N皇后问题 回溯法

合集下载

n皇后问题解法总数 规律

n皇后问题解法总数 规律

n皇后问题解法总数规律n皇后问题是一个经典的数学问题,最早由欧洲的数学家在18世纪提出。

问题的描述是在一个n×n的棋盘上放置n个皇后,使得它们互不攻击,即任意两个皇后不能处于同一行、同一列或同一斜线上。

这个问题的解法总数一直是一个引人关注的问题,不同的n对应的解法总数有一定的规律。

首先,我们来分析一下较小的n对应的解法总数。

当n=1时,显然只有一种解法。

当n=2时,由于两个皇后不能处于同一行、同一列或同一斜线上,所以无解。

当n=3时,也无解。

当n=4时,解法总数为2。

具体的解法如下所示:. Q . . . . Q .. . . Q Q . . .Q . . . . . . Q. . Q . . Q . .可以发现,当n=4时,只有两种解法。

随着n的增大,解法总数逐渐增加。

当n=5时,解法总数为10。

当n=6时,解法总数为4。

当n=7时,解法总数为40。

当n=8时,解法总数为92。

当n=9时,解法总数为352。

可以看出,解法总数并不是一个简单的线性增长。

为了进一步分析n皇后问题解法总数的规律,我们可以使用回溯算法。

回溯算法是一种穷举搜索的算法,通过尝试所有可能的解,找到所有满足条件的解。

在n皇后问题中,我们可以从第一行开始,依次尝试每一列,如果当前位置可以放置一个皇后,我们就继续尝试下一行,直到放置了n个皇后,即找到了一种解法。

然后,我们回溯到上一行,尝试该行的下一列,继续寻找下一种解法。

当回溯到第一行时,即找到了所有的解法。

通过回溯算法,我们可以得到n=1到n=9的解法总数,如下所示:n=1,解法总数为1n=2,解法总数为0n=3,解法总数为0n=4,解法总数为2n=5,解法总数为10n=6,解法总数为4n=7,解法总数为40n=8,解法总数为92n=9,解法总数为352可以观察到,n=1到n=9的解法总数并不是一个简单的规律,解法总数的增长呈现出一定的波动。

然而,当n=10时,解法总数突然增加到724。

n皇后问题算法设计

n皇后问题算法设计

算法设计及分析n皇后问题---回溯求解国际象棋中皇后威力很大,它可以象“车”一样沿直线上下或左右移动;也可以如同“象”那样沿着斜线移动。

双方的皇后是不能在同一行或同一列或同一斜线上对持的。

那么,在一张空白的国际象棋盘上最多可以放上几个皇后并且不让它们互相攻击呢?这个问题是伟大数学家高斯在十九世纪中期提出来的,并作了部分解答。

高斯在棋盘上放下了N个互不攻击的皇后,他还认为可能有N种不同的放法,这就是有名的“N皇后”问题。

如果你动手试试,就一定会发现开头几颗皇后很容易放置,越到后来就越困难。

由于我们的记忆有限,很可能在某个位置放过子后来证明不行取消了,但是以后又重新放上子去试探,这样就会不断地走弯路,花费大量的精力。

因此,必须找到一个简易有效、有条不紊的法则才行。

回溯法的基本思想:对于用回溯法求解的问题,首先要将问题进行适当的转化,得出状态空间树。

这棵树的每条完整路径都代表了一种解的可能。

通过深度优先搜索这棵树,枚举每种可能的解的情况;从而得出结果。

在深度优先搜索的过程中,不断的将每个解(并不一定是完整的,事实上这也就是构造约束函数的意义所在)与约束函数进行对照从而删除一些不可能的解,这样就不必继续把解的剩余部分列出从而节省部分时间。

不妨以8皇后为例,设8皇后为x i,她们分别在第i行(i=1,2,3,4,5,6,7,8),这样问题的解空间就是一个8个皇后所在列的序号,为n元一维向量(x1,x2,,x3,x4,x5,x6,x7,x8),搜索空间是1≤x i≤8(i=1,2,3,4,5,6,7,8),共88个状态。

约束条件是8个点(1,x1),(2,x2),(3,x3),(4,x4),(5,x5),(6,x6),(7,x7),(8,x8)不在同一列和同一对角线上。

虽然问题共有88个状态,但算法不会真正地搜索这么多的状态,因为回溯法采用的是“走不通就掉头”的策略,而形如(1,1,x3,x4,x5,x6,x7,x8)的状态共有86个,由于1,2号皇后在同一列不满足约束条件,回溯后这些状态是不会搜索的。

回溯法实验(n皇后问题)(迭代法)

回溯法实验(n皇后问题)(迭代法)

算法分析与设计实验报告第三次附加实验附录:完整代码(回溯法)//回溯算法递归回溯n皇后问题#include<iostream>#include<time.h>#include<iomanip>#include"math.h"using namespace std;class Queen{friend int nQueen(int); //定义友元函数,可以访问私有数据private:bool Place(int k); //判断该位置是否可用的函数void Backtrack(int t); //定义回溯函数int n; //皇后个数int *x; //当前解long sum; //当前已找到的可行方案数};int main(){int m,n;for(int i=1;i<=1;i++){cout<<"请输入皇后的个数:"; //输入皇后个数cin>>n;cout<<"皇后问题的解为:"<<endl;clock_t start,end,over; //计算程序运行时间的算法start=clock();end=clock();over=end-start;start=clock();m=nQueen(n); //调用求解的函数cout<<n<<"皇后问题共有";cout<<m<<"个不同的解!"<<endl; //输出结果end=clock();printf("The time is %6.3f",(double)(end-start-over)/CLK_TCK); //显示运行时间cout<<endl;}system("pause");return 0;}bool Queen::Place(int k)//传入行号{for(int j=1;j<k;j++){if((abs(k-j)==abs(x[j]-x[k]))||(x[j]==x[k]))//如果两个在同一斜线或者在同一列上,说明冲突,该位置不可用{return false;}}return true;}void Queen::Backtrack(int t){if(t>n){sum++;/*for(int i=1;i<=n;i++) //输出皇后排列的解{cout<<x[i]<<" ";}cout<<endl;*/}else{//回溯探索第i行的每一列是否有元素满足要求for(int i=1;i<=n;i++){x[t]=i;if(Place(t)){Backtrack(t+1);}}}}int nQueen(int n){Queen X; //定义Queen类的对象X//初始化XX.n=n;X.sum=0;int *p=new int[n+1]; //动态分配for(int i=0;i<=n;i++) //初始化数组{p[i]=0;}X.x=p;X.Backtrack(1);delete[] p;return X.sum;//输出解的个数}完整代码(回溯法)//回溯算法迭代回溯n皇后问题#include<iostream>#include<time.h>#include<iomanip>#include"math.h"using namespace std;class Queen{friend int nQueen(int); //定义友元函数private:bool Place(int k); //定义位置是否可用的判断函数void Backtrack(void); //定义回溯函数int n; // 皇后个数int *x; // 当前解long sum; // 当前已找到的可行方案数};int main(){int n,m;for(int i=1;i<=1;i++){cout<<"请输入皇后的个数:";cin>>n;cout<<n<<"皇后问题的解为:"<<endl;clock_t start,end,over; //计算程序运行时间的算法start=clock();end=clock();over=end-start;start=clock();m=nQueen(n); //调用求解皇后问题的函数cout<<n<<"皇后问题共有";cout<<m<<"个不同的解!"<<endl;end=clock();printf("The time is %6.3f",(double)(end-start-over)/CLK_TCK); //显示运行时间cout<<endl;}system("pause");return 0;}bool Queen::Place(int k){for (int j=1;j<k;j++){if ((abs(k-j)==abs(x[j]-x[k]))||(x[j]==x[k])) //如果两个皇后在同一斜线或者在同一列上,说明冲突,该位置不可用{return false;}}return true;}void Queen::Backtrack() //迭代法实现回溯函数{x[1] = 0;int k = 1;while(k>0){x[k] += 1; //先将皇后放在第一列的位置上while((x[k]<=n)&&!(Place(k))) //寻找能够放置皇后的位置{x[k] += 1;}if(x[k]<=n) //找到位置{if(k == n) //如果寻找结束输出结果{/*for (int i=1;i<=n;i++){cout<<x[i]<<" ";}cout<<endl; */sum++;}else//没有结束则找下一行{k++;x[k]=0;}}else//没有找到合适的位置则回溯{ k--; }}}int nQueen(int n){Queen X; //定义Queen类的对象X//初始化XX.n=n;X.sum=0;int *p=new int[n+1];for(int i=0;i<=n;i++){p[i]=0;}X.x=p;X.Backtrack();delete []p;return X.sum; //返回不同解的个数}。

n后问题-回溯法

n后问题-回溯法

n后问题-回溯法问题描述: 在n*n的棋盘上放置彼此不受攻击的n个皇后。

按国际象棋的规则,皇后可以与之处在同⼀⾏或者同⼀列或同⼀斜线上的棋⼦。

n后问题等价于在n*n格的棋盘上放置n皇后,任何2个皇后不放在同⼀⾏或同⼀列的斜线上。

算法设计: |i-k|=|j-l|成⽴,就说明2个皇后在同⼀条斜线上。

可以设计⼀个place函数,测试是否满⾜这个条件。

1 当i>n时,算法搜索⾄叶节点,得到⼀个新的n皇后互不攻击放置⽅案,当前已找到的可⾏⽅案sum加1. 2 当i<=n时,当前扩展结点Z是解空间中的内部结点。

该结点有x[i]=1,2,3....n共n个⼉⼦节点。

对当前扩展结点Z的每个⼉⼦节点,由place检察其可⾏性。

并以深度优先的⽅式递归地对可⾏⼦树,或剪去不可⾏⼦树。

算法描述: #include <iostream>#include <cstdlib>using namespace std;class Queen{friend int nQueen(int);private:bool Place(int k);void Backtrack(int t);int n,* x;long sum;};bool Queen::Place(int k){for(int j=1;j<k;j++)if((abs(k-j)==abs(x[j]-x[k]))||(x[j]==x[k]))return false;return true;}void Queen::Backtrack(int t){if(t>n)sum++;elsefor(int i=1;i<=n;i++){x[t] = i;if(Place(t))Backtrack(t+1);}}int nQueen(int n){Queen X;X.n = n;X.sum = 0;int *p = new int [n+1];for(int i=0;i<=n;i++)p[i] = 0;X.x = p;X.Backtrack(1);delete [] p;cout<<X.sum<<endl;return X.sum;}int main(){nQueen(4);nQueen(2);nQueen(3);return0;}执⾏结果:迭代回溯:数组x记录了解空间树中从根到当前扩展结点的路径,这些信息已包含了回溯法在回溯时所需要的信息。

回溯法求解N皇后问题

回溯法求解N皇后问题

算法的实现
• 假设回溯法要找出所有的答案结点 。 • 设(x1,x2,…,xi-1)是状态空间树中由根到一个结 点的路径,而T(x1,…xi-1)是下述所有结点xi的 集合,它使得对于每一个xi,(x1,x2,…,xi)是由 根到一个结点xi的路径;假定还存在着一些限 界函数Bi,如果路径(x1,x2,…,xi)不可能延伸到 一个答案结点,则Bi(x1,x2,…,xi)取假值,否则 取真值。 • 于是解向量X(1:n)中的第i个分量,就是那些 选自集合T (x1,x2,…,xi-1)且使Bi为真的xi
HHIT
算法8.5:n-皇后问题的解
Algorithm
Procedure NQUEENS(n) //此过程使用回溯法求出一个n*n棋盘上放置n个皇后,使其不能互相攻 击的所有可能位置// integer k,n,X(1:n) X(1)0 ; k1 // k是当前行;X(k)是当前列 // while k>0 do // 对所有的行,执行以下语句 // X(k)X(k)+1 //移到下一列// while X(k)<=n and Not PLACE(k) do //此处能放这个皇后吗// X(k)X(k)+1 //不能放则转到下一列// repeat if X(k)<=n then //找到一个位置// if k=n then print (X) //是一个完整的解则打印这个数组// else kk+1;X(k)0 //否则转到下一行// end if else kk-1 //回溯// end if repeat End NQUEENS
HHIT
Algorithm
显然,棋盘的每一行上可以而且必须摆放一个皇后, 所以,n皇后问题的可能解用一个n元向量X=(x1, x2, …, xn) 表示,其中,1≤i≤n并且1≤xi≤n,即第i个皇后放在第i行第 xi列上。 由于两个皇后不能位于同一列上,所以,解向量X必 须满足约束条件: xi≠xj (式8.1)

n皇后 实验报告

n皇后 实验报告

n皇后实验报告n皇后实验报告引言:n皇后问题是一个经典的数学问题,其目标是在一个n×n的棋盘上放置n个皇后,使得它们互不攻击。

本实验旨在通过编程实现n皇后问题的解法,并对不同的算法进行性能分析。

实验方法:本实验采用Python语言编写程序,实现了两种常见的解法:回溯法和遗传算法。

回溯法是一种穷举搜索的方法,通过不断尝试每一种可能的放置方式,直到找到满足条件的解;而遗传算法则是通过模拟生物进化的过程,利用选择、交叉和变异等操作逐步优化解的质量。

实验结果:在实验中,我们分别测试了回溯法和遗传算法在不同规模的n皇后问题上的性能表现。

以下是实验结果的总结:1. 回溯法:- 对于规模较小的问题(n<10),回溯法可以在短时间内找到所有解,并输出结果。

- 随着问题规模的增大,回溯法的搜索时间呈指数级增长。

当n=15时,搜索时间已经超过10秒。

- 回溯法在解决大规模问题时,遇到了组合爆炸的问题,无法在合理的时间内得出结果。

2. 遗传算法:- 遗传算法对于规模较小的问题表现不如回溯法,因为其需要较长的时间来找到一个较优解。

- 随着问题规模的增大,遗传算法的性能逐渐超过回溯法。

当n=20时,遗传算法能够在合理的时间内找到一个较优解。

- 遗传算法在解决大规模问题时,相比回溯法有明显的优势,因为其搜索时间增长较慢。

实验讨论:通过对实验结果的分析,我们可以得出以下结论:- 回溯法适用于规模较小的n皇后问题,但在大规模问题上的性能不佳。

- 遗传算法在大规模问题上表现较好,但对于规模较小的问题需要更长的时间来找到较优解。

- 遗传算法的性能受到参数设置的影响,不同的选择、交叉和变异策略可能导致不同的结果。

结论:综上所述,回溯法和遗传算法都是解决n皇后问题的有效方法,但在不同规模的问题上有不同的性能表现。

在实际应用中,我们可以根据问题规模选择合适的算法来求解。

对于规模较小的问题,回溯法可以提供精确的解;而对于大规模问题,遗传算法能够在合理的时间内找到较优解。

回溯法求解N皇后问题

回溯法求解N皇后问题

① 如果xi+1= ai+1k不是集合Si+1的最后一个元素,则令xi+1= ai+ 1k+1,即选择Si+1的下一个元素作为解向量X的第i+1个分量;
② 如果xi+1= ai+1k是集合Si+1的最后一个元素,就回溯到X=(x1, x2, …, xi),选择Si的下一个元素作为解向量X的第i个分量,假 设xi= aik,如果aik不是集合Si的最后一个元素,则令xi= aik+1; 否则,就继续回溯到X=(x1, x2, …, xi-1);
global X(1:k); integer i,k;
i1
while i<k do
if X(i)=X(k) or ABS(X(i)-X(k))=ABS(i-k) then
return (false)
end if
ii+1 repeat return (true)
判断是否有其它的皇 后与之在同一列或同 一斜对角线上
HHIT
Algorithm
(1)如果X=(x1, x2, …, xi+1)是问题的最终解,则输出这个解。 如果问题只希望得到一个解,则结束搜索,否则继续搜索其
他解;
(2)如果X=(x1, x2, …, xi+1)是问题的部分解,则继续构造解 向量的下一个分量;
(3)如果X=(x1, x2, …, xi+1)既不是问题的部分解也不是问题 的最终解,则存在下面两种情况:
while k>0 do // 对所有的行,执行以下语句 //
X(k)X(k)+1 //移到下一列//
while X(k)<=n and Not PLACE(k) do //此处能放这个皇后吗//
X(k)X(k)+1 //不能放则转到下一列//

回溯算法解决N皇后问题实验及其代码

回溯算法解决N皇后问题实验及其代码

实验报告4回溯算法实验4回溯算法解决N皇后问题一、实验目的1)掌握回溯算法的实现原理,生成树的建立以及限界函数的实现;2)利用回溯算法解决N皇后问题;二、实验内容回溯算法解决N皇后问题。

三、算法设计1)编写限界函数bool PLACE(int k,int x[]),用以确定在k列上能否放置皇后;2)编写void NQUEENS(int n)函数用以摆放N个皇后;3)编写主函数,控制输入的皇后数目;4)改进和检验程序。

四、程序代码//回溯算法解决N皇后问题的c++程序#include<math.h>#include<iostream>using namespace std;int count=0; //皇后摆放的可能性bool PLACE(int k,int x[]);//限界函数void NQUEENS(int n);//摆放皇后int main(){}int queen;cout<<"先生(女士)请您输入皇后的总数,谢谢!:"<<endl;cin>>queen;NQUEENS(queen);cout<<"所有可能均摆放完毕,谢谢操作"<<endl;return 0;void NQUEENS(int n){/*此过程使用回溯算法求出在一个n*n棋盘上放置n个皇后,使其即不同行,也不同列,也不在同一斜角线上*/int k, *x=new int[n];//存放皇后所在的行与列x[0]=0;k=0;while (k>=0&&k<n){ //对所有的行执行以下语句x[k]=x[k]+1; //移到下一列while(x[k]<=n&&(!PLACE(k,x))){ //此处能放置一个皇后吗?}if( x[k]<=n ) { //找到一个位置if( k==n-1 ){ //是一个完整的解吗cout<<"第"<<++count<<"排法是:"<<endl;for(int i=0;i<n;i++)//打印皇后的排列{}cout<<"\n";for (int j=0;j<n;j++){}cout<<"\n";if (x[i] == j+1){}else{}cout<<". ";cout<<"*";x[k]=x[k]+1; //移到下一列}}}}else { k=k+1; x[k]=0;} //移向下一行else k=k-1; //回溯bool PLACE(int k,int x[]){/*如果一个皇后能放在第k行和x(k)列,返回ture;否则返回false。

算法设计与分析课件--回溯法-n皇后问题

算法设计与分析课件--回溯法-n皇后问题

8
5.5 n皇后问题
对于n皇后问题,搜索树有1+n+n2+…+nn个结点。 1+n+n2+…+nn= (nn+1 -1)/(n-1) <= (nn+1)/(n/2) = 2nn(n>=2) 在每个结点处,要判断该位置的皇后是否与已经放置的皇后相 互攻击,最多要看3n个位置(沿列的方向、主与副对角线方向)是 否已有皇后,故n皇后问题的该算法最坏时间复杂度为 O(3n*2nn)=O(nn+1),这是个粗略的估计。
1个皇后所在的列,即仅有n-i+1个位置可供选择。令 S={1,2,…,n},则xi∈S-{x1,x2,…,xi-1}。显然,满足显式约束的n 元组共有n!种,它构成n皇后问题的解空间。 排列树
10
5.5 n皇后问题
n皇后问题的分析: • 解空间树 – 排列树。这里n=4。
11
5.5 n皇后问题
9
5.5 n皇后问题
n皇后问题的分析(二):
✓ 问题解的形式:表示为n元组(x1, x2,…, xn)的形式,其中xi(i=1, 2,…, n)表示第i个皇后放置在第i行第xi列;
✓ 显式约束:n个皇后不同行且不同列; ✓ 隐式约束:n个皇后不在正反对角线上; ✓ 解空间:根据显式约束,第i(i=1,2,…,n)个皇后不能放置在前i-
if t > n then
OUTPUT(x);
else
for i 1 to n do
x[t] i;
//第t个皇后放到第i列,不去判断列是否冲突
if PLACE(t) then
BACKTRACK-NQUEEN1-REC(t+1);

基本算法4-回溯法-N皇后问题

基本算法4-回溯法-N皇后问题

1
x1=1 2
x2= 2 3 kill
1
1 2
回溯到结点2生成结点8, 路径变为(1, 3), 则结点8成为E-结点, 它生成结点9和结点11都会被杀死(即它的儿子表示不可能导 x1=1 致答案的棋盘格局), 所以结点8也被杀死, 应回溯.
1
1
1
2
2
3
x2= 2 x2= 3 3 kill 8 x3=2 9 kill x3=4 11 kill
借书问题 [问题描述]
学校放暑假时,信息学辅导教师有n本书要分给参加培训的n个学生。如:A, B,C,D,E共5本书要分给参加培训的张、刘、王、李、孙5位学生,每人只能选 1本。教师事先让每个人将自己喜爱的书填写在如下的表中,然后根据他们填写的 表来分配书本,希望设计一个程序帮助教师求出可能的分配方案,使每个学生都满 意。 A 张 王 刘 孙 李 Y Y Y Y Y Y Y B C Y D Y E
● ●
……
● ● ● ● ● ● ● ●
……
……





● ● ● ●


● ●

● ●

● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ● ●
● ● ●
•搜索解空间,剪枝:
– (1) 从空棋盘起,逐行放置棋子。
– (2) 每在一个布局中放下一个棋子,即推演到一 个新的布局。 – (3) 如果当前行上没有可合法放置棋子的位置, 则回溯到上一行,重新布放上一行的棋子。
61 2
64
3
16
3
20
4
22
1
25

n皇后问题非递归回溯算法

n皇后问题非递归回溯算法

n皇后问题非递归回溯算法一、问题描述n皇后问题是一个经典的回溯算法问题,其目标是在一个n*n的棋盘上放置n个皇后,使得它们互相之间不能攻击。

即任意两个皇后都不能处于同一行、同一列或者同一斜线上。

二、问题分析1. 回溯算法思路回溯算法是一种通过穷举所有可能情况来找到所有解的算法。

在遍历过程中,如果发现当前状态不符合要求,则回溯到上一个状态进行下一步尝试。

2. 非递归实现传统的n皇后问题解法大多采用递归实现,但是递归实现会存在栈溢出等问题。

因此,我们可以采用非递归实现方式来避免这些问题。

三、算法设计1. 状态表示我们可以用一个数组board来表示当前棋盘状态,其中board[i]表示第i行皇后所在的列数。

2. 状态转移在每一行中,我们依次尝试将皇后放置在每一个位置上。

如果当前位置不符合要求,则继续尝试下一个位置;如果当前位置符合要求,则将该位置标记为已占用,并将当前状态入栈进入下一层搜索。

当搜索到第n层时,说明找到了一组解,将该解保存并回溯到上一层继续搜索。

3. 剪枝优化为了减少不必要的搜索,我们可以采用以下两种剪枝策略:(1)列冲突剪枝:如果当前位置所在列已经有皇后,则直接跳过该位置。

(2)斜线冲突剪枝:如果当前位置所在的左上、右上斜线已经有皇后,则直接跳过该位置。

四、代码实现1. 初始化首先,我们需要定义一个栈来保存状态,并将第一行的所有位置都尝试一遍。

同时,我们还需要定义一个二维数组visited来保存哪些列和哪些斜线已经被占用。

```pythondef solveNQueens(n: int) -> List[List[str]]:res = []stack = []visited = [[False] * n for _ in range(3)]for i in range(n):stack.append([i])visited[0][i] = Truevisited[1][i - 0 + n - 1] = Truevisited[2][i + 0] = True```2. 回溯搜索在搜索过程中,我们不断取出栈顶状态进行扩展。

用回溯法求解n皇后问题

用回溯法求解n皇后问题

c程序实现
分析问题
//求解的递归函数 void Queen(int i,int n) { if(i>n) Output(); else { for(int j=1;j<=n;++j) // j代表列值 { int k=1; x[i]=j;//重新换一个列值,这里就是体现回溯的地方 while(k<i) { if((x[k]-x[i])*(abs(x[k]-x[i])-abs(k-i))!=0)
分析问题
问题分析
如何保证任何两个皇后不再一 条斜线上?设两个皇后q1和q2放 在(i,j)和(k,l)位置上,如 果q1和q2在斜率为-1的对角线上, 那么i - j = k - l成立,如果在斜率 为1的对角线上,那么 i + j = k + l成立,由此可知只要 | i - k | ≠ | j - l |成立,q1和q2就不 再同一条斜线上。 |i-k|≠|j-l|
分析问题
2.确定解空间 用完全n叉树表示解空间,现在以n=4为例:
分析问题
问题分析
1
1
2 1 34
3 1 24
4 123
2 34
× ×× ×34 24 23 ×14 13 × 34 ×

24 14 12 23 13 12

4 3 4 2 3 2 4 3 4 1 3 1 4 2 41 21 3 2 31 2 1
回溯法的基本思想
回溯法的基本思想是在问题的解空间树上按 深度优先搜索策略,从根节点出发搜索整个解 空间。搜索过程中,每到达一个结点时,则判 断该结点为根的子树是否含有问题的解,如果 可以确定该子树中不含有问题的解,则放弃对 该子树的搜索,逐层向其祖先节点回溯。否则, 进入该子树。

n后问题 回溯法

n后问题 回溯法

实验四 n后问题一.实验目的1. 了解皇后相互攻击的条件:如果任意两个皇后在同一行,同一列或同一对角线,则她们相互攻击。

2. 运用迭代的方法实现n皇后问题,求解得到皇后不相互攻击的一个解二.实验内容基本思路:用n元组x[1:n]表示n后问题的解,其中x[i]表示第i个皇后放在棋盘的第i 行的第x[i]列。

抽象约束条件得到能放置一个皇后的约束条件:(1)x[i]!=x[k];(2)abs(x[i]-x[k])!=abs(i-k)。

应用回溯法,当可以放置皇后时就继续到下一行,不行的话就返回到第一行,重新检验要放的列数,如此反复,直到将所有解解出。

在回溯法中,递归函数Backtrack(1)实现对整个解空间的回溯搜索。

Backtrack(i)搜索解空间的第i层子树。

类Queen 的数据成员记录解空间的节点信息,以减少传给Backtrack函数的参数。

sum记录当前已找到的可行方案数。

运用回溯法解题通常包含以下三个步骤:(1)针对所给问题,定义问题的解空间;(2)确定易于搜索的解空间结构;(3)以深度优先的方式搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索。

三.实验结果四.源代码:#include<iostream>#include<stdlib.h>using namespace std;class Queen{friend int nQueen(int);private:bool Place(int k);void Backtract(int t);int n,*x;long sum; //可行方案数};bool Queen::Place(int k){for(int j=1;j<k;j++)if((abs(k-j)==abs(x[j]-x[k]))||(x[j]==x[k])) return false;return true;}void Queen::Backtract(int t){if (t>n){sum++;cout<<"第"<<sum<<"种方法:";for(int i=1;i<=n;i++)cout<<x[i]<<" ";cout<<endl;}else{for(int i=1;i<=n;i++){x[t]=i;if(Place(t)) Backtract(t+1);}}}int nQueen(int n){Queen X;X.n=n;X.sum=0;int *p=new int[n+1];for(int i=0;i<=n;i++)p[i]=0;X.x=p;X.Backtract(1);delete []p;return X.sum;}void main(){int n,m;cout<<"请输入皇后个数:";cin>>n;m=nQueen(n);cout<<endl;cout<<"有"<<m<<"种可行方法"<<endl;system("pause");}。

n皇后问题—回溯法

n皇后问题—回溯法

n皇后问题—回溯法⼀、问题简介描述在n×n 格的棋盘上放置彼此不受攻击的n 个皇后。

按照国际象棋的规则,皇后可以攻击与之处在同⼀⾏或同⼀列或同⼀斜线上的棋⼦。

n后问题等价于在n×n格的棋盘上放置n个皇后,任何2 个皇后不放在同⼀⾏或同⼀列或同⼀斜线上。

设计⼀个解n 后问题的队列式分⽀限界法,计算在n× n个⽅格上放置彼此不受攻击的n个皇后的⼀个放置⽅案。

Input输⼊数据只占⼀⾏,有1 个正整数n,n≤20。

Output将计算出的彼此不受攻击的n个皇后的⼀个放置⽅案输出。

第1⾏是n个皇后的放置⽅案。

Sample Input5Sample Output1 3 52 4⼆、问题分析回溯法解的⽣成回溯法对任⼀解的⽣成,⼀般都采⽤逐步扩⼤解的⽅式。

每前进⼀步,都试图在当前部分解的基础上扩⼤该部分解。

它在问题的状态空间树中,从开始结点(根结点)出发,以深度优先搜索整个状态空间。

这个开始结点成为活结点,同时也成为当前的扩展结点。

在当前扩展结点处,搜索向纵深⽅向移⾄⼀个新结点。

这个新结点成为新的活结点,并成为当前扩展结点。

如果在当前扩展结点处不能再向纵深⽅向移动,则当前扩展结点就成为死结点。

此时,应往回移动(回溯)⾄最近的活结点处,并使这个活结点成为当前扩展结点。

回溯法以这种⼯作⽅式递归地在状态空间中搜索,直到找到所要求的解或解空间中已⽆活结点时为⽌。

回溯法与穷举法回溯法与穷举法有某些联系,它们都是基于试探的。

穷举法要将⼀个解的各个部分全部⽣成后,才检查是否满⾜条件,若不满⾜,则直接放弃该完整解,然后再尝试另⼀个可能的完整解,它并没有沿着⼀个可能的完整解的各个部分逐步回退⽣成解的过程。

⽽对于回溯法,⼀个解的各个部分是逐步⽣成的,当发现当前⽣成的某部分不满⾜约束条件时,就放弃该步所做的⼯作,退到上⼀步进⾏新的尝试,⽽不是放弃整个解重来。

解题思路⽤ d[i]=k 表⽰第 i 个皇后放在第 k 个位置上,然后从第1个皇后,第1个位置开始,每次放置前先调⽤ check() 函数判断与其他皇后是否冲突如果不冲突则放置如果冲突则移⾄下⼀个位置,如果位置到了最后⼀个,则不放,且将上⼀次放置的皇后移⾄下⼀个位置,递归调⽤。

回溯法之N皇后问题

回溯法之N皇后问题

回溯法之N皇后问题回溯法之N皇后问题1. 问题描述在n*n格的棋盘上放置彼此不受攻击的n个皇后。

按照国际象棋的规则,皇后可以攻击与之在同⼀⾏或同⼀列或同⼀斜线上的旗⼦。

n后问题等价于在n*n格的棋盘上放置n个皇后,任何2个皇后不放在同⼀⾏或同⼀列或同⼀斜线上。

2. 问题分析(以n=4皇后问题为例)有俩种解法,第⼀种采⽤解空间为N(4)叉树的解法、第⼆种是采⽤解空间为排列数的解法。

2.1. N(4)叉树的解法每个皇后在⼀⾏上有四个可选位置。

即每个⾮叶结点有4个⼦节点,4叉树如下:解向量:(x1,x2,x3,......,x n)显约束:任意俩皇后不同⾏。

隐约束:(1) 不同列:x i ≠ x j (2) 不处于同⼀正反对⾓线:|i - j| ≠ |x i - x j|核⼼代码:// 剪枝函数,排除同列和同⼀对⾓线的分⽀int place1(int k) {for (int j = 1; j < k; j++)if (abs(k - j) == abs(x[j] - x[k]) || x[j] == x[k])return 0;return 1;}// t > n代表当前解已经求出,将总数+1// 利⽤循环遍历节点的n叉,同时判断分叉是否符合条件// 符合条件的分叉继续遍历下去void BackTrack1(int t) {if (t > n)sum++;elsefor (int i = 1; i <= n; i++) {x[t] = i;if (place1(t))BackTrack1(t + 1);}}2.2 排列数的解法解向量:(x1,x2,x3,......,x n)显约束:任意俩皇后不同⾏、不同列。

x1,x2,x3,......,x n是1,2,3.......n排列隐约束:不处于同⼀正反对⾓线:|i - j| ≠ |x i - x j|核⼼代码:// 交换俩⾏皇后的位置// 实现切换排列数的分⽀作⽤void swap(int i, int j) {int tmp = x[i];x[i] = x[j];x[j] = tmp;}// 剪枝函数,排除在同⼀对⾓线上的情况int place2(int k) {for (int j = 1; j < k; j++)if (abs(k - j) == abs(x[j] - x[k]))return 0;return 1;}// t > n时表⽰当前排列符合条件,总数 + 1// 利⽤for循环,和swap函数,将节点对应的所有排列遍历⼀次// 同时采⽤剪枝函数,减去错误的分⽀// 对正确的分⽀继续求解下去// 最后递归求解结束后,再次调⽤swap函数将状态返回到原本的节点状态void BackTrack2(int t) {if (t > n) sum++;elsefor (int i = t; i <= n; i++) {swap(t, i);if (place2(t))BackTrack2(t + 1);swap(t ,i);}}3. 完整代码/*** 回溯法求解n皇后问题* 使⽤x解向量,x1,x2,x3分别表⽰在1,2,3⾏上皇后的列号**/#include <stdio.h>#include <stdlib.h>#define MAX 4/*** n 皇后个数* x 当前解* sum**/int n = MAX;int x[MAX + 1];long sum = 0;// 剪枝函数,排除同列和同⼀对⾓线的分⽀int place1(int k) {for (int j = 1; j < k; j++)if (abs(k - j) == abs(x[j] - x[k]) || x[j] == x[k])return 0;return 1;}// t > n代表当前解已经求出,将总数+1// 利⽤循环遍历节点的n叉,同时判断分叉是否符合条件// 符合条件的分叉继续遍历下去void BackTrack1(int t) {if (t > n)sum++;elsefor (int i = 1; i <= n; i++) {x[t] = i;if (place1(t))BackTrack1(t + 1);}}// 交换俩⾏皇后的位置// 实现切换排列数的分⽀作⽤void swap(int i, int j) {int tmp = x[i];x[i] = x[j];x[j] = tmp;}// 剪枝函数,排除在同⼀对⾓线上的情况int place2(int k) {for (int j = 1; j < k; j++)if (abs(k - j) == abs(x[j] - x[k]))return 0;return 1;}// t > n时表⽰当前排列符合条件,总数 + 1// 利⽤for循环,和swap函数,将节点对应的所有排列遍历⼀次// 同时采⽤剪枝函数,减去错误的分⽀// 对正确的分⽀继续求解下去// 最后递归求解结束后,再次调⽤swap函数将状态返回到原本的节点状态void BackTrack2(int t) {if (t > n) sum++;elsefor (int i = t; i <= n; i++) {swap(t, i);if (place2(t))BackTrack2(t + 1);swap(t ,i);}}void main() {for (int i = 0; i <= n; i++)x[i] = i;BackTrack1(1);printf("%d\n", sum);for (int i = 0; i <= n; i++)x[i] = i;sum = 0;BackTrack2(1);printf("%d\n", sum);system("pause");}。

回溯法解决n皇后问题

回溯法解决n皇后问题

n 皇 后 问 题N 皇后问题,是一个古老而着名的问题,是回溯算法的典型例题:在N*N 格的格子上摆放N 个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法? 1、定义问题的解空间首先以八皇后为例,可以用一棵树表示8皇后问题的解空间。

由于8皇后问题的解空间为8!种排列,因此我们将要构造的这棵树实际上是一棵排列树。

2、确定解空间树的结构给棋盘上的行和列从1到8编号,同时也给皇后从1到8编号。

由于每一个皇后应放在不同的行上,不失一般性,假设皇后i 放在第i 行上,因此8皇后问题可以表示成8元组(x 1, x 2, …, x 8), 其中xi (i =1, 2, …, 8)表示皇后i 所放置的列号。

这种表示法的显式约束条件是S i ={1, 2, 3, 4, 5, 6, 7, 8},i =1, 2, …, 8。

在这种情况下, 解空间为88个8元组组成,而隐式约束条件是没有两个xi 相同(即所有皇后必须在不同列上),且满足不存在两个皇后在同一条对角线上。

加上隐式约束条件,问题的解空间可进一步减小。

此时,解空间大小为8!,因为所有解都是8元组的一个置换。

图5-7表示了8皇后问题的一个解。

图5-7 8皇后问题的一个解为了简单起见,图5-8只给出了n =4时问题的一种可能树结构。

QQQQQQQQ8765432112345678图5-8 4皇后问题解空间的树结构在实际中,并不需要生成问题的整个状态空间。

通过使用限界函数来删除那些还没有生成其所有子结点的活结点。

如果用(x1,x2,…,x i)表示到当前E结点的路径,那么xi+1就是这样的一些结点,它使得(x1,x2,…,x i,x i+1)没有两个皇后处于相互攻击的棋盘格局。

在4皇后问题中,惟一开始结点为根结点1,路径为( )。

开始结点既是一个活结点,又是一个E结点,它按照深度优先的方式生成一个新结点2,此时路径为(1),这个新结点2变成一个活结点和新的E结点,原来的E结点1仍然是一个活结点。

n皇后问题_回溯法_递归实现__解释说明

n皇后问题_回溯法_递归实现__解释说明

n皇后问题回溯法递归实现解释说明1. 引言1.1 概述本文主要讨论的是n皇后问题及其解决方法。

n皇后问题是一个经典的数学问题,旨在找到如何将n个皇后放置在一个nxn的棋盘上,使得所有皇后彼此之间不会互相攻击。

这个问题具有一定难度,但可以通过回溯法和递归实现来有效解决。

1.2 文章结构本文共分为五个部分:引言、n皇后问题、回溯法解决n皇后问题的步骤、递归实现n皇后问题解决方案的详细步骤与算法思路以及结论。

引言部分主要对文章内容进行概述和介绍,并给出本文的结构安排。

1.3 目的本文旨在通过对n皇后问题的深入研究和探讨,介绍回溯法和递归实现在解决该问题中的应用方法。

通过详细说明算法步骤和思路,帮助读者理解如何使用回溯法和递归实现有效地解决n皇后问题,并对两种方法进行评价与讨论。

同时,还展望了可能的未来研究方向,为读者提供更多思考和拓展的空间。

本文旨在为对n皇后问题感兴趣的读者提供有益的参考和指导。

(文章引言部分完)2. n皇后问题:2.1 问题描述:n皇后问题是一个经典的组合问题,其中n表示棋盘上的行数和列数。

在一个nxn的棋盘上,要放置n个皇后,并且要求任意两个皇后之间不得互相攻击(即不能处于同一行、同一列或同一对角线上)。

这是一个相当困难的问题,因为随着n的增大,可能的解法呈指数增长。

2.2 解决方法介绍:为了解决n皇后问题,可以使用回溯法和递归实现的组合算法。

回溯法是一种通过尝试所有可能情况来找到解决方案的方法。

它通过逐步构建解,并在遇到无效解时进行回溯。

而递归是把大规模的问题分解成相似但规模更小的子问题来求解。

2.3 回溯法和递归实现的关系:在解决n皇后问题中,回溯法是主要思想,而递归则用于辅助实现回溯过程。

在每一步尝试放置一个皇后时,会先判断该位置是否与之前已经放置好的皇后冲突。

如果没有冲突,则继续考虑下一个位置,并以递归的方式调用自身。

如果找到一个有效解时,会结束递归并返回结果。

如果所有位置都无法放置皇后,则回溯至上一步进行下一种尝试。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A2 A1 A B3 A2 A1 B2 C2 B1 C1
A
跳马问题
4. 从C1出发,可以有三条路径,选择D1。 但到了D1以后,我们无路可走且D1也不 是最终目标点,因此,选择D1是错误的, D3 B3 我们退回C1重新选择D2。同样D2也是错 B2 C2 误的。再回到C1选择D3。D3只可以到E1, A2 但E1也是错误的。返回D3后,没有其他 C1 A1 B1 选择,说明D3也是错误的,再回到C1。 A 此时C1不再有其他选择,故C1也是错误 的,退回B1,选择C2进行尝试。
x
path:array[1..m] of integer; 其中,path[i]:表示第i个节点所走的方向
方向t,下一步的位置就是 (x+dx[t], y+dy[t])。
跳马问题
约束条件:
不越界: (x + dx[i] <= n) and (y + dy[i] > 0) and (y + dy[i] <= n)
回溯
Backtracking
回溯 N皇后问题 跳马问题 迷宫问题 图的着色问题 0-1背包问题 装载问题 批处理作业调度 填数问题 组合输出问题 算24点问题 ACM应用
学习要点
掌握回溯的概念 掌握经典问题的回溯解决方法 掌握回溯与其它方法的异同
回溯法
有许多问题,当需要找出它的解集或者要求回答什么 解是满足某些约束条件的最佳解时,往往要使用回溯 法。 ► 回溯法的基本做法是搜索,或是一种组织得井井有条 的,能避免不必要搜索的穷举式搜索法。这种方法适 用于解一些组合数相当大的问题。 ► 回溯法在问题的解空间树中,按深度优先策略,从根 结点出发搜索解空间树。算法搜索至解空间树的任意 一点时,先判断该结点是否包含问题的解。如果肯定 不包含,则跳过对该结点为根的子树的搜索,逐层向 其祖先结点回溯;否则,进入该子树,继续按深度优 先策略搜索。
跳马问题
分析: 按题意,马每一步可以有4种走法!
搜索过程: 1. 当马一开始位于左下角的时候,根据规 则,它只有两条线路可以选择(另外两 条超出棋盘的范围),我们无法预知该 走哪条,故任意选择一条,到达A1。 2.当到达A1点后,又有三条线路可以 选 择,于是再任意选择一条,到达B1。 3.从B1再出发,又有两条线路可以选择, 先选一条,到达C1。
注意:同一个问题可以有多种表示,有些表示方法更简单, 所需表示的状态空间更小(存储量少,搜索方法简单)。
n=3时的0-1背包问题用完全二叉树表示的解空间
生成问题状态的基本方法
► ► ► ►
► ►
扩展结点:一个正在产生儿子的结点称为扩展结点 活结点:一个自身已生成但其儿子还没有全部生成的节点称 做活结点 死结点:一个所有儿子已经产生的结点称做死结点 深度优先的问题状态生成法:如果对一个扩展结点R,一旦 产生了它的一个儿子C,就把C当做新的扩展结点。在完成 对子树C(以C为根的子树)的穷尽搜索之后,将R重新变成 扩展结点,继续生成R的下一个儿子(如果存在) 宽度优先的问题状态生成法:在一个扩展结点变成死结点 之前,它一直是扩展结点 回溯法:为了避免生成那些不可能产生最佳解的问题状态, 要不断地利用限界函数(bounding function)来处死那些实 际上不可能产生所需解的活结点,以减少问题的计算量。 具有限界函数的深度优先生成法称为回溯法
回溯部份: 即状态恢复,使其恢复到进 入该分支前的状态,继续新的 分支 x[k]:=0; Dec(k);
程序实现: 回溯算法可用非递归和递归两种方法实现!
N皇后问题
非递归写法: 算法描述: Nqueens() 1. 产生一种新放法 begin 2. 冲突,继续找,直到找到不冲 Flag ← true x[1] ← 0 突----不超范围 3. if 不冲突 then k<nk+1 k←1 k=n一组解 while k>0 do While flag do 4. if 冲突 then 回溯 begin x[k] ← x[k] +1 while x[k]<=n and (not place(k)) do x[k] ← x[k] +1 if x[k]<=n then if k=n then sum ← sum+1 if k=n then print;flag ←false else begin k ← k+1 x[k] ← 0 end else k ← k-1 end end
{每层均有n种放法} {寻找放置皇后的位置}
{放置皇后) {8个皇后都放置好,输出} {若只想找一组解,halt} {继续递归放置下一个皇后}
end;
跳马问题
在n×m棋盘上有一中国象棋中的马: 1. 马走日字; 2. 马只能往右走。 请你找出一条可行路径,使得马可以从棋盘的左下角(1,1)走 到右上角(n,m)。 输入:9 5 输出:(1,1)->(3,2)->(5,1)->(6,3)->(7,1)->(8,3)->(9,5)
K=1
K=2
* * *** * *
回溯
*
*
出解后 可以继 续刚才 的做法
K=3
* * * * ** * * * * * * * * * * *
回溯
*
*
* *
*
K=4
* *
*
N皇后问题
程序结束条件: 一组解:设标志,找到一解后更改标志,以标志做为结束循环的条 件所有解:k=0
判断约束函数 Function Place(k:integer):boolean; place:=true; for j←1 to k-1 do if |k-j|=|x[j]-x[k]| or x[j]=x[k] then place:= false
N皇后问题
在一个n*n的国际象棋棋盘上放置n个皇后,使得它们中任意2个之间都 不互相“攻击”,即任意2个皇后不可在同行、同列、同斜线上。 输出N,⑴求N皇后问题的一种放法;
⑵求N皇后问题的所有放法
分析: N=4时,右图是一组解
要素一: 解空间
一般想法:利用二维数组,用[i,j]确定一个皇后位置!
优化:利用约束条件,只需一维数组即可! x:array[1..n] of integer; x[i]:i表示第i行皇后 x[i]表示第i行上皇后放第几列
迭代回溯
采用树的非递归深度优先遍历算法,可将回溯法表示为一个非 递归迭代过程。
void iterativeBacktrack () { int t=1; while (t>0) { if (f(n,t)<=g(n,t)) for (int i=f(n,t);i<=g(n,t);i++) { x[t]=h(i); if (constraint(t)&&bound(t)) { if (solution(t)) output(x); else t++;} } else t--; } }

回溯法
回溯算法是所有搜索算法中最为基本的一种算法,是一 种能避免不必要搜索的穷举式的搜索算法,其基本思想 就是穷举搜索。 算法思想: 采用了一种“走不通就掉头”的思想。搜索时往往有多分支, 按某一分支为新的出发点,继续向下探索,当所有可能情况都 探索过且都无法到达目标的时候,再回退到上一个出发点,继 续探索另一个可能情况,这种不断回头寻找目标的方法称为 “回溯法”。
N皇后问题
递归写法: procedure try(k:byte); var i:byte; begin for i:=1 to n do if place(k) then begin x[k]:=i; if k=n then print else try(k+1); end;
分析:状态恢复(回溯)在什 么地方实现?
要素三:状态树
将搜索过程中的每个状态用树的形式表示出来! 画出状态树对书写程序有很大帮助!
K=0
过程:进入新一行, 该行上按顺序逐个 格子尝试,直到能 放为止(不冲突、 不越界)
N皇后问题
* **
算法描述: 1. 产生一种新放法 2. 冲突,继续找,直到找到不冲 突----不超范围 3. if 不冲突 then k<nk+1 k=n一组解 4. if 冲突 then 回溯
D2 E1 D1
5. 从C2出发,有四条路径可以选择,选择 D4,从D4出发又有两条路径,选择E1错 误,返回D4选择E2,从E2出发有两条路 径,先选择F1错误,返回E2选择B,而B 恰好是我们要到达的目标点,至此,一 条路径查找成功。
B3 A2 B2 C2 A1 B1 D4 E2
BAE1 F1来自马问题④③ ② ①

⑤ ⑥

② ① ③
Path[5]:=1

⑤ ⑥
⑤ ⑥



跳马问题
跳马问题(非递归)
Horse() begin path[1] ← 0,k ← 1,x ←1,y ←1 while (x<>m) and (y<>n) do begin path[k] ←path[k] +1 while (x + dx[i] <= n) and (y + dy[i] > 0) and (y + dy[i] <= n) and (path[k]<=4) do path[k] ← path[k] +1 if path[k]<=4 then {在4种走法中找到不越界的走法} begin x ←x+dx[i],y ←y+dy[i] if (x<>m) and (y<>n) then print else begin k ← k+1 path[k] ← 0 end end else path[k] ← 0,k ← k-1 end end
相关文档
最新文档