【小初高学习]2017-2018学年高考数学 第01周 集合与常用逻辑用语周末培优试题 文 新人教A
2018年高考数学试题分类汇编集合与常用逻辑用语1 精品
一、集合与常用逻辑用语一、选择题一.(重庆理2)“x <-1”是“x 2-1>0”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要【答案】A2.(天津理2)设,,x y R ∈则“2x ≥且2y ≥”是“224x y +≥”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .即不充分也不必要条件 【答案】A3.(浙江理7)若,a b 为实数,则“01m ab <<”是11a b b a <或>的 A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A4.(四川理5)函数,()f x 在点0x x =处有定义是()f x 在点0x x =处连续的 A .充分而不必要的条件 B .必要而不充分的条件 C .充要条件 D .既不充分也不必要的条件 【答案】B【解析】连续必定有定义,有定义不一定连续。
5.(陕西理一)设,a b 是向量,命题“若a b =-,则∣a ∣= ∣b ∣”的逆命题是A .若a b ≠-,则∣a ∣≠∣b ∣B .若a b =-,则∣a ∣≠∣b ∣C .若∣a ∣≠∣b ∣,则a b ≠-D .若∣a ∣=∣b ∣,则a = -b【答案】D6.(陕西理7)设集合M={y|y=2cos x —2sin x|,x ∈R},N={x||x —1i为虚数单位,x ∈R},则M ∩N 为 A .(0,一) B .(0,一]C .[0,一)D .[0,一]【答案】C7.(山东理一)设集合 M ={x|260x x +-<},N ={x|一≤x ≤3},则M ∩N =A .[一,2)B .[一,2]C .( 2,3]D .[2,3] 【答案】A8.(山东理5)对于函数(),y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“y =()f x 是奇函数”的 A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要【答案】B9.(全国新课标理一0)已知a ,b 均为单位向量,其夹角为θ,有下列四个命题12:||1[0,)3p a b πθ+>⇔∈ 22:||1(,]3p a b πθπ+>⇔∈13:||1[0,)3p a b πθ->⇔∈ 4:||1(,]3p a b πθπ->⇔∈其中真命题是(A ) 14,p p (B ) 13,p p (C ) 23,p p (D ) 24,p p 【答案】A一0.(辽宁理2)已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若 N ð=M I ∅,则=N M(A )M (B )N (C )I(D )∅【答案】A一一.(江西理8)已知1a ,2a ,3a 是三个相互平行的平面.平面1a ,2a 之间的距离为1d ,平面2a ,3a 之间的距离为2d .直线l 与1a ,2a ,3a 分别相交于1p ,2p ,3p ,那么“12PP=23P P ”是“12d d =”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】C一2.(湖南理2)设集合{}{}21,2,,M N a ==则 “1a =”是“N M ⊆”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件 【答案】A一3.(湖北理9)若实数a,b 满足0,0,a b ≥≥且0ab =,则称a 与b互补,记(,),a b a b ϕ=-,那么(),0a b ϕ=是a 与b 互补的A .必要而不充分的条件B .充分而不必要的条件C .充要条件D .即不充分也不必要的条件【答案】C一4.(湖北理2)已知{}21|log ,1,|,2U y y x x P y y x x ⎧⎫==>==>⎨⎬⎩⎭,则U C P =A .1[,)2+∞B .10,2⎛⎫ ⎪⎝⎭C .()0,+∞D .1(,0][,)2-∞+∞【答案】A一5.(广东理2)已知集合(){,A x y = ∣,x y 为实数,且}221x y +=,(){,B x y =,x y 为实数,且}y x =,则A B ⋂的元素个数为A .0B .一C .2D .3【答案】C一6.(福建理一)i 是虚数单位,若集合S=}{1.0.1-,则A .i S ∈B .2i S ∈ C .3i S ∈D .2S i ∈【答案】B 一7.(福建理2)若a ∈R ,则a=2是(a-一)(a-2)=0的 A .充分而不必要条件 B .必要而不充分条件C .充要条件 C .既不充分又不必要条件 【答案】A 一8.(北京理一)已知集合P={x ︱x 2≤一},M={a }.若P ∪M=P,则a 的取值范围是 A .(-∞, -一] B .[一, +∞) C .[-一,一]D .(-∞,-一] ∪[一,+∞) 【答案】C 一9.(安徽理7)命题“所有能被2整聊的整数都是偶数”的否定是 (A )所有不能被2整除的数都是偶数 (B )所有能被2整除的整数都不是偶数 (C )存在一个不能被2整除的数都是偶数 (D )存在一个能被2整除的数都不是偶数 【答案】D20.(广东理8)设S 是整数集Z 的非空子集,如果,,a b S ∀∈有ab S ∈,则称S 关于数的乘法是封闭的.若T,V 是Z 的两个不相交的非空子集,,T U Z ⋃=且,,,a b c T ∀∈有;,,,abc T x y z V ∈∀∈有xyz V ∈,则下列结论恒成立的是A .,T V 中至少有一个关于乘法是封闭的B .,T V 中至多有一个关于乘法是封闭的C .,T V 中有且只有一个关于乘法是封闭的D .,T V 中每一个关于乘法都是封闭的 【答案】A 二、填空题2一.(陕西理一2)设n N +∈,一元二次方程240x x n -+=有正数根的充要条件是n = 【答案】3或422.(安徽理8)设集合{}1,2,3,4,5,6,A =}8,7,6,5,4{=B 则满足S A ⊆且S B φ≠ 的集合S 为 (A )57 (B )56(C )49(D )8【答案】B 23.(上海理2)若全集U R =,集合{|1}{|0}A x x x x =≥≤ ,则U C A = 。
高考数学 专题1 集合与常用逻辑用语 5 集合与常用逻辑
【步步高】(江苏专用)2017版高考数学 专题1 集合与常用逻辑用语 5 集合与常用逻辑用语中的易错题 文训练目标 (1)集合与常用逻辑用语概念的再深化;(2)解题步骤的严谨性,转化过程的等价性.训练题型 (1)集合中忽略互异性;(2)命题真假判断错误,命题否定错误;(3)求参数范围端点取舍错误.解题策略 (1)集合中元素含参,要验证集合中元素的互异性;(2)子集关系转化时先考虑空集;(3)参数范围问题求解时可用数轴分析,端点处可单独验证.2,2.已知集合A ={-1,12},B ={x |mx -1=0},若A ∩B =B ,则所有实数m 组成的集合是________. 3.已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则a 的取值范围是________.4.设x ,y ∈R ,则“x ≥2且y ≥2”是“x 2+y 2≥4”的________条件.5.(2015·湖北部分高中元月调考)命题“∃x 0∈R , 2x 0≤0”的否定为________.6.满足条件{1,2}M ⊆{1,2,3,4,5}的集合M 的个数是________.7.(2014·湖南改编)设命题p :∀x ∈R ,x 2+1>0,则綈p 为____________________.8.若命题“∃x 0∈R ,使得x 20+mx 0+2m -3<0”为假命题,则实数m 的取值范围是________.9.(2015·江西赣州十二县(市)期中联考)设集合M ={-1,0,1},N ={a ,a 2},若M ∩N =N ,则a =________.10.已知命题p :函数f (x )=2ax 2-x -1(a ≠0)在(0,1)内恰有一个零点;命题q :函数y =x 2-a 在(0,+∞)上是减函数.若p 且綈q 为真命题,则实数a 的取值范围是________.11.已知全集为U =R ,集合M ={x |x +a ≥0},N ={x |log 2(x -1)<1},若M ∩(∁U N )={x |x =1或x ≥3},则a 的取值范围是________.12.(2015·江西上饶市三模)命题p :∃x ∈[-π6,π4],2sin(2x +π6)-m =0,命题q :∃x ∈(0,+∞),x 2-2mx +1<0,若p ∧(綈q )为真命题,则实数m 的取值范围为________.13.(2015·安阳月考)已知两个命题r (x ):sin x +cos x >m ,s (x ):x 2+mx +1>0.如果对∀x ∈R ,r (x )∧s (x )为假,r (x )∨s (x )为真,那么实数m 的取值范围为________________.14.已知命题p :关于x 的方程a 2x 2+ax -2=0在[-1,1]上有解;命题q :只有一个实数x 满足不等式x 2+2ax +2a ≤0.若命题“p 或q ”是假命题,则a 的取值范围是__________________.答案解析1.32.{-1,0,2}3.[-1,1]4.充分不必要5.∀x∈R,2x > 06.77.∃x0∈R,x20+1≤08.[2,6]9.-110.(1,2]11.{-1}12.[-1,1]13.(-∞,-2]∪[-2,2)14.{a|-1<a<0或0<a<1}。
高考数学一轮复习第一章集合与常用逻辑用语1.1集合与集合的运算公开课课件省市一等奖完整版
方法 3 与集合有关的新概念问题的解题策略
与集合有关的新概念问题属于信息迁移类问题,它是化归思想的具体运 用,这类试题的特点是:通过给出新的数学概念或新的运算方法,在新的 情境下完成某种推理证明,这是集合命题的一个新方向.常见的有定义 新概念、新公式、新运算和新法则等类型. 解此类题的一般思路: 1.理解问题中的新概念、新公式、新运算、新法则的含义. 2.利用学过的数学知识进行逻辑推理. 3.对选项进行筛选、验证、定论. 例4 (2016浙江名校协作体测试,8)在n元数集S={a1,a2,…,an}中,设x(S)=
A∩A=A A∪A=A ∁U⌀=U
3.两个常用结论 A∩B=A⇔A⊆B;A∪B=B⇔A⊆B. 4.设有限集合A,card(A)=n(n∈N*),则 (1)A的子集个数是⑧ 2n ; (2)A的真子集个数是⑨ 2n-1 ; (3)A的非空子集个数是⑩ 2n-1 ; (4)A的非空真子集个数是 2n-2 .
⑥ A⫋B(或B⫌A)
集合相等
集合A与集合B中元素相同,那么 A=B 就说集合A与集合B相等
Venn图表示
考点二 集合的运算
1.集合间的运算
名称
自然语言描述
ห้องสมุดไป่ตู้
符号语言表示
并集
对于两个给定集合A、B,由所有 属于集合A或属于集合B的元素 组成的集合
A∪B={x|x∈A,或x∈B}
交集 补集
对于两个给定集合A、B,由所有 属于集合A且属于集合B的元素 组成的集合
集合中的元素必须是互异的.对于一个给定的集合,它的任何两个元素都是不同 的.这个特性通常被用来判断集合的表示是否正确,或用来求集合中的未知元素
集合与其中元素的排列顺序无关,如{a,b,c}与{b,c,a}是相同的集合.这个特性通 常被用来判断两个集合的关系
2018年高考数学第一章集合与常用逻辑用语专题1集合考场高招大全
专题1 集合考点1 集合间的基本关系考场高招1 两法搞定集合间的基本关系 1.解读高招 方法 解 读典例指引 列举法利用列举法,根据题中的限定条件把集合的元素表示出来,比较集合中元素的异同,从而找出集合间的关系典例导引1(1)集合元素 特征法 首先确定集合中的元素是什么,弄清集合中元素的特征,然后利用集合中元素的特征判断集合间的关系典例导引1(2)温馨 提醒 研究一个集合,首先要看集合中的代表元素,然后再看元素的限制条件.当集合用描述法表示时,注意弄清其元素表示的意义是什么2.典例指引(1)(2017河北唐山模拟)已知集合A={-2,-1,0,2,3},B={y|y=x 2-1,x ∈A },则A ∩B 中元素的个数是( ) A.2B.3C.4D.5(2)(2016河北石家庄质检)设集合M={-1,1},N={x|x 2-x<6},则下列结论正确的是( ) A.N ⊆MB.N ∩M=∅C.M ⊆ND.M ∪N=R【答案】 (1)B (2)C3.亲临考场1.(2013课标Ⅰ,理1)已知集合A={x|x 2-2x>0}, ,则( )A .A∩B=∅B .A ∪B=RC .B ⊆AD .A ⊆B【答案】 B ∵x (x-2)>0,∴x<0或x>2. ∴集合A 与B 可用图象表示为: 由图象可以看出A ∪B=R ,故选B .B={x|- 5<x< 5}2.(2012课标,理1)已知集合A={1,2,3,4,5},B={(x ,y )|x ∈A ,y ∈A ,x-y ∈A },则B 中所含元素的个数为( )A.3B.6C.8D.10【答案】 D3.(2017河北冀州模拟)已知集合A={x|x 2-7x<0,x ∈N *},则中元素的个数为( ) A.1 B.2 C.3 D.4【答案】 D【解析】由A={x|x 2-7x<0,x ∈N *}={1,2,3,4,5,6},B={1,2,3,6},可得B 中元素的个数为4. 4.(2017湖南长沙模拟)若集合A={y|y=2x ,x ∈R },B={y|y=x 2,x ∈R },则( ) A.A ⫋B B.B ⫋A C.A=B D.A ∩B=∅【答案】 A【解析】∵2x>0,∴A={y|y>0}.∵x 2≥0,∴B={y|y ≥0}.∴A ⫋B.故选A . 考场高招2 利用两集合的关系求参数的值或取值范围 1.解读高招 步骤 解 读1.化简 化简集合,明确集合中元素的性质2.转化 将两集合的关系转化为元素的关系,进而转化为参数满足的关系3.求解 合理利用数轴、Venn 图帮助分析,对参数进行分类讨论4.验证 解题时注意区间端点的取舍2.典例指引(1)已知集合A ={1,3,m },B ={1,m },A ∪B =A ,则m =( ) A .0或 3 B .0或3 C .1或 3 D .1或3(2)设集合A={x||x-a|<1,x ∈R},B={x|1<x<5,x ∈R}.若A∩B=∅ ,则实数a 的取值范围是( )B= y 6y ∈N *,y ∈AA.{a|0≤a≤6}B.{a|a≤2或a≥4}C.{a|a≤0或a≥6}D.{a|2≤a≤4}【答案】(1)B(2)C3.亲临考场(1)设集合A ={x |-1≤x <2},B ={x |x <a },若A ∩B ≠∅,则a 的取值范围是( ) A .-1<a ≤2 B .a >2 C .a ≥-1 D .a >-1【答案】D【解析】因为A ∩B ≠∅,所以集合A ,B 有公共元素,作出数轴,如图所示,易知a >-1.(2)集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为( ) A .0 B .1 C .2 D .4 【答案】D【解析】由题意可得{a ,a 2}={4,16},∴a =4.(3)已知集合A ={x |x 2-x -12≤0},B ={x |2m -1<x <m +1},且A ∩B =B ,则实数m 的取值范围为( ) A .[-1,2) B .[-1,3] C .[2,+∞) D .[-1,+∞)【答案】D【解析】由x 2-x -12≤0,得(x +3)(x -4)≤0,即-3≤x ≤4,所以A ={x |-3≤x ≤4}.又A ∩B =B ,所以B ⊆A .①当B =∅时,有m +1≤2m -1,解得m ≥2. ②当B ≠∅时,有⎩⎪⎨⎪⎧-3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2.综上,m 的取值范围为[-1,+∞).(4)已知集合A ={x |y =lg(x -x 2)},B ={x |x 2-cx <0,c >0},若A ⊆B ,则实数c 的取值范围是( ) A .(0,1] B .[1,+∞) C .(0,1) D .(1,+∞)【答案】B【解析】由题意知,A ={x |y =lg(x -x 2)}={x |x -x 2>0}=(0,1),B ={x |x 2-cx <0,c >0}=(0,c ).由A ⊆B ,画出数轴,如图所示,得c ≥1.(5)已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为__________. 【答案】 -32(6)设不等式4-x x -2>0的解集为集合A ,关于x 的不等式x 2+(2a -3)x +a 2-3a +2<0的解集为集合B .若A ⊇B ,则实数a 的取值范围是________. 【答案】[-2,-1]【解析】由题意知A ={x |(4-x )·(x -2)>0}={x |2<x <4},B ={x |(x +a -2)(x +a -1)<0}={x |1-a <x <2-a }.若A ⊇B ,则⎩⎪⎨⎪⎧1-a ≥2,2-a ≤4,可得-2≤a ≤-1.考点2 集合的基本运算考场高招3 三法(定义法、数轴法、Venn 图法)解决集合的基本运算 1.解读高招方法 解读适合题型典例指引1定义 法交集元素仔细找,属于A 且属于B ;并集元素勿遗漏,切记重复仅取一;全集U 是大范围,去掉U 中A 元素,剩余元素成补集.集合中元素具体、有限典例指引例3(1) 方法一2数轴 法①化简集合;②将集合在数轴上表示出来;③进行集合运算求范围,重叠区域为集合的交集,合并区域代表集合的并集。
全国版2017版高考数学一轮复习第一章集合与常用逻辑用语1集合常用逻辑用语函数与导数课件理
6.函数的零点:零点存在性定理 7.导数的几何意义
8.函数的单调性与导函数值的关系
9.函数的极值、最值 10.定积分、微积分基本定理
热考题型一 【考情分析】
集合
难度:基础题
题型:以选择题、填空题为主
考查方式:以集合的运算为主要考查对象,常与函数、 不等式、方程等知识交汇命题.
A ðU B
ðU B
加油时间 2015年5月1日 2015年5月15日
加油量(升) 12 48
加油时累计里程(千米) 35 000 35 600
注:“累计里程”是指汽车从出厂开始累计行驶的路程.
在这段时间内,该车每100千米平均耗油量为( A.6升 B.8升 C.10升 D.12升
)
【解析】选B.
48 35 600 35 000
【考题集训】 1.(2014·湖北高考)命题“∀x∈R,x2≠x”的否定 是 ( ) B.∀x∈R,x2=x D.∃x0∈R,x02=x0
A.∀x∉R,x2≠x C.∃x0∉R,x02≠x0
【解析】选D.全称命题的否定是特称命题,所以命题 “∀x∈R,x2≠x”的否定是“∃x0∈R,x02=x0”.
A.∅
ðU ห้องสมุดไป่ตู้ B.{2}
=(
)
C.{5}
D.{2,5}
【解析】选B.A={x∈N|x2≥5}={x∈N|x≥ ={x∈N|2≤x< }={2}.
5},ðU A
5
热考题型二
【考情分析】
常用逻辑用语
难度:基础题
题型:以选择题为主
考查方式:涉及知识面较广,常与函数、不等式、三 角函数、立体几何、解析几何、数列等知识综合在 一起考查.
x 2 x 2, x 0, 即h(x)=f(x)+f(2-x)= 2,0 x 2, x 2 5x 8, x 2. y=f(x)-g(x)=f(x)+f(2-x)-b,
2017版高考数学(文)(全国)一轮复习文档:第一章 集合与常用逻辑用语 1.3 含答案
1.命题p∧q,p∨q,綈p的真假判断p q p∧qp∨q綈p真真真真假真假假真假假真假真真假假假假真2.全称量词和存在量词量词名词常见量词表示符号全称量词所有、一切、任意、全部、每一个、任给等∀存在存在一个、至少有一个、有一个、∃34判断下面结论是否正确(请在括号中打“√”或“×”) (1)命题p∧q为假命题,则命题p、q都是假命题.(×)(2)命题p和綈p不可能都是真命题.( √)(3)若命题p、q至少有一个是真命题,则p∨q是真命题.( √)(4)全称命题一定含有全称量词,特称命题一定含有存在量词.( ×)(5)写特称命题的否定时,存在量词变为全称量词.(√)(6)∃x0∈M,p(x0)与∀x∈M,綈p(x)的真假性相反.( √)1.设命题p:函数y=sin 2x的最小正周期为错误!;命题q:函数y=cos x的图象关于直线x=错误!对称,则下列判断正确的是( ) A.p为真B.綈q为假C.p∧q为假D.p∨q为真答案C解析函数y=sin 2x的最小正周期为错误!=π,故命题p为假命题;x =错误!不是y=cos x的对称轴,命题q为假命题,故p∧q为假.故选C。
2.已知命题p:对任意x∈R,总有|x|≥0;q:x=1是方程x+2=0的根.则下列命题为真命题的是( )A.p∧(綈q) B.(綈p)∧qC.(綈p)∧(綈q)D.p∧q答案A解析由题意知,命题p为真命题,命题q为假命题,故綈q为真命题,所以p∧(綈q)为真命题.3.(2015·浙江)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>nB.∀n∈N*,f(n)∉N*或f(n)>nC.∃n0∈N*,f(n0)∉N*且f(n0)>n0D.∃n0∈N*,f(n0)∉N*或f(n0)>n0答案D解析写全称命题的否定时,要把量词∀改为∃,并且否定结论,注意把“且"改为“或".故选D。
高考数学 第一章 集合与常用逻辑用语 1.3 集合的基本运算 第1课时 并集和交集
第1课时并集和交集课标解读课标要求核心素养1.理解两个集合之间的并集和交集的含义.(重点)2.能求两个集合的并集与交集.(重点、难点)1.借助Venn图培养直观想象的核心素养.2.通过集合并集、交集的运算提升数学运算的核心素养.某班有学生20人,他们的学号分别是1,2,3,…,20,现有a,b两本新书,已知学号是偶数的同学读过新书a,学号是3的倍数的同学读过新书b.问题1:至少读过一本书的有哪些同学?答案至少读过一本书的有学号为2,3,4,6,8,9,10,12,14,15,16,18,20的同学.问题2:同时读了a,b两本书的有哪些同学?答案同时读了a,b两本书的有学号为6,12,18的同学.1.并集思考1:“x∈A或x∈B”包含哪几种情况?提示“x∈A或x∈B”这一条件包括下列三种情况:x∈A,但x∉B;x∈B,但x∉A;x∈A,且x∈B.用Venn图表示如图所示.思考2:集合A∪B的元素个数是否等于集合A与集合B的元素个数之和?提示不等于,A∪B的元素个数小于或等于集合A与集合B的元素个数之和.2.交集特别提醒并集的运算性质:A∪B=B∪A;A∪A=A;A∪⌀=A;A∪B=A⇔B⊆A.交集的运算性质:A∩B=B∩A;A∩A=A;A∩⌀=⌀;A∩B=A⇔A⊆B.探究一并集的运算例1 (1)设集合M={x|x2+2x=0,x∈R},N={x|x2-2x=0,x∈R},则M∪N=()A.{0}B.{0,2}C.{-2,0}D.{-2,0,2}(2)已知集合M={x|-3<x≤5},N={x|x<-5或x>5},则M∪N=()A.{x|x<-5或x>-3}B.{x|-5<x<5}C.{x|-3<x<5}D.{x|x<-3或x>5}答案(1)D (2)A解析(1)M={x|x2+2x=0,x∈R}={0,-2},N={x|x2-2x=0,x∈R}={0,2},故M∪N={-2,0,2},故选D.(2)在数轴上表示集合M,N(图略),则M∪N={x|x<-5或x>-3}.思维突破求两个集合的并集的方法(1)两个集合用列举法给出:①依定义,直接观察求并集;②借助Venn图写并集.(2)两个集合用描述法给出:①直接观察,写出并集;②借助数轴,求出并集.1.(1)设集合A={-1,0,-2},B={x|x2-x-6=0},则A∪B等于( )A.{-2}B.{-2,3}C.{-1,0,-2}D.{-1,0,-2,3}(2)已知集合A={x|x≥1},B={x|2x-3>0},则A∪B=()A.{x|x≥0}B.{x|x≥1}C. D.答案(1)D (2)B解析(1)因为A={-1,0,-2},B={x|x2-x-6=0}={-2,3},所以A∪B={-1,0,-2,3}.故选D.(2)因为B={x|2x-3>0}=,所以A∪B={x|x≥1}.故选B.探究二交集的运算例2 (1)若A={x∈N|1≤x≤10},B={x∈R|x2+x-6=0},则图中阴影部分表示的集合为( )A.{2}B.{3}C.{-3,2}D.{-2,3}(2)已知集合A={x|x>-1},B={x|x<2},则A∩B=()A.{x|x>-1}B.{x|x<2}C.{x|-1<x<2}D.⌀答案(1)A (2)C解析(1)易知A={1,2,3,4,5,6,7,8,9,10},B={-3,2},题图中阴影部分表示的集合为A∩B={2},故选A.(2)在数轴上标出集合A,B,如图所示,故A∩B={x|-1<x<2}.思维突破求两个集合的交集的方法(1)对于元素个数有限的集合,逐个挑出两个集合的公共元素即可.(2)对于元素个数无限的集合,一般借助数轴求交集,两个集合的交集等于两个集合在数轴上的相应图形所覆盖的公共范围,要注意端点值的取舍.2.(1)设集合A={1,2,6},B={2,4},C={1,2,3,4},则(A∪B)∩C=( )A.{2}B.{1,2,4}C.{1,2,4,6}D.{1,2,3,4,6}(2)若集合A={x|-2<x<1},B={x|x<-1或x>3},则A∩B=()A.{x|-2<x<-1}B.{x|-2<x<3}C.{x|-1<x<1}D.{x|1<x<3}答案(1)B (2)A解析(1)由题意可得A∪B={1,2,4,6},∴(A∪B)∩C={1,2,4}.故选B.(2)∵A={x|-2<x<1},B={x|x<-1或x>3},∴A∩B={x|-2<x<-1},故选A.探究三集合交、并运算的性质及综合应用例3 (易错题)已知集合A={x|-3<x≤4},集合B={x|k+1≤x≤2k-1},且A∪B=A,试求k 的取值范围.易错辨析:因为⌀是任何集合的子集,所以当作为子集的集合中含有字母时,要考虑该集合是否可以为⌀.解析①当B=⌀,即k+1>2k-1时,k<2,满足A∪B=A.②当B≠⌀时,要使A∪B=A,只需解得2≤k≤.综合①②可知k≤.易错点拨利用集合交集、并集的性质解题的依据及关注点(1)依据:A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.(2)关注点:当集合A⊆B时,若集合A不确定,则运算时要考虑A=⌀的情况,否则易漏解.3.(1)(变条件)把例3中的条件“A∪B=A”改为“A∩B=A”,试求k的取值范围;(2)(变条件)把例3中的条件“A∪B=A”改为“A∪B={x|-3<x≤5}”,求k的值.解析(1)由A∩B=A可知A⊆B,所以即此时k无解,所以k的取值范围是⌀.(2)由题意可知解得k=3,所以k的值为3.1.已知集合A={1,6},B={5,6,8},则A∪B等于( )A.{1,6,5,6,8}B.{1,5,6,8}C.{6,6}D.{6}答案 B 求集合的并集时,要注意集合中元素的互异性.2.已知集合A={1,2,3},B={x|(x+1)(x-2)=0,x∈Z},则A∩B=()A.{1}B.{2}C.{-1,2}D.{1,2,3}答案 B ∵B={x|(x+1)(x-2)=0,x∈Z}={-1,2},A={1,2,3}∴A∩B={2}.3.已知集合A={1,2,3,4},B={y|y=3x-2,x∈A},则A∩B=.答案{1,4}解析由题意得,B={1,4,7,10},所以A∩B={1,4}.4.已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为.答案 5解析并集中重复的元素只能取一个,集合A与B中重复的元素是2,其他不重复,所以A∪B={1,2,3,4,5},共有5个元素.5.已知集合A={x|3≤x<7},B={x|2<x<10},C={x|x<3或x≥7},求:(1)A∪B;(2)C∩B.解析(1)把集合A={x|3≤x<7},B={x|2<x<10}表示在同一数轴上如图所示:则A∪B={x|2<x<10}.(2)把集合B={x|2<x<10},C={x|x<3或x≥7}表示在同一数轴上如图所示:则C∩B={x|2<x<3或7≤x<10}.数学运算——利用集合运算求参数问题已知集合M={1,2,a2-3a-1},N={-1,a,3},M∩N={3},求实数a的值.审:集合M与集合N交集中的元素为3,即3是两个集合的公共元素,由此可以列出方程求参数a的值.联:当已知两个集合的运算结果求参数的值时,一般要根据集合的运算性质列出方程(组)求解,同时注意验证所求得的参数值是否满足集合中元素的互异性.解:∵M∩N={3},∴3∈M,∴a2-3a-1=3,即a2-3a-4=0,解得a=-1或a=4.当a=-1时,不满足集合中元素的互异性,舍去;当a=4时,M={1,2,3},N={-1,3,4},符合题意.∴a=4.思:解答此类题目的思路是将集合中的运算结果转化为集合与元素之间的关系.若集合中的元素能一一列举,则可用观察法得到其关系;与不等式有关的集合,可利用数轴得到不同集合之间的关系.若集合A={0,1,2,x},B={1,x2},A∪B=A,则满足条件的实数x有( )A.1个B.2个C.3个D.4个答案 B ∵A∪B=A,∴B⊆A,∴x2=0或x2=2或x2=x,解得x=0或x=或x=-或x=1.经检验,当x=或x=-时满足题意,故选B.1.已知集合M={-1,0,1},N={0,1,2},则M∪N=()A.{-1,0,1}B.{-1,0,1,2}C.{-1,0,2}D.{0,1}答案 B2.已知集合A={x∈R|x≤5},B={x∈R|x>1},那么A∩B等于( )A.{x∈R|x>1}B.{x∈R|x≤5}C.{2,3,4}D.{x∈R|1<x≤5}答案 D3.已知A,B两个集合分别用圆表示,则集合{x|x∈A,且x∈B}可用阴影表示为( ) 答案 D 集合{x|x∈A,且x∈B}=A∩B,故D正确.4.设集合A={x|x是参加自由泳的运动员},B={x|x是参加蛙泳的运动员},对于“既参加自由泳又参加蛙泳的运动员”用集合运算表示为( )A.A∩BB.A⊇BC.A∪BD.A⊆B答案 A5.集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为( )A.0B.1C.2D.4答案 D ∵A∪B={0,1,2,a,a2},又A∪B={0,1,2,4,16},∴{a,a2}={4,16},∴a=4.6.满足{1}∪B={1,2}的集合B的个数是.答案 2解析由{1}∪B={1,2},知B={2}或B={1,2},共2个.7.已知集合A={x|-1<x<2},B={x|0<x<3},则A∪B=.答案{x|-1<x<3}8.已知集合A={(0,1),(1,1),(-1,2)},B={(x,y)|x+y-1=0,x,y∈Z},则A∩B=.答案{(0,1),(-1,2)}解析A,B都表示点集,A∩B是由集合A中在直线x+y-1=0上的所有点组成的集合,代入验证即可.9.已知集合A={x|-2<x<3},B={x|2m+1<x<m+7},若A∪B=B,求实数m的取值范围.解析因为A∪B=B,所以A⊆B,所以解得-4≤m≤-,故实数m的取值范围为.10.(多选)已知集合A={1,2},B={x|mx-1=0},若A∩B=B,则符合条件的实数m的值为( )A.0B.1C. D.2答案ABC 当m=0时,B=⌀,A∩B=B;当m≠0时,x=,若A∩B=B,则=1或=2,即m=1或m=.11.已知集合A={-2,3,4,6},集合B={3,a,a2},若B⊆A,则实数a= ;若A∩B={3,4},则实数a= .答案-2;2或4解析∵集合A={-2,3,4,6},集合B={3,a,a2},B⊆A,∴a=-2.∵A∩B={3,4},∴a=4或a2=4,∴a=2,a=-2(舍去)或a=4.12.设A,B是非空集合,定义A⊗B={x|x∈(A∪B)且x∉(A∩B)}.已知集合A={x|0<x<2},B={y|y≥0},则A⊗B= .答案{0}∪{x|x≥2}13.设集合A={x|2a+1≤x≤3a-5},B={x|3≤x≤22},则使A⊆(A∩B)成立的a的取值集合为.答案{a|a≤9}解析由A⊆(A∩B)得A⊆B,则①当A=⌀时,2a+1>3a-5,解得a<6,满足条件.②当A≠⌀时,解得6≤a≤9.综合①②可知,使A⊆(A∩B)成立的a的取值集合为{a|a≤9}.14.已知集合A={x|2a≤x≤a+3},B={x|x<-1或x>5},若A∩B=⌀,求实数a的取值范围. 解析①若A=⌀,则2a>a+3,解得a>3;②若A≠⌀,如图:∴解得-≤a≤2.综上所述,a的取值范围是.15.已知集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},是否存在实数a使A,B同时满足下列三个条件:(1)A≠B;(2)A∪B=B;(3)⌀⫋(A∩B).若存在,求出实数a的值;若不存在,请说明理由.解析假设存在a使得A,B同时满足条件.由题意得B={2,3},∵A∪B=B,∴A⊆B,即A=B或A⫋B.由条件(1)A≠B,可知A⫋B.又∵⌀⫋(A∩B),∴A≠⌀,即A={2}或{3}.当A={2}时,a2-2a-15=0,即a=-3或a=5.经检验:当a=-3时,A={2,-5},与A={2}矛盾,舍去;当a=5时,A={2,3},与A={2}矛盾,舍去.当A={3}时,a2-3a-10=0,即a=5或a=-2.经检验:当a=-2时,A={3,-5},与A={3}矛盾,舍去;当a=5时,A={2,3},与A={3}矛盾,舍去.综上所述,不存在实数a使得A,B同时满足条件.。
2018年高考数学专题01集合与常用逻辑用语分项试题含解析理
专题 集合与常用逻辑用语1.【2018广西三校联考】如果集合{}|520M x y x ==-,集合{}3|log N x y x ==则M N ⋂=( )A. {}|04x x <<B. {}|4x x ≥C. {}|04x x <≤D. {}|04x x ≤≤ 【答案】B【解析】{}52004,?|4x x M x x -≥∴≥=≥, {}0N x x =, {}|4M N x x ⋂=≥ 故选B2.【2018豫南九校质考二】命题:,,命题:,,则是的( )A. 充分非必要条件B. 必要非充分条件C. 必要充分条件D. 既不充分也不必要条件 【答案】A点睛:充分必要条件中,小范围推大范围,大范围推不出小范围;这是这道题的跟本; 再者,根据图像判断范围大小很直观,快捷,而不是去解不等式;3.【2018吉林百校联盟联考】已知集合{}2|3410A x x x =-+≤, {}|43B x y x ==-,则A B ⋂= ( ) A. 3,14⎛⎤⎥⎝⎦ B. 3,14⎡⎤⎢⎥⎣⎦ C. 13,34⎡⎤⎢⎥⎣⎦D. 13,34⎡⎫⎪⎢⎣⎭【答案】B【解析】求解不等式: 23410x x -+≤可得: 1|13A x x ⎧⎫=≤≤⎨⎬⎩⎭, 函数43y x =-有意义,则: 430x -≥,则3|4B x x ⎧⎫=≥⎨⎬⎩⎭,据此可得: 3|14A B x x ⎧⎫⋂=≤≤⎨⎬⎩⎭. 本题选择B 选项.4.【2018湖南益阳联考】已知命题p :若复数z 满足()()5z i i --=,则6z i =;命题q :复数112i i ++的虚部为15i -,则下面为真命题的是( ) A.()()p q ⌝⌝∧ B. ()p q ⌝∧ C. ()p q ⌝∧ D. p q ∧【答案】C5.【2018湖南湘潭联考】设全集U R=,集合()()2{|log 2},{|210}A x x B x x x =≤=-+≥,则U A C B ⋂=( )A. ()0,2B. []2,4C. (),1-∞-D. (],4-∞ 【答案】A【解析】集合{}2|2{|04}A x log x x x =≤=<≤,()(){}|210{|12}B x x x x x x =-+≥=≤-≥或.{|12}U C B x x =-<<.所以{}()|020,2U A C B x x ⋂=<<=. 故障A. 6.【2018广东省广州市综合测试】已知集合()()22{,|4},{,|21}A x y x y B x y y x =+===+,则A B ⋂中元素的个数为( )A. 3B. 2C. 1D. 0 【答案】B【解析】由22201{ 540{ 121x x y x x y y x =+=⇒+=⇒==+或45{35x y =-=-, ∴集合A B ⋂中有两个元素,故选B.7.【2018江西省红色七校联考】在右边Venn 图中,设全集,U R =集合,A B 分别用椭圆内图形表示,若集合{}(){}2|2 ,|ln 1 A x x x B x y x =<==-,则阴影部分图形表示的集合为( )A. {}| 1 x x ≤B. {}| 1 x x ≥C. {}|0 1 x x <≤D. {}|1 2 x x ≤< 【答案】D8.【2018广西桂林柳州市模拟一】已知集合{}32,A x x n n N ==+∈, {}6,8,12,14B =,则集合A B ⋂中元素的个数为( ) A. 5 B. 4 C. 3 D. 2 【答案】D【解析】由题意可得,集合A 表示除以3之后余数为2的数,结合题意可得: {}8,14A B ⋂=, 即集合A B ⋂中元素的个数为2. 本题选择D 选项.9.【2018广东省珠海一中联考】下列选项中,说法正确的是( ) A. 若0a b >>,则ln ln a b <B. 向量()1,a m =, (),21b m m =-(R m ∈)垂直的充要条件是1m =C. 命题“*N n ∀∈, ()1322nn n ->+⋅”的否定是“*N n ∀∈, ()1322nn n -≥+⋅”D. 已知函数()f x 在区间[],a b 上的图象是连续不断的,则命题“若()()0f a f b ⋅<,则()f x 在区间(),a b 内至少有一个零点”的逆命题为假命题【答案】D10.【2018广东省珠海一中六校联考】已知集合(){}10A x x x =-<, {}e 1xB x =>,则()RA B ⋂=( )A. [)1,+∞B. ()0,+∞C. ()0,1D. []0,1 【答案】A 【解析】解A=(0,1) B=(0, ∞),()()R0,1A = ()()R 0,1A B ⋂=11.【2018陕西省西工大附中六模】下列说法正确的是( )A. “若1a >,则21a >”的否命题是“若1a >,则21a ≤”B. 在ABC ∆中,“A B >”是 “22sin sin A B >”的必要不充分条件C. “若tan 3α≠,则3πα≠”是真命题D. ()0,0,x ∃∈-∞ 使得0034xx<成立 【答案】C12.【2018陕西省西工大附中六模】已知集合{}1,A a =, {}2|540 ,B x x x x Z =-+=∈,若A B ⋂≠∅,则a 等于( ) A. 2 B. 3 C. 2或3 D. 2或4 【答案】C【解析】由题意可得: {}{}|14,2,3B x x x Z =<<∈=, 结合交集的定义可得:则a 等于2或3. 本题选择C 选项.13.【2018陕西省西工大附中七模】已知集合(){,|,,}xA x y y e x N y N ==∈∈,()2{,|1,,}B x y y x x N y N ==-+∈∈,则A B ⋂=( )A. ()0,1B. {}0,1C. (){}0,1D. φ【答案】C 【解析】(){}(){}0101A B A B =∈∴⋂=,,,选C. 14.【2018河北省石家庄二中模拟】已知函()1x xf x e x=++则120x x +>是()()()()1212f x f x f x f x +>-+-的 ( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 【答案】C现证充分性:∵120x x +>, 12x x >-,又()()1x xf x e x∞∞=+-++在,上为单调增函数,∴()()12f x f x >-,同理: ()()21f x f x >-,故()()()()1212f x f x f x f x +>-+-.充分性证毕. 再证必要性:记()()gx ? f x f x =--,由()()1x xf x e x∞∞=+-++在,上单调递增,可知()()f x ∞∞--+在,上单调递减,∴()()gx ? f x f x =--在()∞∞-+,上单调递增。
2017版高考数学(文)(全国)一轮复习文档:第一章 集合与常用逻辑用语 1.2 含答案
1.四种命题及相互关系2.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.3.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,同时q是p的必要条件;(2)如果p⇒q,但q p,则p是q的充分不必要条件;(3)如果p⇒q,且q⇒p,则p是q的充要条件;(4)如果q⇒p,且p q,则p是q的必要不充分条件;(5)如果p q,且q p,则p是q的既不充分又不必要条件.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)“x2+2x-3<0”是命题.(×)(2)命题“α=错误!,则tan α=1”的否命题是“若α=错误!,则tan α≠1".(×)(3)若一个命题是真命题,则其逆否命题是真命题.(√) (4)当q是p的必要条件时,p是q的充分条件.(√)(5)当p是q的充要条件时,也可说成q成立当且仅当p成立.( √)(6)若p是q的充分不必要条件,则綈p是綈q的必要不充分条件.(√)1.(2015·山东)若m∈R,命题“若m〉0,则方程x2+x-m=0有实根”的逆否命题是()A.若方程x2+x-m=0有实根,则m>0B.若方程x2+x-m=0有实根,则m≤0C.若方程x2+x-m=0没有实根,则m>0D.若方程x2+x-m=0没有实根,则m≤0答案D解析原命题为“若p,则q”,则其逆否命题为“若綈q,则綈p”.∴所求命题为“若方程x2+x-m=0没有实根,则m≤0”.2.已知命题p :若x =-1,则向量a =(1,x )与b =(x +2,x )共线,则在命题p 的原命题、逆命题、否命题、逆否命题中,真命题的个数为( )A .0B .2C .3D .4答案 B解析 向量a ,b 共线⇔x -x (x +2)=0⇔x =0或x =-1,∴命题p 为真,其逆命题为假,故在命题p 的原命题、逆命题、否命题、逆否命题中,真命题的个数为2。
2018高考数学题源探究集合与常用逻辑用语:集合 含解
集合【考点梳理】1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉.(3)集合的三种表示方法:列举法、描述法、Venn图法.2.集合间的基本关系(1)子集:若对∀x∈A,都有x∈B,则A⊆B或B⊇A.(2)真子集:若A⊆B,但∃x∈B,且x∉A,则A⊂≠B或B⊂≠A.(3)相等:若A⊆B,且B⊆A,则A=B.(4)空集的性质:∅是任何集合的子集,是任何非空集合的真子集.3.集合的基本运算(1)若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个.(2)子集的传递性:A⊆B,B⊆C⇒A⊆C.(3)A⊆B⇔A∩B=A⇔A∪B=B.(4)∁U(A∩B)=(∁U A)∪(∁U B),∁U(A∪B)=(∁U A)∩(∁U B).【教材改编】1.(必修1 P8例5改编)设集合A={x|(x+1)(x-2)<0},B={x|0≤x≤3},则A∪B=( )A.{x|-2<x≤3}B.{x|-1<x≤3}C.{x|0≤x<2} D.{x|-1<x<2}[答案] B[解析] ∵A={x|-1<x<2},B={x|0≤x≤3},∴A∪B={x|-1<x≤3}.2.(必修1 P12A组 T6改编)设集合A={x|2≤x<5},B={x∈Z|3x-7≥8-2x},则A∩B =( )A.{x|3≤x<5} B.{x|2≤x≤3}C .{3,4}D .{3,4,5}[答案] C[解析] ∵A ={x |2≤x <5},B ={x ∈Z |3x -7≥8-2x }={x ∈Z |x ≥3},∴A ∩B ={3,4}.3.(必修1 P 44 A 组T 5改编)已知集合M ={x |y =lg(2x -x 2)},N ={x |x 2+y 2=1},则M ∩N =( )A .[-1,2)B .(0,1)C .(0,1]D .∅[答案] C[解析] 由2x -x 2>0, 解得0<x <2, 故M ={x |0<x <2},又N ={x |-1≤x ≤1},因此M ∩N =(0,1].4.(必修1 P 44 A 组T 4改编)已知集合A ={x |x 2=1},B ={x |ax =1},若B ⊆A ,则实数a 的取值集合为( )A .{-1,0,1}B .{-1,1}C .{-1,0}D .{0,1}[答案] A[解析] 因为A ={1,-1},当a =0时,B =∅,符合题意;当a ≠0时,B =⎩⎨⎧⎭⎬⎫1a ⊆A ,则1a=1或1a=-1,解得a =1或a =-1,所以实数a 的取值集合为{-1,0,1}.5.(必修1 P 12B 组T 1改编)设集合A ={1,2,3},集合B 满足A ∪B ={1,2,3,4},则集合B 的个数为( )A .2B .4C .8D .16[答案] C[解析] 由A ={1,2,3},A ∪B ={1,2,3,4}, 得集合B 中所含元素必须有4,∴集合B ={4},{1,4},{2,4},{3,4},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}, ∴集合B 的个数为8,故选C.6.(必修1 P 44A 组T 4改编)设A ={x |-1<x ≤2},B ={x |3x +a >1},若A ∩B =A ,则a 的范围是( )A .a ≥5B .a ≥4C .a <-5D .a <4[答案] B[解析] B ={x |x >1-a3},由A ∩B =A ⇒A ⊆B ,∴1-a3≤-1,解得a ≥4,故选B. 7.(必修1 P 11例8改编)设U ={x ∈N *|x <9},A ={1,2,3},B ={3,4,5,6},则(∁U A )∩B =________.[答案] {4,5,6}[解析] ∵U ={1,2,3,4,5,6,7,8}, ∴∁U A ={4,5,6,7,8},∴(∁U A )∩B ={4,5,6,7,8}∩{3,4,5,6}={4,5,6}.8.(必修1 P 44 A 组T 4改编)已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围为________.[答案] (-∞,4][解析] 当B =∅时,有m +1≥2m -1,则m ≤2. 当B ≠∅时,若B ⊆A ,如图.则⎩⎪⎨⎪⎧m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上,实数m 的取值范围是(-∞,4].9.(必修1 P 12A 组T 4(2)改编)若A ={x ∈Z |2x∈Z },B ={x |x 2-2x -3<0},则A ∩B =________.[答案] {1,2}[解析] ∵A ={x ∈Z |2x∈Z },∴A ={-2,-1,1,2},又B ={x |x 2-2x -3<0}={x |-1<x <3}, ∴A ∩B ={1,2}.10.(必修1 P 12A 组T 6改编)设集合A ={x |(x -2)(x -4)≤0},B ={x ∈N |3x -7≤8-2x },则A ∩B =________.[答案] {2,3}[解析] ∵A={x|(x-2)(x-4)≤0}={x|2≤x≤4},B={x∈N|3x-7≤8-2x}={x∈N|x≤3}={0,1,2,3},∴A∩B={2,3}.11.(必修1 P45B组T3改编)设全集U={x∈N*|x≤9}.∁U(A∪B)={1,3},A∩(∁U B)={2,4},则B=________.[答案] {5,6,7,8,9}[解析] ∵全集U={1,2,3,4,5,6,7,8,9},由∁U(A∪B)={1,3},得A∪B={2,4,5,6,7,8,9},由A∩(∁U B)={2,4}知,{2,4}⊆A,{2,4}⊆∁U B.∴B={5,6,7,8,9}.。
2018版高考数学一轮复习集合与常用逻辑用语1.1集合及其运算理
第一章集合与常用逻辑用语 1.1 集合及其运算理1.集合与元素(1)集合中元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于两种,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法2.集合间的基本关系A B(或B A)3.集合的基本运算【知识拓展】1.若有限集A中有n个元素,则集合A的子集个数为2n,真子集的个数为2n-1.2.A⊆B⇔A∩B=A⇔A∪B=B.3.A∩∁U A=∅;A∪∁U A=U;∁U(∁U A)=A.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)任何一个集合都至少有两个子集.( ×)(2){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.( ×)(3)若{x2,1}={0,1},则x=0,1.( ×)(4){x|x≤1}={t|t≤1}.( √)(5)对于任意两个集合A,B,关系(A∩B)⊆(A∪B)恒成立.( √)(6)若A∩B=A∩C,则B=C.( ×)1.(教材改编)若集合A={x∈N|x≤10},a=22,则下列结论正确的是( ) A.{a}⊆A B.a⊆AC.{a}∈A D.a∉A答案 D解析由题意知A={0,1,2,3},由a=22,知a∉A.2.(2016·江西重点中学联考)已知集合A={x|x2-6x+5≤0},B={x|y=x-3},则A∩B 等于( )A.[1,3] B.[1,5] C.[3,5] D.[1,+∞)答案 C解析根据题意,得A={x|x2-6x+5≤0}={x|1≤x≤5},B={x|y=x-3}={x|x≥3},所以A∩B={x|3≤x≤5}=[3,5].3.已知集合A={x|x2-x-2≤0},集合B为整数集,则A∩B等于( )A.{-1,0,1,2} B.{-2,-1,0,1}C.{0,1} D.{-1,0}答案 A解析因为A={x|x2-x-2≤0}={x|-1≤x≤2},又因为集合B为整数集,所以集合A∩B ={-1,0,1,2},故选A.4.(2016·天津)已知集合A={1,2,3,4},B={y|y=3x-2,x∈A},则A∩B等于( ) A.{1} B.{4}C .{1,3}D .{1,4}答案 D解析 因为集合B 中,x ∈A ,所以当x =1时,y =3-2=1; 当x =2时,y =3×2-2=4; 当x =3时,y =3×3-2=7; 当x =4时,y =3×4-2=10; 即B ={1,4,7,10}.又因为A ={1,2,3,4},所以A ∩B ={1,4}.故选D.5.(2016·云南名校联考)集合A ={x |x -2<0},B ={x |x <a },若A ∩B =A ,则实数a 的取值范围是____________. 答案 [2,+∞)解析 由A ∩B =A ,知A ⊆B ,从数轴观察得a ≥2.题型一 集合的含义例1 (1)(2017·济南调研)设P ,Q 为两个非空实数集合,定义集合P +Q ={a +b |a ∈P ,b ∈Q },若P ={0,2,5},Q ={1,2,6},则P +Q 中元素的个数是( ) A .9 B .8 C .7 D .6(2)若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a =________. 答案 (1)B (2)0或98解析 (1)当a =0时,a +b =1,2,6; 当a =2时,a +b =3,4,8; 当a =5时,a +b =6,7,11.由集合中元素的互异性知P +Q 中有1,2,3,4,6,7,8,11共8个元素.(2)若a =0,则A =⎩⎨⎧⎭⎬⎫23,符合题意;若a ≠0,则由题意得Δ=9-8a =0,解得a =98.综上,a 的值为0或98.思维升华 (1)用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型的集合;(2)集合中元素的互异性常常容易忽略,求解问题时要特别注意.分类讨论的思想方法常用于解决集合问题.(1)(2016·临沂模拟)已知A ={x |x =3k -1,k ∈Z },则下列表示正确的是( )A .-1∉AB .-11∈AC .3k 2-1∈A (k ∈Z )D .-34∉A(2)设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =________. 答案 (1)C (2)2解析 (1)∵k ∈Z ,∴k 2∈Z ,∴3k 2-1∈A . (2)因为{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,ba,b ,a ≠0,所以a +b =0,得b a=-1, 所以a =-1,b =1,所以b -a =2. 题型二 集合的基本关系例2 (1)(2016·唐山一模)设A ,B 是全集I ={1,2,3,4}的子集,A ={1,2},则满足A ⊆B 的B 的个数是( ) A .5 B .4 C .3 D .2(2)已知集合A ={x |x 2-2 017x +2 016<0},B ={x |x <a },若A ⊆B ,则实数a 的取值范围是__________________. 答案 (1)B (2)[2 016,+∞) 解析 (1)∵{1,2}⊆B ,I ={1,2,3,4},∴满足条件的集合B 有{1,2},{1,2,3},{1,2,4},{1,2,3,4},共4个. (2)由x 2-2 017x +2 016<0,解得1<x <2 016, 故A ={x |1<x <2 016},又B ={x |x <a },A ⊆B ,如图所示,可得a ≥2 016. 引申探究本例(2)中,若将集合B 改为{x |x ≥a },其他条件不变,则实数a 的取值范围是____________. 答案 (-∞,1]解析 A ={x |1<x <2 016},B ={x |x ≥a },A ⊆B ,如图所示,可得a ≤1.思维升华 (1)空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解.(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、Venn 图等来直观解决这类问题.(1)已知集合A ={x ∈R |x 2+x -6=0},B ={x ∈R |ax -1=0},若B ⊆A ,则实数a 的值为( )A.13或-12 B .-13或12C.13或-12或0 D .-13或12或0(2)已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是____________.答案 (1)D (2)(-∞,4] 解析 (1)由题意知A ={2,-3}. 当a =0时,B =∅,满足B ⊆A ; 当a ≠0时,ax -1=0的解为x =1a,由B ⊆A ,可得1a =-3或1a=2,∴a =-13或a =12.综上,a 的值为-13或12或0.(2)当B =∅时,有m +1≥2m -1,则m ≤2; 当B ≠∅时,若B ⊆A ,如图,则⎩⎪⎨⎪⎧m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上,m 的取值范围为(-∞,4]. 题型三 集合的基本运算 命题点1 集合的运算例3 (1)(2016·全国乙卷)设集合A ={x |x 2-4x +3<0},B ={x |2x -3>0},则A ∩B 等于( )A.⎝ ⎛⎭⎪⎫-3,-32B.⎝⎛⎭⎪⎫-3,32C.⎝ ⎛⎭⎪⎫1,32D.⎝ ⎛⎭⎪⎫32,3 (2)(2016·浙江)已知集合P ={x ∈R |1≤x ≤3},Q ={x ∈R |x 2≥4},则P ∪(∁R Q )等于( )A .[2,3]B .(-2,3]C .[1,2)D .(-∞,-2]∪[1,+∞)答案 (1)D (2)B解析 (1)由A ={x |x 2-4x +3<0}={x |1<x <3},B ={x |2x -3>0}={x |x >32},得A ∩B ={x |32<x <3}=⎝ ⎛⎭⎪⎫32,3,故选D. (2)由已知得Q ={x |x ≥2或x ≤-2}. ∴∁R Q =(-2,2).又P =[1,3],∴P ∪(∁R Q )=[1,3]∪(-2,2)=(-2,3]. 命题点2 利用集合的运算求参数例4 (1)设集合A ={x |-1≤x <2},B ={x |x <a },若A ∩B ≠∅,则a 的取值范围是( ) A .-1<a ≤2 B .a >2 C .a ≥-1D .a >-1(2)集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为( ) A .0 B .1 C .2 D .4 答案 (1)D (2)D解析 (1)因为A ∩B ≠∅,所以集合A ,B 有公共元素,作出数轴,如图所示,易知a >-1.(2)由题意可得{a ,a 2}={4,16},∴a =4.思维升华 (1)一般来讲,集合中的元素若是离散的,则用Venn 图表示;集合中的元素若是连续的实数,则用数轴表示,此时要注意端点的情况.(2)运算过程中要注意集合间的特殊关系的使用,灵活使用这些关系,会使运算简化.(1)(2016·山东)设集合A ={y |y =2x ,x ∈R },B ={x |x 2-1<0},则A ∪B 等于( ) A .(-1,1) B .(0,1) C .(-1,+∞)D .(0,+∞)(2)已知集合A ={x |x 2-x -12≤0},B ={x |2m -1<x <m +1},且A ∩B =B ,则实数m 的取值范围为( ) A .[-1,2) B .[-1,3] C .[2,+∞) D .[-1,+∞)答案 (1)C (2)D解析 (1)∵A ={y |y >0},B ={x |-1<x <1}, ∴A ∪B =(-1,+∞),故选C.(2)由x 2-x -12≤0,得(x +3)(x -4)≤0,即-3≤x ≤4,所以A ={x |-3≤x ≤4}.又A ∩B =B ,所以B ⊆A .①当B =∅时,有m +1≤2m -1,解得m ≥2. ②当B ≠∅时,有⎩⎪⎨⎪⎧-3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2.综上,m 的取值范围为[-1,+∞). 题型四 集合的新定义问题例5 已知集合A ={(x ,y )|x 2+y 2≤1,x ,y ∈Z },B ={(x ,y )||x |≤2,|y |≤2,x ,y ∈Z },定义集合AB ={(x 1+x 2,y 1+y 2)|(x 1,y 1)∈A ,(x 2,y 2)∈B },则A B 中元素的个数为( )A .77B .49C .45D .30 答案 C解析 如图,集合A 表示如图所示的所有圆点“”,集合B 表示如图所示的所有圆点“”+所有圆点“”,集合AB 显然是集合{(x ,y )||x |≤3,|y |≤3,x ,y ∈Z }中除去四个点{(-3,-3),(-3,3),(3,-3),(3,3)}之外的所有整点(即横坐标与纵坐标都为整数的点),即集合AB 表示如图所示的所有圆点“”+所有圆点“”+所有圆点“”,共45个.故A B 中元素的个数为45.故选C.思维升华 解决以集合为背景的新定义问题,要抓住两点:(1)紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在;(2)用好集合的性质.解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的运算与性质.定义一种新的集合运算△:A △B ={x |x ∈A ,且x ∉B }.若集合A ={x |x 2-4x +3<0},B ={x |2≤x ≤4},则按运算△,B △A 等于( )A .{x |3<x ≤4}B .{x |3≤x ≤4}C .{x |3<x <4}D .{x |2≤x ≤4}答案 B解析 A ={x |1<x <3},B ={x |2≤x ≤4},由题意知B △A ={x |x ∈B ,且x ∉A }={x |3≤x ≤4}.1.集合关系及运算典例 (1)已知集合A ={1,3,m },B ={1,m },A ∪B =A ,则m 等于( ) A .0或 3 B .0或3 C .1或 3D .1或3或0(2)设集合A ={0,-4},B ={x |x 2+2(a +1)x +a 2-1=0,x ∈R }.若B ⊆A ,则实数a 的取值范围是________. 错解展示解析 (1)由A ∪B =A 得B ⊆A ,∴m =3或m =m , 故m =3或m =0或m =1. (2)∵B ⊆A ,讨论如下:①当B =A ={0,-4}时,⎩⎪⎨⎪⎧Δ=a +2-a 2-,-a +=-4,a 2-1=0,解得a =1.②当B A 时,由Δ=0得a =-1, 此时B ={0}满足题意,综上,实数a 的取值范围是{1,-1}. 答案 (1)D (2){1,-1} 现场纠错解析 (1)A ={1,3,m },B ={1,m },A ∪B =A ,故B ⊆A ,所以m =3或m =m ,即m =3或m =0或m =1,其中m =1不符合题意,所以m =0或m =3,故选B.(2)因为A ={0,-4},所以B ⊆A 分以下三种情况:①当B =A 时,B ={0,-4},由此知0和-4是方程x 2+2(a +1)x +a 2-1=0的两个根,由根与系数的关系,得⎩⎪⎨⎪⎧Δ=a +2-a 2-,-a +=-4,a 2-1=0,解得a =1;②当B ≠∅且B A 时,B ={0}或B ={-4}, 并且Δ=4(a +1)2-4(a 2-1)=0, 解得a =-1,此时B ={0}满足题意; ③当B =∅时,Δ=4(a +1)2-4(a 2-1)<0, 解得a <-1.综上所述,所求实数a 的取值范围是(-∞,-1]∪{1}. 答案 (1)B (2)(-∞,-1]∪{1}纠错心得 (1)集合的元素具有互异性,参数的取值要代入检验. (2)当两个集合之间具有包含关系时,不要忽略空集的情况.1.(2016·四川)设集合A ={x |-2≤x ≤2},Z 为整数集,则集合A ∩Z 中元素的个数是( ) A .3 B .4 C .5 D .6 答案 C解析 由题意可知,A ∩Z ={-2,-1,0,1,2},则A ∩Z 中的元素的个数为5.故选C. 2.已知集合M ={1,2,3,4},则集合P ={x |x ∈M ,且2x ∉M }的子集的个数为( ) A .8 B .4 C .3 D .2 答案 B解析 由题意得P ={3,4},∴集合P 有4个子集.3.已知集合A ={x |1<x <3},B ={x |2m <x <1-m },若A ∩B =∅,则实数m 的取值范围是( ) A .[13,+∞)B .[0,13)C .(-∞,0]D .[0,+∞)答案 D解析 ∵A ∩B =∅,①若2m ≥1-m ,即m ≥13时,B =∅,符合题意;②若2m <1-m ,即m <13时,需满足⎩⎪⎨⎪⎧m <13,1-m ≤1或⎩⎪⎨⎪⎧m <13,2m ≥3,解得0≤m <13或∅,即0≤m <13.综上,实数m 的取值范围为[0,+∞).4.(2017·潍坊调研)已知全集U =R ,集合A ={1,2,3,4,5},B ={x ∈R |x ≥2},则下图中阴影部分所表示的集合为( )A .{0,1}B .{1}C .{1,2}D .{0,1,2}答案 B解析 因为A ∩B ={2,3,4,5},而图中阴影部分为A 去掉A ∩B ,所以阴影部分所表示的集合为{1}.5.已知集合A ={x |-1<x <0},B ={x |x ≤a },若A ⊆B ,则a 的取值范围为( ) A .(-∞,0] B .[0,+∞) C .(-∞,0) D .(0,+∞) 答案 B解析 用数轴表示集合A ,B (如图),由A ⊆B ,得a ≥0.6.(2016·河北衡水中学模拟)已知U 为全集,集合A ={x |x 2-2x -3>0},B ={x |2<x <4},那么集合B ∩(∁U A )等于( ) A .{x |-1≤x ≤4} B .{x |2<x ≤3} C .{x |2≤x <3} D .{x |-1<x <4}答案 B解析 ∵A ={x <-1或x >3},∴∁U A ={x |-1≤x ≤3},B ={x |2<x <4}, ∴B ∩(∁U A )={x |2<x ≤3}.7.(2016·宁夏银川二中考试)已知集合A ={x |y =lg(x -x 2)},B ={x |x 2-cx <0,c >0},若A ⊆B ,则实数c 的取值范围是( )A .(0,1]B .[1,+∞)C .(0,1)D .(1,+∞)答案 B 解析 由题意知,A ={x |y =lg(x -x 2)}={x |x -x 2>0}=(0,1),B ={x |x 2-cx <0,c >0}=(0,c ).由A ⊆B ,画出数轴,如图所示,得c ≥1.8.(2015·浙江)已知集合P ={x |x 2-2x ≥0},Q ={x |1<x ≤2},则(∁R P )∩Q 等于( )A .[0,1)B .(0,2]C .(1,2)D .[1,2]答案 C解析 ∵P ={x |x ≥2或x ≤0},∁R P ={x |0<x <2},∴(∁R P )∩Q ={x |1<x <2},故选C.9.已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4答案 D解析 由x 2-3x +2=0,得x =1或x =2,∴A ={1,2}.由题意知B ={1,2,3,4}.∴满足条件的C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4},共4个.*10.设集合M =⎩⎨⎧⎭⎬⎫x |m ≤x ≤m +34,N =⎩⎨⎧⎭⎬⎫x |n -13≤x ≤n ,且M ,N 都是集合{x |0≤x ≤1}的子集,如果把b -a 叫作集合{x |a ≤x ≤b }的“长度”,那么集合M ∩N 的“长度”的最小值是( ) A.13 B.23 C.112 D.512答案 C解析 由已知,可得⎩⎪⎨⎪⎧ m ≥0,m +34≤1,即0≤m ≤14;⎩⎪⎨⎪⎧ n -13≥0,n ≤1,即13≤n ≤1,取m 的最小值0,n 的最大值1,可得M =⎣⎢⎡⎦⎥⎤0,34,N =⎣⎢⎡⎦⎥⎤23,1,所以M ∩N =⎣⎢⎡⎦⎥⎤0,34∩⎣⎢⎡⎦⎥⎤23,1=⎣⎢⎡⎦⎥⎤23,34,此时集合M ∩N 的“长度”的最小值为34-23=112,故选C. 11.已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为__________.答案 -32解析 ∵3∈A ,∴m +2=3或2m 2+m =3.当m +2=3,即m =1时,2m 2+m =3,此时集合A 中有重复元素3,不符合集合的互异性,舍去;当2m 2+m =3时,解得m =-32或m =1(舍去), 当m =-32时,m +2=12≠3,符合题意, ∴m =-32. 12.(2017·南阳月考)设全集U =R ,集合A ={x |y =x 2-2x -3},B ={y |y =e x +1},则A ∪B =__________.答案 (-∞,-1]∪(1,+∞)解析 因为A ={x |x ≥3或x ≤-1},B ={y |y >1},所以A ∪B ={x |x >1或x ≤-1}.13.已知集合A ={x |x 2-2x +a >0},且1∉A ,则实数a 的取值范围是__________. 答案 (-∞,1]解析 ∵1∉{x |x 2-2x +a >0},∴1∈{x |x 2-2x +a ≤0},即1-2+a ≤0,∴a ≤1.*14.设A 是整数集的一个非空子集,对于k ∈A ,如果k -1∉A ,且k +1∉A ,那么称k 是A 的一个“孤立元”.给定S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有________个.答案 6解析 依题意可知,由S 的3个元素构成的所有集合中,不含“孤立元”时,这三个元素一定是连续的三个自然数.故这样的集合共有6个.*15.已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),则m =________,n =________.答案 -1 1解析 A ={x ∈R ||x +2|<3}={x ∈R |-5<x <1},由A ∩B =(-1,n ),可知m <1,则B ={x |m <x <2},画出数轴,可得m =-1,n =1.。
2018届高三(新课标)数学(理)第一章 集合与常用逻辑用语
第一章⎪⎪⎪集合与常用逻辑用语第一节 集 合突破点(一) 集合的基本概念基础联通 抓主干知识的“源”与“流”1.集合的有关概念(1)集合元素的特性:确定性、互异性、无序性.(2)集合与元素的关系:若a 属于集合A ,记作a ∈A ;若b 不属于集合A ,记作b ∉A . (3)集合的表示方法:列举法、描述法、图示法. 2.常用数集及记法 数集 自然数集正整数集 整数集 有理数集实数集 记法NN *或N +ZQR考点贯通 抓高考命题的“形”与“神”求元素(个数)或已知元素个数求参数[例1]( ) A .1 B .3 C .5D .9(2)若集合A ={x ∈R|ax 2-3x +2=0}中只有一个元素,则a =( ) A.92 B.98 C .0D .0或98[解析] (1)∵A ={0,1,2},∴B ={x -y |x ∈A ,y ∈A }={0,-1,-2,1,2}.故集合B 中有5个元素.本节主要包括3个知识点: 1.集合的基本概念; 2.集合间的基本关系; 3.集合的基本运算.(2)当a =0时,显然成立;当a ≠0时,Δ=(-3)2-8a =0,即a =98.故a =0或98.[答案] (1)C (2)D [方法技巧]求元素(个数)的方法高考中,常利用集合元素的互异性确定集合中的元素,一般给定一个新定义集合,如“已知集合A ,B ,求集合C ={z |z =x *y ,x ∈A ,y ∈B }(或集合C 的元素个数),其中‘*’表示题目设定的某一种运算”.具体的解决方法:根据题目规定的运算“*”,一一列举x ,y 的可能取值(应用列举法和分类讨论思想),从而得出z 的所有可能取值,然后根据集合元素的互异性进行检验,相同元素重复出现只算作一个元素,判断出该集合的所有元素,即得该集合元素的个数.元素与集合的关系[例2] (1)设集合A ={2,3,4},B ={2,4,6},若x ∈A ,且x ∉B ,则x =( ) A .2 B .3 C .4 D .6(2)(2017·成都诊断)已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________. [解析] (1)因为x ∈A ,且x ∉B ,故x =3. (2)因为3∈A ,所以m +2=3或2m 2+m =3. 当m +2=3,即m =1时,2m 2+m =3, 此时集合A 中有重复元素3, 所以m =1不符合题意,舍去; 当2m 2+m =3时,解得m =-32或m =1(舍去),当m =-32时,m +2=12≠3符合题意.所以m =-32.[答案] (1)B (2)-32[方法技巧]利用元素的性质求参数的方法已知一个元素属于集合,求集合中所含的参数值.具体解法: (1)确定性的运用:利用集合中元素的确定性解出参数的所有可能值. (2)互异性的运用:根据集合中元素的互异性对集合中元素进行检验.能力练通 抓应用体验的“得”与“失”1.[考点二]设集合P ={x |x 2-2x ≤0},m =30.5,则下列关系正确的是( ) A .m P B .m ∈P C .m ∉PD .m ⊆P解析:选C 易知P ={x |0≤x ≤2},而m =30.5=3>2,∴m ∉P ,故选C.2.[考点一]已知集合A ={1,2,4},则集合B ={(x ,y )|x ∈A ,y ∈A }中元素的个数为( ) A .3 B .6 C .8D .9解析:选D 集合B 中的元素有(1,1),(1,2),(1,4),(2,1),(2,2),(2,4),(4,1),(4,2),(4,4),共9个.3.[考点二](2017·杭州模拟)设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =( )A .1B .-1C .2D .-2解析:选C 因为{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,a ≠0,所以a +b =0,则ba =-1,所以a =-1,b =1.所以b -a =2.4.[考点一]已知P ={x |2<x <k ,x ∈N},若集合P 中恰有3个元素,则k 的取值范围为________.解析:因为P 中恰有3个元素,所以P ={3,4,5},故k 的取值范围为5<k ≤6. 答案:(5,6]5.[考点一]若集合A ={x ∈R|ax 2+ax +1=0}中只有一个元素,则a =________. 解析:当a =0时,方程无解;当a ≠0时,则Δ=a 2-4a =0,解得a =4.故符合题意的a 的值为4.答案:4突破点(二) 集合间的基本关系基础联通 抓主干知识的“源”与“流”表示关系文字语言记法集合间的基本关系子集集合A中任意一个元素都是集合B中的元素A⊆B或B⊇A真子集集合A是集合B的子集,并且B中至少有一个元素不属于AA B或B A相等集合A的每一个元素都是集合B的元素,集合B的每一个元素也都是集合A的元素A⊆B且B⊆A⇔A=B空集空集是任何集合的子集∅⊆A空集是任何非空集合的真子集∅B且B≠∅考点贯通抓高考命题的“形”与“神”集合子集个数的判定含有n个元素的集合,其子集的个数为2n;真子集的个数为2n-1(除集合本身);非空真子集的个数为2n-2(除空集和集合本身,此时n≥1).[例1]已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为()A.1 B.2C.3 D.4[解析]由x2-3x+2=0得x=1或x=2,所以A={1,2}.由题意知B={1,2,3,4},所以满足条件的集合C为{1,2},{1,2,3},{1,2,4},{1,2,3,4},共4个.[答案] D[易错提醒](1)注意空集的特殊性:空集是任何集合的子集,是任何非空集合的真子集.(2)任何集合的本身是该集合的子集,在列举时千万不要忘记.集合间的关系考法(一)[例2]已知集合A={x|y=1-x2,x∈R},B={x|x=m2,m∈A},则()A.A B B.B AC .A ⊆BD .B =A[解析] 由题意知A ={x |y =1-x 2,x ∈R}, 所以A ={x |-1≤x ≤1},所以B ={x |x =m 2,m ∈A }={x |0≤x ≤1}, 所以B A .故选B. [答案] B [方法技巧]判断集合间关系的三种方法(1)列举法:根据题中限定条件把集合元素表示出来,然后比较集合元素的异同,从而找出集合之间的关系.(2)结构法:从元素的结构特点入手,结合通分、化简、变形等技巧,从元素结构上找差异进行判断.(3)数轴法:在同一个数轴上表示出两个集合,比较端点之间的大小关系,从而确定集合与集合之间的关系.[提醒] 在用数轴法判断集合间的关系时,其端点能否取到,一定要注意用回代检验的方法来确定.如果两个集合的端点相同,则两个集合是否能同时取到端点往往决定了集合之间的关系.考法(二) 根据集合间的关系求参数[例3] 已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,则实数m 的取值范围为________.[解析] ∵B ⊆A ,∴①若B =∅, 则2m -1<m +1,此时m <2. ②若B ≠∅,则⎩⎪⎨⎪⎧2m -1≥m +1,m +1≥-2,2m -1≤5.解得2≤m ≤3.由①②可得,符合题意的实数m 的取值范围为(-∞,3]. [答案] (-∞,3] [易错提醒]将两个集合之间的关系准确转化为参数所满足的条件时,应注意子集与真子集的区别,此类问题多与不等式(组)的解集相关.确定参数所满足的条件时,一定要把端点值代入进行验证,否则易产生增解或漏解.能力练通抓应用体验的“得”与“失”1.[考点一]集合A={x∈N|0<x<4}的真子集个数为()A.3 B.4C.7 D.8解析:选C因为A={1,2,3},所以其真子集的个数为23-1=7.2.[考点二·考法(一)](2017·长沙模拟)设P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},则()A.P⊆Q B.Q⊆PC.∁R P⊆Q D.Q⊆∁R P解析:选C因为P={y|y=-x2+1,x∈R}={y|y≤1},所以∁R P={y|y>1},又Q={y|y=2x,x∈R}={y|y>0},所以∁R P⊆Q,故选C.3.[考点二·考法(二)]已知集合A={0,1},B={-1,0,a+3},且A⊆B,则a=() A.1 B.0 C.-2 D.-3解析:选C∵A⊆B,∴a+3=1,解得a=-2.故选C.4.[考点二·考法(二)]已知集合A={x|4≤2x≤16},B=[a,b],若A⊆B,则实数a-b的取值范围是________.解析:集合A={x|4≤2x≤16}={x|22≤2x≤24}={x|2≤x≤4}=[2,4],因为A⊆B,所以a≤2,b≥4,所以a-b≤2-4=-2,即实数a-b的取值范围是(-∞,-2].答案:(-∞,-2]突破点(三)集合的基本运算基础联通抓主干知识的“源”与“流”1.集合的三种基本运算符号表示图形表示符号语言集合的A∪B A∪B={x|x∈A,或x∈B} 并集集合的A∩B A∩B={x|x∈A,且x∈B} 交集集合的补集若全集为U ,则集合A 的补集为∁U A∁U A ={x |x ∈U ,且x ∉A }2.集合的三种基本运算的常见性质(1)A ∩A =A ,A ∩∅=∅,A ∪A =A ,A ∪∅=A . (2)A ∩∁U A =∅,A ∪∁U A =U ,∁U (∁U A )=A .(3)A ⊆B ⇔A ∩B =A ⇔A ∪B =B ⇔∁U A ⊇∁U B ⇔A ∩(∁U B )=∅.考点贯通 抓高考命题的“形”与“神”求交集或并集[例1] (1)(2016·全国甲卷)已知集合A ={1,2,3},B ={x |(x +1)(x -2)<0,x ∈Z},则A ∪B =( )A .{1}B .{1,2}C .{0,1,2,3}D .{-1,0,1,2,3}(2)(2016·全国乙卷)设集合A ={x |x 2-4x +3<0},B ={x |2x -3>0},则A ∩B =( ) A.⎝⎛⎭⎫-3,-32 B.⎝⎛⎭⎫-3,32 C.⎝⎛⎭⎫1,32 D.⎝⎛⎭⎫32,3[解析] (1)因为B ={x |(x +1)(x -2)<0,x ∈Z}={x |-1<x <2,x ∈Z}={0,1},A ={1,2,3},所以A ∪B ={0,1,2,3}.(2)∵x 2-4x +3<0,∴1<x <3,∴A ={x |1<x <3}.∵2x -3>0,∴x >32,∴B =⎩⎨⎧⎭⎬⎫x ⎪⎪x >32.∴A ∩B ={x |1<x <3}∩⎩⎨⎧⎭⎬⎫x ⎪⎪x >32=⎝⎛⎭⎫32,3. [答案] (1)C (2)D [方法技巧]求集合的交集或并集时,应先化简集合,再利用交集、并集的定义求解.交、并、补的混合运算[例2] (1)已知全集U ={1,2,3,4,5,6,7,8},集合A ={2,3,5,6},集合B ={1,3,4,6,7},则集合A ∩∁U B =( )A .{2,5}B .{3,6}C .{2,5,6}D .{2,3,5,6,8}(2)已知全集U =R ,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )=( ) A .{x |x ≥0} B .{x |x ≤1} C .{x |0≤x ≤1}D .{x |0<x <1}[解析] (1)因为∁U B ={2,5,8},所以A ∩∁U B ={2,3,5,6}∩{2,5,8}={2,5}. (2)∵A ∪B ={x |x ≤0}∪{x |x ≥1}={x |x ≤0或x ≥1}, ∴∁U (A ∪B )={x |0<x <1}. [答案] (1)A (2)D[方法技巧]集合混合运算的解题思路进行集合的混合运算时,一般先运算括号内的部分.当集合是用列举法表示的数集时,可以通过列举集合的元素进行运算;当集合用不等式形式表示时,可借助数轴求解,对于端点值的取舍,应单独检验.集合的新定义问题[例3] (2017·合肥模拟)对于集合M ,N ,定义M -N ={x |x ∈M ,且x ∉N },M ⊕N =(M -N )∪(N -M ).设A ={y |y =x 2-3x ,x ∈R},B ={y |y =-2x ,x ∈R},则A ⊕B 等于( )A.⎝⎛⎦⎤-94,0 B.⎣⎡⎭⎫-94,0 C.⎝⎛⎭⎫-∞,-94∪[0,+∞) D.⎝⎛⎦⎤-∞,-94∪(0,+∞) [解析] 因为A =⎩⎨⎧⎭⎬⎫y ⎪⎪y ≥-94,B ={y |y <0}, 所以A -B ={y |y ≥0},B -A =⎩⎨⎧⎭⎬⎫y ⎪⎪y <-94, A ⊕B =(A -B )∪(B -A )=⎩⎨⎧⎭⎬⎫y ⎪⎪y ≥0或y <-94. 故选C. [答案] C [方法技巧]解决集合新定义问题的两个着手点(1)正确理解新定义.耐心阅读,分析含义,准确提取信息是解决这类问题的前提,剥去新定义、新法则、新运算的外表,利用所学的集合性质等知识将陌生的集合转化为我们熟悉的集合,是解决这类问题的突破口.(2)合理利用集合性质.运用集合的性质(如元素的性质、集合的运算性质等)是破解新定义型集合问题的关键.在解题时要善于从题设条件给出的数式中发现可以使用集合性质的一些因素,并合理利用.1.[考点一](2016·北京高考)已知集合A={x||x|<2},B={-1,0,1,2,3},则A∩B=()A.{0,1} B.{0,1,2}C.{-1,0,1} D.{-1,0,1,2}解析:选C集合A={x|-2<x<2},集合B={-1,0,1,2,3},所以A∩B={-1,0,1}.2.[考点一](2017·长春模拟)设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B=()A.(-1,1) B.(0,1)C.(-1,+∞) D.(0,+∞)解析:选C∵A=(0,+∞),B=(-1,1),∴A∪B=(-1,+∞).故选C.3.[考点二](2017·贵阳模拟)设集合A={x|1<x<4},集合B={x|x2-2x-3≤0},则A∩(∁B)=()RA.(1,4) B.(3,4)C.(1,3) D.(1,2)∪(3,4)解析:选B由题意知B={x|-1≤x≤3},所以∁R B={x|x<-1或x>3},所以A∩(∁R B)={x|3<x<4},故选B.4.[考点三]定义集合A,B的一种运算:A*B={x|x=x1·x2,其中x1∈A,x2∈B},若A={1,2},B={1,2},则A*B中的所有元素之和为()A.5 B.6 C.7 D.9解析:选C∵A*B={x|x=x1·x2,其中x1∈A,x2∈B},且A={1,2},B={1,2},∴A*B ={1,2,4},故A*B中的所有元素之和为1+2+4=7.5.[考点二]设全集U=R,A={x|x(x+3)<0},B={x|x<-1},则图中阴影部分表示的集合为________.解析:因为A={x|x(x+3)<0}={x|-3<x<0},∁U B={x|x≥-1},阴影部分为A∩(∁U B),所以A∩(∁U B)={x|-1≤x<0}.答案:{x|-1≤x<0}[全国卷5年真题集中演练——明规律]1.(2016·全国丙卷)设集合S={x|(x-2)(x-3)≥0},T={x|x>0},则S∩T=()A.[2,3]B.(-∞,2]∪[3,+∞)C.[3,+∞) D.(0,2]∪[3,+∞)解析:选D由题意知S={x|x≤2或x≥3},则S∩T={x|0<x≤2或x≥3}.故选D.2.(2015·新课标全国卷Ⅱ)已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A∩B =()A.{-1,0} B.{0,1}C.{-1,0,1} D.{0,1,2}解析:选A由题意知B={x|-2<x<1},所以A∩B={-1,0}.故选A.3.(2012·新课标全国卷)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B中所含元素的个数为()A.3 B.6 C.8 D.10解析:选D列举得集合B={(2,1),(3,1),(4,1),(5,1),(3,2),(4,2),(5,2),(4,3),(5,3),(5,4)},共含有10个元素.4.(2016·全国甲卷)已知集合A={1,2,3},B={x|x2<9},则A∩B=()A.{-2,-1,0,1,2,3} B.{-2,-1,0,1,2}C.{1,2,3} D.{1, 2}解析:选D∵x2<9,∴-3<x<3,∴B={x|-3<x<3}.又A={1,2,3},∴A∩B={1,2,3}∩{x|-3<x<3}={1,2},故选D.5.(2013·新课标全国卷Ⅰ)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=() A.{1,4} B.{2,3} C.{9,16} D.{1,2}解析:选A因为x=n2,所以当n=1,2,3,4时,x=1,4,9,16,所以集合B={1,4,9,16},所以A∩B={1,4}.[课时达标检测] 基础送分课时——精练“12+4”,求准求快不深挖 一、选择题1.若集合A ={(1,2),(3,4)},则集合A 的真子集的个数是( ) A .16 B .8 C .4D .3解析:选D 集合A 中有两个元素,则集合A 的真子集的个数是22-1=3.选D. 2.若集合A ={-1,0,1},B ={y |y =x 2,x ∈A },则A ∩B =( ) A .{0} B .{1} C .{0,1}D .{0,-1}解析:选C 因为B ={y |y =x 2,x ∈A }={0,1},所以A ∩B ={0,1}.3.已知集合A ={y |y =|x |-1,x ∈R},B ={x |x ≥2},则下列结论正确的是( ) A .-3∈A B .3∉B C .A ∩B =BD .A ∪B =B解析:选C 由题A ={y |y ≥-1},因此A ∩B ={x |x ≥2}=B . 4.设集合M ={x |x 2=x },N ={x |lg x ≤0},则M ∪N =( ) A .[0,1] B .(0,1] C .[0,1)D .(-∞,1]解析:选A M ={x |x 2=x }={0,1},N ={x |lg x ≤0}={x |0<x ≤1},M ∪N =[0,1]. 5.已知集合A =⎩⎨⎧x ⎪⎪⎭⎬⎫x ∈Z ,且32-x ∈Z ,则集合A 中的元素个数为( )A .2B .3C .4D .5解析:选C ∵32-x∈Z ,∴2-x 的取值有-3,-1,1,3,又∵x ∈Z ,∴x 值分别为5,3,1,-1,故集合A 中的元素个数为4.6.已知全集为整数集Z.若集合A ={x |y =1-x ,x ∈Z},B ={x |x 2+2x >0,x ∈Z},则A ∩(∁Z B )=( )A .{-2}B .{-1}C .[-2,0]D .{-2,-1,0}解析:选D 由题可知,集合A ={x |x ≤1,x ∈Z},B ={x |x >0或x <-2,x ∈Z},故A ∩(∁Z B )={-2,-1,0},故选D.7.(2017·成都模拟)已知全集U =R ,集合A ={x |0≤x ≤2},B ={x |x 2-1<0},则图中的阴影部分表示的集合为( )A .(-∞,1]∩(2,+∞)B .(-1,0)∪[1,2]C .[1,2)D .(1,2]解析:选B 因为A ={x |0≤x ≤2},B ={x |-1<x <1},所以A ∪B ={x |-1<x ≤2},A ∩B ={x |0≤x <1}.故图中阴影部分表示的集合为∁(A ∪B )(A ∩B )=(-1,0)∪[1,2].8.设全集U =R ,已知集合A ={x ||x |≤1},B ={x |log 2x ≤1},则(∁U A )∩B =( ) A .(0,1] B .[-1,1]C .(1,2]D .(-∞,-1]∪[1,2]解析:选C 由|x |≤1,得-1≤x ≤1,由log 2x ≤1,得0<x ≤2,所以∁U A ={x |x >1或x <-1},则(∁U A )∩B =(1,2].9.设集合A =⎩⎨⎧⎭⎬⎫5,b a ,a -b ,B ={b ,a +b ,-1},若A ∩B ={2,-1},则A ∪B =( )A .{2,3}B .{-1,2,5}C .{2,3,5}D .{-1,2,3,5}解析:选D 由A ∩B ={2,-1},可得⎩⎪⎨⎪⎧b a =2,a -b =-1或⎩⎪⎨⎪⎧b a =-1,a -b =2.当⎩⎪⎨⎪⎧b a =2,a -b =-1时,⎩⎪⎨⎪⎧a =1,b =2,此时B ={2,3,-1},则A ∪B ={-1,2,3,5};当⎩⎪⎨⎪⎧ba =-1,a -b =2时,⎩⎪⎨⎪⎧a =1,b =-1,此时不符合题意,舍去.故A ∪B ={-1,2,3,5}.10.设集合A ={x |y =lg(-x 2+x +2)},B ={x |x -a >0},若A ⊆B ,则实数a 的取值范围是( )A .(-∞,-1)B .(-∞,-1]C .(-∞,-2)D .(-∞,-2]解析:选B 集合A ={x |y =lg(-x 2+x +2)}={x |-1<x <2},B ={x |x >a },因为A ⊆B ,所以a ≤-1.11.已知全集U ={x ∈Z|0<x <8},集合M ={2,3,5},N ={x |x 2-8x +12=0},则集合{1,4,7}为( )A .M ∩(∁U N )B .∁U (M ∩N )C .∁U (M ∪N )D .(∁U M )∩N解析:选C 由已知得U ={1,2,3,4,5,6,7},N ={2,6},M ∩(∁U N )={2,3,5}∩{1,3,4,5,7}={3,5},M ∩N ={2},∁U (M ∩N )={1,3,4,5,6,7},M ∪N ={2,3,5,6},∁U (M ∪N )={1,4,7},(∁U M )∩N ={1,4,6,7}∩{2,6}={6},故选C.12.(2017·沈阳模拟)已知集合A ={x ∈N|x 2-2x -3≤0},B ={1,3},定义集合A ,B 之间的运算“*”:A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },则A *B 中的所有元素之和为( )A .15B .16C .20D .21解析:选D 由x 2-2x -3≤0,得(x +1)(x -3)≤0,又x ∈N ,故集合A ={0,1,2,3}.∵A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },∴A *B 中的元素有0+1=1,0+3=3,1+1=2,1+3=4,2+1=3(舍去),2+3=5,3+1=4(舍去),3+3=6,∴A *B ={1,2,3,4,5,6},∴A *B 中的所有元素之和为21.二、填空题13.已知集合A ={1,2,3,4},B ={2,4,6,8},定义集合A ×B ={(x ,y )|x ∈A ,y ∈B },集合A ×B 中属于集合{(x ,y )|log x y ∈N}的元素的个数是________.解析:由定义可知A ×B 中的元素为(1,2),(1,4),(1,6),(1,8),(2,2),(2,4),(2,6),(2,8),(3,2),(3,4),(3,6),(3,8),(4,2),(4,4),(4,6),(4,8).其中使log x y ∈N 的有(2,2),(2,4),(2,8),(4,4),共4个.答案:414.设集合I ={x |-3<x <3,x ∈Z},A ={1,2},B ={-2,-1,2},则A ∩(∁I B )=________. 解析:∵集合I ={x |-3<x <3,x ∈Z}={-2,-1,0,1,2},A ={1,2},B ={-2,-1,2},∴∁I B ={0,1},则A ∩(∁I B )={1}.答案:{1}15.集合A ={x |x 2+x -6≤0},B ={y |y =x ,0≤x ≤4},则A ∩(∁R B )=________. 解析:A ={x |x 2+x -6≤0}={x |-3≤x ≤2},B ={y |y =x ,0≤x ≤4}={y |0≤y ≤2},∴∁R B ={y |y <0或y >2}.∴A ∩(∁R B )=[-3,0).答案:[-3,0)16.已知集合A ={y |y 2-(a 2+a +1)y +a (a 2+1)>0},B =⎩⎨⎧y ⎪⎪⎭⎬⎫y =12x 2-x +52,0≤x ≤3.若A ∩B =∅,则实数a 的取值范围是________.解析:A ={y |y <a 或y >a 2+1},B ={y |2≤y ≤4}.当A ∩B =∅时,⎩⎪⎨⎪⎧a 2+1≥4,a ≤2,∴3≤a ≤2或a ≤-3,∴a 的取值范围是(-∞,- 3 ]∪[3,2]. 答案:(-∞,- 3 ]∪[3,2] 第二节命题及其关系、充分条件与必要条件本节主要包括2个知识点: 1.命题及其关系; 2.充分条件与必要条件.突破点(一)命题及其关系基础联通抓主干知识的“源”与“流”1.命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及相互关系3.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.考点贯通抓高考命题的“形”与“神”命题的真假判断[例1]下列命题中为真命题的是()A.若1x=1y,则x=yB.若x2=1,则x=1C.若x=y,则x=yD.若x<y,则x2<y2[解析]取x=-1,排除B;取x=y=-1,排除C;取x=-2,y=-1,排除D.[答案] A[方法技巧]判断命题真假的思路方法(1)判断一个命题的真假时,首先要弄清命题的结构,即它的条件和结论分别是什么,把它写成“若p,则q”的形式,然后联系其他相关的知识,经过逻辑推理或列举反例来判定.(2)一个命题要么真,要么假,二者必居其一.当一个命题改写成“若p,则q”的形式之后,判断这个命题真假的方法:①若由“p”经过逻辑推理,得出“q”,则可判定“若p,则q”是真命题;②判定“若p,则q”是假命题,只需举一反例即可.四种命题的关系得逆命题,将条件与结论同时否定即得否命题,将条件与结论互换的同时进行否定即得逆否命题.[例2](1)命题“若a>b,则a-1>b-1”的否命题是()A.若a>b,则a-1≤b-1B.若a>b,则a-1<b-1C.若a≤b,则a-1≤b-1D.若a<b,则a-1<b-1(2)给出命题:若函数y=f(x)是幂函数,则函数y=f(x)的图象不过第四象限.在它的逆命题、否命题、逆否命题3个命题中,真命题的个数是()A.3 B.2 C.1 D.0[解析](1)根据否命题的定义可知,命题“若a>b,则a-1>b-1”的否命题应为“若a≤b,则a-1≤b-1”.(2)原命题是真命题,故它的逆否命题是真命题;它的逆命题为“若函数y=f(x)的图象不过第四象限,则函数y=f(x)是幂函数”,显然逆命题为假命题,故原命题的否命题也为假命题.因此在它的逆命题、否命题、逆否命题3个命题中真命题只有1个.[答案](1)C(2)C[方法技巧]1.写一个命题的其他三种命题时的注意事项(1)对于不是“若p,则q”形式的命题,需先改写为“若p,则q”形式.(2)若命题有大前提,需保留大前提.2.判断四种命题真假的方法(1)利用简单命题判断真假的方法逐一判断.(2)利用四种命题间的等价关系:当一个命题不易直接判断真假时,可转化为判断其等价命题的真假.1.[考点一]下列命题中为真命题的是( ) A .mx 2+2x -1=0是一元二次方程B .抛物线y =ax 2+2x -1与x 轴至少有一个交点C .互相包含的两个集合相等D .空集是任何集合的真子集解析:选C A 中,当m =0时,是一元一次方程,故是假命题;B 中,当Δ=4+4a <0,即a <-1时,抛物线与x 轴无交点,故是假命题;C 是真命题;D 中,空集不是本身的真子集,故是假命题.2.[考点二]命题“若x 2+y 2=0,x ,y ∈R ,则x =y =0”的逆否命题是( ) A .若x ≠y ≠0,x ,y ∈R ,则x 2+y 2=0 B .若x =y ≠0,x ,y ∈R ,则x 2+y 2≠0 C .若x ≠0且y ≠0,x ,y ∈R ,则x 2+y 2≠0 D .若x ≠0或y ≠0,x ,y ∈R ,则x 2+y 2≠0解析:选D 将原命题的条件和结论否定,并互换位置即可.由x =y =0知x =0且y =0,其否定是x ≠0或y ≠0.故原命题的逆否命题是“若x ≠0或y ≠0,x ,y ∈R ,则x 2+y 2≠0”.3.[考点二]命题“若△ABC 有一个内角为π3,则△ABC 的三个内角成等差数列”的逆命题( )A .与原命题同为假命题B .与原命题的否命题同为假命题C .与原命题的逆否命题同为假命题D .与原命题同为真命题解析:选D 原命题显然为真命题,原命题的逆命题为“若△ABC 的三个内角成等差数列,则△ABC 有一个内角为π3”,它是真命题.故选D.4.[考点二]有下列四个命题:①“若xy =1,则x ,y 互为倒数”的逆命题; ②“面积相等的三角形全等”的否命题;③“若m ≤1,则x 2-2x +m =0有实数解”的逆否命题; ④“若A ∩B =B ,则A ⊆B ”的逆否命题.其中为真命题的是________(填写所有真命题的序号).解析:①“若xy=1,则x,y互为倒数”的逆命题是“若x,y互为倒数,则xy=1”,显然是真命题;②“面积相等的三角形全等”的否命题是“若两个三角形面积不相等,则这两个三角形不全等”,显然是真命题;③若x2-2x+m=0有实数解,则Δ=4-4m≥0,解得m≤1,所以“若m≤1,则x2-2x+m=0有实数解”是真命题,故其逆否命题是真命题;④若A∩B=B,则B⊆A,故原命题是假命题,所以其逆否命题是假命题.故真命题为①②③.答案:①②③突破点(二)充分条件与必要条件基础联通抓主干知识的“源”与“流”1.充分条件与必要条件的概念若p⇒q,则p是q的充分条件,q是p的必要条件p是q的充分不必要条件p⇒q且q⇒/pp是q的必要不充分条件p⇒/q且q⇒pp是q的充要条件p⇔qp是q的既不充分也不必要条件p⇒/q且q⇒/p 2.p成立的对象构成的集合为A,q成立的对象构成的集合为Bp是q的充分条件A⊆Bp是q的必要条件B⊆Ap是q的充分不必要条件A Bp是q的必要不充分条件B Ap是q的充要条件A=B 考点贯通抓高考命题的“形”与“神”充分条件与必要条件的判断[例1]x,y满足x+y >2,则p是q的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2)(2016·天津高考)设x >0,y ∈R ,则“x >y ”是“x >|y |”的( ) A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件[解析] (1)∵⎩⎪⎨⎪⎧x >1,y >1,∴x +y >2,即p ⇒q .而当x =0,y =3时,有x +y =3>2,但不满足x >1且y >1,即q ⇒/ p .故p 是q 的充分不必要条件.(2)当x =1,y =-2时,x >y ,但x >|y |不成立;若x >|y |,因为|y |≥y ,所以x >y .所以x >y 是x >|y |的必要而不充分条件.[答案] (1)A (2)C [方法技巧]充分、必要条件的三种判断方法(1)定义法:根据p ⇒q ,q ⇒p 进行判断.(2)集合法:根据p ,q 成立对应的集合之间的包含关系进行判断.(3)等价转化法:根据一个命题与其逆否命题的等价性,把要判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy ≠1”是“x ≠1或y ≠1”的何种条件,即可转化为判断“x =1且y =1”是“xy =1”的何种条件.充分条件与必要条件的应用[例2] (1)命题“对任意x ∈[1,2),x ( )A .a ≥1B .a >1C .a ≥4D .a >4(2)已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,则m 的取值范围为________.[解析] (1)命题可化为∀x ∈[1,2),a ≥x 2恒成立. ∵x ∈[1,2),∴x 2∈[1,4).∴命题为真命题的充要条件为a ≥4.∴命题为真命题的一个充分不必要条件为a >4,故选D. (2)由x 2-8x -20≤0得-2≤x ≤10, ∴P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P . 则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2,1+m ≤10,解得0≤m ≤3.所以当0≤m ≤3时,x ∈P 是x ∈S 的必要条件,即所求m 的取值范围是[0,3]. [答案] (1)D (2)[0,3][方法技巧]根据充分、必要条件求参数的思路方法根据充分、必要条件求参数的值或取值范围的关键是合理转化条件,常通过有关性质、定理、图象将恒成立问题和有解问题转化为最值问题等,得到关于参数的方程或不等式(组),然后通过解方程或不等式(组)求出参数的值或取值范围.1.[考点一](2017·长沙四校联考)“x >1”是“log 2(x -1)<0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 由log 2(x -1)<0得0<x -1<1,即1<x <2,故“x >1”是“log 2(x -1)<0”的必要不充分条件,选B.2.[考点二]已知“x >k ”是“3x +1<1”的充分不必要条件,则k 的取值范围是( ) A .[2,+∞) B .[1,+∞) C .(2,+∞) D .(-∞,-1]解析:选A 由3x +1<1,得3x +1-1=-x +2x +1<0,解得x <-1或x >2.因为“x >k ”是“3x +1<1”的充分不必要条件,所以k ≥2.3.[考点一](2017·太原模拟)“已知命题p :cos α≠12,命题q :α≠π3”,则命题p 是命题q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 若cos α≠12,则α≠2k π±π3(k ∈Z),则α也必然不等于π3,故p ⇒q ;若α≠π3,但α=-π3时,依然有cos α=12,故q ⇒/p .所以p 是q 的充分不必要条件.4.[考点二]已知p :x >1或x <-3,q :x >a ,若q 是p 的充分不必要条件,则a 的取值范围是( )A .[1,+∞)B .(-∞,1]C .[-3,+∞)D .(-∞,-3)解析:选A 设P ={x |x >1或x <-3},Q ={x |x >a },因为q 是p 的充分不必要条件,所以Q P ,因此a ≥1.5.[考点一]已知函数f (x )=13x-1+a (x ≠0),则“f (1)=1”是“函数f (x )为奇函数”的________条件.(用“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”填写)解析:若f (x )=13x-1+a 是奇函数, 则f (-x )=-f (x ), 即f (-x )+f (x )=0, ∴13-x-1+a +13x -1+a =2a +3x 1-3x +13x -1=0,即2a +3x -11-3x =0,∴2a -1=0,即a =12,f (1)=12+12=1.若f (1)=1,即f (1)=12+a =1,解得a =12,所以f (x )=13x-1+12,f (-x ) =13-x-1+12=-13x -1-12=-f (x ), 故f (x )是奇函数.∴“f (1)=1”是“函数f (x )为奇函数”的充要条件.答案:充要[全国卷5年真题集中演练——明规律]1.(2014·新课标全国卷Ⅱ)函数f(x) 在x=x0处导数存在.若p:f′(x0)=0;q:x=x0是f(x)的极值点,则()A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件解析:选C设f(x)=x3,f′(0)=0,但是f(x)是单调增函数,在x=0处不存在极值,故若p,则q是一个假命题,由极值的定义可得若q,则p是一个真命题.故选C.2.(2012·新课标全国卷)下面是关于复数z=2-1+i的四个命题:p1:|z|=2;p2:z2=2i;p3:z的共轭复数为1+i;p4:z的虚部为-1. 其中的真命题为()A.p2,p3B.p1,p2C.p2,p4D.p3,p4解析:选C∵复数z=2-1+i=-1-i,∴|z|=2,z2=(-1-i)2=(1+i)2=2i,z的共轭复数为-1+i,z的虚部为-1,综上可知p2,p4是真命题.[课时达标检测]基础送分课时——精练“12+4”,求准求快不深挖一、选择题1.设m∈R,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是()A.若方程x2+x-m=0有实根,则m>0B.若方程x2+x-m=0有实根,则m≤0C.若方程x2+x-m=0没有实根,则m>0D.若方程x2+x-m=0没有实根,则m≤0解析:选D根据逆否命题的定义,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是“若方程x2+x-m=0没有实根,则m≤0”.2.“(2x-1)x=0”是“x=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B若(2x-1)x=0,则x=12或x=0,即不一定是x=0;若x=0,则一定能推出(2x-1)x=0.故“(2x-1)x=0”是“x=0”的必要不充分条件.3.“a <0,b <0”的一个必要条件为( ) A .a +b <0 B .a -b >0 C.ab >1D.ab <-1解析:选A 若a <0,b <0,则一定有a +b <0,故选A.4.已知命题p :“若x ≥a 2+b 2,则x ≥2ab ”,则下列说法正确的是( ) A .命题p 的逆命题是“若x <a 2+b 2,则x <2ab ” B .命题p 的逆命题是“若x <2ab ,则x <a 2+b 2” C .命题p 的否命题是“若x <a 2+b 2,则x <2ab ” D .命题p 的否命题是“若x ≥a 2+b 2,则x <2ab ”解析:选C 命题p 的逆命题是“若x ≥2ab ,则x ≥a 2+b 2”,故A ,B 都错误;命题p 的否命题是“若x <a 2+b 2,则x <2ab ”,故C 正确,D 错误.5.若f (x )是定义在R 上的函数,则“f (0)=0”是“函数f (x )为奇函数”的( ) A .必要不充分条件 B .充要条件 C .充分不必要条件 D .既不充分也不必要条件解析:选A f (x )是定义在R 上的奇函数可以推出f (0)=0,但f (0)=0不能推出函数f (x )为奇函数,例如f (x )=x 2.故选A.6.原命题p :“设a ,b ,c ∈R ,若a >b ,则ac 2>bc 2”以及它的逆命题、否命题、逆否命题中,真命题的个数为( )A .0B .1C .2D .4解析:选C 当c =0时,ac 2=bc 2,所以原命题是错误的;由于原命题与逆否命题的真假一致,所以逆否命题也是错误的;逆命题为“设a ,b ,c ∈R ,若ac 2>bc 2,则a >b ”,它是真命题;由于否命题与逆命题的真假一致,所以逆命题与否命题都为真命题.综上所述,真命题有2个.7.“a =2” 是“函数f (x )=x 2-2ax -3在区间[2,+∞)上为增函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A “a =2”可以推出“函数f (x )=x 2-2ax -3在区间[2,+∞)上为增函数”,但反之不能推出.故“a =2”是“函数f (x )=x 2-2ax -3在区间[2,+∞)上为增函数”的充分不必要条件.8.(2017·杭州模拟)已知条件p:x+y≠-2,条件q:x,y不都是-1,则p是q的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A因为p:x+y≠-2,q:x≠-1,或y≠-1,所以綈p:x+y=-2,綈q:x=-1,且y=-1,因为綈q⇒綈p但綈p⇒/綈q,所以綈q是綈p的充分不必要条件,即p是q的充分不必要条件.9.设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD为菱形”是“AC⊥BD”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A当四边形ABCD为菱形时,必有对角线互相垂直,即AC⊥BD;当四边形ABCD中AC⊥BD时,四边形ABCD不一定是菱形,还需要AC与BD互相平分.综上知,“四边形ABCD为菱形”是“AC⊥BD”的充分不必要条件.10.(2017·烟台诊断)若条件p:|x|≤2,条件q:x≤a,且p是q的充分不必要条件,则a的取值范围是()A.[2,+∞) B.(-∞,2]C.[-2,+∞) D.(-∞,-2]解析:选A p:|x|≤2等价于-2≤x≤2.因为p是q的充分不必要条件,所以有[-2,2]⊆(-∞,a],即a≥2.11.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是()A.①和②B.②和③C.③和④D.②和④解析:选D只有一个平面内的两条相交直线与另一个平面都平行时,这两个平面才相互平行,所以①为假命题;②符合两个平面相互垂直的判定定理,所以②为真命题;垂直于同一直线的两条直线可能平行,也可能相交或异面,所以③为假命题;根据两个平面垂直的性质定理易知④为真命题.12.直线l:y=kx+1与圆O:x2+y2=1相交于A,B两点,则“k=1”是“△OAB的面积为12”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 当k =1时,l :y =x +1,由题意不妨令A (-1,0),B (0,1),则S △AOB =12×1×1=12,所以充分性成立;当k =-1时,l :y =-x +1,也有S △AOB =12,所以必要性不成立. 二、填空题13.已知a ,b ,c ∈R ,命题“若a +b +c =3,则a 2+b 2+c 2≥3”的否命题是________. 解析:“a +b +c =3”的否定是“a +b +c ≠3”,“a 2+b 2+c 2≥3”的否定是“a 2+b 2+c 2<3”,故根据否命题的定义知,该命题的否命题为:若a +b +c ≠3,则a 2+b 2+c 2<3.答案:若a +b +c ≠3,则a 2+b 2+c 2<3 14.有下列几个命题:①“若a >b ,则1a >1b ”的否命题;②“若x +y =0,则x ,y 互为相反数”的逆命题; ③“若x 2<4,则-2<x <2”的逆否命题. 其中真命题的序号是________.解析:①原命题的否命题为“若a ≤b ,则1a ≤1b ”,假命题.②原命题的逆命题为:“若x ,y 互为相反数,则x +y =0”,真命题.③原命题为真命题,故逆否命题为真命题.答案:②③15.已知p (x ):x 2+2x -m >0,若p (1)是假命题,p (2)是真命题,则实数m 的取值范围为________.解析:因为p (1)是假命题,所以1+2-m ≤0,解得m ≥3;又p (2)是真命题,所以4+4-m >0,解得m <8.故实数m 的取值范围是[3,8).答案:[3,8)16.已知α:x ≥a ,β:|x -1|<1.若α是β的必要不充分条件,则实数a 的取值范围为________.解析:α:x ≥a ,可看作集合A ={x |x ≥a },∵β:|x -1|<1,∴0<x <2,∴β可看作集合B ={x |0<x <2}.又∵α是β的必要不充分条件,∴B A ,∴a ≤0.答案:(-∞,0]第三节简单的逻辑联结词、全称量词与存在量词本节主要包括2个知识点:1.简单的逻辑联结词;2.全称量词与存在量词.突破点(一)简单的逻辑联结词基础联通抓主干知识的“源”与“流”命题p∧q、p∨q、綈p的真假判定p q p∧q p∨q 綈p真真真真假真假假真假假真假真真假假假假真简记为“p∧q两真才真,一假则假;p∨q一真则真,两假才假;綈p与p真假相反”.考点贯通抓高考命题的“形”与“神”含逻辑联结词命题的真假判断[例1](2017·大连模拟)已知命题p:若x>y,则-x<-y;命题q:若x>y,则x2>y2.在命题①p∧q;②p∨q;③p∧(綈q);④(綈p)∨q中,真命题的序号是() A.①③B.①④C.②③D.②④[解析]依题意可知,命题p为真命题,命题q为假命题,则綈p为假命题,綈q为真命题.所以p∧q为假命题,p∨q为真命题,p∧(綈q)为真命题,(綈p)∨q为假命题.[答案] C[方法技巧]判断含有逻辑联结词命题真假的关键及步骤(1)判断含有逻辑联结词的命题真假的关键是正确理解“或”“且”“非”的含义,应根据命题中所出现的逻辑联结词进行命题结构的分析与真假的判断.(2)判断命题真假的步骤根据复合命题的真假求参数[例2] <0},命题q :函数y =lg(ax 2-x +a )的定义域为R ,如果p ∨q 为真命题,p ∧q 为假命题,则实数a 的取值范围为________________.[解析] 由关于x 的不等式a x >1(a >0,且a ≠1)的解集是{x |x <0},知0<a <1.由函数y =lg(ax 2-x +a )的定义域为R ,知不等式ax 2-x +a >0的解集为R ,则⎩⎪⎨⎪⎧a >0,1-4a 2<0,解得a >12.因为p ∨q 为真命题,p ∧q 为假命题,所以p 和q 一真一假,即“p 假q 真”或“p 真q 假”,故⎩⎪⎨⎪⎧ a >1,a >12或⎩⎪⎨⎪⎧0<a <1,a ≤12,解得a >1或0<a ≤12,即a ∈⎝⎛⎦⎤0,12∪(1,+∞). [答案] ⎝⎛⎦⎤0,12∪(1,+∞)[方法技巧]根据复合命题真假求参数的步骤(1)根据题目条件,推出每一个命题的真假(有时不一定只有一种情况); (2)求出每个命题是真命题时参数的取值范围;(3)根据给出的复合命题的真假推出每个命题的真假情况,从而求出参数的取值范围.。
高三-第01讲-集合与常用逻辑用语
一、知识框架二、知识概念(一)集合定义1、集合:我们把要研究的对象称为集合(A);集合中的对象称为元素(a);2、元素的关系:①属于(a∈A);②不属于(Aa∉);3、集合的分类:①有限集;②无限集;③空集(Φ);4、集合的表示方法:①列举法;②描述法;③Venn法;5、集合的性质:①互异性;②确定性;③无序性;(二)集合之间的关系类型符号语言表述Venn图表示子集A⊆B(或B⊇A)真子集A B(或B A)集合相等A=B (三)集合之间的基本运算BA=BB A A(B)A1、交集、并集、补集运算类型交集并集补集符号表示A⋂B={x|x∈A,且x∈B}A⋃B={x|x∈A,或x∈B})C S A=},|{AxSxx∉∈且韦恩图示2、两个常用的结论(1)A⋂B=A⇔A⊆B;(2)A⋃B=B⇔A⊆B;(四)命题及四种命题的相互关系1、四种命题及其关系2、充分条件与必要条件3、复合命题的真值表方法表示充分条件必要条件充分不必要条件必要不充分条件充要条件定义表示p(A)⇒q(B) q(B)⇒p(A)p(A)⇒q(B),q(B)≠>p(A)p(A)≠>q(B),q(B)⇒p(A)p(A)⇔q(B)集合表示A⊆B B⊆A A⊊B B⊊A A=Bp q p且q p或q非p真真真真假真假假真假假真假真真A B图1A B图2SA假假假假真方法:①“或”:一个或以上为真⇔真命题;②“且”:全为真⇔真命题;③“非”:与原命题相反;(五)全称命题与存在命题常见逻辑词表示命题:p∨q(或);p∧q(且);⌝p(非);全称量词符号:∀(任意);存在量词符号:∃(存在)全称命题与存在命题的关系:否定全称命题存在命题否定典例分析考点一:判断已知集合之间的关系例1、集合A={x|x=2n+1,n∈Z},B={y|y=4k±1,k∈Z},则A与B的关系为()A.A≠⊂B B.A ≠⊃B C.A=B D.A≠B例2、考点二:求集合中代数式的值例1、 设 a,b ∈R,集合}{a b a ,,1+=⎩⎨⎧⎭⎬⎫b b a ,,0,则b-a=( ) A.1 B.-1 C.2 D.-2考点三:不等式问题在集合中的基本运算例1、【天津13】已知集合A=}{943≤-++∈x x R x ,B=⎩⎨⎧⎭⎬⎫∞+∈-+=∈),0(,614t tt x R x ,则集合A ∩B= .考点四:集合间的基本运算 例1、例2、设全集,方程有实数根,方程有实数根,求.考点五:命题间的关系 例1、例2、U R ={|M m =210mx x --=}{|N n =20x x n -+=}()U C M N ⋂考点六:充分条件与必要条件例1、A.充要条件 B.充分而不必要条件C.必要而不充分条件 D.既不充分也不必要条件例2、A.充要条件 B.充分而不必要条件C.必要而不充分条件 D.既不充分也不必要条件考点七:全称命题、存在命题的否定形式例1、考点八:结合函数、不等式、复合命题求取值范围例1、已知命题p:“存在a>0,使函数f(x)=ax24x在(-∞,2]上单调递减”,命题q:“存在a∈R,使∀x∈R,16x2-16(a-1)≠0”.若命题“p∧q”为真命题,求实数a的取值范围.考点:函数的单调性;命题的关系;➢ 课堂狙击1、如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 ( ) A .0 B .0 或1 C .1 D .不能确定2、下面有四个命题:(1)集合N 中最小的数是1; (2)若a -不属于N ,则a 属于N ; (3)若,,N b N a ∈∈则b a +的最小值为2;(4)x x 212=+的解可表示为{}1,1; 其中正确命题的个数为( )A .0个B .1个C .2个D .3个3、设 a,b ∈R,集合}{a b a ,,1+=⎩⎨⎧⎭⎬⎫b b a ,,0,则b-a=( ) A.1 B.-1 C.2 D.-24、下列关系式:①{a,b}={b,a}②{a,b}⊆{b,a}③Ø={Ø}④{0}=Ø⑤Ø{0}⑥0∈{0},其中正确的个数是( )A .1B .2C .4D .65、设M 、N 是两个非空集合,定义M 与N 的差集为M -N={x|x ∈M 且x ∉N},则M -(M -N )等于( )A.NB.M∩NC.M ∪ND.M6、下面的命题中是真命题的是 ( )A.π2sin 2的最小正周期为x y = B. 0)0(02>≠=++aca c bx ax 的两根号,则若方程C.M N M N M =⊆ 那么如果,D.为锐角,则中,若在B BC AB ABC 0>•∆实战演练2a<t)为平行四边形含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则函数N (t )的值域为( ) A .{9,10,11} B .{9,10,12} C .{9,11,12} D .{10,11,12}9、已知命题“若m -1<x <m +1,则1<x <2”的逆命题为真命题,则m 的取值范围是 .10、已知集合A ={x ∈R |x 2-3x +4=0},B ={x ∈R |(x +1)(x 2+3x -4=0},要使A P ⊆B ,求满足条件的集合P .11、实数集A 满足条件:1∉A ,若a ∈A ,则A a∈-11. (1)若2∈A ,求A ;(2)集合A 能否为单元素集?若能,求出A ;若不能,说明理由; (3)求证:A a∈-11.12、若p :-2<a<0,0<b<1;q :关于x 的方程x 2+ax +b =0有两个小于1的正根,则p 是q 的什么条件?1、解答集合间的包含与运算关系问题的思路:先正确理解各个集合的含义,认清集合元素的属性;再依据元素的不同属性采用不同的方法对集合进行化简求解,一般的规律为:(1)若给定的集合是不等式的解集,用数轴来解;(2)若给定的集合是点集,用数形结合法求解;(3)若给定的集合是抽象集合,用Venn图求解2、注意空集∅的特殊性,在解题中,若未能指明集合非空时,要考虑到空集的可能性,如A⊆B,则有A=∅或A≠∅两种可能,此时应分类讨论.3、复合命题判断真假步骤1)确定命题形式及构成;2)判断简单命题真假;3)用真值表判断复合命题真假。
2018年高考数学(理)一轮复习文档第一章 集合与常用逻辑用语高考零距离1 集合与常用逻辑用语含答案
集合与常用逻辑用语年份卷别具体考查内容及命题位置2016甲卷集合的表示、集合的并集运算、一元二次不等式的解法·T2乙卷集合的表示、集合的交集运算、一元二次不等式的解法·T1丙卷集合的表示、集合的交集运算、一元二次不等式的解法·T12015Ⅰ卷特称命题的否定·T3Ⅱ卷集合的表示、集合的交集运算、一元二次不等式的解法·T12014Ⅰ卷集合的表示、集合的交集运算、一元二次不等式的解法·T1Ⅱ卷集合的表示、集合的交集运算、一元二次不等式的解法·T11.集合作为高考必考内容,多年来命题较稳定,多以选择题的形式在前3题的位置进行考查,难度较小,命题的热点依然会集中在集合的运算上,常与简单的一元二次不等式结合命题.2.高考对常用逻辑用语考查的频率较低,且命题点分散,其中含有量词的命题的否定、充分必要条件的判断需要关注,多结合函数、平面向量、三角函数、不等式、数列等知识命题.题示参数真题呈现考题溯源题示对比(2015·高考全国卷Ⅱ,T1)已知集合A={x|-1<x<2},B={x|0〈x<3},则A∪B=()A。
(-1,3)B.(-1,0)C。
(0,2)D.(2,3)(2016·高考全国卷丙,T1)设集合A={0,2,4,6,8,10},B={4,8},则∁A B=()A.{4,8}B.{0,2,6}题溯源(必修1 P8例5)设集合A={x|-1<x<2},集合B={x|1〈x〈3},求A∪B.题溯源(必修1 P11例8)设U={x|x是小于9的正整数},A={1,2,3},B={3,4,5,6},求∁U A,∁U B.题溯源C。
{0,2,6,10} D.{0,2,4,6,8,10}(2016·高考全国卷乙,T1)设集合A={x|x2-4x+3<0},B={x|2x-3>0},则A∩B=( )A.错误!B.错误!C。
高中数学 17-18版 第1章 集合与常用逻辑用语
上一页
返回首页
下一页
高三一轮总复习
3.从命题思路看: (1)集合的运算与一元二次不等式的解法相结合考查. (2)充分条件、必要条件与其他数学知识(导数、平面向量、三角函数、集合 运算等)相结合考查. (3)全称命题、特称命题、含逻辑联结词命题与其他数学知识相结合考查. (4)通过对近 5 年全国卷高考试题分析,可以预测,在 2018 年,本章内容考 查的重点是:①集合的关系及其基本运算;②全称命题、特称命题、含逻辑联 结词命题真假的判断;③充分条件,必要条件的判断.
上一页
返回首页
下一页
高三一轮总复习
[ 导学心语] 根据近 5 年的全国卷高考命题特点和规律,复习本章时,要注意以下几个 方面: 1.全面系统复习,深刻理解知识本质 (1)重视对集合相关概念的理解,深刻理解集合、空集、五个特殊集合的表 示及子集、交集、并集、补集等概念,弄清集合元素的特征及其表示方法. (2)重视充分条件、必要条件的判断,弄清四种命题的关系. (3)重视含逻辑联结词命题真假的判断,掌握特称命题、全称命题否定的含 义.
上一页 返回首页 下一页
高三一轮总复习
[ 重点关注] 综合近 5 年全国卷高考试题,我们发现高考命题在本章呈现以下规律: 1.从考查题型看:一般是一个选择题,个别年份是两个选择题,从考查分 值看,在 5 分左右,题目注重基础,属容易题. 2.从考查知识点看:主要考查集合的关系及其运算,有时综合考查一元二 次不等式的解法,突出对数形结合思想的考查,对常用逻辑用语考查较少,有 时会命制一道小题.
高三一轮总复习
此ppt下载后可自行编辑
高中数学课件
上一页
返回首页下一页来自高三一轮总复习上一页
返回首页
下一页
高考数学第01周集合与常用逻辑用语周末培优试题文新人教A版(2021学年)
2017-2018学年高考数学第01周集合与常用逻辑用语周末培优试题文新人教A版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高考数学第01周集合与常用逻辑用语周末培优试题文新人教A版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高考数学第01周集合与常用逻辑用语周末培优试题文新人教A版的全部内容。
第01周集合与常用逻辑用语(测试时间:40分钟,总分:90分)班级:____________ 姓名:____________ 座号:____________ 得分:____________一、选择题(本题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合{}{}A B C=R,则()A B C x x===∈-≤≤1,2,6,2,4,{|15}A.{}2ﻩﻩﻩﻩﻩﻩﻩB.{}1,2,4C.{}1,2,4,6ﻩﻩﻩﻩD.{|15}∈-≤≤x R x【答案】B【解析】(){}[]{},,,,,,,选B。
A B C=-=124615124【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理。
2.已知命题如果,那么,命题如果,那么,则命题是命题的A.否命题ﻩﻩﻩB.逆命题C.逆否命题ﻩﻩﻩﻩ D.否定形式【答案】A【解析】对命题的条件和结论同时进行否定即得否命题,因此命题是命题的否命题,故选A.【名师点睛】由原命题写出其他三种命题,关键要分清原命题的条件和结论,将条件与结论互换即得逆命题,将条件与结论同时否定即得否命题,将条件与结论互换的同时进行否定即得逆否命题.3.命题“∀x∈R 的否定是A .∃x∈R ﻩ ﻩB .∀x ∈RC .∀x ∈R ﻩﻩ ﻩD .∃x ∈R【答案】D 【解析】由全称命题的否定为特称命题,可得命题“x ∀∈R ,”的否定为“x ∃∈R ,. 【名师点睛】写含有一个量词的命题的否定,首先要明确这个命题是全称命题还是特称命题,并找到其量词的位置及相应结论,然后把命题中的全称量词改成存在量词或把存在量词改成全称量词,同时否定结论。
专题01集合与经常使用逻辑用语备战2018高考高三数学理全国各地优质模拟试卷分项
【备战2018高考高三数学全国各地优质模拟试卷分项精品】专题 集合与经常使用逻辑用语1.【2018广西三校联考】若是集合{}|520M x y x ==-,集合{}3|log N x y x ==则M N ⋂=( ) A. {}|04x x << B. {}|4x x ≥ C. {}|04x x <≤ D. {}|04x x ≤≤ 【答案】B【解析】{}52004,?|4x x M x x -≥∴≥=≥, {}0N x x =, {}|4M N x x ⋂=≥ 应选B2.【2018豫南九校质考二】命题p :x,y ∈R ,x 2+y 2<2,命题q :x,y ∈R ,|x |+|y |<2,那么p 是q 的( ) A. 充分非必要条件 B. 必要非充分条件 C. 必要充分条件 D. 既不充分也没必要要条件 【答案】A点睛:充分必要条件中,小范围推大范围,大范围推不出小范围;这是这道题的跟本; 再者,依照图像判定范围大小很直观,快捷,而不是去解不等式;3.【2018吉林百校联盟联考】已知集合{}2|3410A x x x =-+≤, {}|43B x y x ==-,那么A B ⋂=( ) A. 3,14⎛⎤⎥⎝⎦ B. 3,14⎡⎤⎢⎥⎣⎦ C. 13,34⎡⎤⎢⎥⎣⎦ D. 13,34⎡⎫⎪⎢⎣⎭【答案】B【解析】求解不等式: 23410x x -+≤可得: 1|13A x x ⎧⎫=≤≤⎨⎬⎩⎭, 函数43y x =-成心义,那么: 430x -≥,则3|4B x x ⎧⎫=≥⎨⎬⎩⎭,据此可得: 3|14A B x x ⎧⎫⋂=≤≤⎨⎬⎩⎭. 此题选择B 选项.4.【2018湖南益阳联考】已知命题p :假设复数z 知足()()5z i i --=,那么6z i =;命题q :复数112ii++的虚部为15i -,那么下面为真命题的是( ) A.()()p q ⌝⌝∧ B. ()p q ⌝∧ C.()p q ⌝∧D.p q ∧【答案】C5.【2018湖南湘潭联考】设全集U R =,集合()()2{|log 2},{|210}A x x B x x x =≤=-+≥,那么U A C B ⋂=( )A. ()0,2B. []2,4C. (),1-∞-D. (],4-∞ 【答案】A【解析】集合{}2|2{|04}A x log x x x =≤=<≤,()(){}|210{|12}B x x x x x x =-+≥=≤-≥或.{|12}U C B x x =-<<.因此{}()|020,2U A C B x x ⋂=<<=. 故障A. 学科~网6.【2018广东省广州市综合测试】已知集合()()22{,|4},{,|21}A x y x y B x y y x =+===+,那么A B ⋂中元素的个数为( )A. 3B. 2C. 1D. 0【答案】B【解析】由22201{ 540{ 121x x y x x y y x =+=⇒+=⇒==+或45{35x y =-=-, ∴集合A B ⋂中有两个元素,应选B.7.【2018江西省红色七校联考】在右边Venn 图中,设全集,U R =集合,A B 别离用椭圆内图形表示,假设集合{}(){}2|2 ,|ln 1 A x x x B x y x =<==-,那么阴影部份图形表示的集合为( )A. {}| 1 x x ≤B. {}| 1 x x ≥C.{}|0 1 x x <≤ D. {}|1 2 x x ≤<【答案】D8.【2018广西桂林柳州市模拟一】已知集合{}32,A x x n n N ==+∈, {}6,8,12,14B =,那么集合A B ⋂中元素的个数为( ) A. 5 B. 4 C. 3 D. 2 【答案】D【解析】由题意可得,集合A 表示除以3以后余数为2的数,结合题意可得: {}8,14A B ⋂=, 即集合A B ⋂中元素的个数为2. 此题选择D 选项. 学科!网9.【2018广东省珠海一中联考】以下选项中,说法正确的选项是( ) A. 若0a b >>,那么ln ln a b <B. 向量()1,a m =, (),21b m m =-(R m ∈)垂直的充要条件是1m =C. 命题“*N n ∀∈, ()1322nn n ->+⋅”的否定是“*N n ∀∈, ()1322nn n -≥+⋅”D. 已知函数()f x 在区间[],a b 上的图象是持续不断的,那么命题“假设()()0f a f b ⋅<,那么()f x 在区间(),a b 内至少有一个零点”的逆命题为假命题 【答案】D10.【2018广东省珠海一中六校联考】已知集合(){}10A x x x =-<, {}e 1x B x =>,那么()RA B ⋂=( )A. [)1,+∞B. ()0,+∞C. ()0,1D. []0,1 【答案】A 【解析】解 A=(0,1) B=(0,∞),()()R0,1A = ()()R0,1A B ⋂=11.【2018陕西省西工大附中六模】以下说法正确的选项是( )A. “假设1a >,那么21a >”的否命题是“假设1a >,那么21a ≤” B. 在ABC ∆中,“A B >”是 “22sin sin A B >”的必要不充分条件C. “假设tan 3α≠3πα≠”是真命题D. ()0,0,x ∃∈-∞ 使得0034xx<成立 【答案】C12.【2018陕西省西工大附中六模】已知集合{}1,A a =, {}2|540 ,B x x x x Z =-+=∈,假设A B ⋂≠∅,那么a 等于( )A. 2B. 3C. 2或3D. 2或4 【答案】C【解析】由题意可得: {}{}|14,2,3B x x x Z =<<∈=, 结合交集的概念可得:那么a 等于2或3. 此题选择C 选项. 13.【2018陕西省西工大附中七模】已知集合(){,|,,}xA x y y e x N y N ==∈∈,()2{,|1,,}B x y y x x N y N ==-+∈∈,那么A B ⋂=( )A. ()0,1B. {}0,1C. (){}0,1D. φ【答案】C 【解析】(){}(){}0101A B A B =∈∴⋂=,,,选C. 14.【2018河北省石家庄二中模拟】已知函数()1x xf x e x=++,那么120x x +>是()()()()1212f x f x f x f x +>-+-的 ( )A. 充分没必要要条件B. 必要不充分条件C. 充要条件D. 既不充分也没必要要条件 【答案】C现证充分性:∵120x x +>, 12x x >-,又()()1x xf x e x∞∞=+-++在,上为单调增函数,∴()()12f x f x >-,同理: ()()21f x f x >-,故()()()()1212f x f x f x f x +>-+-.充分性证毕.再证必要性:记()()gx ? f x f x =--,由()()1x xf x e x∞∞=+-++在,上单调递增,可知()()f x ∞∞--+在,上单调递减,∴()()gx ? f x f x =--在()∞∞-+,上单调递增。
18版高考数学大一轮复习专题1集合与常用逻辑用语课件文
考点6 逻辑联结词及应用
考点6
考法2
与逻辑联结词有关的参数范围问题
考点7
全称命题与特称命题
考点7 全称命题与特称命题
考点7
全称命题与特称命题
考法3 全(特)称命题的否定 考法4 全(特)称命题真假的判断 考法5 全称命题或特称命题中有关参 数的取值范围
考点7 全称命题与特称命题
考点7
考法3 全(特)称命题的否定
考点7 全称命题与特称命题
考点7
考法3 全(特)称命题的否定
非p形式(命题的 否定)与否命题的 区别?
考点7 全称命题与特称命题
考点7
考法3 全(特)称命题的否定
考点7 全称命题与特称命题
考点7
考法3 全(特)称命题的否定
考点7 全称命题与特称命题
考点7
考法3 全(特)称命题的否定
考点1 集合的含义与表示、集合之间的关系
考点1
考法2
类型2 判断集合与集合之间的关系
考点1 集合的含义与表示、集合之间的关系
考点1
考法2
类型2 判断集合与集合之间的关系
考点1 集合的含义与表示、集合之间的关系
考点1
考法2
类型2 判断集合与集合之间的关系
考点2
集合间的基本运算
考点2 集合间的基本运算
考点1 集合的含义与表示、集合之间的关系
考点1
考法2
类型1 子集个数的求解
考点1 集合的含义与表示、集合之间的关系
考点1
考法2
类型1 子集个数的求解
考点1
集合的含义与表示、集合之间的关系
考点1
考法2
类型1 子集个数的求解
考点1 集合的含义与表示、集合之间的关系
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第01周 集合与常用逻辑用语
(测试时间:40分钟,总分:90分)
班级:____________ 姓名:____________ 座号:____________ 得分:____________ 一、选择题(本题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目
要求的)
1.设集合{}{}1,2,6,2,4,{|15}A B C x x ===∈-≤≤R ,则()A B C =
A .{}2
B .{}1,2,4
C .{}1,2,4,6
D .{|15}x R x ∈-≤≤
【答案】B 【解析】(){}[]{}12461512
4A
B C =-=,,,,,,,选B. 【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理. 2.已知命题如果,那么,命题如果,那么
,则命题是命题的
A .否命题
B .逆命题
C .逆否命题
D .否定形式
【答案】A
【解析】对命题的条件和结论同时进行否定即得否命题,因此命题是命题的否命题,故选A. 【名师点睛】由原命题写出其他三种命题,关键要分清原命题的条件和结论,将条件与结论互换即得逆命题,将条件与结论同时否定即得否命题,将条件与结论互换的同时进行否定即得逆否命题.
3.命题“∀x ∈R
A .∃x ∈R
B .∀x ∈R
C .∀x ∈R
D .∃x ∈R 【答案】D
【解析】由全称命题的否定为特称命题,可得命题“x ∀∈R ”的否定为“x ∃∈R ,
D. 【名师点睛】写含有一个量词的命题的否定,首先要明确这个命题是全称命题还是特称命题,并找到其量词的位置及相应结论,然后把命题中的全称量词改成存在量词或把存在量词改成全称量词,同时否定结论.
4.若x ∈R ,则“x ”的 A .充分不必要条件 B .必要不充分条件 C .充要条件
D .既不充分也不必要条件
【答案】A
【解析】当x >1x >1或x <0,故“x 故本题选A.
5.已知集合{}|05A x x =∈<≤R ,{}2|log 2B x x =∈<R ,则()
A B =Z ð
A .{}4
B .{}5
C .[]
45,
D .{}45,
【答案】D
【解析】因为{}|04B x x =<<,{}|05A x x =<≤,所以{|45}A B x x =≤≤ð,则()
{}45A B =Z ,ð,
故本题选择D.
6.设全集U =R ,集合2
{|230}{|10}A x x x B x x =--<=-≥,,则图中阴影部分所表示的集合为
A .{|1x x ≤-或3}x ≥
B .{}
|13x x x <≥或 C .{|1}x x ≤
D .{|1}x x ≤-
【答案】D
【解析】由题意可知:{|13},{|1}A x x B x x =-<<=≥,题中阴影部分表示的集合为:
(){|1}U A
B x x =≤-ð,本题选择D.
7.设a ∈R ,“1,a ,16为等比数列”是“4a =”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件
D .既不充分也不必要条件
【答案】B
【解题技巧】(1)若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件; (2)若p ⇒q 且q /⇒p ,则p 是q 的充分不必要条件; (3)若p /⇒q 且q ⇒p ,则p 是q 的必要不充分条件; (4) 若p ⇔q ,则p 是q 的充要条件;
(5) 若p /⇒q 且q /⇒p ,则p 是q 的既不充分也不必要条件.
8.集合2
{|0}{|2}A x x a B x x =-≤=<,,若A B ⊆,则实数a 的取值范围是 A .(]
,4-∞ B .(),4-∞ C .[]
0,4
D .()0,4
【答案】B
【解析】当0a <时,集合A =∅,满足题意;当0a ≥时,A ⎡=⎣,若A B ⊆2<,
∴0<4a ≤,所以()4a ∈-∞,,故选B .
【名师点睛】已知两集合的关系求参数时,关键是将两集合的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、Venn 图帮助分析,而且经常要对参数进行讨论.注意区间端点的取舍. 9,命题:,π1x
q x ∃∈<R ,则下列为真命题的是 A .()p q ∧⌝ B .()()p q ⌝∧⌝ C .()p q ⌝∧
D .p q ∧
【答案】C
是假命题;因为1x =-时,
,所以命题:,π1x q x ∃∈<R 是真命题.故()p q ⌝∧是真命题,应选C. 【名师点睛】全称命题与特称命题的真假判断在高考中出现时,常与数学中的其他知识点相结合,题型以选择题为主,难度一般不大.
要确定一个全称命题是真命题,需保证该命题对所有的元素都成立;若能举出一个反例说明命题不成立,则该全称命题是假命题.
要确定一个特称命题是真命题,举出一个例子说明该命题成立即可;若经过逻辑推理得到命题对所有的元素都不成立,则该特称命题是假命题. 10.下列说法正确的是
A .“1x <”是“()2log 11x +<”的充分不必要条件
B .命题“0x ∀>,21x >”的否定是“00021x
x ∃≤≤,
” C .命题“若a b ≤,则22ac bc ≤”的逆命题为真命题 D .命题“若5a b +≠,则2a ≠或3b ≠”为真命题 【答案】D
二、填空题(本题共4小题,每小题5分,共20分)
11.“若260x x --=,则23x x =-=或”的逆否命题是_____________.
【答案】若23x x ≠-≠且, 则2
60x x --≠.
【解析】因为“若p ,则q ”的逆否命题是“若q ⌝,则p ⌝”,所以“若2
60x x --=,则
23x x =-=或”的逆否命题是: 若23x x ≠-≠且, 则260x x --≠.
12
【答案】1
【解析】∵0a ≠,∴0,b =则2
1,1,a a ==±检验得1a =-,∴201820181a b +=.
【名师点睛】集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.两个防范:①不要忽视元素的互异性;②保证运算的准确性.
13.设向量()1,x x =-a ,()2,4x x =+-b ,则“⊥a b ”是“2x =”的_____________条件.(填“充
分不必要”、“必要不充分”、“充要”或“既不充分也不必要”) 【答案】必要不充分
【解析】若“⊥a b ”,则()()()()()2
1,2,41242320x x x x x x x x x x ⋅=-⋅+-=-++-=--=a b ,
则2x =或若“2x =”,则0⋅=a b ,即“⊥a b ”,所以“⊥a b ”是“2x =”的必要不充分条件.故填“必要不充分”.
14.若“1,22
x ⎡⎤∃∈⎢⎥⎣⎦
,使得2210x x λ-+<成立”是假命题,则实数λ的取值范围为_____________.
【答案】(
-∞
三、解答题(本大题共2小题,共20分.解答应写出文字说明、证明过程或演算步骤) 15.函数()()
2
lg f x x ax b =++的定义域为集合A ,的定义域为集合B ,若
()()
{|23}, A B B A B x x ==≤≤R R -痧.求实数,a b 的值及实数k 的取值范围.
【答案】1,6a b =-=-,【解析】由题意得{
}
2
2
|0,{|430,}A x x ax b B x kx x k k =++>=+++≥∈R , 又()
A B B =R ð,
∴B A ⊆R ð. 又()
3|}2{A B x x =≤≤R -ð,
{|23}.A x x ∴=-≤≤R ð
{|23}A x x x ∴=<->或,即不等式20x ax b ++>的解集为{|23}x x x <->或,
1,6a b ∴=-=-.
由B B A ≠∅⊆R 且ð可得,方程()2
430F x kx x k =+++=的两根都在[]
2,3-内,
故1,6a b =-=-,16.已知命题,命题.
(1)若p 是q 的充分条件,求实数m 的取值范围; (2)若m =5,“
”为真命题,“
”为假命题,求实数x 的取值范围.
【答案】(1)(4,)+∞;(2)[4,1)
(5,6)--.
(2)根据题意可知,p q 一真一假.
①p 真q 假时,15
64
x x x -≤≤⎧⎨
≥<-⎩或,解集为∅;
②p 假q 真时,51
46
x x x ><-⎧⎨-≤<⎩或,解集为[4,1)(5,6)--.
∴实数x 的取值范围是[4,1)
(5,6)--.
【名师点睛】判断“p q ∧”、“p q ∨”形式复合命题真假的步骤: 第一步,确定复合命题的构成形式; 第二步,判断简单命题p 、q 的真假; 第三步,根据真值表作出判断.
注意:一真“或”为真,一假“且”为假.当p q ∨为真,p 与q 一真一假;p q ∧为假时,p 与q 至少有一个为假.。