在圆的圆心O;(要求保留作图痕迹,不写作法)(2)若的中点C到弦AB的距离为20m,AB=80m,求所在圆的半径.21.一座隧道的截面由抛物线和长方形构成,长方形的长为8m,宽为 2m,隧道最高点P位于AB的中央且距地面6m,建立如图所示的坐标系.(1)求抛物线的表达式;(2)一辆货车高4m,宽4m,能否从该隧道内通过,为什么?22. 如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6米的B处安置测角仪AB,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果精确到0.1米,参考数据:≈1.414,≈1.732).五、解答题(三)(本大题共3小题,每小题9分,共27分)请在答题卡相应位置上作答.23. 为了美化生活环境,小兰的爸爸要在院墙外的一块空地上修建一个矩形花圃.如图所示,矩形花圃的一边利用长10米的院墙,另外三条边用篱笆围成,篱笆的总长为32米.设AB的长为x米,矩形花圃的面积为y平方米.(1)用含有x 的代数式表示BC 的长,BC= 米;(2)求y 与x 的函数关系式,写出自变量x 的取值范围; (3)当x 为何值时,y 有最大值?最大值为多少?24.如图,在Rt △ABC 中,∠A=90°,O 是BC 边上一点,以O 为圆心的半圆与AB 边相切于点D ,与AC 、BC 边分别交于点E 、F 、G ,连接OD ,已知BD=2,AE=3, tan ∠BOD=.(1)求⊙O 的半径OD ; (2)求证:AE 是⊙O 的切线; (3)求图中两部分阴影面积的和.25.如图,抛物线c bx x y ++-=2交x 轴于点A (﹣3,0)和点B ,交y 轴于点C (0,3). (1)求抛物线的函数表达式;(2)若点P 在抛物线上,且S △AOP =4S △BOC ,求点P 的坐标;(3)如图b ,设点Q 是线段AC 上的一动点,作DQ ⊥x 轴,交抛物线于点D ,则线段DQ 长度的最大值是_________(直接填空,不写过程).参考答案及评分标准一、选择题(每题3分,共30分)二、填空题:(每题4分,共24分) 11.4512. 12π cm 213.直线x=0或y 轴14.65o15. 121,3x x =-= 16.三、解答题:(一)(本大题3小题,每小题6分,共18分) 17. 解:原式=32)8(321--++ ............4分=-7 ..........6分18. 解: ∵y=﹣2x 2﹣4x+1=﹣2(x+1)2+3, ............3分 ∴顶点坐标为(﹣1,3), ............4分 其性质有:①开口向下,②有最大值3, .......6分19. 解:连接OC ; ......1分 ∵AB 与⊙O 相切于点C ,∴OC ⊥AB , ......2分∵OA=OB ,∴AC=BC=5, ......3分 在Rt △AOC 中,(cm ). ......5分答:OA 的长为. ...........6分四、解答题(二)(本大题共3小题,每小题7分,共21分) 20. 解:(1)如图1,...........2分∴点O为所求; ...........3分(2)连接OA,OC,OC交AB于D,如图2,∵C为的中点,∴OC⊥AB,∴AD=BD=AB=40, ...........4分设⊙O的半径为r,则OA=r,OD=OD﹣CD=r﹣20,在Rt△OAD中,∵OA2=OD2+AD2,∴r2=(r﹣20)2+402, ...........5分解得r=50, ...........6分即所在圆的半径是50m. ...........7分21. (1)解:设抛物线的解析式为y=a(x﹣h)2+k, ..........1分∵顶点(4,6),∴y=a(x﹣4)2+6,∵它过点(0,2),∴a(0﹣4)2+6=2,解得a=﹣, ..........3分 ∴设抛物线的解析式为21(4)64y x =--+; ..........4分 (2)当x=2时或当x=6时,y=5>4,∴该货车能通过隧道. ..........7分22. 解:过点A 作AH ⊥CD ,垂足为H , ..........1分 由题意可知四边形ABDH 为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6, 在Rt △ACH 中,tan ∠CAH=,∴CH=AH•tan∠CAH ,∴CH=AH•tan∠CAH=6tan30°=6×=2, ..........3分∵DH=1.5, ∴CD=2+1.5, ..........5分在Rt △CDE 中, ∵∠CED=60°,sin ∠CED=,∴CE==4+≈5.7(米), ..........6分答:拉线CE 的长约为5.7米. ..........7分五、解答题(三)(本大题共3小题,每小题9分,共27分)23. 解:(1)由题意可得,BC=32﹣2x , ..........1分 (2)由题意可得,y=x (32﹣2x )=﹣2x 2+32x , .........4分∵,∴11≤x <16,即y 与x 的函数关系式是y=﹣2x 2+32x (11≤x <16); ..........6分 (3)∵y=﹣2x 2+32x=﹣2(x ﹣8)2+128,11≤x <16, ..........7分 ∴x=11时,y 取得最大值,此时y=110,即当x=11时,y 取得最大值,最大值为110. ..........9分24. 解:(1)∵AB与圆O相切, ..........1分∴OD⊥AB,在Rt△BDO中,BD=2,tan∠BOD==,∴OD=3; ..........3分(2)连接OE, ..........4分∵AE=OD=3,AE∥OD,∴四边形AEOD为平行四边形, ..........5分∴AD∥EO,∵DA⊥AE,∴OE⊥AC,又∵OE为圆的半径,∴AE为圆O的切线; ..........6分(3)∵OD∥AC,∴=,即=,∴AC=7.5,∴EC=AC﹣AE=7.5﹣3=4.5, ..........7分∴S阴影=S△BDO+S△OEC﹣S扇形FOD﹣S扇形EOG=×2×3+×3×4.5﹣=3+﹣=. ..........9分25.解:(1)把A(﹣3,0),C(0,3)代入y=﹣x2+bx+c,得, ..........1分解得. ..........2分故该抛物线的解析式为:y=﹣x2﹣2x+3. ..........3分(2)由(1)知,该抛物线的解析式为y=﹣x2﹣2x+3,则易得B(1,0).∵S△AOP=4S△BOC,∴×3×|﹣x2﹣2x+3|=4××1×3. ..........4分整理,得(x+1)2=0或x2+2x﹣7=0,解得x=﹣1或x=﹣1±2. ..........5分则符合条件的点P的坐标为:(﹣1,4)或(﹣1+2,﹣4)或(﹣1﹣2,﹣4); ..........7分(3)QD有最大值. ..........9分。
广东省佛山市顺德区2017_2018学年七年级数学下学期4月月考试题新人教版
广东省佛山市顺德区2017-2018学年七年级数学下学期4月月考试题说明:I •本卷共4页,满分为120分,考试用时为100分钟•2 •解答过程写在答题卡上,监考教师只收答题卡 3.非选择题必须用黑色字迹的钢笔或签字笔作答;画图时用2B 铅笔并描清晰一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中, 只有一个是正确的,请将下列各题的正确选项填写在答题卡相应的位置上 •&如图,将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)/ 1 = Z 2; ( 2)Z 3 =Z 4; (3)Z 2+Z 4= 90 ° ; ( 4)Z 4+ / 5= 180其中正确的个数是()2 4 6 A . a a a 6B . m 2 3m m C .(2a 2b)3 =6a 6b 32.如图,/ 1和/ 2是一对( )A .同位角B . 对顶角 C.内错角 D .冋旁内角0.00 004mm , 0.00 004用科学记数法表示是(A . 0.4 10*B 4 10$ C40 10出 D 4 1054. (2018 -二)0 的值为() A.0B.1C.无意义D.20185 •体育课上,老师测量跳远成绩的主要依据是( )A.垂线段最短B.两点之间,线段最短 C.平行线间的距离相等D.两点确定一条直线6 •下列多项式乘法中不能用平方差公式计算的是()A . (a b)(a -b)B • (a b)(b -a) C. (-a -b)(a -b) D • (-a b)(a-b)7.如图,在下图中有对顶角的图形是(A.① B .①②C.②④ D .②③A.1B.2C.3D.41 •下列计算正确的是( )3.生物学家发现一种病毒的长度约为)9.请你观察图形,依据图形面积之间的关系,不需要添加辅助线,便可得到一个你非常熟悉的公式,这个公式是(2 2 2 2 2A • (x y)(x- y) = x - y B . (xy) x 2xy y 222222C(x - y) x - 2xy yD • (x y) xxyy10. (2 1)(2 21)(2 4 1)(2 81)…(2 32 1)+1 的个位数字为()A . 2B.4C.6D.8二、填空题(本大题共6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上. 11.在同一平面内,三条直线 ___________________ a 、b 、c ,若a // b , a // c ,则.2112. 一个多项式除以 3xy 商为9x 2y xy ,则这个多项式是3------------------------13. / 1与/ 2互余,/ 1与/ 3互补,若/ 3=125°,则/ 2= ______________ 度。
顺德区中考模拟题数学试卷
一、选择题(每小题4分,共40分)1. 若方程 $x^2 - 3x + 2 = 0$ 的两个根为 $a$ 和 $b$,则 $a + b$ 的值为:A. 2B. 3C. 4D. 52. 在等腰三角形 $ABC$ 中,$AB = AC$,$AD$ 是底边 $BC$ 的中线,则 $\angle ADB$ 等于:A. $45^\circ$B. $30^\circ$C. $60^\circ$D. $90^\circ$3. 已知函数 $f(x) = 2x - 1$,若 $f(x) > 3$,则 $x$ 的取值范围是:A. $x > 2$B. $x < 2$C. $x \geq 2$D. $x \leq 2$4. 若 $a^2 + b^2 = 25$,$ab = 6$,则 $a^2 - b^2$ 的值为:A. 7B. 17C. 19D. 235. 在直角坐标系中,点 $A(2, 3)$ 关于直线 $y = x$ 对称的点为:A. $(-3, 2)$B. $(-2, 3)$C. $(3, -2)$D. $(2, -3)$6. 已知等差数列 $\{a_n\}$ 的前 $n$ 项和为 $S_n$,若 $S_3 = 9$,$S_6 =36$,则 $S_9$ 的值为:A. 45B. 54C. 63D. 727. 若 $m$ 和 $n$ 是方程 $x^2 - 5x + 6 = 0$ 的两个根,则 $m^2 + n^2$ 的值为:A. 25B. 16C. 9D. 48. 在 $\triangle ABC$ 中,$AB = AC$,$AD$ 是 $BC$ 边上的高,若 $BD = 4$,$AD = 3$,则 $AB$ 的长度为:A. 5B. 6C. 7D. 89. 若 $x^2 + 2x + 1 = 0$ 的两个根是 $\alpha$ 和 $\beta$,则 $\alpha^2 + \beta^2$ 的值为:A. 1B. 2C. 3D. 410. 在等比数列 $\{a_n\}$ 中,若 $a_1 = 2$,$a_3 = 8$,则该数列的公比$q$ 为:A. 2B. 3C. 4D. 5二、填空题(每小题4分,共40分)11. 若 $a + b = 5$,$ab = 6$,则 $a^2 + b^2$ 的值为 _______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年广东省佛山市顺德区中考数学模拟试卷(4月份)一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请将下列各题的正确选项填写在答题卡相应的位置上.1.(3分)sin60°的值为()A.B.C.D.2.(3分)在△ABC中,∠C=90°,AB=10,cosA=,则BC的长为()A.6 B.7.5 C.8 D.12.53.(3分)已知⊙O的半径为3,圆心O到直线L的距离为2,则直线L与⊙O 的位置关系是()A.相交B.相切C.相离D.不能确定4.(3分)抛物线y=(x﹣1)2+3()A.有最大值1 B.有最小值1 C.有最大值3 D.有最小值35.(3分)如图,⊙O是△ABC的外接圆,已知∠ACO=30°,则∠B的度数是()A.30°B.45°C.60°D.75°6.(3分)三角形的内心是三角形中()A.三条高的交点B.三边垂直平分线的交点C.三条中线的交点 D.三条角平分线的交点7.(3分)正六边形ABCDEF内接于⊙O,正六边形的周长是12,则⊙O的半径是()A.B.2 C.2 D.28.(3分)二次函数y=ax2+bx+c的图象如图所示,则下列结论中错误的是()A.函数有最小值B.c<0C.当﹣1<x<2时,y>0D.当x<时,y随x的增大而减小9.(3分)如图,边长为1的小正方形网格中,⊙O的圆心在格点上,则sin∠EDB 的值是()A.B.C.D.10.(3分)当ab>0时,y=ax2与y=ax+b的图象大致是()A. B. C.D.二、填空题(本大题共6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)在Rt△ABC中,∠C=Rt∠,如果AC=3,BC=4,那么sinA=.12.(4分)已知扇形的圆心角是120°,半径是6,则它的面积是.13.(4分)抛物线y=2x2﹣1的对称轴是.14.(4分)如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为.15.(4分)已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m=0的解为.16.(4分)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=8cm,则圆形螺母的外直径是.三、解答题(一)(本大题共3小题,每小题6分,共18分)请在答题卡相应位置上作答.17.(6分)计算:(π﹣3.14)0+18.(6分)求二次函数y=﹣2x2﹣4x+1的顶点坐标,并在下列坐标系内画出函数的大致图象.说出此函数的三条性质.19.(6分)如图,AB与⊙O相切于点C,OA=OB,⊙O的直径为8cm,AB=10cm,求OA长.四、解答题(二)(本大题共3小题,每小题7分,共21分)请在答题卡相应位置上作答.20.(7分)如图,一条公路的转弯处是一段圆弧().(1)用直尺和圆规作出所在圆的圆心O;(要求保留作图痕迹,不写作法)(2)若的中点C到弦AB的距离为20m,AB=80m,求所在圆的半径.21.(7分)一座隧道的截面由抛物线和长方形构成,长方形的长为8m,宽为2m,隧道最高点P位于AB的中央且距地面6m,建立如图所示的坐标系.(1)求抛物线的表达式;(2)一辆货车高4m,宽4m,能否从该隧道内通过,为什么?22.(7分)如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6米的B处安置测角仪AB,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果精确到0.1米,参考数据:≈1.414,≈1.732).五、解答题(三)(本大题共3小题,每小题9分,共27分)请在答题卡相应位置上作答.23.(9分)为了美化生活环境,小兰的爸爸要在院墙外的一块空地上修建一个矩形花圃.如图所示,矩形花圃的一边利用长10米的院墙,另外三条边用篱笆围成,篱笆的总长为32米.设AB的长为x米,矩形花圃的面积为y平方米.(1)用含有x的代数式表示BC的长,BC=;(2)求y与x的函数关系式,写出自变量x的取值范围;(3)当x为何值时,y有最大值?最大值为多少?24.(9分)如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.(1)求⊙O的半径OD;(2)求证:AE是⊙O的切线;(3)求图中两部分阴影面积的和.25.(9分)如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).(1)求抛物线的函数表达式;(2)若点P在抛物线上,且S△AOP =4S△BOC,求点P的坐标;(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值.2018年广东省佛山市顺德区中考数学模拟试卷(4月份)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请将下列各题的正确选项填写在答题卡相应的位置上.1.(3分)sin60°的值为()A.B.C.D.【分析】直接根据特殊角的三角函数值进行计算即可.【解答】解:sin60°=.故选:B.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.2.(3分)在△ABC中,∠C=90°,AB=10,cosA=,则BC的长为()A.6 B.7.5 C.8 D.12.5【分析】解直角三角形求出AC,根据勾股定理求出BC即可.【解答】解:如图:∵cosA==,AB=10,∴AC=8,由勾股定理得:BC===6.故选:A.【点评】本题考查了解直角三角形,勾股定理的应用,解直角三角形求出AC是解此题的关键,难度不是很大.3.(3分)已知⊙O的半径为3,圆心O到直线L的距离为2,则直线L与⊙O 的位置关系是()A.相交B.相切C.相离D.不能确定【分析】根据圆O的半径和,圆心O到直线L的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.【解答】解:∵⊙O的半径为3,圆心O到直线L的距离为2,∵3>2,即:d<r,∴直线L与⊙O的位置关系是相交.故选:A.【点评】本题主要考查对直线与圆的位置关系的性质的理解和掌握,能熟练地运用性质进行判断是解此题的关键.4.(3分)抛物线y=(x﹣1)2+3()A.有最大值1 B.有最小值1 C.有最大值3 D.有最小值3【分析】本题考查利用二次函数顶点式求最大(小)值的方法.【解答】解:由函数关系式可知,x的系数为1>0,抛物线y=(x﹣1)2+3有最小值,于是当x=1时y=3.故选:D.【点评】求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.5.(3分)如图,⊙O是△ABC的外接圆,已知∠ACO=30°,则∠B的度数是()【分析】连接OA,要求∠B,可求与它同弧所对的圆心角∠AOC;而∠AOC是等腰三角形AOC的顶角,在已知底角的前提下可求出顶角.【解答】解:连接OA,如图,∵OA=OC,∠ACO=30°,∴∠ACO=∠CAO=30°,∴∠AOC=120°,∴∠B=60°.故选:C.【点评】本题考查了圆周角定理及三角形内角和定理的知识,解题的关键是正确地构造圆心角.6.(3分)三角形的内心是三角形中()A.三条高的交点B.三边垂直平分线的交点C.三条中线的交点 D.三条角平分线的交点【分析】利用三角形的内心的性质解答即可.【解答】解:三角形的内心是三角形中3条角平分线的交点;故选:D.【点评】此题主要考查了三角形的内心的性质,熟练掌握相关性质是解题关键.7.(3分)正六边形ABCDEF内接于⊙O,正六边形的周长是12,则⊙O的半径是()【分析】连接OA,OB,根据等边三角形的性质可得⊙O的半径,进而可得出结论.【解答】解:连接OB,OC,∵多边形ABCDEF是正六边形,∴∠BOC=60°,∵OB=OC,∴△OBC是等边三角形,∴OB=BC,∵正六边形的周长是12,∴BC=2,∴⊙O的半径是2,故选:B.【点评】本题考查的是正多边形和圆,熟知正六边形的性质是解答此题的关键.8.(3分)二次函数y=ax2+bx+c的图象如图所示,则下列结论中错误的是()A.函数有最小值B.c<0C.当﹣1<x<2时,y>0D.当x<时,y随x的增大而减小【分析】观察可判断函数有最小值;由抛物线可知当﹣1<x<2时,可判断函数值的符号;由抛物线与y轴的交点,可判断c的符号;由抛物线对称轴和开口方向可知y随x的增大而减小,可判断结论.【解答】解:A、由图象可知函数有最小值,故正确;B、由抛物线与y轴的交点在y的负半轴,可判断c<0,故正确;C、由抛物线可知当﹣1<x<2时,y<0,故错误;D、由图象可知在对称轴的左侧y随x的增大而减小,故正确;故选:C.【点评】本题考查了二次函数图象的性质,解析式的系数的关系.关键是掌握各项系数与抛物线的性质之间的联系.9.(3分)如图,边长为1的小正方形网格中,⊙O的圆心在格点上,则sin∠EDB 的值是()A.B.C.D.【分析】由于所求的∠EDB是圆周角,因此可将其转化到另外一个圆周角来求解,设圆O与小正方形网格的另外一个切点为F,连接EF、BF、BE,因此∠EDB=∠EFB=45°,所以sin∠EDB=.【解答】解:设圆O与小正方形网格的另一个切点为F,连接BF、BE,∵,∴∠EDB=∠EFB,由题意知:EB=BF,∴∠EFB=45°,∴sin∠EDB=sin∠EFB=,故选:B.【点评】本题考查圆周角定理的应用,如若条件出现的角是圆周角,可考虑圆周角定理将其转移到适合的位置进行求解.10.(3分)当ab>0时,y=ax2与y=ax+b的图象大致是()A. B. C.D.【分析】根据题意,ab>0,即a、b同号,分a>0与a<0两种情况讨论,分析选项可得答案.【解答】解:根据题意,ab>0,即a、b同号,当a>0时,b>0,y=ax2与开口向上,过原点,y=ax+b过一、二、三象限;此时,没有选项符合,当a<0时,b<0,y=ax2与开口向下,过原点,y=ax+b过二、三、四象限;此时,D选项符合,故选:D.【点评】本题考查二次函数与一次函数的图象的性质,要求学生理解系数与图象的关系.二、填空题(本大题共6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)在Rt△ABC中,∠C=Rt∠,如果AC=3,BC=4,那么sinA=.【分析】先由勾股定理求出AB,再利用锐角三角函数的定义求解.【解答】解:在Rt△ABC中,∠C=90°,∵AC=3,BC=4,∴AB===5.∴sinA==.【点评】本题考查勾股定理及锐角三角函数的概念:在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边.12.(4分)已知扇形的圆心角是120°,半径是6,则它的面积是12π.【分析】直接根据扇形的面积公式计算即可.【解答】解:由题意得,n=120°,R=6,故可得扇形的面积S===12π.故答案为:12π.【点评】此题考查了扇形的面积计算,属于基础题,解答本题的关键是掌握扇形的面积公式,难度一般.13.(4分)抛物线y=2x2﹣1的对称轴是y轴.【分析】由二次函数解析式即可求得.【解答】解:∵y=2x2﹣1,∴抛物线对称轴为y轴,故答案为:y轴.【点评】本题主要考查二次函数的性质,熟练掌握二次函数y=ax2+c的性质是解题的关键.14.(4分)如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为65°.【分析】先根据补角的性质求出∠ABC的度数,再由圆内接四边形的性质求出∠ADC的度数,由等腰三角形的性质求得∠DAC的度数.【解答】解:∵∠CBE=50°,∴∠ABC=180°﹣∠CBE=180°﹣50°=130°,∵四边形ABCD为⊙O的内接四边形,∴∠D=180°﹣∠ABC=180°﹣130°=50°,∵DA=DC,∴∠DAC==65°,故答案为:65°【点评】本题考查的是圆内接四边形的性质及等腰三角形的性质,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.15.(4分)已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m=0的解为x1=4,x2=﹣2.【分析】根据图象可知,二次函数y=﹣x2+2x+m的部分图象经过点(4,0),把该点代入方程,求得m值;然后把m值代入关于x的一元二次方程﹣x2+2x+m=0,求根即可.【解答】解:根据图象可知,二次函数y=﹣x2+2x+m的部分图象经过点(4,0),所以该点适合方程y=﹣x2+2x+m,代入,得﹣42+2×4+m=0解得m=8 ①把①代入一元二次方程﹣x2+2x+m=0,得﹣x2+2x+8=0,②解②得x1=4,x2=﹣2,故答案为x1=4,x2=﹣2.【点评】本题考查的是关于二次函数与一元二次方程,在解题过程中,充分利用二次函数图象,根据图象提取有用条件来解答,这样可以降低题的难度,从而提高解题效率.16.(4分)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=8cm,则圆形螺母的外直径是16cm.【分析】设圆形螺母的圆心为O,连接OD,OE,OA,如图所示:根据切线的性质得到AO为∠DAB的平分线,OD⊥AC,又∠CAB=60°,得到∠OAE=∠OAD=∠DAB=60°,根据三角函数的定义求出OD的长,即为圆的半径,进而确定出圆的直径.【解答】解:设圆形螺母的圆心为O,与AB切于E,连接OD,OE,OA,如图所示:∵AD,AB分别为圆O的切线,∴AO为∠DAB的平分线,OD⊥AC,OD⊥AC,又∠CAB=60°,∴∠OAE=∠OAD=∠DAB=60°,在Rt△AOD中,∠OAD=60°,AD=8cm,∴tan∠OAD=tan60°=,即=,∴OD=8cm,则圆形螺母的直径为16cm.故答案为:16cm.【点评】此题考查了切线的性质,切线长定理,锐角三角函数定义,以及特殊角的三角函数值,熟练掌握性质及定理是解本题的关键.三、解答题(一)(本大题共3小题,每小题6分,共18分)请在答题卡相应位置上作答.17.(6分)计算:(π﹣3.14)0+【分析】本题涉及零指数幂、负整数指数幂、特殊角的三角函数值、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:(π﹣3.14)0+=1+2﹣8﹣2=﹣7.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、特殊角的三角函数值、二次根式等考点的运算.18.(6分)求二次函数y=﹣2x2﹣4x+1的顶点坐标,并在下列坐标系内画出函数的大致图象.说出此函数的三条性质.【分析】把二次函数解析式化为顶点式,则可求得其顶点坐标、对称轴及开口方向,再求其与坐标轴的交点,则可画出函数图象,可结合图象说出其性质.【解答】解:∵y=﹣2x2﹣4x+1=﹣2(x+1)2+3,∴抛物线开口向下,对称轴为x=﹣1,顶点坐标为(﹣1,3),在y=﹣2x2﹣4x+1中,令y=0可求得x=1±,令x=0可得y=1,∴抛物线与x轴的交点坐标为(1+,0)和(1﹣,0),与y轴的交点坐标为(0,1),其图象如图所示,其性质有:①开口向上,②有最大值3,③对称轴为x=﹣1.【点评】本题主要考查二次函数的性质,掌握画抛物线图象时所需要确定的几个关键点是解题的关键.19.(6分)如图,AB与⊙O相切于点C,OA=OB,⊙O的直径为8cm,AB=10cm,求OA长.【分析】直接利用切线的性质得出AC的长,再利用勾股定理得出答案.【解答】解:连接OC,∵AB与⊙O相切于点C,∴OC⊥AB,∵OA=OB,∴AC=BC=5,在Rt△AOC中,OA===(cm),答:OA的长为cm.【点评】此题主要考查了切线的性质以及等腰三角形的性质,正确应用勾股定理是解题关键.四、解答题(二)(本大题共3小题,每小题7分,共21分)请在答题卡相应位置上作答.20.(7分)如图,一条公路的转弯处是一段圆弧().(1)用直尺和圆规作出所在圆的圆心O;(要求保留作图痕迹,不写作法)(2)若的中点C到弦AB的距离为20m,AB=80m,求所在圆的半径.【分析】(1)连结AC、BC,分别作AC和BC的垂直平分线,两垂直平分线的交点为点O,如图1;(2)连接OA,OC,OC交AB于D,如图2,根据垂径定理的推论,由C为的中点得到OC⊥AB,AD=BD=AB=40,则CD=20,设⊙O的半径为r,在Rt△OAD 中利用勾股定理得到r2=(r﹣20)2+402,然后解方程即可.【解答】解:(1)如图1,点O为所求;(2)连接OA,OC,OC交AB于D,如图2,∵C为的中点,∴OC⊥AB,∴AD=BD=AB=40,设⊙O的半径为r,则OA=r,OD=OD﹣CD=r﹣20,在Rt△OAD中,∵OA2=OD2+AD2,∴r2=(r﹣20)2+402,解得r=50,即所在圆的半径是50m.【点评】本题考查了垂径定理及勾股定理的应用,在利用数学知识解决实际问题时,要善于把实际问题与数学中的理论知识联系起来,能将生活中的问题抽象为数学问题.21.(7分)一座隧道的截面由抛物线和长方形构成,长方形的长为8m,宽为2m,隧道最高点P位于AB的中央且距地面6m,建立如图所示的坐标系.(1)求抛物线的表达式;(2)一辆货车高4m,宽4m,能否从该隧道内通过,为什么?【分析】(1)设出抛物线的解析式,根据抛物线顶点坐标,代入解析式;(2)令y=4,解出x与2作比较.【解答】(1)解:设抛物线的解析式为y=a(x﹣h)2+k,∵顶点(4,6),∴y=a(x﹣4)2+6,∵它过点(0,2),∴a(0﹣4)2+6=2,解得a=﹣,∴设抛物线的解析式为;(2)当x=2时,y=5>4,∴该货车能通过隧道.【点评】此题主要考查了抛物线的性质及其应用,求出横坐标与货车作比较,从而来解决实际问题是解题关键.22.(7分)如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6米的B处安置测角仪AB,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果精确到0.1米,参考数据:≈1.414,≈1.732).【分析】过点A作AH⊥CD,垂足为H,在Rt△ACH中求出CH,在Rt△ECD中,再求出EC即可.【解答】解:过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6×=2,∵DH=1.5,∴CD=2+1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED=,∴CE==4+≈5.7(米),答:拉线CE的长约为5.7米.【点评】本题考查直角三角形的应用﹣仰角俯角问题,矩形的判定和性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线.构造直角三角形解决问题,属于中考常考题型.五、解答题(三)(本大题共3小题,每小题9分,共27分)请在答题卡相应位置上作答.23.(9分)为了美化生活环境,小兰的爸爸要在院墙外的一块空地上修建一个矩形花圃.如图所示,矩形花圃的一边利用长10米的院墙,另外三条边用篱笆围成,篱笆的总长为32米.设AB的长为x米,矩形花圃的面积为y平方米.(1)用含有x的代数式表示BC的长,BC=32﹣2x;(2)求y与x的函数关系式,写出自变量x的取值范围;(3)当x为何值时,y有最大值?最大值为多少?【分析】(1)根据题意可以用含x的代数式表示出BC的长;(2)根据题意可以得到y与x的函数关系式,并求出自变量x的取值范围;(3)将(2)中函数关系式化为顶点式,然后根据x的取值范围即可解答本题.【解答】解:(1)由题意可得,BC=32﹣2x,故答案为:32﹣2x;(2)由题意可得,y=x(32﹣2x)=﹣2x2+32x,∵,∴11≤x<16,即y与x的函数关系式是y=﹣2x2+32x(11≤x<16);(3)∵y=﹣2x2+32x=﹣2(x﹣8)2+128,11≤x<16,∴x=11时,y取得最大值,此时y=110,即当x=11时,y取得最大值,最大值为110.【点评】本题考查二次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.24.(9分)如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.(1)求⊙O的半径OD;(2)求证:AE是⊙O的切线;(3)求图中两部分阴影面积的和.【分析】(1)由AB为圆O的切线,利用切线的性质得到OD垂直于AB,在直角三角形BDO中,利用锐角三角函数定义,根据tan∠BOD及BD的值,求出OD 的值即可;(2)连接OE,由AE=OD=3,且OD与AE平行,利用一组对边平行且相等的四边形为平行四边形,根据平行四边形的对边平行得到OE与AD平行,再由DA 与AE垂直得到OE与AC垂直,即可得证;(3)阴影部分的面积由三角形BOD的面积+三角形ECO的面积﹣扇形DOF的面积﹣扇形EOG的面积,求出即可.【解答】解:(1)∵AB与圆O相切,∴OD⊥AB,在Rt△BDO中,BD=2,tan∠BOD==,∴OD=3;(2)连接OE,∵AE=OD=3,AE∥OD,∴四边形AEOD为平行四边形,∴AD∥EO,∵DA⊥AE,∴OE⊥AC,又∵OE为圆的半径,∴AE为圆O的切线;(3)∵OD∥AC,∴=,即=,∴AC=7.5,∴EC=AC﹣AE=7.5﹣3=4.5,∴S阴影=S△BDO+S△OEC﹣S扇形FOD﹣S扇形EOG=×2×3+×3×4.5﹣=3+﹣=.【点评】此题考查了切线的判定与性质,扇形的面积,锐角三角函数定义,平行四边形的判定与性质,以及平行线的性质,熟练掌握切线的判定与性质是解本题的关键.25.(9分)如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).(1)求抛物线的函数表达式;(2)若点P在抛物线上,且S△AOP =4S△BOC,求点P的坐标;(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值.【分析】(1)把点A、C的坐标分别代入函数解析式,列出关于系数的方程组,通过解方程组求得系数的值;(2)设P点坐标为(x,﹣x2﹣2x+3),根据S△AOP =4S△BOC列出关于x的方程,解方程求出x的值,进而得到点P的坐标;(3)先运用待定系数法求出直线AC的解析式为y=x+3,再设Q点坐标为(x,x+3),则D点坐标为(x,x2+2x﹣3),然后用含x的代数式表示QD,根据二次函数的性质即可求出线段QD长度的最大值.【解答】解:(1)把A(﹣3,0),C(0,3)代入y=﹣x2+bx+c,得,解得.故该抛物线的解析式为:y=﹣x2﹣2x+3.(2)由(1)知,该抛物线的解析式为y=﹣x2﹣2x+3,则易得B(1,0).∵S△AOP =4S△BOC,∴×3×|﹣x2﹣2x+3|=4××1×3.整理,得(x+1)2=0或x2+2x﹣7=0,解得x=﹣1或x=﹣1±2.则符合条件的点P的坐标为:(﹣1,4)或(﹣1+2,﹣4)或(﹣1﹣2,﹣4);(3)设直线AC的解析式为y=kx+t,将A(﹣3,0),C(0,3)代入,得,解得.即直线AC的解析式为y=x+3.设Q点坐标为(x,x+3),(﹣3≤x≤0),则D点坐标为(x,﹣x2﹣2x+3),QD=(﹣x2﹣2x+3)﹣(x+3)=﹣x2﹣3x=﹣(x+)2+,∴当x=﹣时,QD有最大值.【点评】此题考查了待定系数法求二次函数、一次函数的解析式,二次函数的性质以及三角形面积、线段长度问题.此题难度适中,解题的关键是运用方程思想与数形结合思想.。