2017-2018年度高一数学上学期期末专业考试试题~及内容答案

合集下载

2017-2018学年高一数学上学期期末考试试题

2017-2018学年高一数学上学期期末考试试题

2017-2018学年高一数学上学期期末考试试题一、选择题(每小题5分,共50分)1.设集合,,若,则的取值范围是()A. B. C. D.2.已知函数为偶函数,则在区间上是()A.先增后减 B.先减后增 C.减函数 D.增函数3.定义在上的函数对任意的正实数,恒成立,则不等式的解集是( )A.B.C. D.4.点(1,2)关于直线x+y+1=0的对称点是( )A.(-2,-3)B.(-2,-1)C.(-1,-2)D.(-3,-2)5.以下给出的四个命题中,命题正确的有()①两个面互相平行,其余各面都是平行四边形,这些面围成的几何体叫做棱柱;②以直角三角形的一条边所在的直线为旋转轴,其余各边旋转而成的曲面所围成的几何体叫做圆锥;③用一个平行于底面的平面去截圆锥,底面与截面之间的部分叫做圆台;④空间中,如果两个角的两条边分别垂直,那么这两个角相等或互补。

A.0个 B.1个 C.2个 D.3个6.若,则等于( )A. B.2C.-1D.2或-17.已知函数,则()A. B. C.8 D.28.方程的解所在的区间为()A. B. C. D.9.一个水平放置的图形的斜二测直观图是一个底角为,腰和上底均为的等腰梯形,那么原平面图形的面积是()A. B. C. D.10.直线过点且与以点、为端点的线段恒相交,则的斜率取值范围是()A. B. C. D.二、填空题(每小题5分,共20分)11.过点P(2,2)作圆的切线PA,切点为A,则线段PA的长为__________.12.已知某几何体的三视图如右图所示,则该几何体的外接球的表面积为__________.13.直线恒过定点C,则以C为圆心,半径为的圆的标准方程为__________.14.曲线与直线有两个相异的交点,则实数的取值范围是__________.三、解答题(每小题10分,共50分)15.计算下列各式的值(1)设,求的值.(2)16.如图,菱形的对角线交于点,底面,是的中点.求证:(1)//平面;(2)平面平面.17.已知函数。

最新-高一数学上学期期末考试试题及答案

最新-高一数学上学期期末考试试题及答案

2017-2018学年度第一学期期末考试高一数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,满分120分.考试限定用时100分钟.考试结束后,将本试卷和答题纸一并交回.答卷前,考生务必将自己の姓名、座号、考籍号分别填写在试卷和答题纸规定の位置.第Ⅰ卷(选择题 共48分)参考公式:1.锥体の体积公式1,,.3V Sh S h =其中是锥体的底面积是锥体的高2.球の表面积公式24S R π=,球の体积公式343R V π=,其中R 为球の半径.一、选择题:本大题共12小题,每小题4分,共48分,在每小题给出の四个选项中,只有一项是符合题目要求の.1.已知全集{0,1,2,3},{1,3}U A ==,则集合U C A = ( )A .{}0B .{}1,2C .{}0,2D .{}0,1,2 2.空间中,垂直于同一直线の两条直线 ( )A .平行B .相交C .异面D .以上均有可能 3.已知幂函数()αx x f =の图象经过点⎝ ⎛⎭⎪⎫2,22,则()4f の值等于 ( ) A .16 B.116 C .2 D.124. 函数()lg(2)f x x =+の定义域为 ( )A.(-2,1)B.[-2,1]C.()+∞-,2D. (]1,2- 5.动点P 在直线x+y-4=0上,O 为原点,则|OP|の最小值为 ( )AB .CD .26.设m 、n 是两条不同の直线,α、β是两个不同の平面,则下列命题中正确の是 ( )A .若m ∥n ,m ∥α,则n ∥αB .若α⊥β,m ∥α,则m ⊥βC .若α⊥β,m ⊥β,则m ∥αD .若m ⊥n ,m ⊥α, n ⊥β,则α⊥βOOO O1 1117.设()x f 是定义在R 上の奇函数,当0≤x 时,()x x x f -=22,则()1f 等于 ( )A .-3B .-1C .1D .3 8.函数y =2-+212x x⎛⎫⎪⎝⎭の值域是 ( )A .RB .⎣⎢⎡⎭⎪⎫12,+∞ C .(2,+∞) D. (0,+∞) 9.已知圆0964:221=+--+y x y x c ,圆019612:222=-+++y x y x c ,则两圆位置关系是 ( )A .相交B .内切C .外切D .相离10. 当10<<a 时,在同一坐标系中,函数xay -=与x y a log =の图象是 ( )A. B. C. D.11. 函数f(x)=e x-x1の零点所在の区间是 ( ) A.(0,21) B. (21,1) C. (1,23) D. (23,2) 、12. 已知函数224,0()4,0x x x f x x x x ⎧+≥⎪=⎨-<⎪⎩,若(21)()f a f a +>,则实数a の取值范围是( )A .1(,1)(,)3-∞-⋃-+∞ B . (,3)(1,)-∞-⋃-+∞C . 1(1,)3-- D .(3,1)--第Ⅱ卷(非选择题,共72分)二、填空题:本大题共4小题,每小题4分,共16分. 13. 计算 =+⨯+2lg 5lg 2lg )5(lg 2________.14. 已知直线013:1=-+y ax l 与直线()0112:2=+-+y a x l 垂直,则实数a =_____. 15. 已知各顶点都在一个球面上の正方体の棱长为2,则这个球の体积为 . 16. 圆心在y 轴上且通过点(3,1)の圆与x 轴相切,则该圆の方程是 .三、解答题:本大题共6小题, 共56分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)设集合{|13}A x x =-≤<,{|242}B x x x =-≥-, {|1}C x x a =≥-.(Ⅰ)求A B ;(Ⅱ)若B C C =,求实数a の取值范围.18.(本小题满分10分)已知函数()log (1)log (3) (01)a a f x x x a =-++<<. (Ⅰ)求函数()f x の零点;(Ⅱ)若函数()f x の最小值为4 ,求a の值.19.(本小题满分12分)已知圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0. (Ⅰ)当a 为何值时,直线l 与圆C 相切;(Ⅱ)当直线l 与圆C 相交于A ,B 两点,且AB =22时,求直线l の方程.20.(本小题满分12分)三棱柱ABC ﹣A 1B 1C 1中,CC 1⊥平面ABC ,△ABC 是边长为4の等边三角形,D 为AB 边中点, 且CC 1=2AB .(Ⅰ)求证:平面C 1CD⊥平面ADC 1; (Ⅱ)求证:AC 1∥平面CDB 1; (Ⅲ)求三棱锥D ﹣CAB 1の体积.21. (本小题满分12分)已知f (x )是定义在[-1,1]上の奇函数,且f (1)=1,若a ,b ∈[-1,1],a +b ≠0时,有f a +f ba +b>0成立.(Ⅰ)判断f (x )在[-1,1]上の单调性,并证明; (Ⅱ)解不等式:()()x f x f 3112-<-;(Ⅲ)若f (x )≤m 2-2am +1对所有のa ∈[-1,1]恒成立,求实数m の取值范围.2017-2018学年高一上学期期末考试高一数学答案一、选择题C D D D B D A B C D B A 二、填空题13、1 14、35 15、16、x 2+y 2-10y =0三、解答题17、解: (Ⅰ)由题意知,{|2}B x x =≥分 所以{}|23A B x x ⋂=≤<分 (Ⅱ)因为B C C ⋃=,所以B C ⊆分 所以12a -≤,即3a ≤分18、解:(Ⅰ)要使函数有意义:则有1030x x -⎧⎨+⎩>>,解之得:31x -<<2分函数可化为2()log (1)(3)log (23)a a f x x x x x =-+=--+由()0f x =,得2231x x --+=即2220xx +-=,1x =-±(3,1)±-∵-1()f x ∴の零点是1-5分(Ⅱ)函数化为:22()log (1)(3)log (23)log (1)4a a a f x x x x x x ⎡⎤=-+=--+=-++⎣⎦31x -∵<< 201)44x ++≤∴<-(7分01a ∵<<2log (1)4log 4a a x ⎡⎤-++≥⎣⎦∴即min ()log 4a f x =由log 44a =-,得44a-=,14242a -==∴ 10分19、解:(Ⅰ)若直线l 与圆C 相切,则有圆心(0,4)到直线l :ax +y +2a =0の距离为21242=++a a3分解得43-=a . 5分 (Ⅱ)过圆心C 作CD ⊥AB ,垂足为D.则由AB =22和圆半径为2得CD = 27分因为21242=++=a a CD所以解得7-=a 或1-.故所求直线方程为7x -y +14=0或x -y +2=0.10分20、解:(Ⅰ)∵CC 1⊥平面ABC ,又AB ⊂平面ABC ,∴CC 1⊥AB ∵△ABC 是等边三角形,CD 为AB 边上の中线,∴C D ⊥AB2分∵CD ∩CC 1=C ∴AB ⊥平面C 1CD∵AB ⊂平面ADC 1∴平面C 1CD⊥平面ADC 1; 4分(Ⅱ)连结BC 1,交B 1C 于点O ,连结DO .则O 是BC 1の中点,DO 是△BAC 1の中位线.∴DO∥AC 1.∵DO ⊂平面CDB 1,AC 1⊄平面CDB 1,∴AC 1∥平面CDB 1;8分(Ⅲ)∵CC 1⊥平面ABC ,BB 1∥CC 1,∴BB 1⊥平面ABC .∴BB 1 为三棱锥D ﹣CBB 1 の高.=.∴三棱锥D ﹣CAB 1の体积为.12分21、解:(Ⅰ)任取x 1,x 2∈[-1,1],且x 1<x 2,则-x 2∈[-1,1],∵f (x )为奇函数,∴f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f x 1+f -x 2x 1+-x 2·(x 1-x 2),2分由已知得f x 1+f -x 2x 1+-x 2>0,x1-x2<0,∴f(x 1)-f (x 2)<0,即f (x 1)<f (x 2).∴f (x )在[-1,1]上单调递增. 4分(Ⅱ)∵f(x)在[-1,1]上单调递增,∴⎪⎩⎪⎨⎧-<-≤-≤-≤-≤-x xxx3112131111216分∴不等式の解集为⎭⎬⎫⎩⎨⎧<≤520x x . 7分(Ⅲ)∵f(1)=1,f (x )在[-1,1]上单调递增.∴在[-1,1]上,f (x )≤1.问题转化为m 2-2am +1≥1,即m 2-2am ≥0,对a ∈[-1,1]恒成立. 9分下面来求m の取值范围.设g (a )=-2m ·a +m 2≥0.①若m =0,则g (a )=0≥0,对a ∈[-1,1]恒成立.②若m ≠0,则g (a )为aの一次函数,若g (a)≥0,对a ∈[-1,1]恒成立,必须g (-1)≥0且g (1)≥0,∴m ≤-2或m ≥2. 综上,m =0 或m ≤-2或m ≥212分。

2017-2018学年高一数学上学期期末考试试题及答案(新人教A版 第121套)

2017-2018学年高一数学上学期期末考试试题及答案(新人教A版 第121套)

x y O x y O x y O xyO2017-2018学年度第一学期高一年级期末考试数学试题第Ⅰ卷(选择题共50分)说明:1、本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,考试时间120分钟,共150分。

2、请将第Ⅰ卷答案填写在第Ⅱ卷答题卡上,第Ⅱ卷答案用0.5毫米黑色笔写在答题纸指定位置。

一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1、已知直线经过点)5,1(-A 和点)2,1(B ,则直线AB 的斜率为( )A 、0B 、-3C 、2D 、不存在 2、过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A 、012=-+y xB 、052=-+y xC 、052=-+y xD 、072=+-y x 3、两圆229x y +=和228690x y x y +-++=的位置关系是( )A 、相离B 、相交C 、内切D 、外切 4、圆22(2)5x y ++=关于原点(0,0)P 对称的圆的方程为 ( ) A 、22(2)5x y -+=B 、22(2)5x y +-=C 、22(2)(2)5x y +++=D 、22(2)5x y ++=5、圆1622=+y x 上的点到直线3=-y x 的距离的最大值为( )A 、 223 B 、 2234- C 、2234+ D 、5 6、在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( )A 、B 、C 、D 、7、已知半径为5的球的两个平行截面的周长分别为π6、π8,则这两个平行截面间的距离是( )A 、1B 、2C 、1或7D 、2或6 8、已知a 、b 为直线,α为平面,则下面四个命题: ①若α⊥a b a ,//,则α⊥b ;②若αα⊥⊥b a ,,则b a //;D C BB1D 1AC 1A 1③若b a a ⊥⊥,α,则α//b ;④若b a a ⊥,//α,则α⊥b ;其中正确的命题是( ) A 、①② B 、①②③ C 、②③④ D 、①②④ 9、直线 023=-+y x 被圆1)1(22=+-y x 所截得的弦长为( ) A 、1 B 、2 C 、3 D 、2 10、右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A 、π9B 、π10C 、π11D 、π12第Ⅱ卷(非选择题 共100分) 二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置.11、已知两圆1022=+y x 和20)3()1(22=-+-y x 相交于A 、B 两点,则直线AB 的方程12、若(1,2,1),(2,2,2),A B -点P 在z 轴上,且PA PB =,则点P 的坐标为 13、已知直线01)1(=+++y a ax 与直线03)1(2=+++y a x 互相平行,则=a 14、对于一个底边在x 轴上的三角形,采用斜二测画法作出其直观图,其直观图的面积是原三角形面积的 倍 15、如图在正方体1111D C B A ABCD -中,异面直线 D B 1与1BC 所成的角为三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16、(本小题满分12分)一个正四棱台的上、下底面边长分别为4cm 和10cm ,高为4cm ,求正四棱台的侧面积和体积。

2017-2018学年高一数学上学期期末考试试题(含解析)及答案(新人教A版 第124套)

2017-2018学年高一数学上学期期末考试试题(含解析)及答案(新人教A版 第124套)

黑龙江省大庆铁人中学2017-2018学年高一上学期期末数学试题
满分:150分 考试时间:120分钟
第Ⅰ卷(选择题 满分60分)
一、选择题(每小题5分,共60分)
1. 非空集合{}{}135,116X x a x a Y x x =+≤≤-=≤≤,使得()X X Y ⊆⋂成立的所有
a 的集合是( ) A. {}37a a ≤≤ B. {}07a a ≤≤ C.{}37a a <≤ D.{}7a a ≤
考点:对数函数,含绝对值的函数图像
3. 将函数g()3sin 26x x π⎛⎫=+
⎪⎝⎭图像上所有点向左平移6π个单位,再将各点横坐标缩短为 原来的12
倍,得到函数()f x ,则( ) A .()f x 在0,4π⎛⎫ ⎪⎝⎭单调递减 B .()f x 在3,44
ππ⎛⎫ ⎪⎝⎭单调递减 C .()f x 在0,4π⎛⎫ ⎪⎝⎭单调递增 D .()f x 在3,44ππ⎛⎫ ⎪⎝⎭
单调递增
5.下列函数中最小正周期为2
π的是( ) A. sin4y x = B. sin cos()6
y x x π
=+ C. sin(cos )y x = D. 42sin cos y x x =+
6. 已知P 是边长为2的正ABC ∆的边BC 上的动点,则()
AP AB AC + ( ) A.最大值为8 B.是定值6 C.最小值为6 D.是定值3
7. 在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点F ,若AC a = ,BD b = ,则AF = ( ) A.1142a b + B.1233a b + C.1124a b + D.2133a b +。

2017-2018学年度高一第一学期期末考试数学科试题(含答题卡、答案)

2017-2018学年度高一第一学期期末考试数学科试题(含答题卡、答案)

2017--2018学年度高一第一学期期末考试 数学试卷 满分:150分 时间: 120分钟命题人:郭先华 审题人:尹芳明 日期:2018年1月17日一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}|27,|1,A x x B x x x N =-<<=>∈,则A B 的元素的个数为( ) A.3 B.4 C.5 D.62.两条直线a ,b 满足a ∥b ,b α⊂,则a 与平面α的关系是( ) A.a ∥α B.a 与α相交 C.a 与α不相交 D.a α⊂3.方程的1xe x=的根所在的区间是( ). A.)21,0( B.)1,21( C.)23,1( D.)2,23(4.函数y=x (x 2-1)的大致图象是( )5.如图所示,已知正四棱锥S —ABCD 侧棱长为2,底面边长为3,E 是SA 的中点,则异面直线BE 与SC 所成角的大小为( ) A.90°B.60°C.45°D.30°6.长方体1111ABCD A B C D -中,2AB =,1AA =3AD =,则 长方体1111ABCD A B C D - 的外接球的直径为 ( ) A.2 B.3 C.4 D.5高一数学试题 第1页(共4页)7.圆锥的表面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为( ) A.120° B.150° C.180° D.240°8.如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是( ) A.BD ∥平面CB 1D 1 B.AC 1⊥BDC.AC 1⊥平面CB 1D 1D.异面直线AD 与CB 1角为60°9.若方程1ln 02xx a ⎛⎫-+= ⎪⎝⎭有两个不等的实数根,则a 的取值范围是( )A.1,2⎛⎫+∞ ⎪⎝⎭B.()1,+∞C.1,2⎛⎫-∞ ⎪⎝⎭D.(),1-∞10.某几何体的三视图如图所示(单位: cm ),则该几何体的表面积是( )A.65B.6C.2D.511.已知函数()22log f x x x =+,则不等式()()120f x f +-<的解集为( )A. ()(),13,-∞-⋃+∞B. ()(),31,-∞-⋃+∞C. ()()3,11,1--⋃-D. ()()1,11,3-⋃12.已知()()()2,log 0,1x a f x ag x x a a -==>≠,若()()440f g ⋅-<,则y=()f x ,y=()g x 在同一坐标系内的大致图象是( )高一数学试题 第2页(共4页)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知不等式062<-+px x 的解集为{|32}x x -<<,则p = .14.2lg 2= _________15.函数()lg 21y x =+的定义域是______________________. 16.函数x21f x =-log x+23⎛⎫⎪⎝⎭()()在区间[-1,1]上的最大值为________. 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分10分)全集R U =,函数()lg(3)f x x =+-的定义域为集合A ,集合{}02<-=a x x B .(1)求U A ð; (2)若A B A = ,求实数a 的取值范围.18.(本题满分12分)已知函数⎪⎩⎪⎨⎧>-+≤-=)0(,1)1(log )0(,2)21()(2x x x x f x(1)求)(x f 的零点; (2)求不等式()0f x >的解集.19.(12分)如图,在直角梯形ABCD 中,AD ∥BC ,AD =AB ,∠A =90°,BD ⊥DC ,将△ABD 沿BD 折起到△EBD 的位置,使平面EBD ⊥平面BDC. (1) 求证:平面EBD ⊥平面EDC ; (2) 求ED 与BC 所成的角.高一数学试题 第3页(共4页)20.(12分)一块边长为10 cm 的正方形铁块按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器.(1)试把容器的容积V 表示为x 的函数; (2)若x =6,求图2的正视图的面积.21.(本小题满分12分) 在三棱柱111C B A ABC -中,侧面11A ABB 为矩形,1AB =,1AA D 为1AA 的中点,BD 与1AB 交于点O ,⊥CO 侧面11A ABB .(Ⅰ)证明:1AB BC ⊥; (Ⅱ)若OA OC =,求点1B 到平面ABC 的距离.22.(本小题满分12分)已知函数4()log (41)x f x kx =++(k ∈R ),且满足(1)(1)f f -=. (1)求k 的值;(2)若函数()y f x =的图象与直线12y x a =+没有交点,求a 的取值范围;(3)若函数1()2()421f x xx h x m +=+⋅-,[]20,log 3x ∈,是否存在实数m 使得()h x 最小值为0,若存在,求出m 的值;若不存在,请说明理由.高一数学试题 第4页(共4页)1A A 1B B 1C C OD2017-2018学年度高一第一学期期末考试数学答题卡(理科/文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.二、填空题(每题5分,满分20分,将正确答案填在对应题号后的横线上)13. 14. 15. 16.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)高一数学答题卡 第1页(共※页)高一数学答题卡 第2页(共6页)1 4 7 102 5 8 11 3691217.解:高一数学答题卡第3页(共6页)高一数学答题卡第4页(共6页)。

2017-2018学年度高一上学期期末考试数学试卷及答案[1]

2017-2018学年度高一上学期期末考试数学试卷及答案[1]

2017-2018学年度高一上学期期末考试数学试卷第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.) 1. 设集合{}{}{}1,2,3,4,5,1,2,3,2,5U A B ===,则()U AC B = ( )A.{}2B. {}2,3C.{}3D.{}1,32.函数1()1f x x =+-的定义域为( ) A .[2,)-+∞ B. [)()2,11,-+∞ C.R D. (],2-∞-3.下列四组函数中,表示同一函数的是( )A .2x y x y ==与 B .2lg lg 2x y x y ==与C .x y x y ==与33D .1112+-=-=x x y x y 与4.已知点(,3)P x 是角θ终边上一点,且4cos 5θ=-,则x 的值为( ) A .5B .5-C .4D .4-5.已知8.028.01.1,8.0log ,7.0===c b a ,则c b a ,,的大小关系是( )A .c b a <<B .c a b <<C .a c b <<D .a c b <<6.设函数y =x 3与21()2x y -=的图像的交点为(x 0,y 0),则x 0所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4) 7.已知3tan =α,则αααα22cos 9cos sin 4sin 2-+的值为( ) .A 301 .B 31 .C 1021.D 38.若两个非零向量b a ,==+b a +与b a -的夹角是( ).A 6π .B 3π .C 32π .D 65π9.已知函数)(x f y =是)1,1(-上的偶函数,且在区间)0,1(-是单调递增的,C B A ,,是锐角ABC ∆的三个内角,则下列不等式中一定成立的是( ).A )(cos )(sin A f A f > .B )(cos )(sin B f A f > .C )(sin )(cos B f C f > .D )(cos )(sin B f C f >10.已知函数()[],f x x x x R =-∈,其中[]x 表示不超过x 的最大整数,如322⎡⎤-=-⎢⎥⎣⎦,5[3]3,22⎡⎤-=-=⎢⎥⎣⎦,则()f x的值域是( )A .(0,1)B .(0,1]C .[0,1)D .[0,1] 11. 函数22xy x =-的图像大致是 ( )A B C D12.定义在R 上的函数)(x f 满足()()();2)(,13,62+-=-<≤-=+x x f x x f x f 时当当=++++=<≤-)2012()3()2()1(,)(31f f f f x x f x 则时,( )A.335B.338C.1678D.2012第II 卷(非选择题, 共90分)二、填空题(本大题共4小题,每题4分,共16分,把答案填在题中横线上) 13.已知tan 2α=,则cos2α= .14.已知函数3,1(),,1x x f x x x ⎧≤=⎨->⎩,若()2f x =,则x = 15.把函数y =3sin2x 的图象向左平移6π个单位得到图像的函数解析是 . 16.有下列五个命题: ① 函数3)(1+=-x ax f (0,1)a a >≠的图像一定过定点(1,4)P ;② 函数(1)f x -的定义域是(1,3),则函数()f x 的定义域为(2,4); ③ 已知)(x f =538x ax bx ++-,且(2)8f -=,则(2)8f =-; ④ 函数212log (23)y x x =--+的单调递增区间为(1,)-+∞.其中正确命题的序号是__________.(写出所有正确命题的序号)三、解答题(本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)已知集合A ={}71<≤x x ,{}{}210,B x x C x x a =<<=<,全集U R =. (1)求B A ⋃;B AC U ⋂)(.(2)如果A C φ⋂≠,求a 的取值范围.已知C B A ,,的坐标分别为)0,3(A ,)3,0(B ,)sin ,(cos ααC ,)23,2(ππα∈ (1)若|,|||BC AC =求角α的值;(2)若αααtan 12sin sin 2,12++-=⋅求BC AC 的值.19.(本小题满分12分)已知二次函数2()163f x x x q =-++: (1) 若函数的最小值是-60,求实数q 的值;(2) 若函数在区间[]1,1-上存在零点,求实数q 的取值范围.20.(本小题满分13分)辽宁号航母纪念章从2012年10月5日起开始上市.通过市场调查,得到该纪念章每1枚的市场价y (单位:元)与上市时间x (单位:天)的数据如下:(1)根据上表数据结合散点图,从下列函数中选取一个恰当的函数描述辽宁号航母纪念章的市场价y 与上市时间x的变化关系并说明理由:①y ax b =+;②2y ax bx c =++;③log b y a x =.(2)利用你选取的函数,求辽宁号航母纪念章市场价最低时的上市天数及最低的价格.已知:)sin ,cos 2(x x a =,)cos 2,cos 3(x x b =,设函数)(3)(R x b a x f ∈-⋅= 求:(1))(x f 的最小正周期; (2))(x f 的单调递增区间; (3)若6)122()62(=+--παπαf f ,且),2(ππα∈,求α的值.22.(本小题满分14) 设函数()()2221()log log 1log .1x f x x p x x +=+-+-- (1)求函数的定义域;(2)当3p >时,问()f x 是否存在最大值与最小值?如果存在,请把它写出来;如果不存在,请说明理由.2017-2018学年度高一上学期期末考试数学试卷答案一、选择题:1-5 DBCCD 6-10 BCCCC 11-12 AB 二、填空题:13. 35-14.3log 2 15.y =3sin(2x + ) 16.① 三、解答题: 17. ①{}110A B B x x ==≤<,{}17R C A x x x =<≥或--3分 所以{}710R C AB x x =≤<; (2)()1,+∞18. (1))3sin ,(cos ),sin ,3(cos -=-=ααααBC ACαααcos 610sin )3(cos 22-=+-=, αααsin 610)3(sin cos22-=-+==得ααcos sin =,又45),23,2(παππα=∴∈ (2)由1-=⋅BC AC 得1)3(sin sin cos )3(cos -=-+-αααα32cos sin =+∴αα① ααααααααααcos sin 2cos sin 1cos sin 2sin 2tan 12sin sin 222=++=++又由①式两分平方得94cos sin 21=+αα 95cos sin 2-=∴αα,95tan 12sin sin 22-=++ααα19.(Ⅰ)()()min 861601;f x f q q ==-+=-∴=(Ⅱ)∵二次函数2()163f x x x q =-++的对称轴是8x =∴函数()f x 在区间[]1,1-上单调递减 ∴要函数()f x 在区间[]1,1-上存在零点须满足(1)(1)0f f -⋅≤ 即 (1163)(1163)0q q +++⋅-++≤ 解得 2012q -≤≤20. (1)∵随着时间x 的增加,y 的值先减后增,而所给的三个函数中y ax b =+和log b y a x =显然都是单调函数,不满足题意,∴2y ax bx c =++. (2)把点(4,90),(10,51),(36,90)代入2y ax bx c =++中,得⎪⎩⎪⎨⎧=++=++=++90361296511010090416c b a c b a c b a 解得41=a ,10-=b ,126=c ∴221110126(20)2644y x x x =-+=-+,∴当20x =时,y 有最小值min 26y =.21.解3cos sin 2cos 323)(2-+=-⋅=x x x b a x f)32sin(22cos 32sin )1cos 2(32sin 2π+=+=-+=x x x x x(1)函数f(x)的最小正周期为ππ==22T (2)由Z k k x k ∈+≤+≤-,223222πππππ得Z k k x k ∈+≤≤-,12125ππππ ∴函数)(x f 的单调增区间为Z k k k ∈+-],12,125[ππππ (3)612262=⎪⎭⎫⎝⎛+-⎪⎭⎫⎝⎛-παπαf f ,6cos 2sin 2=-∴αα 64sin 22=⎪⎭⎫⎝⎛-∴πα,⎪⎭⎫⎝⎛∈-∴⎪⎭⎫⎝⎛∈=⎪⎭⎫ ⎝⎛-∴43,44,,2,234sin πππαππαπα 12111273234ππαπππα或,或=∴=-… 22.解:(1)由101100x x x p x +⎧>⎪-⎪->⎨⎪->⎪⎩解得1x x p >⎧⎨<⎩①当1p ≤时,①不等式解集为∅;当1p >时,①不等式解集为{}()1,x x p f x <<∴的定义域为()()1,1.p p >(2)原函数即()()()()222211log 1log 24p p f x x p x x ⎡⎤+-⎛⎫=+-=--+⎡⎤⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦, 即3p >时,函数()f x 有最大值()22log 12p +-,但无最小值。

高一数学上学期期末考试试题(含解析)-人教版高一全册数学试题

高一数学上学期期末考试试题(含解析)-人教版高一全册数学试题

某某省实验中学2017-2018学年高一数学上学期期末考试试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】A【解析】则故选2. 直线的倾斜角是()A. B. C. D.【答案】C【解析】直线的斜率为直线的倾斜角为:,可得:故选3. 计算,其结果是()A. B. C. D.【答案】B【解析】原式故选4. 已知四面体中,,分别是,的中点,若,,,则与所成角的度数为()A. B. C. D.【答案】D【解析】如图,取的中点,连接,,则,(或补角)是与所成的角,,,,,而故选5. 直线在轴上的截距是()A. B. C. D.【答案】B【解析】直线在轴上的截距就是在直线方程中,令自变量,直线在轴上的截距为故选6. 已知,是两个不同的平面,给出下列四个条件:①存在一条直线,使得,;②存在两条平行直线,,使得,,,;③存在两条异面直线,,使得,,,;④存在一个平面,使得,.其中可以推出的条件个数是()A. 1B. 2C. 3D. 4【答案】B【解析】当,不平行时,不存在直线与,都垂直,,,故正确;存在两条平行直线,,,,,,则,相交或平行,所以不正确;存在一个平面,使得,,则,相交或平行,所以不正确;故选7. 已知梯形是直角梯形,按照斜二测画法画出它的直观图(如图所示),其中,,,则直角梯形边的长度是()A. B. C. D.【答案】B【解析】根据斜二测画法,原来的高变成了方向的线段,且长度是原高的一半,原高为而横向长度不变,且梯形是直角梯形,故选8. 经过点的直线到,两点的距离相等,则直线的方程为()A. B.C. 或D. 都不对【答案】C【解析】当直线的斜率不存在时,直线显然满足题意;当直线的斜率存在时,设直线的斜率为则直线为,即由到直线的距离等于到直线的距离得:,化简得:或(无解),解得直线的方程为综上,直线的方程为或故选9. 已知函数的图象与函数(,)的图象交于点,如果,那么的取值X围是()A. B. C. D.【答案】D【解析】由已知中两函数的图象交于点,由指数函数的性质可知,若,则,即,由于,所以且,解得,故选D.点睛:本题考查了指数函数与对数函数的应用,其中解答中涉及到指数函数的图象与性质、对数函数的图象与性质,以及不等式关系式得求解等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,本题的解答中熟记指数函数与对数函数的图象与性质,构造关于的不等式是解答的关键,试题比较基础,属于基础题.10. 矩形中,,,沿将矩形折成一个直二面角,则四面体的外接球的体积是()A. B. C. D.【答案】B【解析】由题意知,球心到四个顶点的距离相等,球心在对角线上,且其半径为长度的一半为故选11. 若关于的方程在区间上有解,则实数的取值X围是()A. B. C. D.【答案】A【解析】由题意可得:函数在区间上的值域为实数的取值X围是故选点睛:本小题考查的是学生对函数最值的应用的知识点的掌握。

高等数学 期末考试试题(含答案)

高等数学   期末考试试题(含答案)

(2017至2018学年第一学期)一、 单项选择题(15分,每小题3分)1、当∞→x 时,下列函数为无穷小量的是( )(A )x Cosx x - (B )x Sinx(C )121-x (D )x x )11(+2.函数)(x f 在点0x 处连续是函数在该点可导的( ) (A )必要条件 (B )充分条件(C )充要条件 (D )既非充分也非必要条件 3.设)(x f 在),(b a 内单增,则)(x f 在),(b a 内( ) (A )无驻点 (B )无拐点 (C )无极值点 (D )0)(>'x f4.设)(x f 在][b a ,内连续,且0)()(<⋅b f a f ,则至少存在一点),(b a ∈ξ使( )成立。

(A )0=)(ξf (B )0=')(ξf(C )0='')(ξf (D ))()()()(a b f a f b f -⋅'=-ξ 5.广义积分)0(>⎰∞+a dxax p当( )时收敛。

(A )1>p (B)1<p (C)1≥p (D)1≤p二、填空题(15分,每小题3分)1、 若当0→x 时,22~11x ax --,则=a ;2、设由方程22a xy =所确定的隐函数)(x y y =,则=dy ;3、函数)0(82>+=x xx y 在区间 单减;在区间 单增;4、若x xe x f λ-=)(在2=x 处取得极值,则=λ ;5、若dx x f dx x xf a ⎰⎰=10102)()(,则=a ;三、计算下列极限。

(12分,每小题6分)1、xx xx )1(lim +∞→ 2、 200)1(lim xdte xt x ⎰-→四、求下列函数的导数(12分,每小题6分)1、241x y -=,求y ' 2、⎪⎩⎪⎨⎧-=+=tt y t x arctan )1ln(2 ,求22dx y d五、计算下列积分(18分,每小题6分)1、dx xxx ⎰+++21arctan 1 2、dx x x ⎰--223cos cos ππ3、设dt ttx f x ⎰=21sin )(,计算dx x xf ⎰10)(六、讨论函数⎪⎪⎩⎪⎪⎨⎧≤>-=2,22,cos 2)(ππππx x x x x x f 的连续性,若有间断点,指出其类型。

2017-2018学年高一上学期期末考试数学试题

2017-2018学年高一上学期期末考试数学试题

一、选择题(本题共有12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是最符合题目要求的。

)1. 设集合,则A∩B=A. B. C. D.【答案】C【解析】∵,∴.故选C.点晴:集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解不等式.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系. 在求交集时注意区间端点的取舍. 熟练画数轴来解交集、并集和补集的题目.2. 设函数,则的值为A. —1B. 0C. 1D. 2【答案】C【解析】.故选C.3. 下列函数中是偶函数且在(0,+∞)上单调递增的是A. B. C. D.【答案】A【解析】y=|x|在上单调递增,且为偶函数;在上单调递减;y=(x+1) 2在单调递增,是非奇非偶函数;在上单调递减,故选A.4. 设角a的终边过点P(1,-2),则的值是A. -4B. -2C. 2D. 4【答案】A【解析】由题意,,.故选A.5. 方程的解的个数是A. 0B. 1C. 2D. 3【答案】C【解析】方程的解的个数等于函数和图像交点的个数,如图所示,可知函数和图像有两个交点.6. 已知,且,则A. B. C. D.【答案】B【解析】因为cos=-,所以-sinα=-,sinα=,7. 设向量,若向量与向量垂直,则的值为A. B. 1 C. -1 D. -5【答案】D【解析】由已知得a+λb=(1-λ,2+λ),∵向量a+λb与向量a垂直,所以(a+λb)·a =0.∴(1-λ)×1+(2+λ)×2=0,解得λ=-5.故选D.8. 设,则a、b、c的大小关系为A. c<a<bB. c<b<aC. b<a<cD. .a<b<c【答案】B【解析】,所以.故选B.点晴:本题考查的是指数式,对数式的大小比较。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年度第一学期期末考试高一数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,满分120分.考试限定用时100分钟.考试结束后,将本试卷和答题纸一并交回.答卷前,考生务必将自己的姓名、座号、考籍号分别填写在试卷和答题纸规定的位置.第Ⅰ卷(选择题 共48分)参考公式:1.锥体的体积公式1,,.3V Sh S h =其中是锥体的底面积是锥体的高2.球的表面积公式24S R π=,球的体积公式343R V π=,其中R 为球的半径.一、选择题:本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{0,1,2,3},{1,3}U A ==,则集合U C A = ( )A .{}0B .{}1,2C .{}0,2D .{}0,1,2 2.空间中,垂直于同一直线的两条直线 ( )A .平行B .相交C .异面D .以上均有可能 3.已知幂函数()αx x f =的图象经过点⎝ ⎛⎭⎪⎫2,22,则()4f 的值等于 ( ) A .16 B.116 C .2 D.124. 函数()lg(2)f x x =+的定义域为 ( )A.(-2,1)B.[-2,1]C.()+∞-,2D. (]1,2- 5.动点P 在直线x+y-4=0上,O 为原点,则|OP|的最小值为 ( )AB .CD .26.设m 、n 是两条不同的直线,α、β是两个不同的平面,则下列命题中正确的是 ( )A .若m ∥n ,m ∥α,则n ∥αB .若α⊥β,m ∥α,则m ⊥βC .若α⊥β,m ⊥β,则m ∥αD .若m ⊥n ,m ⊥α, n ⊥β,则α⊥βOOO O1 1117.设()x f 是定义在R 上的奇函数,当0≤x 时,()x x x f -=22,则()1f 等于 ( )A .-3B .-1C .1D .3 8.函数y =2-+212x x⎛⎫⎪⎝⎭的值域是 ( )A .RB .⎣⎢⎡⎭⎪⎫12,+∞ C .(2,+∞) D. (0,+∞) 9.已知圆0964:221=+--+y x y x c ,圆019612:222=-+++y x y x c ,则两圆位置关系是 ( )A .相交B .内切C .外切D .相离10. 当10<<a 时,在同一坐标系中,函数xay -=与x y a log =的图象是 ( )A. B. C. D.11. 函数f(x)=e x-x1的零点所在的区间是 ( ) A.(0,21) B. (21,1) C. (1,23) D. (23,2) 、12. 已知函数224,0()4,0x x x f x x x x ⎧+≥⎪=⎨-<⎪⎩,若(21)()f a f a +>,则实数a 的取值范围是( )A .1(,1)(,)3-∞-⋃-+∞ B . (,3)(1,)-∞-⋃-+∞C . 1(1,)3-- D .(3,1)--第Ⅱ卷(非选择题,共72分)二、填空题:本大题共4小题,每小题4分,共16分. 13. 计算 =+⨯+2lg 5lg 2lg )5(lg 2________.14. 已知直线013:1=-+y ax l 与直线()0112:2=+-+y a x l 垂直,则实数a =_____. 15. 已知各顶点都在一个球面上的正方体的棱长为2,则这个球的体积为 . 16. 圆心在y 轴上且通过点(3,1)的圆与x 轴相切,则该圆的方程是 .三、解答题:本大题共6小题, 共56分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)设集合{|13}A x x =-≤<,{|242}B x x x =-≥-, {|1}C x x a =≥-.(Ⅰ)求A B I ;(Ⅱ)若B C C =U ,求实数a 的取值范围.18.(本小题满分10分)已知函数()log (1)log (3) (01)a a f x x x a =-++<<. (Ⅰ)求函数()f x 的零点;(Ⅱ)若函数()f x 的最小值为4-,求a 的值.19.(本小题满分12分)已知圆C:x2+y2-8y+12=0,直线l:ax+y+2a=0.(Ⅰ)当a为何值时,直线l与圆C相切;(Ⅱ)当直线l与圆C相交于A,B两点,且AB=22时,求直线l的方程.20.(本小题满分12分)三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,△ABC是边长为4的等边三角形,D为AB边中点,且CC1=2AB.(Ⅰ)求证:平面C1CD⊥平面ADC1;(Ⅱ)求证:AC1∥平面CDB1;(Ⅲ)求三棱锥D﹣CAB1的体积.21. (本小题满分12分)已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若a ,b ∈[-1,1],a +b ≠0时,有f a +f ba +b>0成立.(Ⅰ)判断f (x )在[-1,1]上的单调性,并证明; (Ⅱ)解不等式:()()x f x f 3112-<-;(Ⅲ)若f (x )≤m 2-2am +1对所有的a ∈[-1,1]恒成立,求实数m 的取值范围.2017-2018学年高一上学期期末考试高一数学答案一、选择题C D D D B D A B C D B A 二、填空题13、1 14、35 15、16、x 2+y 2-10y =0三、解答题17、解: (Ⅰ)由题意知,{|2}B x x =≥ L L L L 分所以{}|23A B x x ⋂=≤<L L L L L L L L L 分 (Ⅱ)因为B C C ⋃=,所以B C ⊆ L L L L L L L L 分 所以12a -≤,即3a ≤ L L L L L L L L L L 分18、解:(Ⅰ)要使函数有意义:则有1030x x -⎧⎨+⎩>>,解之得:31x -<< L L2分函数可化为2()log (1)(3)log (23)a a f x x x x x =-+=--+由()0f x =,得2231x x --+=即2220xx +-=,1x =-±(3,1)±-∵-1()f x ∴的零点是1-L L L L L L L L L L L L L L5分(Ⅱ)函数化为:22()log (1)(3)log (23)log (1)4a a a f x x x x x x ⎡⎤=-+=--+=-++⎣⎦31x -∵<< 201)44x ++≤∴<-( L L L L L L L7分01a ∵<<2log (1)4log 4a a x ⎡⎤-++≥⎣⎦∴即min ()log 4a f x =由log 44a =-,得44a-=,14242a -==∴ L L L L L L 10分 19、解:(Ⅰ)若直线l 与圆C 相切,则有圆心(0,4)到直线l :ax +y +2a =0的距离为21242=++a a L L L L L L L L L L L 3分解得43-=a . L L L L L L L L L L L L L L L L L L 5分 (Ⅱ)过圆心C 作CD ⊥AB ,垂足为D.则由AB =22和圆半径为2得CD = 2 L L 7分因为21242=++=a a CD所以解得7-=a 或1-.故所求直线方程为7x -y +14=0或x -y +2=0. L L L L L L L 10分20、解:(Ⅰ)∵CC 1⊥平面ABC ,又AB ⊂平面ABC ,∴CC 1⊥AB∵△ABC 是等边三角形,CD 为AB 边上的中线,∴C D ⊥AB L L L 2分∵CD ∩CC 1=C ∴AB ⊥平面C 1CD∵AB ⊂平面ADC 1∴平面C 1CD⊥平面ADC 1; L L L L L L L 4分 (Ⅱ)连结BC 1,交B 1C 于点O ,连结DO .则O 是BC 1的中点,DO 是△BAC 1的中位线.∴DO∥AC 1.∵DO ⊂平面CDB 1,AC 1⊄平面CDB 1,∴AC 1∥平面CDB 1; L L L 8分 (Ⅲ)∵CC 1⊥平面ABC ,BB 1∥CC 1,∴BB 1⊥平面ABC .∴BB 1 为三棱锥D ﹣CBB 1 的高.=.∴三棱锥D ﹣CAB 1的体积为.L L L L L L L 12分21、解:(Ⅰ)任取x 1,x 2∈[-1,1],且x 1<x 2,则-x 2∈[-1,1],∵f (x )为奇函数,∴f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f x 1+f -x 2x 1+-x 2·(x 1-x 2),L L L L L L 2分由已知得f x 1+f -x 2x 1+-x 2>0,x 1-x 2<0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).∴f (x )在[-1,1]上单调递增. L L L L L L L 4分(Ⅱ)∵f (x )在[-1,1]上单调递增,∴⎪⎩⎪⎨⎧-<-≤-≤-≤-≤-x x x x 311213111121L L L L L L 6分∴不等式的解集为⎭⎬⎫⎩⎨⎧<≤520x x . L L L L L L L 7分 (Ⅲ)∵f (1)=1,f (x )在[-1,1]上单调递增.∴在[-1,1]上,f (x )≤1.问题转化为m 2-2am +1≥1,即m 2-2am ≥0,对a ∈[-1,1]恒成立. L L 9分下面来求m 的取值范围.设g (a )=-2m ·a +m 2≥0. ①若m =0,则g (a )=0≥0,对a ∈[-1,1]恒成立.②若m ≠0,则g (a )为a 的一次函数,若g (a )≥0,对a ∈[-1,1]恒成立, 必须g (-1)≥0且g (1)≥0,∴m ≤-2或m ≥2.综上,m =0 或m ≤-2或m ≥2 L L L L L L L 12分。

相关文档
最新文档