2010高中必修四同步训练-数学北京师大:第三章三角恒等变换测评(A卷)(附答案)
北师大版高中数学必修四第三章 《三角恒等变形》同步练习.docx
第三章 《三角恒等变形》同步练习班别: 姓名:一、选择题1.函数f (x )=sin x cos x 的最小值是( ) A .-1 B .-12C .12D .12.cos67°cos7°+sin67°sin7°等于( ) A .12 B .22C .32D .13.若x =π8,则sin 4x -cos 4x 的值为( )A .12B .-12C .-22D .224.下列各式中值为22的是( ) A .sin45°cos15°+cos45°sin15° B .sin45°cos15°-cos45°sin15° C .cos75°cos30°+sin75°sin30° D .tan60°-tan30°1+tan60°tan30° 5.1-sin20°=( ) A .cos10° B .sin10°-cos10° C .2sin35°D .±(sin10°-cos10°)6.已知cos2α=14,则sin 2α=( )A .12B .34C .58D .387.若函数f (x )=sin2x -2sin 2x ·sin2x (x ∈R ),则f (x )是( ) A .最小正周期为π的偶函数 B .最小正周期为π的奇函数 C .最小正周期为2π的偶函数D .最小正周期为π2的奇函数8.若sin θ<0,cos2θ<0,则在(0,2π)内θ的取值范围是( ) A .π<θ<3π2B .5π4<θ<7π4C .3π2<θ<2πD .π4<θ<3π49.若0<α<β<π4,sin α+cos α=a ,sin β+cos β=b ,则( )A .a <bB .a >bC .ab <1D .不确定10.将函数y =sin2x 的图象向左平移π4个单位,再向上平移1个单位,所得图象的函数解析式是( )A .y =cos2xB .y =2cos 2x C .y =1+sin(2x +π4)D .y =2sin 2x11.已知f (tan x )=sin2x ,则f (-1)的值是( ) A .1 B .-1 C .12D .012.已知函数f (x )=(1+cos2x )sin 2x ,x ∈R ,则f (x )是( ) A .最小正周期为π的奇函数 B .最小正周期为π2的奇函数C .最小正周期为π的偶函数D .最小正周期为π2的偶函数二、填空题13.设α∈(0,π2),若sin α=35,则2cos(α+π4)等于________.14.计算:sin7°-sin15°cos8°cos7°-cos15°cos8°的值为________.15.若α为锐角,且sin ⎝ ⎛⎭⎪⎫α-π6=13,则sin α的值为________. 16.关于函数f (x )=cos ⎝ ⎛⎭⎪⎫2x -π3+cos ⎝ ⎛⎭⎪⎫2x +π6,有下列命题: ①y =f (x )的最大值为2;②y =f (x )是以π为最小正周期的周期函数;③y =f (x )在区间⎝ ⎛⎭⎪⎫π24,13π24上单调递减;④将函数y =2cos2x 的图像向左平移π24个单位后,与已知函数的图象重合.其中正确命题的序号是________.(注:把你认为正确的命题的序号都填上) 三、解答题17.已知α是第一象限的角,且cos α=513,求sin ⎝⎛⎭⎪⎫α+π4cos 2α+4π的值.18.已知π2<α<π,0<β<π2,tan α=-34,cos(β-α)=513,求sin β.19.已知sin α=210,cos β=31010,且α、β为锐角,求α+2β 的值. 20.求函数y =12cos 2x +32sin x ·cos x +1,x ∈R 的最大值以及y 取最大值时自变量x的集合.21.已知函数f (x )=cos(2x -π3)+2sin(x -π4)sin(x +π4).(1)求函数f (x )的最小正周期和对称轴方程; (2)求函数f (x )在区间[-π12,π2]上的值域.22.设函数f (x )=a ·b ,其中向量a =(2cos x,1),b =(cos x ,3sin2x ),x ∈R .(1)若f (x )=1-3且x ∈⎣⎢⎡⎦⎥⎤-π3,π3,求x ; (2)若函数y =2sin2x 的图象平移向量c =(m ,n )⎝ ⎛⎭⎪⎫|m |<π2得到函数y =f (x )的图象,求实数m 、n 的值.参考答案1.[答案] B[解析] f (x )=sin x cos x =12sin2x ,∴f (x )min =-12.2.[答案] A[解析] cos67°cos7°+sin67°sin7° =cos(67°-7°)=cos60°=12.3.[答案] C[解析] sin 4x -cos 4x =(sin 2x +cos 2x )·(sin 2x -cos 2x )=sin 2x -cos 2x =-cos2x , ∴x =π8时,-cos2x =-cos π4=-22.4.[答案] C[解析] cos75°cos30°+sin75°sin30°=cos(75°-30°)=cos45°=22. 5.[答案] C[解析] 1-sin20°=1-cos70°=2sin 235°, ∴1-sin20°=2sin35° 6.[答案] D[解析] ∵cos2α=1-2sin 2α=14,∴sin 2α=38.7.[答案] D[解析] f (x )=sin2x (1-2sin 2x )=sin2x ·cos2x =12sin4x (x ∈R ), ∴函数f (x )是最小正周期为π2的奇函数. 8.[答案] B[解析] ∵cos2θ<0,得1-2sin 2θ<0, 即sin θ>22或sin θ<-22, 又已知sin θ<0,∴-1≤sin θ<-22, 由正弦曲线得满足条件的θ取值为5π4<θ<7π4.9.[答案] A[解析] ∵a =2sin ⎝ ⎛⎭⎪⎫α+π4,b =2sin ⎝ ⎛⎭⎪⎫β+π4,又0<α<β<π4,∴π4<α+π4<β+π4<π2,且y =sin x 在⎣⎢⎡⎦⎥⎤0,π2上为增, ∴2sin ⎝ ⎛⎭⎪⎫α+π4<2sin ⎝ ⎛⎭⎪⎫β+π4. 10.[答案] B[解析] 将函数y =sin2x 的图象向左平移π4个单位,得到函数y =sin2⎝ ⎛⎭⎪⎫x +π4,即y=sin ⎝⎛⎭⎪⎫2x +π2=cos2x 的图象,再向上平移1个单位,所得图象的函数解析式为y =1+cos2x=2cos 2x .11.[答案] B[解析] f (tan x )=sin2x =2sin x cos x =2sin x cos x sin 2x +cos 2x =2tan x tan 2x +1,∴f (x )=2xx 2+1,∴f (-1)=-22=-1. 12.[答案] D[解析] f (x )=(1+cos2x )sin 2x =2cos 2x sin 2x =12sin 22x =14-14cos4x . ∴函数f (x )是最小正周期为π2的偶函数. 13.[答案] 15[解析] ∵α∈(0,π2),sin α=35,∴cos α=45,∴2cos(α+π4)=2cos αcos π4-2sin αsin π4=2×45×22-2×35×22=45-35=15. 14.[答案] -2- 3 [解析] 原式=sin15°-8°-sin15°cos8°cos 15°-8°-cos15°cos8°=sin15°cos8°-cos15°sin8°-sin15°cos8°cos15°cos8+sin15°sin8-cos15°cos8°=-cos15°sin8°sin15°sin8°=-cot15°=-1tan15°=-1tan45°-30°=-1+tan30°1-tan30°=-2- 3. 15.[答案]3+226[解析] ∵0<α<π2,∴-π6<α-π6<π3.又∵sin ⎝ ⎛⎭⎪⎫α-π6=13>0,∴0<α-π6<π3, ∴cos ⎝ ⎛⎭⎪⎫α-π6=1-sin 2⎝⎛⎭⎪⎫α-π6=1-⎝ ⎛⎭⎪⎫132=223.∴sin α=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-π6+π6=32sin ⎝ ⎛⎭⎪⎫α-π6+12cos ⎝ ⎛⎭⎪⎫α-π6=32×13+12×223=3+226. 16.[答案] ①②③[解析] 化简f (x )=cos ⎝ ⎛⎭⎪⎫2x -π3+cos ⎝ ⎛⎭⎪⎫2x +π2-π3=cos ⎝ ⎛⎭⎪⎫2x -π3-sin ⎝ ⎛⎭⎪⎫2x -π3=2cos ⎝ ⎛⎭⎪⎫2x -π12∴f (x )max =2,即①正确.T =2π|ω|=2π2=π,即②正确. 由2k π≤2x -π12≤2k π+π,得k π+π24≤x ≤k π+13π24,即③正确.将函数y =2cos2x 向左平移π24个单位得y =2cos ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π24≠f (x ),∴④不正确.17.[解析] ∵α是第一象限的角,cos α=513,∴sin α=1213,∴sin ⎝⎛⎭⎪⎫α+π4cos 2α+4π=22sin α+cos αcos2α=22sin α+cos αcos 2α-sin 2α=22cos α-sin α=22513-1213=-13214. 18.[解析] ∵0<β<π2,π2<α<π,∴-π<β-α<0.又∵cos(β-α)=513,∴sin(β-α)=-1213.又tan α=-34,∴sin α=35,cos α=-45.∴sin β=sin[(β-α)+α]=sin(β-α)cos α+cos(β-α)sin α =-1213×(-45)+513×35=6365.19.[解析] ∵sin α=210,α为锐角, ∴cos α=1-sin 2α=1-⎝⎛⎭⎪⎫2102=7210. ∵cos β=31010,β为锐角,∴sin β=1-⎝ ⎛⎭⎪⎫310102=1010.∴sin2β=2sin βcos β=2×1010×31010=35, cos2β=1-2sin 2β=1-2×⎝⎛⎭⎪⎫10102=45. 又β∈⎝⎛⎭⎪⎫0,π2,∴2β∈(0,π).而cos2β>0,∴2β∈⎝⎛⎭⎪⎫0,π2.∴α+2β∈(0,π).又cos(α+2β)=cos α·cos2β-sin α·sin2β=7210×45-210×35=22,∴α+2β=π4. 20.[解析] ∵y =12cos 2x +32sin x ·cos x +1=12·1+cos2x 2+34sin2x +1 =14cos2x +34sin2x +54 =12sin ⎝⎛⎭⎪⎫2x +π6+54∴当2x +π6=π2+2k π,即x =k π+π6(k ∈Z )时,y max =74.∴函数取最大值时自变量x 和集合为⎩⎨⎧⎭⎬⎫x |x =k π+π6,k ∈Z ,且最大值为74.21.[解析] (1)∵f (x )=cos(2x -π3)+2sin(x -π4)·sin(x +π4)=12cos2x +32sin2x +(sin x -cos x )(sin x +cos x ) =12cos2x +32sin2x +sin 2x -cos 2x =12cos2x +32sin2x -cos2x =sin(2x -π6),∴最小正周期T =2π2=π.∵2x -π6=k π+π2,k ∈Z ,∴x =k π2+π3,k ∈Z ,∴对称轴方程为x =k π2+π3,k ∈Z . (2)∵x ∈[-π12,π2],∴2x -π6∈[-π3,5π6].∴f (x )=sin(2x -π6)在区间[-π12,π3]上单调递增,在区间[π3,π2]上单调递减.当x =π3时,f (x )取最大值1.又∵f (-π12)=-32<f (π2)=12,∴当x =-π12时,f (x )取最小值-32.所以函数f (x )在区间[-π12,π2]上的值域为[-32,1].22.[解析] (1)∵f (x )=a ·b =2cos 2x +3sin2x =1+cos2x +3sin2x =2sin ⎝ ⎛⎭⎪⎫2x +π6+1,又∵f (x )=1-3=2sin ⎝ ⎛⎭⎪⎫2x +π6+1, ∴sin ⎝⎛⎭⎪⎫2x +π6=-32,∴2x +π6=2k π-π3或2x +π6=2k π-2π3,又∵x ∈⎣⎢⎡⎦⎥⎤-π3,π3,∴x =-π4.(2)f (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π12+1,y =2sin2x 向左平移π12个单位可得y =2sin2⎝⎛⎭⎪⎫x +π12,再向上平移1个单位,即得y =2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π12+1=f (x ), ∴c =⎝ ⎛⎭⎪⎫-π12,1,即m =-π12,n =1.。
(常考题)北师大版高中数学必修四第三章《三角恒等变形》测试(含答案解析)(1)
一、选择题1.已知,(0,2)αβπ∈,且满足1sin cos 2αα-=,1cos sin 2ββ-=,则sin()αβ+=( ) A .1 B.2-或1 C .34-或1 D .1或-12.在ΔABC 中,2sin (22c a Ba b c c -=、、分别为角A B C 、、的对边),则ΔABC 的形状为 A .直角三角形 B .等边三角形 C .等腰三角形或直角三角形 D .等腰直角三角形3.设等差数列{}n a 满足:()22222222272718sin cos cos cos sin sin 1sin a a a a a a a a -+-=+,公差()1,0d ∈-.若当且仅当11n =时,数列{}n a 的前n 项和n S 取得最大值,则首项1a 的取值范围是( ) A .9,10ππ⎛⎫⎪⎝⎭B .11,10ππ⎡⎤⎢⎥⎣⎦C .9,10ππ⎡⎤⎢⎥⎣⎦D .11,10ππ⎛⎫ ⎪⎝⎭4.已知()sin 2cos x x x ϕ+=+对x ∈R 恒成立,则cos 2ϕ=( ) A .25-B .25C .35D .355.函数2()3sin cos f x x x x =+的最大值为( )AB.C .33 D.3+6.若函数()sin cos 2sin cos 1f x x x x x a =+-+-在3,44ππ⎡⎤--⎢⎥⎣⎦上有零点,则实数a 的取值范围( )A.⎡⎤⎣⎦B.94⎡⎤⎢⎥⎣⎦C.⎡-⎣D.94⎤⎥⎦7.已知直线524x π=是函数21()sin 8)22x f x x ωωω=+<≤图象的一条对称轴,则ω=( ) A .2 B .4C .6D .88.若()tan804sin 420α+=,则()tan 20α+的值为( )A .35-B .35C .3 D .3 9.已知函数()23sin 22cos 1f x x x =-+,将()f x 的图象上的所有点的横坐标缩短到原来的12,纵坐标保持不变;再把所得图象向上平移1个单位长度,得到函数()y g x =的图象,若()()129g x g x ⋅=,则12x x -的值可能为( ) A .54π B .34π C .2π D .3π 10.已知3cos()63πα+=,则sin(2)6πα-的值为( ) A .22B .13C .13-D .22-11.若,则的值为( )A .B .C .D .12.若3sin 2sin 703παα⎛⎫-+-= ⎪⎝⎭,则tan α=( ) A .233-B .233C .3D .32二、填空题13.已知4cos 5θ=,且,02πθ⎛⎫∈- ⎪⎝⎭,则tan 4πθ⎛⎫+= ⎪⎝⎭____________. 14.已知6sin 4πα⎛⎫+= ⎪⎝⎭,()0,απ∈,则cos 26πα⎛⎫+= ⎪⎝⎭__________.15.()sin 5013︒+︒的值__________.16.已知方程23310x ax a +++=,()2a >的两根为tan α,tan β,α,,22ππβ⎛⎫∈- ⎪⎝⎭,则αβ+=________.17.已知2tan 3tan 5πα=,则2sin 59cos 10παπα⎛⎫- ⎪⎝⎭=⎛⎫+ ⎪⎝⎭________. 18.已知sin10cos102cos140m ︒-︒=︒,则m =_________.19.已知()tan 2tan αββ+=,,(0,)2παβ∈,则当α最大时,tan2α=________.20.设,(0,)αβπ∈,cos α,cos β是方程26320x x -=-的两根,则sin sin αβ=_________.三、解答题21.已知函数2()cos sin 32233x x x f x ππ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭. (1)若,2x ππ⎡⎤∈-⎢⎥⎣⎦,求()f x 的递增区间和值域; (2)若004()54f x x ππ=+≤≤,求点02sin 3x ⎛⎫ ⎪⎝⎭. 22.已知1sin cos 5αα+=,其中0απ<<. (1)求11sin cos αα+的值; (2)求tan α的值.23.已知函数()cos sin )(0)2f x x x x ωωωω=+->,且()f x 的最小正周期为π.(1)求函数()f x 的单调递减区间; (2)若2()f x ,求x 的取值范围. 24.设函数2()cos cos 6f x x x x π⎛⎫=⋅-+ ⎪⎝⎭. (1)求()f x 的最小正周期和单调递增区间;(2)当,122x ππ⎡⎤∈⎢⎥⎣⎦时,求函数()f x 的最大值和最小值. 25.已知函数()4sin cos 3f x x x π⎛⎫=-⎪⎝⎭(1)求函数()f x 的最小正周期和单调递增区间; (2)当,64x ππ⎡⎤∈-⎢⎥⎣⎦时,求()f x 的最值及取到最值时x 的值;(3)若函数()()g x f x m =-在0,2π⎡⎤⎢⎥⎣⎦上有两个不同的零点1x ,2x ,求实数m 的取值范围,并求()12tan x x +的值.26.已知函数2()[2sin()sin ]cos 3f x x x x x π=++.(1)求函数()f x 的最小正周期和单调递减区间;(2)若函数()f x 的图象关于点(,)m n 对称,求正数m 的最小值;【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由两角与差的正弦、余弦公式变形由已知求得sin()4πα-和cos()4πβ+,用平方关系求得cos()4πα-和sin()4πα+,而sin()sin ()()44ππαβαβ⎡⎤+=-++⎢⎥⎣⎦,展开后计算,注意分类讨论. 【详解】∵1sin cos 2αα-=,∴sin 224αα-=sin()44πα-=,1cos sin 2ββ-=,4cos 22ββ-=,cos()44πβ+=,∴cos()4πα-=sin()4πα+=± sin()sin ()()sin()cos()cos()sin()444444ππππππαβαβαβαβ⎡⎤+=-++=-++-+⎢⎥⎣⎦,当7cos()sin()448ππαβ-+=时,17sin()188αβ+=+=, 当7cos()sin()448ππαβ-+=-时,173sin()884αβ+=-=-, 故选:C . 【点睛】关键点点睛:本题考查两角和与差正弦、余弦公式.解题关键是确定已知角和未知角之间的关系,本题中已知等式变形得出4πα-和4πβ+,未知角有()()44ππαβαβ+=-++,这样易确定使用的公式与顺序.2.A解析:A 【解析】依题意,利用正弦定理及二倍角公式得sin sin 1cos 2sin 2C A BC --=,即sin sin cos A C B =,又()sin sin sin cos cos sin A B C B C B C =+=+,故sin cos 0B C =,三角形中sin 0B ≠,故πcos 0,2C C ==,故三角形为直角三角形,故选A. 3.D解析:D 【解析】因为22222222272718sin cos cos cos sin sin 1sin()a a a a a a a a -+-=+,所以由余弦二倍角公式、平方差公式及两角和与差的余弦公式可得2272718cos 2cos()cos()1sin()a a a a a a a -+-+=+,再运用积化和差公式可得227181cos 2[cos 2cos 2]21sin()a a a a a -++=+,即72181[cos 2cos 2]21sin()a a a a -=+,再由差化积公式可得727218sin()sin()1sin()a a a a a a --+=+.由于{}n a 是等差数列,因此1827a a a a +=+,即1827sin()sin()a a a a +=+,所以72sin()1a a -=-即sin51d =-注意到()1,0d ∈-,则()55,0d ∈-,所以5210d d ππ=-⇒=-,故对称轴方程故等差数列的前n 项和是1(1)2n n n S na d -=+,即221()()222020n d d S n a n n a n ππ=+-=-++,其对称轴是1202a n ππ+=,由题设可得1202123222a ππ+<<,即11110a ππ<<,应选答案D .点睛:解答本题的关键是先借助三角变换中的两角和差的余弦公式、余弦二倍角公式、积化和差与和差化积公式等三角变换公式进行化简,再借助差数列的定义和性质求出等差数列的公差10d π=-,然后将等差数列的前n 项和公式1(1)2n n n S na d -=+变形为221()()222020n d d S n a n n a n ππ=+-=-++,借助对称轴11n =的位置建立不等式组1202123222a ππ+<<,进而求得数列首项的取值范围是11110a ππ<<. 4.D解析:D 【分析】利用两角和的正弦公式进行展开,结合恒成立可得cos ϕ,最后根据二倍角公式得结果. 【详解】由题可知,cos sin sin 2cos x x x x ϕϕ+=+, 则cosϕ=,sin ϕ=, 所以283cos22cos 1155ϕϕ=-=-=,故选:D. 【点睛】本题主要考查了两角和的余弦以及二倍角公式的应用,通过恒成立求出cos ϕ是解题的关键,属于中档题.5.A解析:A 【分析】利用降次公式、二倍角公式和辅助角公式化简()f x ,由此求得()f x 的最大值. 【详解】依题意()1cos 233sin 2sin 22222x f x x x x -=+=+12cos 2222262x x x π⎫⎛⎫=-+=-+⎪ ⎪⎪⎝⎭⎭,所以()f x 22=. 故选:A 【点睛】本小题主要考查降次公式、二倍角公式和辅助角公式,考查三角函数的最值的求法,属于中档题.6.A解析:A 【分析】由题意结合函数零点的概念可得方程1sin cos 2sin cos a x x x x -=+-在3,44ππ⎡⎤--⎢⎥⎣⎦上有解,令sin cos 2sin cos y x x x x =+-,通过换元法求得y 在3,44ππ⎡⎤--⎢⎥⎣⎦上的值域即可得解. 【详解】因为函数()sin cos 2sin cos 1f x x x x x a =+-+-在3,44ππ⎡⎤--⎢⎥⎣⎦上有零点, 所以方程1sin cos 2sin cos a x x x x -=+-在3,44ππ⎡⎤--⎢⎥⎣⎦上有解,设sin cos 4t x x x π⎛⎫=+=+ ⎪⎝⎭,3,44x ππ⎡⎤∈--⎢⎥⎣⎦,∴,204x ππ⎡⎤+∈-⎢⎥⎣⎦,∴t ⎡⎤∈⎣⎦,212sin cos t x x =+,∴2215sin cos 2sin cos 124y x x x x t t t ⎛⎫=+-=-+=--+ ⎪⎝⎭,当0t =时,y 取得最大值1,当t =y 取得最小值1-,故可得111a ≤-≤,∴2a ≤≤. 故选:A. 【点睛】本题考查了函数与方程的综合应用,考查了三角函数的性质及三角恒等变换的应用,考查了逻辑思维能力和运算求解能力,属于中档题.7.B解析:B 【分析】首先通过三角函数关系式的变换,把函数的关系式变形成正弦型函数,进一步利用函数的性质的应用求出结果. 【详解】解:函数211()sin cos )sin sin()2223xf x x x x x ωπωωωω=+=-+=-, 令:5()2432k k Z πππωπ-=+∈,解得244()5kk Z ω=+∈, 由于08ω<, 所以4ω=. 故选:B . 【点睛】本题考查三角函数关系式的变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,8.D解析:D 【分析】 由()tan804sin 420α+=得:()tan 804sin 4204sin 6023α+===,然后将()tan 20α+化为()tan 8060α⎡⎤+-⎣⎦,用正切的差角公式求解.【详解】 因为()tan804sin 4204sin 6023α+===,则()()()()tan 80tan 6023tan 20tan 806071tan 80tan 6012αααα+-⎡⎤+=+-===⎣⎦++⋅+. 故选:D . 【点睛】本题考查诱导公式、正切的差角公式的运用,难度一般.解答时要注意整体思想的运用,即观察目标式与条件式角度之间的和差关系,然后运用公式求解.9.C解析:C 【分析】根据三角恒等变换化简函数()f x ,再由图象的平移得到函数()g x 的解析式,利用函数()g x 的值域,可知12x x -的值为函数()y g x =的最小正周期T 的整数倍,从而得出选项.【详解】函数2()22cos 12cos 22sin 26f x x x x x x π⎛⎫=-+=-=- ⎪⎝⎭, 将函数()y f x =的图象上的所有点的横坐标缩短到原来的12倍,得2sin 46y x π⎛⎫=- ⎪⎝⎭的图象;再把所得图象向上平移1个单位,得函数()2sin 416y g x x π⎛⎫==-+ ⎪⎝⎭的图象,所以函数()y g x =的值域为[1,3]-.若()()129g x g x ⋅=,则()13g x =且()23g x =,均为函数()y g x =的最大值, 由42()62x k k Z πππ-=+∈,解得()62k x k Z ππ=+∈; 其中1x 、2x 是三角函数()y g x =最高点的横坐标,12x x ∴-的值为函数()y g x =的最小正周期T 的整数倍,且242T ππ==. 故选:C. 【点睛】本题考查三角函数的恒等变换,三角函数的图象的平移,以及函数的值域和周期,属于中档题.10.B解析:B 【解析】 ∵3cos 6πα⎛⎫+= ⎪⎝⎭,则5sin 2sin 2sin 26662ππππααα⎡⎤⎛⎫⎛⎫⎛⎫-=-+=-++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦][221cos 2[2cos 11]6633ππαα⎛⎫⎛⎫=-+=-+-=--= ⎪ ⎪⎝⎭⎝⎭,故选B.11.C解析:C 【解析】 试题分析:因,故应选C .考点:同角三角函数的关系及运用.12.A解析:A 【分析】由两角和的正弦公式化简,并引入锐角β,cos 7β=,3sin 7β=,已知条件化为sin()1αβ-=,这样可得22k παβπ=++,k Z ∈,代入tan α,应用切化弦公式及诱导公式可得结论. 【详解】由已知3sin 2sin 73sin 2sin cos cos sin 70333πππααααα⎛⎫⎛⎫-+=-+= ⎪ ⎪⎝⎭⎝⎭ 2sin 37αα=3177αα=, 设cos 7β=,3sin 7β=,且β为锐角, 3cos sin sin cos sin()177ααβαβααβ=-=-=, ∴22k παβπ-=+,k Z ∈,即22k παβπ=++,k Z ∈,tan tan 2tan 22k ππαβπβ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭sin cos 2sin cos 2πββπββ⎛⎫+ ⎪⎝⎭====-⎛⎫+ ⎪⎝⎭, 故选:A . 【点睛】本题考查两角和与差的正弦公式,考查诱导公式及同角间的三角函数关系,化简变形求值是解题的基本方法.二、填空题13.【分析】由且求得得到再结合两角和的正切公式即可求解【详解】因为且可得所以又由故答案为:【点睛】本题主要考查了三角函数的基本关系式以及两角和的正切公式的化简求证其中解答中熟记三角函数的基本关系式和两角解析:17【分析】 由4cos 5θ=,且,02πθ⎛⎫∈- ⎪⎝⎭,求得3sin 5θ=-,得到3tan 4θ=-,再结合两角和的正切公式,即可求解. 【详解】 因为4cos 5θ=,且,02πθ⎛⎫∈- ⎪⎝⎭,可得3sin 5θ===-,所以sin 3tan cos 4θθθ==-, 又由311tan 14tan 341tan 714πθθθ-+⎛⎫+=== ⎪-⎝⎭+. 故答案为:17.【点睛】本题主要考查了三角函数的基本关系式,以及两角和的正切公式的化简、求证,其中解答中熟记三角函数的基本关系式和两角和的正切公式,准确运算是解答的关键,着重考查运算与求解能力.14.【分析】构造角再用两角和的余弦公式及二倍公式打开【详解】故答案为:【点睛】本题是给值求值题关键是构造角应注意的是确定三角函数值的符号解析:26- 【分析】 构造角22643πππαα⎛⎫+=+- ⎪⎝⎭,cos 4πα⎛⎫+ ⎪⎝⎭求,再用两角和的余弦公式及二倍公式打开. 【详解】()50,,,444πππαπα⎛⎫∈+∈ ⎪⎝⎭,sin 42πα⎛⎫+=< ⎪⎝⎭,cos 4πα⎛⎫∴+= ⎪⎝⎭,22cos 22cos 1443ππαα⎛⎫⎛⎫+=+-= ⎪ ⎪⎝⎭⎝⎭,sin 22sin cos 444πππααα⎛⎫⎛⎫⎛⎫+=+⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭cos 2cos 2cos 2cos sin 2sin 6434343πππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=+-=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦2132⎛=⨯+= ⎝⎭故答案为:26【点睛】本题是给值求值题,关键是构造角,应注意的是确定三角函数值的符号.15.1【分析】由结合辅助角公式可知原式为结合诱导公式以及二倍角公式可求值【详解】解:故答案为:1【点睛】本题考查了同角三角函数的基本关系考查了二倍角公式考查了辅助角公式考查了诱导公式本题的难点是熟练运用解析:1 【分析】由sin10tan10cos10︒︒=︒,结合辅助角公式可知原式为2sin50sin 40cos10︒︒︒,结合诱导公式以及二倍角公式可求值. 【详解】解: ()cos10sin501sin50cos10︒+︒︒+︒=︒⨯︒()2sin50cos30sin10sin 30cos102sin50sin 402sin50cos50cos10cos10cos10︒︒︒+︒︒︒︒︒︒===︒︒︒()sin 10902sin50cos50sin100cos101cos10cos10cos10cos10︒+︒︒︒︒︒====︒︒︒︒.故答案为:1. 【点睛】本题考查了同角三角函数的基本关系,考查了二倍角公式,考查了辅助角公式,考查了诱导公式.本题的难点是熟练运用公式对所求式子进行变形整理.16.【分析】根据方程的两根为得到由两角和的正切公式得到再确定的范围求解【详解】因为方程的两根为所以则因为所以所以所以故答案为:【点睛】本题主要考查两角和与差的正切公式的应用还考查了运算求解的能力属于中档题 解析:34π-【分析】根据方程23310x ax a +++=,()2a >的两根为tan α,tan β,得到tan tan 3,tan tan 31a a αβαβ+=-⋅=+,由两角和的正切公式得到()tan αβ+,再确定αβ+的范围求解. 【详解】因为方程23310x ax a +++=,()2a >的两根为tan α,tan β, 所以tan tan 3,tan tan 31a a αβαβ+=-⋅=+, 则()tan tan tan 11tan tan αβαβαβ++==-⋅,因为2a >,所以tan tan 30,tan tan 310a a αβαβ+=-<⋅=+>, 所以tan 0,tan 0αβ<<,α,,02πβ⎛⎫∈-⎪⎝⎭, (),0αβπ+∈-,所以34παβ+=-. 故答案为:34π- 【点睛】本题主要考查两角和与差的正切公式的应用,还考查了运算求解的能力,属于中档题.17.【分析】由可得然后用正弦的和差公式展开然后将条件代入即可求出原式的值【详解】因为所以故答案为:【点睛】本题考查的三角恒等变换解决此类问题时要善于发现角之间的关系解析:12【分析】由259210πππαα+=++可得22sin sin 5592cos sin 105ππααππαα⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭=⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭,然后用正弦的和差公式展开,然后将条件代入即可求出原式的值 【详解】 因为2tan 3tan5πα= 所以222sin sin sin 555922cos cos sin 10255πππαααππππααα⎛⎫⎛⎫⎛⎫--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==⎛⎫⎛⎫⎛⎫+++-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭2222sincos cos sin tan tan 2tan 1555522222sin cos cos sin tan tan 4tan5555ππππαααππππααα---====----- 故答案为:12【点睛】本题考查的三角恒等变换,解决此类问题时要善于发现角之间的关系.18.【分析】化简得再利用诱导公式与和差角公式化简求解即可【详解】由题故答案为:【点睛】本题主要考查了根据余弦的诱导公式与和差角公式化简求解的问题需要根据题中的角跟特殊角的关系用和差角公式属于中档题【分析】 化简得sin102cos140cos10m ︒-︒=︒,再利用诱导公式与和差角公式化简cos140︒求解即可.【详解】 由题()sin102cos 1030sin102cos140cos10cos10m ︒+︒+︒︒-︒==︒︒sin102cos10cos302sin10sin 302cos10cos302cos30cos10cos10︒+︒︒-︒︒︒︒===︒=︒︒.【点睛】本题主要考查了根据余弦的诱导公式与和差角公式化简求解的问题.需要根据题中的角跟特殊角的关系用和差角公式,属于中档题.19.【分析】根据正切的和角公式将用的函数表示出来利用均值不等式求最值求得取得最大值的再用倍角公式即可求解【详解】故可得则当且仅当即时此时有故答案为:【点睛】本题考查正切的和角公式以及倍角公式涉及均值不等解析:7【分析】根据正切的和角公式,将tan α用tan β的函数表示出来,利用均值不等式求最值,求得取得最大值的tan α,再用倍角公式即可求解. 【详解】0,,0,22ππαβ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭tan 0,tan 0αβ∴>> tan()2tan αββ+=故可得tantan 2tan 1tantan αββαβ+=-则2tan 1tan 112tan 42tan tan βαβββ==≤=++当且仅当12tan tan ββ=,即tan 2β=时,max tan 4α=此时有222tan 4tan 221tan 7116ααα===--. 【点睛】本题考查正切的和角公式,以及倍角公式,涉及均值不等式的使用.20.【分析】由韦达定理得由平方后化为然后凑配成的代数式再代入求值【详解】由是方程的两根所以从而又由知从而【点睛】关键点睛:本题考查三角函数的平方关系考查韦达定理解题关键是利用平方关系化正弦为余弦解答本题 【分析】由韦达定理得cos cos ,cos cos αβαβ+,由sin sin αβ平方后化为cos ,cos αβ,然后凑配成cos cos ,cos cos αβαβ+的代数式,再代入求值. 【详解】由cos α,cos β是方程26320x x -=-的两根 所以11cos cos ,cos cos 23αβαβ+==-, 从而()()222(sin sin )1cos 1cos αβαβ=--22221cos cos cos cos αβαβ=--+222212cos cos cos cos (cos 2cos cos cos )αβαβααββ=++-++22(1cos cos )(cos cos )αβαβ=+-+22114171329436⎛⎫⎛⎫=--=-= ⎪ ⎪⎝⎭⎝⎭.又由,(0,)αβπ∈知sin sin 0αβ>,从而sin sin αβ= 【点睛】关键点睛:本题考查三角函数的平方关系,考查韦达定理,解题关键是利用平方关系化正弦为余弦,解答本题的关键是将()()222(sin sin )1cos 1cos αβαβ=--化为22(1cos cos )(cos cos )αβαβ+-+的形式,属于中档题.三、解答题21.(1),24ππ⎡⎤-⎢⎥⎣⎦,值域1⎤+⎥⎣⎦;(2)02sin 3x ⎛⎫= ⎪⎝⎭ 【分析】(1)先利用诱导公式和降幂公式可将()f x 化为()2sin 33x f x π⎛⎫=+⎪⎝⎭数的性质可得函数的单调区间和值域. (2)利用两角差的正弦公式可求02sin 3x ⎛⎫⎪⎝⎭的值. 【详解】①2()sin cos 1cos 3323x x x f x ⎛⎫=++ ⎪⎝⎭2sin 33x π⎛⎫=+ ⎪⎝⎭, 由2222332x k k πππππ-≤+≤+得53344k x k ππππ-≤≤+,k Z ∈, 又2x ππ-≤≤,所以()f x 的递增区间为,24ππ⎡⎤-⎢⎥⎣⎦, 又2x ππ-≤≤,故2033x ππ≤+≤,所以20sin 133x π⎛⎫≤+≤⎪⎝⎭,()f x ∴值域为122⎤+⎥⎣⎦.②由024()sin 335x f x π⎛⎫=++= ⎪⎝⎭得024sin 335x π⎛⎫+=⎪⎝⎭, 因04x ππ≤≤,所以02233x πππ≤+≤,故023cos 335x π⎛⎫+=- ⎪⎝⎭00002222sin sin sin cos cos sin 3333333333x x x x ππππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-=+-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦413525=⨯+=. 【点睛】方法点睛:形如()22sinsin cos cos f x A x B x x C x ωωωω=++的函数,可以利用降幂公式和辅助角公式将其化为()()'sin 2'f x A x B ωϕ=++的形式,再根据复合函数的讨论方法求该函数的单调区间、对称轴方程和对称中心等.三角函数的化简求值问题,可以从四个角度去分析:(1)看函数名的差异;(2)看结构的差异;(3)看角的差异;(4)看次数的差异.对应的方法是:弦切互化法、辅助角公式(或公式的逆用)、角的分拆与整合(用已知的角表示未知的角)、升幂降幂法. 22.(1)115sin cos 12αα+=-;(2)4tan 3α=-. 【分析】(1)将等式1sin cos 5αα+=两边平方,可求出sin cos αα的值,进而可求得11sin cos αα+的值; (2)法一:利用同角三角函数的基本关系可求得sin cos αα-的值,结合已知条件可得出关于sin α、cos α的方程组,解出sin α、cos α的值,进而可求得tan α的值;法二:由弦化切可得出222sin cos tan 12sin cos tan 125αααααα==-++,可得出关于tan α的二次方程,由已知条件可得出tan 1α<-,由此可求得tan α的值. 【详解】(1)由1sin cos 5αα+=①,得()21sin cos 12sin cos 25αααα+=+=. 12sin cos 25αα∴=-,所以,111sin cos 5512sin cos sin cos 1225αααααα++===--; (2)法一:由(1)知12sin cos 25αα=-,0απ<<,sin 0α>,cos 0α<,sin cos 0αα∴->.()249sin cos 12sin cos 25αααα∴-=-=,7sin cos 5αα∴-=②.由①②得,4sin 5α,3cos 5α=-,sin 4tan cos 3∴==-ααα; 法二:由(1)知12sin cos 25αα=-,22sin cos 1αα+=,22sin cos 12sin cos 25αααα∴=-+. 2222sin cos 12cos sin cos 25cos αααααα∴=-+,即2tan 12tan 125αα=-+,整理可得212tan 25tan 120αα++=,得4tan 3α=-或3tan 4α=-. 因为0απ<<,所以sin 0α>,cos 0α<, 又1sin cos 05αα+=>,所以sin cos αα>,tan 1α∴<-,所以4tan 3α=-. 【点睛】方法点睛:在利用同角三角函数的基本关系求值时,可利用以下方法求解:(1)应用公式时注意方程思想的应用,对于sin cos αα+、sin cos αα-、sin cos αα这三个式子,利用()2sin cos 12sin cos αααα±=±可以知一求二; (2)关于sin α、cos α的齐次式,往往化为关于tan α的式子. 23.(1)7,()1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)523,()2424k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦.【分析】利用二倍角公式和两角和的正弦公式化简()f x ,由周期求出ω, (1)根据正弦函数的单调性可得答案; (2)根据正弦函数的值域可得答案. 【详解】)2()cos sin sin cos 22f x x x x x x x ωωωωωω=+-=+-1cos 2sin 222x x ωω+=+12sin 2sin 223x x x πωωω⎛⎫=+=+ ⎪⎝⎭, 又函数()f x 的最小正周期为x ,所以22ππω=,故1ω=, 所以()sin 23f x x π⎛⎫=+⎪⎝⎭.(1)由题意,得3222,232k x k k πππππ+++∈Z , 解得7,1212k xk k ππππ++∈Z , 所以()f x 的单调递减区间是7,()1212k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z .(2)因为2()sin 232f x x π⎛⎫=+ ⎪⎝⎭, 所以39222()434k x k k πππππ+++∈Z , 解得523()2424k x k k ππππ++∈Z , 所以523,()2424x k k k ππππ⎡⎤∈++∈⎢⎥⎣⎦Z .【点睛】本题考查了三角函数的性质,关键点是求出正弦函数的解析式,利用正弦函数的性质解题,要求学生熟练掌握三角函数的基础知识.24.(1)T π=,单调递增区间为()5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(2)最大值为12,最小值为14-. 【分析】(1)本题首先可通过三角恒等变换将函数解析式转化为()1sin 223f x x π⎛⎫=- ⎪⎝⎭,然后通过周期计算公式即可求出最小正周期,通过正弦函数的单调性即可求出单调递增区间;(2)本题可根据,122x ππ⎡⎤∈⎢⎥⎣⎦得出22,363x πππ⎡⎤-∈-⎢⎥⎣⎦,然后根据正弦函数的性质即可求出最值. 【详解】(1)2()cos cos 64f x x x x π⎛⎫=⋅-- ⎪⎝⎭21cos sin 2x x x x ⎫=++-⎪⎪⎝⎭221sin cos 2x x x x =++))2212cos 1sin 22sin 14x x x =-+-+11cos 2sin 2cos 2sin 2244244x x x x x =+-=-111sin 22sin 22223x x x π⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭, 即()1sin 223f x x π⎛⎫=- ⎪⎝⎭,则最小正周期22T ππ==,当222232k x k πππππ-+≤-≤+,即()51212k x k k Z ππππ-+≤≤+∈,函数()f x 单调递增, 函数()f x 的单调递增区间为()5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦.(2)()1sin 223f x x π⎛⎫=- ⎪⎝⎭, 因为,122x ππ⎡⎤∈⎢⎥⎣⎦,所以22,363x πππ⎡⎤-∈-⎢⎥⎣⎦, 由正弦函数的性质易知, 当236x ππ-=-,即12x π=时,函数()f x 取最小值,最小值为14-; 当232x ππ-=,即512x π=时,函数()f x 取最大值,最大值为12.【点睛】关键点点睛:本题考查结合三角恒等变换判断三角函数性质,能否根据三角恒等变换将函数转化为()1sin 223f x x π⎛⎫=- ⎪⎝⎭是解决本题的关键,考查三角函数周期性、单调性以及最值的求法,是中档题.25.(1)最小正周期π,单调递增区间为5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈;(2)4x π=时,()f x 取得最大值1;12x π=-时,()f x 取得最小值2-;(3))m ∈,()12tan 3x x +=-. 【分析】(1)利用和与差以及辅助角公式基本公式将函数化为()sin y A ωx φ=+的形式,再利用周期公式求函数的最小正周期,最后将内层函数看作整体,放到正弦函数的增区间上,解不等式得函数的单调递增区间;(2)当,64x ππ⎡⎤∈-⎢⎥⎣⎦时,利用正弦函数的定义域和值域,求得()f x 的最大值和最小值,并指出()f x 取得最值时对应的x 的值.(3)函数()()g x f x m =-所在0,2π⎡⎤⎢⎥⎣⎦匀上有两个不同的零点1x ,2x ,转化为函数()f x 与函数y m =有两个交点;可求m 的范围,结合三角函数的图象可知,1x ,2x ,关于对称轴是对称的,可知12x x +,即可求()12tan x x +的值. 【详解】解:(1)函数()4sin cos 3f x x x π⎛⎫=-+ ⎪⎝⎭化简可得:()2112sin cos sin 2cos 222f x x x x x x ⎫=-=-++⎪⎭sin 222sin 23x x x π⎛⎫=-=- ⎪⎝⎭,所以函数的最小正周期22T ππ==, 由222232k x k πππππ-≤-≤+,解得:1212k x k π5ππ-≤≤π+, 所以函数的单调递增区间为5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈.(2)由于64x ππ-≤≤,可得22336x πππ-≤-≤, 当236x ππ-=,即4x π=时,()f x 取得最大值1;当232x ππ-=-,即12x π=-时,()f x 取得最小值2-.(3)函数()()g x f x m =-所在0,2π⎡⎤⎢⎥⎣⎦匀上有两个不同的零点1x ',2x ',转化为函数()f x 与函数y m =有两个交点,令23u x π=-,∵ 0,2x π⎡⎤∈⎢⎥⎣⎦,∴2,33u ππ⎡⎤∈-⎢⎥⎣⎦, 可得sin y u =的图象(如图).从图可知:)m ∈时,函数sin y u =与函数y m =有两个交点,其横坐标分别为1x ',2x '.故得实数m 的取值范围是)3,2m ⎡∈⎣, 由题意可知1x ',2x '是关于对称轴是对称的: 那么函数在0,2π⎡⎤⎢⎥⎣⎦的对称轴512x π=, 所以1256x x π''+=, 所以()1253tan tan 6x x π''+==-.【点睛】本题第三问解题的关键在于将问题转化为函数()f x 与函数y m =有两个交点,进而讨论函数在0,2x π⎡⎤∈⎢⎥⎣⎦上的图象,根据数形结合思想求解,考查运算求解能力,化归转化思想,是中档题.26.(1)T π=,7[,],1212++∈k k k Z ππππ;(2)3π. 【分析】(1)先利用三角恒等变换,将函数转化为()2sin(2)3f x x π=+,再利用正弦函数的性质求解.(2)根据函数()f x 的图象关于点(,)m n 对称,令2()3m k k Z ππ+=∈求解.【详解】(1)2()[2sin()sin ]cos 3=++f x x x x x π2(sin sin )cos =++-x x x x x2(2sin )cos =+x x x x222sin cos sin )x x x x =+-sin 222sin(2)3x x x π==+, T π=, 由3222232k x k πππππ+≤+≤+, 解得71212k x k ππππ+≤≤+, 则()f x 的单调递减区间是7[,],1212++∈k k k Z ππππ. (2)2()3+=∈m k k Z ππ,,26∴=-∈k m k Z ππ 又0m >m ∴的最小值为3π. 【点睛】 方法点睛:1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式. 2.函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2T ωπ=,y =tan(ωx +φ)的最小正周期为T πω=. 3.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t 的性质.。
(常考题)北师大版高中数学必修四第三章《三角恒等变形》检测卷(有答案解析)
一、选择题1.已知函数()sin f x x x ωω=()0ω>的图像与直线2y =交于,A B 两点,若AB 的最小值为π,则函数()f x 的一条对称轴是( )A .3x π=B .4x π=C .6x π=D .12x π=2.若()π,2πα∈,πcos sin 042αα⎛⎫+-= ⎪⎝⎭,则πsin 6α⎛⎫+= ⎪⎝⎭( )A .B .0CD .或0 3.在ΔABC 中,2sin (22c a Ba b c c -=、、分别为角A B C 、、的对边),则ΔABC 的形状为 A .直角三角形 B .等边三角形 C .等腰三角形或直角三角形 D .等腰直角三角形4.函数2()sin 2f x x x =+-()cos(2)2 3 (0)6g x m x m m π=--+>,若对任意1[0,]4x π∈,存在2[0,]4x π∈,使得12()()g x f x =成立,则实数m 的取值范围是( ) A .4(1,)3B .2(,1]3C .2[,1]3D .4[1,]35.已知,22ππα⎛⎫∈- ⎪⎝⎭,1cos 63πα⎛⎫+= ⎪⎝⎭,则sin α=( )A B .6C .D .166.函数()sin ([,0])f x x x x π=∈-的单调递增区间是( ) A .5[,]6ππ--B .5[,]66ππ-- C .[,0]3π-D .[,0]6π-7.已知函数()sin (0)f x x x ωωω=+>的图象关于直线8x π=对称,则ω的最小值为( ) A .13B .23C .43D .838.已知角α满足1cos()63πα+=,则sin(2)6πα-=( )A .9-B .9C .79-D .799.已知,2παπ⎛⎫∈ ⎪⎝⎭,3sin 5α=,则tan 4πα⎛⎫+= ⎪⎝⎭( )A .17 B .7C .17-D .-710.若函数()sin cos 2sin cos 1f x x x x x a =+-+-在3,44ππ⎡⎤--⎢⎥⎣⎦上有零点,则实数a 的取值范围( )A .⎡⎤⎣⎦B .94⎡⎤⎢⎥⎣⎦C .⎡-⎣D .94⎤⎥⎦11.求sin10°sin50°sin70°的值( )A .12B C .18D12.已知函数()222cos 1f x x x -+,将()f x 的图象上的所有点的横坐标缩短到原来的12,纵坐标保持不变;再把所得图象向上平移1个单位长度,得到函数()y g x =的图象,若()()129g x g x ⋅=,则12x x -的值可能为( ) A .54π B .34π C .2π D .3π 二、填空题13.给出下列命题:①存在实数α使得sin cos 1αα=; ②存在实数α使得3sin cos 2αα+=; ③5sin 22y x π⎛⎫ ⎪⎝=⎭-是偶函数; ④8x π=是函数5sin 24y x π⎛⎫=+ ⎪⎝⎭的图象的一条对称轴方程; ⑤若α、β是第一象限角,且αβ>,则tan tan αβ>, 其中正确命题的序号是______.14.经过点(4,1)P -作圆2220x y y +-=的切线,设两个切点分别为A ,B ,则tan APB ∠=__________.15.已知()2cos (sin cos )f x x x x =+,若对任意[0,]2x π∈不等式2()m f x m -≤≤+恒成立,则实数m 的取值范围是___________.16.函数3sin 4cos y x x =-在x θ=处取得最大值,则sin θ= ______17.已知sin 4πα⎛⎫+= ⎪⎝⎭()0,απ∈,则cos 26πα⎛⎫+= ⎪⎝⎭__________. 18.已知02x π-<<,1sin cos 5x x +=,则22sin cos cos x x x -的值为___________. 19.ABC ∆中,若AC AB >,4A π=,则角C 的取值范围是________. 20.已知2tan 3tan 5πα=,则2sin 59cos 10παπα⎛⎫- ⎪⎝⎭=⎛⎫+ ⎪⎝⎭________. 三、解答题21.已知函数2211()sin 2cos 2cos 2sin 22,22f x x x x x x R =+-+∈. (I )求函数|()|f x 最小正周期和最小值; (Ⅱ)将函数()y f x =的图象向左平移8π个单位长度,得到()y g x =图象.若对任意12,[0,]x x m ∈,当12x x <时,都有()()()()1212f x f x g x g x -<-成立,求实数m 的最大值. 22.已知00,2x x π+是函数22()cos sin (0)6f x x x πωωω⎛⎫=--> ⎪⎝⎭的两个相邻的零点. (1)求12f π⎛⎫⎪⎝⎭的值; (2)求()f x 在[]0,π上的单调递增区间.23.已知函数()sin 2cos 26x x f x π⎛⎫=-- ⎪⎝⎭.(1)求函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值;(2)设α是锐角,3245f απ⎛⎫+= ⎪⎝⎭,求sin α的值. 24.已知tan α=(1)求sin α的值;(2)求sin()cos()sin cos 22αππαππαα-+-⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭的值. 25.在直角坐标系xOy 中,已知锐角α和β的顶点都在坐标原点,始边都与x 轴非负半轴重合,且终边与单位圆分别交于点5,13P m ⎛⎫⎪⎝⎭和点3,5Q n ⎛⎫⎪⎝⎭,求()sin αβ-的值.26.已知函数21()cos cos 2222x x x f x =++. (1)求函数()f x 的最小正周期;(2)将函数()y f x =的图象上的各点________;得到函数()y g x =的图象,求函数()y g x =的最大值及取得最大值时x 的取值集合.你需要在①、②中选择一个,补在(2)中的横线上,并加以解答. ①向左平移32π个单位,再保持纵坐标不变,横坐标缩短到原来的一半; ②纵坐标保持不变,横坐标缩短到原来的一半,再向右平移4π个单位.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】化简得()2sin 3f x x πω⎛⎫=+⎪⎝⎭,由题可得周期为π,即可求出2ω=,令2,32πππ+=+∈x k k Z 求出对称轴即可得出答案.【详解】()sin 2sin 3f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭,()f x 直线2y =交于,A B 两点,且AB 的最小值为π,T π=,则22T πω==,即()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,令2,32πππ+=+∈x k k Z ,则,122k x k Z ππ=+∈, ()f x ∴的对称轴为,122k x k Z ππ=+∈, 当0k =时,12x π=.故选:D. 【点睛】本题考查正弦型函数的对称轴问题,解题的关键是利用辅助角公式化简函数得出周期,求出解析式,即可解决.2.B解析:B 【分析】根据题意,化简得到cossin22αα+=,所以3,24αππ⎛⎫∈⎪⎝⎭,取得1sin 2α=-,再利用三角函数的基本关系式和两角和的正弦函数公式,即可求解. 【详解】由cos sin 042παα⎛⎫+-= ⎪⎝⎭,可得22cos sin cos sin 022222αααα⎫-+-=⎪⎝⎭,即cossincos sin 02222αααα⎛⎛⎫-++= ⎪⎝⎭⎝⎭, 因为(),2αππ∈,所以,22αππ⎛⎫∈ ⎪⎝⎭,所以cos sin 022αα-≠,解得cos sin22αα+=,所以3,24αππ⎛⎫∈⎪⎝⎭,所以11sin 2α+=,所以1sin 2α=-,又3,22παπ⎛⎫∈⎪⎝⎭,所以cos α==,所以π11sin 062222α⎛⎫+=-+⨯= ⎪⎝⎭. 【点睛】三角函数的化简求值的规律总结:1、给角求值:一般给出的角是非特殊角,要观察所给角与特殊角的关系,利用三角变换转化为求特殊角的三角函数值问题;2、给值求值:即给出某些角的三角函数值,求另外一些角的三角函数值,解题关键在于“变角”,使相关角相同或具有某种关系;3、给值求角:实质上可转化为“给值求值”即通过求角的某个三角函数值来求角(注意角的范围).3.A解析:A 【解析】依题意,利用正弦定理及二倍角公式得sin sin 1cos 2sin 2C A BC --=,即sin sin cos A C B =,又()sin sin sin cos cos sin A B C B C B C =+=+,故sin cos 0B C =,三角形中sin 0B ≠,故πcos 0,2C C ==,故三角形为直角三角形,故选A. 4.D解析:D【解析】222221f x sin x x sin x cos x=+-=+-())1222222223sin x x sin x x sin xπ==+=+()(),当0,4xπ⎡⎤∈⎢⎥⎣⎦时,552[]21[12]3366minx f x sin f xππππ+∈∴==∴∈,,(),(),,对于22306g x mcos x m mπ=--+()()(>),2[]2[]36662mx mcos x mππππ-∈--∈,,(),,3[33]2g x m m∴∈-+-(),,∵对任意10,4xπ⎡⎤∈⎢⎥⎣⎦,存在20,4xπ⎡⎤∈⎢⎥⎣⎦,使得()()12g x f x=成立,331232mm⎧-+≥⎪∴⎨⎪-≤⎩,解得实数m的取值范围是41,3⎡⎤⎢⎥⎣⎦.故选D.【点睛】本题考查三角函数恒等变换,其中解题时问题转化为求三角函数的值域并利用集合关系是解决问题的关键,5.D解析:D【分析】结合同角三角函数基本关系计算sin6πα⎛⎫+⎪⎝⎭的值,再利用两角差的正弦公式进行求解即可.【详解】由,22ππα⎛⎫∈-⎪⎝⎭可得2,633πππα⎛⎫+∈-⎪⎝⎭,又11cos cos6323ππα⎛⎫+=<=⎪⎝⎭,所以2,633πππα⎛⎫+∈ ⎪⎝⎭所以sin63πα⎛⎫+==⎪⎝⎭,sin sin sin cos cos sin666666ππππππαααα⎛⎫⎛⎫⎛⎫=+-=+-+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11132326-=⨯-⨯=.故选:D【点睛】本题主要考查两角和与差的正余弦公式与同角三角函数基本关系,解题的关键是熟练运用公式.6.D解析:D 【解析】()sin 23f x x x sin x π⎛⎫==-⎪⎝⎭,因为[],0x π∈-4,,333x πππ⎡⎤∴-∈--⎢⎥⎣⎦,由1,323x πππ⎡⎤-∈--⎢⎥⎣⎦,得,06x π⎡⎤∈-⎢⎥⎣⎦,函数()[]()sin ,0f x x x x π=∈-的单调递增区间是,06π⎡⎤-⎢⎥⎣⎦,故选D. 7.C解析:C 【分析】利用辅助角公式将函数()y f x =的解析式化简为()2sin 3f x x πω⎛⎫=+⎪⎝⎭,根据题意得出()832k k Z πππωπ+=+∈,可得出关于ω的表达式,即可求出正数ω的最小值.【详解】()sin 2sin 3f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭,由于该函数的图象关于直线8x π=对称,则()832k k Z πππωπ+=+∈,得()483k k Z ω=+∈, 0ω>,当0k =时,ω取得最小值43.故选:C. 【点睛】本题考查利用正弦型函数的对称性求参数,解题时要将三角函数的解析式利用三角恒等变换思想化简,并通过对称性列出参数的表达式求解,考查计算能力,属于中等题.8.D解析:D 【分析】由已知利用诱导公式可求133sin πα⎛⎫-= ⎪⎝⎭,sin 2263cos ππαα⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,再由二倍角公式化简,即可得结果. 【详解】162633cos sin sin ππππααα⎡⎤⎛⎫⎛⎫⎛⎫+=-+=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,2sin 2cos 2cos 2262633cos πππππαααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫∴-=--=-=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦22171212()339sin πα⎛⎫=--=-⨯= ⎪⎝⎭.故选D . 【点睛】本题主要考查了诱导公式,二倍角公式在三角函数化简求值中的应用,属于基础题.三角函数求值有三类,(1)“给角求值”;(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种系;(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.9.A解析:A 【分析】根据角的范围以及平方关系求出4cos ,5α=-再利用商的关系求出3tan 4α=-,最后由两角和的正切公式可得答案. 【详解】 因为,2παπ⎛⎫∈⎪⎝⎭,3sin 5α=,所以4cos ,5α==-sin 3tan cos 4ααα==-, tan tan4tan 41tan tan 4παπαπα+⎛⎫+== ⎪⎝⎭-⋅17 故选:A. 【点睛】本题主要考查平方关系、商的关系以及两角和的正切公式,属于基础题.10.A解析:A 【分析】由题意结合函数零点的概念可得方程1sin cos 2sin cos a x x x x -=+-在3,44ππ⎡⎤--⎢⎥⎣⎦上有解,令sin cos 2sin cos y x x x x =+-,通过换元法求得y 在3,44ππ⎡⎤--⎢⎥⎣⎦上的值域即可得解. 【详解】因为函数()sin cos 2sin cos 1f x x x x x a =+-+-在3,44ππ⎡⎤--⎢⎥⎣⎦上有零点, 所以方程1sin cos 2sin cos a x x x x -=+-在3,44ππ⎡⎤--⎢⎥⎣⎦上有解,设sin cos 4t x x x π⎛⎫=+=+ ⎪⎝⎭,3,44x ππ⎡⎤∈--⎢⎥⎣⎦,∴,204x ππ⎡⎤+∈-⎢⎥⎣⎦,∴t ⎡⎤∈⎣⎦,212sin cos t x x =+,∴2215sin cos 2sin cos 124y x x x x t t t ⎛⎫=+-=-+=--+ ⎪⎝⎭, 当0t =时,y 取得最大值1,当t =y取得最小值1-,故可得111a ≤-≤,∴2a ≤≤. 故选:A. 【点睛】本题考查了函数与方程的综合应用,考查了三角函数的性质及三角恒等变换的应用,考查了逻辑思维能力和运算求解能力,属于中档题.11.C解析:C 【分析】由诱导公式可转化为cos20cos40cos80︒︒︒,利用二倍角公式正弦公式求解即可. 【详解】sin10sin50sin70cos20cos40cos80︒︒︒=︒︒︒ 1sin160sin 20cos 20cos 40cos8018sin 20sin 208︒∴︒︒︒︒==︒︒ 即1sin10sin 50sin 708︒︒︒= 故选:C 【点睛】本题主要考查了诱导公式,二倍角的正弦公式,考查了运算能力,属于中档题.12.C解析:C【分析】根据三角恒等变换化简函数()f x ,再由图象的平移得到函数()g x 的解析式,利用函数()g x 的值域,可知12x x -的值为函数()y g x =的最小正周期T 的整数倍,从而得出选项.【详解】函数2()22cos 12cos 22sin 26f x x x x x x π⎛⎫=-+=-=- ⎪⎝⎭,将函数()y f x =的图象上的所有点的横坐标缩短到原来的12倍,得2sin 46y x π⎛⎫=- ⎪⎝⎭的图象;再把所得图象向上平移1个单位,得函数()2sin 416y g x x π⎛⎫==-+ ⎪⎝⎭的图象,所以函数()y g x =的值域为[1,3]-.若()()129g x g x ⋅=,则()13g x =且()23g x =,均为函数()y g x =的最大值, 由42()62x k k Z πππ-=+∈,解得()62k x k Z ππ=+∈; 其中1x 、2x 是三角函数()y g x =最高点的横坐标,12x x ∴-的值为函数()y g x =的最小正周期T 的整数倍,且242T ππ==. 故选:C. 【点睛】本题考查三角函数的恒等变换,三角函数的图象的平移,以及函数的值域和周期,属于中档题.二、填空题13.③④【分析】利用二倍角的降幂公式结合正弦函数的有界性可判断①的正误;利用辅助角公式结合正弦函数的有界性可判断②的正误;化简函数解析式结合余弦函数的奇偶性可判断③的正误;利用代入检验法可判断④的正误;解析:③④ 【分析】利用二倍角的降幂公式结合正弦函数的有界性可判断①的正误;利用辅助角公式结合正弦函数的有界性可判断②的正误;化简函数解析式,结合余弦函数的奇偶性可判断③的正误;利用代入检验法可判断④的正误;利用特殊值法可判断⑤的正误. 【详解】对于命题①,111sin cos sin 2,222ααα⎡⎤=∈-⎢⎥⎣⎦,所以,不存在实数α使得sin cos 1αα=,①错误;对于命题②,sin cos 4πααα⎛⎫⎡+=+∈ ⎪⎣⎝⎭, 所以,不存在实数α使得3sin cos 2αα+=,②错误; 对于命题③,si o 5s 2n c 2i s n 222x y x x ππ⎛⎫⎛⎫== ⎪ ⎪⎝-⎭-⎭=⎝, ()cos 2cos2x x -=,所以,函数5sin 22y x π⎛⎫ ⎪⎝=⎭-是偶函数,③正确; 对于命题④,当8x π=时,min 53sin 2sin 1842y y πππ⎛⎫=⨯+==-= ⎪⎝⎭, 所以,8x π=是函数5sin 24y x π⎛⎫=+ ⎪⎝⎭的图象的一条对称轴方程,命题④正确; 对于命题⑤,取9244παππ=+=,4πβ=,αβ>,但tan 1tan αβ==,⑤错误. 因此,正确命题的序号为③④.故答案为:③④.【点睛】 本题考查有关三角函数命题真假的判断,考查了三角函数的有界性、正弦型函数的奇偶性、对称性以及正切值大小的比较,考查计算能力与推理能力,属于中等题. 14.【分析】由圆的方程可以求出圆心坐标及半径进而可以求出从而求出的值由利用二倍角的正切公式可以求出的值【详解】圆的方程可化为则圆心为半径为r=1设则【点睛】本题考查了直线与圆的位置关系考查了圆的性质考查解析:9 【分析】由圆的方程可以求出圆心坐标及半径,进而可以求出PD =,1DA =,从而求出tan APD ∠的值,由2APB APD ∠∠=,利用二倍角的正切公式,可以求出tan APB ∠的值.【详解】圆的方程可化为()2211x y +-=,则圆心为()0,1D ,半径为r =1,设APD ∠θ=,AP DA ⊥,PD ==PA ===tan DA PA θ===,22tan 19 tan tan211tan 119APB θθθ∠====--【点睛】本题考查了直线与圆的位置关系,考查了圆的性质,考查了两点间的距离公式,二倍角的正切公式,属于基础题.15.【分析】先将化解成正弦型然后根据取值范围求出最值根据恒成立可建立不等式解出不等式即可【详解】当时恒成立解得故答案为:【点睛】本题考查三角函数的化解以及以及已知范围求正弦型函数的最值解析:[1,2]【分析】先将()f x 化解成正弦型,然后根据x 取值范围求出()f x 最值,根据恒成立可建立不等式,解出不等式即可.【详解】2()=2sin cos 2cos =sin2cos 212)14f x x x x x x x π+++=++, 当[0,]2x π∈时,52,444x πππ⎡⎤+∈⎢⎥⎣⎦, ∴02)1214x π≤++≤,2()2m f x m -≤≤+恒成立,02212m m,解得12m ≤≤.故答案为:[1,2]【点睛】 本题考查三角函数的化解以及以及已知x 范围求正弦型函数的最值.16.【分析】利用辅助角公式两角差的正弦公式化简解析式:并求出和由条件和正弦函数的最值列出方程求出的表达式由诱导公式求出的值【详解】解:其中依题意可得即所以故答案为:【点睛】本题主要考查辅助角公式诱导公式解析:35【分析】利用辅助角公式、两角差的正弦公式化简解析式:()5sin y x ϕ=-,并求出cos ϕ和sin ϕ,由条件和正弦函数的最值列出方程,求出θ的表达式,由诱导公式求出sin θ的值.【详解】 解:()343sin 4cos 5sin cos 5sin 55y x x x x x ϕ⎛⎫=-=-=- ⎪⎝⎭,其中3cos 5ϕ=,4sin 5ϕ= 依题意可得()5sin 5θϕ-=,即()sin 1θϕ-=,2,2k k Z πθϕπ∴-=+∈ 所以3sin sin 2cos 25k πθϕπϕ⎛⎫=++== ⎪⎝⎭故答案为:35【点睛】本题主要考查辅助角公式、诱导公式,以及正弦函数的最大值的应用,考查化简、变形能力. 17.【分析】构造角再用两角和的余弦公式及二倍公式打开【详解】故答案为:【点睛】本题是给值求值题关键是构造角应注意的是确定三角函数值的符号【分析】 构造角22643πππαα⎛⎫+=+- ⎪⎝⎭,cos 4πα⎛⎫+ ⎪⎝⎭求,再用两角和的余弦公式及二倍公式打开. 【详解】()50,,,444πππαπα⎛⎫∈+∈ ⎪⎝⎭,sin 462πα⎛⎫+=< ⎪⎝⎭,cos 46πα⎛⎫∴+=- ⎪⎝⎭,22cos 22cos 1443ππαα⎛⎫⎛⎫+=+-= ⎪ ⎪⎝⎭⎝⎭,sin 22sin cos 444πππααα⎛⎫⎛⎫⎛⎫+=+⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ cos 2cos 2cos 2cos sin 2sin 6434343πππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=+-=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦2132⎛=⨯+= ⎝⎭故答案为:26【点睛】 本题是给值求值题,关键是构造角,应注意的是确定三角函数值的符号.18.【分析】根据得到将已知等式两边平方利用同角三角函数基本关系式可求的值然后利用二倍角公式化简求解【详解】∵∴∴∵两边平方可得∴故答案为:【点睛】本题主要考查三角函数的同角基本关系式以及倍角公式的应用还 解析:85- 【分析】 根据1sin cos 5x x +=得到|cos ||sin |x x >, 将已知等式两边平方,利用同角三角函数基本关系式可求sin 2x ,cos2x 的值,然后利用二倍角公式化简求解.【详解】 ∵02x π-<<,1sin cos 5x x +=, ∴|cos ||sin |x x >, ∴04x π-<<,π202x -<< ∵1sin cos 5x x +=,两边平方, 可得24sin 225x =-,7cos 225x =, ∴21cos 282sin cos cos sin 225x x x x x +-=-=-. 故答案为:85-. 【点睛】本题主要考查三角函数的同角基本关系式以及倍角公式的应用,还考查了运算求解的能力,属于中档题.19.;【分析】由利用正弦定理边角互化以及两角和的正弦公式可得进而可得结果【详解】由正弦定理可得又则即则C 是三角形的内角则故答案为:【点睛】本题注意考查正弦定理以及两角和的正弦公式的应用属于中档题正弦定理 解析:04C π<<; 【分析】由AC AB>,利用正弦定理边角互化以及两角和的正弦公式可得11tan C >,进而可得结果.【详解】由正弦定理可得sin sin AC B AB C=> 又4A π=,则())cos sin sin 2sin sin C C A C C C ++==+> 即11tan C>,则0tan 1C <<,C 是三角形的内角, 则04C π<<, 故答案为:04C π<<.【点睛】 本题注意考查正弦定理以及两角和的正弦公式的应用,属于中档题.正弦定理主要有三种应用:求边和角、边角互化、外接圆半径.20.【分析】由可得然后用正弦的和差公式展开然后将条件代入即可求出原式的值【详解】因为所以故答案为:【点睛】本题考查的三角恒等变换解决此类问题时要善于发现角之间的关系 解析:12【分析】 由259210πππαα+=++可得22sin sin 5592cos sin 105ππααππαα⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭=⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭,然后用正弦的和差公式展开,然后将条件代入即可求出原式的值【详解】 因为2tan 3tan 5πα= 所以222sin sin sin 555922cos cos sin 10255πππαααππππααα⎛⎫⎛⎫⎛⎫--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==⎛⎫⎛⎫⎛⎫+++-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2222sincos cos sin tan tan 2tan 1555522222sin cos cos sin tan tan 4tan 5555ππππαααππππααα---====----- 故答案为:12【点睛】本题考查的三角恒等变换,解决此类问题时要善于发现角之间的关系. 三、解答题21.(I)2π.(Ⅱ) 8π. 【分析】(I)先将函数解析式整理,得到()4224f x x π⎛⎫=++ ⎪⎝⎭,根据正弦函数的周期,即可求出函数 |()|f x 的最小正周期;再由正弦函数的取值范围,即可求出函数的最小值; (Ⅱ)记()()()h x f x g x =-,根据题中条件,先判断 ()h x 在[0,]m 上是增函数;再由题中条件,得到函数()h x 的解析式,根据正弦函数的单调性,即可求出结果.【详解】(I )2211()sin 2cos 2cos 2sin 2222f x x x x x =+-+ 11sin 4cos 4222x x =++ 11cos 4sin 4222x x =++4204x π⎛⎫=++> ⎪⎝⎭, 所以()f x 的最小正周期为2T π=, 当sin 414x π⎛⎫+=- ⎪⎝⎭时,函数 |()|f x的最小值为42. (Ⅱ)因为对任意12,[0,]x x m ∈,当12x x <时,都有()()()()1212f x f x g x g x -<-,即()()()()1122f x g x f x g x -<-,记()()()h x f x g x =-,即()()12h x h x <,所以()h x 在[0,]m 上是增函数.又3()sin 42sin 42828424g x f x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫=+=+++=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.所以3()()()442424h x f x g x x x ππ⎛⎫⎛⎫=-=+-+ ⎪ ⎪⎝⎭⎝⎭2sin 4cos sin 424x x π=⨯=, 令24222k x k ππππ-≤≤+, 求得2828k k x ππππ-≤≤+. 故()h x 的单调增区间为,2828k k ππππ⎡⎤-+⎢⎥⎣⎦, k Z ∈, 所以实数m 的最大值为8π. 【点睛】 关键点睛:本题主要考查三角函数的恒等变换及三角函数的性质,涉及到函数的平移,利用构造函数的思想,求正弦型函数的单调区间,以及利用单调性求参数是解决本题的关键. 22.(1)2;(2)70,,,1212πππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦. 【分析】化简三角函数的解析式,(1)12π代入解析式计算可得答案;(2)根据三角函数的单调性可得答案.【详解】化简解析式得1cos 21cos 23()22wx wx f x π⎛⎫-- ⎪+⎝⎭=- 11cos 2cos 2cos sin 2sin 2233wx wx wx ππ⎛⎫=++ ⎪⎝⎭3cos 22243wx wx wx π⎛⎫==+ ⎪⎝⎭, 周期002()2T x x ππ=+-=,22T wππ==,所以1w =,()223f x x π⎛⎫∴=+ ⎪⎝⎭.(1)212123f πππ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭(2)因为222232k x k πππππ-+≤+≤+k Z ∈, 所以51212k x k ππππ-+≤≤+, 又[]0,x π∈()f x ∴的单调递增区间为70,,,1212πππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦. 【点睛】本题考查了三角函数的化简与性质,关键点是利用二倍角公式、两角和的正弦公式对函数进行化简为()23f x x π⎛⎫=+ ⎪⎝⎭,要熟练掌握三角函数的性质,考查了学生的基本运算.23.(1)的最大值1和最小值;(2 【分析】 (1)先利用两角差的余弦公式和辅助角公式,将函数转化为()sin 23πf x x ⎛⎫=- ⎪⎝⎭,然后利用正弦函数的性质求解.(2)由(1)3245f απ⎛⎫+= ⎪⎝⎭得到3sin 65πα⎛⎫+= ⎪⎝⎭,再由α是锐角,得到02,6ππα⎛⎫+∈ ⎪⎝⎭,然后由sin sin 66ππαα⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦,利用两角差的正弦公式求解. 【详解】(1)函数()sin 2cos 26x x f x π⎛⎫=-- ⎪⎝⎭,1sin 2sin 22x x x =-,1sin 22x x =, sin 23x π⎛⎫=-⎪⎝⎭ 因为0,2x π⎡⎤∈⎢⎥⎣⎦, 所以 22,333x πππ⎡⎤-∈-⎢⎥⎣⎦,所以sin 23π⎡⎤⎛⎫-∈⎢⎥ ⎪⎝⎭⎣⎦x , 所以()f x 的最大值1和最小值; (2)由(1)知:sin 2sin 33242645f απαπππα⎛⎫⎛⎫+=+=⎪ ⎪⎝⎭⎝⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎭⎭⎝, 若62ππα+>,则2(,)623πππα+∈,所以sin (,1)62πα⎛⎫+∈ ⎪⎝⎭,因为325>,不可能, 所以02,6ππα⎛⎫+∈ ⎪⎝⎭, 所以4cos 65πα⎛⎫+= ⎪⎝⎭, 求sin sin cos sin cos sin 666666ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=+-=+-+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,314525=-⨯=. 【点睛】 易错点点睛:本题容易忽视6πα+的范围, 24.(1)±;(2)3+. 【分析】(1)根据22sin tan ,sin cos 1cos ααααα=+=,求解出sin α的值; (2)利用诱导公式先化简原式,然后将所得到的分式分子分母同除以cos α,结合tan α=.【详解】(1)因为22sin tan cos sin cos 1ααααα⎧==⎪⎨⎪+=⎩cos 2αα=, 所以221sin sin 12αα+=,所以22sin 3α=,当α为第一象限角时,sin 3α=;当α为第三象限角时,sin α=,所以sin 3α=±; (2)原式()()sin cos sin cos sin cos cos sin sin cos sin cos 22παπαααααππαααααα--+---+===--⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭sin cos tan 1cos cos 3sin cos tan 1cos cos αααααααααα++===+--= 【点睛】方法点睛:已知tan α的值,求解形如sin cos sin cos a b c d αααα±±(或sin cos sin cos n n n n a b c d αααα±±)的式子的值的方法:分式的分子、分母同时除以cos α(或cos n α),将原式化简为关于tan α的式子,再根据tan α的值可求解出结果.25.3365- 【分析】 利用已知求出1213m =和45n =,再利用差角的正弦公式求解. 【详解】锐角α和β的顶点都在坐标原点始边都与x 轴非负半轴重合, 且终边与单位圆交于点5,13P m ⎛⎫⎪⎝⎭和点3,5Q n ⎛⎫ ⎪⎝⎭, cos 0m α∴=>,5sin 13α=,2251169m +=,3cos 5β=,sin 0n β=>,29125n +=, 求得1213m =,45n =, 5312433sin()sin cos cos sin 13513565αβαβαβ∴-=-=⨯-⨯=-. 【点睛】结论点睛:三角函数的坐标定义:点(,)P x y 是角α终边上的任意的一点(原点除外),r代表点到原点的距离,r =sin α=y r , cos α=x r ,tan α=y x. 26.(1)函数的周期为2π;(2)条件选择见解析,max ()2g x =,使函数()g x 取得最大值的集合为5|,12x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭. 【分析】 (1)用正弦余弦的二倍角公式整理()f x 可得正弦函数标准型,可得函数最小正周期; (2)选①先平移变换后周期变换可得对应的()g x ,可得()g x 的最值;选②先周期变换后平移变换得对应的()g x ,由此可求得最值.【详解】(1)∵函数1cos 1()sin sin()12226x f x x x π+=++=++, 所以函数的周期为2π;(2)<选择①>依题意:()cos(2)16g x x π=-++, 令226x k πππ+=+,即5()12x k k Z ππ=+∈. 使函数()g x 取得最大值2,即max ()2g x =,使函数()g x 取得最大值的集合为5|,12x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭; <选择②>依题意:()cos(2)16g x x π=-++, 令226x k πππ+=+,即5()12x k k Z ππ=+∈,使函数()g x 取得最大值2,即max ()2g x = 使函数()g x 取得最大值的集合为5|,12x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭. 【点睛】关键点点睛:在解决正弦型函数的周期,最值,单调性等性质时,关键在于利用三角恒等变换将函数化成正弦型函数的标准形,再利用整体代换的思想求解.。
(常考题)北师大版高中数学必修四第三章《三角恒等变形》检测题(有答案解析)(2)
一、选择题1.若10,0,cos ,sin 2243423ππππβαβα⎛⎫⎛⎫<<-<<+=-=⎪ ⎪⎝⎭⎝⎭,则cos 2βα⎛⎫+= ⎪⎝⎭( )A B .C . D 2.已知tan α,tan β是方程2506x x a -+=的两个实数根,且()tan 1αβ+=,则实数a =( )A .16B .116C .512D .7123.已知0,2πα⎛⎫∈ ⎪⎝⎭,,2παβπ⎛⎫+∈ ⎪⎝⎭,且4cos 5α=,2sin()3αβ+=,则( )A .0,3πβ⎛⎫∈ ⎪⎝⎭B .,32ππβ⎛⎫∈⎪⎝⎭ C .2,23ππβ⎛⎫∈⎪⎝⎭D .2,3πβπ⎛⎫∈⎪⎝⎭4.化简22221sin sin cos cos cos 2cos 22αβαβαβ+-=( )A .12B 1C .14D .15.已知0,2πα⎛⎫∈ ⎪⎝⎭,1cos 63πα⎛⎫+=⎪⎝⎭,则sin α的值等于( )A B C .16D . 6.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin cos 2b A B b =-,则A =( )A .3π B .4π C .6π D .23π7.已知cos 5α=,,02πα⎛⎫∈- ⎪⎝⎭,则tan 4πα⎛⎫+= ⎪⎝⎭( ) A .13 B .3C .13D .13-8.已知αβ、均为锐角,满足sin cos αβ==,则αβ+=( ) A .6πB .4π C .3π D .34π9.设a 、b R ∈,[)0,2c π∈,若对任意实数x 都有()2sin 3sin 3x a bx c π⎛⎫-=+ ⎪⎝⎭,定义在区间[]0,3π上的函数sin 2y x =的图象与cos y x =的图象交点的横坐标是d ,则满足条件的有序实数组(),,,a b c d 的组数为( ) A .7B .11C .14D .2810.已知()4cos 5αβ+=,()1cos 5αβ-=,则tan tan αβ⋅的值为( ) A .12B .35C .310-D .3511.人体满足黄金分割比的人体是最美人体,0.618是黄金分割比12m =的近似值,黄金分割比还可以表示为2cos72︒,则22cos 271︒-( ) A .4B1C .2D112.已知()0,απ∈,sin cos αα+=cos2=α( ) A.BC.9-D.9二、填空题13.已知1cos 3α=,且02πα-<<,则()()()cos sin 2tan 23sin cos 22αππαπαππαα--+-=⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭______. 14.经过点(4,1)P -作圆2220x y y +-=的切线,设两个切点分别为A ,B ,则tan APB ∠=__________.15.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,若2sin cos a Bb C=,且()3sin sin 4A CB -=-,则sin B =_______.16.若函数()2cos 2,[0,]f x x x x π=-+∈的图象与直线y m =恰有两个不同交点,则m 的取值范围是________.17.若角α的终边与单位圆的交点为1,()3m m R ⎛⎫∈ ⎪⎝⎭,则cos2=α______.18.若tan 30,2tan 10αβ-=-=,则()tan αβ+=________. 19.已知α,β均为锐角,()5cos 13αβ+=-,π3sin 35β⎛⎫+= ⎪⎝⎭,则πsin 3α⎛⎫-= ⎪⎝⎭______.20.若函数()sin()cos f x x x ϕ=++为偶函数,则常数ϕ的一个取值为________.三、解答题21.已知310,2,tan ,sin 223ππαβπαβ<<<<==. (1)求cos()αβ-的值; (2)求αβ+的值.22.已知函数()cos sin )0)f x x x x ωωωω=+->,且()f x 的最小正周期为π.(1)求函数()f x 的单调递减区间; (2)若2()2f x ,求x 的取值范围.23.在①6f π⎛⎫-= ⎪⎝⎭,②()f x 的最大值在12x π=处取到,③当()()121f x f x -=,则12min 2x x π-=这三个条件中任选一个,补充并解答下面问题.问题:已知函数()sin cos 3f x x x πωω⎛⎫=+ ⎪⎝⎭,(]0,3ω∈.若_______,求实数ω的值.注:如果选择多个条件分别解答,按第一个解答计分.24.已知函数()sin (cos )2f x x x x =+-. (1)求3f π⎛⎫⎪⎝⎭的值及函数()f x 的单调增区间; (2)若,122x ππ⎡⎤∀∈⎢⎥⎣⎦,不等式()2m f x m <<+恒成立,求实数m 的取值集合.25.已知函数()4sin cos 3f x x x π⎛⎫=-⎪⎝⎭(1)求函数()f x 的最小正周期和单调递增区间; (2)当,64x ππ⎡⎤∈-⎢⎥⎣⎦时,求()f x 的最值及取到最值时x 的值;(3)若函数()()g x f x m =-在0,2π⎡⎤⎢⎥⎣⎦上有两个不同的零点1x ,2x ,求实数m 的取值范围,并求()12tan x x +的值.26.已知关于x 的方程21204x bx -+=的两根为sin θ和cos θ,3,44θππ⎛⎫∈ ⎪⎝⎭.(1)求实数b 的值; (2)求2sin cos 1cos sin θθθθ+-的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】 由cos cos 2442βππβαα⎡⎤⎛⎫⎛⎫⎛⎫+=+-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦展开计算正余弦值代入可得答案. 【详解】 因为10,cos 243ππαα⎛⎫<<+= ⎪⎝⎭,所以3444πππα<+<,sin +43πα⎛⎫= ⎪⎝⎭, 因为02πβ-<<,所以4422ππβπ<-<,又因为sin 42πβ⎛⎫-=⎪⎝⎭cos 42πβ⎛⎫-= ⎪⎝⎭ 而cos cos +2442βππβαα⎡⎤⎛⎫⎛⎫⎛⎫+=-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, cos +cos sin +sin 442442ππβππβαα⎛⎫⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭13==. 故选:A. 【点睛】三角函数式的化简要遵循“三看”原则:(1)一看“角”,这是最重要的一环,通过看角之间的区别和联系,把角进行合理的拆分,从而正确使用公式;(2)而看“函数名称”看函数名称之间的差异,从而确定使用公式,常见的有“切化弦”;(3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式通分”等.2.A解析:A 【分析】首先利用韦达定理求得5tan tan 6αβ+=,tan tan a αβ⋅=,再结合()tan 1αβ+=,利用两角和正切公式得到关于a 的等量关系式,求得结果. 【详解】因为tan α,tan β是方程2506x x a -+=的两个实数根, 所以有5tan tan 6αβ+=,tan tan a αβ⋅=, 因为()tan 1αβ+=,所以有5611a=-,所以16a =,故选:A. 【点睛】思路点睛:该题考查的是有关两角和正切公式,解题思路如下: (1)先利用韦达定理,写出两根和与两根积;(2)利用两角和正切公式,结合题中条件,得到等量关系式,求得结果.3.C解析:C 【分析】 由0,2πα⎛⎫∈ ⎪⎝⎭,,2παβπ⎛⎫+∈⎪⎝⎭,可得()0,βπ∈,再由()βαβα=+-展开式结合同角三角函数关系可得1cos (,0)2β=-,从而得解. 【详解】 由0,2πα⎛⎫∈ ⎪⎝⎭,,2παβπ⎛⎫+∈⎪⎝⎭,,02πα⎛⎫-∈- ⎪⎝⎭,可得()0,βπ∈.又4cos 5α=,2sin()3αβ+=,且0,2πα⎛⎫∈ ⎪⎝⎭,,2παβπ⎛⎫+∈ ⎪⎝⎭,所以3sin 5α==,cos()3αβ+==-. 所以cos cos[()]cos()cos sin()sin βαβααβααβα=+-=+++4236(0353515-=-⨯+⨯=<.因为6127015230--+=>,所以1cos (,0)2β∈- 所以2,23ππβ⎛⎫∈ ⎪⎝⎭. 故选:C. 【点睛】方法点睛:在利用两角和与差的三角函数公式求值或化简时,常根据角与角之间的和差、倍半、互余、互补的关系,运用角的变换,沟通条件与结论的差异,使问题获解,常见角的变换方式有:()ααββ=+-,2()()ααβαβ=++-,2()αβααβ-=+-等.4.A解析:A 【分析】由原式利用二倍角公式,和同角三角函数基本关系进行化简,即可得到结果. 【详解】()()2222cos 2cos 2cos sin cos sin αβααββ=--22222222cos cos cos sin sin cos sin sin αβαβαβαβ=--+,所以22221sin sin cos cos cos 2cos 22αβαβαβ+-()2222222222221sin sin cos cos cos cos cos sin sin cos sin sin 2αβαβαβαβαβαβ=+---+()222222221sin sin cos cos +cos sin +sin cos 2αβαβαβαβ=+ ()()()2222221sin sin +cos cos cos +sin 2αββαββ=+()2211sin cos 22αα=+=. 故选:A 【点睛】本题主要考查三角函数的化简求值,涉及到同角三角函数基本关系和三角恒等变换,属于中档题.5.C解析:C 【分析】 求出sin 6απ⎛⎫+⎪⎝⎭,然后由两角差的正弦公式计算. 【详解】∵0,2πα⎛⎫∈ ⎪⎝⎭,∴2,663πππα⎛⎫+∈ ⎪⎝⎭,∴sin 63πα⎛⎫+==⎪⎝⎭, ∴sin sin sin cos cos sin 666666ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=+-=+-+⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦11332=-⨯=故选:C . 【点睛】本题考查两角差的正弦公式,考查同角间的三角函数关系,在应用三角公式化简求值时,要注意已知角与未知角之间的关系,以确定先用哪一个公式变形.6.C解析:C 【分析】由正弦定理,两角和的正弦函数公式化简已知等式,结合sin 0B ≠,可得2sin 23A π⎛⎫+= ⎪⎝⎭,根据题意可求范围(0,)A π∈,根据正弦函数的图象和性质即可求解A 的值. 【详解】解:∵ bsin cos 2A B b -=,∴由正弦定理可得:sin sin cos 2sin B A A B B C =,∴sin sin cos 2sin B A A B B C =2sin cos cos sin )B A B A B =-+,∴sin sin 2sin sin B A B A B =,又∵sin 0B ≠,∴sin 2A A +=, ∴2sin 23A π⎛⎫+= ⎪⎝⎭,可得232A k πππ+=+,Z k ∈, 又(0,)A π∈,∴6A π=.故选:C . 【点睛】本题考查正弦定理和三角恒等变换的运用,考查运算求解能力,求解时注意角的范围.7.D解析:D 【分析】根据同角三角函数基本关系式求出tan α,再代入两角和的正切公式求tan 4απ⎛⎫+⎪⎝⎭的值.cos α=,02πα⎛⎫∈- ⎪⎝⎭,sin 5α∴==-,sin tan 2cos ααα==-, 1tan 121tan 41tan 123πααα+-⎛⎫+===- ⎪-+⎝⎭.故选:D 【点睛】本题考查同角三角函数基本关系式,两角和的正切公式,重点考查计算能力,属于基础题型.8.B解析:B 【分析】依题意,求cos (α+β),结合角的范围可求得α+β的值. 【详解】由已知α、β均为锐角,sin αβ==,cos αβ∴==又cos (α+β)=cosαcosβ﹣sinαsinβ=2, ∵0<α+β<π,∴α+β=4π. 故选B . 【点睛】解答给值求角问题的一般思路:①求角的某一个三角函数值,此时要根据角的范围合理地选择一种三角函数;②确定角的范围,此时注意范围越精确越好;③根据角的范围写出所求的角.9.D解析:D 【分析】 根据()2sin 3sin 3x a bx c π⎛⎫-=+ ⎪⎝⎭结合a 、b R ∈,[)0,2c π∈可得出a 、b 、c 的取值组合,求得方程sin 2cos x x =在区间[]0,3π的解,可得出d 的可能取值,进而可求得符合条件的有序实数组(),,,a b c d 的组数.已知a 、b R ∈,[)0,2c π∈,若对任意实数x 都有()2sin 3sin 3x a bx c π⎛⎫-=+ ⎪⎝⎭, ①当2a =时,则353b c π=⎧⎪⎨=⎪⎩或343b c π=-⎧⎪⎨=⎪⎩;②当2a =-时,则323b c π=⎧⎪⎨=⎪⎩或33b c π=-⎧⎪⎨=⎪⎩.解方程sin 2cos x x =,即2sin cos cos x x x =,可得()2sin 1cos 0x x -=,即1sin 2x =或cos 0x =.当[]0,3x π∈时,解方程1sin 2x =,可得6x π=、56π、136π、176π;解方程cos 0x =,可得2x π=、32π、52π. 所以,d 的取值集合为5313517,,,,,,6262626πππππππ⎧⎫⎨⎬⎩⎭. 因此,符合条件的有序实数组(),,,a b c d 的组数为4728⨯=. 故选:D. 【点睛】本题考查乘法计数原理的应用,同时也考查了三角方程与三角函数解析式中参数的求解,考查计算能力,属于中等题.10.B解析:B 【分析】根据两角和与差的余弦函数的公式,联立方程组,求得13cos cos ,sin sin 210αβαβ==-,再结合三角函数的基本关系式,即可求解.【详解】由4cos()cos cos sin sin 5αβαβαβ+=-=,1cos()cos cos sin sin 5αβαβαβ-=+=,联立方程组,可得13cos cos ,sin sin 210αβαβ==-, 又由sin sin 3tan tan cos()cos cos 5αβαβαβαβ=+==-.【点睛】本题主要考查了两角和与差的余弦函数,以及三角函数的基本关系式的化简、求值,其中解答中熟记三角恒等变换的公式,准确运算是解答的关键,着重考查运算与求解能力.11.C解析:C 【分析】根据2cos72m ︒=,结合三角函数的基本关系式,诱导公式和余弦的倍角公式,准确运算,即可求解. 【详解】根据题意,可得2cos72m ︒=,则22cos722sin1442cos 271cos54cos54︒==︒-︒︒()2sin 90542cos542cos54cos54︒+︒︒===︒︒. 故选:C . 【点睛】本题主要考查了三角函数的化简、求值,其中解答中熟练应用三角函数的基本关系式,诱导公式和余弦的倍角公式,准确运算是解答的关键,着重考查推理与运算能力.12.A解析:A 【分析】在等式sin cos αα+=cos sin αα-的值,然后利用二倍角的余弦公式可求得cos2α的值. 【详解】()0,απ∈,sin cos 3αα+=,两边平方后得:112sin cos 3αα+=,即1sin cos 3αα=-,sin 0α∴>,cos 0α<, ()215cos sin 12sin cos 1233αααα⎛⎫-=-=-⨯-= ⎪⎝⎭,cos sin 3αα∴-=-,则()()22cos 2cos sin cos sin cos sin 333ααααααα=-=-+=-=-. 故选:A. 【点睛】本题考查利用二倍角的余弦公式求值,同时也考查了同角三角函数平方关系的应用,考查计算能力,属于中等题.二、填空题13.【分析】用同角间的三角函数关系计算用诱导公式化简后再计算然后计算可得【详解】∵且∴∴故答案为:【点睛】方法点睛:本题考查诱导公式同角间的三角函数关系三角函数求值问题首先要进行化简应用诱导公式化简应用解析:-【分析】用同角间的三角函数关系计算sin α,用诱导公式化简后再计算.然后计算tan α,可得. 【详解】∵1cos 3α=,且02πα-<<,∴sin 3α==-, ∴()()()cos sin 2tan 2cos sin (tan )sin tan 3cos (sin )cos sin cos 22αππαπααααααππααααα--+---=====---⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭.故答案为:-. 【点睛】方法点睛:本题考查诱导公式,同角间的三角函数关系.三角函数求值问题,首先要进行化简,应用诱导公式化简,应用同角间的三角函数关系化简,最后才代入求值.应用诱导公式应牢记:奇变偶不变,符号看象限,应用同角间的三角函数关系应注意在应用平方关系求函数值需确定角的范围,以确定正弦余弦值的正负.14.【分析】由圆的方程可以求出圆心坐标及半径进而可以求出从而求出的值由利用二倍角的正切公式可以求出的值【详解】圆的方程可化为则圆心为半径为r=1设则【点睛】本题考查了直线与圆的位置关系考查了圆的性质考查【分析】由圆的方程可以求出圆心坐标及半径,进而可以求出PD =,1DA =,从而求出tan APD ∠的值,由2APB APD ∠∠=,利用二倍角的正切公式,可以求出tan APB ∠的值. 【详解】圆的方程可化为()2211x y +-=,则圆心为()0,1D ,半径为r =1,设APD ∠θ=,AP DA ⊥,PD ==PA ===19tan 1919DAPA θ===,22192tan 1919 tan tan211tan 119APB θθθ∠====--.【点睛】本题考查了直线与圆的位置关系,考查了圆的性质,考查了两点间的距离公式,二倍角的正切公式,属于基础题.15.【分析】代入展开整理得①化为与①式相加得转化为关于的方程求解即可得出结论【详解】因为所以所以因为所以则整理得解得故答案为:【点睛】本题考查正弦定理的边角互化考查三角函数化简求值属于中档题 解析:12【分析】sin sin()B A C =+代入()3sin sin 4A CB -=-,展开整理得32cos sin 4A C =,①2sin cos a B b C=化为22sin cos sin A C B =,与①式相加得 ()232sin cos cos sin sin 4A C A CB +=+,转化为关于sin B 的方程,求解即可得出结论.【详解】因为()3sin sin 4A CB -=-,所以()()3sin sin 4A C A C -=+-,所以32cos sin 4A C =,因为2sin cos a B b C=,所以22sin cos sin A C B =,则()232sin cos cos sin sin 4A C A CB +=+, 整理得23sin 2sin 04B B -+=,解得1sin 2B =. 故答案为:12. 【点睛】本题考查正弦定理的边角互化,考查三角函数化简求值,属于中档题.16.【分析】化简函数解析式为做出函数的图象数形结合可得的取值范围【详解】解:因为所以由可得则函数的图象与直线恰有两个不同交点即方程在上有两个不同的解画出的图象如下所示:依题意可得时函数的图象与直线恰有两 解析:[4,6)【分析】化简函数解析式为()4sin()26f x x π=-+,做出函数的图象,数形结合可得m 的取值范围. 【详解】解:因为()23sin 2cos 2,[0,]f x x x x π=-+∈ 所以()23sin 2cos 24sin()26f x x x x π=-+=-+,[0,]x π∈,由[]0,x π∈,可得5,666x πππ⎡⎤-∈-⎢⎥⎣⎦, 则函数()f x ,[]0,x π∈的图象与直线y m =恰有两个不同交点,即方程4sin()26x m π-+=在[]0,x π∈上有两个不同的解,画出()f x 的图象如下所示:依题意可得46m ≤<时,函数()232cos 2,[0,]f x x x x π=-+∈的图象与直线y m =恰有两个不同交点,故答案为:[)4,6 【点睛】本题主要考查正弦函数的最大值和单调性,函数sin()y A x ωϕ=+的图象变换规律,正弦函数的图象特征,体现了转化、数形结合的数学思想,属于中档题.17.【分析】由题意利用任意角的三角函数的定义求得再利用二倍角公式求得的值【详解】由题意角的终边与单位圆的交点为可得解得即又由故答案为:【点睛】本题主要考查了任意角的三角函数的定义二倍角的正弦公式的应用其解析:79【分析】由题意利用任意角的三角函数的定义求得cos α,再利用二倍角公式求得cos2α的值. 【详解】由题意,角α的终边与单位圆的交点为1,()3m m R ⎛⎫∈ ⎪⎝⎭, 可得2119m +=,解得3m =±,即cos 3α=±, 又由287cos 22cos 12199αα=-=⋅-=. 故答案为:79. 【点睛】本题主要考查了任意角的三角函数的定义,二倍角的正弦公式的应用,其中解答中熟记三角函数的定义,结合余弦的倍角公式求解是解答的关键,属于基础题.18.【分析】由题得再利用两角和公式求解即可【详解】因为所以所以故答案为:【点睛】本题考查正切函数的两角和公式属于基础题 解析:7-【分析】由题得tan 3α=,1tan 2β=,再利用两角和公式求解即可. 【详解】因为tan 30,2tan 10αβ-=-=, 所以tan 3α=,1tan 2β=, 所以()1t 32731n 2a αβ++==--, 故答案为:7-.【点睛】本题考查正切函数的两角和公式,属于基础题.19.【分析】先求出再由并结合两角和与差的正弦公式求解即可【详解】由题意可知则又则或者因为为锐角所以不成立即成立所以故故答案为:【点睛】本题考查两角和与差的正弦公式的应用考查同角三角函数基本关系的应用考查 解析:3365-【分析】先求出()sin αβ+,πcos 3β⎛⎫+⎪⎝⎭,再由()ππsin sin 33ααββ⎡⎤⎛⎫⎛⎫-=+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,并结合两角和与差的正弦公式求解即可. 【详解】由题意,可知0,παβ,则()sin 1213αβ+===,又π31sin 352β⎛⎛⎫+=∈ ⎪ ⎝⎭⎝⎭,则πππ,364β⎛⎫+∈ ⎪⎝⎭,或者π3π5π,346β⎛⎫+∈ ⎪⎝⎭, 因为β为锐角,所以πππ,364β⎛⎫+∈ ⎪⎝⎭不成立,即π3π5π,346β⎛⎫+∈ ⎪⎝⎭成立,所以π4cos 35β⎛⎫+===- ⎪⎝⎭.故()ππsin sin 33ααββ⎡⎤⎛⎫⎛⎫-=+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()()ππsin cos cos sin 33αββαββ⎛⎫⎛⎫=++-++ ⎪ ⎪⎝⎭⎝⎭533311245651533⎛⎫-⨯=- ⎪⎛⎫=⨯--⎝ ⎪⎝⎭⎭.故答案为:3365-. 【点睛】本题考查两角和与差的正弦公式的应用,考查同角三角函数基本关系的应用,考查学生的计算求解能力,属于中档题.20.(答案不唯一)【分析】根据函数为偶函数有化简得对任意恒成立所以有取其中一个值即可得出答案【详解】解:因为函数为偶函数则所以所以等价于对任意恒成立所以所以所以常数的一个取值为故答案为:(答案不唯一)【解析:π2(答案不唯一) 【分析】根据函数为偶函数有()()f x f x =-,化简得sin cos 0x ϕ=对任意x 恒成立,所以有()2k k Z πϕπ=+∈,取其中一个值即可得出答案.【详解】解:因为函数()sin()cos f x x x ϕ=++为偶函数,则()()f x f x =- 所以sin()cos sin()cos()x x x x ϕϕ++=-++-所以sin cos cos sin cos sin()cos cos()sin cos x x x x x x ϕϕϕϕ++=-+-+ 等价于sin cos 0x ϕ=对任意x 恒成立,所以cos 0ϕ=, 所以()2k k Z πϕπ=+∈,所以常数ϕ的一个取值为π2. 故答案为:π2(答案不唯一) 【点睛】应用函数奇偶性可解决的四类问题及解题方法(1)求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解;(2)求解析式:先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于()f x 的方程(组),从而得到()f x 的解析式;(3)求函数解析式中参数的值:利用待定系数法求解,根据()()0f x f x ±-=得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值; (4)画函数图象和判断单调性:利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.三、解答题21.(1)10;(2)74π. 【分析】(1)由tan α求得sin ,cos αα,由sin β求得cos β,然后由两角差的余弦公式计算; (2)由两角和的正弦公式求得sin()αβ+后,由3522ππαβ<+<可得αβ+ 【详解】 因为1tan 3α=,所以sin 1cos 3αα=,又因为22sin cos 1αα+=,02πα<<,所以10sin α=,cos 10α=sin β=322πβπ<<,所以cos β===.(1)cos()cos cos sin sin αβαβαβ-=+⎛=⎝⎭10=.(2)因为sin()sin cos cos sin αβαβαβ+=+⎛= ⎝⎭2=-. 因为02πα<<,322πβπ<<,所以3522ππαβ<+<,所以74αβπ+=. 【点睛】方法点睛:本题考查两角和与差的正弦、余弦公式,考查同角间的三角函数关系,求角求值.解题关键是确定“已知角”和“未知角”的关系,以便选用恰当的公式求值.在求角,一般先确定出这个角的范围,在这个范围内选三角函数值是一对一的函数求得这个三角函数值,然后得角,如果不能直接得出一对一的函数,常常需要由已知或已求出的三角函数值缩小角的范围,从而得出角.22.(1)7,()1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)523,()2424k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. 【分析】利用二倍角公式和两角和的正弦公式化简()f x ,由周期求出ω, (1)根据正弦函数的单调性可得答案; (2)根据正弦函数的值域可得答案. 【详解】)2()cos sin sin cos 22f x x x x x x x ωωωωωω=+-=+-1cos 2sin 222x x ωω+=+12sin 2sin 223x x x πωωω⎛⎫=+=+ ⎪⎝⎭, 又函数()f x 的最小正周期为x ,所以22ππω=,故1ω=, 所以()sin 23f x x π⎛⎫=+ ⎪⎝⎭.(1)由题意,得3222,232k x k k πππππ+++∈Z , 解得7,1212k xk k ππππ++∈Z , 所以()f x 的单调递减区间是7,()1212k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z .(2)因为2()sin 232f x x π⎛⎫=+⎪⎝⎭,所以39222()434k x k k πππππ+++∈Z , 解得523()2424k x k k ππππ++∈Z , 所以523,()2424x k k k ππππ⎡⎤∈++∈⎢⎥⎣⎦Z .【点睛】本题考查了三角函数的性质,关键点是求出正弦函数的解析式,利用正弦函数的性质解题,要求学生熟练掌握三角函数的基础知识.23.①6f π⎛⎫-= ⎪⎝⎭,1ω=; ②()f x 的最大值在12x π=处取到,1ω=;③当()()121f x f x -=,则12min2x x π-=,1ω=.【分析】可先利用倍角公式将()f x 化简为()sin A x B ωϕ++的形式,再利用其性质逐一求解. 【详解】()sin cos 3f x x x πωω⎛⎫=+ ⎪⎝⎭1sin cos 2x x x ωωω⎛⎫=- ⎪ ⎪⎝⎭21sin cos 2x x x ωωω=⋅11cos 2sin 242x x ωω-=11sin 2222x x ωω⎛⎫=+- ⎪ ⎪⎝⎭1sin 2234x πω⎛⎫=+- ⎪⎝⎭.选①64f π⎛⎫-=- ⎪⎝⎭,则sin 033ωππ-⎛⎫+= ⎪⎝⎭,()33k k Z ωπππ-+=∈ 解得13k ω=-,(]0,3ω∈,1ω∴= 选②()f x 的最大值在12x π=处取到,则有sin 163ωππ⎛⎫+=⎪⎝⎭ ()2632k k Z ωππππ+=+∈112k ω=+,(]0,3ω∈,1ω∴=选③当()()121f x f x -=,则12min2x x π-=代入可得1211sin 2sin 212323x x ππωω⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭12sin 2sin 2233x x ππωω⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭,12min 2x x π-=意味着函数()sin 23g x x πω⎛⎫=+ ⎪⎝⎭的相邻两条对称轴距离为2π T π∴=22T πππωω∴=== 1ω∴=【点睛】方法点睛:对于三角函数,解决最小正周期和最值,单调区间,对称轴等问题时,可先把所给三角函数式化为()sin A x B ωϕ++或()cos A x B ωϕ++的形式,再利用其性质求解.它们的最小正周期为2T πω=,最大值为A B +,最小值为A B -+.24.(1)2,单调增区间5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈;(2)11,2⎛⎫-- ⎪⎝⎭. 【分析】(1)根据三角恒等变换化简函数()f x ,代值求3f π⎛⎫⎪⎝⎭,用整体代换法求单调递增区间; (2)求出函数在,122ππ⎡⎤⎢⎥⎣⎦上的值域,原不等式等价于函数()f x 在,122ππ⎡⎤⎢⎥⎣⎦上的值域是(),2m m +的子集,列出不等式组化简即可.【详解】解:(1))21()sin (cos )sin 22sin 1222f x x x x x x =+-=+-1sin 22sin 2223x x x π⎛⎫=-=- ⎪⎝⎭所以sin 2s 3in 333f ππππ⎛⎛⎫=⎫⎛⎫⨯-== ⎪ ⎪⎝⎭⎝⎭⎪⎝⎭ 由222()232k x k k Z πππππ-≤-≤+∈得5()1212k x k k Z ππππ-≤≤+∈, 故函数的单调增区间为5,()1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(2)当,122x ππ⎡⎤∈⎢⎥⎣⎦时,22,363x πππ⎡⎤-∈-⎢⎥⎣⎦, 所以1(),12f x ⎡⎤∈-⎢⎥⎣⎦,因为,122x ππ⎡⎤∀∈⎢⎥⎣⎦不等式()2m f x m <<+恒成立 所以1112212m m m ⎧<-⎪⇒-<<-⎨⎪<+⎩所以实数m 的取值集合11,2⎛⎫-- ⎪⎝⎭. 【点睛】求三角函数单调区间的2种方法:(1)代换法:就是将比较复杂的三角函数处理后的整体当作一个角u (或t ),利用基本三角函数的单调性来求所要求的三角函数的单调区间;(2)图象法:函数的单调性表现在图象上是从左到右,图象上升趋势的区间为单调递增区间,图象下降趋势的区间为单调递减区间,画出三角函数的图象,结合图象易求它的单调区间.25.(1)最小正周期π,单调递增区间为5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈;(2)4x π=时,()f x 取得最大值1;12x π=-时,()f x 取得最小值2-;(3))m ∈,()12tan 3x x +=-. 【分析】(1)利用和与差以及辅助角公式基本公式将函数化为()sin y A ωx φ=+的形式,再利用周期公式求函数的最小正周期,最后将内层函数看作整体,放到正弦函数的增区间上,解不等式得函数的单调递增区间; (2)当,64x ππ⎡⎤∈-⎢⎥⎣⎦时,利用正弦函数的定义域和值域,求得()f x 的最大值和最小值,并指出()f x 取得最值时对应的x 的值. (3)函数()()g x f x m =-所在0,2π⎡⎤⎢⎥⎣⎦匀上有两个不同的零点1x ,2x ,转化为函数()f x 与函数y m =有两个交点;可求m 的范围,结合三角函数的图象可知,1x ,2x ,关于对称轴是对称的,可知12x x +,即可求()12tan x x +的值. 【详解】解:(1)函数()4sin cos 3f x x x π⎛⎫=-+ ⎪⎝⎭化简可得:()2112sin cos sin 2cos 222f x x x x x x ⎫=-=-++⎪⎭sin 222sin 23x x x π⎛⎫=-=- ⎪⎝⎭, 所以函数的最小正周期22T ππ==, 由222232k x k πππππ-≤-≤+,解得:1212k x k π5ππ-≤≤π+, 所以函数的单调递增区间为5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈. (2)由于64x ππ-≤≤,可得22336x πππ-≤-≤, 当236x ππ-=,即4x π=时,()f x 取得最大值1; 当232x ππ-=-,即12x π=-时,()f x 取得最小值2-.(3)函数()()g x f x m =-所在0,2π⎡⎤⎢⎥⎣⎦匀上有两个不同的零点1x ',2x ',转化为函数()f x 与函数y m =有两个交点, 令23u x π=-,∵ 0,2x π⎡⎤∈⎢⎥⎣⎦,∴2,33u ππ⎡⎤∈-⎢⎥⎣⎦, 可得sin y u =的图象(如图).从图可知:)m ∈时,函数sin y u =与函数y m =有两个交点,其横坐标分别为1x ',2x '.故得实数m 的取值范围是)m ∈, 由题意可知1x ',2x '是关于对称轴是对称的: 那么函数在0,2π⎡⎤⎢⎥⎣⎦的对称轴512x π=, 所以1256x x π''+=,所以()125tan tan6x x π''+==.【点睛】本题第三问解题的关键在于将问题转化为函数()f x 与函数y m =有两个交点,进而讨论函数在0,2x π⎡⎤∈⎢⎥⎣⎦上的图象,根据数形结合思想求解,考查运算求解能力,化归转化思想,是中档题. 26.(1)5b =2)53. 【分析】 ()1根据题意,利用韦达定理列出关系式,利用完全平方式和同角三角函数的基本关系化简求出b 的值,利用3,44θππ⎛⎫∈ ⎪⎝⎭对b 的值进行取舍即可. ()2由()1可知sin cos θθ+的值,利用()2sin cos 12sin cos θθθθ-=-,求出sin cos θθ-的值,代入原式即可.【详解】(1)∵sin ,cos θθ为关于x 的方程21204x bx -+=的两根,∴220sin cos 21sin cos 8b b θθθθ⎧⎪∆=-≥⎪⎪+=⎨⎪⎪⋅=⎪⎩, 所以()221sin cos 1+2sin cos 1+44b θθθθ+===,即21144b =+,解得5b =520∆=->,又3,44θππ⎛⎫∈ ⎪⎝⎭,∴sin cos 0θθ+>,∴b = (2)由(1),得sin cos 2θθ+=,又3,44θππ⎛⎫∈ ⎪⎝⎭,所以sin cos θθ>, ∴sin cos θθ-===,∴12+12sin cos 1cos sin 6θθθθ⨯+==--. 【点睛】关键点点睛:本题考查同角三角函数的基本关系与一元二次方程中的韦达定理相结合,通过利用韦达定理得到sin cos θθ+和cos sin θθ的表达式,再结合()2sin cos 12sin cos θθθθ+=+是求解本题的关键;其中由3,44θππ⎛⎫∈ ⎪⎝⎭对取值进行取舍是本题的易错点.。
(常考题)北师大版高中数学必修四第三章《三角恒等变形》检测卷(含答案解析)
一、选择题1.已知23cos sin 2αβ+=,1sin sin cos 3αββ+=,则)os(c 2αβ+=( )A .49B .59C .536D .518-2.如下图,圆O 与x 轴的正半轴的交点为A ,点,C B 在圆O 上,且点C 位于第一象限,点B 的坐标为43,,,55AOC α⎛⎫-∠= ⎪⎝⎭若1BC =,则233cos sin cos 2222ααα--的值为( )A .45B .35C .45-D .353.已知α为锐角,且1sin 34πα⎛⎫-= ⎪⎝⎭,则sin α的值为( ) A .135± B .135+ C .153± D .35+ 4.函数()log 42a y x =++(0a >,且1a ≠)的图象恒过定点A ,且点A 在角θ的终边上,则2sin 2θ=( ) A .1213-B .1213C .2413-D .24135.函数()()sin 0y x πϕϕ=+>的部分图象如图所示,设P 是图象最高点,,A B 是图象与x 轴的交点,记APB θ∠=,则sin 2θ的值是( )A .1665B .6365C .1663-D .1665-6.已知()cos 2cos 2παπα⎛⎫+=- ⎪⎝⎭,则tan 4πα⎛⎫-= ⎪⎝⎭( )A .4-B .4C .13-D .137.已知函数22()2sin cos ()sin (0)24x f x x x ωπωωω=-->在区间25[,]36ππ-上是增函数,且在区间[0,]π上恰好取得一次最大值,则ω的范围是( )A .3(0,]5B .13[,]25C .13[,]24D .15[,)228.已知()4cos 5αβ+=,()1cos 5αβ-=,则tan tan αβ⋅的值为( ) A .12B .35C .310-D .359.在斜三角形ABC 中,sin A =-2cos B·cos C ,且tan B·tan C =1-2,则角A 的值为( ) A .4πB .3π C .2π D .34π 10.若,则的值为( )A .B .C .D .11.已知()cos 2cos 2παπα⎛⎫+=- ⎪⎝⎭,则tan 4πα⎛⎫+= ⎪⎝⎭( ) A .3-B .3C .13-D .1312.已知A 是函数()333sin(2020)sin(2020)2623f x x x ππ=++-的最大值,若存在实数1x ,2x 使得对任意实数x ,总有12()()()f x f x f x ≤≤成立,则12A x x 的最小值为( )A .2020π B .1010π C .32020πD .2020二、填空题13.给出下列命题:①()72cos 22f x x π⎛⎫=--⎪⎝⎭是奇函数;②若α、β都是第一象限角,且αβ>,则tan tan αβ>;③38x π=-是函数33sin 24y x π⎛⎫=-⎪⎝⎭的图像的一条对称轴;④已知函数()23sin12xf x π=+,使()()f x c f x +=对任意x ∈R 都成立的正整数c 的最小值是2.其中正确命题的序号是______. 14.给出下列命题:①存在实数α使得sin cos 1αα=; ②存在实数α使得3sin cos 2αα+=; ③5sin 22y x π⎛⎫ ⎪⎝=⎭-是偶函数;④8x π=是函数5sin 24y x π⎛⎫=+⎪⎝⎭的图象的一条对称轴方程; ⑤若α、β是第一象限角,且αβ>,则tan tan αβ>, 其中正确命题的序号是______.15.已知α、0,2πβ⎛⎫∈ ⎪⎝⎭,10sin α=,()cos 5αβ+=,则()cos 2αβ+=______.16.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若3sin 4α=,则()cos αβ-=______. 17.已知锐角α,β满足()sin 23sin αββ+=,则()tan cot αβα+=______. 18.已知3tan 4α=-,()1tan 4αβ+=,则tan β=______.19.设)sin17cos172a =︒+︒,22cos 131b =︒-,c =则a ,b ,c 的大小关系是______.20.设函数()cos f x x x =-的图像为C ,有如下结论: ①图象C 关于直线2π3x =对称; ②()f x 的值域为[]22-,;③函数()f x 的单调递减区间是π2π2π,2π33k k ⎡⎤-+⎢⎥⎣⎦()k Z ∈; ④图象C 向右平移π3个单位所得图象表示的函数是偶函数. 其中正确的结论序号是___________________.(写出所有正确结论的序号).三、解答题21.先将函数2sin 23sin 26y x x π⎛⎫=+- ⎪⎝⎭图像上所有点的纵坐标伸长为原来的2倍(横坐标不变),再将所得到的图像横坐标伸长为原来的2倍(纵坐标不变)得到函数()f x 的图像. (1)求函数()f x 的解析式; (2)若α,β满足42()()3f f αβ⋅=,且4παβ+=,设232sin()sin()()cos x x g x xαβ+⋅+=,求函数()g x 在,44x ππ⎡⎤∈-⎢⎥⎣⎦上的最大值. 22.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式. (2)若3()5f x =-,且36x ππ-<<,求cos2x 的值.23.已知函数21()cos2sin 12sin 22x f x x x ⎛⎫=+⋅- ⎪⎝⎭,23()224g x x π⎛⎫=+ ⎪⎝⎭.(1)对任意的[]12,0,x x t ∈,当12x x <时,均有()()()()1212f x f x g x g x -<-成立,求正实数t 的最大值;(2)在满足(1)的条件时,若方程[()()1]2()2()10a f x g x f x g x ⋅-+-+-=在区间,4t π⎛⎫- ⎪⎝⎭上有解,求实数a 的取值范围. 24.已知函数()2sin cos cos26f x x x x π⎫⎛=-+ ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦.(1)求()f x 的单调递增区间和最值;(2)若函数()()g x f x a =-有且仅有一个零点,求实数a 的取值范围.25.已知,2παπ⎛⎫∈⎪⎝⎭,且sin cos 22αα-=. (1)求cos α的值; (2)若()4sin 5αβ-=,,2πβπ⎛⎫∈ ⎪⎝⎭,求cos β的值. 26.已知函数2()sin 22sin 6f x x x π⎛⎫=-+ ⎪⎝⎭. (1)求512f π⎛⎫⎪⎝⎭;(2)求()f x 的单调递增区间及最小正周期. (3)若(0,)2πα∈,且()22f α=,求sin α.(4)若tan 2β=,求3()cos 22f ββ+的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】将所给条件分别用二倍角公式变形可以得到2cos cos22αβ-=,22sin sin 23αβ+=,然后平方相加化简计算即可求得结果. 【详解】 由23cos sin2αβ+=知2cos cos22αβ-=①,在1sin sin cos 3αββ+=两边同时乘以2得22sin sin 23αβ+=②,将①②两个等式平方相加得()4414cos 249βα+-+=+,解得()5cos 236αβ+=.故选:C. 【点睛】思路点睛:出现两个角的三角函数的和差,求两角和的正弦或余弦时常采用平方相加或平方相减,化简计算可得到两角和或差的三角函数值.2.B解析:B 【解析】 ∵点B 的坐标为43,55⎛⎫-⎪⎝⎭,设AOB θ∠=, ∴325sinπθ-=-(),425cos πθ-=(), 即35sin θ=,45cos θ=, ∵AOC α∠=,若1BC =,∴3πθα+=,则3παθ=-,则213sincossin cos cos sin 2222625αααππαααθθ⎛⎫⎛⎫-=-=+=-== ⎪ ⎪⎝⎭⎝⎭故选B.点睛:本题主要考查三角函数的化简和求值,利用三角函数的定义以及三角函数的辅助角公式是解决本题的关键;利用降幂公式可将所求表达式化简为关于α的表达式,设AOB θ∠=,当角α的终边与单位圆的交点坐标为(),u v 时,sin v α=,cos u α=,可先求出关于θ的三角函数式,结合等边三角形寻找,αθ之间的关系即可.3.B解析:B 【分析】通过三角恒等式可求出cos 3πα⎛⎫- ⎪⎝⎭的值,再根据两角和的正弦即可得出结果.【详解】 ∵02πα<<,∴336πππα-<-<,又∵1sin 34πα⎛⎫-= ⎪⎝⎭,∴cos 3πα⎛⎫-=== ⎪⎝⎭∴11sin sin 3342ππαα⎛⎫=-+=⨯= ⎪⎝⎭ 故选:B. 【点睛】本题主要考查了三角恒等式的应用以及通过两角和正弦公式求值,属于中档题.4.C解析:C 【分析】先根据对数函数性质得()3,2A -,进而根据正弦的二倍角公式和三角函数的定义求解即可得答案. 【详解】解:根据对数函数的性质得函数()log 42a y x =++(0a >,且1a ≠)的图象恒过()3,2A -,由三角函数的定义得:13r ==,sinθθ==, 所以根据二倍角公式得:242sin 24sin cos 413θθθ⎛===- ⎝. 故选:C. 【点睛】本题考查对数函数性质,三角函数定义,正弦的二倍角公式,考查运算能力,是中档题.5.A解析:A 【分析】过点P 作x 轴的垂线,垂足为D ,由三角函数性质得2AB =,12AD =,1DP =,32DB =,故1tan 2APD ∠=,3tan 2BPD ∠=,进而得()tan tan 8APD BPD θ=∠+∠=,故2222sin cos 2tan 16sin 22sin cos sin cos tan 165θθθθθθθθθ====++.【详解】解:根据题意,如图,过点P 作x 轴的垂线,垂足为D , 由于函数的最小正周期为22T ππ==,最大值为max 1y =,所以2AB =,12AD =,1DP =,32DB =, 所以在直角三角形ADP 和直角三角形BDP 中,1tan 2APD ∠=,3tan 2BPD ∠=, 所以()tan tan tan APB APD BPD θ=∠=∠+∠tan tan 28311tan tan 122APD BPD APD BPD ∠+∠===-∠⋅∠-⨯, 所以2222sin cos 2tan 16sin 22sin cos sin cos tan 165θθθθθθθθθ====++. 故选:A.【点睛】本题考查三角函数的性质,同角三角函数关系,正切的和角公式,考查运算能力,是中档题.6.C解析:C 【解析】因为cos()2cos()2παπα+=-,所以sin 2cos tan 2ααα-=-⇒=, 所以1tan 1tan()41tan 3πααα--==-+,故选C. 7.B解析:B 【分析】先化简函数,根据()f x 在区间25,36ππ⎡⎤-⎢⎥⎣⎦上是增函数,则为函数含有零的增区间的子集,再根据区间[]0,π上恰好取得一次最大值,则取得最大值时对应的最小正数解属于[]0,π,最后取交集.【详解】因为()222sin cos sin 24x f x x x ωπωω⎛⎫=--⎪⎝⎭,()2sin 1sin sin x x x ωωω=+-,22sin sin sin x x x ωωω=+-,sin x ω=,令22,22k x k k Z πππωπ-+≤≤+∈,则22,22k k x k Z ππππωωωω-+≤≤+∈, 因为()f x 在区间25,36ππ⎡⎤-⎢⎥⎣⎦上是增函数, 25,23,2262,k k k Z ππππωωωωππ⎡⎤∴-++∈⎢⎥⎣⎦⎡⎤-⊆⎢⎥⎣⎦ 所以223562ππωππω⎧-≤-⎪⎪⎨⎪≤⎪⎩,解得35ω≤,令2,2x k k Z πωπ=+∈,因为在区间[]0,π上恰好取得一次最大值, 所以02ππω≤≤,所以12ω≥, 所以ω的取值范围是1325ω≤≤. 故选:B. 【点睛】本题主要考查三角函数的单调性和最值以及二倍角公式的应用,还考查了运算求解的能力,属于中档题.8.B解析:B 【分析】根据两角和与差的余弦函数的公式,联立方程组,求得13cos cos ,sin sin 210αβαβ==-,再结合三角函数的基本关系式,即可求解.【详解】由4cos()cos cos sin sin 5αβαβαβ+=-=,1cos()cos cos sin sin 5αβαβαβ-=+=,联立方程组,可得13cos cos ,sin sin 210αβαβ==-, 又由sin sin 3tan tan cos()cos cos 5αβαβαβαβ=+==-.故选:B. 【点睛】本题主要考查了两角和与差的余弦函数,以及三角函数的基本关系式的化简、求值,其中解答中熟记三角恒等变换的公式,准确运算是解答的关键,着重考查运算与求解能力.9.A解析:A 【详解】由tan tan 12B C =-可得sin sin (12)cos cos B C B C =-, 进而得cos 2cos cos A C B =-,由于sin 2cos cos A B C =-, 所以sin cos A A =,可得4A π=,故选A.10.C解析:C 【解析】 试题分析:因,故应选C .考点:同角三角函数的关系及运用.11.A解析:A 【分析】首先根据三角函数诱导公式,可由等式()cos 2cos 2παπα⎛⎫+=- ⎪⎝⎭求出tan 2α=;再由两角和的正切公式可求出tan 4απ⎛⎫+ ⎪⎝⎭. 【详解】 解:()cos 2cos 2παπα⎛⎫+=- ⎪⎝⎭, ∴由三角函数诱导公式化简得:sin 2cos αα-=-,即得tan 2α=,tantan 124tan()34121tan tan 4παπαπα++∴+===---⋅.故选:A.【点睛】本题主要考查三角函数的诱导公式、两角和的正切公式,考查运算求解能力,属于基础题型.12.C解析:C 【分析】利用三角恒等变换化()f x 为正弦型函数,由此求出A 、T 以及12x x -的最小值,可得解. 【详解】()3sin(2020))2623f x x x ππ=++-,392020cos 2020cos 2020202044x x x x =+-,320220cos 2020x x =-3sin(2020)6x π=-,∴max ()3A f x ==,又存在实数1x ,2x ,对任意实数x 总有12()()()f x f x f x ≤≤成立, ∴2max ()()2f x f x ==,1min ()()2f x f x ==-, 则12x x -的最小值为函数()f x 的半个最小正周期长度,12min 1122220202020x x T ππ∴-==⨯=∴()12min32020A x x π⋅-=, 故选:C. 【点睛】本题考查三角函数的最值,着重考查两角和与差的正弦与余弦,考查三角恒等变换,突出正弦函数的周期性的考查,属于中档题.二、填空题13.①③④【分析】对①化简得可判断;对②取特殊值可说明;对③代入求值可判断;对④化简求出其最小正周期即可判断【详解】对①是奇函数故①正确;对②如但故②错误;对③当时取得最大值故③正确;对④则的最小正周期解析:①③④ 【分析】 对①,化简得()()2sin 2f x x =可判断;对②,取特殊值可说明;对③,代入38x π=-求值可判断;对④,化简()f x ,求出其最小正周期即可判断. 【详解】 对①,()()72cos 22sin 22f x x x π⎛⎫=--= ⎪⎝⎭是奇函数,故①正确; 对②,如7,33ππαβ==,但tan tan αβ=,故②错误; 对③,当38x π=-时,333sin 2384y ππ⎡⎤⎛⎫=⨯--= ⎪⎢⎥⎝⎭⎣⎦,取得最大值,故③正确; 对④,()()2353sin1cos 222xf x x ππ=+=-+,则()f x 的最小正周期为22ππ=,则c 的最小值是2,故④正确. 故答案为:①③④. 【点睛】本题考查三角函数奇偶性的判断,考查三角函数的单调性和对称性以及周期性,解题的关键是正确化简,正确理解三角函数的性质.14.③④【分析】利用二倍角的降幂公式结合正弦函数的有界性可判断①的正误;利用辅助角公式结合正弦函数的有界性可判断②的正误;化简函数解析式结合余弦函数的奇偶性可判断③的正误;利用代入检验法可判断④的正误;解析:③④ 【分析】利用二倍角的降幂公式结合正弦函数的有界性可判断①的正误;利用辅助角公式结合正弦函数的有界性可判断②的正误;化简函数解析式,结合余弦函数的奇偶性可判断③的正误;利用代入检验法可判断④的正误;利用特殊值法可判断⑤的正误. 【详解】对于命题①,111sin cos sin 2,222ααα⎡⎤=∈-⎢⎥⎣⎦, 所以,不存在实数α使得sin cos 1αα=,①错误;对于命题②,sin cos 4πααα⎛⎫⎡+=+∈ ⎪⎣⎝⎭, 所以,不存在实数α使得3sin cos 2αα+=,②错误; 对于命题③,si o 5s 2n c 2i s n 222x y x x ππ⎛⎫⎛⎫== ⎪⎪⎝-⎭-⎭=⎝, ()cos 2cos2x x -=,所以,函数5sin 22y x π⎛⎫⎪⎝=⎭-是偶函数,③正确;对于命题④,当8x π=时,min 53sin 2sin 1842y y πππ⎛⎫=⨯+==-= ⎪⎝⎭, 所以,8x π=是函数5sin 24y x π⎛⎫=+⎪⎝⎭的图象的一条对称轴方程,命题④正确; 对于命题⑤,取9244παππ=+=,4πβ=,αβ>,但tan 1tan αβ==,⑤错误.因此,正确命题的序号为③④. 故答案为:③④. 【点睛】本题考查有关三角函数命题真假的判断,考查了三角函数的有界性、正弦型函数的奇偶性、对称性以及正切值大小的比较,考查计算能力与推理能力,属于中等题.15.【分析】利用同角三角函数的平方关系求得的值然后利用两角和的余弦公式可求得的值【详解】因为则又所以所以故答案为:【点睛】本题考查利用两角和的余弦公式求值同时也考查了同角三角函数基本关系的应用考查计算能解析:2【分析】利用同角三角函数的平方关系求得cos α、()sin αβ+的值,然后利用两角和的余弦公式可求得()cos 2αβ+的值. 【详解】 因为α、0,2πβ⎛⎫∈ ⎪⎝⎭,则0αβ<+<π,又10sin,()cos αβ+=cos 10α==,()sin αβ+==所以()()()()cos 2cos cos cos sin sin αβααβααβααβ+=++=+-+⎡⎤⎣⎦-=故答案为:2. 【点睛】本题考查利用两角和的余弦公式求值,同时也考查了同角三角函数基本关系的应用,考查计算能力,属于中等题.16.;【分析】根据角的终边关于轴对称得到以及两角差的余弦公式即可求出【详解】因为角与角均以为始边它们的终边关于轴对称所以所以故答案为:【点睛】本题主要考查了三角函数定义的应用两角差的余弦公式同角三角函数解析:18; 【分析】根据角的终边关于y 轴对称得到cos cos ,sin sin αβαβ=-=,以及两角差的余弦公式即可求出. 【详解】因为角α与角β均以Ox 为始边,它们的终边关于y 轴对称, 所以3cos cos ,sin sin 4αβαβ=-==, 所以()22cos cos cos sin sin sincos αβαβαβαα-=+=-22sin 1α=-92116=⨯- 18= 故答案为:18【点睛】本题主要考查了三角函数定义的应用,两角差的余弦公式,同角三角函数的关系,属于中档题.17.2【分析】将三角函数式配成与由正弦函数和角与差角公式展开即可求解【详解】锐角满足变形可得由正弦和角与差角公式展开可得合并化简可得等式两边同时除以可得即故答案为:2【点睛】本题考查了三角函数式化简求值解析:2 【分析】将三角函数式配成()αβα++与()αβα+-,由正弦函数和角与差角公式展开,即可求解. 【详解】锐角α,β满足()sin 23sin αββ+=变形可得()()sin 3sin αβααβα++=+-⎡⎤⎡⎤⎣⎦⎣⎦ 由正弦和角与差角公式展开可得()()()()sin cos sin cos 3sin cos 3sin cos αβαααβαβαααβ+++=+-+合并化简可得()()4sin cos 2sin cos ααβαβα+=+ 等式两边同时除以()2cos cos αβα+可得()2tan tan ααβ=+ 即()tan cot 2αβα+= 故答案为:2 【点睛】本题考查了三角函数式化简求值,角的变化形式,属于中档题.18.【分析】根据以及两角差正切公式求解【详解】故答案为:【点睛】本题考查两角差正切公式考查基本分析求解能力属基础题 解析:1613【分析】根据()βαβα=+-以及两角差正切公式求解. 【详解】13tan()tan 1644tan tan[()]31tan()tan 13116αβαβαβααβα++-=+-===++-故答案为:1613【点睛】本题考查两角差正切公式,考查基本分析求解能力,属基础题.19.【分析】根据两角和的正弦公式二倍角公式诱导公式即可将化简再根据正弦函数的单调性即可比较出大小关系【详解】所以故答案为:【点睛】本题主要考查两角和的正弦公式二倍角公式诱导公式的应用以及正弦函数的单调性 解析:c a b <<【分析】根据两角和的正弦公式,二倍角公式,诱导公式,即可将,a b 化简,再根据正弦函数的单调性即可比较出大小关系. 【详解】)sin17cos17sin17cos 45cos17sin 45sin 62a =︒+︒=︒+︒=, 22cos 131cos 26sin 64b =︒-==,sin 60c ==, 所以,c a b <<. 故答案为:c a b <<. 【点睛】本题主要考查两角和的正弦公式,二倍角公式,诱导公式的应用,以及正弦函数的单调性的应用,属于基础题.20.①②④【分析】化简函数代入求最值可判断①;求出的最值可判断②;求出函数的单调递减区间可判断③;求出向右平移个单位的解析式化简后可判断④【详解】当时取得最大值2故①正确;因为的最大值为2最小值为所以的解析:①②④. 【分析】化简函数()2sin 6f x x π⎛⎫=-⎪⎝⎭代入2π3x =求最值可判断①;求出()f x 的最值可判断②;求出函数()f x 的单调递减区间可判断③;求出()f x 向右平移π3个单位的解析式化简后可判断④. 【详解】()1cos 2cos 22f x x x x x ⎛⎫=-=- ⎪ ⎪⎝⎭2cos sin sin cos 2sin 666x x x πππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,当2π3x =时,22π2sin 2336f ππ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,取得最大值2,故①正确; 因为()π2sin 6f x x ⎛⎫=- ⎪⎝⎭的最大值为2,最小值为2-,所以()f x 的值域为[]22-,,故②正确; 令π322262k x k ππππ+≤-≤+()k Z ∈,得252233k x k ππππ+≤≤+, 即()f x 的单调递减区间是2π5π2π,2π33k k ⎡⎤++⎢⎥⎣⎦()k Z ∈,故③错误; 图象C 向右平移π3个单位得π2sin 2sin 2cos 362y x x x ππ⎛⎫⎛⎫=--=-=- ⎪ ⎪⎝⎭⎝⎭是偶函数,故④正确.故答案为:①②④. 【点睛】本题主要考查了三角恒等变换,以及三角函数的图象与性质的应用,其中解答中利用三角恒等变换的公式,化简()f x 的解析式,再利用三角函数的图象与性质求解是解答的关键,着重考查了推理与计算能力,属于基础题.三、解答题21.(1)()2cos f x x =;(2)4.【分析】(1)先对函数化简变形可得cos 2y x =,再由三角函数图像变换规律可求出()f x 的解析式;(2)由已知条件可得cos cos 3αβ=,sin sin 6αβ=-2()2tan 3tan 1g x x x =+-,然后令tan [1,1]t x =∈-,则2()231h t t t =+-,从而可求出其最值 【详解】(1)原函数化简得到2sin 2coscos 2sin2cos 266y x x x x ππ⎡⎤=+=⎢⎥⎣⎦,将cos 2y x =图像上所有点的纵坐标伸长为原来的2倍(横坐标不变),可得2cos2y x =,再将2cos2y x =的图像横坐标伸长为原来的2倍(纵坐标不变)得到2cos y x = 所以()2cos f x x =. (2)由题意知cos cos 3αβ=, 因为4παβ+=所以cos()cos cos sin sin αβαβαβ+=-=解得sin sin αβ=2cos cos sin )(sin cos cos sin )()cos x x x x g x xααββ++=.222sin cos cos sin cos sin()cos sin sin cos x x x x xαβαβαβ⎤+++⎣⎦=222sin sin cos cos 326cos x x x x x⎤⎛⋅+⋅+⋅-⎥⎥⎝⎭⎣⎦=22tan 3tan 1x x =+-令tan [1,1]t x =∈-,2()231h t t t =+-,则对称轴为34t =-.所以max ()(1)4h t h ==. 【点睛】关键点点睛:此题考查三角恒等变换公式的应用,考查三角函数图像变换规律,考查数学转化思想,解题的关键是由()()3f f αβ⋅=求出cos cos 3αβ=,再对4παβ+=两边取余弦化简可求出sin sin 6αβ=-()g x 化简可得2()2tan 3tan 1g x x x =+-,再利用换元法可求得结果,属于中档题22.(1)()sin 26f x x π⎛⎫=+ ⎪⎝⎭;(2. 【分析】(1)根据最大值求出A ,根据周期求出ω,根据极大值点求出ϕ(2)根据角的范围求出4cos 265x π⎛⎫+= ⎪⎝⎭,将cos2x 写成cos 2cos 266x x ππ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦,利用两角和与差的余弦公式展开,求解即可.【详解】(1)由图知121,,2362A T πππ==-= ,2πω∴==T又22,,62k k Z ππϕπ⨯+=+∈26k πϕπ∴=+又||2πϕ<,,()sin 266f x x ππϕ⎛⎫∴==+ ⎪⎝⎭ (2)3()5f x =-所以3sin 265x π⎛⎫+=- ⎪⎝⎭, ,236262x x πππππ-<<-<+<,又因为34sin 2,cos 26565x x ππ⎛⎫⎛⎫+=-+= ⎪ ⎪⎝⎭⎝⎭,所以 cos 2cos 266x x ππ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦cos 2cos sin 2sin 6666x x ππππ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭431552=-⨯=【点睛】已知f (x )=Asin (ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)由ω=2Tπ即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求. 23.(1)4π;(2)32a <.【分析】(1)构造()()()h x f x g x =-,由单调性的定义得出()h x 在区间[0,]t 上为增函数,结合正弦型函数的单调性,得出正实数t 的最大值.(2)方程[()()1]2()2()10a f x g x f x g x ⋅-+-+-=有解,可分离参数为2()112()1()1h x a h x h x +==-++,在,44ππ⎛⎫- ⎪⎝⎭上有解,再根据()h x 的值域,求解实数a 的取值范围. 【详解】解:(1)依题可知:1()cos 2sin cos 2f x x x x =+24x π⎛⎫=+ ⎪⎝⎭, 又∵()()()()1212f x f x g x g x -<-,∴()()()()1122f x g x f x g x -<-, 令()()()h x f x g x =-,则3()222424h x x x ππ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭222424x x ππ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭ sin 2x =.∵()()12h x h x <,∴()h x 在[]0,t 上单调递增, ∵22222k x k ππππ-≤≤+,∴()44k x k k Z ππππ-≤≤+∈,∴4t π≤,即t 的最大值为4π. (2)∵[()()1]2()2()10a f x g x f x g x ⋅-+-+-=,∴(2)[()()]10a f x g x a --+-=, ∴2()112()1()1h x a h x h x +==-++,即12sin 21a x =-+在,44ππ⎛⎫- ⎪⎝⎭上有解,∵1sin 21x -<<,∴32a <. 【点睛】函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.24.(1)()f x 的单调递增区间是 06,π⎡⎤⎢⎥⎣⎦,()()min max 30,2f x f x ==;(2)3[0,1)2⎧⎫⋃⎨⎬⎩⎭【分析】(1)利用两角差的余弦公式,二倍角公式和辅助角法,将函数转化为()1sin 262f x x π⎛⎫=++ ⎪⎝⎭,再利用正弦函数的性质求解.(2)将函数()()g x f x a =-有且仅有一个零点,转化为函数()y f x = 与y a =有且仅有一个交点,利用数形结合法求解. 【详解】(1)函数()2sin cos cos26f x x x x π⎫⎛=-+ ⎪⎝⎭,12sin sin cos 22x x x x ⎫=++⎪⎪⎝⎭,2cos sin cos 2x x x x =++,112cos 2222x x =++, 1sin 262x π⎛⎫=++ ⎪⎝⎭,令222,262k x k k Z πππππ-≤+≤+∈,解得 ,36k x k k Z ππππ-≤≤+∈,因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以函数()f x 的单调递增区间是 06,π⎡⎤⎢⎥⎣⎦. 因为0,2x π⎡⎤∈⎢⎥⎣⎦,则72,666x πππ⎡⎤+∈⎢⎥⎣⎦, 所以1sin 2,162x π⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦, 所以()()min max 30,2f x f x ==. (2)因为()()g x f x a =-有且仅有一个零点,所以()f x a =有且仅有一个零点,即函数()y f x = 与y a =有且仅有一个交点,如图所示:由图象知:32a =或 [0,1)a ∈, 所以实数a 的取值范围是3[0,1)2⎧⎫⋃⎨⎬⎩⎭. 【点睛】方法点睛:1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式. 2.函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2T ωπ=,y =tan(ωx +φ)的最小正周期为T πω=. 3.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t 的性质.25.(1)3;(2433-. 【分析】(1)将已知条件两边平方,求得sin α的值,进而求得cos α的值.(2)先求得()cos αβ-的值,然后利用cos cos[()]βααβ=--,结合两角差的余弦公式,求得cos β的值.【详解】(1)将sin cos 222αα-=两边同时平方,得11sin 2α-=,则1sin 2α=,又2παπ∈(,),所以cos 2α==-.(2)由(1)知,1sin ,cos 2αα==, 因为2παπ∈(,),2βπ∈π(,),所以22ππαβ-<-<.又因为4sin()5αβ-=,所以3cos()5αβ-, 所以cos cos[)]βααβ=--( cos cos()sin sin()ααβααβ=-+-314525=+⨯, 【点睛】关键点点睛:对于三角函数给值求值的问题,关键在于运用已知角的和,差,二倍的运算表示待求的角,再选择相关公式得以求值.26.(11(2)5[,],1212k k k Z ππππ-+∈,π(341+ 【分析】(1)化简函数解析式代入直接求值即可;(2)由正弦型函数的性质求解即可; (3)先求出cos()3πα-,sin()3πα-再利用33ππαα=-+求解即可; (4)由两角差的正弦化简后再利用弦化切求解.【详解】 (1)2()sin 22sin 6f x x x π⎛⎫=-+= ⎪⎝⎭ sin2cos cos2sin 1cos 266x x x ππ⋅-⋅+-1sin2cos21cos222x x x =-+-3cos212x x =-+213x π⎛⎫=-+ ⎪⎝⎭,故55sin()111263f πππ⎛⎫=-+= ⎪⎝⎭.(2)由(1)知()213f x x π⎛⎫=-+ ⎪⎝⎭, 令222,232k x k k Z πππππ-≤-≤+∈, 解得5,1212k x k k Z ππππ-≤≤+∈, 所以函数()f x 的单调递增区间为5[,],1212k k k Z ππππ-+∈, 函数()f x 的周期为22T ππ==. (3)(0,)2πα∈,且()22f α=,())1223f απα=-+=,即sin()3πα-= 因为(0,)2πα∈,所以cos()3πα-=, 故sin sin[()]sin()cos cos()sin 333333ππππππαααα=-+=-+-12=+=(4)33()cos 2)1cos 2232f πββββ+=-++3sin 221cos 2222βββ=-++211β=+=+1=+1= 【点睛】关键点点睛:涉及三角函数的求值化简问题,关键要根据式子结构特征,选择合适的公式,正用、逆用公式,并结合切化弦、弦化切思想,角的变换技巧,灵活运用公式,熟练运算,属于中档题.。
高中数学北师大版必修四第三章三角恒等变换 质量检测卷含解析
阶段质量检测(三) 三角恒等变形(时间:90分钟 满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题所给的四个选项中,只有一项是符合题目要求的.)1.计算sin 21°cos 9°+sin 69°sin 9°的结果是( ) A.32 B.12C .-12D .-322.(辽宁高考)已知sin α-cos α=2,α∈(0,π),则sin 2α=( ) A .-1 B .-22C.22D .1 3.(重庆高考)设tan α,tan β是方程x 2-3x +2=0的两个根,则tan(α+β)的值为( ) A .-3 B .-1 C .1 D .34.(新课标全国卷Ⅰ)设α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,且tan α=1+sin βcos β,则( )A .3α-β=π2B .2α-β=π2C .3α+β=π2D .2α+β=π25.(山东高考)若θ∈⎣⎢⎡⎦⎥⎤π4,π2,sin 2θ=378,则sin θ=( )A.35B.45 C.74 D.346.已知sin ⎝ ⎛⎭⎪⎫π4-x =35,则sin 2x 的值为( )A.725B.1625 C.1425 D.19257.若α,β均为锐角,sin α=255,sin(α+β)=35,则cos β的值为( )A.255B.2525 C.255或2525 D .-25258.函数y =sin x cos x +3cos 2x 的图像的一个对称中心是( ) A.⎝⎛⎭⎪⎫π3,-32 B.⎝ ⎛⎭⎪⎫2π3,-32C.⎝ ⎛⎭⎪⎫2π3,32D.⎝ ⎛⎭⎪⎫π3,329.(江西高考)若tan θ+1tan θ=4,则sin 2θ=( )A.15B.14C.13D.1210.函数y =cos 2x cos π5-2sin x cos x sin 65π的递增区间是( )A.⎣⎢⎡⎦⎥⎤k π+π10,k π+35π(k ∈Z )B.⎣⎢⎡⎦⎥⎤k π-3π20,k π+720π(k ∈Z ) C.⎣⎢⎡⎦⎥⎤2k π+π10,2k π+35π(k ∈Z ) D.⎣⎢⎡⎦⎥⎤k π-25π,k π+π10(k ∈Z ) 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 11.已知cos α=-45,α∈⎝ ⎛⎭⎪⎫π2,π,则tan ⎝ ⎛⎭⎪⎫π4+α等于________.12.已知sin θ2+cos θ2=233,那么cos 2θ的值为________.13.△ABC 的三个内角为A ,B ,C ,当A 为________时,cos A +2cos B +C2取得最大值,且这个最大值为________.14.已知α是第二象限角,且sin α=154,则sin ⎝⎛⎭⎪⎫α+π4sin 2α+cos 2α+1=________.三、解答题(本大题共4小题,共50分,解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)化简sin (2α+β)sin α-2cos(α+β).16.(本小题满分12分)已知sin(5π+α)=-35,且α∈⎝ ⎛⎭⎪⎫π2,π,tan β=12. (1)求tan(α-β)的值; (2)求sin ⎝ ⎛⎭⎪⎫2α+π3的值.17.(本小题满分12分)(北京高考)已知函数f (x )=(sin x -cos x )sin 2x sin x.(1)求f (x )的定义域及最小正周期; (2)求f (x )的单调递减区间.18.(本小题满分14分)(安徽高考)已知函数f (x )=4cos ωx ·sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的最小正周期为π.(1)求ω的值;(2)讨论f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的单调性.答案1.解析:选B 原式=sin 21°cos 9°+sin(90°-21°)sin 9° =sin 21°cos 9°+cos 21°sin 9° =sin 30°=12.2.解析:选A ∵sin α-cos α=2,∴(sin α-cos α)2=2, ∴sin 2α=-1.3.解析:选A 依题意得⎩⎪⎨⎪⎧tan α+tan β=3,tan αtan β=2.则tan(α+β)=tan α+tan β1+tan αtan β=31-2=-3.4.解析:选D 原式=2tan α-1tan α+2=2×2-12+2=34. 5.解析:选D 因为θ∈⎣⎢⎡⎦⎥⎤π4,π2,所以2θ∈⎣⎢⎡⎦⎥⎤π2,π,所以cos 2θ<0,所以cos 2θ=-1-sin 22θ=-18.又cos 2θ=1-2sin 2θ=-18,所以sin 2θ=916,所以sin θ=34.6.解析:选A sin 2x =cos(π2-2x )=cos 2(π4-x )=1-2sin 2(π4-x )=1-1825=725.7.解析:选B 由sin α=255,α为锐角知cos α=55. ∵sin α=255>sin(α+β)=35,∴α+β∈(π2,π),∴cos(α+β)=-45.∴cos β=cos(α+β-α)=cos(α+β)cos α+sin αsin (α+β)=2525.8.解析:选D y =12sin 2x +3(1+cos 2x )2=12sin 2x +32cos 2x +32 =sin(2x +π3)+32,当x =π3时,sin(2×π3+π3)=0.∴(π3,32)是函数图像的一个对称中心.9.解析:选D 法一:∵tan θ+1tan θ=1+tan 2θtan θ=4,∴4tan θ=1+tan 2θ, ∴sin 2θ=2sin θcos θ=2sin θcos θsin 2 θ+cos 2θ=2tan θ1+tan 2θ=2tan θ4tan θ=12. 法二:∵tan θ+1tan θ=sin θcos θ+cos θsin θ=1cos θsin θ=2sin 2θ∴4=2sin 2θ,故sin 2θ=12.10.解析:选D y =cos 2x cos π5+sin 2x sin π5=cos(2x -π5).∴2k π-π≤2x -π5≤2k π,k ∈Z .∴k π-25π≤x ≤k π+π10,k ∈Z .11.解析:由已知得tan α=-34,所以tan(π4+α)=1-341+34=17.答案:1712.解析:(sin θ2+cos θ2)2=1+sin θ=43,sin θ=13,cos 2θ=1-2sin 2θ=79.答案:7913.解析:cos A +2cos B +C2=cos A +2sin A2=1-2sin 2A 2+2sin A2=-2sin 2A 2+2sin A2-1=-2(sin A 2-12)2+32,当sin A 2=12,即A =60°时,得(cos A +2cos B +C2)max =32. 答案:60° 3214.解析:∵α为第二象限角, ∴cos α=-1-sin 2α=-14.sin (α+π4)sin 2α+cos 2α+1=22(sin α+cos α)2cos α(sin α+cos α)=222cos α=- 2.答案:- 215.解:法一:原式=sin[(α+β)+α]sin α-2cos(α+β)=sin (α+β)cos α+cos (α+β)sin αsin α-2cos(α+β)=sin (α+β)cos αsin α-cos(α+β)=sin (α+β)cos α-cos (α+β)sin αsin α=sin[(α+β)-α]sin α=sin βsin α.法二:原式=sin 2αcos β+cos 2αsin β-2(cos αcos β-sin αsin β)sin αsin α=sin 2αcos β+cos 2αsin β-sin 2αcos β+2sin 2αsin βsin α.=(1-2sin 2α)sin β+2sin 2αsin βsin α=sin βsin α. 16.解:(1)由条件得sin α=35.又α∈(π2,π),所以tan α=-34.故tan (α-β)=-34-121+(-34)×12=-2.(2)由条件得sin α=35.又α∈(π2,π),得cos α=-45.所以sin 2α=2×35×(-45)=-2425,cos 2α=(-45)2-(35)2=725.故sin(2α+π3)=-2425×12+725×32=73-2450.17.解:(1)由sin x ≠0得x ≠k π(k ∈Z ), 故f (x )的定义域为{}x ∈R |x ≠k π,k ∈Z . 因为f (x )=(sin x -cos x )sin 2xsin x=2cos x (sin x -cos x ) =sin 2x -cos 2x -1 =2sin(2x -π4)-1,所以f (x )的最小正周期T =2π2=π. (2)函数y =sin x 的单调递减区间为⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2(k ∈Z ). 由2k π+π2≤2x -π4≤2k π+3π2,x ≠k π(k ∈Z ),得k π+3π8≤x ≤k π+7π8(k ∈Z ).所以f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π+3π8,k π+7π8(k ∈Z ).18.解:本题主要考查两角和的正弦公式、二倍角公式、三角函数周期公式以及三角函数的单调性等知识,意在考查转化与化归思想的应用.(1)f (x )=4cos ωx ·sin ⎝⎛⎭⎪⎫ωx +π4 =22sin ωx ·cos ωx +22cos 2ωx =2(sin 2ωx +cos 2ωx )+2=2sin ⎝ ⎛⎭⎪⎫2ωx +π4+2.因为f (x )的最小正周期为π,且ω>0,从而有2π2ω=π,故ω=1.(2)由(1)知,f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4+ 2.若0≤x ≤π2,则π4≤2x +π4≤5π4. 当π4≤2x +π4≤π2,即0≤x ≤π8时,f (x )单调递增; 当π2≤2x +π4≤5π4,即π8≤x ≤π2时,f (x )单调递减. 综上可知,f (x )在区间⎣⎢⎡⎦⎥⎤0,π8上单调递增,在区间⎣⎢⎡⎦⎥⎤π8,π2上单调递减.。
(常考题)北师大版高中数学必修四第三章《三角恒等变形》检测题(含答案解析)
一、选择题1.已知0,2πα⎛⎫∈ ⎪⎝⎭,2sin 2cos21αα-=,则cos α的值为( )A .15B C D 2.已知3cos 25α=,()0,2απ∈,则sin 4απ+⎛⎫= ⎪⎝⎭( )A B . C D . 3.函数12log (sin cos )y x x =的单调增区间是( )A .(,)()44k k k Z ππππ-+∈ B .3(,)()44k k k Z ππππ++∈ C .(,)()4k k k Z πππ+∈D .(,)()42k k k Z ππππ++∈ 4.已知α,β均为锐角,5cos()13αβ+=-,3sin()35πβ+=,则sin()3πα-=( )A .3365B .3365-C .6365D .56655.函数()log 42a y x =++(0a >,且1a ≠)的图象恒过定点A ,且点A 在角θ的终边上,则2sin 2θ=( ) A .1213-B .1213C .2413-D .24136.已知函数()sin (0)f x x x ωωω=+>的图象关于直线8x π=对称,则ω的最小值为( ) A .13B .23 C .43D .837.函数()sin sin 22f x x x π⎛⎫=++ ⎪⎝⎭的最大值为( ) A .2B .1C .18D .988.已知α∈3π,π2⎛⎫ ⎪⎝⎭,cos α=-45,则tan π4α⎛⎫- ⎪⎝⎭等于( ) A .7B .17C .-17D .-79.已知角α满足1cos()63πα+=,则sin(2)6πα-=( ) A.9-B.9C .79-D .7910.已知直线3x −y +1=0的倾斜角为α,则1sin22α= A .310 B .35 C .−310D .11011.设a 、b R ∈,[)0,2c π∈,若对任意实数x 都有()2sin 3sin 3x a bx c π⎛⎫-=+ ⎪⎝⎭,定义在区间[]0,3π上的函数sin 2y x =的图象与cos y x =的图象交点的横坐标是d ,则满足条件的有序实数组(),,,a b c d 的组数为( ) A .7 B .11C .14D .2812.已知()cos 2cos 2παπα⎛⎫+=- ⎪⎝⎭,则tan 4πα⎛⎫+= ⎪⎝⎭( ) A .3-B .3C .13-D .13二、填空题13.有下列5个关于三角函数的命题: ①0x R ∃∈00cos 3x x +=;②函数22sin cos y x x =-的图像关于y 轴对称; ③x R ∀∈,1sin 2sin x x+≥; ④[]π,2πx ∀∈cos 2x=-; ⑤当()2sin cos f x x x =+取最大值时,cos x =. 其中是真命题的是______. 14.已知1cos 3α=,且02πα-<<,则()()()cos sin 2tan 23sin cos 22αππαπαππαα--+-=⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭______. 15.tan 80tan 4080tan 40︒+︒︒︒=________.16.在区间,22ππ⎛⎫- ⎪⎝⎭范围内,函数tan y x =与函数sin y x =的图象交点有_______个.17.已知()2cos (sin cos )f x x x x =+,若对任意[0,]2x π∈不等式2()m f x m -≤≤+恒成立,则实数m 的取值范围是___________.18.已知1sin cos 5αα-=,0απ≤≤,则sin(2)4απ-=__________; 19.已知锐角α,β满足()sin 23sin αββ+=,则()tan cot αβα+=______. 20.若函数()sin()cos f x x x ϕ=++为偶函数,则常数ϕ的一个取值为________.三、解答题21.已知函数2()22sin f x x x =+.(1)求函数()f x 的单调递减区间; (2)当,312x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()f x 的值域.22.已知函数()2cos 2f x x x =-,[,]34x ππ∈-.(1)求函数()f x 的周期和值域; (2)设()3a g x x x =+,若对任意的1(0)x ∈+∞,及任意的2[,]34x ππ∈-,都有不等式12() ()g x f x ≥恒成立,求实数a 的取值范围.23.已知函数2()2cos 1cos (01)f x x x x ωωωω=-+<<,直线3x π=是函数f (x )的图象的一条对称轴.(1)求函数f (x )的单调递增区间;(2)已知函数y =g (x )的图象是由y =f (x )的图象上各点的横坐标伸长到原来的2倍,然后再向左平移23π个单位长度得到的,若6(2),(0,),352g ππαα+=∈求sin α的值.24.已知函数2()sin cos cos f x x x x =+.(1)求函数()f x 的最小正周期,并写出函数()f x 的单调递增区间; (2)若将函数()y f x =的图象上各点的横坐标变为原来的12(纵坐标不变),再把图象向右平移8π个单位长度,得到函数()y g x =的图象,求满足()1g x ≥的实数x 的集合. 25.如图,以x 轴非负半轴为始边,角α的终边与单位圆相交于点43,55P ⎛⎫- ⎪⎝⎭,将角α的终边绕着原点O 顺时针旋转4π得到角β.(1)求3sin()5cos()2sin sin()2πααπαπα-+-⎛⎫-++ ⎪⎝⎭的值; (2)求sin 22cos ββ+的值. 26.设函数233()cos cos 3sin 64f x x x x π⎛⎫=⋅-+- ⎪⎝⎭. (1)求()f x 的最小正周期和单调递增区间; (2)当,122x ππ⎡⎤∈⎢⎥⎣⎦时,求函数()f x 的最大值和最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用二倍角公式化简得到2sin cos ,αα=再利用同角的平方关系求解. 【详解】由题得24sin cos 12cos 1,ααα+-= 所以24sin cos 2cos ,ααα= 因为0,2πα⎛⎫∈ ⎪⎝⎭, 所以2sin cos ,αα=因为22221sin cos 1,cos cos 14αααα+=∴+=,所以24cos ,(0,),cos 52πααα=∈∴= 故选:D 【点睛】方法点睛:三角函数求值常用的方法有:三看(看角、看名、看式)三变(变角、变名、变式).2.C解析:C 【分析】根据2α是4α的二倍角求出sin α的值,再求cos 4α和sin 4απ+⎛⎫⎪⎝⎭的值. 【详解】因为2α是4α的二倍角,所以2311cos 152sin 4225αα--===, 又()0,2απ∈,所以0,42aπ⎛⎫∈⎪⎝⎭,所以sin 4545αα===cos ;所以sin sin sin cos cos sin 4444445252104απαπαπαπ+⎛⎫⎛⎫=+=+=+= ⎪ ⎪⎝⎭⎝⎭. 故选:C. 【点睛】 本题考查了二倍角的余弦公式,考查了同角公式,考查了两角和的正弦公式,属于中档题.3.D解析:D 【分析】先利用二倍角公式化简整理,再根据对数函数的定义域及复合函数单调性的性质求解单调递增区间即可. 【详解】由11221log (sin cos )log (sin 2)2y x x x ==, 得1sin 2022222x k x k k x k ππππππ>⇒<<+⇒<<+, 故函数的定义域为(,)()2k k k z πππ+∈,又求函数12log (sin cos )y x x =的单调增区间,利用复合函数单调性的性质,可得222242k x k k x k ππππππππ+<<+⇒+<<+.故选:D. 【点睛】本题主要考查了复合函数单调性的性质及应用,对数函数定义域的特殊要求.属于中档题.4.B解析:B 【分析】由所给三角函数值利用同角三角函数的关系求出()sin αβ+、cos 3πβ⎛⎫+⎪⎝⎭,3πα-记为()3παββ⎛⎫+-+⎪⎝⎭,利用两角差的正弦公式展开代入相应值计算即可.【详解】α,β均为锐角,5cos()013αβ+=-<,,2παβπ⎛⎫∴+∈ ⎪⎝⎭,∴()12sin 13αβ+==,β均为锐角,5,336πππβ⎛⎫∴+∈ ⎪⎝⎭,则1cos 32πβ⎛⎫⎛⎫+∈ ⎪ ⎪ ⎪⎝⎭⎝⎭,4cos 35πβ⎛⎫∴+==- ⎪⎝⎭或45(4152>,舍去),()sin()sin 33ππααββ⎡⎤⎛⎫∴-=+-+ ⎪⎢⎥⎝⎭⎣⎦()()sin cos cos sin 33ππαββαββ⎛⎫⎛⎫=+⋅+-+⋅+ ⎪ ⎪⎝⎭⎝⎭124533313513565⎛⎫⎛⎫=⨯---⨯=- ⎪ ⎪⎝⎭⎝⎭. 故选:B 【点睛】本题考查同角三角函数的关系、两角差的正弦公式、三角函数在各象限的符号,属于中档题.5.C解析:C 【分析】先根据对数函数性质得()3,2A -,进而根据正弦的二倍角公式和三角函数的定义求解即可得答案. 【详解】解:根据对数函数的性质得函数()log 42a y x =++(0a >,且1a ≠)的图象恒过()3,2A -,由三角函数的定义得:13r ==,sinθθ==, 所以根据二倍角公式得:242sin 24sin cos 413θθθ⎛===- ⎝. 故选:C. 【点睛】本题考查对数函数性质,三角函数定义,正弦的二倍角公式,考查运算能力,是中档题.6.C解析:C 【分析】利用辅助角公式将函数()y f x =的解析式化简为()2sin 3f x x πω⎛⎫=+⎪⎝⎭,根据题意得出()832k k Z πππωπ+=+∈,可得出关于ω的表达式,即可求出正数ω的最小值.【详解】()sin 2sin 3f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭,由于该函数的图象关于直线8x π=对称,则()832k k Z πππωπ+=+∈,得()483k k Z ω=+∈, 0ω>,当0k =时,ω取得最小值43.故选:C. 【点睛】本题考查利用正弦型函数的对称性求参数,解题时要将三角函数的解析式利用三角恒等变换思想化简,并通过对称性列出参数的表达式求解,考查计算能力,属于中等题.7.D解析:D 【分析】利用诱导公式与二倍角的余弦公式化简,再结合二次函数配方法求解即可. 【详解】因为()sin sin 2sin cos 22f x x x x x π⎛⎫=++=+ ⎪⎝⎭,2219sin 12sin 2sin 48x x x ⎛⎫=+-=--+ ⎪⎝⎭所以()f x 的最大值为98, 故选:D. 【点睛】本题主要考查诱导公式与二倍角的余弦公式的应用,考查了二次函数的性质,属于基础题.8.B解析:B 【分析】先根据同角三角函数关系求tan α,再根据两角差正切公式求结果. 【详解】 由已知得tan α=34,则tan π1tan 141tan 7ααα-⎛⎫-== ⎪+⎝⎭. 选B 【点睛】本题考查同角三角函数关系、两角差正切公式,考查基本求解能力.9.D解析:D 【分析】由已知利用诱导公式可求133sin πα⎛⎫-= ⎪⎝⎭,sin 2263cos ππαα⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,再由二倍角公式化简,即可得结果. 【详解】162633cos sin sin ππππααα⎡⎤⎛⎫⎛⎫⎛⎫+=-+=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,2sin 2cos 2cos 2262633cos πππππαααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫∴-=--=-=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦22171212()339sin πα⎛⎫=--=-⨯= ⎪⎝⎭.故选D . 【点睛】本题主要考查了诱导公式,二倍角公式在三角函数化简求值中的应用,属于基础题.三角函数求值有三类,(1)“给角求值”;(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种系;(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.10.A【分析】由题意利用直线的倾斜角和斜率求出tanα的值,再利用三角恒等变换,求出要求式子的值. 【详解】直线3x-y+1=0的倾斜角为α,∴tanα=3,∴2221133sin222219110sin cos tan a sin cos sin cos tan αααααααα=⋅====+++, 故选A . 【点睛】本题主要考查直线的倾斜角和斜率,三角恒等变换,属于中档题.11.D解析:D 【分析】 根据()2sin 3sin 3x a bx c π⎛⎫-=+ ⎪⎝⎭结合a 、b R ∈,[)0,2c π∈可得出a 、b 、c 的取值组合,求得方程sin 2cos x x =在区间[]0,3π的解,可得出d 的可能取值,进而可求得符合条件的有序实数组(),,,a b c d 的组数. 【详解】已知a 、b R ∈,[)0,2c π∈,若对任意实数x 都有()2sin 3sin 3x a bx c π⎛⎫-=+ ⎪⎝⎭, ①当2a =时,则353b c π=⎧⎪⎨=⎪⎩或343b c π=-⎧⎪⎨=⎪⎩;②当2a =-时,则323b c π=⎧⎪⎨=⎪⎩或33b c π=-⎧⎪⎨=⎪⎩.解方程sin 2cos x x =,即2sin cos cos x x x =,可得()2sin 1cos 0x x -=,即1sin 2x =或cos 0x =.当[]0,3x π∈时,解方程1sin 2x =,可得6x π=、56π、136π、176π;解方程cos 0x =,可得2x π=、32π、52π. 所以,d 的取值集合为5313517,,,,,,6262626πππππππ⎧⎫⎨⎬⎩⎭. 因此,符合条件的有序实数组(),,,a b c d 的组数为4728⨯=.【点睛】本题考查乘法计数原理的应用,同时也考查了三角方程与三角函数解析式中参数的求解,考查计算能力,属于中等题.12.A解析:A 【分析】首先根据三角函数诱导公式,可由等式()cos 2cos 2παπα⎛⎫+=- ⎪⎝⎭求出tan 2α=;再由两角和的正切公式可求出tan 4απ⎛⎫+ ⎪⎝⎭. 【详解】 解:()cos 2cos 2παπα⎛⎫+=- ⎪⎝⎭, ∴由三角函数诱导公式化简得:sin 2cos αα-=-,即得tan 2α=,tantan 124tan()34121tan tan 4παπαπα++∴+===---⋅.故选:A. 【点睛】本题主要考查三角函数的诱导公式、两角和的正切公式,考查运算求解能力,属于基础题型.二、填空题13.②④⑤【分析】本题可通过判断出①错误然后通过判断出②正确再然后通过可以为负值判断出③错误通过以及判断出④正确最后通过将函数转化为根据当时取最大值判断出⑤正确【详解】①:则①错误;②:关于轴对称②正确解析:②④⑤ 【分析】000cos 2sin 6x x x π⎛⎫+= ⎪⎝⎭+判断出①错误,然后通过22sin cos cos 2x x x -=-判断出②正确,再然后通过sin x可以为负值判断出③错误,=cos02x 判断出④正确,最后通过将函数转化为()()f x x p =+,根据当()22x p k k Z ππ=-++∈时取最大值判断出⑤正确.【详解】①000001cos 2cos 2sin 2262x x x x x π+⎛⎫⎛⎫+=+=≤ ⎪ ⎪⎪⎝⎭⎝⎭,00cos 3x x +≠,①错误;②:()2222sin cos cos sin cos 2y x x x x x =-=--=-,关于y 轴对称,②正确;③:因为sin x 可以为负值,所以1sin 2sin x x+≥错误,③错误; ④:因为[]π,2πx ∈,所以π,π22x ⎡⎤∈⎢⎥⎣⎦,cos02x,cos2x ===-,④正确; ⑤:()2sin cos f x x x x x ⎫=+=⎪⎪⎭()x p =+,(注:5sin p,25cos p ), 当函数()f x 取最大值时,22x p k ππ+=+,即()22x p k k Z ππ=-++∈,此时cos cos n 52si 2=p k x p ππ-++⎛⎫==⎪⎝⎭,故⑤正确, 故答案为:②④⑤. 【点睛】关键点点睛:本题考查根据三角恒等变换以及三角函数性质判断命题是否正确,考查二倍角公式以及两角和的正弦公式的灵活应用,考查计算能力,考查化归与转化思想,是中档题.14.【分析】用同角间的三角函数关系计算用诱导公式化简后再计算然后计算可得【详解】∵且∴∴故答案为:【点睛】方法点睛:本题考查诱导公式同角间的三角函数关系三角函数求值问题首先要进行化简应用诱导公式化简应用解析:-【分析】用同角间的三角函数关系计算sin α,用诱导公式化简后再计算.然后计算tan α,可得. 【详解】∵1cos 3α=,且02πα-<<,∴sin 3α==-,∴()()()cos sin 2tan 2cos sin (tan )sin tan 3cos (sin )cos sin cos 22αππαπααααααππααααα--+---=====---⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭.故答案为:-. 【点睛】方法点睛:本题考查诱导公式,同角间的三角函数关系.三角函数求值问题,首先要进行化简,应用诱导公式化简,应用同角间的三角函数关系化简,最后才代入求值.应用诱导公式应牢记:奇变偶不变,符号看象限,应用同角间的三角函数关系应注意在应用平方关系求函数值需确定角的范围,以确定正弦余弦值的正负.15.【分析】逆用两角和的正切公式进行化简即可得所求的值【详解】解:根据两角和的正切公式可得所以所以故答案为:【点睛】本题考查两角和的正切公式的逆用考查化简运算能力属于基础题解析: 【分析】逆用两角和的正切公式进行化简,即可得所求的值. 【详解】解:根据两角和的正切公式,可得tan80tan 40tan120tan(8040)1tan 40tan80︒︒︒︒︒︒︒+=+==-所以tan 40tan 80tan 40tan 80)40tan 80︒︒︒︒︒︒+=-=,所以tan 80tan 4080tan 40︒︒︒︒+=故答案为:. 【点睛】本题考查两角和的正切公式的逆用,考查化简运算能力,属于基础题.16.1【分析】将函数图象交点个数等价于方程在根的个数即可得答案【详解】∵函数图象交点个数等价于方程在根的个数∴解得:∴方程只有一解∴函数与函数的图象交点有1个故答案为:1【点睛】本题考查函数图象交点个数解析:1 【分析】将函数图象交点个数等价于方程tan sin x x =在,22x ππ⎛⎫∈- ⎪⎝⎭根的个数,即可得答案. 【详解】∵函数图象交点个数等价于方程tan sin x x =在,22x ππ⎛⎫∈-⎪⎝⎭根的个数,∴sin 1tan sin sin 0sin (1)0cos cos x x x x x x x=⇔-=⇔-=,解得:0x =, ∴方程只有一解,∴函数tan y x =与函数sin y x =的图象交点有1个. 故答案为:1. 【点睛】本题考查函数图象交点个数与方程根个数的等价性,考查函数与方程思想,考查逻辑推理能力和运算求解能力.17.【分析】先将化解成正弦型然后根据取值范围求出最值根据恒成立可建立不等式解出不等式即可【详解】当时恒成立解得故答案为:【点睛】本题考查三角函数的化解以及以及已知范围求正弦型函数的最值 解析:[1,2]【分析】先将()f x 化解成正弦型,然后根据x 取值范围求出()f x 最值,根据恒成立可建立不等式,解出不等式即可. 【详解】2()=2sin cos 2cos =sin2cos 21)14f x x x x x x x π+++=++,当[0,]2x π∈时,52,444x πππ⎡⎤+∈⎢⎥⎣⎦,∴0)114x π≤++≤,2()m f x m -≤≤+恒成立,02212m m,解得12m ≤≤. 故答案为:[1,2] 【点睛】本题考查三角函数的化解以及以及已知x 范围求正弦型函数的最值.18.【分析】由题意和同角三角函数基本关系可得和进而由二倍角公式可得和代入两角差的正弦公式计算可得【详解】又故解得故答案为:【点睛】本题考查两角和与差的三角函数公式涉及同角三角函数的基本关系和二倍角公式属 解析:50【分析】由题意和同角三角函数基本关系可得sin α和cos α,进而由二倍角公式可得sin 2α和cos2α,代入两角差的正弦公式计算可得.【详解】221sin cos ,sin cos 15αααα-=+= 又0απ≤≤,sin 0α∴≥,故解得4sin 53cos 5αα⎧=⎪⎪⎨⎪=⎪⎩,24sin 22sin cos 25ααα∴==, 227cos 2cos sin 25ααα=-=-,sin(2)sin 22422πααα∴-=-247()22525=+50=.故答案为:50. 【点睛】本题考查两角和与差的三角函数公式,涉及同角三角函数的基本关系和二倍角公式,属中档题.19.2【分析】将三角函数式配成与由正弦函数和角与差角公式展开即可求解【详解】锐角满足变形可得由正弦和角与差角公式展开可得合并化简可得等式两边同时除以可得即故答案为:2【点睛】本题考查了三角函数式化简求值解析:2 【分析】将三角函数式配成()αβα++与()αβα+-,由正弦函数和角与差角公式展开,即可求解. 【详解】锐角α,β满足()sin 23sin αββ+=变形可得()()sin 3sin αβααβα++=+-⎡⎤⎡⎤⎣⎦⎣⎦ 由正弦和角与差角公式展开可得()()()()sin cos sin cos 3sin cos 3sin cos αβαααβαβαααβ+++=+-+合并化简可得()()4sin cos 2sin cos ααβαβα+=+ 等式两边同时除以()2cos cos αβα+可得()2tan tan ααβ=+ 即()tan cot 2αβα+= 故答案为:2 【点睛】本题考查了三角函数式化简求值,角的变化形式,属于中档题.20.(答案不唯一)【分析】根据函数为偶函数有化简得对任意恒成立所以有取其中一个值即可得出答案【详解】解:因为函数为偶函数则所以所以等价于对任意恒成立所以所以所以常数的一个取值为故答案为:(答案不唯一)【解析:π2(答案不唯一) 【分析】根据函数为偶函数有()()f x f x =-,化简得sin cos 0x ϕ=对任意x 恒成立,所以有()2k k Z πϕπ=+∈,取其中一个值即可得出答案.【详解】解:因为函数()sin()cos f x x x ϕ=++为偶函数,则()()f x f x =- 所以sin()cos sin()cos()x x x x ϕϕ++=-++-所以sin cos cos sin cos sin()cos cos()sin cos x x x x x x ϕϕϕϕ++=-+-+ 等价于sin cos 0x ϕ=对任意x 恒成立,所以cos 0ϕ=, 所以()2k k Z πϕπ=+∈,所以常数ϕ的一个取值为π2. 故答案为:π2(答案不唯一) 【点睛】应用函数奇偶性可解决的四类问题及解题方法(1)求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解;(2)求解析式:先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于()f x 的方程(组),从而得到()f x 的解析式;(3)求函数解析式中参数的值:利用待定系数法求解,根据()()0f x f x ±-=得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值; (4)画函数图象和判断单调性:利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.三、解答题21.(1)()5,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)[]1,1-【分析】(1)首先利用二倍角公式和辅助角公式化简函数()2sin 216f x x π⎛⎫=-+ ⎪⎝⎭,再求函数的单调递减区间; (2)先求26x π-的范围,再求函数sin 26x π⎛⎫-⎪⎝⎭的范围,最后求函数的值域. 【详解】(1)因为()21cos 22sin 216f x x x x π⎛⎫=+-=-+ ⎪⎝⎭, 令3222262k x k πππππ+≤-≤+,解得5,36k x k k Z ππππ+≤≤+∈ 所以函数()f x 的单调增区间为()5,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. (2),312x ππ⎡⎤∈-⎢⎥⎣⎦,22,36x ππ⎡⎤∴∈-⎢⎥⎣⎦,52,066x ππ⎡⎤∴-∈-⎢⎥⎣⎦,利用正弦函数的图像与性质知[]sin 21,06x π⎛⎫-∈- ⎪⎝⎭,[]2sin 211,16x π⎛⎫∴-+∈- ⎪⎝⎭所以()f x 的值域为[]1,1-. 【点睛】方法点睛:本题考查三角函数恒等变换和函数性质的综合应用,()sin y A x ωϕ=+的性质:(1)周期2π.T ω=(2)由 ()ππ2x k k +=+∈Z ωϕ求对称轴,由()πx k k ωϕ+=∈Z 求对称中心.(3)由()ππ2π2π22k x k k -+≤+≤+∈Z ωϕ求增区间;由()π3π2π2π22k x k k +≤+≤+∈Z ωϕ求减区间.22.(1)T π=,[-;(2)14a ≥. 【分析】(1)利用辅助角公式化简可得()2sin(2)6f x x π=-,代入周期公式,可求得周期T ,根据x 的范围,求得26x π-的范围,根据正弦型函数的性质,即可求得答案.(2)根据题意可得min max ()()g x f x ≥,由(1)可得max ()f x =0a <,0a =,0a >三种,()3ag x x x=+的最小值,结合对勾函数的性质,即可求得答案.【详解】(1)1()2(sin 2cos 2)2sin(2)226f x x x x π=-=-, 周期22T ππ== 由[,]34x ππ∈-,则52[,]663x πππ-∈-, 所以当262x ππ-=-,即6x π=-时,()2sin(2)6f x x π=-有最小值-1当263x ππ-=,即4x π=时,()2sin(2)6f x x π=-有最大值2,所以1sin(2)6x π-≤-≤,所以22sin(2)6x π-≤-≤即()f x 的值域为[-(2)对任意的1(0)x ∈+∞,及任意的2[,]34x ππ∈-,都有不等式12() ()g x f x ≥恒成立,只需当min max ()()g x f x ≥由(1)知,max ()f x =当0a <,()3ag x x x=+为(0,)+∞上增函数,值域为R ,不满足题意; 当0a =,()3g x x =为(0,)+∞上增函数,值域为(0,)+∞,不满足题意;当0a >,()3ag x x x=+为对勾函数,所以()3a g x x x =+≥=min ()g x =,当且仅当3ax x =,即x =.由题意,即可,所以14a ≥. 【点睛】解题的关键是将题干条件等价为min max ()()g x f x ≥,分别根据12,x x 的范围,求得两函数的最值,再进行求解,考查分析计算的能力,属中档题.23.(1)22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(2【分析】(1)首先化简函数()2sin 26f x x πω⎛⎫=+⎪⎝⎭,再根据3x π=是函数的一条对称轴,代入求ω,再求函数的单调递增区间;(2)先根据函数图象变换得到()12cos2g x x =,并代入6(2)35g πα+=后,得3cos 65πα⎛⎫+= ⎪⎝⎭,再利用角的变换求sin α的值.【详解】(1)()cos 222sin 26f x x x x πωωω⎛⎫==+ ⎪⎝⎭, 当3x π=时,2,362k k Z πππωπ⨯+=+∈,得13,22kk Z ω=+∈, 01ω<<,12ω∴=, 即()2sin 6f x x π⎛⎫=+ ⎪⎝⎭,令22262k x k πππππ-+≤+≤+,解得:22233k x k ππππ-+≤≤+,k Z ∈, 函数的单调递增区间是22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(2)()1212sin 2cos 2362g x x x ππ⎡⎤⎛⎫=++= ⎪⎢⎥⎝⎭⎣⎦, 622cos 365g ππαα⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭,得3cos 65πα⎛⎫+= ⎪⎝⎭,0,2πα⎛⎫∈ ⎪⎝⎭,2,663πππα⎛⎫+∈ ⎪⎝⎭,4sin 65πα⎛⎫+== ⎪⎝⎭, sin sin sin cos cos sin 666666ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=+-=+-+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦431552=-⨯=【点睛】方法点睛:本题考查函数的图象变换,以及()sin y A ωx φ=+的性质,属于中档题型,()sin y A x ϕ=+的横坐标伸长(或缩短)到原来的1ω倍,得到函数的解析式是()sin y A ωx φ=+,若sin y A x ω=向右(或左)平移ϕ(0ϕ>)个单位,得到函数的解析式是()sin y A x ωϕ=-⎡⎤⎣⎦或()sin y A x ωϕ=+⎡⎤⎣⎦.24.(1)最小正周期π,单调递增区间为:3,,88k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(2),8242k k x x k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭. 【分析】(1)先将函数解析式整理,得到()12242f x x π⎛⎫=++ ⎪⎝⎭,根据正弦函数的性质,即可求出最小正周期,以及单调递增区间;(2)先根据三角函数的图象变换,得到()1sin 4242g x x π⎛⎫=-+ ⎪⎝⎭,结合正弦函数的性质,解不等式,即可求出结果. 【详解】(1)由题意,()1cos 211sin 2222242x f x x x π+⎛⎫=+=++ ⎪⎝⎭, 所以()f x 的最小正周期为22T ππ== 令222,242k x k k Z πππππ-+≤+≤+∈,得3,88k x k k Z ππππ-+≤≤+∈, 所以,函数()f x 的单调递增区间为:3,,88k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦.(2)由题意,将函数()y f x =的图象上各点的横坐标变为原来的12(纵坐标不变),再把图象向右平移8π个单位长度,得到函数()y g x =的图象,所以()1sin 4242gx x π⎛⎫=-+ ⎪⎝⎭,则()1sin 442g x x π⎛⎫≥⇔-≥ ⎪⎝⎭,得3242,444k x k k Z πππππ+≤-≤+∈, 解得满足条件的x 的集合为:,8242k k x x k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭.25.(1)1;(2)725+- 【分析】(1)先利用三角函数的定义分别求出cos α,sin α,tan α,用诱导公式先化简,再求值;(2)由题意得4αβ-=π,得4πβα=-,用二倍角公式即可求解.【详解】解:(1)由题得4cos 5α=-,3sin 5α=,3tan 4α=-.3sin()5cos()3sin 5cos 3tan 512cos sin 2tan 2sin sin()2παααααπααααπα-+-++===--⎛⎫-++ ⎪⎝⎭. (2)由题意得4αβ-=π,得4πβα=-, 所以sin 22cos sin 22cos 44ππββαα⎛⎫⎛⎫+=-+- ⎪ ⎪⎝⎭⎝⎭sin 22cos cos 22cos 244πππαααα⎛⎫⎛⎫⎛⎫=-+-=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2164312cos sin )122555ααα⎫=-+=-⨯+-+⎪⎭=. 【点睛】(1) 三角函数值的大小与点P (x ,y )在终边上的位置无关,严格代入定义式子就可以求出对应三角函数值;当角的终边在直线上时,或终边上的点带参数必要时,要对参数进行讨论.(2)根据题意把角进行合理转化,还要注意角的范围.26.(1)T π=,单调递增区间为()5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(2)最大值为12,最小值为14-. 【分析】(1)本题首先可通过三角恒等变换将函数解析式转化为()1sin 223f x x π⎛⎫=- ⎪⎝⎭,然后通过周期计算公式即可求出最小正周期,通过正弦函数的单调性即可求出单调递增区间; (2)本题可根据,122x ππ⎡⎤∈⎢⎥⎣⎦得出22,363x πππ⎡⎤-∈-⎢⎥⎣⎦,然后根据正弦函数的性质即可求出最值. 【详解】(1)2()cos cos 6f x x x x π⎛⎫=⋅-- ⎪⎝⎭21cos cos sin 224x x x x ⎛⎫=++- ⎪ ⎪⎝⎭221cos sin cos 224x x x x =++-)()2212cos 1sin 22sin 1444224x x x =-+++-+-11cos 2sin 2cos 2sin 2244244x x x x x =+-=-111sin 22sin 22223x x x π⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭, 即()1sin 223f x x π⎛⎫=- ⎪⎝⎭,则最小正周期22T ππ==, 当222232k x k πππππ-+≤-≤+, 即()51212k x k k Z ππππ-+≤≤+∈,函数()f x 单调递增, 函数()f x 的单调递增区间为()5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦. (2)()1sin 223f x x π⎛⎫=- ⎪⎝⎭, 因为,122x ππ⎡⎤∈⎢⎥⎣⎦,所以22,363x πππ⎡⎤-∈-⎢⎥⎣⎦, 由正弦函数的性质易知, 当236x ππ-=-,即12x π=时,函数()f x 取最小值,最小值为14-; 当232x ππ-=,即512x π=时,函数()f x 取最大值,最大值为12. 【点睛】关键点点睛:本题考查结合三角恒等变换判断三角函数性质,能否根据三角恒等变换将函数转化为()1sin 223f x x π⎛⎫=- ⎪⎝⎭是解决本题的关键,考查三角函数周期性、单调性以及最值的求法,是中档题.。
(常考题)北师大版高中数学必修四第三章《三角恒等变形》测试题(答案解析)(3)
一、选择题1.已知10sin 410πα⎛⎫-= ⎪⎝⎭,02πα<<,则tan α的值为( ) A .12-B .12C .2D .12-或2 2.已知3sin cos x x +=,则1tan tan x x +=( ) A .6- B .7-C .8-D .9-3.已知ππ2α<<,且π3sin 45α⎛⎫+= ⎪⎝⎭,则cos α的值为( )A .7210 B .7210-C .210D .210-4.德国著名的天文学家开普勒说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割.如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是一个顶角为36的等腰三角形(另一种是顶角为108的等腰三角形).例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金ABC 中,512BC AC -=.根据这些信息,可得sin126=( )A 125- B 35+ C 15+ D 45+ 5.已知0,2x π⎛⎫∈ ⎪⎝⎭,3cos 45x π⎛⎫+= ⎪⎝⎭,则sin x 的值为( ) A .210-B .210 C 72D .210-6.已知()3sin 2020cos2020f x x x =+的最大值为A ,若存在实数1x ,2x ,使得对任意的实数x ,总有()()()12f x f x f x ≤≤成立,则12A x x -的最小值为( )A .2020π B .1010π C .505π D .4040π 7.函数()log 42a y x =++(0a >,且1a ≠)的图象恒过定点A ,且点A 在角θ的终边上,则2sin 2θ=( ) A .1213-B .1213C .2413-D .24138.已知,2παπ⎛⎫∈ ⎪⎝⎭,3sin 5α=,则tan 4πα⎛⎫+= ⎪⎝⎭( ) A .17B .7C .17-D .-79.若11sin cos αα+=,则sin cos αα=( ) A .13- B .13C .13-或1D .13或1- 10.已知()cos 2cos 2παπα⎛⎫+=- ⎪⎝⎭,则tan 4πα⎛⎫+= ⎪⎝⎭( ) A .3-B .3C .13-D .1311.人体满足黄金分割比的人体是最美人体,0.618是黄金分割比m =黄金分割比还可以表示为2cos72︒,则22cos 271︒-( )A .4B 1C .2D 112.已知函数()()()()21cos cos 02f x x x x ωωωω=+->,若()f x 在,64ππ⎡⎤-⎢⎥⎣⎦上单调递增,则ω的取值范围为( ) A .(]0,2B .(]0,1C .2,13⎛⎤⎥⎝⎦D .20,3⎛⎤ ⎥⎝⎦二、填空题13.已知1sin cos 5θθ+=,(0,)θπ∈,则tan θ=________. 14.已知tan 2α=,则2sin 2cos αα+=________.15.在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,已知b =22cos c a b A -=,则a c +的取值范围为______.16.若tan 30,2tan 10αβ-=-=,则()tan αβ+=________.17________.18.已知()()sin 2sin 223cos cos 2πθπθπθπθ⎛⎫--- ⎪⎝⎭=⎛⎫+++ ⎪⎝⎭,则22sin 2sin cos cos θθθθ+-=___________.19.已知函数()sin f x x x =+,则下列命题正确的是_____.(填上你认为正确的所有命题序号) ①函数()0,2f x x π⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭的单调递增区间是06,π⎡⎤⎢⎥⎣⎦; ②函数()f x 的图像关于点,06π⎛⎫-⎪⎝⎭对称; ③函数()f x 的图像向左平移(0)m m >个单位长度后,所得的图像关于y 轴对称,则m 的最小值是6π; ④若实数m 使得方程()f x m =在[0,2]π上恰好有三个实数解123,,x x x ,则12373x x x π++=. 20.设函数()cos f x x x =-的图像为C ,有如下结论: ①图象C 关于直线2π3x =对称; ②()f x 的值域为[]22-,; ③函数()f x 的单调递减区间是π2π2π,2π33k k ⎡⎤-+⎢⎥⎣⎦()k Z ∈; ④图象C 向右平移π3个单位所得图象表示的函数是偶函数. 其中正确的结论序号是___________________.(写出所有正确结论的序号).三、解答题21.已知函数21()cos cos 22f x x x x π⎛⎫=++- ⎪⎝⎭. (1)若对任意,32x ππ⎡⎤∈-⎢⎥⎣⎦,都有()f x a ≥成立,求实数a 的取值范围; (2)若先将()y f x =的图像上每个点横坐标伸长为原来的2倍(纵坐标不变),再将所得图像向左平移6π个单位长度,得到函数()y g x =的图像,求函数1()3y g x =-在区间[],3ππ-内的所有零点之和.22.已知函数()1cos 2sin cos 2f x x x x =+⋅,其中x ∈R .(1)求使()12f x ≥的x 的取值范围; (2)若函数()23sin 224g x x π⎛⎫=+ ⎪⎝⎭,且对任意的120x x t ≤<≤,恒有()()()()1212f x f x g x g x -<-成立,求实数t 的最大值.23.已知函数2()2cos sin()3sin sin cos 3f x x x x x x π=+-+.(1)若[,]126x ππ∈-,求函数()f x 的最值; (2)记锐角△ABC 的内角A 、B 、C 的对边分别为a b c 、、,若()0f A =,4b c +=,求△ABC 面积的最大值. 24.已知00,2x x π+是函数22()cos sin (0)6f x x x πωωω⎛⎫=--> ⎪⎝⎭的两个相邻的零点. (1)求12f π⎛⎫⎪⎝⎭的值; (2)求()f x 在[]0,π上的单调递增区间.25.如图,以x 轴非负半轴为始边,角α的终边与单位圆相交于点43,55P ⎛⎫- ⎪⎝⎭,将角α的终边绕着原点O 顺时针旋转4π得到角β.(1)求3sin()5cos()2sin sin()2πααπαπα-+-⎛⎫-++ ⎪⎝⎭的值; (2)求sin 22cos ββ+的值. 26.已知函数2()2sin sin 26f x x x.(1)求()f x 的最小正周期;(2)若,212x ππ⎡⎤∈-⎢⎥⎣⎦,求()f x 的值域.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由同角间的三角函数关系先求得cos()4πα-,再得tan()4πα-,然后由两角和的正切公式可求得tan α. 【详解】 ∵02πα<<,∴444πππα-<-<,∴cos 4πα⎛⎫-=⎪⎝⎭ ∴sin 14tan 43cos 4παπαπα⎛⎫- ⎪⎛⎫⎝⎭-== ⎪⎛⎫⎝⎭- ⎪⎝⎭, ∴tan tan 44ππαα⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦1tan 11432111tan 34παπα⎛⎫-++ ⎪⎝⎭===⎛⎫--- ⎪⎝⎭.故选:C . 【点睛】思路点睛:本题考查三角函数的求值.考查同角间的三角函数关系,两角和的正切公式.三角函数求值时首先找到“已知角”和“未知角”之间的联系,选用恰当的公式进行化简求值.注意三角公式中“单角”与“复角”的区别与联系,它们是相对的.不同的场景充当的角色可能不一样.如题中4πα-在tan tan4tan 41tan tan 4παπαπα-⎛⎫-=⎪⎝⎭+作为复角,但在tan tan 44ππαα⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦中充当“单角”角色.2.C解析:C 【分析】将等式sin cos x x +=sin cos x x 的值,利用切化弦可求得1tan tan x x+的值. 【详解】由sin cos 2x x +=,可得()23sin cos 12sin cos 4x x x x +=+=,得1sin cos 8x x =-,因此,221sin cos sin cos 1tan 8tan cos sin sin cos sin cos x x x x x x x x x x x x++=+===-.故选:C. 【点睛】方法点睛:应用公式时注意方程思想的应用,对于sin cos αα+、sin cos αα-、sin cos αα这三个式子,利用()2sin cos 12sin cos αααα±=±可以知一求二.3.D解析:D 【分析】根据同角三角函数基本关系得出cos 4πα⎛⎫+ ⎪⎝⎭的值,再用两角差的余弦公式即可解题. 【详解】 因为ππ2α<<,所以35,444πππα⎛⎫+∈ ⎪⎝⎭,又3sin 45πα⎛⎫+= ⎪⎝⎭,所以4cos 45πα⎛⎫+=- ⎪⎝⎭, 所以cos cos cos cos sin sin 444444ππππππαααα⎛⎫⎛⎫⎛⎫=+-=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭43525210=-⨯+⨯=-. 故选:D 【点睛】方法点睛:该题考查的是有关三角函数求值问题,解题方法如下: (1)利用同角三角函数关系式,结合角的范围,求得cos 4πα⎛⎫+ ⎪⎝⎭的值; (2)凑角,利用差角余弦公式求得结果.4.C解析:C 【分析】计算出51cos 724=,然后利用二倍角公式以及诱导公式可计算得出sin126cos36=的值,即可得出合适的选项. 【详解】因为ABC 是顶角为36的等腰三角形,所以,72ACB ∠=,则12cos72cos BCACB AC =∠==,()sin126sin 9036cos36=+=, 而2cos722cos 361=-,所以,131cos364+====. 故选:C. 【点睛】本题考查利用二倍角公式以及诱导公式求值,考查计算能力,属于中等题.5.B解析:B 【分析】先求得πsin 4x ⎛⎫+ ⎪⎝⎭的值,然后利用ππsin sin 44x x ⎛⎫=+-⎪⎝⎭,展开后计算得出正确选项. 【详解】 由于πππ3π0,,,2444xx ⎛⎫⎛⎫∈+∈ ⎪ ⎪⎝⎭⎝⎭, 所以π4sin 45x ⎛⎫+== ⎪⎝⎭.故ππsin sin 44x x ⎛⎫=+- ⎪⎝⎭ππππsin cos cos sin4444x x ⎛⎫⎛⎫=+-+⎪ ⎪⎝⎭⎝⎭43525210=⨯-⨯=,故选B. 【点睛】本小题主要考查同角三角函数的基本关系式,考查化归与转化的数学思想方法,属于基础题.6.B解析:B 【分析】化简函数()f x 的解析式可得周期与最大值,对任意的实数x ,总有()()()12f x f x f x ≤≤成立,即12x x -半周期的整数倍,代入求最小值即可.【详解】()2020cos 20202sin 20206f x x x x π⎛⎫=+=+ ⎪⎝⎭,则220201010T ππ==,2A = 1212210101010A x x ππ-≥⨯⨯=故选:B 【点睛】本题考查正弦函数的性质,考查三角恒等变换,考查周期与最值的求法,属于中档题.7.C解析:C 【分析】先根据对数函数性质得()3,2A -,进而根据正弦的二倍角公式和三角函数的定义求解即可得答案. 【详解】解:根据对数函数的性质得函数()log 42a y x =++(0a >,且1a ≠)的图象恒过()3,2A -,由三角函数的定义得:13r ==,sinθθ==, 所以根据二倍角公式得:242sin 24sin cos 413θθθ⎛===- ⎝. 故选:C. 【点睛】本题考查对数函数性质,三角函数定义,正弦的二倍角公式,考查运算能力,是中档题.8.A解析:A 【分析】根据角的范围以及平方关系求出4cos ,5α=-再利用商的关系求出3tan 4α=-,最后由两角和的正切公式可得答案. 【详解】因为,2παπ⎛⎫∈ ⎪⎝⎭,3sin 5α=,所以4cos ,5α==-sin 3tan cos 4ααα==-,tan tan4tan 41tan tan 4παπαπα+⎛⎫+== ⎪⎝⎭-⋅17 故选:A. 【点睛】本题主要考查平方关系、商的关系以及两角和的正切公式,属于基础题.9.A解析:A 【分析】将已知式同分之后,两边平方,再根据22sin cos 1αα+=可化简得方程23(sin cos )2sin cos 10αααα--=,解出1sin cos 3αα=-或1,根据111sin cos sin 2,222ααα⎡⎤=∈-⎢⎥⎣⎦,得出1sin cos 3αα=-.【详解】由11sin cos sin cos sin cos αααααα++== 两边平方得22(sin cos )(sin cos )αααα+222sin cos 2sin cos (sin cos )αααααα++= 212sin cos 3(sin cos )αααα+== 23(sin cos )2sin cos 10αααα∴--=,1sin cos 3αα∴=-或1,111sin cos sin 2,222ααα⎡⎤=∈-⎢⎥⎣⎦,1sin cos 3αα∴=-.故选:A. 【点睛】本题考查了同角三角函数间的基本关系,以及二倍角的正弦函数公式,属于中档题,要注意对sin cos αα范围的判断.10.A解析:A【分析】首先根据三角函数诱导公式,可由等式()cos 2cos 2παπα⎛⎫+=- ⎪⎝⎭求出tan 2α=;再由两角和的正切公式可求出tan 4απ⎛⎫+ ⎪⎝⎭. 【详解】 解:()cos 2cos 2παπα⎛⎫+=- ⎪⎝⎭, ∴由三角函数诱导公式化简得:sin 2cos αα-=-,即得tan 2α=,tantan 124tan()34121tan tan 4παπαπα++∴+===---⋅.故选:A. 【点睛】本题主要考查三角函数的诱导公式、两角和的正切公式,考查运算求解能力,属于基础题型.11.C解析:C 【分析】根据2cos72m ︒=,结合三角函数的基本关系式,诱导公式和余弦的倍角公式,准确运算,即可求解. 【详解】根据题意,可得2cos72m ︒=, 则2sin144cos54︒==︒()2sin 90542cos542cos54cos54︒+︒︒===︒︒. 故选:C . 【点睛】本题主要考查了三角函数的化简、求值,其中解答中熟练应用三角函数的基本关系式,诱导公式和余弦的倍角公式,准确运算是解答的关键,着重考查推理与运算能力.12.D解析:D 【分析】利用二倍角公式和辅助角公式化简函数()f x ,根据()f x 在,64ππ⎡⎤-⎢⎥⎣⎦上单调递增,建立不等关系,解出ω的取值范围.因为()1cos 212sin 2226x f x x x ωπωω+⎛⎫=+-=+ ⎪⎝⎭,由题意得,362,262ωπππωπππ⎧-+≥-⎪⎪⎨⎪+≤⎪⎩解得23ω≤,又0>ω,所以203ω<≤. 故选:D 【点睛】本题考查正弦函数单调性的应用,考查三角恒等变换,属于中档题.二、填空题13.【分析】把已知等式两边平方求出的值再利用完全平方公式求出的值联立求解再结合同角三角函数间的基本关系可求得的值【详解】已知平方得得解得故答案为:【点睛】本题考查同角三角函数间的基本关系齐次方程的求解属解析:43-【分析】把已知等式两边平方,求出sin cos θθ的值,再利用完全平方公式求出sin cos θθ-的值,联立求解再结合同角三角函数间的基本关系可求得tan θ的值. 【详解】 已知1sin cos 5θθ+=,平方得()2221sin cos sin cos 2sin cos 25θθθθθθ+=++=,得12sin cos 25θθ=-, ∴()222sin cos sin cos 2sin cos 125252449θθθθθθ-=+-=+=,(0,)θπ∈,sin 0,cos 0θθ><,7sin cos 5θθ∴-=,7ta sin cos 1sin cos n 571t n 51a θθθθθθ=-=-+=+,解得4tan 3θ=-. 故答案为:43-【点睛】本题考查同角三角函数间的基本关系,齐次方程的求解,属于中档题.14.1【分析】本题先求出再化简代入求值即可【详解】解:∵∴或①当且时;②当且时故答案为:1【点睛】本题考查了同角三角函数关系二倍角公式解析:1 【分析】本题先求出sin α、cos α,再化简2sin 2cos αα+代入求值即可. 【详解】解:∵ tan 2α=,sin tan cos ααα=,22sin cos 1αα+=, ∴sin 5cos 5αα⎧=⎪⎪⎨⎪=⎪⎩或sin 5cos 5αα⎧=-⎪⎪⎨⎪=-⎪⎩①当sin α=cos α=时,222sin 2cos 2sin cos cos 21555ααααα⎛+=⋅+=⨯+= ⎝⎭; ②当sin α=且cos α=时,222sin 2cos 2sin cos cos 21555ααααα⎛⎫⎛⎛⎫+=⋅+=⨯-⨯-+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故答案为:1. 【点睛】本题考查了同角三角函数关系,二倍角公式,是基础题.15.【分析】将已知等式化边为角结合两角和的正弦公式化简可得已知由余弦定理和基本不等式求出的最大值结合即可求解【详解】由正弦定理及得因为所以化简可得因为所以因为所以由已知及余弦定理得即因为所以得所以当且仅解析:【分析】将已知等式化边为角,结合两角和的正弦公式化简可得B ,已知b ,由余弦定理和基本不等式,求出a c +的最大值,结合a c b +>,即可求解. 【详解】由正弦定理及22cos c a b A -=, 得2sin sin 2sin cos C A B A -=. 因为()C A B π=-+,所以()2sinsin 2sin cos A B A B A +-=.化简可得()sin 2cos 10A B -=.因为sin 0A ≠,所以1cos 2B =.因为0B π<<,所以3B π=.由已知及余弦定理,得2223b a c ac =+-=, 即()233a c ac +-=,因为0a >,0c >,所以()22332a c a c +⎛⎫+-≤ ⎪⎝⎭,得()212a c +≤,所以a c +≤,当且仅当a c ==.又因三角形任意两边之和大于第三边,所以a c +>,a c <+≤故a c +的取值范围为.故答案为: 【点睛】本题考查正弦定理、余弦定理、三角恒等变换解三角形,利用基本不等式求最值,属于中档题.16.【分析】由题得再利用两角和公式求解即可【详解】因为所以所以故答案为:【点睛】本题考查正切函数的两角和公式属于基础题 解析:7-【分析】由题得tan 3α=,1tan 2β=,再利用两角和公式求解即可. 【详解】因为tan 30,2tan 10αβ-=-=, 所以tan 3α=,1tan 2β=, 所以()1t 32731n 2a αβ++==--, 故答案为:7-. 【点睛】本题考查正切函数的两角和公式,属于基础题.17.【分析】利用同角三角函数的基本关系式二倍角公式结合根式运算化简求得表达式的值【详解】依题意由于所以故答案为:【点睛】本小题主要考查同角三角函数的基本关系式二倍角公式考查根式运算属于基础题解析:4【分析】利用同角三角函数的基本关系式、二倍角公式,结合根式运算,化简求得表达式的值.【详解】=4==,由于342ππ<<=故答案为:4【点睛】本小题主要考查同角三角函数的基本关系式、二倍角公式,考查根式运算,属于基础题. 18.【分析】利用诱导公式结合弦化切的思想求出的值然后在代数式上除以并在所得分式的分子和分母中同时除以可得出关于的分式代值计算即可【详解】解得因此故答案为:【点睛】本题考查诱导公式和同角三角函数的商数关系解析:75【分析】利用诱导公式结合弦化切的思想求出tanθ的值,然后在代数式22sin2sin cos cosθθθθ+-上除以22sin cosθθ+,并在所得分式的分子和分母中同时除以2cosθ可得出关于tanθ的分式,代值计算即可.【详解】()()sin2sinsin cos tan1223sin cos tan1cos cos2πθπθθθθπθθθθπθ⎛⎫---⎪++⎝⎭===--⎛⎫+++⎪⎝⎭,解得tan3θ=.因此,22222222sin2sin cos cos tan2tan1sin2sin cos cossin os tan1θθθθθθθθθθθθθ+-+-+-==++ 2232317315+⨯-==+.故答案为:75.【点睛】本题考查诱导公式和同角三角函数的商数关系化简求值,解题的关键就是求出tanθ的值,考查运算求解能力,属于中等题.19.①③④【分析】首先利用辅助角公式将函数化简为再根据正弦函数的性质一一验证即可【详解】解:的单调增区间为当增区间为∴①正确;∴②不正确;函数的图像向左平移个单位长度后得由题意得则的最小值是∴③正确;若解析:①③④【分析】首先利用辅助角公式将函数化简为()2sin 3f x x π⎛⎫=+ ⎪⎝⎭,再根据正弦函数的性质一一验证即可. 【详解】解:13()sin 3cos 2sin cos 2sin 23f x x x x x x π⎛⎫⎛⎫=+=+=+ ⎪ ⎪⎝⎭⎝⎭, ()f x ∴的单调增区间为52,2()66k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦, 当0,2x π⎡⎤∈⎢⎥⎣⎦,增区间为06,π⎡⎤⎢⎥⎣⎦,∴①正确; 2sin 2sin 106636f ππππ⎛⎫⎛⎫-=-+==≠ ⎪ ⎪⎝⎭⎝⎭,∴②不正确;函数()f x 的图像向左平移(0)m m >个单位长度后得()2sin 3f x x m π⎛⎫=++⎪⎝⎭,由题意得32m k πππ+=+,6m k ππ=+,则m 的最小值是6π,∴③正确;若实数m 使得方程()f x m =在[0,2]π上恰好有三个实数解123,,x x x ,结合这两个函数图像可知,必有10x =,32x π=,此时()2sin 33f x x π⎛⎫=+= ⎪⎝⎭,另一个解为23x π=,12373x x x π∴++=,∴④正确. 故答案为:①③④【点睛】本题考查辅助角公式的应用,正弦函数的性质的综合应用,属于中档题.20.①②④【分析】化简函数代入求最值可判断①;求出的最值可判断②;求出函数的单调递减区间可判断③;求出向右平移个单位的解析式化简后可判断④【详解】当时取得最大值2故①正确;因为的最大值为2最小值为所以的解析:①②④. 【分析】化简函数()2sin 6f x x π⎛⎫=-⎪⎝⎭代入2π3x =求最值可判断①;求出()f x 的最值可判断②;求出函数()f x 的单调递减区间可判断③;求出()f x 向右平移π3个单位的解析式化简后可判断④. 【详解】()1cos 2cos 22f x x x x x ⎛⎫=-=- ⎪ ⎪⎝⎭2cos sin sin cos 2sin 666x x x πππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,当2π3x =时,22π2sin 2336f ππ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,取得最大值2,故①正确; 因为()π2sin 6f x x ⎛⎫=- ⎪⎝⎭的最大值为2,最小值为2-,所以()f x 的值域为[]22-,,故②正确; 令π322262k x k ππππ+≤-≤+()k Z ∈,得252233k x k ππππ+≤≤+, 即()f x 的单调递减区间是2π5π2π,2π33k k ⎡⎤++⎢⎥⎣⎦()k Z ∈,故③错误; 图象C 向右平移π3个单位得π2sin 2sin 2cos 362y x x x ππ⎛⎫⎛⎫=--=-=- ⎪ ⎪⎝⎭⎝⎭是偶函数,故④正确.故答案为:①②④. 【点睛】本题主要考查了三角恒等变换,以及三角函数的图象与性质的应用,其中解答中利用三角恒等变换的公式,化简()f x 的解析式,再利用三角函数的图象与性质求解是解答的关键,着重考查了推理与计算能力,属于基础题.三、解答题21.(1)1a ≤-,(2)6π 【分析】(1)先对函数()f x 化简变形,然后求出函数()f x 在,32x ππ⎡⎤∈-⎢⎥⎣⎦上的最小值,则可得到实数a 的取值范围;(2)根据题意,利用函数sin()y A x ωϕ=+的图像变换规律,先得到()g x 的解析式,函数1()3y g x =-在区间[],3ππ-内的所有零点,即1sin 3x =的实数根,它的实数根共4个,再根据正弦函数图像的对称性得到结论 【详解】解:(1)21()cos cos 22f x x x x π⎛⎫=++-⎪⎝⎭21cos (2sin 1)2x x x =+-12cos 2sin(2)26x x x π=-=-, 若对任意,32x ππ⎡⎤∈-⎢⎥⎣⎦,都有()f x a ≥成立,则只需min ()f x a ≥即可, 因为,32x ππ⎡⎤∈-⎢⎥⎣⎦,所以552[,]666x πππ-∈-,所以当262x ππ-=-即π6x =-时,()f x 取得最小值为1-,所以1a ≤-, (2)先将()f x 的图像上每个点的纵坐标不变,横坐标变为原来的2倍,可得sin()6y x π=-的图像,然后再向左平移6π个单位得到函数()sin g x x =的图像,函数1()3y g x =-在区间[],3ππ-内的所有零点,即1sin 3x =的实数根,它的实数根共4个,设为1234,,,x x x x ,则根据对称性可知这4个根关于直线32x π=对称,所以1234342x x x x π+++=,所以12346x x x x π+++= 【点睛】关键点点睛:此题考查三角函数恒等变换、正弦函数的定义域和值域,函数恒成立问题,函数sin()y A x ωϕ=+的图像变换规律,第2问解题的关键是运用正弦函数的对称性进行求解,属于中档题 22.(1),,4k k k Z πππ⎡⎤+∈⎢⎥⎣⎦;(2)4π. 【分析】(1)化简())4f x x π=+,根据正弦函数的图象解不等式sin 242x π⎛⎫+≥⎪⎝⎭可得结果;(2)构造函数()()()sin 2F x f x g x x =-=,将题意转化为当[0,]x t ∈时,()sin 2F x x =为增函数,根据[0,][,]22t ππ⊆-可解得结果.【详解】(1)()111cos 2sin cos cos 2sin 2222224f x x x x x x x π=+⋅=+=+(),()12f x ≥,即sin 24x π⎛⎫+≥ ⎪⎝⎭, 所以3222444k x k k Z πππππ+≤+≤+∈,, 解得4k x k k Z πππ≤≤+∈,,即使()12f x ≥的x 的取值范围是4k k k Z πππ⎡⎤+∈⎢⎥⎣⎦,,.(2)令()()()32244F x f x g x x x ππ=-=+-+()()22sin 22424x x x ππ=+-+=()(), 因为对任意的120x x t ≤≤<,恒有()()()()1212f x f x g x g x -<-成立, 所以当[0,]x t ∈时,()sin 2F x x =为增函数,所以[0,][,]22t ππ⊆-,所以22t π≤,解得4t π≤, 所以实数t 的最大值为4π.【点睛】关键点点睛:构造函数()()()sin 2F x f x g x x =-=,根据函数()sin 2F x x =在[0,]t 上为增函数求解是解题关键.23.(1)最大值为2,最小值为1(2【分析】(1)利用两角和差的正弦、余弦公式、二倍角公式化简函数的解析式为()f x =2sin (2x +3π),由,126x ππ⎡⎤∈-⎢⎥⎣⎦,再根据正弦函数的定义域和值域求得函数()f x 的最值; (2)锐角△ABC 中,由f (A )=0 可得A =3π,利用基本不等式求得bc ≤4,即bc 的最大值为4,由此求得△ABC 的面积1sin 2S bc A =的最大值. 【详解】(1)∵函数2()2cos sin()sin cos 3f x x x x x x π=++22cos s s sin cos in x x x x x x -+=sin 222sin(2)3x x x π==+∵,126x ππ⎡⎤∈-⎢⎥⎣⎦, ∴6π≤2x +3π≤23π, 1sin(2)123x π∴≤+≤ 故函数f (x )的最大值为2,最小值为1. (2)锐角△ABC 中,由()0f A =可得 sin (2A +)03π=,∴A =3π. ∵b +c =当且仅当b =c 时取等号,故bc ≤4,即bc 的最大值为 4. 故△ABC面积1sin 2S bc A ==≤ 故△ABC【点睛】关键点点睛:求三角形面积的最值问题,一般需要利用面积公式111sin sin sin 222S bc A ac B ab C ===.根据题目条件选择合适的方法求出两边之积的最值,一般考虑余弦定理及均值不等式,属于中档题.24.(12)70,,,1212πππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦. 【分析】化简三角函数的解析式, (1)12π代入解析式计算可得答案;(2)根据三角函数的单调性可得答案. 【详解】 化简解析式得1cos 21cos 23()22wx wx f x π⎛⎫-- ⎪+⎝⎭=-11cos 2cos 2cos sin 2sin 2233wx wx wx ππ⎛⎫=++ ⎪⎝⎭3cos 22243wx wx wx π⎛⎫==+ ⎪⎝⎭, 周期002()2T x x ππ=+-=,22T wππ==,所以1w =,()223f x x π⎛⎫∴=+ ⎪⎝⎭. (1)21221232f πππ⎛⎫⎛⎫=⨯+=⎪ ⎪⎝⎭⎝⎭(2)因为222232k x k πππππ-+≤+≤+k Z ∈,所以51212k x k ππππ-+≤≤+, 又[]0,x π∈()f x ∴的单调递增区间为70,,,1212πππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦. 【点睛】本题考查了三角函数的化简与性质,关键点是利用二倍角公式、两角和的正弦公式对函数进行化简为()223f x x π⎛⎫=+ ⎪⎝⎭,要熟练掌握三角函数的性质,考查了学生的基本运算.25.(1)1;(2) 【分析】(1)先利用三角函数的定义分别求出cos α,sin α,tan α,用诱导公式先化简,再求值;(2)由题意得4αβ-=π,得4πβα=-,用二倍角公式即可求解. 【详解】解:(1)由题得4cos 5α=-,3sin 5α=,3tan 4α=-.3sin()5cos()3sin 5cos 3tan 512cos sin 2tan 2sin sin()2παααααπααααπα-+-++===--⎛⎫-++ ⎪⎝⎭. (2)由题意得4αβ-=π,得4πβα=-, 所以sin 22cos sin 22cos 44ππββαα⎛⎫⎛⎫+=-+- ⎪ ⎪⎝⎭⎝⎭ sin 22cos cos 22cos 244πππαααα⎛⎫⎛⎫⎛⎫=-+-=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2164312cos sin )122555ααα⎫=-+=-⨯+-+⎪⎭725+=-. 【点睛】(1) 三角函数值的大小与点P (x ,y )在终边上的位置无关,严格代入定义式子就可以求出对应三角函数值;当角的终边在直线上时,或终边上的点带参数必要时,要对参数进行讨论.(2)根据题意把角进行合理转化,还要注意角的范围.26.(1)最小正周期T π=;(2)3()0,2f x ⎡⎤∈⎢⎥⎣⎦. 【分析】(1)先利用余弦的二倍角公式和两角差的正弦化简后,再由辅助角公式化简,利用周期公式求周期;(2)由x 的范围求出26x π-的范围,再由正弦函数的有界性求f (x )的值域. 【详解】 由已知2()2sin sin 26f x x x11cos 22cos 22x x x =-+12cos 2122x x =-+ sin 216x π⎛⎫=-+ ⎪⎝⎭ (1)函数()f x 的最小正周期T π=;(2)因为,212x ππ⎡⎤∈-⎢⎥⎣⎦,所以72,066x ππ⎡⎤-∈-⎢⎥⎣⎦ 所以1sin 21,62x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦, 所以3()0,2f x ⎡⎤∈⎢⎥⎣⎦. 【点睛】本题考查三角函数的周期性、值域及两角和与差的正弦、二倍角公式,关键点是对()f x 的解析式利用公式进行化简,考查学生的基础知识、计算能力,难度不大,综合性较强,属于简单题.。
(常考题)北师大版高中数学必修四第三章《三角恒等变形》测试(有答案解析)(4)
一、选择题1.已知sin 410πα⎛⎫-= ⎪⎝⎭,02πα<<,则tan α的值为( ) A .12-B .12C .2D .12-或2 2.已知函数()f x 满足()cos 1cos21f x x -=-,则()f x 的解析式为( ) A .()()22420f x x x x =+-≤≤ B .()()224f x x x x R =+∈C .()()2120f x x x =--≤≤D .()()21f x x x R =-∈3.已知tan α,tan β是方程2506x x a -+=的两个实数根,且()tan 1αβ+=,则实数a =( )A .16B .116C .512D .7124.已知函数()sin cos f x a x b x =+,其中,a b ∈R ,且0ab ≠,若()π4f x f ⎛⎫≤ ⎪⎝⎭对一切x ∈R 恒成立,则( ). A .ππ56f f ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭B .()5π2f x f x ⎛⎫=- ⎪⎝⎭C .π4f x ⎛⎫-⎪⎝⎭是偶函数 D .π4f x ⎛⎫+⎪⎝⎭是奇函数 5.化简22221sin sin cos cos cos 2cos 22αβαβαβ+-=( )A .12B 1C .14D .16.在ΔABC 中,2sin (22c a Ba b c c -=、、分别为角A B C 、、的对边),则ΔABC 的形状为 A .直角三角形 B .等边三角形 C .等腰三角形或直角三角形 D .等腰直角三角形7.设a =sin17°cos45°+cos17°sin45°,b =2cos 213°-1,c =2,则有( ) A .c <a <b B .b <c <a C .a <b <cD .b <a <c8.函数12log (sin cos )y x x =的单调增区间是( )A .(,)()44k k k Z ππππ-+∈ B .3(,)()44k k k Z ππππ++∈C .(,)()4k k k Z πππ+∈ D .(,)()42k k k Z ππππ++∈ 9.函数()log 42a y x =++(0a >,且1a ≠)的图象恒过定点A ,且点A 在角θ的终边上,则2sin 2θ=( ) A .1213-B .1213C .2413-D .241310.已知角α满足1cos()63πα+=,则sin(2)6πα-=( )A .9-B .9C .79-D .79 11.在ABC ∆中,已知其面积为22()S a b c =--,则tan A =( ) A .34B .817C .815D .171912.在ABC 中,若sin 2sin cos B A C =,那么ABC 一定是( ) A .等腰直角三角形 B .等腰三角形 C .直角三角形D .等边三角形二、填空题13.已知函数1()sin 222f x x x =-+,对于任意的a ⎡∈⎢⎣⎭,方程()2(0)f x a x m -=≤<仅有一个实数根,则m 的最大值为__________.14.()sin 501︒+︒的值__________.15.若角α的终边与单位圆的交点为1,()3m m R ⎛⎫∈ ⎪⎝⎭,则cos2=α______. 16.若tan 30,2tan 10αβ-=-=,则()tan αβ+=________. 17.已知α,β均为锐角,()5cos 13αβ+=-,π3sin 35β⎛⎫+= ⎪⎝⎭,则πsin 3α⎛⎫-= ⎪⎝⎭______.18.已知()tan 2tan αββ+=,,(0,)2παβ∈,则当α最大时,tan2α=________.19.化简4cos80︒︒=________.20.设)sin17cos172a =︒+︒,22cos 131b =︒-,c =则a ,b ,c 的大小关系是______.三、解答题21.已知cos α5=,sin (α﹣β)10=,且α、β∈(0,2π).求:(Ⅰ)cos (2α﹣β)的值; (Ⅱ)β的值. 22.已知51,0,,sin ,cos()273παβααβ⎛⎫∈=+=- ⎪⎝⎭. (1)求tan2α的值; (2)求cos(2)αβ+的值.23.已知函数2()2cos sin()sin cos 3f x x x x x x π=++.(1)若[,]126x ππ∈-,求函数()f x 的最值; (2)记锐角△ABC 的内角A 、B 、C 的对边分别为a b c 、、,若()0f A =,4b c +=,求△ABC 面积的最大值.24.已知函数21()cos sin 2f x x x x =+-. (1)求()f x 的单调递增区间; (2)若(,)123A ππ∈,1()3f A =,求5cos(2)6A π-的值. 25.已知函数()sin 2cos 26x x f x π⎛⎫=-- ⎪⎝⎭.(1)求函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值;(2)设α是锐角,3245f απ⎛⎫+= ⎪⎝⎭,求sin α的值.26.在①64f π⎛⎫-=- ⎪⎝⎭,②()f x 的最大值在12x π=处取到,③当()()121f x f x -=,则12min 2x x π-=这三个条件中任选一个,补充并解答下面问题.问题:已知函数()sin cos 3f x x x πωω⎛⎫=+⎪⎝⎭,(]0,3ω∈.若_______,求实数ω的值. 注:如果选择多个条件分别解答,按第一个解答计分.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】由同角间的三角函数关系先求得cos()4πα-,再得tan()4πα-,然后由两角和的正切公式可求得tan α. 【详解】 ∵02πα<<,∴444πππα-<-<,∴cos 410πα⎛⎫-=⎪⎝⎭, ∴sin 14tan 43cos 4παπαπα⎛⎫- ⎪⎛⎫⎝⎭-== ⎪⎛⎫⎝⎭- ⎪⎝⎭, ∴tan tan 44ππαα⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦1tan 11432111tan 34παπα⎛⎫-++ ⎪⎝⎭===⎛⎫--- ⎪⎝⎭.故选:C . 【点睛】思路点睛:本题考查三角函数的求值.考查同角间的三角函数关系,两角和的正切公式.三角函数求值时首先找到“已知角”和“未知角”之间的联系,选用恰当的公式进行化简求值.注意三角公式中“单角”与“复角”的区别与联系,它们是相对的.不同的场景充当的角色可能不一样.如题中4πα-在tan tan4tan 41tan tan 4παπαπα-⎛⎫-=⎪⎝⎭+作为复角,但在tan tan 44ππαα⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦中充当“单角”角色.2.A解析:A 【分析】利用换元法,设[]cos 12,0x t -=∈-,将原函数转化成关于t 的关系式,进行整理即得()f x 的解析式.【详解】函数()f x 满足()22cos 1cos212cos 112cos 2f x x x x -=-=--=-,设cos 1x t -=,则cos 1x t =+,由[]cos 1,1x ∈-知[]2,0t ∈-, 故原函数可转化为()()2221224f t t t t =+-=+,[]2,0t ∈-,即()f x 的解析式为()()22420f x x x x =+-≤≤.故选:A. 【点睛】方法点睛:求函数解析式的方法(1)待定系数法:已知函数类型,可用待定系数法求解,先设出()f x ,再利用题目中给的已知条件,列出关于待定系数的方程组,进而求出待定的系数;(2)换元法:主要用于解决已知复合函数()f g x ⎡⎤⎣⎦的表达式求()f x 的解析式的问题,令()g x t =,解出x ,然后代入()f g x ⎡⎤⎣⎦中即可求得()f t ,从而求得()f x ,要注意新元的取值范围;(3)配凑法:配凑法是将()f g x ⎡⎤⎣⎦右端的代数式配凑成关于()g x 的形式,进而求出()f x 的解析式;(4)构造方程组法(消元法):主要解决已知抽象函数关系式求解函数解析式的问题.方法是根据不同的变量之间的关系,利用变换形式构造不同的等式,通过解方程组求解.3.A解析:A 【分析】首先利用韦达定理求得5tan tan 6αβ+=,tan tan a αβ⋅=,再结合()tan 1αβ+=,利用两角和正切公式得到关于a 的等量关系式,求得结果. 【详解】因为tan α,tan β是方程2506x x a -+=的两个实数根, 所以有5tan tan 6αβ+=,tan tan a αβ⋅=, 因为()tan 1αβ+=,所以有5611a=-,所以16a =,故选:A. 【点睛】思路点睛:该题考查的是有关两角和正切公式,解题思路如下: (1)先利用韦达定理,写出两根和与两根积;(2)利用两角和正切公式,结合题中条件,得到等量关系式,求得结果.4.B解析:B 【分析】利用辅助角公式可得()()f x x ϕ=+,又()π4f x f ⎛⎫≤ ⎪⎝⎭对一切x ∈R 恒成立知π422f a ⎛⎫=+=⎪⎝⎭a b =,整理得()sin 4f x x π⎛⎫=+ ⎪⎝⎭,利用正弦函数的单调性可判断A ,利用诱导公式以及三角函数的奇偶性可判断选项BCD ,进而可得正确选项. 【详解】由0ab ≠知0a ≠且0b ≠,利用辅助角公式可得()()sin cos f x a x b x x ϕ=+=+,其中tan baϕ=, 又()π4f x f ⎛⎫≤ ⎪⎝⎭对一切x ∈R 恒成立,知π4f ⎛⎫⎪⎝⎭是()f x 的最值,所以πππsin cos 44422f b a a b ⎛⎫=+=+= ⎝⎪⎭, 即22221122a b ab a b +++=,所以2211022a b ab +-=,即()2102a b -=, 所以a b =,tan 1b a ϕ==,可得4πϕ=,所以()sin 4f x x π⎛⎫=+ ⎪⎝⎭,对于选项A :9sin sin 55420f ππππ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭, 5sin sin 66412f ππππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,又因为5912202πππ<<,则59sin sin 1220ππ<,当0a >时,ππ56f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,当0a <时,ππ56f f ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故选项A 不正确; 对于选项B :sin sin 5π5π11π3π2244sin 4f x x x x π⎛⎫-=--- ⎪⎝⎛⎫⎛⎫⎛⎫+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎭()ππ4sin sin 4x f x x π⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭--+,故选项B 正确;对于选项C :sin sin ππ444x x f x π⎛⎫--⎛⎫=+= ⎪⎝⎭ ⎪⎝⎭是奇函数,故选项C 不正确;对于选项D :si πππ442n sin cos 4f x x x x π⎛⎫⎛⎫=+== ⎪ ⎪⎛⎫+++ ⎪⎭⎝⎭⎝⎭⎝是偶函数,故选项D 不正确,【点睛】关键点点睛:本题的关键点是从已知条件()π4f x f ⎛⎫≤⎪⎝⎭对一切x ∈R 恒成立,知π4f ⎛⎫ ⎪⎝⎭是()f x 的最值,π422f a ⎛⎫=+= ⎪⎝⎭,从而得()sin 4f x x π⎛⎫=+ ⎪⎝⎭,属于中档题.5.A解析:A 【分析】由原式利用二倍角公式,和同角三角函数基本关系进行化简,即可得到结果. 【详解】()()2222cos 2cos 2cos sin cos sin αβααββ=--22222222cos cos cos sin sin cos sin sin αβαβαβαβ=--+,所以22221sin sin cos cos cos 2cos 22αβαβαβ+-()2222222222221sin sin cos cos cos cos cos sin sin cos sin sin 2αβαβαβαβαβαβ=+---+()222222221sin sin cos cos +cos sin +sin cos 2αβαβαβαβ=+ ()()()2222221sin sin +cos cos cos +sin 2αββαββ=+()2211sin cos 22αα=+=. 故选:A 【点睛】本题主要考查三角函数的化简求值,涉及到同角三角函数基本关系和三角恒等变换,属于中档题.6.A解析:A 【解析】依题意,利用正弦定理及二倍角公式得sin sin 1cos 2sin 2C A BC --=,即sin sin cos A C B =,又()sin sin sin cos cos sin A B C B C B C =+=+,故sin cos 0B C =,三角形中sin 0B ≠,故πcos 0,2C C ==,故三角形为直角三角形,故选A. 7.A【分析】利用两角和的正弦函数公式化简a ,利用二倍角的余弦公式及诱导公式化简b ,再利用特殊角的三角函数值化简c ,根据正弦函数在0,2π⎡⎤⎢⎥⎣⎦为增函数,甶角度的大小,得到正弦值的大小,进而得到,a b 及c 的大小关系. 【详解】化简得()17cos45cos1745174562a sin sin sin sin =+=+=,()22cos 131cos26cos 906464b sin =-==-=,60c sin ==,正弦函数在0,2π⎡⎤⎢⎥⎣⎦为增函数,606264sin sin sin ∴<<,即c a b <<,故选A. 【点睛】本题考查了二倍角的余弦公式,两角和与差的正弦公式,诱导公式,以及特殊角的三角函数,正弦函数的单调性,属于中档题. 比较大小主要有四种方法:(1)作差法;(2)作商法;(3)函数单调性法;(4)基本不等式法.8.D解析:D 【分析】先利用二倍角公式化简整理,再根据对数函数的定义域及复合函数单调性的性质求解单调递增区间即可. 【详解】由11221log (sin cos )log (sin 2)2y x x x ==, 得1sin 2022222x k x k k x k ππππππ>⇒<<+⇒<<+, 故函数的定义域为(,)()2k k k z πππ+∈,又求函数12log (sin cos )y x x =的单调增区间,利用复合函数单调性的性质, 可得222242k x k k x k ππππππππ+<<+⇒+<<+.故选:D. 【点睛】本题主要考查了复合函数单调性的性质及应用,对数函数定义域的特殊要求.属于中档题.9.C【分析】先根据对数函数性质得()3,2A -,进而根据正弦的二倍角公式和三角函数的定义求解即可得答案. 【详解】解:根据对数函数的性质得函数()log 42a y x =++(0a >,且1a ≠)的图象恒过()3,2A -,由三角函数的定义得:13r ==,sinθθ==, 所以根据二倍角公式得:242sin 24sin cos 413θθθ⎛===- ⎝. 故选:C. 【点睛】本题考查对数函数性质,三角函数定义,正弦的二倍角公式,考查运算能力,是中档题.10.D解析:D 【分析】由已知利用诱导公式可求133sin πα⎛⎫-= ⎪⎝⎭,sin 2263cos ππαα⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,再由二倍角公式化简,即可得结果. 【详解】162633cos sin sin ππππααα⎡⎤⎛⎫⎛⎫⎛⎫+=-+=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,2sin 2cos 2cos 2262633cos πππππαααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫∴-=--=-=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦22171212()339sin πα⎛⎫=--=-⨯= ⎪⎝⎭.故选D . 【点睛】本题主要考查了诱导公式,二倍角公式在三角函数化简求值中的应用,属于基础题.三角函数求值有三类,(1)“给角求值”;(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种系;(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.11.C解析:C 【分析】由题结合余弦定理可得1si s 2n 22co bc A c A bc b +=,整理化简有22sincos 42sin 222A A A =⨯,进而可计算出1tan 24A =,再由正切的二倍角公式计算可得答案. 【详解】 由题意得222221sin 2()2S bc A a b c b c a bc =--+=+=--, 又因为2222cos b c a bc A +-=,所以1si s 2n 22co bc A c A bc b +=, 整理得()41s c s i o n A A =-,所以22sincos 42sin 222A A A =⨯ 即cos 4sin 22A A =,所以1tan 24A = ,则28tan 1512tan2tan 2A AA ==- 故选C. 【点睛】本题考查的知识点有三角形的面积公式,余弦定理,二倍角公式,属于一般题.12.B解析:B 【分析】利用两角和与差公式化简原式,可得答案. 【详解】因为sin 2sin cos B A C =, 所以sin()2sin cos A C A C +=所以sin cos cos sin 2sin cos A C A C A C += 所以sin cos cos sin 0A C A C -= 所以sin()0A C -=, 所以0A C -=, 所以A C =.所以三角形是等腰三角形. 故选:B. 【点睛】本题考查三角恒等变换在解三角形中的应用,考查两角和与差公式以及两角和与差公式的逆用,考查学生计算能力,属于中档题.二、填空题13.【分析】化简原题等价于函数与函数的图象的交点个数为1做出图像数形结合即可得答案【详解】利用辅助角公式化简可得方程仅有一个实数根等价于函数与函数的图象的交点个数为1结合图象可知当时m 的最大值为故答案为 解析:23π 【分析】化简()cos 226f x x π⎛⎫=++ ⎪⎝⎭,原题等价于函数()2y f x =-与函数y a =的图象的交点个数为1,做出图像,数形结合,即可得答案. 【详解】利用辅助角公式,化简可得()cos 226f x x π⎛⎫=++ ⎪⎝⎭, 方程()2(0)f x a x m -=≤<仅有一个实数根,等价于函数()2y f x =-与函数y a =的图象的交点个数为1,结合图象可知,当30,2a ⎡⎫∈⎪⎢⎣⎭时,m 的最大值为23π.故答案为:23π. 【点睛】本题考查辅助角公式的应用,三角函数的图像与性质,考查分析理解,数形结合的能力,属中档题.14.1【分析】由结合辅助角公式可知原式为结合诱导公式以及二倍角公式可求值【详解】解:故答案为:1【点睛】本题考查了同角三角函数的基本关系考查了二倍角公式考查了辅助角公式考查了诱导公式本题的难点是熟练运用解析:1 【分析】由sin10tan10cos10︒︒=︒,结合辅助角公式可知原式为2sin50sin 40cos10︒︒︒,结合诱导公式以及二倍角公式可求值.【详解】解: ()sin501sin50︒+︒=︒⨯()2sin50cos30sin10sin 30cos102sin50sin 402sin50cos50cos10cos10cos10︒︒︒+︒︒︒︒︒︒===︒︒︒()sin 10902sin50cos50sin100cos101cos10cos10cos10cos10︒+︒︒︒︒︒====︒︒︒︒.故答案为:1. 【点睛】本题考查了同角三角函数的基本关系,考查了二倍角公式,考查了辅助角公式,考查了诱导公式.本题的难点是熟练运用公式对所求式子进行变形整理.15.【分析】由题意利用任意角的三角函数的定义求得再利用二倍角公式求得的值【详解】由题意角的终边与单位圆的交点为可得解得即又由故答案为:【点睛】本题主要考查了任意角的三角函数的定义二倍角的正弦公式的应用其解析:79【分析】由题意利用任意角的三角函数的定义求得cos α,再利用二倍角公式求得cos2α的值. 【详解】由题意,角α的终边与单位圆的交点为1,()3m m R ⎛⎫∈ ⎪⎝⎭,可得2119m +=,解得3m =±,即cos 3α=±, 又由287cos 22cos 12199αα=-=⋅-=. 故答案为:79. 【点睛】本题主要考查了任意角的三角函数的定义,二倍角的正弦公式的应用,其中解答中熟记三角函数的定义,结合余弦的倍角公式求解是解答的关键,属于基础题.16.【分析】由题得再利用两角和公式求解即可【详解】因为所以所以故答案为:【点睛】本题考查正切函数的两角和公式属于基础题 解析:7-【分析】由题得tan 3α=,1tan 2β=,再利用两角和公式求解即可. 【详解】因为tan 30,2tan 10αβ-=-=,所以tan 3α=,1tan 2β=, 所以()1t 32731n 2a αβ++==--, 故答案为:7-. 【点睛】本题考查正切函数的两角和公式,属于基础题.17.【分析】先求出再由并结合两角和与差的正弦公式求解即可【详解】由题意可知则又则或者因为为锐角所以不成立即成立所以故故答案为:【点睛】本题考查两角和与差的正弦公式的应用考查同角三角函数基本关系的应用考查 解析:3365-【分析】先求出()sin αβ+,πcos 3β⎛⎫+ ⎪⎝⎭,再由()ππsin sin 33ααββ⎡⎤⎛⎫⎛⎫-=+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,并结合两角和与差的正弦公式求解即可. 【详解】 由题意,可知0,παβ,则()sin 1213αβ+===,又π31sin ,3522β⎛⎛⎫+=∈ ⎪ ⎝⎭⎝⎭,则πππ,364β⎛⎫+∈ ⎪⎝⎭,或者π3π5π,346β⎛⎫+∈ ⎪⎝⎭, 因为β为锐角,所以πππ,364β⎛⎫+∈ ⎪⎝⎭不成立,即π3π5π,346β⎛⎫+∈⎪⎝⎭成立,所以π4cos 35β⎛⎫+===- ⎪⎝⎭.故()ππsin sin 33ααββ⎡⎤⎛⎫⎛⎫-=+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()()ππsin cos cos sin 33αββαββ⎛⎫⎛⎫=++-++ ⎪ ⎪⎝⎭⎝⎭533311245651533⎛⎫-⨯=- ⎪⎛⎫=⨯--⎝ ⎪⎝⎭⎭.故答案为:3365-. 【点睛】本题考查两角和与差的正弦公式的应用,考查同角三角函数基本关系的应用,考查学生的计算求解能力,属于中档题.18.【分析】根据正切的和角公式将用的函数表示出来利用均值不等式求最值求得取得最大值的再用倍角公式即可求解【详解】故可得则当且仅当即时此时有故答案为:【点睛】本题考查正切的和角公式以及倍角公式涉及均值不等解析:7【分析】根据正切的和角公式,将tan α用tan β的函数表示出来,利用均值不等式求最值,求得取得最大值的tan α,再用倍角公式即可求解. 【详解】0,,0,22ππαβ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭tan 0,tan 0αβ∴>> tan()2tan αββ+=故可得tan tan2tan 1tantan αββαβ+=-则2tan 1tan 112tan 42tan tan βαβββ==≤=++当且仅当12tan tan ββ=,即tanβ=时,max tan α=此时有222tan 4tan 221tan 7116ααα===-- 故答案为:7. 【点睛】本题考查正切的和角公式,以及倍角公式,涉及均值不等式的使用.19.1【分析】利用诱导公式得到通分整理后由利用两角差的正弦公式展开化简后得到答案【详解】故答案为:【点睛】本题考查诱导公式进行化简求值利用两角差的正弦公式进行化简求值属于中档题解析:1 【分析】利用诱导公式,得到cos80sin10︒︒=,通分整理后,由()sin 20sin 3010︒︒︒=-,利用两角差的正弦公式,展开化简后,得到答案.【详解】4cos80︒︒2sin 20cos10︒︒︒+= ()2sin 3010cos10︒︒︒︒-==1==. 故答案为:1. 【点睛】本题考查诱导公式进行化简求值,利用两角差的正弦公式进行化简求值,属于中档题.20.【分析】根据两角和的正弦公式二倍角公式诱导公式即可将化简再根据正弦函数的单调性即可比较出大小关系【详解】所以故答案为:【点睛】本题主要考查两角和的正弦公式二倍角公式诱导公式的应用以及正弦函数的单调性 解析:c a b <<【分析】根据两角和的正弦公式,二倍角公式,诱导公式,即可将,a b 化简,再根据正弦函数的单调性即可比较出大小关系. 【详解】)sin17cos17sin17cos 45cos17sin 45sin 62a =︒+︒=︒+︒=, 22cos 131cos 26sin 64b =︒-==,sin 60c ==, 所以,c a b <<. 故答案为:c a b <<. 【点睛】本题主要考查两角和的正弦公式,二倍角公式,诱导公式的应用,以及正弦函数的单调性的应用,属于基础题.三、解答题21.(Ⅰ)10;(Ⅱ)4π.【分析】(Ⅰ)由α,β的范围求出α﹣β的范围,由题意和平方关系求出sin α和cos (α﹣β),由两角和的余弦公式求出cos (2α﹣β)=cos[(α﹣β)+α]的值;(Ⅱ)由两角差的余弦公式求出cos β=cos[α﹣(α﹣β)]的值,再由β的范围求出β的值. 【详解】(Ⅰ)∵02παβ⎛⎫∈ ⎪⎝⎭,,,∴α﹣β∈(2π-,2π),∵cos α=,()sin αβ-=∴sinα==cos (α﹣β)==, ∴cos (2α﹣β)=cos[(α﹣β)+α]=cos (α﹣β)cosα﹣sin (α﹣β)sinα10510510=⨯-⨯=(Ⅱ)由(Ⅰ)得,cos β=cos[α﹣(α﹣β)]=cos α cos (α﹣β)+ sinα sin (α﹣β)=+=又∵02πβ⎛⎫∈ ⎪⎝⎭,,∴β4π=.【点睛】关键点点睛:拆角2()αβαβα-=-+,()βααβ=--是本题解题关键. 22.(1)-2).【分析】先判断角的范围,利用22sin cos 1αα+=求出 cos α,再利用和差角公式求出tan2α,cos(2)αβ+的值【详解】解:(1)因为50,sin 27παα<<=,所以sin cos tan 7cos 12αααα===,22tan 6tan 2251tan 124ααα===--- (2)因为1,0,,cos()23παβαβ⎛⎫∈+=- ⎪⎝⎭,所以sin()3αβ+=. cos(2)cos[()]cos cos()sin sin()αβααβααβααβ+=++=+-+15373⎛⎫=--⨯= ⎪⎝⎭【点睛】利用三角公式求三角函数值的关键: (1)角的范围的判断;(2)根据条件进行合理的拆角,如(),2()βαβααβαβα=+-+=++等.23.(1)最大值为2,最小值为1(2【分析】(1)利用两角和差的正弦、余弦公式、二倍角公式化简函数的解析式为()f x =2sin (2x +3π),由,126x ππ⎡⎤∈-⎢⎥⎣⎦,再根据正弦函数的定义域和值域求得函数()f x 的最值; (2)锐角△ABC 中,由f (A )=0 可得A =3π,利用基本不等式求得bc ≤4,即bc 的最大值为4,由此求得△ABC 的面积1sin 2S bc A =的最大值. 【详解】(1)∵函数2()2cos sin()sin cos 3f x x x x x x π=++22cos s s sin cos in x x x x x x -+=sin 222sin(2)3x x x π==+∵,126x ππ⎡⎤∈-⎢⎥⎣⎦, ∴6π≤2x +3π≤23π, 1sin(2)123x π∴≤+≤ 故函数f (x )的最大值为2,最小值为1. (2)锐角△ABC 中,由()0f A =可得 sin (2A +)03π=,∴A =3π. ∵b +c =当且仅当b =c 时取等号,故bc ≤4,即bc 的最大值为 4.故△ABC 面积1sin 2S bc A ==≤故△ABC 【点睛】关键点点睛:求三角形面积的最值问题,一般需要利用面积公式111sin sin sin 222S bc A ac B ab C ===.根据题目条件选择合适的方法求出两边之积的最值,一般考虑余弦定理及均值不等式,属于中档题.24.(1)(,)()63k k k ππππ-++∈Z ;(2)6. 【分析】(1)先把21()cos sin 2f x x x x =+-化为“一角一名一次”结构,利用“同增异减”讨论单调区间;(2)由1()3f A =,得到1sin(2)cos(2)6363A A ππ-=-=,,利用两角差公式求5cos(2)6A π-的值. 【详解】解:(1)21cos 1()2sin(2)226x f x x x π-=+-=-,令222262k x k πππππ-+<-<+,解得,63k x k k Z ππππ-+<<+∈.所以()f x 的单调增区间为(,)()63k k k ππππ-++∈Z .(2)1()sin(2)63f A A π=-=,令26A πθ=-,则02πθ<<,所以1sin 3θ=,cos θ=, 则5222cos(2)cos()cos cos sin sin 6333A πθπθπθπ-=-=+11()32326=⨯-+⨯=. 【点睛】利用三角公式求三角函数值的关键: (1)角的范围的判断; (2)根据条件进行合理的拆角,如()()2()βαβαααβαβ=+-=++-,等.25.(1)的最大值1和最小值;(2 【分析】(1)先利用两角差的余弦公式和辅助角公式,将函数转化为()sin 23πf x x ⎛⎫=- ⎪⎝⎭,然后利用正弦函数的性质求解. (2)由(1)3245f απ⎛⎫+=⎪⎝⎭得到3sin 65πα⎛⎫+= ⎪⎝⎭,再由α是锐角,得到02,6ππα⎛⎫+∈ ⎪⎝⎭,然后由sin sin 66ππαα⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦,利用两角差的正弦公式求解. 【详解】(1)函数()sin 2cos 26x x f x π⎛⎫=-- ⎪⎝⎭,1sin 2sin 22x x x =-,1sin 22x x =, sin 23x π⎛⎫=- ⎪⎝⎭因为0,2x π⎡⎤∈⎢⎥⎣⎦, 所以 22,333x πππ⎡⎤-∈-⎢⎥⎣⎦,所以sin 2,132π⎡⎤⎛⎫-∈-⎢⎥ ⎪⎝⎭⎣⎦x ,所以()f x 的最大值1和最小值; (2)由(1)知:sin 2sin 33242645f απαπππα⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎭⎭⎝,若62ππα+>,则2(,)623πππα+∈,所以sin 6πα⎛⎫+∈ ⎪⎝⎭,35>,不可能, 所以02,6ππα⎛⎫+∈ ⎪⎝⎭, 所以4cos 65πα⎛⎫+= ⎪⎝⎭,求sin sin cos sin cos sin 666666ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=+-=+-+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,3144252510=-⨯=. 【点睛】 易错点点睛:本题容易忽视6πα+的范围,26.①64f π⎛⎫-= ⎪⎝⎭,1ω=; ②()f x 的最大值在12x π=处取到,1ω=;③当()()121f x f x -=,则12min2x x π-=,1ω=.【分析】可先利用倍角公式将()f x 化简为()sin A x B ωϕ++的形式,再利用其性质逐一求解. 【详解】()sin cos 3f x x x πωω⎛⎫=+ ⎪⎝⎭1sin cos 2x x x ωωω⎛⎫=- ⎪ ⎪⎝⎭21sin cos 2x x x ωωω=⋅11cos 2sin 242x x ωω-=11sin 2222x x ωω⎛⎫=+- ⎪ ⎪⎝⎭1sin 2234x πω⎛⎫=+- ⎪⎝⎭.选①64f π⎛⎫-=- ⎪⎝⎭,则sin 033ωππ-⎛⎫+= ⎪⎝⎭,()33k k Z ωπππ-+=∈ 解得13k ω=-,(]0,3ω∈,1ω∴= 选②()f x 的最大值在12x π=处取到,则有sin 163ωππ⎛⎫+=⎪⎝⎭ ()2632k k Z ωππππ+=+∈112k ω=+,(]0,3ω∈,1ω∴=选③当()()121f x f x -=,则12min2x x π-=代入可得1211sin 2sin 212323x x ππωω⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭12sin 2sin 2233x x ππωω⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭,12min 2x x π-=意味着函数()sin 23g x x πω⎛⎫=+⎪⎝⎭的相邻两条对称轴距离为2π T π∴=22T πππωω∴=== 1ω∴=【点睛】方法点睛:对于三角函数,解决最小正周期和最值,单调区间,对称轴等问题时,可先把所给三角函数式化为()sin A x B ωϕ++或()cos A x B ωϕ++的形式,再利用其性质求解.它们的最小正周期为2T πω=,最大值为A B +,最小值为A B -+.。
北师大版高中数学必修四第三章三角恒等变形同步练习(一)
高中数学学习材料金戈铁骑整理制作第三章 三角恒等变形 同步练习(一)A 组一、选择题1.函数x x x f 2cos 2sin )(=最小正周期是( )A .2πB .πC .π4D .π22.函数x x y cos sin 21++=的最大值是( )A .122-B .122+C .221- D .221-- 3.若αsin ,αcos 是方程012682=+++k kx x 的两解,则k 的值是( ) A .2和-94 B .2和-910 C .2 D .-9104.已知△ABC 中,1cos cot >B A ,则△ABC 是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定5.︒︒︒︒48cos 78sin 24cos 6sin 的值为( )A .161B .-161C .321D .816.函数)4(sin )4(cos 44ππ+-+=x x y 在一个周期内的图像为( )7.已知︒<<︒360180α,则2cosα等于( )A .2cos 1α--B .2cos 1α-C .2cos 1α+-D .2cos 1α+8.若1sin =βαsib ,则)cos(βα+的值为( )A .0B .1C .1±D .-19.已知0sin )cos(cos )sin(=+-+ββαββα,则)2sin(βα++)2sin(βα-等于()A .1B .-1C .0D .1±10.已知θ是第三象限角,若95cos sin 44=+θθ,那么θ2sin 等于( )A .322B .-322C .32D .- 32二、填空题11.若βα2cos sin =,),2(ππα∈,则αtan =_________.12.函数x y 2sin 2=的最小正周期是_________. 13.函数x x y cos 5sin 15+=的最大值是________.14.若b a =+=+<<<ββααπβαcos sin ,cos sin ,40,则a ,b 的大小关系是_______.三、解答题 15.已知函数R x x x x y ∈++=,1cos sin 23cos 212.(1)当函数y 取得最大值时,求自变量x 的集合;(2)该函数的图像可由)(sin R x x y ∈=的图像经过怎样的平移和伸缩变换得到?16.化简αααα3cos cos 3sin sin 33+.17.已知20πβα<<<,且αc o s ,βcos 是方程02150sin )50sin 2(22=-︒+︒-x x 的两解.求)2tan(αβ-的值.18.已知12cos cos 2sin 2sin 2=-+αααα,)2,0(πα∈,求αsin ,αtan 的值.19.已知0sin 2)2sin(=++ββα.求证:)tan(3tan βαα+=.20.求函数x x x x x f cos sin cos sin )(++=的值域.21.求值:(1)︒+︒75sin 15sin ; (2)92sin 9sin 92cos 187sin ππππ-.22.化简ββαββαsin )cos(cos )sin(-+-.23.(1)求证:︒=︒︒-︒︒︒+︒15tan 8sin 15sin 7cos 8sin 15cos 7sin ;(2)已知21cos cos ,31sin sin =-=-βαβα,求)cos(βα-的值.21、(1)26 (2)2122、 sin 23、。
(常考题)北师大版高中数学必修四第三章《三角恒等变形》测试(有答案解析)(2)
一、选择题1.已知矩形ABCD 中,AB AD >.设点B 关于AC 的对称点为B ',AB '与CD 交于点P ,若3CP PD =,则tan BCB '∠=( )A .22-B .2-C .22-D .24-2.已知函数2()2sin cos 23sin (0)f x x x x ωωωω=->图像的相邻两条对称轴之间的距离为2π,则2f π⎛⎫= ⎪⎝⎭( ) A .13-B .13--C .0D .23-3.已知tan 2α=,则sin cos 2sin cos αααα+=-( )A .1B .1-C .2D .2-4.已知ππ2α<<,且π3sin 45α⎛⎫+= ⎪⎝⎭,则cos α的值为( )A .7210B .7210-C .210D .210-5.在ΔABC 中,2sin (22c a Ba b c c -=、、分别为角A B C 、、的对边),则ΔABC 的形状为 A .直角三角形 B .等边三角形 C .等腰三角形或直角三角形 D .等腰直角三角形6.如下图,圆O 与x 轴的正半轴的交点为A ,点,C B 在圆O 上,且点C 位于第一象限,点B 的坐标为43,,,55AOC α⎛⎫-∠= ⎪⎝⎭若1BC =,则233cos sin cos 2222ααα--的值为( )A .45B .35C .45-D .357.已知cos 25π2)4αα=+1tan tan αα+等于( )A .92B .29C .9-2D .2-98.已知,22ππα⎛⎫∈- ⎪⎝⎭,1cos 63πα⎛⎫+= ⎪⎝⎭,则sin α=( )A B .6C .D 9.已知0,2πα⎛⎫∈ ⎪⎝⎭,1cos 63πα⎛⎫+=⎪⎝⎭,则sin α的值等于( )A B C .16D .10.已知函数()sin (0)f x x x ωωω=+>的图象关于直线8x π=对称,则ω的最小值为( ) A .13B .23C .43D .8311.已知()cos 2cos 2παπα⎛⎫+=- ⎪⎝⎭,则tan 4πα⎛⎫-= ⎪⎝⎭( )A .4-B .4C .13-D .1312.已知A 是函数()3sin(2020))263f x x x ππ=++-的最大值,若存在实数1x ,2x 使得对任意实数x ,总有12()()()f x f x f x ≤≤成立,则12A x x 的最小值为( )A .2020πB .1010π C .32020πD .2020二、填空题13.有下列5个关于三角函数的命题:①0x R ∃∈00cos 3x x +=;②函数22sin cos y x x =-的图像关于y 轴对称; ③x R ∀∈,1sin 2sin x x+≥;④[]π,2πx ∀∈cos 2x=-;⑤当()2sin cos f x x x =+取最大值时,cos 5x =. 其中是真命题的是______.14.已知函数2()cos2cos (0)222xxxf x ωωωω=+>的周期为23π,当0,3x π⎡⎤∈⎢⎥⎣⎦时,函数()()g x f x k =+恰有两个不同的零点,则实数k 的取值范围是__________.15.222cos 402cos 50cos35cos65cos55cos155︒-︒=︒︒+︒︒_________.16.已知(0,)θπ∈,且sin 410πθ⎛⎫-= ⎪⎝⎭,则sin 2θ=__________. 17.已知()tan 2tan αββ+=,,(0,)2παβ∈,则当α最大时,tan2α=________.18.下列判断正确的有___________. ①如果θ是第一象限角,那么恒有sin02θ>;②sin 200a ︒=,则tan 200︒=③若()f x 的定义域为R ,周期为4,且满足()()f x f x -=-,则()f x 在[4,8]x ∈-至少有7个零点; ④若0,,0,66x y ππ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,且cos tan x y x ⋅=,则x y <. 19.已知3tan 4α=-,()1tan 4αβ+=,则tan β=______. 20.设,(0,)αβπ∈,cos α,cos β是方程26320x x -=-的两根,则sin sin αβ=_________.三、解答题21.已知310,2,tan ,sin 223ππαβπαβ<<<<==. (1)求cos()αβ-的值; (2)求αβ+的值. 22.已知3sin 5α=-,且α为第四象限角 (1)求sin sin(2)2tan()cos()παπααππα⎛⎫++ ⎪⎝⎭---+的值; (2)求1sin 2cos 21sin 2cos 2αααα+-++的值.23.已知函数()212sin 26f x x x π⎛⎫=-+- ⎪⎝⎭.(1)求函数()f x 的对称中心和最小正周期; (2)若当0,2x π⎡⎤∈⎢⎥⎣⎦时,求函数()f x 的最大值及取得最大值时自变量x 的集合. 24.如图,设单位圆与x 轴的正半轴相交于点(1,0)Q ,当2()k k απβ≠+∈Z 时,以x 轴非负半轴为始边作角α,β,它们的终边分别与单位圆相交于点1(cos ,sin )P αα,1(cos ,sin )Q ββ.(1)叙述并利用上图证明两角差的余弦公式;(2)利用两角差的余弦公式与诱导公式.证明:sin()sin cos cos sin αβαβαβ-=-. (附:平面上任意两点()111,P x y ,()222,P x y 间的距离公式()()22122121PP x x y y =-+-25.已知函数()2sin 22cos 1f x a x x =+-,再从条件①、②、③这三个条件中选择一个作为已知,求:(Ⅰ)()f x 的最小正周期; (Ⅱ)()f x 的单调递增区间. 条件①:()f x 图像的对称轴为8x π=;条件②:14f π⎛⎫=⎪⎝⎭;条件③:3a =注:如果选择多个条件分别解答,按第一个解答计分. 26.已知函数2()[2sin()sin ]cos 33f x x x x x π=++.(1)求函数()f x 的最小正周期和单调递减区间;(2)若函数()f x 的图象关于点(,)m n 对称,求正数m 的最小值;【参考答案】***试卷处理标记,请不要删除一、选择题 1.A解析:A 【分析】根据对称性可得BAC CAP ACP ∠=∠=∠,设1PD =,可计算出AB 的长,利用勾股定理可得BC 的长,在Rt ABC 中,由ABBC可得tan BCA ∠,再利用正切函数的二倍角公式可得答案. 【详解】如图,由题意得BAC CAP ACP ∠=∠=∠. 不妨设1PD =,则3AP CP ==,4AB CD ==, 在Rt APD 中,223122AD =-=,即22BC AD ==. 在Rt ABC 中,tan 222AB BCA BC ∠===. 则22tan 22tan tan 2221tan 12BCA BCB BCA BCA ∠'∠=∠===--∠-, 故选:A.【点睛】本题考查了利用三角函数解决几何图形问题,关键点是利用对称性找到边长之间的关系然后利用正切函数求解,考查了学生分析问题、解决问题的能力.2.D解析:D 【分析】先将函数化简整理,根据相邻对称轴之间距离求出周期,确定1ω=,再求2f π⎛⎫ ⎪⎝⎭. 【详解】因为()21cos 22sin cos 23sin 2232x f x x x x x ωωωωω-=-=- πsin 23232sin 233x x x ωωω⎛⎫=+=+- ⎪⎝⎭由题意知()f x 的最小正周期为π22π⨯=,所以2π2πω=,即1ω=,所以()π2sin 23f x x ⎛⎫=+⎪⎝⎭π2sin 23f ππ⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭.故选:D. 【点睛】本题考查了三角函数的性质,关键点是根据已知条件先化简正弦函数的解析式,还要熟练掌握三角函数的性质才能正确的解题,属于中档题.3.A解析:A 【分析】已知正切值要求正余弦值,可以利用商的关系将“弦化切”,代入数值即可. 【详解】原式分子分母同除以cos α得 原=tan 12112tan 141αα++==--故选:A. 【点睛】已知正切值求正余弦值,通常有两种做法:一是将所求式子分子分母同除cos α或2cos α,化为tan α求解; 二是利用sin tan cos ααα=得sin tan cos ααα=代入消元即可. 4.D解析:D 【分析】根据同角三角函数基本关系得出cos 4πα⎛⎫+ ⎪⎝⎭的值,再用两角差的余弦公式即可解题.【详解】 因为ππ2α<<,所以35,444πππα⎛⎫+∈ ⎪⎝⎭,又3sin 45πα⎛⎫+= ⎪⎝⎭,所以4cos 45πα⎛⎫+=- ⎪⎝⎭, 所以cos cos cos cos sin sin 444444ππππππαααα⎛⎫⎛⎫⎛⎫=+-=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭43525210=-⨯+⨯=-. 故选:D 【点睛】方法点睛:该题考查的是有关三角函数求值问题,解题方法如下: (1)利用同角三角函数关系式,结合角的范围,求得cos 4πα⎛⎫+ ⎪⎝⎭的值; (2)凑角,利用差角余弦公式求得结果.5.A解析:A 【解析】依题意,利用正弦定理及二倍角公式得sin sin 1cos 2sin 2C A BC --=,即sin sin cos A C B =,又()sin sin sin cos cos sin A B C B C B C =+=+,故sin cos 0B C =,三角形中sin 0B ≠,故πcos 0,2C C ==,故三角形为直角三角形,故选A. 6.B解析:B 【解析】 ∵点B 的坐标为43,55⎛⎫-⎪⎝⎭,设AOB θ∠=, ∴325sinπθ-=-(),425cos πθ-=(), 即35sin θ=,45cos θ=, ∵AOC α∠=,若1BC =,∴3πθα+=,则3παθ=-,则213sincossin cos cos sin 222222625αααππαααθθ⎛⎫⎛⎫--=-=+=-== ⎪ ⎪⎝⎭⎝⎭故选B.点睛:本题主要考查三角函数的化简和求值,利用三角函数的定义以及三角函数的辅助角公式是解决本题的关键;利用降幂公式可将所求表达式化简为关于α的表达式,设AOB θ∠=,当角α的终边与单位圆的交点坐标为(),u v 时,sin v α=,cos u α=,可先求出关于θ的三角函数式,结合等边三角形寻找,αθ之间的关系即可.7.A解析:A 【分析】先利用cos 2sin 22παα⎛⎫=+ ⎪⎝⎭结合cos 2π3)4αα=+得出cos 46πα⎛⎫+= ⎪⎝⎭的值,然后利用二倍角公式得到24cos 22cos 1249ππαα⎛⎫⎛⎫+=+-=- ⎪ ⎪⎝⎭⎝⎭,即4sin 29α=,又12tan tan sin 2ααα+=,将4sin 29α=代入便可解出答案. 【详解】因为sin 22sin cos cos 2244π4)444πππααααπαππααα⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭===+ ⎪⎛⎫⎛⎫⎝⎭+++ ⎪ ⎪⎝⎭⎝⎭,43πα⎛⎫+= ⎪⎝⎭,则cos 46πα⎛⎫+= ⎪⎝⎭, 所以24cos 22cos 1249ππαα⎛⎫⎛⎫+=+-=- ⎪ ⎪⎝⎭⎝⎭, 又4cos 2sin 229παα⎛⎫+=-=- ⎪⎝⎭,所以4sin 29α=, 所以1sin cos 1229tan 4tan cos sin sin cos sin 229ααααααααα+=+====.故选:A. 【点睛】本题考查诱导公式,考查正弦、余弦的二倍角公式及其应用,难度一般,解答时公式的变形运用是关键.8.D解析:D 【分析】结合同角三角函数基本关系计算sin 6πα⎛⎫+ ⎪⎝⎭的值,再利用两角差的正弦公式进行求解即可.【详解】 由,22ππα⎛⎫∈-⎪⎝⎭可得2,633πππα⎛⎫+∈- ⎪⎝⎭, 又11cos cos 6323ππα⎛⎫+=<= ⎪⎝⎭,所以2,633πππα⎛⎫+∈ ⎪⎝⎭所以sin 6πα⎛⎫+== ⎪⎝⎭,sin sin sin cos cos sin 666666ππππππαααα⎛⎫⎛⎫⎛⎫=+-=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1132=-⨯=故选:D 【点睛】本题主要考查两角和与差的正余弦公式与同角三角函数基本关系,解题的关键是熟练运用公式.9.C解析:C 【分析】 求出sin 6απ⎛⎫+⎪⎝⎭,然后由两角差的正弦公式计算. 【详解】∵0,2πα⎛⎫∈ ⎪⎝⎭,∴2,663πππα⎛⎫+∈ ⎪⎝⎭,∴sin 63πα⎛⎫+==⎪⎝⎭, ∴sin sin sin cos cos sin 666666ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=+-=+-+⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦11332=-⨯=故选:C . 【点睛】本题考查两角差的正弦公式,考查同角间的三角函数关系,在应用三角公式化简求值时,要注意已知角与未知角之间的关系,以确定先用哪一个公式变形.10.C解析:C 【分析】利用辅助角公式将函数()y f x =的解析式化简为()2sin 3f x x πω⎛⎫=+⎪⎝⎭,根据题意得出()832k k Z πππωπ+=+∈,可得出关于ω的表达式,即可求出正数ω的最小值.【详解】()sin 2sin 3f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭,由于该函数的图象关于直线8x π=对称,则()832k k Z πππωπ+=+∈,得()483k k Z ω=+∈, 0ω>,当0k =时,ω取得最小值43.故选:C. 【点睛】本题考查利用正弦型函数的对称性求参数,解题时要将三角函数的解析式利用三角恒等变换思想化简,并通过对称性列出参数的表达式求解,考查计算能力,属于中等题.11.C解析:C 【解析】 因为cos()2cos()2παπα+=-,所以sin 2cos tan 2ααα-=-⇒=,所以1tan 1tan()41tan 3πααα--==-+,故选C. 12.C解析:C 【分析】利用三角恒等变换化()f x 为正弦型函数,由此求出A 、T 以及12x x -的最小值,可得解. 【详解】()3sin(2020))2623f x x x ππ=++-,392020cos 2020cos 202020204444x x x x =+-+,320220cos 2020x x =-3sin(2020)6x π=-,∴max ()3A f x ==,又存在实数1x ,2x ,对任意实数x 总有12()()()f x f x f x ≤≤成立, ∴2max ()()2f x f x ==,1min ()()2f x f x ==-, 则12x x -的最小值为函数()f x 的半个最小正周期长度,12min 1122220202020x x T ππ∴-==⨯=∴()12min32020A x x π⋅-=, 故选:C. 【点睛】本题考查三角函数的最值,着重考查两角和与差的正弦与余弦,考查三角恒等变换,突出正弦函数的周期性的考查,属于中档题.二、填空题13.②④⑤【分析】本题可通过判断出①错误然后通过判断出②正确再然后通过可以为负值判断出③错误通过以及判断出④正确最后通过将函数转化为根据当时取最大值判断出⑤正确【详解】①:则①错误;②:关于轴对称②正确解析:②④⑤ 【分析】000cos 2sin 6x x x π⎛⎫+= ⎪⎝⎭+判断出①错误,然后通过22sin cos cos 2x x x -=-判断出②正确,再然后通过sin x 可以为负值判断出③错误,=cos 02x 判断出④正确,最后通过将函数转化为()()f x x p =+,根据当()22x p k k Z ππ=-++∈时取最大值判断出⑤正确.【详解】①000001cos 2cos 2sin 262x x x x x π+⎫⎛⎫+=+=≤⎪ ⎪⎪⎝⎭⎝⎭,00cos 3x x +≠,①错误;②:()2222sin cos cos sin cos 2y x x x x x =-=--=-,关于y 轴对称,②正确;③:因为sin x 可以为负值,所以1sin 2sin x x+≥错误,③错误; ④:因为[]π,2πx ∈,所以π,π22x ⎡⎤∈⎢⎥⎣⎦,cos 02x ,cos2x ===-,④正确; ⑤:()2sin cos sin cos 55f x x x x x ⎫=+=+⎪⎪⎭()x p =+,(注:5sin p,25cos p ), 当函数()f x 取最大值时,22x p k ππ+=+,即()22x p k k Z ππ=-++∈,此时cos cos n 2si 2=p k x p ππ-++⎛⎫==⎪⎝⎭⑤正确,故答案为:②④⑤. 【点睛】关键点点睛:本题考查根据三角恒等变换以及三角函数性质判断命题是否正确,考查二倍角公式以及两角和的正弦公式的灵活应用,考查计算能力,考查化归与转化思想,是中档题.14.【分析】先利用二倍角公式和辅助角公式结合周期为求得然后将时函数恰有两个不同的零点转化为时恰有两个不同的根在同一坐标系中作出函数的图象利用数形结合法求解【详解】函数因为函数的周期为所以因为时函数恰有两 解析:(3,2]--【分析】先利用二倍角公式和辅助角公式,结合周期为23π求得()2sin 316f x x π⎛⎫=++ ⎪⎝⎭,然后将0,3x π⎡⎤∈⎢⎥⎣⎦时,函数()()g x f x k =+恰有两个不同的零点,转化为0,3x π⎡⎤∈⎢⎥⎣⎦时,()f x k =-恰有两个不同的根,在同一坐标系中作出函数(),y f x y k ==-的图象,利用数形结合法求解. 【详解】函数2()cos2cos 222xxxf x ωωω=+,cos 1x x ωω=++, 2sin 16x πω⎛⎫=++ ⎪⎝⎭, 因为函数()f x 的周期为, 所以2323πωπ==,()2sin 316f x x π⎛⎫=++ ⎪⎝⎭因为0,3x π⎡⎤∈⎢⎥⎣⎦时,函数()()g x f x k =+恰有两个不同的零点, 所以0,3x π⎡⎤∈⎢⎥⎣⎦时,()f x k =-恰有两个不同的根, 在同一坐标系中作出函数(),y f x y k ==-的图象如图所示:由图象可知:23k ≤-<,即2k -3<≤-, 所以实数k 的取值范围是(3,2]--, 故答案为:(3,2]-- 【点睛】方法点睛:函数零点个数问题:若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.15.【分析】用诱导公式降次公式两角和与差的正余弦公式化简求值得到答案【详解】原式故答案为:【点睛】本题考查了三角关系的化简与求值诱导公式转化角两角和与差公式二倍角公式属于中档题 解析:2-【分析】用诱导公式、降次公式、两角和与差的正余弦公式化简求值,得到答案. 【详解】原式()()22222cos 40cos 502cos 402cos 50sin 55cos 65cos55sin 65sin 5565︒-︒︒-︒==︒︒-︒︒︒-︒. ()2cos80sin 10︒=-︒2sin10sin10︒=-︒2=-故答案为:2-. 【点睛】本题考查了三角关系的化简与求值,诱导公式转化角,两角和与差公式,二倍角公式,属于中档题.16.【分析】根据利用诱导公式和二倍角公式转化为求解【详解】因为所以故答案为:【点睛】本题主要考查二倍角公式及诱导公式的应用还考查了转化求解问题的能力属于中档题解析:2425【分析】根据sin 4πθ⎛⎫-= ⎪⎝⎭,利用诱导公式和二倍角公式转化为2sin 2cos 2122sin 4πθθπθ⎛⎫=-=- ⎪⎛⎫- ⎪⎝⎝⎭⎭求解.【详解】因为sin 410πθ⎛⎫-= ⎪⎝⎭, 所以224sin 4sin 2cos 2co 25s 21224πππθθθθ⎡⎤⎛⎫⎛⎫=-=-=- ⎪⎛⎫-= ⎪⎝⎭ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 故答案为:2425【点睛】本题主要考查二倍角公式及诱导公式的应用,还考查了转化求解问题的能力,属于中档题.17.【分析】根据正切的和角公式将用的函数表示出来利用均值不等式求最值求得取得最大值的再用倍角公式即可求解【详解】故可得则当且仅当即时此时有故答案为:【点睛】本题考查正切的和角公式以及倍角公式涉及均值不等【分析】根据正切的和角公式,将tan α用tan β的函数表示出来,利用均值不等式求最值,求得取得最大值的tan α,再用倍角公式即可求解. 【详解】0,,0,22ππαβ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭tan 0,tan 0αβ∴>> tan()2tan αββ+=故可得tan tan2tan 1tan tan αββαβ+=- 则2tan 1tan 112tan 2tan tan βαβββ==≤=++当且仅当12tan tan ββ=,即tan β=时,max tan 4α=此时有222tan 4tan 221tan 7116ααα===--. 【点睛】本题考查正切的和角公式,以及倍角公式,涉及均值不等式的使用.18.③【分析】①利用来判断;②利用来判断;③通过来判断;④通过当时有恒成立来判断【详解】解:①由已知则此时在第一或第三象限有可能小于零错误;②是第三象限角所以则与矛盾错误;③由已知为奇函数故则又所以则有解析:③ 【分析】 ①利用24k k θπππ来判断;②利用sin 2000a ︒=<来判断; ③通过(0)0f =,(2)0f =来判断; ④通过当0,2πα⎛⎫∈ ⎪⎝⎭时,有tan sin ααα>>恒成立来判断. 【详解】 解:①由已知22,2k k k Z ππθπ,则,24k k kZ θπππ,此时2θ在第一或第三象限,sin2θ有可能小于零,错误;②200︒是第三象限角,所以sin 2000a ︒=<, 则tan 2000︒=<,与tan 2000︒>矛盾,错误;③由已知()f x 为奇函数,故(0)0f =,则(4)(4)(8)(0)0f f f f -====, 又(2)(24)(2)(2)f f f f =-=-=-,所以(2)0f =,则有(2)(2)(6)0f f f =-==, 则()f x 在[4,8]x ∈-至少有7个零点,正确; ④当0,2πα⎛⎫∈ ⎪⎝⎭时,有tan sin ααα>>恒成立, 证明:单位圆中当0,2πα⎛⎫∈ ⎪⎝⎭时,如图点P 为角α的终边与单位圆的交点,由图可知OPA 的面积小<扇形OPA 的面积小<OTA 的面积 则211111sin 111tan 222ααα⋅⋅⋅<⋅⋅<⋅⋅⋅,整理得tan sin ααα>>. 若0,,0,66x y ππ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,tan cos tan tan x x x y y >=⋅>,所以x y >,故错误. 故答案为:③ 【点睛】本题考查函数周期性的应用,考查当0,2πα⎛⎫∈ ⎪⎝⎭时,有tan sin ααα>>恒成立这个性质的灵活应用,考查角所在象限和三角函数值符号的关系,是中档题.19.【分析】根据以及两角差正切公式求解【详解】故答案为:【点睛】本题考查两角差正切公式考查基本分析求解能力属基础题 解析:1613【分析】根据()βαβα=+-以及两角差正切公式求解. 【详解】13tan()tan 1644tan tan[()]31tan()tan 13116αβαβαβααβα++-=+-===++- 故答案为:1613【点睛】本题考查两角差正切公式,考查基本分析求解能力,属基础题.20.【分析】由韦达定理得由平方后化为然后凑配成的代数式再代入求值【详解】由是方程的两根所以从而又由知从而【点睛】关键点睛:本题考查三角函数的平方关系考查韦达定理解题关键是利用平方关系化正弦为余弦解答本题 解析:76【分析】由韦达定理得cos cos ,cos cos αβαβ+,由sin sin αβ平方后化为cos ,cos αβ,然后凑配成cos cos ,cos cos αβαβ+的代数式,再代入求值. 【详解】由cos α,cos β是方程26320x x -=-的两根 所以11cos cos ,cos cos 23αβαβ+==-, 从而()()222(sin sin )1cos 1cos αβαβ=--22221cos cos cos cos αβαβ=--+222212cos cos cos cos (cos 2cos cos cos )αβαβααββ=++-++22(1cos cos )(cos cos )αβαβ=+-+22114171329436⎛⎫⎛⎫=--=-= ⎪ ⎪⎝⎭⎝⎭.又由,(0,)αβπ∈知sin sin 0αβ>,从而sin sin 6αβ= 【点睛】关键点睛:本题考查三角函数的平方关系,考查韦达定理,解题关键是利用平方关系化正弦为余弦,解答本题的关键是将()()222(sin sin )1cos 1cos αβαβ=--化为22(1cos cos )(cos cos )αβαβ+-+的形式,属于中档题.三、解答题21.(1;(2)74π. 【分析】(1)由tan α求得sin ,cos αα,由sin β求得cos β,然后由两角差的余弦公式计算; (2)由两角和的正弦公式求得sin()αβ+后,由3522ππαβ<+<可得αβ+ 【详解】 因为1tan 3α=,所以sin 1cos 3αα=,又因为22sin cos 1αα+=,02πα<<,所以sin α=cos α=sin β=322πβπ<<,所以cos β===.(1)cos()cos cos sin sin αβαβαβ-=+⎛=⎝⎭10=.(2)因为sin()sin cos cos sin αβαβαβ+=+⎛=⎝⎭2=-.因为02πα<<,322πβπ<<,所以3522ππαβ<+<,所以74αβπ+=. 【点睛】方法点睛:本题考查两角和与差的正弦、余弦公式,考查同角间的三角函数关系,求角求值.解题关键是确定“已知角”和“未知角”的关系,以便选用恰当的公式求值.在求角,一般先确定出这个角的范围,在这个范围内选三角函数值是一对一的函数求得这个三角函数值,然后得角,如果不能直接得出一对一的函数,常常需要由已知或已求出的三角函数值缩小角的范围,从而得出角. 22.(1)45;(2)34-. 【分析】(1)先求出4cos 5α=,再利用诱导公式和同角的三角函数的基本关系化简后可得所求的值.(2)先求出3tan 4α=-,再利用倍角公式和同角的三角函数的基本关系化简后可得所求的值. 【详解】 (1)因为3sin 5α=-,且α为第四象限角,故4cos 5α=. 原式()cos sin cos t 45an cos ααααα===-⋅-.(2)由(1)得4cos 5α=,故3tan 4α=- 原式222sin cos 2sin sin tan =2sin cos 2cos cos 34ααααααααα==+-+=. 【点睛】思路点睛:三角函数的中的化简求值问题,我们往往从次数的差异、函数名的差异、结构的差异和角的差异去分析,处理次数差异的方法是升幂降幂法,解决函数名差异的方法是弦切互化,而结构上差异的处理则是已知公式的逆用等,最后角的差异的处理则往往是用已知的角去表示未知的角.23.(1)最小正周期T π=;对称中心为,0122k k Z ππ⎛⎫+∈⎪⎝⎭,;(2)()max 1f x =,自变量x 的集合为3π⎧⎫⎨⎬⎩⎭. 【分析】(1)先利用两角和与差的余弦公式及辅助角公式将函数化成标准形式11()sin 2262f x x π⎛⎫=-+ ⎪⎝⎭,再利用周期公式计算周期,整体代入法计算对称中心即可;(2)利用整体代入法,由0,2x π⎡⎤∈⎢⎥⎣⎦得52666x πππ-≤-≤,根据正弦函数最值的特征得到何时取最值即可. 【详解】解:(1)()212sin 26f x x x π⎛⎫=-+- ⎪⎝⎭31cos 21cos 2242xx x -=-+-11112cos 2sin 2442262x x x π⎛⎫=-+=-+ ⎪⎝⎭ 故最小正周期22T ππ==,令2,6x k k π-=π∈Z ,解得,122k x k Z ππ=+∈,故对称中心为,0122k k Z ππ⎛⎫+∈⎪⎝⎭,; (2)∵02x π≤≤,∴52666x πππ-≤-≤, 当226x ππ-=时,max sin 216πx ⎛⎫-= ⎪⎝⎭,故()max 111122f x =⨯+=,此时3x π=,即自变量x 的集合为3π⎧⎫⎨⎬⎩⎭. 【点睛】 方法点睛:求三角函数性质问题时,通常先利用两角和与差的三角函数公式、二倍角公式及辅助角公式将函数化简成基本形式()()sin f x A x b ωϕ=++,再利用整体代入法求解单调性、对称性,最值等性质.24.(1)两角差的余弦公式为:cos()cos cos sin sin αβαβαβ-=+,证明见解析;(2)证明见解析. 【分析】(1)先构造向量()()11cos ,sin ,cos ,sin OP OQ ααββ==,再利用数量积111111cos OP OQ OP AQ POQ ⋅=⋅∠代入计算即得结果;(2)利用诱导公式知()sin cos 2παβαβ⎛⎫-=-+- ⎪⎝⎭,再结合两角差的余弦公式展开即得结论. 【详解】解:(1)两角差的余弦公式为:cos()cos cos sin sin αβαβαβ-=+. 证明:依题意,()()11cos ,sin ,cos ,sin OP OQ ααββ==,则11cos cos sin sin OP OQ αβαβ⋅=+,11111,OP AQ POQ αβ==∠=- 故由111111cos OP OQ OP AQ POQ ⋅=⋅∠得,()cos cos sin sin 11cos αβαβαβ+=⨯⨯-,即cos()cos cos sin sin αβαβαβ-=+, 当()2k k απβ=+∈Z 时,容易证明上式仍然成立. 故cos()cos cos sin sin αβαβαβ-=+成立;(2)证明:由诱导公式可知,()sin cos 2παβαβ⎛⎫-=-+- ⎪⎝⎭.而cos cos 22ππαβαβ⎡⎤⎛⎫⎛⎫+-=+-⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦cos cos sin sin 22ππαβαβ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭sin cos cos sin αβαβ=-+,故[]sin()sin cos cos sin sin cos cos sin αβαβαβαβαβ-=--+=-. 即证结论. 【点睛】本题解题关键在于构造向量,综合运用数量积的定义法运算和坐标运算,即突破难点. 25.(Ⅰ)答案见解析;(Ⅱ)答案见解析. 【分析】选① (Ⅰ)逆用余弦的二倍角公式降幂后,使用辅助角公式化简得())f x x ϕ=+ ,根据对称轴求得ϕ的值,进而求得a 的值,得到函数的解析式,求得最小正周期;(Ⅱ) 根据正弦函数的单调性,利用整体代换法求得()f x 的递增区间.选② (Ⅰ)逆用余弦的二倍角公式降幂得到()f x sin2cos2a x x =+,根据选择的条件求得a 的值,得到函数的解析式,并利用辅助角公式化简,然后求得()f x 的最小正周期; (Ⅱ)根据正弦函数的单调性,利用整体代换法求得()f x 的递增区间.选③逆用余弦的二倍角公式降幂后,使用辅助角公式化简得到()f x 2sin(2)6x π=+然后求得()f x 的最小正周期;(Ⅱ)根据正弦函数的单调性,利用整体代换法求得()f x 的递增区间. 【详解】选① (()f x 图像的一条对称轴为8x π=)解:(Ⅰ) ()2sin 22cos 1f x a x x =+-sin2cos2a x x =+22x x ⎛⎫=+⎪⎭)x ϕ=+(其中1tan aϕ=) 因为()f x 图像的一条对称轴为8x π=所以()1sin()84f ππϕ=+=即有,42k k Z ππϕπ+=+∈ 所以,4k k Z πϕπ=+∈ 所以1tan tan()tan 144k aππϕπ=+=== 1a故())4f x x π=+ 所以()f x 的最小正周期为:22||2T πππω=== (Ⅱ) +22+2,242k x k k Z πππππ-≤+≤∈ 3+22+2,44k x k k Z ππππ∴-≤≤∈ 3++,88k x k k Z ππππ∴-≤≤∈ 所以()f x 的递增区间为3[+],k 88k Z ππππ-∈+k , 选② (()1)4f π= 解:(Ⅰ)()2sin 22cos 1f x a x x =+-sin2cos2a x x =+()sin cos 1422f a πππ∴=+= 1a()sin 2cos 2f x x x =+22)x x =)4x π=+ 所以()f x 的最小正周期为:22||2T πππω=== (Ⅱ) +22+2,242k x k k Z πππππ-≤+≤∈ 3+22+2,44k x k k Z ππππ∴-≤≤∈ 3++,88k x k k Z ππππ∴-≤≤∈ 所以()f x 的递增区间为3[+],k 88k Z ππππ-∈+k ,选③(a =解:(I )()222cos 1f x x x =+-2cos2x x =+312(sin 2cos 2)2x x 2sin(2)6x π=+ 所以()f x 的最小正周期为:22||2T πππω=== (Ⅱ) +22+2,262k x k k Z πππππ-≤+≤∈ 2+22+2,33k x k k Z ππππ∴-≤≤∈ ++,36k x k k Z ππππ∴-≤≤∈ 所以()f x 的递增区间为[+],k 36k Z ππππ-∈+k , 【点睛】本题考查三角函数的恒等变形和三角函数的性质,关键是逆用余弦的二倍角公式降幂后,并使用辅助角公式化简.26.(1)T π=,7[,],1212++∈k k k Z ππππ;(2)3π. 【分析】(1)先利用三角恒等变换,将函数转化为()2sin(2)3f x x π=+,再利用正弦函数的性质求解.(2)根据函数()f x 的图象关于点(,)m n 对称,令2()3m k k Z ππ+=∈求解. 【详解】(1)2()[2sin()sin ]cos 3=++f x x x x x π2(sin sin )cos =++-x x x x x2(2sin )cos =+x x x x222sin cos sin )x x x x =+-sin 222sin(2)3x x x π==+, T π=, 由3222232k x k πππππ+≤+≤+, 解得71212k x k ππππ+≤≤+, 则()f x 的单调递减区间是7[,],1212++∈k k k Z ππππ. (2)2()3+=∈m k k Z ππ,,26∴=-∈k m k Z ππ 又0m >m ∴的最小值为3π. 【点睛】 方法点睛:1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式. 2.函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2T ωπ=,y =tan(ωx +φ)的最小正周期为T πω=. 3.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t 的性质.。
(常考题)北师大版高中数学必修四第三章《三角恒等变形》测试题(含答案解析)(3)
一、选择题1.已知θ为锐角,且满足如tan 311tan θθ=,则tan 2θ的值为( ) A .34B .43 C .23D .322.已知,(0,2)αβπ∈,且满足1sin cos 2αα-=,1cos sin 2ββ-=,则sin()αβ+=( ) A .1 B.2-或1 C .34-或1 D .1或-13.已知sin cos x x +=,则1tan tan x x +=( ) A .6- B .7-C .8-D .9-4.已知0,2πα⎛⎫∈ ⎪⎝⎭,,2παβπ⎛⎫+∈⎪⎝⎭,且4cos 5α=,2sin()3αβ+=,则( )A .0,3πβ⎛⎫∈ ⎪⎝⎭B .,32ππβ⎛⎫∈⎪⎝⎭ C .2,23ππβ⎛⎫∈⎪⎝⎭D .2,3πβπ⎛⎫∈⎪⎝⎭5.函数12log (sin cos )y x x =的单调增区间是( )A .(,)()44k k k Z ππππ-+∈B .3(,)()44k k k Z ππππ++∈ C .(,)()4k k k Z πππ+∈D .(,)()42k k k Z ππππ++∈ 6.已知cos 2π3)4αα=+,则1tan tan αα+等于( ) A .92B .29C .9-2D .2-97.已知函数()sin (0)f x x x ωωω=+>的图象关于直线8x π=对称,则ω的最小值为( ) A .13B .23C .43D .838.已知α∈3π,π2⎛⎫ ⎪⎝⎭,cos α=-45,则tan π4α⎛⎫- ⎪⎝⎭等于( )A .7B .17C .-17D .-79.已知函数22()2sin cos ()sin (0)24x f x x x ωπωωω=-->在区间25[,]36ππ-上是增函数,且在区间[0,]π上恰好取得一次最大值,则ω的范围是( )A .3(0,]5B .13[,]25C .13[,]24D .15[,)2210.已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,BC 边上的高为h ,且3h =,则2c a b c c b b ++的最大值是( )A .B .C .4D .611.求sin10°sin50°sin70°的值( )A .12B .2C .18D .812.已知函数()222cos 1f x x x -+,将()f x 的图象上的所有点的横坐标缩短到原来的12,纵坐标保持不变;再把所得图象向上平移1个单位长度,得到函数()y g x =的图象,若()()129g x g x ⋅=,则12x x -的值可能为( ) A .54π B .34π C .2π D .3π 二、填空题13.已知1sin cos 5θθ+=,(0,)θπ∈,则tan θ=________. 14.222cos 402cos 50cos35cos65cos55cos155︒-︒=︒︒+︒︒_________.15.若1tan 20201tan αα+=-,则1tan 2cos 2αα+=____________.16.已知函数()sin cos ,,22f x x x x ππ⎡⎤=+∈-⎢⎥⎣⎦,有以下结论: ①()f x 的图象关于y 轴对称; ②()f x 在区间,02π⎡⎤-⎢⎥⎣⎦上单调递增; ③()f x 图象的一条对称轴方程是4x π=; ④()f x 的最大值为2.则上述说法中正确的是__________(填序号) 17.已知π0π2αβ<<<<,3cos 5α=,()3sin 5αβ+=-,则cos β的值为______. 18.如图,以Ox 为始边作钝角α,角α的终边与单位圆交于点P (x 1,y 1),将角α的终边顺时针旋转3π得到角β.角β的终边与单位圆相交于点Q (x 2,y 2),则x 2﹣x 1的取值范围为_____.19.如果函数sin 2cos 2y x a x =+的图象关于直线12x π=对称,那么该函数在0,2x π⎡⎤∈⎢⎥⎣⎦上的最小值为_______________. 20.已知α,()0,βπ∈,且()23tan 3αβ-=,53tan 11β=-,2αβ-的值为_______.三、解答题21.函数()3sin()0,||2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,其中7,03B π⎛⎫⎪⎝⎭,且最高点A 与B 的距离29AB π=+(1)求函数()f x 的解析式;(2)若(),,4363f ππαα⎛⎫∈-= ⎪⎝⎭,求cos2α的值. 22.已知31250,2,tan ,sin 223ππαβπαβ<<<<==. (1)求cos()αβ-的值; (2)求αβ+的值.23.已知函数21()3sin cos cos 22f x x x x π⎛⎫=++- ⎪⎝⎭. (1)若对任意,32x ππ⎡⎤∈-⎢⎥⎣⎦,都有()f x a ≥成立,求实数a 的取值范围; (2)若先将()y f x =的图像上每个点横坐标伸长为原来的2倍(纵坐标不变),再将所得图像向左平移6π个单位长度,得到函数()y g x =的图像,求函数1()3y g x =-在区间[],3ππ-内的所有零点之和.24.已知函数()()sin f x A x =+ωϕ(0A >,0>ω,ππ22ϕ-<<)的部分图像如图所示,π12,7π12是函数的两个相邻的零点,且图像过()0,1-点.(1)求函数()f x 的解析式; (2)求函数()()π4g x f x f x ⎛⎫=⋅- ⎪⎝⎭的单调增区间以及对称轴方程. 25.已知,2παπ⎛⎫∈⎪⎝⎭,且2sin cos 22αα-=. (1)求cos α的值; (2)若()4sin 5αβ-=,,2πβπ⎛⎫∈ ⎪⎝⎭,求cos β的值. 26.求值:(1)cos540tan 225cos(330)sin(240)︒︒︒︒+--+-;(2)1cos201sin10tan 52sin 20tan 5︒︒︒︒︒+⎛⎫-- ⎪⎝⎭【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】先利用两角和的正切计算tan tan 2tan 31tan tan 2θθθθθ+=-,再利用二倍角的正切化简前者,结合tan 311tan θθ=可得1tan 2θ=,从而可求tan 2θ.【详解】32222tan tan tan tan 23tan tan 1tan tan 32tan 1tan tan 213tan 1tan 1tan θθθθθθθθθθθθθθ++--===---⨯-,故32223tan tan tan 33tan 13tan 11tan tan 13tan θθθθθθθθ---===-,故21tan 4θ=, 因为θ为锐角,故1tan 2θ=,故1242tan 21314θ⨯==-, 故选:B. 【点睛】思路点睛:已知θ的三角函数值,求()*n n N θ∈的三角函数值,应利用两角和的三角函数值逐级计算即可.2.C解析:C 【分析】由两角与差的正弦、余弦公式变形由已知求得sin()4πα-和cos()4πβ+,用平方关系求得cos()4πα-和sin()4πα+,而sin()sin ()()44ππαβαβ⎡⎤+=-++⎢⎥⎣⎦,展开后计算,注意分类讨论. 【详解】∵1sin cos 2αα-=,∴sin 224αα-=sin()44πα-=,1cos sin 2ββ-=ββ-=,cos()4πβ+=,∴cos()44πα-=±,sin()44πα+=±, sin()sin ()()sin()cos()cos()sin()444444ππππππαβαβαβαβ⎡⎤+=-++=-++-+⎢⎥⎣⎦,当7cos()sin()448ππαβ-+=时,17sin()188αβ+=+=, 当7cos()sin()448ππαβ-+=-时,173sin()884αβ+=-=-, 故选:C . 【点睛】关键点点睛:本题考查两角和与差正弦、余弦公式.解题关键是确定已知角和未知角之间的关系,本题中已知等式变形得出4πα-和4πβ+,未知角有()()44ππαβαβ+=-++,这样易确定使用的公式与顺序.3.C解析:C 【分析】将等式sin cos x x +=sin cos x x 的值,利用切化弦可求得1tan tan x x+的值. 【详解】由sin cos x x +=,可得()23sin cos 12sin cos 4x x x x +=+=,得1sin cos 8x x =-,因此,221sin cos sin cos 1tan 8tan cos sin sin cos sin cos x x x x x x x x x x x x++=+===-.故选:C. 【点睛】方法点睛:应用公式时注意方程思想的应用,对于sin cos αα+、sin cos αα-、sin cos αα这三个式子,利用()2sin cos 12sin cos αααα±=±可以知一求二.4.C解析:C【分析】 由0,2πα⎛⎫∈ ⎪⎝⎭,,2παβπ⎛⎫+∈⎪⎝⎭,可得()0,βπ∈,再由()βαβα=+-展开式结合同角三角函数关系可得1cos (,0)2β=-,从而得解. 【详解】 由0,2πα⎛⎫∈ ⎪⎝⎭,,2παβπ⎛⎫+∈⎪⎝⎭,,02πα⎛⎫-∈- ⎪⎝⎭,可得()0,βπ∈.又4cos 5α=,2sin()3αβ+=,且0,2πα⎛⎫∈ ⎪⎝⎭,,2παβπ⎛⎫+∈ ⎪⎝⎭,所以3sin 5α==,cos()αβ+==. 所以cos cos[()]cos()cos sin()sin βαβααβααβα=+-=+++4236(0353515-=-⨯+⨯=<.102+=>,所以1cos (,0)2β∈- 所以2,23ππβ⎛⎫∈ ⎪⎝⎭. 故选:C. 【点睛】方法点睛:在利用两角和与差的三角函数公式求值或化简时,常根据角与角之间的和差、倍半、互余、互补的关系,运用角的变换,沟通条件与结论的差异,使问题获解,常见角的变换方式有:()ααββ=+-,2()()ααβαβ=++-,2()αβααβ-=+-等.5.D解析:D 【分析】先利用二倍角公式化简整理,再根据对数函数的定义域及复合函数单调性的性质求解单调递增区间即可. 【详解】由11221log (sin cos )log (sin 2)2y x x x ==, 得1sin 2022222x k x k k x k ππππππ>⇒<<+⇒<<+, 故函数的定义域为(,)()2k k k z πππ+∈,又求函数12log (sin cos )y x x =的单调增区间,利用复合函数单调性的性质, 可得222242k x k k x k ππππππππ+<<+⇒+<<+.故选:D. 【点睛】本题主要考查了复合函数单调性的性质及应用,对数函数定义域的特殊要求.属于中档题.6.A解析:A 【分析】先利用cos 2sin 22παα⎛⎫=+ ⎪⎝⎭结合cos 2π3)4αα=+得出cos 46πα⎛⎫+= ⎪⎝⎭的值,然后利用二倍角公式得到24cos 22cos 1249ππαα⎛⎫⎛⎫+=+-=- ⎪ ⎪⎝⎭⎝⎭,即4sin 29α=,又12tan tan sin 2ααα+=,将4sin 29α=代入便可解出答案. 【详解】因为sin 22sin cos cos 2244π4)444πππααααπαππααα⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭===+ ⎪⎛⎫⎛⎫⎝⎭+++ ⎪ ⎪⎝⎭⎝⎭,43πα⎛⎫+= ⎪⎝⎭,则cos 46πα⎛⎫+= ⎪⎝⎭, 所以24cos 22cos 1249ππαα⎛⎫⎛⎫+=+-=- ⎪ ⎪⎝⎭⎝⎭, 又4cos 2sin 229παα⎛⎫+=-=- ⎪⎝⎭,所以4sin 29α=, 所以1sin cos 1229tan 4tan cos sin sin cos sin 229ααααααααα+=+====.故选:A. 【点睛】本题考查诱导公式,考查正弦、余弦的二倍角公式及其应用,难度一般,解答时公式的变形运用是关键.7.C解析:C 【分析】利用辅助角公式将函数()y f x =的解析式化简为()2sin 3f x x πω⎛⎫=+⎪⎝⎭,根据题意得出()832k k Z πππωπ+=+∈,可得出关于ω的表达式,即可求出正数ω的最小值.【详解】()sin 2sin 3f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭,由于该函数的图象关于直线8x π=对称,则()832k k Z πππωπ+=+∈,得()483k k Z ω=+∈, 0ω>,当0k =时,ω取得最小值43.故选:C. 【点睛】本题考查利用正弦型函数的对称性求参数,解题时要将三角函数的解析式利用三角恒等变换思想化简,并通过对称性列出参数的表达式求解,考查计算能力,属于中等题.8.B解析:B 【分析】先根据同角三角函数关系求tan α,再根据两角差正切公式求结果. 【详解】 由已知得tan α=34,则tan π1tan 141tan 7ααα-⎛⎫-== ⎪+⎝⎭. 选B 【点睛】本题考查同角三角函数关系、两角差正切公式,考查基本求解能力.9.B解析:B 【分析】先化简函数,根据()f x 在区间25,36ππ⎡⎤-⎢⎥⎣⎦上是增函数,则为函数含有零的增区间的子集,再根据区间[]0,π上恰好取得一次最大值,则取得最大值时对应的最小正数解属于[]0,π,最后取交集.【详解】因为()222sin cos sin 24x f x x x ωπωω⎛⎫=-- ⎪⎝⎭,()2sin 1sin sin x x x ωωω=+-,22sin sin sin x x x ωωω=+-,sin x ω=,令22,22k x k k Z πππωπ-+≤≤+∈,则22,22k k x k Z ππππωωωω-+≤≤+∈, 因为()f x 在区间25,36ππ⎡⎤-⎢⎥⎣⎦上是增函数, 25,23,2262,k k k Z ππππωωωωππ⎡⎤∴-++∈⎢⎥⎣⎦⎡⎤-⊆⎢⎥⎣⎦ 所以223562ππωππω⎧-≤-⎪⎪⎨⎪≤⎪⎩,解得35ω≤,令2,2x k k Z πωπ=+∈,因为在区间[]0,π上恰好取得一次最大值, 所以02ππω≤≤,所以12ω≥, 所以ω的取值范围是1325ω≤≤. 故选:B. 【点睛】本题主要考查三角函数的单调性和最值以及二倍角公式的应用,还考查了运算求解的能力,属于中档题.10.C解析:C 【分析】由余弦定理化简可得2222cos c b a a A b c bc bc ++=+,利用三角形面积公式可得2sin a A =,解得22cos 4sin(6c b a A A A b c bc π++=+=+),利用正弦函数的图象和性质即可得解其最大值. 【详解】由余弦定理可得:2222cos b c a bc A +=+,故:22222222cos 22cos c b a a b c a bc A a A b c bc bc bc bc+++++===+,而2111sin 222ABC S bc A ah a ∆===,故2sin a A =,所以:2222cos 2cos 4sin()46c b a a A A A A b c bc bc π++=+=+=+. 故选C . 【点睛】本题主要考查了余弦定理,三角形面积公式,正弦函数的图象和性质在解三角形中的综合应用,考查了转化思想,属于中档题.11.C解析:C 【分析】由诱导公式可转化为cos20cos40cos80︒︒︒,利用二倍角公式正弦公式求解即可. 【详解】sin10sin50sin70cos20cos40cos80︒︒︒=︒︒︒ 1sin160sin 20cos 20cos 40cos8018sin 20sin 208︒∴︒︒︒︒==︒︒ 即1sin10sin 50sin 708︒︒︒= 故选:C 【点睛】本题主要考查了诱导公式,二倍角的正弦公式,考查了运算能力,属于中档题.12.C解析:C 【分析】根据三角恒等变换化简函数()f x ,再由图象的平移得到函数()g x 的解析式,利用函数()g x 的值域,可知12x x -的值为函数()y g x =的最小正周期T 的整数倍,从而得出选项.【详解】函数2()22cos 12cos 22sin 26f x x x x x x π⎛⎫=-+=-=- ⎪⎝⎭,将函数()y f x =的图象上的所有点的横坐标缩短到原来的12倍,得2sin 46y x π⎛⎫=- ⎪⎝⎭的图象;再把所得图象向上平移1个单位,得函数()2sin 416y g x x π⎛⎫==-+ ⎪⎝⎭的图象,所以函数()y g x =的值域为[1,3]-.若()()129g x g x ⋅=,则()13g x =且()23g x =,均为函数()y g x =的最大值, 由42()62x k k Z πππ-=+∈,解得()62k x k Z ππ=+∈; 其中1x 、2x 是三角函数()y g x =最高点的横坐标,12x x ∴-的值为函数()y g x =的最小正周期T 的整数倍,且242T ππ==. 故选:C. 【点睛】本题考查三角函数的恒等变换,三角函数的图象的平移,以及函数的值域和周期,属于中档题.二、填空题13.【分析】把已知等式两边平方求出的值再利用完全平方公式求出的值联立求解再结合同角三角函数间的基本关系可求得的值【详解】已知平方得得解得故答案为:【点睛】本题考查同角三角函数间的基本关系齐次方程的求解属解析:43-【分析】把已知等式两边平方,求出sin cos θθ的值,再利用完全平方公式求出sin cos θθ-的值,联立求解再结合同角三角函数间的基本关系可求得tan θ的值. 【详解】 已知1sin cos 5θθ+=,平方得()2221sin cos sin cos 2sin cos 25θθθθθθ+=++=,得12sin cos 25θθ=-, ∴()222sin cos sin cos 2sin cos 125252449θθθθθθ-=+-=+=,(0,)θπ∈,sin 0,cos 0θθ><,7sin cos 5θθ∴-=,7ta sin cos 1sin cos n 571t n 51a θθθθθθ=-=-+=+,解得4tan 3θ=-. 故答案为:43-【点睛】本题考查同角三角函数间的基本关系,齐次方程的求解,属于中档题.14.【分析】用诱导公式降次公式两角和与差的正余弦公式化简求值得到答案【详解】原式故答案为:【点睛】本题考查了三角关系的化简与求值诱导公式转化角两角和与差公式二倍角公式属于中档题 解析:2-【分析】用诱导公式、降次公式、两角和与差的正余弦公式化简求值,得到答案. 【详解】原式()()22222cos 40cos 502cos 402cos 50sin 55cos 65cos55sin 65sin 5565︒-︒︒-︒==︒︒-︒︒︒-︒. ()2cos80sin 10︒=-︒2sin10sin10︒=-︒2=-故答案为:2-. 【点睛】本题考查了三角关系的化简与求值,诱导公式转化角,两角和与差公式,二倍角公式,属于中档题.15.2020【分析】由条件求出化简待求式为的形式即可求解【详解】因为解得所以故答案为:2020【点睛】本题主要考查了同角三角函数的基本关系考查了运算能力属于中档题解析:2020 【分析】由条件求出tan α,化简待求式为tan α的形式即可求解. 【详解】 因为1tan 20201tan αα+=-,解得2019tan 2021α=, 所以222222221cos sin 2tan 1tan 2tan tan 2cos 2cos sin 1tan 1tan 1tan αααααααααααα+++=+=+---- 2220191(1tan )1tan 2021=202020191tan 1tan 12021αααα+++===---, 故答案为:2020 【点睛】本题主要考查了同角三角函数的基本关系,考查了运算能力,属于中档题.16.①【分析】去掉绝对值利用辅助角公式化简函数解析式利用函数的奇偶性单调性对称性以及函数的最值对选项进行判断即可【详解】当时当时即函数为偶函数图象关于y 轴对称①正确;函数在区间上单调递增在区间上单调递减解析:① 【分析】去掉绝对值,利用辅助角公式化简函数解析式,利用函数的奇偶性,单调性,对称性以及函数的最值对选项进行判断即可. 【详解】(),,042sin cos ,0,42x x f x x x x x ππππ⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦=+=⎛⎫⎛⎤-∈ ⎪ ⎥⎝⎭⎝⎦,当,02x ⎡⎤∈-⎢⎥⎣⎦π时,()()44f x x x f x ππ⎛⎫⎛⎫-=--=+= ⎪ ⎪⎝⎭⎝⎭,当0,2x π⎛⎤∈ ⎥⎝⎦时,()()44f x x x f x ππ⎛⎫⎛⎫-=-+=-= ⎪ ⎪⎝⎭⎝⎭,即函数()f x 为偶函数,图象关于y 轴对称,①正确; 函数()f x 在区间,24ππ⎡⎤--⎢⎥⎣⎦上单调递增,在区间,04π⎡⎤-⎢⎥⎣⎦上单调递减,②错误;因为函数()f x 的定义域为,22ππ⎡⎤-⎢⎥⎣⎦,不关于直线4x π=对称,所以直线4x π=不是一条对称轴,③错误;()f x,④错误.故答案为:①. 【点睛】本题考查余弦函数的性质,考查余弦函数的奇偶性,单调性,对称性以及最值,考查辅助角公式的应用,考查学生的分析推理能力,属于中档题.17.【分析】根据角的范围求出和的值再将变成利用两角差的余弦公式即可求得【详解】因为且所以因为所以因为所以所以故答案为:【点睛】本题考查了同角公式以及两角差的余弦公式考查了学生的计算能力属于中档题 解析:2425-【分析】根据角的范围,求出sin α和cos()αβ+的值,再将cos β变成cos()αβα+-利用两角差的余弦公式即可求得. 【详解】因为02πα<<,且3cos 5α=,所以4sin 5α, 因为π0π2αβ<<<<,所以322ππαβ<+<,因为3sin()5αβ+=-,所以4cos()5αβ+=-,所以cos cos()βαβα=+-cos()cos sin()sin αβααβα=+++433424555525=-⨯-⨯=-.故答案为:2425- 【点睛】本题考查了同角公式以及两角差的余弦公式,考查了学生的计算能力,属于中档题.18.【分析】由题意利用任意角的三角函数的定义两角和差的三角公式求得再利用正弦函数的定义域和值域求出的取值范围【详解】由已知得∴∵∴∴∴的取值范围为故答案为:【点睛】本题主要考查任意角的三角函数的定义两角解析:1,12⎛⎤⎥⎝⎦【分析】由题意利用任意角的三角函数的定义,两角和差的三角公式,求得21sin 6x x πα⎛⎫- ⎪⎝-⎭=再利用正弦函数的定义域和值域,求出21x x -的取值范围. 【详解】 由已知得1233x cos x cos cos ππβααβα⎛⎫=-===- ⎪⎝⎭,,,∴211326x x cos cos cos cos cos sin ππβαααααα⎛⎫⎛⎫-=-=--=-+=- ⎪ ⎪⎝⎭⎝⎭, ∵2παπ<<,∴5366πππα<-<,∴1162sin πα⎛⎫⎛⎤-∈ ⎪ ⎥⎝⎭⎝⎦,, ∴21x x -的取值范围为112⎛⎤⎥⎝⎦,, 故答案为:112⎛⎤ ⎥⎝⎦,. 【点睛】本题主要考查任意角的三角函数的定义,两角和差的三角公式,正弦函数的定义域和值域,属于中档题.19.【分析】根据三角公式得辅助角公式结合三角函数的对称性求出值再利用的取值范围求出函数的最小值【详解】解:令则则因为函数的图象关于直线对称所以即则平方得整理可得则所以函数因为所以当时即函数有最小值为故答解析:【分析】根据三角公式得辅助角公式,结合三角函数的对称性求出a 值,再利用x 的取值范围求出函数的最小值.【详解】解:sin 2cos 2sin 2cos 2y x a x x x ⎫=+=+,令cos θ=,则sin θ=则)()sin 2cos cos 2sin 2y x x x θθθ=⋅+⋅=+. 因为函数sin 2cos 2y x a x =+的图象关于直线12x π=对称,所以sin 2cos 21212a ππ⎛⎫⎛⎫⨯+⨯= ⎪ ⎪⎝⎭⎝⎭,即sin cos 66a ππ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭则122+=平方得22131424a a a ++=+.整理可得(20a -=,则a =所以函数1sin 222sin 2cos 22sin 2223y x x x x x π⎛⎫⎛⎫==+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭. 因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以42,333x πππ⎡⎤+∈⎢⎥⎣⎦ , 当4233x ππ+=时,即2x π=,函数有最小值为故答案为:. 【点睛】本题主要考查三角函数最值求解,结合辅助角公式和利用三角函数的对称性建立方程是解决本题的关键.20.【分析】根据正切差角公式代入可求得将角配凑后可求得根据及可得的范围即可求得的范围进而求得的值【详解】因为由正切差角公式展开可得代入化简可求得则因为所以即所以则所以故答案为:【点睛】本题考查了正切差角 解析:23π-【分析】根据正切差角公式,代入tan 11β=-可求得tan 9α=.将角配凑后可求得()tan 2αβ-=根据tan 19α=<及tan 011β=-<可得,αβ的范围,即可求得2αβ-的范围,进而求得2αβ-的值.【详解】 因为()tan 3αβ-=,tan 11β=- 由正切差角公式展开可得()tan tan tan 1tan tan αβαβαβ--==+⋅代入tan 11β=-tan 3α=⎝⎭化简可求得tan 9α=则()()tan 2tan αβααβ-=+-⎡⎤⎣⎦()()tan tan 1tan tan ααβααβ+-=-⋅-+==因为tan 19α=< 所以04πα<<,即022πα<<tan 0β=< 所以2πβπ<< 则20παβ-<-<所以223παβ-=- 故答案为: 23π- 【点睛】本题考查了正切差角与和角公式的应用,配凑角的形式求正切值,根据三角函数值判断角的取值范围,属于中档题.三、解答题21.(1)()13sin 26f x x π⎛⎫=- ⎪⎝⎭;(2)6. 【分析】(1)根据最高点A 与点B 的距离AB ==,求得,T ω,点7,03B π⎛⎫ ⎪⎝⎭在图象上求解.(2)由(),,463f ππαα⎛⎫∈-= ⎪⎝⎭,求得sin 2,cos 266ππαα⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,然后由cos2cos 266ππαα⎛⎫=-+ ⎪⎝⎭求解.【详解】(1)最高点A 与点B 的距离AB ==,14,2T πω==, ()13sin ,2f x x ϕ⎛⎫=+ ⎪⎝⎭因为点7,03B π⎛⎫ ⎪⎝⎭在图象上, 所以773sin 0,36f ππϕ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭因为2πϕ<,所以6πϕ=-,所以()13sin 26f x x π⎛⎫=-⎪⎝⎭.(2)()43sin 22663f ππααα⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭, 因为,63ππα⎛⎫∈-⎪⎝⎭, 所以2,622πππα⎛⎫-∈- ⎪⎝⎭,所以cos 263πα⎛⎫-== ⎪⎝⎭, 所以cos2cos 266ππαα⎛⎫=-+⎪⎝⎭, cos 2cos sin 2sin 6666ππππαα⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭=. 【点睛】 方法点睛:已知f (x )=A sin(ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)五点法,由ω=2Tπ即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ;(2)代入法,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.22.(1;(2)74π. 【分析】(1)由tan α求得sin ,cos αα,由sin β求得cos β,然后由两角差的余弦公式计算; (2)由两角和的正弦公式求得sin()αβ+后,由3522ππαβ<+<可得αβ+ 【详解】 因为1tan 3α=,所以sin 1cos 3αα=,又因为22sin cos 1αα+=,02πα<<,所以10sin α=,cos 10α=sin β=322πβπ<<,所以cos β===.(1)cos()cos cos sin sin αβαβαβ-=+⎛=⎝⎭10=.(2)因为sin()sin cos cos sin αβαβαβ+=+⎛= ⎝⎭2=-. 因为02πα<<,322πβπ<<,所以3522ππαβ<+<,所以74αβπ+=. 【点睛】方法点睛:本题考查两角和与差的正弦、余弦公式,考查同角间的三角函数关系,求角求值.解题关键是确定“已知角”和“未知角”的关系,以便选用恰当的公式求值.在求角,一般先确定出这个角的范围,在这个范围内选三角函数值是一对一的函数求得这个三角函数值,然后得角,如果不能直接得出一对一的函数,常常需要由已知或已求出的三角函数值缩小角的范围,从而得出角. 23.(1)1a ≤-,(2)6π 【分析】(1)先对函数()f x 化简变形,然后求出函数()f x 在,32x ππ⎡⎤∈-⎢⎥⎣⎦上的最小值,则可得到实数a 的取值范围;(2)根据题意,利用函数sin()y A x ωϕ=+的图像变换规律,先得到()g x 的解析式,函数1()3y g x =-在区间[],3ππ-内的所有零点,即1sin 3x =的实数根,它的实数根共4个,再根据正弦函数图像的对称性得到结论 【详解】解:(1)21()cos cos 22f x x x x π⎛⎫=++-⎪⎝⎭21cos (2sin 1)2x x x =+-12cos 2sin(2)26x x x π=-=-, 若对任意,32x ππ⎡⎤∈-⎢⎥⎣⎦,都有()f x a ≥成立,则只需min ()f x a ≥即可, 因为,32x ππ⎡⎤∈-⎢⎥⎣⎦,所以552[,]666x πππ-∈-,所以当262x ππ-=-即π6x =-时,()f x 取得最小值为1-,所以1a ≤-, (2)先将()f x 的图像上每个点的纵坐标不变,横坐标变为原来的2倍,可得sin()6y x π=-的图像,然后再向左平移6π个单位得到函数()sin g x x =的图像,函数1()3y g x =-在区间[],3ππ-内的所有零点,即1sin 3x =的实数根,它的实数根共4个,设为1234,,,x x x x ,则根据对称性可知这4个根关于直线32x π=对称, 所以1234342x x x x π+++=, 所以12346x x x x π+++=【点睛】关键点点睛:此题考查三角函数恒等变换、正弦函数的定义域和值域,函数恒成立问题,函数sin()y A x ωϕ=+的图像变换规律,第2问解题的关键是运用正弦函数的对称性进行求解,属于中档题24.(1)()π2sin 26f x x ⎛⎫=- ⎪⎝⎭;(2)5ππ11ππ,242242k k ⎡⎤++⎢⎥⎣⎦,k Z ∈,对称轴方程为5π244k x π=+,k Z ∈. 【分析】 (1)先利用图象解得周期和ω,再结合π3f A ⎛⎫=⎪⎝⎭, ()01f =-,解得ϕ和A ,即得解析式;(2)先根据解析式化简()g x ,再利用整体代入法求解单调区间和对称轴方程即可.【详解】解:(1)由图可知7212122T πππ=-=,周期T π=,故22T πω==, 由π12,7π12是函数的两个相邻的零点,则17π2123π12π⎛⎫= ⎪⎭+⎝处取得最大值, 故π2πsin 33f A A ϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,得2πsin 13ϕ⎛⎫+= ⎪⎝⎭,即2π2,32k k Z πϕπ+=+∈, 又ππ22ϕ-<<,故π6ϕ=-, 由()0sin sin 16f A A πϕ⎛⎫==-=- ⎪⎝⎭,得2A =, 所以()π2sin 26f x x ⎛⎫=- ⎪⎝⎭; (2)()πππππ2sin 22sin 24sin 2cos 262666g x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=-⋅--=--- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ π4sin 43x ⎛⎫=-- ⎪⎝⎭,当ππ32π4π2π232k x k +≤-≤+,k Z ∈时,5ππ11ππ242242k k x +≤≤+,()g x 单调递增, 所以()g x 的单调增区间为5ππ11ππ,242242k k ⎡⎤++⎢⎥⎣⎦,k Z ∈, 令ππ4π32x k -=+,对称轴方程为5π244k x π=+,k Z ∈. 【点睛】思路点睛:解决三角函数()sin y A ωx φ=+的图象性质,通常利用正弦函数的图象性质,采用整体代入法进行求解,或者带入验证.25.(1);(2. 【分析】(1)将已知条件两边平方,求得sin α的值,进而求得cos α的值.(2)先求得()cos αβ-的值,然后利用cos cos[()]βααβ=--,结合两角差的余弦公式,求得cos β的值.【详解】(1)将sin cos 222αα-=两边同时平方,得11sin 2α-=,则1sin 2α=,又2παπ∈(,),所以cos 2α==-.(2)由(1)知,1sin ,cos 22αα==-, 因为2παπ∈(,),2βπ∈π(,),所以22ππαβ-<-<.又因为4sin()5αβ-=,所以3cos()5αβ-, 所以cos cos[)]βααβ=--( cos cos()sin sin()ααβααβ=-+-314525=+⨯, 【点睛】关键点点睛:对于三角函数给值求值的问题,关键在于运用已知角的和,差,二倍的运算表示待求的角,再选择相关公式得以求值.26.(1)0(2【分析】(1)利用诱导公式化简,即可求解;(2)先利用二倍角公式化简1cos 202sin 20︒︒+,由切化弦化1tan 5tan 5︒︒-, 通分后利用两角差的正弦公式展开即可化简求值.【详解】利用(1)原式cos(3180)tan 45cos30sin 60110;︒︒︒=⨯︒+-+=-+= (2)原式=22cos 10cos5sin 5sin10()4sin10cos10sin 5cos5︒︒︒=-︒-︒︒︒︒ 22cos10cos 5sin 5cos10cos10cos10sin10sin102cos1012sin10sin 5cos52sin102sin10sin102︒︒-︒︒︒︒=-︒=-︒⋅=-︒︒︒︒︒︒︒cos102sin 20cos102sin(3010)2sin102sin10︒-︒︒-︒-︒==︒︒1cos102(cos10)222sin10︒︒︒︒--=== 【点睛】关键点点睛:三角函数化简求值,需要根据式子的结构特征选择合适的公式,并且要注意公式的正用、逆用,特别是复杂式子的灵活运用,属于难题.。
(常考题)北师大版高中数学必修四第三章《三角恒等变形》测试题(答案解析)(2)
一、选择题1.已知23cos sin2αβ+=,1sin sin cos 3αββ+=,则)os(c 2αβ+=( )A .49B .59C .536D .518-2.函数()2cos ||cos 2f x x x =-在[,]x ππ∈-上的单调增区间为( )A .,3ππ⎡⎤--⎢⎥⎣⎦和0,3π⎡⎤⎢⎥⎣⎦B .,03π⎡⎤-⎢⎥⎣⎦和,3ππ⎡⎤⎢⎥⎣⎦C .,06π⎡⎤-⎢⎥⎣⎦和,6ππ⎡⎤⎢⎥⎣⎦D .,6ππ⎡⎤--⎢⎥⎣⎦和06,π⎡⎤⎢⎥⎣⎦3.已知2π()2sin ()1(0)3f x x ωω=+->,给出下列判断: ①若函数()f x 的图象的两相邻对称轴间的距离为π2,则=2ω; ②若函数()f x 的图象关于点π(,0)12对称,则ω的最小值为5; ③若函数()f x 在ππ[,]63-上单调递增,则ω的取值范围为1(0,]2; ④若函数()f x 在[0,2π]上恰有7个零点,则ω的取值范围为4147[,)2424. 其中判断正确的个数为( ) A .1B .2C .3D .44.若πtan 34α⎛⎫+=- ⎪⎝⎭,则sin 2α=( ) A .2B .1C .45D .35-5.已知25cos2cos αα+=,()4cos 25αβ+=,0,2πα⎛⎫∈ ⎪⎝⎭,3,22πβπ⎛⎫∈ ⎪⎝⎭,则cos β的值为( ) A .45-B .44125C .44125-D .456.已知αβ、均为锐角,满足sin cos αβ==,则αβ+=( ) A .6πB .4π C .3π D .34π 7.若函数()sin cos 2sin cos 1f x x x x x a =+-+-在3,44ππ⎡⎤--⎢⎥⎣⎦上有零点,则实数a的取值范围( ) A.⎡⎤⎣⎦B.94⎡⎤⎢⎥⎣⎦C.⎡-⎣D.94⎤⎥⎦8.在ABC ∆中,已知其面积为22()S a b c =--,则tan A =( ) A .34B .817C .815D .17199.若11sin cos αα+=,则sin cos αα=( ) A .13-B .13C .13-或1D .13或1- 10.平面直角坐标系xOy 中,点()00,P x y 在单位圆O 上,设xOP α∠=,若3,44ππα⎛⎫∈ ⎪⎝⎭,且3sin 45πα⎛⎫+= ⎪⎝⎭,则0x 的值为( )A.10B.10C.10-D.10-11.已知函数()222cos 1f x x x -+,将()f x 的图象上的所有点的横坐标缩短到原来的12,纵坐标保持不变;再把所得图象向上平移1个单位长度,得到函数()y g x =的图象,若()()129g x g x ⋅=,则12x x -的值可能为( ) A .54π B .34π C .2π D .3π 12.已知()()()ππcos sin 22cos πtan πf ααααα⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭=---,则2020π3f ⎛⎫-= ⎪⎝⎭( )A. B .12-C .12D二、填空题13.给出下列命题:①存在实数α使得sin cos 1αα=; ②存在实数α使得3sin cos 2αα+=; ③5sin 22y x π⎛⎫ ⎪⎝=⎭-是偶函数; ④8x π=是函数5sin 24y x π⎛⎫=+⎪⎝⎭的图象的一条对称轴方程; ⑤若α、β是第一象限角,且αβ>,则tan tan αβ>,其中正确命题的序号是______.14.已知cos 0,4102ππθθ⎛⎫⎛⎫+=∈ ⎪ ⎪⎝⎭⎝⎭,则sin 23πθ⎛⎫-= ⎪⎝⎭______15.经过点(4,1)P -作圆2220x y y +-=的切线,设两个切点分别为A ,B ,则tan APB ∠=__________.16.若5,24ππα⎛⎫∈⎪⎝⎭,3cos 45πα⎛⎫-= ⎪⎝⎭,则cos2=α______. 17.化简tan 20tan 25tan 20?tan 25︒+︒+︒︒=_____. 18.若函数()()()sin cos 2f x x x πϕϕϕ⎛⎫=+++<⎪⎝⎭为偶函数,则ϕ=______. 19.若tan 30,2tan 10αβ-=-=,则()tan αβ+=________.20.设)sin17cos172a =︒+︒,22cos 131b =︒-,c =则a ,b ,c 的大小关系是______.三、解答题21.已知函数())2sin cos 0f x x x x ωωωω=⋅+>图象的两条相邻对称轴之间的距离为2π. (1)求函数()y f x =的解析式及其图象的对称轴方程; (2)若函数()13y f x =-在()0,π上的零点为1x 、2x ,求()12cos x x -的值.22.函数2()sin cos (0)f x x x x ωωωω=+⋅>且满足___________. ①函数()f x 的最小正周期为π;②已知12x x ≠,()()1212f x f x ==,且12x x -的最小值为2π,在这两个条件中任选一个,补充在上面横线处,然后解答问题. (1)确定ω的值并求函数()f x 的单调区间;(2)求函数()f x 在0,3x π⎡⎤∈⎢⎥⎣⎦上的值域. 23.如图,角θ的顶点与平面直角坐标系xOy 的原点重合,始边与x 轴的非负半轴重合,终边与单位圆交于点P ,若点P 的坐标为04(,)5y -.(1)求tan sin 2θθ-的值;(2)若将OP 绕原点O 按逆时针方向旋转40︒,得到角α,设tan m α=,求()tan 85θ+︒的值.24.已知函数()2sin cos cos26f x x x x π⎫⎛=-+ ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦. (1)求()f x 的单调递增区间和最值;(2)若函数()()g x f x a =-有且仅有一个零点,求实数a 的取值范围. 25.已知函数3()sin (cos 3)f x x x x =+. (1)求3f π⎛⎫ ⎪⎝⎭的值及函数()f x 的单调增区间; (2)若,122x ππ⎡⎤∀∈⎢⎥⎣⎦,不等式()2m f x m <<+恒成立,求实数m 的取值集合. 26.已知关于x 的方程21204x bx -+=的两根为sin θ和cos θ,3,44θππ⎛⎫∈ ⎪⎝⎭. (1)求实数b 的值; (2)求2sin cos 1cos sin θθθθ+-的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】将所给条件分别用二倍角公式变形可以得到2cos cos22αβ-=,22sin sin 23αβ+=,然后平方相加化简计算即可求得结果. 【详解】由23cos sin2αβ+=知2cos cos22αβ-=①,在1sin sin cos 3αββ+=两边同时乘以2得22sin sin 23αβ+=②,将①②两个等式平方相加得()4414cos 249βα+-+=+,解得()5cos 236αβ+=.故选:C. 【点睛】思路点睛:出现两个角的三角函数的和差,求两角和的正弦或余弦时常采用平方相加或平方相减,化简计算可得到两角和或差的三角函数值.2.A解析:A 【分析】先把函数解析式化简,然后令cos t x =,利用复合函数单调性求解即可 【详解】 当[]0,x π∈时,22()2cos ||cos 2=2cos (2cos 1)2cos 2cos 1f x x x x x x x =---=-++,令cos [1,1]t x t =∈-,,则cos t x =在[]0,x π∈上为减函数;而2221y t t =-++ 对称轴为12t =, ∴2221y t t =-++在1[1,]2t ∈-上单增,在1[,1]2t ∈上单减, ∴()y f x =在0,3x π⎡⎤∈⎢⎥⎣⎦上为增函数,在,3x ππ⎡⎤∈⎢⎥⎣⎦上为减函数. 又()2cos ||cos 2f x x x =-为偶函数,其图像关于y 轴对称,∴()y f x =在,3ππ⎡⎤--⎢⎥⎣⎦上为增函数,在,03π⎡⎤-⎢⎥⎣⎦上为减函数. 故()y f x =的单调增区间为,3ππ⎡⎤--⎢⎥⎣⎦和0,3π⎡⎤⎢⎥⎣⎦. 故选:A 【点睛】复合函数的单调性口诀:同增异减,其具体含义为: 内外函数的单调性相同(同),则复合函数为增函数(增); 内外函数的单调性相反(异),则复合函数为减函数(减).3.C解析:C 【分析】先将()f x 化简,对于①,由条件知,周期为π,然后求出ω;对于②,由条件可得2()612k k Z ωπππ+=∈,然后求出16()k k Z ω=-+∈,即可求解;对于③,由条件,得2362()22362k k Z k ωππππωππππ⎧-+-+⎪⎪∈⎨⎪++⎪⎩,然后求出ω的范围;对于④,由条件,得74221212πππππωωωω-<-,然后求出ω的范围;,再判断命题是否成立即可. 【详解】解:2π2ππ()2sin ()1=-cos(2)=sin(2)336f x x x x ωωω=+-++, ∴周期22T ππωω==. ①.由条件知,周期为π,1w ∴=,故①错误;②.函数()f x 的图象关于点π(,0)12对称,则2()612k k Z ωπππ+=∈, 16()k k Z ω∴=-+∈,(0)>ω∴ω的最小值为5, 故②正确;③.由条件,ππ[,]63x ∈-,ππ2π236636x πωπωω-+≤+≤+ 由函数()f x 在ππ[,]63-上单调递增得2362()22362k k Z k ωππππωππππ⎧-+-+⎪⎪∈⎨⎪++⎪⎩, 12ω∴≤, 又0>ω,102ω∴<, 故③正确.④.由()sin(2)06f x x πω=+=得2()6x k k Z πωπ+=∈,解得()212k x k Z ππωω=-∈()sin(2)6f x x πω=+且()f x 在[0,2]π上恰有7个零点,可得74221212πππππωωωω-<-, ∴41472424ω<, 故④正确; 故选:C 【点睛】本题考查了三角函数的图象与性质,考查了转化思想和推理能力,属中档题.关键点点睛:利用整体思想,结合正弦函数的图像和性质是根据周期,对称,单调性,零点个数求求解参数的关键.4.C解析:C 【分析】先利用切化弦结合两角和的公式展开,平方后由二倍角正弦公式可得结果. 【详解】∵πsin πsin cos 4tan 3π4cos sin cos 4ααααααα⎛⎫+ ⎪+⎛⎫⎝⎭+===- ⎪-⎛⎫⎝⎭+ ⎪⎝⎭, ∴()()22sin cos 9cos sin αααα+=-,即1sin 291sin 2αα+=-,解得4sin 25α=, 故选:C. 【点睛】本题主要考查了两角和公式以及切化弦思想的应用,等式两边平方是解题的关键,属于中档题.5.B解析:B 【分析】先根据二倍角余弦公式求cos α,解得cos2α,最后根据两角差余弦公式得结果. 【详解】2125cos2cos 10cos cos 30cos 2ααααα+=∴--=∴=-或35因为0,2πα⎛⎫∈ ⎪⎝⎭,所以3cos 5α=22443247sin ,sin 22,cos 2cos sin 5552525ααααα∴==⨯⨯==-=-,42ππα⎛⎫∴∈ ⎪⎝⎭()()43cos 2,2(2,3)sin 255αβαβππαβ+=+∈∴+=cos cos(22)cos(2)cos 2sin(2)sin 2βαβααβααβα∴=+-=+++4732444525525125=-⨯+⨯=故选:B 【点睛】本题考查二倍角余弦公式、两角差余弦公式,考查基本分析求解能力,属中档题.6.B解析:B 【分析】依题意,求cos (α+β),结合角的范围可求得α+β的值. 【详解】由已知α、β均为锐角,sin αβ==,cos αβ∴==又cos (α+β)=cosαcosβ﹣sinαsinβ=2, ∵0<α+β<π,∴α+β=4π. 故选B . 【点睛】解答给值求角问题的一般思路:①求角的某一个三角函数值,此时要根据角的范围合理地选择一种三角函数;②确定角的范围,此时注意范围越精确越好;③根据角的范围写出所求的角.7.A解析:A 【分析】由题意结合函数零点的概念可得方程1sin cos 2sin cos a x x x x -=+-在3,44ππ⎡⎤--⎢⎥⎣⎦上有解,令sin cos 2sin cos y x x x x =+-,通过换元法求得y 在3,44ππ⎡⎤--⎢⎥⎣⎦上的值域即可【详解】因为函数()sin cos 2sin cos 1f x x x x x a =+-+-在3,44ππ⎡⎤--⎢⎥⎣⎦上有零点, 所以方程1sin cos 2sin cos a x x x x -=+-在3,44ππ⎡⎤--⎢⎥⎣⎦上有解,设sin cos 4t x x x π⎛⎫=+=+ ⎪⎝⎭,3,44x ππ⎡⎤∈--⎢⎥⎣⎦,∴,204x ππ⎡⎤+∈-⎢⎥⎣⎦,∴t ⎡⎤∈⎣⎦,212sin cos t x x =+,∴2215sin cos 2sin cos 124y x x x x t t t ⎛⎫=+-=-+=--+ ⎪⎝⎭, 当0t =时,y 取得最大值1,当t =y取得最小值1-,故可得111a ≤-≤,∴2a ≤≤. 故选:A. 【点睛】本题考查了函数与方程的综合应用,考查了三角函数的性质及三角恒等变换的应用,考查了逻辑思维能力和运算求解能力,属于中档题.8.C解析:C 【分析】由题结合余弦定理可得1si s 2n 22co bc A c A bc b +=,整理化简有22sincos 42sin 222A A A =⨯,进而可计算出1tan 24A =,再由正切的二倍角公式计算可得答案. 【详解】 由题意得222221sin 2()2S bc A a b c b c a bc =--+=+=--, 又因为2222cos b c a bc A +-=,所以1si s 2n 22co bc A c A bc b +=, 整理得()41s c s i o n A A =-,所以22sincos 42sin 222A A A =⨯ 即cos 4sin 22A A =,所以1tan 24A = ,则28tan 1512tan2tan 2A AA ==-【点睛】本题考查的知识点有三角形的面积公式,余弦定理,二倍角公式,属于一般题.9.A解析:A 【分析】将已知式同分之后,两边平方,再根据22sin cos 1αα+=可化简得方程23(sin cos )2sin cos 10αααα--=,解出1sin cos 3αα=-或1,根据111sin cos sin 2,222ααα⎡⎤=∈-⎢⎥⎣⎦,得出1sin cos 3αα=-.【详解】由11sin cos sin cos sin cos αααααα++== 两边平方得22(sin cos )(sin cos )αααα+ 222sin cos 2sin cos (sin cos )αααααα++=212sin cos 3(sin cos )αααα+==23(sin cos )2sin cos 10αααα∴--=,1sin cos 3αα∴=-或1,111sin cos sin 2,222ααα⎡⎤=∈-⎢⎥⎣⎦,1sin cos 3αα∴=-.故选:A. 【点睛】本题考查了同角三角函数间的基本关系,以及二倍角的正弦函数公式,属于中档题,要注意对sin cos αα范围的判断.10.C解析:C 【分析】利用两角和差的余弦公式以及三角函数的定义进行求解即可. 【详解】3,44ππα⎛⎫∈⎪⎝⎭, ,42ππαπ⎛⎫∴+∈ ⎪⎝⎭, 3sin 45πα⎛⎫+= ⎪⎝⎭,4cos 45πα⎛⎫∴+=- ⎪⎝⎭,则0cos cos cos cos sin sin 444444x ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫==+-=+++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦43525210=-⨯+⨯=-, 故选C . 【点睛】本题主要考查两角和差的三角公式的应用,结合三角函数的定义是解决本题的关键.11.C解析:C 【分析】根据三角恒等变换化简函数()f x ,再由图象的平移得到函数()g x 的解析式,利用函数()g x 的值域,可知12x x -的值为函数()y g x =的最小正周期T 的整数倍,从而得出选项.【详解】函数2()22cos 12cos 22sin 26f x x x x x x π⎛⎫=-+=-=- ⎪⎝⎭,将函数()y f x =的图象上的所有点的横坐标缩短到原来的12倍,得2sin 46y x π⎛⎫=- ⎪⎝⎭的图象;再把所得图象向上平移1个单位,得函数()2sin 416y g x x π⎛⎫==-+ ⎪⎝⎭的图象,所以函数()y g x =的值域为[1,3]-.若()()129g x g x ⋅=,则()13g x =且()23g x =,均为函数()y g x =的最大值, 由42()62x k k Z πππ-=+∈,解得()62k x k Z ππ=+∈; 其中1x 、2x 是三角函数()y g x =最高点的横坐标,12x x ∴-的值为函数()y g x =的最小正周期T 的整数倍,且242T ππ==. 故选:C. 【点睛】本题考查三角函数的恒等变换,三角函数的图象的平移,以及函数的值域和周期,属于中档题.12.B解析:B 【分析】根据诱导公式和同角三角函数关系式,化简函数式,最后代值计算即可. 【详解】()()()cos sin 22cos tan f ππαααπαπα⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭=--- ()()sin sin 2cos tan πααπαα⎡⎤⎛⎫-⋅-- ⎪⎢⎥⎝⎭⎣⎦=+⋅- ()()sin cos cos tan αααα-⋅-=-⋅-sin cos sin cos cos ααααα⋅=⋅cos α=,所以2020202020201cos cos cos 673cos 333332f ππππππ⎛⎫⎛⎫⎛⎫-=-==+=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:B . 【点睛】本题考查利用诱导公式和同角三角函数关系式化简三角函数式并求值,注意三角函数值的符号变化,属于基础题.二、填空题13.③④【分析】利用二倍角的降幂公式结合正弦函数的有界性可判断①的正误;利用辅助角公式结合正弦函数的有界性可判断②的正误;化简函数解析式结合余弦函数的奇偶性可判断③的正误;利用代入检验法可判断④的正误;解析:③④ 【分析】利用二倍角的降幂公式结合正弦函数的有界性可判断①的正误;利用辅助角公式结合正弦函数的有界性可判断②的正误;化简函数解析式,结合余弦函数的奇偶性可判断③的正误;利用代入检验法可判断④的正误;利用特殊值法可判断⑤的正误. 【详解】对于命题①,111sin cos sin 2,222ααα⎡⎤=∈-⎢⎥⎣⎦, 所以,不存在实数α使得sin cos 1αα=,①错误;对于命题②,sin cos 4πααα⎛⎫⎡+=+∈ ⎪⎣⎝⎭, 所以,不存在实数α使得3sin cos 2αα+=,②错误; 对于命题③,si o 5s 2n c 2i s n 222x y x x ππ⎛⎫⎛⎫== ⎪⎪⎝-⎭-⎭=⎝, ()cos 2cos2x x -=,所以,函数5sin 22y x π⎛⎫⎪⎝=⎭-是偶函数,③正确;对于命题④,当8x π=时,min 53sin 2sin 1842y y πππ⎛⎫=⨯+==-= ⎪⎝⎭, 所以,8x π=是函数5sin 24y x π⎛⎫=+⎪⎝⎭的图象的一条对称轴方程,命题④正确; 对于命题⑤,取9244παππ=+=,4πβ=,αβ>,但tan 1tan αβ==,⑤错误.因此,正确命题的序号为③④. 故答案为:③④. 【点睛】本题考查有关三角函数命题真假的判断,考查了三角函数的有界性、正弦型函数的奇偶性、对称性以及正切值大小的比较,考查计算能力与推理能力,属于中等题.14.【分析】先由求得的值进而求得的值再根据两角差的正弦公式求得的值【详解】依题意即故由于而所以故因此所以【点睛】本小题主要考查二倍角公式考查同角三角函数的基本关系式考查两角差的正弦公式考查化归与转化的数【分析】 先由cos 4πθ⎛⎫+⎪⎝⎭求得πcos 22θ⎛⎫+ ⎪⎝⎭的值,进而求得sin 2,cos 2θθ的值,再根据两角差的正弦公式,求得sin 23πθ⎛⎫- ⎪⎝⎭的值. 【详解】 依题意πcos 22θ⎛⎫+⎪⎝⎭2π42cos 145θ⎛⎫=+-=- ⎪⎝⎭,即4sin 25θ-=-,故4sin 25θ=,由于πππ3π0,,,2444θθ⎛⎫⎛⎫∈+∈ ⎪ ⎪⎝⎭⎝⎭,而πcos 04θ⎛⎫+> ⎪⎝⎭,所以πππ,442θ⎛⎫+∈ ⎪⎝⎭,故ππ0,,20,42θθ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,因此2163cos 21sin 21255θθ=-=-=.所以ππsin 2sin 2cos cos 2sin 333πθθθ⎛⎫-=- ⎪⎝⎭43310-=.【点睛】本小题主要考查二倍角公式,考查同角三角函数的基本关系式,考查两角差的正弦公式,考查化归与转化的数学思想方法,属于中档题.15.【分析】由圆的方程可以求出圆心坐标及半径进而可以求出从而求出的值由利用二倍角的正切公式可以求出的值【详解】圆的方程可化为则圆心为半径为r=1设则【点睛】本题考查了直线与圆的位置关系考查了圆的性质考查 解析:199【分析】由圆的方程可以求出圆心坐标及半径,进而可以求出25PD =,1DA =,从而求出tan APD ∠的值,由2APB APD ∠∠=,利用二倍角的正切公式,可以求出tan APB ∠的值. 【详解】圆的方程可化为()2211x y +-=,则圆心为()0,1D ,半径为r =1,设APD ∠θ=,AP DA ⊥,()2241125PD =+--=,2220119PA PD r =-=-=,则19tan 19DA PA θ===,22192tan 1919 tan tan211tan 119APB θθθ∠====--.【点睛】本题考查了直线与圆的位置关系,考查了圆的性质,考查了两点间的距离公式,二倍角的正切公式,属于基础题.16.【分析】由已知利用诱导公式求得然后分析角的范围得到的范围则答案可求【详解】∵即又∴则∴得∴故答案为:【点睛】角变换用已知角构造所求角是解决问题的关键如上:25【分析】由已知利用诱导公式求得sin 2α,然后分析角α的范围,得到2α的范围,则答案可求. 【详解】∵3cos 45πα⎛⎫-= ⎪⎝⎭,2237cos 22cos 12144525ππαα⎡⎤⎛⎫⎛⎫⎛⎫∴-=--=⨯-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,即7sin 225α=, 又5,24ππα⎛⎫∈ ⎪⎝⎭,∴,44ππαπ⎛⎫-∈ ⎪⎝⎭,3cos cos 0445ππαα⎛⎫⎛⎫-=-=> ⎪ ⎪⎝⎭⎝⎭, 则,442πππα⎛⎫-∈ ⎪⎝⎭,∴3,24ππα⎛⎫∈ ⎪⎝⎭,得32,2παπ⎛⎫∈ ⎪⎝⎭,∴24cos 225α==-. 故答案为:2425-. 【点睛】角变换用已知角构造所求角是解决问题的关键,如上:2=224ππαα⎛⎫-- ⎪⎝⎭17.1【详解】分析:首先从式子中分析得出角的大小借助于两角和的正切公式得到与之间的关系借助于角的正切值求得结果详解:因为所以所以有故答案为:1点睛:该题考查的是有关三角函数化简求值问题在解题的过程中涉及解析:1 【详解】分析:首先从式子中分析得出2025︒︒+角的大小,借助于两角和的正切公式,得到tan 20tan 25︒︒+与tan 20tan 25︒︒⋅之间的关系,借助于45︒角的正切值,求得结果. 详解:因为tan 20tan 25tan(2025)1tan 20tan 25︒︒︒︒︒︒++=-,所以1tan 20tan 25tan 20tan 25︒︒︒︒-=+, 所以有tan 20tan 25tan 20tan 251︒︒︒︒++=, 故答案为:1.点睛:该题考查的是有关三角函数化简求值问题,在解题的过程中,涉及到的知识点有两角和的正切公式的逆用,注意45︒角的正切值的大小.18.【分析】先用辅助角公式函数化简为由偶函数的条件可知是函数的对称轴则又由求得的值【详解】由得因为是偶函数故为其对称轴则又因为所以故答案为:【点睛】本题考查了三角函数的恒等变换三角函数的奇偶性对称性属于4【分析】先用辅助角公式函数化简为())4f x x πϕ=++,由偶函数的条件可知,0x =是函数的对称轴,则()42k k Z ππϕπ+=+∈,又由2πϕ<求得ϕ的值.【详解】由()()()sin cos ()2f x x x πϕϕϕ=+++<得())4f x x πϕ=++,因为()f x 是偶函数,故0x =为其对称轴,()42k k Z ππϕπ+=+∈,则()4k k ϕπ=π+∈Z , 又因为2πϕ<,所以4πϕ=.故答案为:4π. 【点睛】本题考查了三角函数的恒等变换,三角函数的奇偶性,对称性,属于中档题.19.【分析】由题得再利用两角和公式求解即可【详解】因为所以所以故答案为:【点睛】本题考查正切函数的两角和公式属于基础题 解析:7-【分析】由题得tan 3α=,1tan 2β=,再利用两角和公式求解即可. 【详解】因为tan 30,2tan 10αβ-=-=, 所以tan 3α=,1tan 2β=, 所以()1t 32731n 2a αβ++==--, 故答案为:7-. 【点睛】本题考查正切函数的两角和公式,属于基础题.20.【分析】根据两角和的正弦公式二倍角公式诱导公式即可将化简再根据正弦函数的单调性即可比较出大小关系【详解】所以故答案为:【点睛】本题主要考查两角和的正弦公式二倍角公式诱导公式的应用以及正弦函数的单调性 解析:c a b <<【分析】根据两角和的正弦公式,二倍角公式,诱导公式,即可将,a b 化简,再根据正弦函数的单调性即可比较出大小关系. 【详解】)sin17cos17sin17cos 45cos17sin 45sin 62a =︒+︒=︒+︒=,22cos 131cos 26sin 64b =︒-==,sin 60c ==, 所以,c a b <<. 故答案为:c a b <<. 【点睛】本题主要考查两角和的正弦公式,二倍角公式,诱导公式的应用,以及正弦函数的单调性的应用,属于基础题.三、解答题21.(1)()sin 23πf x x ⎛⎫=- ⎪⎝⎭,对称轴方程为()5122k x k Z ππ=+∈;(2)13. 【分析】(1)利用三角恒等变换化简函数解析式为()sin 23f x x πω⎛⎫=- ⎪⎝⎭,求出函数()f x 的最小正周期,可得出函数()f x 的解析式,解方程()232x k k Z πππ-=+∈可解得函数()y f x =图象的对称轴方程;(2)求得121sin 2sin 2333x x ππ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,分析得出点()()11,x f x 、()()22,x f x 关于直线512x π=对称,可得出1256x x π+=,再利用诱导公式可求得()12cos x x -的值.【详解】 (1)())221sin cos sin 22cos 12f x x x x x x ωωωωω=⋅+=--1sin 2sin 223x x x πωωω⎛⎫==- ⎪⎝⎭, 由于函数()f x 图象的两条相邻对称轴之间的距离为2π,则该函数的最小正周期为22T ππ=⨯=,0ω>,所以,222Tπω==,解得1ω=. 所以,()sin 23πf x x ⎛⎫=- ⎪⎝⎭, 由()232x k k Z πππ-=+∈,解得()5122k x k Z ππ=+∈, 所以,函数()y f x =图象的对称轴方程为()5122k x k Z ππ=+∈; (2)由题意可得()1111sin 20333f x x π⎛⎫-=--= ⎪⎝⎭,则11sin 233x π⎛⎫-= ⎪⎝⎭,同理可得21sin 233x π⎛⎫-= ⎪⎝⎭.当0πx <<时,则52333x πππ-<-<, 若()20,3x ππ-∈,设232x ππ-=,解得512x π=. 因为()()1213f x f x ==,所以,点()()11,x f x 、()()22,x f x 关于直线512x π=对称. 所以,1256x x π+=. 所以,()12111155cos cos cos 2cos 26632x x x x x x ππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫-=--=-=-- ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦11sin 233x π⎛⎫=-= ⎪⎝⎭.【点睛】思路点睛:利用三角恒等变换思想化简正弦型函数解析式的步骤如下: (1)利用两角和与差的正弦、余弦公式展开;(2)利用二倍角的正弦、余弦的降幂公式将二次式降幂,并合并同类项; (3)利用辅助角公式化简.22.条件选择见解析;(1)1ω=,单调增区为,()63k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,单调减区间为5,()36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)30,2⎡⎤⎢⎥⎣⎦.【分析】化简()f x 1sin 262x πω⎛⎫=-+ ⎪⎝⎭. (1)若选① ,根据周期公式可得ω;若选②,由12min22T x x π-==,可得周期和ω,再根据正弦函数的单调性可得()f x 单调区间; (2)由x 的范围求出26x π-及1sin 262x π⎛⎫-+ ⎪⎝⎭的范围可得答案. 【详解】1cos 2()cos 2xf x x x ωωω-=+112cos 2222x x ωω=-+ 1sin 262x πω⎛⎫=-+ ⎪⎝⎭.(1)若选① ,则有T π=,222πωπ∴==,即1ω=,若选②,则有12min22T x x π-==, 222πωπ∴==,即1ω=,综上1()sin 262f x x π⎛⎫=-+ ⎪⎝⎭,于是由222()262πππππ-+≤-≤+∈k x k k Z ,解得()63ππππ-+≤≤+∈k x k k Z ,即()f x 单调增区为,()63k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,由3222()262k x k k Z πππππ+≤-≤+∈, 解得5()36k x k k Z ππππ+≤≤+∈, 所以()f x 单调减区间为5,()36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦.(2)1()sin 262f x x π⎛⎫=-+ ⎪⎝⎭,若0,3x π⎡⎤∈⎢⎥⎣⎦,则2,662x πππ⎡⎤-∈-⎢⎥⎣⎦, 则13sin 20,622x π⎛⎫⎡⎤-+∈ ⎪⎢⎥⎝⎭⎣⎦,所以()f x 值域为30,2⎡⎤⎢⎥⎣⎦.【点睛】本题考查了()()sin f x A x b ωϕ=++的性质,有关三角函数的解答题,考查基础知识、基本技能和基本方法,且难度不大,主要考查以下四类问题;(1)与三角函数单调性有关的问题;(2)与三角函数图象有关的问题;(3)应用同角三角函数的基本关系和诱导公式求三角函数值及化简和等式证明的问题;(4)与周期、对称性有关的问题,考查了计算能力. 23.(1)21100;(2)11m m+-. 【分析】(1)由三角函数定义求得cos θ,再由同角间三角函数关系求得sin θ,tan θ,用二倍角公式得sin 2θ后可得结论;(2)由角的关系得8545θα+︒=+︒,利用两角和的正切公式可求得tan(85)θ+︒. 【详解】解:(1)由题意得:4cos 5θ=-,且角θ为第二象限的角则3sin 5θ==,3tan 4θ=- ∴tan sin 2tan 2sin cos θθθθθ-=-334324212455425100⎛⎫=--⨯⨯-=-+= ⎪⎝⎭(2)由题意知40αθ=+︒,则40θα=-︒ 则()()tan 85tan 45θα+︒=+︒tan tan 451tan tan 45αα+︒=-︒11m m +=-. 【点睛】关键点点睛:本题考查三角函数的定义,两角和与差的正切公式,二倍角公式,同角韹三角函数关系.解题确定角的关系是关键.由旋转得40αθ=+︒,则40θα=-︒,从而有8545θα+︒=+︒,再结合已知条件柯得结论.确定已知角和未知角的关系选用恰当的公式也是解题关键.24.(1)()f x 的单调递增区间是 06,π⎡⎤⎢⎥⎣⎦,()()min max 30,2f x f x ==;(2)3[0,1)2⎧⎫⋃⎨⎬⎩⎭ 【分析】 (1)利用两角差的余弦公式,二倍角公式和辅助角法,将函数转化为()1sin 262f x x π⎛⎫=++ ⎪⎝⎭,再利用正弦函数的性质求解. (2)将函数()()g x f x a =-有且仅有一个零点,转化为函数()y f x = 与y a =有且仅有一个交点,利用数形结合法求解.【详解】(1)函数()2sin cos cos26f x x x x π⎫⎛=-+ ⎪⎝⎭,12sin sin cos 22x x x x ⎫=++⎪⎪⎝⎭,2cos sin cos 2x x x x =++,112cos 222x x =++, 1sin 262x π⎛⎫=++ ⎪⎝⎭, 令222,262k x k k Z πππππ-≤+≤+∈,解得 ,36k x k k Z ππππ-≤≤+∈, 因为0,2x π⎡⎤∈⎢⎥⎣⎦, 所以函数()f x 的单调递增区间是 06,π⎡⎤⎢⎥⎣⎦. 因为0,2x π⎡⎤∈⎢⎥⎣⎦,则72,666x πππ⎡⎤+∈⎢⎥⎣⎦, 所以1sin 2,162x π⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦, 所以()()min max 30,2f x f x ==. (2)因为()()g x f x a =-有且仅有一个零点,所以()f x a =有且仅有一个零点,即函数()y f x = 与y a =有且仅有一个交点,如图所示:由图象知:32a =或 [0,1)a ∈, 所以实数a 的取值范围是3[0,1)2⎧⎫⋃⎨⎬⎩⎭. 【点睛】方法点睛:1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式. 2.函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2T ωπ=,y =tan(ωx +φ)的最小正周期为T πω=. 3.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t 的性质.25.(135,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈;(2)11,2⎛⎫-- ⎪⎝⎭. 【分析】(1)根据三角恒等变换化简函数()f x ,代值求3f π⎛⎫⎪⎝⎭,用整体代换法求单调递增区间; (2)求出函数在,122ππ⎡⎤⎢⎥⎣⎦上的值域,原不等式等价于函数()f x 在,122ππ⎡⎤⎢⎥⎣⎦上的值域是(),2m m +的子集,列出不等式组化简即可.【详解】解:(1))2313()sin (cos 3)sin 22sin 12f x x x x x x =+=+- 13sin 22sin 2223x x x π⎛⎫=-=- ⎪⎝⎭所以sin 2s 3in 333f ππππ⎛⎛⎫= ⎫⎛⎫⨯-== ⎪ ⎪⎝⎭⎝⎭⎪⎝⎭ 由222()232k x k k Z πππππ-≤-≤+∈得5()1212k x k k Z ππππ-≤≤+∈, 故函数的单调增区间为5,()1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(2)当,122x ππ⎡⎤∈⎢⎥⎣⎦时,22,363x πππ⎡⎤-∈-⎢⎥⎣⎦, 所以1(),12f x ⎡⎤∈-⎢⎥⎣⎦, 因为,122x ππ⎡⎤∀∈⎢⎥⎣⎦不等式()2m f x m <<+恒成立 所以1112212m m m ⎧<-⎪⇒-<<-⎨⎪<+⎩ 所以实数m 的取值集合11,2⎛⎫--⎪⎝⎭. 【点睛】求三角函数单调区间的2种方法:(1)代换法:就是将比较复杂的三角函数处理后的整体当作一个角u (或t ),利用基本三角函数的单调性来求所要求的三角函数的单调区间;(2)图象法:函数的单调性表现在图象上是从左到右,图象上升趋势的区间为单调递增区间,图象下降趋势的区间为单调递减区间,画出三角函数的图象,结合图象易求它的单调区间.26.(1)b =2). 【分析】 ()1根据题意,利用韦达定理列出关系式,利用完全平方式和同角三角函数的基本关系化简求出b 的值,利用3,44θππ⎛⎫∈ ⎪⎝⎭对b 的值进行取舍即可. ()2由()1可知sin cos θθ+的值,利用()2sin cos 12sin cos θθθθ-=-,求出sin cos θθ-的值,代入原式即可.【详解】(1)∵sin ,cos θθ为关于x 的方程21204x bx -+=的两根,∴220sin cos 21sin cos 8b b θθθθ⎧⎪∆=-≥⎪⎪+=⎨⎪⎪⋅=⎪⎩, 所以()221sin cos 1+2sin cos 1+44b θθθθ+===,即21144b =+,解得b =520∆=->, 又3,44θππ⎛⎫∈ ⎪⎝⎭,∴sin cos 0θθ+>,∴b = (2)由(1),得sin cos θθ+=,又3,44θππ⎛⎫∈ ⎪⎝⎭,所以sin cos θθ>, ∴sin cos 2θθ-===,∴12+12sin cos 1cos sin 6θθθθ⨯+==--. 【点睛】关键点点睛:本题考查同角三角函数的基本关系与一元二次方程中的韦达定理相结合,通过利用韦达定理得到sin cos θθ+和cos sin θθ的表达式,再结合()2sin cos 12sin cos θθθθ+=+是求解本题的关键;其中由3,44θππ⎛⎫∈ ⎪⎝⎭对取值进行取舍是本题的易错点.。
高中数学北师大版必修4习题:第三章三角恒等变形 检测 Word版含解析
第三章检测(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y=3sin x-3√3cos x的最大值是()A.3+3√3B.4√3C.6D.3解析:∵函数y=3sin x-3√3cos x=6si n(x-π3),∴所求的最大值是6.答案:C2.函数y=2si n(π3-x)−cos(π6+x)(x∈R)的最小值等于()A.-3B.-2C.-1D.−√5解析:y=2si n(π3-x)−cos(π6+x)=2cos(π6+x)−cos(π6+x)=cos(π6+x),故最小值为-1.答案:C3.计算34cos215°−38等于()A.−3√316B.3√316C.316D.−316解析:34cos215°−38=38(2cos215°−1)=38cos 30°=38×√32=3√316.答案:B4.函数g(x)的图像是函数f(x)=sin 2x−√3cos 2x的图像向右平移π12个单位长度得到的,则函数g(x)的图像的对称轴为()A.直线x=π4B.直线x=π3C.直线x=π2D.直线x=π6解析:f(x)=sin 2x−√3cos 2x=2si n(2x-π3),其图像向右平移π12个单位长度得到g(x)=2si n[2(x-π12)-π3]=2sin(2x-π2)=−2cos 2x.由cos 2x=±1,得2x=kπ(k∈Z),即x=kπ2(k∈Z),所以函数g(x)的图像的对称轴为直线x=kπ2(k∈Z).只有选项C符合条件.答案:C5.在△ABC中,C=90°,则函数y=sin2A+2sin B的最值情况是()A.有最大值,无最小值B.无最大值,有最小值C.有最大值,也有最小值D.无最大值,也无最小值解析:y=sin2A+2sin B=sin2A+2cos A=1-cos2A+2cos A=-(cos A-1)2+2,而0<cos A<1,故函数无最大值也无最小值.答案:D6.如图,在平面直角坐标系中,已知两点A(cos 80°,sin 80°),B(cos 20°,sin 20°),则AB的长为()A.12B.√22C.√32D.1解析:由两点间的距离公式,得AB=√(cos80°-cos20°)2+(sin80°-sin20°)2=√2-2(cos80°cos20°+sin80°sin20°)=√2-2cos(80°-20°)=√2-2cos60°=√2-2×12=1.答案:D7.已知向量a=(cos 2α,sin α),b=(1,2sin α-1),α∈(π2,π),若a·b=25,则tan(α+π4)=()A.13B.27C.17D.23解析:由a·b=25,得cos 2α+sin α(2sin α-1)=25,解得sin α=35.又α∈(π2,π),所以cos α=−45,tan α=−34,则ta n(α+π4)=tanα+tanπ41-tanαtanπ4=17.答案:C8.已知sin θ=35,5π2<θ<3π,则tanθ2+cosθ2的值为()A.√1010−3B.3−√1010C.−30+√1010D.30+√1010解析:因为sin θ=35,5π2<θ<3π,所以cos θ=−45,又5π4<θ2<3π2,所以si nθ2=−√1-cosθ2=−3√1010,co sθ2=−√1+cosθ2=−√1010,tanθ2=3,故ta nθ2+cosθ2=3−√1010.答案:B9.若cos 5°=a,则sin 2 375°等于()A.−12a−√32√1-a2B.12a+√32√1-a2C.−√32a−12√1-a2D.√32a+12√1-a2解析:因为cos 5°=a,所以sin 5°=√1-a2,所以sin 2 375°=sin 215°=-sin 35°=-sin(30°+5°)=-sin 30°cos5°-cos 30°sin 5°=−12a−√32√1-a2.答案:A10.有下列四个函数:①y=sin x+cos x;②y=sin x-cos x;③y=sin x·cos x;④y=sinxcosx .其中在(0,π2)上为递增函数的是()A .①B .②C .①和③D .②和④解析:y=sin x+cos x =√2sin (x +π4)在(0,π2)上不是单调函数,所以①不是,排除A 和C;y =sinxcosx =tan x 在(0,π2)上是增加的,所以④是,排除B,故选D .答案:D11.已知(sin x-2cos x )(3+2sin x+2cos x )=0,则sin2x+2cos 2x1+tanx的值为( )A .85B.58C .25D.52解析:∵3+2sin x+2cos x=3+2√2sin (x +π4)>0,∴sin x-2cos x=0.∴tan x=2. ∴原式=2cosx (sinx+cosx )1+sinxcosx=2cos 2x (sinx +cosx )cosx +sinx=2cos 2x =2cos 2xsin 2x+cos 2x=2tan 2x +1=222+1=25.答案:C12.关于函数f (x )=2(sin x-cos x )cos x 有以下四个结论:P 1:最大值为√2;P2:把函数f(x)=√2sin 2x −1的图像向右平移π4个单位长度后可得到函数f(x)=2(sin x −cos x)cos x 的图像;P3:递增区间为[kπ+7π8,kπ+11π8] (k ∈Z );P 4:图像的对称中心为(k2π+π8,-1)(k ∈Z ).其中正确的结论有( ) A .1个B .2个C .3个D .4个解析:因为f (x )=2sin x cos x-2cos 2x=sin 2x-cos 2x-1=√2sin (2x -π4)−1,所以最大值为√2−1,所以P 1错误;将f (x )=√2sin 2x-1的图像向右平移π4个单位长度后得到f (x )=√2sin [2(x -π4)]−1=√2sin (2x -π2)−1的图像,所以P 2错误;由−π2+2kπ≤2x −π4≤π2+2kπ,解得−π8+kπ≤x ≤3π8+kπ(k ∈Z ),即递增区间为[-π8+kπ,3π8+kπ](k∈Z),所以P3正确;由2x−π4=kπ(k∈Z),得x=k2π+π8(k∈Z),所以对称中心为(k2π+π8,-1)(k∈Z),所以P4正确.答案:B二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.函数y=ta n x2−1sinx的最小正周期是.解析:y=1-cosxsinx −1sinx=−cosxsinx=−1tanx,T=π.答案:π14.函数f(x)=(sin x+cos x)2的递增区间是. 解析:f(x)=(sin x+cos x)2=1+sin 2x.令−π2+2kπ≤2x≤π2+2kπ(k∈Z),得−π4+kπ≤x≤π4+kπ(k∈Z),所以f(x)的递增区间是[-π4+kπ,π4+kπ](k∈Z).答案:[-π4+kπ,π4+kπ](k∈Z)15.已知α∈(0,π2),且tan(α+π4)=3,则log5(sin α+2cos α)+log5(3sin α+cos α)=.解析:ta n(α+π4)=tanα+11-tanα=3,∴tan α=12,则log5(sin α+2cos α)+log5(3sin α+cos α)=log53sin 2α+7sinαcosα+2cos2αsin2α+cos2α=log53tan 2α+7tanα+2tan2α+1=log55=1.答案:116.在平面直角坐标系xOy中,已知任意角θ以坐标原点O为顶点,x轴的非负半轴为始边,若终边经过点P(x0,y0),且|OP|=r(r>0),定义:sos θ=y0+x0r,称“sos θ”为“正余弦函数”,对于“正余弦函数”y=sos x,有同学得到以下性质:①该函数的值域为[−√2,√2];②该函数的图像关于原点对称;③该函数的图像关于直线x=3π4对称;④该函数为周期函数,且最小正周期为2π;⑤该函数的递增区间为[2kπ-3π4,2kπ+π4],k∈Z.其中正确的是.(填上所有正确性质的序号)解析:由“正余弦函数”的定义可知,y=sos x=sin x+cos x=√2sin(x+π4),由三角函数的性质可得①④⑤正确.答案:①④⑤三、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤)17.(10分)已知tan α=2.(1)求ta n(α+π4)的值;(2)求sin2αsin2α+sinαcosα-cos2α-1的值.解(1)ta n(α+π4)=tanα+tanπ41-tanαtanπ4=tanα+11-tanα=2+11-2=−3.(2)sin2αsin2α+sinαcosα-cos2α-1=2sinαcosαsin2α+sinαcosα-(2cos2α-1)-1 =2sinαcosαsin2α+sinαcosα-2cos2α=2tanαtan2α+tanα-2=2×222+2-2=1.18.(12分)若函数f(x)=1+cos2x4sin(π2+x)−asin x2cos(π-x2)的最大值为2,求实数a的值.解f(x)=1+cos2x4sin(π2+x)−asin x2cos(π-x2)=2cos2x4cosx+asin x2cos x2=12cos x+a2sin x=√14+a24sin(x+φ),其中φ满足sin φ=√1+a2则该函数的最大值为√14+a24,由已知,得14+a24=22,∴a2=15,∴a=±√15.19.(12分)已知函数f(x)=a(cos2x+sin x cos x)+b.(1)当a>0时,求f(x)的递增区间;(2)当a<0,且x∈[0,π2]时,f(x)的值域是[3,4],求a,b的值.解f(x)=a·1+cos2x2+a·12sin 2x+b=√2a2sin(2x+π4)+a2+b.(1)当2kπ−π2≤2x+π4≤2kπ+π2(k∈Z)时,kπ−3π8≤x≤kπ+π8(k∈Z),∴[kπ-3π8,kπ+π8](k∈Z)为f(x)的递增区间.(2)∵0≤x≤π2,∴π4≤2x+π4≤5π4,∴−√22≤si n(2x+π4)≤1,∴f(x)min=1+√22a+b=3,f(x)max=b=4,∴a=2-2√2,b=4.20.(12分)已知函数f(x)=sin(x+θ)+cos(x+θ)的定义域为R.(1)当θ=0时,求f(x)的单调区间.(2)若θ∈(0,π),且sin x≠0,当θ为何值时,f(x)为偶函数?解(1)当θ=0时,f(x)=sin x+cos x=√2sin(x+π4),当2kπ−π2≤x+π4≤2kπ+π2(k∈Z),即2kπ−3π4≤x≤2kπ+π4(k∈Z)时,f(x)是增加的;当2kπ+π2≤x+π4≤2kπ+3π2(k∈Z),即2kπ+π4≤x≤2kπ+5π4(k∈Z)时,f(x)是减少的.∴f(x)的递增区间为[2kπ-3π4,2kπ+π4](k∈Z);f(x)的递减区间为[2kπ+π4,2kπ+5π4](k∈Z).(2)f(x)=√2cos(x-π4+θ)为偶函数,则θ−π4=kπ(k∈Z),∴θ=kπ+π4(k∈Z).∵θ∈(0,π),∴θ=π4.21.(12分)已知函数f(x)=12sin 2x−√3cos2x.(1)求f(x)的最小正周期和最小值;(2)将函数f(x)的图像上每一点的横坐标伸长到原来的2倍,纵坐标不变,得到函数g(x)的图像.当x∈[π2,π]时,求g(x)的值域.解(1)f(x)=12sin 2x−√3cos2x=12sin 2x−√32(1+cos 2x)=12sin 2x−√32cos 2x−√32=sin(2x-π3)−√32,因此f(x)的最小正周期为π,最小值为−2+√32.(2)由条件可知:g(x)=si n(x-π3)−√32.当x∈[π2,π]时,有x−π3∈[π6,2π3],从而si n(x-π3)的值域为[12,1],那么si n(x-π3)−√32的值域为[1-√32,2-√32].故g(x)在区间[π2,π]上的值域是[1-√32,2-√32].22.(12分)已知函数f(x)=√3sin ωx·cos ωx+cos2ωx−12(ω>0),其最小正周期为π2.(1)求f(x)的解析式;(2)将函数f(x)的图像向右平移π8个单位长度,再将图像上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y=g(x)的图像,若关于x的方程g(x)+k=0在区间[0,π2]上有且只有一个实数解,求实数k的取值范围.解(1)f(x)=√3sin ωx·cos ωx+cos2ωx−12=√32sin 2ωx+cos2ωx+12−12=sin(2ωx+π6).由题意,知f(x)的最小正周期T=π2,则2π2ω=πω=π2,所以ω=2,所以f(x)=si n(4x+π6).(2)将f(x)的图像向右平移π8个单位长度后,得到y=si n(4x-π3)的图像,再将所得图像所有点的横坐标伸长到原来的2倍,纵坐标不变,得到y=si n(2x-π3)的图像,所以g(x)=si n(2x-π3).因为0≤x≤π2,所以−π3≤2x−π3≤2π3.g (x )+k=0在区间[0,π2]上有且只有一个实数解,即函数y=g (x )与y=-k 的图像在区间[0,π2]上有且只有一个交点,由正弦函数的图像可知−√32≤-k <√32或-k=1,所以−√32<k ≤√32或k=-1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 三角恒等变换测评(A 卷)(时间:90分钟 满分:120分)一、选择题(本大题共10小题,每小题5分,共50分)1.sin7°cos37°-sin83°cos53°的值为A .-12 B.12C.12 D .-322.已知sinα=55,则sin 4α-cos 4α的值为 A .-15 B .-35 C.15 D.353.若α+β=3π4,则(1-tanα)(1-tanβ)的值是 A.12 B .1 C.32D .2 4.已知sin(π4-x)=35,则sin2x 的值为 A.1925 B.1625 C.1425 D.7255.f(x)=sinωx +cos(ωx +π6)的图象上相邻两条对称轴间的距离是2π3,则ω的一个值是 A.23 B.43 C.32 D.346.已知cos2θ=23,则sin 4θ+cos 4θ的值为 A.1318 B.1118 C.79D .-1 7.已知cos(α-π6)+sinα=453,则sin(α+7π6)的值是 A .-235 B.235 C .-45 D.458.给出下列三个等式:f(xy)=f(x)+f(y),f(x +y)=f(x)f(y),f(x +y)=f (x )+f (x )1-f (x )f (y ). 下列函数中不.满足其中任何一个等式的是 A .f(x)=3x B .f(x)=sinxC .f(x)=log 2xD .f(x)=tanx9.在△ABC 中,角C =120°,tanA +tanB =233,则tanAtanB 的值为 A.14 B.13 C.12 D.5310.2+2cos8+21-sin8的化简结果是A .4cos4-2cos4B .2sin4C .2sin4-4cos4D .-2sin4二、填空题(本大题共4小题,每小题4分,共16分.答案需填在题中横线上)11.函数y =(sinx +cosx)2的最小正周期为__________.12.若sin(π2+θ)=35,则cos2θ=__________. 13.已知cosαcos(α+β)+sinαsin(α+β)=-35,β是第二象限角,则tan2β=__________. 14.下列命题正确的序号是__________.①若-π2<α<β<π2,则α-β范围为(-π,π); ②若α在第一象限,则α2在一、三象限; ③若sinθ=m -3m +5,cosθ=4-2m m +5,则m ∈(3,9); ④sin θ2=35,cos θ2=-45,则θ在三、四象限.三、解答题(本大题共5小题,共54分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分10分)已知α∈(π2,π),且sinα=35. (1)求cos(α-π4)的值; (2)求sin 2α2+sin4αcos2α1+cos4α的值.16.(本小题满分10分)如图,矩形ABCD 中,AB =a ,BC =2a ,在BC 上取一点P ,使AB +BP =PD ,求tan ∠APD 的值.17.(本小题满分10分)已知tan(α-β)=12,tanβ=-17,且α,β∈(0,π),求2α-β的值.18.(本小题满分12分)f(x)=sin 2x +3sinxcosx +2cos 2x ,x ∈R.(1)求函数f(x)的最小正周期和单调增区间.(2)函数f(x)的图象可以由函数y =sin2x(x ∈R)的图象经过怎样的变换得到?19.(本小题满分12分)(2009山东高考)设函数f(x)=cos(2x +π3)+sin 2x. (1)求函数f(x)的最大值和最小正周期;(2)设A ,B ,C 为△ABC 的三个内角,若cosB =13,f(C 2)=-14,且C 为锐角,求sinA.答案与解析1.A sin7°cos37°-sin83°cos53°=sin7°cos37°-cos7°sin37°=sin(7°-37°)=-sin30°=-12.2.B sin 4α-cos 4α=sin 2α-cos 2α=2sin 2α-1=-35. 3.D (1-tanα)(1-tanβ)=1-(tanα+tanβ)+tanαtanβ=1-[-(1-tanαtanβ)]+tanαtanβ=2.4.D sin2x =cos(π2-2x)=cos2(π4-x)=1-2sin 2(π4-x)=725. 5.C f(x)=sinωx +cos(ωx +π6) =sinωx +32cosωx -12sinωx =12sinωx +32cosωx =sin(ωx +π6). 因为T 2=2π3,所以T =4π3=2π|ω|. 所以|ω|=32.所以ω=±32. 6.B sin 4θ+cos 4θ=(sin 2θ+cos 2θ)2-2sin 2θcos 2θ=1-12sin 22θ =1-12(1-cos 22θ)=1118. 7.C ∵cos(α-π6)+sinα=453, ∴32cosα+32sinα=453. ∴3(12cosα+32sinα)=453. ∴3sin(α+π6)=453. ∴sin(α+π6)=45. ∵sin(α+7π6)=sin(α+π6+π)=-sin(π6+α), ∴sin(α+7π6)=-45.故选C. 8.B 对选项A ,满足f(x +y)=f(x)f(y);对选项C ,满足f(xy)=f(x)+f(y);对选项D ,满足f(x +y)=f (x )+f (y )1-f (x )f (y ). 9.B tan(A +B)=-tanC=-tan120°=3,∴tan(A +B)=tanA +tanB 1-tanAtanB=3,即2331-tanAtanB= 3. 解得tanAtanB =13,故选B. 10.D 原式=4cos 24+2(sin4-cos4)2=2|cos4|+2|sin4-cos4|, ∵5π4<4<3π2,∴cos4<0,sin4<cos4. ∴原式=-2cos4+2(cos4-sin4)=-2sin4.故选D.11.π ∵y =(sinx +cosx)2=1+sin2x ,∴T =π. 12.-725 ∵sin(π2+θ)=35, ∴cosθ=35,cos2θ=2cos 2θ-1=2×(35)2-1=-725. 13.247 由条件可知cos[α-(α+β)]=cosβ=-35, 又∵β是第二象限角,∴sinβ=1-(-35)2=45. ∴tanβ=-43. ∴tan2β=2tanβ1-tan 2β=2×(-43)1-(-43)2=247. 14.②④ ∵若-π2<α<β<π2,则α-β范围为(-π,0),∴①错. 当m =0时,sinθ=-35,cosθ=45,sin 2θ+cos 2θ=1.符合条件,∴m (3,9).∴③错. 15.解:(1)因为α∈(π2,π),且sinα=35,所以cosα=-45. 所以cos(α-π4)=22(sinα+cosα)=-210. (2)sin 2α2+sin4αcos2α1+cos4α=1-cosα2+2sin2αcos 22α2cos 22α =1-cosα2+2sinαcosα=-350. 16.解:设BP =x ,则PC =2a -x ,设∠BPA =α,∠DPC =β,由于AB +BP =PD ,∴a +x =a 2+(2a -x )2,得x =23a. ∴tan α=32,tan β=34. ∴tan(α+β)=tan α+tan β1-tan αtan β=32+341-32×34=-18. ∴tan ∠APD =tan[180°-(α+β)]=18.17.解:tan α=tan[(α-β)+β]=tan (α-β)+tan β1-tan (α-β)tan β=13>0. 而α∈(0,π),故α∈(0,π2). ∵tan β=-17<0,0<β<π,∴π2<β<π. ∴-π<α-β<0.而tan(α-β)=12>0, ∴-π<α-β<-π2. ∴2α-β=α+(α-β)∈(-π,0).∵tan(2α-β)=tan[α+(α-β)]=tan α+tan (α-β)1-tan αtan (α-β)=1, ∴2α-β=-3π4. 18.解:(1)f(x)=1-cos2x 2+32sin2x +(1+cos2x) =32sin2x +12cos2x +32=sin(2x +π6)+32, ∴f(x)的最小正周期T =2π2=π. 由-π2+2k π≤2x +π6≤π2+2k π,k ∈Z , 得-π3+k π≤x ≤π6+k π,k ∈Z .∴f(x)的单调增区间为[-π3+kπ,π6+kπ],k ∈Z . (2)先把y =sin2x 图象上所有的点向左平移π12个单位长度,得到y =sin(2x +π6)的图象,再把所得图象上所有的点向上平移32个单位长度,就得到y =sin(2x +π6)+32的图象. 19.解:(1)f(x)=cos2xcos π3-sin2xsin π3+1-cos2x 2=12cos2x -32sin2x +12-12cos2x =12-32sin2x. 所以当2x =-π2+2k π,即x =-π4+k π(k ∈Z )时, f(x)取得最大值,[f(x)]max =1+32, f(x)的最小正周期T =2π2=π, 故函数f(x)的最大值为1+32,最小正周期为π. (2)由f(C 2)=-14, 即12-32sinC =-14, 解得sinC =32. 又C 为锐角,所以C =π3. 由cosB =13求得sinB =223. 因此sinA =sin[π-(B +C)]=sin(B +C)=sinBcosC +cosBsinC=223×12+13×32 =22+36.。